WO2020241620A1 - Aerogel complex - Google Patents

Aerogel complex Download PDF

Info

Publication number
WO2020241620A1
WO2020241620A1 PCT/JP2020/020679 JP2020020679W WO2020241620A1 WO 2020241620 A1 WO2020241620 A1 WO 2020241620A1 JP 2020020679 W JP2020020679 W JP 2020020679W WO 2020241620 A1 WO2020241620 A1 WO 2020241620A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
silane compound
resin substrate
sol
acid
Prior art date
Application number
PCT/JP2020/020679
Other languages
French (fr)
Japanese (ja)
Inventor
昇 川瀬
正洋 山地
Original Assignee
ティエムファクトリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティエムファクトリ株式会社 filed Critical ティエムファクトリ株式会社
Publication of WO2020241620A1 publication Critical patent/WO2020241620A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Definitions

  • the present invention relates to a novel airgel composite, and more particularly to an airgel composite used as a heat insulating material for construction such as a heat insulating window material for a house, a cryogenic container, and a high temperature container.
  • Patent Document 1 a gel-dried product having a siloxane bond called airgel is known (Patent Document 1). Specifically, a sol was formed by hydrolyzing a monomer solution of a silane compound (solvent: water and / or an organic solvent), and a gel (condensation compound) was formed by subjecting the sol to a condensation reaction. After that, the gel is dried to obtain an aerogel (gel dried sol) having a large number of pores.
  • solvent water and / or an organic solvent
  • the pores of the airgel have a pore diameter equal to or smaller than, for example, the mean free path (Mean Free Path [MFP]) of the element molecules constituting the air at atmospheric pressure. Therefore, heat exchange with air is hardly performed inside the airgel, and the airgel has an excellent potential as a heat insulating material, and its heat insulating effect is said to exceed the vacuum.
  • MFP mean Free Path
  • an airgel composite is formed by combining an airgel with a material made of another glass non-woven fabric or a metal sheet to form a sheet, which overcomes brittleness and further suppresses the airgel from falling off from other materials. Proposed.
  • Patent Document 2 improves the handleability to some extent, it still lacks flexibility as a sheet-like material. Therefore, when the airgel composite is applied to a curved surface, the airgel constitutes the airgel composite. The problem of falling off from other materials (for example, powder falling off) has not been sufficiently solved.
  • An object of the present invention is to provide an airgel composite in which airgel shedding is suppressed even when applied to a curved surface.
  • An object of the present invention has been achieved by: 1.
  • An aerogel complex composed of at least a porous resin substrate and an airgel, the airgel is composed of a hydrolyzed condensate of a silane compound, and the silane compound is a tetrafunctional silane compound, a trifunctional silane compound and a bifunctional silane compound.
  • an airgel composite having excellent heat insulating properties, a large area (for example, 400 cm 2 or more) and excellent flexibility in the form of a plate or a film, and a method for producing the same.
  • the airgel composite of the present invention is an airgel composite composed of at least a porous resin substrate and an airgel, and the airgel is composed of a hydrolyzate of a silane compound, and the silane compound is a tetrafunctional silane compound, 3
  • the porous resin substrate is a fibrous resin substrate or a foamed resin substrate.
  • the airgel composite of the present invention may be in a state in which the porous resin substrate and the airgel can be handled as one integrated substance regardless of the production method.
  • a state in which a bond between a functional group on the fiber surface and a functional group on the airgel surface by a chemical interaction, or a bond by an intermolecular interaction between a fiber surface and an airgel encloses a porous resin substrate.
  • the state of adhesion and the like can be mentioned as a preferable embodiment, and particularly preferably, the airgel is present in the pores of the porous resin substrate.
  • the airgel and the porous resin substrate are not easily separated in normal handling, powder dropout is suppressed, and it can be handled as a single integrated substance.
  • the airgel composite of the present invention has flexibility as an airgel composite, it is intended to optimize the silane compound to be mixed in order to produce an airgel, and the production method is not limited.
  • a specific production method for example, there is a case where a sol generation step, a wet gel formation / molding step, a solvent exchange step and a drying step are performed in this order.
  • the size of the airgel composite of the present invention is not particularly limited, but the desired size can be obtained by appropriately selecting the bulk size of the porous resin substrate.
  • the size can be 3000 mm in length, 3000 mm in width, and 100 mm in thickness. It can also be rolled into a width of 2000 mm.
  • the thickness of the airgel layer itself in the airgel composite of the present invention can be appropriately selected, but is 100 ⁇ m to 100 mm, preferably 500 ⁇ m to 40 mm, and more preferably 1 mm to 20 mm.
  • the thickness of the airgel layer can be appropriately selected in relation to the heat insulating property and the powder removing performance of the airgel from the porous resin substrate.
  • the airgel composite can be formed into a sheet or film, but in that case, it can be further combined with another film, sheet or the like. For example, it is preferable to combine it with an aluminum sheet.
  • the airgel composite can be appropriately composited from the viewpoint of handling the porous resin substrate, but it is preferable to appropriately composite the airgel composite in the range of 10 to 1000 parts by mass with respect to 100 parts by mass of the airgel.
  • the porous resin substrate refers to a fibrous resin substrate or a foamed resin substrate, and specifically, a fibrous material, a non-woven fabric, a fiber sheet, felt, a foam, or the like itself maintains a three-dimensional shape. There are things that are done.
  • the porosity is preferably 95% to 99.9% and the density is preferably 0.01 to 0.4 g / cm 3 .
  • Examples of the resin of the porous resin substrate include nylon, polyester, polypropylene, polyacrylonitrile, vinylon, polyolefin, polyurethane, polystyrene, rayon, carbon fiber and the like. Commercially available products can be used as the fibrous resin substrate and the foamed resin substrate of the present invention.
  • the aerogel composite of the present embodiment has, for example, a sol generation step of producing a sol for forming an aerogel, an impregnation step of impregnating a porous resin substrate with the sol obtained in the sol generation step, and gelling the sol.
  • the gel formation step may be performed after the impregnation step, or the impregnation step may be performed after the gel formation step.
  • the porous resin substrate is dispersed in the above sol coating solution in advance, and a porous resin substrate in which airgel is immersed is prepared through an aging step, a washing / solvent replacement step, and a drying step, and this is made into a non-woven fabric. It is also possible to form an airgel composite with a porous resin substrate.
  • the airgel composite and the method for producing the airgel composite in the present invention will be specifically described below.
  • the bifunctional silane compound is a silane compound having two siloxane bonds
  • the trifunctional silane compound is a silane compound having three siloxane bonds
  • 4 The functional silane compound is a silane compound having 4 siloxane bonds.
  • bifunctional silane compound examples include dialkoxysilane and diacetoxysilane.
  • a desirable embodiment of the dialkoxysilane is that the alkoxy group has 1 to 9 carbon atoms. Specific examples thereof include dimethyldimethoxysilane, diethyldimethoxysilane, and diisobutyldimethoxysilane. These compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use dimethyldimethoxysilane (DMDMS) as the bifunctional silane compound.
  • DDMS dimethyldimethoxysilane
  • Examples of the trifunctional silane compound include trialkoxysilane and triacetoxysilane.
  • a desirable embodiment of the trialkoxysilane is that the alkoxy group has 1 to 9 carbon atoms.
  • Examples thereof include silane and octylriethoxysilane. These compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use methyltrimethoxysilane (MTMS) as the trifunctional silane compound.
  • MTMS methyltrimethoxysi
  • tetrafunctional silane compound examples include tetraalkoxysilane and tetraacetoxysilane.
  • a desirable embodiment of the tetraalkoxysilane is that the alkoxy group has 1 to 9 carbon atoms.
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane and the like can be mentioned.
  • These silane compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use tetramethoxysilane (TMS) as the tetrafunctional silane compound.
  • TMS tetramethoxysilane
  • FIG. 1 shows the appropriate range of Qx, Tx and Dx, which are the mass percentages of the tetrafunctional silane compound, the trifunctional silane compound and the bifunctional silane compound, which are the silane compounds of the present invention. It is shown in a triangular diagram having Qx, Tx and Dx as coordinate axes, and the region I shown in FIG. 1 is an appropriate range of Qx, Tx and Dx.
  • Region I shown in FIG. 1 has four vertices a to d and is a trapezoidal segmented region (hatched region with a downward-sloping diagonal line). Since none of the vertices a to d is included in the region I, they are indicated by " ⁇ (white circles)". Further, the straight line connecting the apex a and the vertex b and the straight line connecting the apex b and the apex c are included in the region I, and the straight line connecting the apex c and the apex d and between the apex d and the apex a. The straight line connecting the above is not included in the region I.
  • the mass percentages of the tetrafunctional silane compound, the trifunctional silane compound and the bifunctional silane compound are Qx, Tx and Dx, respectively, with Qx, Tx and Dx as coordinate axes.
  • Qx, Tx, Dx When plotting on the triangular diagram (Qx, Tx, Dx), point A (5,95,0), point B (40,60,0), point C (40,55,5), and D Six straight lines connecting points (30, 55, 15), E points (15, 70, 15), F points (5, 90, 5), and A points (5, 95, 0) in this order. It is preferable that it is within the range surrounded by (region II in FIG. 1) from the viewpoint of heat insulating properties.
  • the region II shown in FIG. 1 has six vertices A to F and is a region partitioned in a hexagonal shape (a region hatched by a diagonal line rising to the right). Since all of the vertices A to F are included in the region II, they are indicated by “ ⁇ (black circle)”, and six straight lines connecting these vertices A to F are also included in the region II.
  • the sol for producing the airgel of the airgel composite of the present invention is a raw material containing a silane compound (main raw material) in a predetermined solution. Is added, and the mixture is produced in a step including a sol forming step of stirring and mixing.
  • a bifunctional silane compound, a trifunctional silane compound, and in some cases a tetrafunctional silane compound are mixed at the above-mentioned predetermined mixing ratio as a main raw material. Then, prepare a solution containing water and a surfactant. By this preparation, the silane compound is hydrolyzed to produce a sol containing a siloxane bond.
  • the solution to be prepared may contain an acid and / or an organic solvent.
  • the surfactant contributes to the formation of the bulk portion and the pore portion constituting the airgel described later in the gel formation process described later.
  • a nonionic surfactant, an ionic surfactant and the like can be used as the surfactant that can be used in the production of airgel.
  • the ionic surfactant include a cationic surfactant, an anionic surfactant, and a zwitterionic surfactant.
  • nonionic surfactants can be preferably used.
  • the amount of the surfactant added to the prepared solution depends on the type and mixing ratio of the silane compound and the type of the surfactant, but is 0.001 to 100% by mass with respect to 100 parts by mass of the total amount of the silane compound as the main raw material. It can be used in the range of parts, preferably in the range of 0.01 to 90 parts by mass, and more preferably in the range of 0.1 to 80 parts by mass.
  • the acid acts as a catalyst during hydrolysis and can accelerate the reaction rate of hydrolysis.
  • Specific examples of acids include inorganic acids, organic acids and organic acid salts.
  • inorganic acid examples include hydrochloric acid, sulfuric acid, sulfite, nitric acid, hydrofluoric acid, phosphoric acid, phosphorous acid, hypochlorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid and the like.
  • organic acids examples include carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, and azelaic acid.
  • carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, and azelaic acid.
  • organic acid salt acidic aluminum phosphate, acidic magnesium phosphate, acidic zinc phosphate and the like can be used. These acids may be used alone or in combination of two or more. In the present invention, it is preferable to use acetic acid, which is an organic acid, as the acid.
  • a range of 0.0001 mol / L to 0.1 mol / L, particularly a range of 0.0005 mol / L to 0.05 mol / L can be preferably used, and 0.
  • the range of .001 mol / L to 0.01 mol / L can be further preferably used.
  • the organic solvent examples include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol. These may be used alone or in admixture of two or more. From the viewpoint of compatibility, the amount of the organic solvent added to the prepared solution may be in the range of 4 mol to 10 mol, particularly in the range of 4.5 mol to 9 mol, with respect to the total amount of 1 mol of the silane compound as the main raw material. It is preferably in the range of 5 mol to 8 mol, and is particularly preferable.
  • the solution temperature and time required for the sol formation step depend on the type and amount of the silane compound, surfactant, water, acid, nitrogen compound, organic solvent, etc. in the mixed solution, and are, for example, 0 ° C to 70 ° C.
  • the treatment may be in the range of 0.05 hours to 48 hours under the temperature environment of 20 to 50 ° C., and the treatment is preferably performed for 0.1 hours to 24 hours under the temperature environment of 20 to 50 ° C.
  • the silane compound is hydrolyzed to form a colloid, and a liquid sol can be produced as a whole.
  • auxiliary material and / or the decomposition product of the auxiliary material used in the sol generation step can be mixed as an unavoidable component in the produced airgel.
  • the porous resin substrate of the present invention can be immersed in a sol in this step.
  • the immersion is preferably performed so that the entire porous resin substrate is immersed in the sol. It is also preferable to give vibration so that the sol is immersed even inside the porous resin substrate.
  • the wet gel formation / molding step is a step of adding a basic catalyst to the liquid sol produced in the above-mentioned sol formation step, and a step of pouring a solution to which the basic catalyst is added into a mold for obtaining a desired shape. By curing the solution inside the mold, it can be roughly divided into the steps of producing a wet gel.
  • Examples of the basic catalyst include ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride and ammonium bromide, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide, and metaphosphoric acid.
  • ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride and ammonium bromide
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide
  • metaphosphoric acid metaphosphoric acid
  • Basic sodium phosphate salts such as sodium, sodium pyrophosphate, sodium polyphosphate, allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec-butylamine, propylamine, 3- (methylamino) propylamine, 3- Aliper amines such as (dimethylamino) propylamine, 3-methoxyamine, dimethylethanolamine, methyldiethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, 2-methylmorpholine, piperazine and
  • the basic catalyst may be a nitrogen compound that generates a basic catalyst by heating.
  • the nitrogen compound is added as a compound that generates a basic catalyst during heating in the wet gel formation / molding step.
  • Specific examples thereof include amide compounds such as urea, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and heterocyclic compounds such as hexamethylenetetramine. be able to.
  • urea can be preferably used in the wet gel production step in terms of increasing the production rate.
  • the amount of the basic catalyst added is preferably 0.5 to 5 parts by mass and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the total amount of the main raw material. If the addition amount is less than 0.5 parts by mass, the reaction cannot proceed from the sol to the wet gel, and if it exceeds 5 parts by mass, the reaction is too fast, and the whole may cause non-uniformity inside the mold. ..
  • the aqueous ammonium hydroxide solution is preferable because it has a high reaction promoting effect as a catalyst and can form a reaction from the sol to the wet gel in a short time and with few defects.
  • the aqueous ammonium hydroxide solution is highly volatile, it is also excellent in that it volatilizes in the solvent exchange step and the drying step described later and does not easily remain in the airgel.
  • the amount added in the case of the nitrogen compound is not particularly limited, but for example, the amount of the nitrogen compound added is preferably in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the silane compound as the main raw material. It is more preferable to use the range of 2 to 150 parts by mass.
  • the porous resin substrate of the present invention can also be immersed in a sol in this step.
  • the step of pouring the solution to which the basic catalyst is added into the mold is a step of obtaining the desired shape of the airgel product.
  • Any of metal, synthetic resin, wood, and paper can be used as the mold, but synthetic resin can be preferably used in that it has both flatness and releasability of the shape.
  • Examples of the synthetic resin include polystyrene, polyethylene, and polypropylene.
  • the mold Since the mold is for obtaining the desired shape of the airgel product, it reflects the shape obtained by reversing the unevenness of the shape of the desired airgel product.
  • the desired shape of the airgel product is a plate shape (rectangular parallelepiped)
  • a concave tray having an opening at one end can be used as a mold.
  • the mold may be a combination mold composed of a plurality of molds, such as a so-called injection molding mold.
  • a combination mold composed of a plurality of molds, such as a so-called injection molding mold.
  • the solution a solution consisting of a sol and a basic catalyst
  • the solution may be poured into a combinatorial interior space and sealed for a predetermined time.
  • a concave tray with an opening at one end When a concave tray with an opening at one end is used as a mold, a flat plate (plate) covering the entire open (flat) surface of the concave tray is prepared as the second mold, and the open surface of the concave tray and the second mold are used. It may be used as a combination type of two sheets so that the two sheets face each other. As a result, the solution (solution consisting of a sol and a basic catalyst) may be poured into the combination type and sealed for a predetermined time.
  • Curing is to proceed the reaction from the sol to the wet gel with a predetermined energy over a predetermined time.
  • energy is heat (temperature), where heating at 30-90 ° C, preferably 40-80 ° C is used.
  • the heating may be heater heating or steam heating with water or an organic solvent.
  • energy application of electromagnetic waves such as infrared rays, ultraviolet rays, microwaves, and gamma rays, application of electron beams, and the like can be mentioned. These energies may be used alone or in combination with a plurality of means.
  • the time required for curing depends on the composition of the silane compound, the type and amount of surfactant, water, acid, nitrogen compound, organic solvent, basic catalyst, etc., and the type and density of energy. The period is between 01 hours and 7 days. When the type of basic catalyst and the type of energy are optimized, gelation may be completed in 0.01 to 24 hours.
  • the curing may be a curing that changes heat (temperature) and time in multiple stages.
  • the material used in the wet gel formation / molding step and / or the decomposition product of the material may be mixed as an unavoidable component in the produced airgel.
  • the solvent exchange step is a step of exchanging water and / or an organic solvent existing on the surface and inside of the wet gel with an organic solvent suitable for short-time drying, but in a subsequent drying step. This is a process that may be omitted if a long time may be required. Further, the solvent exchange step may be performed after being taken out from the above-mentioned mold, or may be performed in the mold.
  • a washing treatment may be performed to wash away the acid used for sol formation, the catalyst used for wet gel formation, the reaction by-product, and the like.
  • An organic solvent can be widely used for the cleaning treatment.
  • Tetrahydrofuran methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and various other organic solvents can be used.
  • the above organic solvent may be used alone or in combination of two or more.
  • methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, etc. which are soluble in both water and organic solvents, are used alone or in combination of two or more.
  • the water (or organic solvent) on the surface and inside of the wet gel is replaced with an organic solvent having a surface tension of 45 mN / m or less at 20 ° C. in order to suppress shrinkage damage of the gel in the subsequent drying step.
  • organic solvent having a surface tension of 45 mN / m or less at 20 ° C.
  • examples thereof include dimethyl sulfoxide (43.5 mN / m), cyclohexane (25.2 mN / m), isopropyl alcohol (21 mN / m), heptane (20.2 mN / m), pentane (15.5 mN / m) and the like. ..
  • the organic solvent used in the solvent exchange step has a surface tension at 20 ° C. of 45 mN / m or less, 40 mN / m or less, 35 mN / m or less, 30 mN / m or less, 25 mN / m or less, 20 mN / m or less, 15 mN / m or less. , 5 mN / m or more, 10 mN / m or more, 15 mN / m or more, 20 mN / m or more.
  • an organic solvent containing an aliphatic hydrocarbon whose surface tension at 20 ° C. is in the range of 20 to 40 mN / m.
  • the organic solvent can be used alone or in combination of two or more.
  • the amount of solvent used in the solvent exchange step depends on the temperature at which the solvent is exchanged and the device (container), but it is desirable to use an amount 2 to 100 times the volume of the wet gel.
  • the solvent exchange is not limited to once, and may be performed a plurality of times. Further, the solvent exchange method may be any of total substitution, partial substitution, and cyclic substitution.
  • the type, temperature, and treatment time of the organic solvent may be set independently for each time.
  • the material used in the solvent exchange step and / or the decomposition product of the material may be mixed as an unavoidable component in the produced airgel.
  • the drying step is a step of drying the above-mentioned solvent-exchanged wet gel to obtain an airgel having predetermined properties.
  • the drying method is not particularly limited, the supercritical drying method has problems that the equipment becomes large, the manufacturing cost is extremely high, and mass production is difficult. Therefore, the supercritical drying method of the present invention is supercritical. It is preferable to use the atmospheric pressure drying method without applying the critical drying method.
  • the atmospheric pressure refers to the surface pressure of 300 hPa to 1100 hPa, and as long as it is on the surface of the earth, there is no limitation on the altitude at which the present invention is carried out.
  • the present invention also includes drying under reduced pressure to about 300 hPa.
  • the above-mentioned manufacturing method has described a method for manufacturing an airgel composite having a plate (or rectangular parallelepiped) shape or a film shape, but the present invention is not limited to this, and the plate shape is not limited to this.
  • Processing from the airgel composite into a desired shape can be included as an optional step.
  • it can be processed from a plate (or a rectangular parallelepiped) into various shapes such as a rectangular or circular plate or film, a cube, a sphere, a cylinder, a pyramid, or a cone.
  • Known machining such as wire cutting and laser cutting can be used as the processing method.
  • the airgel composite of the present invention may include processing from a rectangular parallelepiped airgel composite into a particulate airgel composite as an optional step.
  • a known crusher such as a jaw crusher, a roll crusher, and a ball mill can be used.
  • the airgel constituting the airgel composite of the present invention has a bulk portion (gel skeleton) filled with solid matter and 3 in the bulk portion when the structure is observed microscopically. It is mainly composed of through holes penetrating in a three-dimensional network, and forms a three-dimensional network as a whole.
  • the three-dimensional network of airgel of the present invention can be judged by observing with a scanning electron microscope, and the diameter of the through hole of the three-dimensional network structure and the cross-sectional area of the gel skeleton are three-dimensional network-like.
  • the central pore diameter of the through pores (pores), the diameter when the cross section of the skeleton is regarded as a circle, the density, and the porosity can be continuously measured and calculated by the mercury injection method.
  • the bulk part is composed of a continuum in which solids form a three-dimensional network by siloxane bonds.
  • the average length of one side when a grid, which is the smallest unit of a network, is approximated by a cube is 2 nm or more and 25 nm or less.
  • the average length of one side is preferably 2 nm or more, 5 nm or more, 7 nm or more, 10 nm or more, and 25 nm or less, 20 nm or less, and 15 nm or less.
  • the pore portion has a tubular shape penetrating the inside of the bulk portion, and the average inner diameter when the pore is approximated by a tube and the inner diameter of the tube is approximated by a circle is 5 nm or more and 100 nm or less.
  • the average inner diameter of the pores is preferably 5 nm or more, 7 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 50 nm or more, and 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less.
  • the inner diameter of the tube has a dimension equal to or less than the mean free path (MFP) of the element molecules constituting air at atmospheric pressure.
  • MFP mean free path
  • the porosity of the airgel that is, the ratio of the volume of the pores to the total volume of the airgel is 70% or more. As an example of the porosity, it may be 75% or more, 80% or more, 85% or more, 90% or more.
  • the airgel of the present invention may include a structure other than the bulk portion and the pore portion described above as long as it satisfies the physical properties described later.
  • a void different from the above-mentioned pore portion may be included.
  • water, an organic solvent, a surfactant, a catalyst, and decomposition products thereof that remain as unavoidable components in production can be included as long as the physical properties described later are satisfied. Further, as another example, as long as the physical properties described later are satisfied, dust mixed from the manufacturing space or the manufacturing apparatus can be included as an unavoidable component in manufacturing.
  • the airgel composite of the present invention may contain components to be added with the intention of imparting functionality, improving appearance, imparting decorativeness, etc., in addition to the above-mentioned constitution.
  • antistatic agents, lubricants, inorganic pigments, organic pigments, inorganic dyes, and organic dyes can be included. These can be contained in each of the porous resin substrate and the airgel.
  • the airgel of the present invention has a density as low as 0.15 g / cm 3 or less.
  • the density is obtained by the mercury intrusion method.
  • the airgel composite of the present embodiment can be applied to applications as a heat insulating material in a cryogenic container, a space field, a building field, an automobile field, a home appliance field, a semiconductor field, an industrial facility, and the like.
  • the airgel composite material of the present embodiment can be used for water repellency, sound absorption, static vibration, catalyst support, and the like.
  • MTMS methyltrimethoxysilane
  • DDMMS dimethyldimethoxysilane
  • TMOS tetramethoxysilane
  • the wet gel was aged by allowing it to stand for 96 hours in succession.
  • the wet gel was taken out from the closed container, immersed in a MeOH solution corresponding to 5 times the volume of the wet gel, and the solvent was exchanged repeatedly 5 times under the condition of 60 ° C. for 8 hours.
  • Immerse in an IPA / hep mixed solution corresponding to 5 times the volume of the wet gel which is a mixture of isopropyl alcohol (IPA) and heptan (Hep) in a volume ratio of 1: 4 to 1: 3, and 8 at 60 ° C. Further solvent exchange was carried out under time conditions.
  • IPA isopropyl alcohol
  • Hep heptan
  • the mixture was immersed in a Hep solution corresponding to 5 times the volume of the wet gel, and the solvent was exchanged twice under the condition of 60 ° C. for 8 hours.
  • the methanol and isopropanol used for the solvent exchange were both manufactured by Nacalai Tesque.
  • the solvent in the wet gel was placed in a container (dryer) whose evaporation rate could be controlled, and drying was started.
  • the drying temperature was set to be equal to or lower than the boiling point of the solvent, and the solvent evaporation rate of the gel exchanged (replaced) with a low surface tension solvent was adjusted to 0.2 g / (h ⁇ cm 3 ) from immediately after the start of drying to 4 hours. After that, the solvent evaporation rate was gradually reduced, and when the gel mass became constant, drying was completed to prepare a sheet-shaped airgel composite.
  • Other examples were prepared in the same manner.
  • Comparative Examples 1 and 2 were produced in the same manner as in Example 1.
  • Comparative Example 3 the same composition as the airgel composite material described in Example 1 of JP-A-2018-11183 (Patent Document 2) was prepared and used.
  • the airgel composite of the embodiment of the present invention has a small amount of powder falling off.
  • the airgel composite of Comparative Example 3 (described in Example 1 of Patent Document 1) has already fallen off at the stage of preparing a sample, and the amount of powder fallen is clearly larger than that of the example of the present invention. (More than in Comparative Example 2), and even the reproducibility of the test results was problematic, so the results are not shown in Table 1.
  • Example 2 An airgel composite having the composition shown in Table 2 was prepared according to the method for producing an airgel composite of Experimental Example 1, and the same evaluation was performed. Although the absolute amount of powder falling is different from that of Experimental Example 1 due to the difficulty in reproducibility of the experiment, sufficient comparison can be made within the same experiment.
  • the amount of cut powder dropped 7.5 mg or less was judged to be ⁇
  • the amount of bent powder dropped 5.0 mg or less was judged to be ⁇
  • the others were marked with x.
  • the composition having a Dx of more than 30% by mass and the composition not containing Qx had a problem in the progress of the reaction of the airgel itself, and could not be evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide an aerogel complex having suppressed aerogel shedding, even when applied to a curved surface. [Solution] The purpose is achieved by an aerogel complex comprising at least a porous resin base material and an aerogel. The aerogel comprises a hydrolyzed condensate of a silane compound. The silane compound fulfills 0 < Qx < 50, 50 ≤ Tx < 100, and 0 ≤ Dx < 30 (where Qx + Tx + Dx = 100), when the mass percentages of a tetrafunctional silane compound, a trifunctional silane compound, and a bifunctional silane compound are Qx, Tx, and Dx, respectively.

Description

エアロゲル複合体Airgel complex
 本発明は、新規なエアロゲル複合体に関するものであり、更に詳しくは、住宅用断熱窓材等の建築用、極低温容器用、高温容器用等における断熱材として使用されるエアロゲル複合体に関する。 The present invention relates to a novel airgel composite, and more particularly to an airgel composite used as a heat insulating material for construction such as a heat insulating window material for a house, a cryogenic container, and a high temperature container.
 従来、エアロゲルと呼ばれるシロキサン結合を有するゲル乾燥体が知られている(特許文献1)。具体的には、シラン化合物の単量体溶液(溶媒:水、および/または有機溶剤)を加水分解することによりゾルを形成し、そのゾルを縮合反応させることによってゲル(縮合化合物)を形成した後、ゲルを乾燥させることによって、多数の気孔を有するエアロゲル(ゲル乾燥体)が得られる。 Conventionally, a gel-dried product having a siloxane bond called airgel is known (Patent Document 1). Specifically, a sol was formed by hydrolyzing a monomer solution of a silane compound (solvent: water and / or an organic solvent), and a gel (condensation compound) was formed by subjecting the sol to a condensation reaction. After that, the gel is dried to obtain an aerogel (gel dried sol) having a large number of pores.
 ここでエアロゲルが有する気孔は、その孔径が、例えば空気を構成する元素分子の大気圧における平均自由行程(Mean Free Path[MFP])以下であるものである。従って、エアロゲルの内部においては、空気との熱交換がほとんど行われず、エアロゲルは、断熱材として優れたポテンシャルを有し、その断熱効果は、真空を凌ぐものといわれている。 Here, the pores of the airgel have a pore diameter equal to or smaller than, for example, the mean free path (Mean Free Path [MFP]) of the element molecules constituting the air at atmospheric pressure. Therefore, heat exchange with air is hardly performed inside the airgel, and the airgel has an excellent potential as a heat insulating material, and its heat insulating effect is said to exceed the vacuum.
 一方エアロゲルは、非常に脆く取扱いが難しいことから、実際に断熱材として使用する場合、エアロゲル単体ではなく、他の材料と複合させることにより使いやすい断熱材としての形態を得ようとする技術が提案されている。例えば特許文献2では、エアロゲルを他のガラス不織布または金属シートからなる材料と複合させることによりシート状とし、脆さを克服するとともに、さらにエアロゲルの他の材料からの脱落も抑制したエアロゲル複合体が提案されている。 On the other hand, airgel is very brittle and difficult to handle, so when actually using it as a heat insulating material, a technology is proposed to obtain a form as an easy-to-use heat insulating material by combining it with other materials instead of airgel alone. Has been done. For example, in Patent Document 2, an airgel composite is formed by combining an airgel with a material made of another glass non-woven fabric or a metal sheet to form a sheet, which overcomes brittleness and further suppresses the airgel from falling off from other materials. Proposed.
特許第5250900号公報Japanese Patent No. 5250900 特開2018-111803号公報JP-A-2018-111803
 しかしながら、特許文献2の技術によってある程度の取り扱い性の改善はみられるものの、いまだシート状物としては柔軟性に欠けるため、エアロゲル複合体を曲面へ適用した場合、エアロゲルが、エアロゲル複合体を構成する他の材料から脱落(例えば粉落ち)するという課題は十分には解決できていなかった。 However, although the technique of Patent Document 2 improves the handleability to some extent, it still lacks flexibility as a sheet-like material. Therefore, when the airgel composite is applied to a curved surface, the airgel constitutes the airgel composite. The problem of falling off from other materials (for example, powder falling off) has not been sufficiently solved.
 本発明の目的は、曲面にも適用した場合であっても、エアロゲルの脱落が抑制されたエアロゲル複合体を提供することにある。 An object of the present invention is to provide an airgel composite in which airgel shedding is suppressed even when applied to a curved surface.
 本発明の目的は、下記によって達成された。
1.少なくとも多孔質樹脂基体とエアロゲルとからなるエアロゲル複合体であって、該エアロゲルは、シラン化合物の加水分解縮合物からなり、該シラン化合物が、4官能シラン化合物、3官能シラン化合物および2官能シラン化合物の質量百分率を、それぞれQx、Tx、Dxとするとき、0<Qx<50、50≦Tx<100、0≦Dx<30(ただしQx+Tx+Dx=100)であるエアロゲル複合体。
2.前記多孔質樹脂基体が、繊維状樹脂基体、発泡樹脂基体である、前記1に記載のエアロゲル複合体。
An object of the present invention has been achieved by:
1. 1. An aerogel complex composed of at least a porous resin substrate and an airgel, the airgel is composed of a hydrolyzed condensate of a silane compound, and the silane compound is a tetrafunctional silane compound, a trifunctional silane compound and a bifunctional silane compound. An airgel complex in which 0 <Qx <50, 50 ≦ Tx <100, 0 ≦ Dx <30 (where Qx + Tx + Dx = 100), where the mass percentages of are Qx, Tx, and Dx, respectively.
2. 2. The airgel composite according to 1 above, wherein the porous resin substrate is a fibrous resin substrate or a foamed resin substrate.
 本発明によれば、断熱特性に優れ、かつ大面積(例えば400cm以上)であって柔軟性に優れた板状またはフィルム状をなすエアロゲル複合体およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an airgel composite having excellent heat insulating properties, a large area (for example, 400 cm 2 or more) and excellent flexibility in the form of a plate or a film, and a method for producing the same.
本発明のエアロゲルを形成する好ましいシラン化合物組成の質量百分率を示す図である。It is a figure which shows the mass percentage of the preferable silane compound composition which forms the airgel of this invention.
 以下、本発明の実施形態について説明する。
<エアロゲル複合体>
 本発明のエアロゲル複合体は、少なくとも多孔質樹脂基体とエアロゲルとからなるエアロゲル複合体であって、該エアロゲルは、シラン化合物の加水分解縮合物からなり、該シラン化合物が、4官能シラン化合物、3官能シラン化合物および2官能シラン化合物の質量百分率をそれぞれQx、Tx、Dxとするとき、0<Qx<50、50≦Tx<100、0≦Dx<30(ただしQx+Tx+Dx=100)であるエアロゲル複合体であることを特徴とする。さらに、前記多孔質樹脂基体が、繊維状樹脂基体、発泡樹脂基体であることを特徴とする。
Hereinafter, embodiments of the present invention will be described.
<Airgel complex>
The airgel composite of the present invention is an airgel composite composed of at least a porous resin substrate and an airgel, and the airgel is composed of a hydrolyzate of a silane compound, and the silane compound is a tetrafunctional silane compound, 3 When the mass percentages of the functional silane compound and the bifunctional silane compound are Qx, Tx, and Dx, respectively, the airgel complex is 0 <Qx <50, 50 ≦ Tx <100, 0 ≦ Dx <30 (where Qx + Tx + Dx = 100). It is characterized by being. Further, the porous resin substrate is a fibrous resin substrate or a foamed resin substrate.
 本発明のエアロゲル複合体(以下、単に複合体ともいう)にあっては、多孔質樹脂基体とエアロゲルが製造方法を問わず、一体化されたひとつの物質として取り扱うことができる状態であればよく、例えば、繊維表面が有する官能基と、エアロゲル表面の官能基との化学的相互作用による結合、繊維表面とエアロゲルとの分子間相互作用による結合によるエアロゲルが多孔質樹脂基体を包んでいる状態、付着している状態等を好ましい態様として挙げることができ、特に好ましくはエアロゲルが多孔質樹脂基体の孔に含浸し存在する場合である。 The airgel composite of the present invention (hereinafter, also simply referred to as a composite) may be in a state in which the porous resin substrate and the airgel can be handled as one integrated substance regardless of the production method. For example, a state in which a bond between a functional group on the fiber surface and a functional group on the airgel surface by a chemical interaction, or a bond by an intermolecular interaction between a fiber surface and an airgel encloses a porous resin substrate. The state of adhesion and the like can be mentioned as a preferable embodiment, and particularly preferably, the airgel is present in the pores of the porous resin substrate.
 複合化されていることからエアロゲルと多孔質樹脂基体が通常の取り扱いにおいて容易に分離することなく粉落ちが抑制され、一体化したひとつの物質として取り扱うことができる。 Since it is composited, the airgel and the porous resin substrate are not easily separated in normal handling, powder dropout is suppressed, and it can be handled as a single integrated substance.
 特に、本発明のエアロゲル複合体は、エアロゲル複合体としての柔軟性を有するために、エアロゲルを生成するために混合するシラン化合物の適正化を図ったものであって、製造方法については限定されないが、具体的な製造方法としては、例えば、ゾル生成工程、ウエットゲル生成・成形工程、溶媒交換工程および乾燥工程をこの順で行う場合が挙げられる。 In particular, since the airgel composite of the present invention has flexibility as an airgel composite, it is intended to optimize the silane compound to be mixed in order to produce an airgel, and the production method is not limited. As a specific production method, for example, there is a case where a sol generation step, a wet gel formation / molding step, a solvent exchange step and a drying step are performed in this order.
 本発明のエアロゲル複合体は、特に大きさの制限はないが、多孔質樹脂基体の嵩の大きさを適宜選択することにより所望の大きさとすることができる。例えば、縦3000mm、横3000mm、厚み100mmの大きさとすることができる。また幅2000mmのロール状とすることもできる。 The size of the airgel composite of the present invention is not particularly limited, but the desired size can be obtained by appropriately selecting the bulk size of the porous resin substrate. For example, the size can be 3000 mm in length, 3000 mm in width, and 100 mm in thickness. It can also be rolled into a width of 2000 mm.
 本発明のエアロゲル複合体におけるエアロゲル層自体の厚みは、適宜選択することができるが、100μm~100mmであり、好ましくは500μm~40mmであり、さらに好ましくは1mm~20mmである。エアロゲル層の厚みは、断熱性と多孔質樹脂基体からのエアロゲルの粉落ち性能との関係で適宜選択することができる。 The thickness of the airgel layer itself in the airgel composite of the present invention can be appropriately selected, but is 100 μm to 100 mm, preferably 500 μm to 40 mm, and more preferably 1 mm to 20 mm. The thickness of the airgel layer can be appropriately selected in relation to the heat insulating property and the powder removing performance of the airgel from the porous resin substrate.
 エアロゲル複合体は、シート状、フィルム状に成形することができるが、その場合、他のフィルム、シート等とさらに複合させることもできる。例えば、アルミニウムシートと複合させることは好ましい。 The airgel composite can be formed into a sheet or film, but in that case, it can be further combined with another film, sheet or the like. For example, it is preferable to combine it with an aluminum sheet.
 エアロゲル複合体は、多孔質樹脂基体を取り扱いの観点から適宜複合化することができるが、エアロゲル100質量部に対して10~1000質量部の範囲で適宜複合させることが好ましい。 The airgel composite can be appropriately composited from the viewpoint of handling the porous resin substrate, but it is preferable to appropriately composite the airgel composite in the range of 10 to 1000 parts by mass with respect to 100 parts by mass of the airgel.
<多孔質樹脂基体>
 本発明において、多孔質樹脂基体とは、繊維状樹脂基体または発泡樹脂基体をいい、具体的には、繊維状物、不織布、繊維シート、フェルト、フォーム等のそれ自体で立体的な形状が維持されるものが挙げられる。空隙率は95%~99.9%、密度は0.01~0.4g/cm3であることが好ましい
<Porous resin substrate>
In the present invention, the porous resin substrate refers to a fibrous resin substrate or a foamed resin substrate, and specifically, a fibrous material, a non-woven fabric, a fiber sheet, felt, a foam, or the like itself maintains a three-dimensional shape. There are things that are done. The porosity is preferably 95% to 99.9% and the density is preferably 0.01 to 0.4 g / cm 3 .
 多孔質樹脂基体の樹脂としては、ナイロン、ポリエステル、ポリプロピレン、ポリアクリロニトリル、ビニロン、ポリオレフィン、ポリウレタン、ポリスチレン、レーヨン、炭素繊維等が挙げられる。本発明の繊維状樹脂基体、発泡樹脂基体は、市販品を使用することができる。 Examples of the resin of the porous resin substrate include nylon, polyester, polypropylene, polyacrylonitrile, vinylon, polyolefin, polyurethane, polystyrene, rayon, carbon fiber and the like. Commercially available products can be used as the fibrous resin substrate and the foamed resin substrate of the present invention.
<エアロゲル複合体の製造方法>
 本実施形態のエアロゲル複合体は、例えば、エアロゲルを形成するためのゾルを作製するゾル生成工程と、ゾル生成工程で得られたゾルを多孔質樹脂基体に含浸させる含浸工程と、ゾルをゲル化して湿潤ゲルを得るゲル生成工程と、ゾル又は湿潤ゲルで空隙が満たされた多孔質樹脂基体を養生する熟成工程と、養生した複合体を洗浄及び/又は溶媒置換する洗浄・溶媒置換工程と、洗浄及び/又は溶媒置換した複合体を乾燥する乾燥工程と、を主に備える製造方法により製造することができる。含浸工程の後にゲル生成工程を行ってもよく、ゲル生成工程の後に含浸工程を行ってもよい。
<Manufacturing method of airgel complex>
The aerogel composite of the present embodiment has, for example, a sol generation step of producing a sol for forming an aerogel, an impregnation step of impregnating a porous resin substrate with the sol obtained in the sol generation step, and gelling the sol. A gel formation step of obtaining a wet gel, a aging step of curing a porous resin substrate whose voids are filled with a sol or a wet gel, and a washing / solvent replacement step of washing and / or solvent replacing the cured composite. It can be produced by a production method mainly comprising a drying step of washing and / or drying the solvent-substituted composite. The gel formation step may be performed after the impregnation step, or the impregnation step may be performed after the gel formation step.
 また予め多孔質樹脂基体を上記ゾル塗液に分散し、熟成工程、洗浄・溶媒置換工程、乾燥工程を経由して、エアロゲルが浸漬した多孔質樹脂基体を作製し、これを抄造して不織布化することで多孔質樹脂基体とのエアロゲル複合体とすることもできる。
 本発明におけるエアロゲル複合体およびその製造方法について以下、具体的に説明する。
Further, the porous resin substrate is dispersed in the above sol coating solution in advance, and a porous resin substrate in which airgel is immersed is prepared through an aging step, a washing / solvent replacement step, and a drying step, and this is made into a non-woven fabric. It is also possible to form an airgel composite with a porous resin substrate.
The airgel composite and the method for producing the airgel composite in the present invention will be specifically described below.
(1)シラン化合物
 本発明のエアロゲル複合物を形成するエアロゲルは、シラン化合物として、4官能シラン化合物、3官能シラン化合物および2官能シラン化合物のそれぞれの質量百分率を、Qx、Tx、Dxとするとき、0<Qx<50、50≦Tx<100、0≦Dx<30(ただしQx+Tx+Dx=100)を加水分解縮合したものである。
(1) Silane Compound The aerogel forming the aerogel composite of the present invention has, as a silane compound, when the mass percentages of the tetrafunctional silane compound, the trifunctional silane compound and the bifunctional silane compound are Qx, Tx and Dx, respectively. , 0 <Qx <50, 50 ≦ Tx <100, 0 ≦ Dx <30 (where Qx + Tx + Dx = 100) are hydrolyzed and condensed.
 既存のエアロゲルに比べて、粉落ちが少なく、かつより低密度のエアロゲルを製造することができ、この結果、断熱特性が向上し、加えて、特許文献2では適用できなかった曲面に対して、しかも400cm(例えば20cm角)以上の大面積の板状、フィルム状またはシート状をなすエアロゲル複合体を製造することができる。 Compared with existing airgels, it is possible to produce airgels with less powder falling and lower density, and as a result, the heat insulating properties are improved, and in addition, for curved surfaces that could not be applied in Patent Document 2, Moreover, it is possible to produce an airgel composite having a large area of 400 cm 2 (for example, 20 cm square) or more in the form of a plate, a film or a sheet.
 ここで、2官能シラン化合物とは、シロキサン結合数が2個であるシラン化合物のことであり、3官能シラン化合物とは、シロキサン結合数が3個であるシラン化合物のことであり、そして、4官能シラン化合物とは、シロキサン結合数が4個であるシラン化合物のことである。 Here, the bifunctional silane compound is a silane compound having two siloxane bonds, and the trifunctional silane compound is a silane compound having three siloxane bonds, and 4 The functional silane compound is a silane compound having 4 siloxane bonds.
 2官能シラン化合物としては、例えばジアルコキシシラン、ジアセトキシシランがある。ジアルコキシシランの望ましい実施態様としては、アルコキシ基の炭素数が1~9のものが挙げられる。具体的には、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジイソブチルジメトキシシランなどが挙げられる。これら化合物は、単独で用いてもよいし、複数を組み合わせて用いてもよい。本発明では、2官能シラン化合物として、特にジメチルジメトキシシラン(DMDMS)を用いることが好ましい。 Examples of the bifunctional silane compound include dialkoxysilane and diacetoxysilane. A desirable embodiment of the dialkoxysilane is that the alkoxy group has 1 to 9 carbon atoms. Specific examples thereof include dimethyldimethoxysilane, diethyldimethoxysilane, and diisobutyldimethoxysilane. These compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use dimethyldimethoxysilane (DMDMS) as the bifunctional silane compound.
 3官能シラン化合物としては、例えばトリアルコキシシラン、トリアセトキシシランが挙げられる。トリアルコキシシランの望ましい実施態様としては、アルコキシ基の炭素数が1~9のものが挙げられる。例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシランなどが挙げられる。これら化合物は、単独で用いてもよいし、複数を組み合わせて用いてもよい。本発明では、3官能シラン化合物として、特にメチルトリメトキシシラン(MTMS)を用いることが好ましい。 Examples of the trifunctional silane compound include trialkoxysilane and triacetoxysilane. A desirable embodiment of the trialkoxysilane is that the alkoxy group has 1 to 9 carbon atoms. For example, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, pentiltriethoxysilane, hexyltriethoxysilane. Examples thereof include silane and octylriethoxysilane. These compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use methyltrimethoxysilane (MTMS) as the trifunctional silane compound.
 4官能シラン化合物としては、例えばテトラアルコキシシラン、テトラアセトキシシランが挙げられる。テトラアルコキシシランの望ましい実施態様としては、アルコキシ基の炭素数が1~9のものが挙げられる。例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシランなどが挙げられる。これらのシラン化合物は、単独で用いてもよいし、複数を組み合わせて用いてもよい。本発明では、4官能シラン化合物として、特にテトラメトキシシラン(TMOS)を用いることが好ましい。 Examples of the tetrafunctional silane compound include tetraalkoxysilane and tetraacetoxysilane. A desirable embodiment of the tetraalkoxysilane is that the alkoxy group has 1 to 9 carbon atoms. For example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane and the like can be mentioned. These silane compounds may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use tetramethoxysilane (TMS) as the tetrafunctional silane compound.
(2)シラン化合物の適正範囲
 図1は、本発明のシラン化合物である4官能シラン化合物、3官能シラン化合物および2官能シラン化合物のそれぞれの質量百分率であるQx、TxおよびDxの適正範囲について、Qx、TxおよびDxを座標軸とする三角図に示したものであって、図1に示す領域Iが、Qx、TxおよびDxの適正範囲である。
(2) Appropriate Range of Silane Compound FIG. 1 shows the appropriate range of Qx, Tx and Dx, which are the mass percentages of the tetrafunctional silane compound, the trifunctional silane compound and the bifunctional silane compound, which are the silane compounds of the present invention. It is shown in a triangular diagram having Qx, Tx and Dx as coordinate axes, and the region I shown in FIG. 1 is an appropriate range of Qx, Tx and Dx.
 図1に示す領域Iは、4つの頂点a~dを有し、台形状に区画された領域(右下がりの斜線でハッチングした領域)である。なお、頂点a~dは、いずれも領域Iには含まれないので「○(白抜き丸)」で示す。また、頂点aと頂点bの間を結ぶ直線および頂点bと頂点cの間を結ぶ直線は領域Iに含まれ、また、頂点cと頂点dの間を結ぶ直線および頂点dと頂点aの間を結ぶ直線は領域Iには含まれない。 Region I shown in FIG. 1 has four vertices a to d and is a trapezoidal segmented region (hatched region with a downward-sloping diagonal line). Since none of the vertices a to d is included in the region I, they are indicated by "○ (white circles)". Further, the straight line connecting the apex a and the vertex b and the straight line connecting the apex b and the apex c are included in the region I, and the straight line connecting the apex c and the apex d and between the apex d and the apex a. The straight line connecting the above is not included in the region I.
 また、第1の実施形態のエアロゲルの製造方法は、さらに、4官能シラン化合物、3官能シラン化合物および2官能シラン化合物のそれぞれの質量百分率Qx、Tx、Dxは、Qx、Tx、Dxを座標軸とする三角図(Qx、Tx、Dx)上にプロットするとき、A点(5、95、0)と、B点(40、60、0)と、C点(40、55、5)と、D点(30、55、15)と、E点(15、70、15)と、F点(5、90、5)と、A点(5、95、0)とをこの順に結ぶ6本の直線で囲まれた範囲(図1の領域II)内にあることが断熱性の観点から好ましい。 Further, in the method for producing airgel of the first embodiment, the mass percentages of the tetrafunctional silane compound, the trifunctional silane compound and the bifunctional silane compound are Qx, Tx and Dx, respectively, with Qx, Tx and Dx as coordinate axes. When plotting on the triangular diagram (Qx, Tx, Dx), point A (5,95,0), point B (40,60,0), point C (40,55,5), and D Six straight lines connecting points (30, 55, 15), E points (15, 70, 15), F points (5, 90, 5), and A points (5, 95, 0) in this order. It is preferable that it is within the range surrounded by (region II in FIG. 1) from the viewpoint of heat insulating properties.
 なお、図1に示す領域IIは、6つの頂点A~Fを有し、六角形状に区画された領域(右上がりの斜線でハッチングした領域)である。なお、頂点A~Fは、いずれも領域IIに含まれるので「●(黒塗り丸)」で示し、また、これらの頂点A~Fを結ぶ6本の直線も領域IIに含まれる。 The region II shown in FIG. 1 has six vertices A to F and is a region partitioned in a hexagonal shape (a region hatched by a diagonal line rising to the right). Since all of the vertices A to F are included in the region II, they are indicated by “● (black circle)”, and six straight lines connecting these vertices A to F are also included in the region II.
(3)エアロゲルの製造工程の各工程
(3-1)ゾル生成工程
 本発明のエアロゲル複合体のエアロゲルを製造するためのゾルは、所定の溶液中に、シラン化合物(主原料)を含む各種原料を添加し、撹拌して混合するゾル生成工程を含む工程で生成する。
(3) Each step of the airgel manufacturing process (3-1) Sol generation step The sol for producing the airgel of the airgel composite of the present invention is a raw material containing a silane compound (main raw material) in a predetermined solution. Is added, and the mixture is produced in a step including a sol forming step of stirring and mixing.
(3-1-1)ゾル生成工程の副材料およびゾル生成条件
 ゾル生成工程では、主原料として、2官能シラン化合物、3官能シラン化合物、場合により4官能シラン化合物を上述の所定混合比で混合し、水、界面活性剤を含む溶液を調製する。この調製により、シラン化合物が加水分解され、シロキサン結合を含むゾルが生成する。なお、調製する溶液に、酸および/または有機溶剤を含んでもよい。
(3-1-1) Sub-materials and sol formation conditions in the sol formation step In the sol formation step, a bifunctional silane compound, a trifunctional silane compound, and in some cases a tetrafunctional silane compound are mixed at the above-mentioned predetermined mixing ratio as a main raw material. Then, prepare a solution containing water and a surfactant. By this preparation, the silane compound is hydrolyzed to produce a sol containing a siloxane bond. The solution to be prepared may contain an acid and / or an organic solvent.
 界面活性剤は、後述するゲル生成過程において、後述するエアロゲルを構成するバルク部と気孔部とを形成することに寄与する。エアロゲルの製造に用いることのできる界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤などを用いることができる。イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤などを例示することができる。 The surfactant contributes to the formation of the bulk portion and the pore portion constituting the airgel described later in the gel formation process described later. As the surfactant that can be used in the production of airgel, a nonionic surfactant, an ionic surfactant and the like can be used. Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and a zwitterionic surfactant.
 これらのうち、非イオン性界面活性剤を好ましく用いることができる。調製する溶液に対する界面活性剤の添加量は、シラン化合物の種類や混合比、界面活性剤の種類にもよるが、主原料であるシラン化合物の総量100質量部に対し、0.001~100質量部の範囲で用いることができ、0.01~90質量部の範囲を好ましく用いることでき、さらに0.1~80質量部の範囲をさらに好ましく用いることできる。 Of these, nonionic surfactants can be preferably used. The amount of the surfactant added to the prepared solution depends on the type and mixing ratio of the silane compound and the type of the surfactant, but is 0.001 to 100% by mass with respect to 100 parts by mass of the total amount of the silane compound as the main raw material. It can be used in the range of parts, preferably in the range of 0.01 to 90 parts by mass, and more preferably in the range of 0.1 to 80 parts by mass.
 酸は、加水分解時に触媒として作用し、加水分解の反応速度を加速することができる。具体的な酸の例としては、無機酸、有機酸、有機酸塩が挙げられる。 The acid acts as a catalyst during hydrolysis and can accelerate the reaction rate of hydrolysis. Specific examples of acids include inorganic acids, organic acids and organic acid salts.
 無機酸としては、塩酸、硫酸、亜硫酸、硝酸、フッ酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸などが挙げられる。 Examples of the inorganic acid include hydrochloric acid, sulfuric acid, sulfite, nitric acid, hydrofluoric acid, phosphoric acid, phosphorous acid, hypochlorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid and the like.
 有機酸としては、酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸などのカルボン酸類が挙げられる。 Examples of organic acids include carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, and azelaic acid.
 有機酸塩としては、酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛などを用いることができる。これらの酸は、単独、あるいは2種類以上を混合して用いてもよい。本発明では、酸として、有機酸である酢酸を用いることが好ましい。 As the organic acid salt, acidic aluminum phosphate, acidic magnesium phosphate, acidic zinc phosphate and the like can be used. These acids may be used alone or in combination of two or more. In the present invention, it is preferable to use acetic acid, which is an organic acid, as the acid.
 また、調製する溶液全体に対する酸の添加濃度としては、0.0001mol/L~0.1mol/Lの範囲、特に0.0005mol/L~0.05mol/Lの範囲を好ましく用いることができ、0.001mol/L~0.01mol/Lの範囲をさらに好ましく用いることができる。 Further, as the concentration of acid added to the entire solution to be prepared, a range of 0.0001 mol / L to 0.1 mol / L, particularly a range of 0.0005 mol / L to 0.05 mol / L can be preferably used, and 0. The range of .001 mol / L to 0.01 mol / L can be further preferably used.
 有機溶剤としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノールなどのアルコール類を用いることができる。これらは単独あるいは2種類以上を混合して用いてもよい。また、調製する溶液に対する有機溶剤の添加量としては、相溶性の観点から、主原料であるシラン化合物の総量1molに対し、4mol~10molの範囲、特に4.5mol~9molの範囲とすることが好ましく、5mol~8molの範囲とすることが特に好適である。 As the organic solvent, alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol can be used. These may be used alone or in admixture of two or more. From the viewpoint of compatibility, the amount of the organic solvent added to the prepared solution may be in the range of 4 mol to 10 mol, particularly in the range of 4.5 mol to 9 mol, with respect to the total amount of 1 mol of the silane compound as the main raw material. It is preferably in the range of 5 mol to 8 mol, and is particularly preferable.
 ゾル生成工程に必要な溶液温度、および時間は、混合溶液中のシラン化合物、界面活性剤、水、酸、窒素化合物、有機溶剤などの種類および量に左右されるが、例えば0℃~70℃の温度環境下で、0.05時間~48時間の範囲であればよく、20~50℃の温度環境下で0.1時間~24時間の処理とすることが好ましい。これにより、シラン化合物が加水分解され、コロイドを形成し、全体として液体ゾルを生成することができる。 The solution temperature and time required for the sol formation step depend on the type and amount of the silane compound, surfactant, water, acid, nitrogen compound, organic solvent, etc. in the mixed solution, and are, for example, 0 ° C to 70 ° C. The treatment may be in the range of 0.05 hours to 48 hours under the temperature environment of 20 to 50 ° C., and the treatment is preferably performed for 0.1 hours to 24 hours under the temperature environment of 20 to 50 ° C. As a result, the silane compound is hydrolyzed to form a colloid, and a liquid sol can be produced as a whole.
 なお、ゾル生成工程で使用する副材料および/または副材料の分解物は、製造したエアロゲルにおいて、不可避成分として混入しうる。 It should be noted that the auxiliary material and / or the decomposition product of the auxiliary material used in the sol generation step can be mixed as an unavoidable component in the produced airgel.
 (3-1-2)含侵工程
 本発明の多孔質樹脂基体は、この工程においてゾルに浸漬することができる。浸漬は、多孔質樹脂基体の全体がゾルに浸るようにすることが好ましい。多孔質樹脂基体の内部にまでゾルが浸漬するように、振動を与えることも好ましい。
(3-1-2) Invasion Step The porous resin substrate of the present invention can be immersed in a sol in this step. The immersion is preferably performed so that the entire porous resin substrate is immersed in the sol. It is also preferable to give vibration so that the sol is immersed even inside the porous resin substrate.
(3-2)ウエットゲル生成・成形工程(養生工程)
 ウエットゲル生成・成形工程は、上述したゾル生成工程において製造した液体ゾルに対し、塩基性触媒を添加する工程と、所望の形状を得るための型に、塩基性触媒を添加した溶液を流し込む工程、型の内部で溶液を養生することにより、ウエットゲルを生成する工程に大別することができる。
(3-2) Wet gel formation / molding process (curing process)
The wet gel formation / molding step is a step of adding a basic catalyst to the liquid sol produced in the above-mentioned sol formation step, and a step of pouring a solution to which the basic catalyst is added into a mold for obtaining a desired shape. By curing the solution inside the mold, it can be roughly divided into the steps of producing a wet gel.
 塩基性触媒としては、水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物、メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩、アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類、モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジンおよびその誘導体、ピペリジンおよびその誘導体、イミダゾールおよびその誘導体等の含窒素複素環状化合物類などが挙げられる。塩基性触媒は単独であるいは2種類以上を混合して用いてもよい。 Examples of the basic catalyst include ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride and ammonium bromide, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide, and metaphosphoric acid. Basic sodium phosphate salts such as sodium, sodium pyrophosphate, sodium polyphosphate, allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec-butylamine, propylamine, 3- (methylamino) propylamine, 3- Aliper amines such as (dimethylamino) propylamine, 3-methoxyamine, dimethylethanolamine, methyldiethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, 2-methylmorpholine, piperazine and its derivatives, piperidine and Examples thereof include nitrogen-containing heterocyclic compounds such as the derivative, imidazole and the derivative thereof. The basic catalyst may be used alone or in combination of two or more.
 塩基性触媒としては、加熱することにより塩基性触媒を発生する窒素化合物であってもよい。窒素化合物は、ウエットゲル生成・成形工程における加熱の際に、塩基性触媒を発生する化合物として添加するものである。具体的には、尿素、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等のアミド化合物、ヘキサメチレンテトラミン等の複素環化合物などを挙げることができる。このうち、尿素は、ウエットゲル生成工程において、生成速度を速める点で好適に用いることができる。 The basic catalyst may be a nitrogen compound that generates a basic catalyst by heating. The nitrogen compound is added as a compound that generates a basic catalyst during heating in the wet gel formation / molding step. Specific examples thereof include amide compounds such as urea, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and heterocyclic compounds such as hexamethylenetetramine. be able to. Of these, urea can be preferably used in the wet gel production step in terms of increasing the production rate.
 塩基性触媒の添加量は、主原料の総量100質量部に対し、0.5~5質量部とすることが好ましく、1~4質量部とすることが特に好適である。添加量を0.5質量部未満とするとゾルからウエットゲルへ反応を進めることができず、また、5質量部超では反応が速すぎ、型の内部で全体が不均一性を生じることがある。 The amount of the basic catalyst added is preferably 0.5 to 5 parts by mass and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the total amount of the main raw material. If the addition amount is less than 0.5 parts by mass, the reaction cannot proceed from the sol to the wet gel, and if it exceeds 5 parts by mass, the reaction is too fast, and the whole may cause non-uniformity inside the mold. ..
 これらの中でも、水酸化アンモニウム水溶液は、触媒として反応促進効果が高く、ゾルからウエットゲルへの反応を短時間、かつ欠陥を少なく形成できる点で好ましい。また、水酸化アンモニウム水溶液は、揮発性が高いため、後述する溶媒交換工程、乾燥工程において揮発し、エアロゲルに残りにくい点でも優れる。 Among these, the aqueous ammonium hydroxide solution is preferable because it has a high reaction promoting effect as a catalyst and can form a reaction from the sol to the wet gel in a short time and with few defects. In addition, since the aqueous ammonium hydroxide solution is highly volatile, it is also excellent in that it volatilizes in the solvent exchange step and the drying step described later and does not easily remain in the airgel.
 窒素化合物の場合の添加量は、特に限定されないが、例えば、主原料であるシラン化合物の総量100質量部に対して、窒素化合物の添加量を1~200質量部の範囲とすることが好ましく、2~150質量部の範囲とすることがより好適である。本発明の多孔質樹脂基体は、この工程でゾルに浸漬することもできる。 The amount added in the case of the nitrogen compound is not particularly limited, but for example, the amount of the nitrogen compound added is preferably in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the silane compound as the main raw material. It is more preferable to use the range of 2 to 150 parts by mass. The porous resin substrate of the present invention can also be immersed in a sol in this step.
 塩基性触媒を添加した溶液を型に流し込む工程は、所望のエアロゲル製品の形状を得るための工程である。型は、金属、合成樹脂、木、紙のいずれも用いることができるが、形状の平面性と離形性を兼ね備える点で、合成樹脂を好適に用いることができる。合成樹脂は、例えば、ポリスチレン、ポリエチレン、ポリプロピレンを例示することができる。 The step of pouring the solution to which the basic catalyst is added into the mold is a step of obtaining the desired shape of the airgel product. Any of metal, synthetic resin, wood, and paper can be used as the mold, but synthetic resin can be preferably used in that it has both flatness and releasability of the shape. Examples of the synthetic resin include polystyrene, polyethylene, and polypropylene.
 型は、所望のエアロゲル製品の形状を得るためであるから、所望のエアロゲル製品の形状の凹凸を反転した形状を反映している。例えば、所望のエアロゲル製品の形状が板状(直方体)である場合、一端開口の凹型トレイを型として用いることができる。 Since the mold is for obtaining the desired shape of the airgel product, it reflects the shape obtained by reversing the unevenness of the shape of the desired airgel product. For example, when the desired shape of the airgel product is a plate shape (rectangular parallelepiped), a concave tray having an opening at one end can be used as a mold.
 また、型は、いわゆる射出成形金型のように、複数の型からなる組み合わせ型であってもよい。一例として、凹型と凸型を対向して用いる2枚組み合わせ型があり、凹型の内面と、凸型の外面とが、所定の間隔で離隔した位置関係となる組み合わせ型であってもよい。この結果、溶液(ゾルおよび塩基性触媒からなる溶液)は、組み合わせ型の内部空間に流し込まれ、所定時間の間、密閉されてもよい。 Further, the mold may be a combination mold composed of a plurality of molds, such as a so-called injection molding mold. As an example, there is a two-sheet combination type in which a concave type and a convex type are used facing each other, and a combination type in which the inner surface of the concave type and the outer surface of the convex type are separated by a predetermined interval may be used. As a result, the solution (a solution consisting of a sol and a basic catalyst) may be poured into a combinatorial interior space and sealed for a predetermined time.
 また、一端開口の凹型トレイを型として用いた場合、凹型トレイの開放(平)面の全面を覆う平板(プレート)を第2の型として用意し、凹型トレイの開放面と第2の型とが対向するように2枚組み合わせ型として用いてもよい。この結果、溶液(ゾルおよび塩基性触媒からなる溶液)は、組み合わせ型の内部に流し込まれ、所定時間の間、密閉されてもよい。 When a concave tray with an opening at one end is used as a mold, a flat plate (plate) covering the entire open (flat) surface of the concave tray is prepared as the second mold, and the open surface of the concave tray and the second mold are used. It may be used as a combination type of two sheets so that the two sheets face each other. As a result, the solution (solution consisting of a sol and a basic catalyst) may be poured into the combination type and sealed for a predetermined time.
 塩基性触媒を添加した溶液を型に充填する工程に続き、型の内部で溶液を養生し、ウエットゲルを生成するとともに、型の内壁形状に沿って成形する成形工程がある。 Following the step of filling the mold with the solution to which the basic catalyst is added, there is a molding step of curing the solution inside the mold to generate a wet gel and molding along the shape of the inner wall of the mold.
 養生は、所定のエネルギーを、所定の時間をかけて、ゾルからウエットゲルへ反応を進めるものである。エネルギーの一例としては、熱(温度)であり、30~90℃、望ましくは40~80℃の加熱が用いられる。加熱は、ヒータ加熱であっても、水または有機溶剤による蒸気加熱であってもよい。 Curing is to proceed the reaction from the sol to the wet gel with a predetermined energy over a predetermined time. An example of energy is heat (temperature), where heating at 30-90 ° C, preferably 40-80 ° C is used. The heating may be heater heating or steam heating with water or an organic solvent.
 また、エネルギーの別の一例としては、赤外線、紫外線、マイクロ波、ガンマ線等の電磁波の印加、電子線の印加などが挙げられる。これらエネルギーは、単独で用いられても、複数の手段を併用して用いてもよい。 Further, as another example of energy, application of electromagnetic waves such as infrared rays, ultraviolet rays, microwaves, and gamma rays, application of electron beams, and the like can be mentioned. These energies may be used alone or in combination with a plurality of means.
 養生に要する時間は、シラン化合物の構成や、界面活性剤、水、酸、窒素化合物、有機溶剤、塩基性触媒などの種類および量、さらにはエネルギーの種類や密度に左右されるが、0.01時間~7日間の間の期間である。塩基性触媒の種類とエネルギーの種類とを最適化した場合、0.01時間~24時間でゲル化が完了することがあり得る。 The time required for curing depends on the composition of the silane compound, the type and amount of surfactant, water, acid, nitrogen compound, organic solvent, basic catalyst, etc., and the type and density of energy. The period is between 01 hours and 7 days. When the type of basic catalyst and the type of energy are optimized, gelation may be completed in 0.01 to 24 hours.
 また養生は、熱(温度)と時間とを、多段階に変化させる養生であってもよい。なお、ウエットゲル生成・成形工程で使用する材料、および/または材料の分解物は、製造したエアロゲルにおいて、不可避成分として混入しうる。 The curing may be a curing that changes heat (temperature) and time in multiple stages. The material used in the wet gel formation / molding step and / or the decomposition product of the material may be mixed as an unavoidable component in the produced airgel.
(1-3)溶媒交換工程
 溶媒交換工程は、ウエットゲルの表面および内部に存在する水および/または有機溶剤を、短時間乾燥にふさわしい有機溶剤に交換する工程であるが、後続の乾燥工程に長時間を要しても構わない場合には省略してもよい工程である。また、溶媒交換工程は、上述の型から取り出してから行ってもよいし、型内で行ってもよい。
(1-3) Solvent exchange step The solvent exchange step is a step of exchanging water and / or an organic solvent existing on the surface and inside of the wet gel with an organic solvent suitable for short-time drying, but in a subsequent drying step. This is a process that may be omitted if a long time may be required. Further, the solvent exchange step may be performed after being taken out from the above-mentioned mold, or may be performed in the mold.
 また、溶媒交換工程に先立ち、ゾル生成に際して用いた酸や、ウエットゲル生成に際して用いた触媒、反応副生成物等を洗い流す洗浄処理を行ってもよい。洗浄処理には、有機溶剤を広く用いることができる。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、1-ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、キシレン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶剤を使用することができる。上記の有機溶剤は単独であるいは2種類以上を混合して用いてもよい。 Further, prior to the solvent exchange step, a washing treatment may be performed to wash away the acid used for sol formation, the catalyst used for wet gel formation, the reaction by-product, and the like. An organic solvent can be widely used for the cleaning treatment. For example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, 1-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, xylene, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate. , Tetrahydrofuran, methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and various other organic solvents can be used. The above organic solvent may be used alone or in combination of two or more.
 これらのうち、水および有機溶剤の双方に溶解性を有するメチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン等が単独または2種類以上混合して用いられる。 Of these, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, etc., which are soluble in both water and organic solvents, are used alone or in combination of two or more.
 溶媒交換工程では、その後に行われる乾燥工程におけるゲルの収縮ダメージを抑えるため、ウエットゲルの表面および内部の水(または有機溶剤)を、20℃における表面張力が45mN/m以下の有機溶剤に置き換える。例えば、ジメチルスルホキシド(43.5mN/m)、シクロヘキサン(25.2mN/m)、イソプロピルアルコール(21mN/m)、ヘプタン(20.2mN/m)、ペンタン(15.5mN/m)等が挙げられる。 In the solvent exchange step, the water (or organic solvent) on the surface and inside of the wet gel is replaced with an organic solvent having a surface tension of 45 mN / m or less at 20 ° C. in order to suppress shrinkage damage of the gel in the subsequent drying step. .. Examples thereof include dimethyl sulfoxide (43.5 mN / m), cyclohexane (25.2 mN / m), isopropyl alcohol (21 mN / m), heptane (20.2 mN / m), pentane (15.5 mN / m) and the like. ..
 溶媒交換工程に用いる有機溶剤は、20℃における表面張力が、45mN/m以下、40mN/m以下、35mN/m以下、30mN/m以下、25mN/m以下、20mN/m以下、15mN/m以下、であってよく、5mN/m以上、10mN/m以上、15mN/m以上、20mN/m以上であってよい。これらの中で、特に20℃における表面張力が20~40mN/mの範囲である脂肪族炭化水素を含む有機溶剤を用いることが好適である。有機溶剤は、単独または2種類以上混合して用いることができる。 The organic solvent used in the solvent exchange step has a surface tension at 20 ° C. of 45 mN / m or less, 40 mN / m or less, 35 mN / m or less, 30 mN / m or less, 25 mN / m or less, 20 mN / m or less, 15 mN / m or less. , 5 mN / m or more, 10 mN / m or more, 15 mN / m or more, 20 mN / m or more. Among these, it is particularly preferable to use an organic solvent containing an aliphatic hydrocarbon whose surface tension at 20 ° C. is in the range of 20 to 40 mN / m. The organic solvent can be used alone or in combination of two or more.
 溶媒交換工程に使用される溶媒の量は、溶剤交換する温度や装置(容器)にもよるが、湿潤ゲルの容量に対し、2~100倍の量を使用することが望ましい。溶媒交換は1回に限らず、複数回行ってもよい。また、溶剤交換の方法としては、全置換、部分置換、循環置換のいずれの方法であってもよい。 The amount of solvent used in the solvent exchange step depends on the temperature at which the solvent is exchanged and the device (container), but it is desirable to use an amount 2 to 100 times the volume of the wet gel. The solvent exchange is not limited to once, and may be performed a plurality of times. Further, the solvent exchange method may be any of total substitution, partial substitution, and cyclic substitution.
 また、溶媒交換を複数回行う場合において、各回について、有機溶剤の種類や、温度、処理時間を独立に設定してよい。なお、溶媒交換工程で使用する材料、および/または材料の分解物は、製造したエアロゲルにおいて、不可避成分として混入しうる。 Further, when the solvent exchange is performed a plurality of times, the type, temperature, and treatment time of the organic solvent may be set independently for each time. The material used in the solvent exchange step and / or the decomposition product of the material may be mixed as an unavoidable component in the produced airgel.
(1-4)乾燥工程
 乾燥工程は、上述した溶媒交換したウエットゲルを乾燥させて、所定性状のエアロゲルを得る工程である。乾燥の手法としては特に制限されないが、超臨界乾燥法は、設備が大型化すると共に、製造コストが著しく高価であり、大量生産が困難という課題があることから、本発明の乾燥工程では、超臨界乾燥法は適用せず、大気圧乾燥法を用いることが好ましい。
(1-4) Drying Step The drying step is a step of drying the above-mentioned solvent-exchanged wet gel to obtain an airgel having predetermined properties. Although the drying method is not particularly limited, the supercritical drying method has problems that the equipment becomes large, the manufacturing cost is extremely high, and mass production is difficult. Therefore, the supercritical drying method of the present invention is supercritical. It is preferable to use the atmospheric pressure drying method without applying the critical drying method.
 なお、大気圧とは、地表気圧である300hPa~1100hPaを指し、地表である限り、本発明を実施する標高に制限はないものである。言い換えれば、乾燥方法としては、300hPa程度まで減圧して乾燥させることも、本発明に含まれる。 Note that the atmospheric pressure refers to the surface pressure of 300 hPa to 1100 hPa, and as long as it is on the surface of the earth, there is no limitation on the altitude at which the present invention is carried out. In other words, as a drying method, the present invention also includes drying under reduced pressure to about 300 hPa.
 以上のことから、上述した(1-1)~(1-4)の工程を経ることによって、粉落ち等の欠陥が少ないエアロゲル複合体を製造することができ、この結果、断熱特性が向上し、加えて、特許文献2では適用できなかった曲面に対して、しかも400cm(例えば20cm角)以上の大面積の板状またはフィルム状をなすエアロゲル複合体を製造することができる。 From the above, by going through the steps (1-1) to (1-4) described above, an airgel composite having few defects such as powder falling can be produced, and as a result, the heat insulating properties are improved. In addition, it is possible to produce an airgel composite having a large area of 400 cm 2 (for example, 20 cm square) or more in the form of a plate or a film on a curved surface which cannot be applied in Patent Document 2.
(1-5)その他の工程
 上記した製造方法は、板(または直方体)状またはフィルム状をなすエアロゲル複合体の製造方法について説明してきたが、本発明はこれに限るものではなく、板状のエアロゲル複合体から、所望の形状へ加工することを、オプション工程として含み得るものである。例えば、板(または直方体)から、矩形、円形の板またはフィルム、立方体、球体、円柱、角錐、円錐等の種々の形状に加工することができる。加工方法には、ワイヤーカットやレーザーカット等公知の機械加工を用いることができる。
(1-5) Other Steps The above-mentioned manufacturing method has described a method for manufacturing an airgel composite having a plate (or rectangular parallelepiped) shape or a film shape, but the present invention is not limited to this, and the plate shape is not limited to this. Processing from the airgel composite into a desired shape can be included as an optional step. For example, it can be processed from a plate (or a rectangular parallelepiped) into various shapes such as a rectangular or circular plate or film, a cube, a sphere, a cylinder, a pyramid, or a cone. Known machining such as wire cutting and laser cutting can be used as the processing method.
 また、本発明のエアロゲル複合体は、直方体のエアロゲル複合体から、粒子状のエアロゲル複合体に加工することを、オプション工程として含み得るものである。加工方法には、ジョークラッシャ、ロールクラッシャ、ボールミル等公知の粉砕機(クラッシャ)を用いることができる。 Further, the airgel composite of the present invention may include processing from a rectangular parallelepiped airgel composite into a particulate airgel composite as an optional step. As a processing method, a known crusher (crusher) such as a jaw crusher, a roll crusher, and a ball mill can be used.
(2)エアロゲル複合体を構成するエアロゲルの構造
 本発明エアロゲル複合体のエアロゲルのマクロ構造について説明する。
(2) Structure of Airgel Constituting Airgel Complex The macro structure of the airgel of the airgel complex of the present invention will be described.
(2-1)エアロゲルの内部構造
 本発明のエアロゲル複合体を構成するエアロゲルは、その構造を微視的に観察した場合、固形物が満たされたバルク部(ゲル骨格)と、バルク部内に3次元網目状に貫通した貫通孔とで主に構成され、全体として三次元ネットワークを形成している。
(2-1) Internal structure of airgel The airgel constituting the airgel composite of the present invention has a bulk portion (gel skeleton) filled with solid matter and 3 in the bulk portion when the structure is observed microscopically. It is mainly composed of through holes penetrating in a three-dimensional network, and forms a three-dimensional network as a whole.
 なお、本発明のエアロゲルの3次元ネットワークは、走査型電子顕微鏡を用いて観察した状態によって判断することができ、3次元網目構造の貫通孔の直径、ゲル骨格の断面積は3次元網目状に連続して貫通孔(細孔)の中心細孔径、骨格の断面を円とみなした場合の直径、さらには密度、気孔率を水銀圧入法により測定し算出することができる。 The three-dimensional network of airgel of the present invention can be judged by observing with a scanning electron microscope, and the diameter of the through hole of the three-dimensional network structure and the cross-sectional area of the gel skeleton are three-dimensional network-like. The central pore diameter of the through pores (pores), the diameter when the cross section of the skeleton is regarded as a circle, the density, and the porosity can be continuously measured and calculated by the mercury injection method.
 バルク部は、固形物がシロキサン結合による三次元ネットワークを形成した連続体から構成される。三次元ネットワークは、ネットワークの最小単位である格子を、立方体で近似したときの一辺の平均長さは、2nm以上25nm以下である。なお、一辺の平均長さは、2nm以上、5nm以上、7nm以上、10nm以上であり、かつ、25nm以下、20nm以下、15nm以下であることが好ましい。 The bulk part is composed of a continuum in which solids form a three-dimensional network by siloxane bonds. In a three-dimensional network, the average length of one side when a grid, which is the smallest unit of a network, is approximated by a cube is 2 nm or more and 25 nm or less. The average length of one side is preferably 2 nm or more, 5 nm or more, 7 nm or more, 10 nm or more, and 25 nm or less, 20 nm or less, and 15 nm or less.
 また、気孔部は、上記バルク部内を貫通するチューブ状をなし、気孔をチューブで近似し、チューブの内径を円で近似したときの平均内径は、5nm以上100nm以下である。なお、気孔の平均内径は、5nm以上、7nm以上、10nm以上、20nm以上、30nm以上、50nm以上であり、かつ、100nm以下、90nm以下、80nm以下、70nm以下であることが好ましい。ここで、上記チューブの内径は、空気を構成する元素分子の大気圧における平均自由行程(MFP)以下の寸法となっている。 Further, the pore portion has a tubular shape penetrating the inside of the bulk portion, and the average inner diameter when the pore is approximated by a tube and the inner diameter of the tube is approximated by a circle is 5 nm or more and 100 nm or less. The average inner diameter of the pores is preferably 5 nm or more, 7 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 50 nm or more, and 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less. Here, the inner diameter of the tube has a dimension equal to or less than the mean free path (MFP) of the element molecules constituting air at atmospheric pressure.
 また、エアロゲルの気孔率、すなわちエアロゲル全体の体積に占める気孔部の体積の割合は、70%以上である。気孔率の一例としては、75%以上、80%以上、85%以上、90%以上であってもよい。 Further, the porosity of the airgel, that is, the ratio of the volume of the pores to the total volume of the airgel is 70% or more. As an example of the porosity, it may be 75% or more, 80% or more, 85% or more, 90% or more.
 なお、本発明のエアロゲルは、後述する物理特性を充足する限りにおいて、上記したバルク部、気孔部以外の構造を含んでもよい。一例として、上述した気孔部とは異なる空隙(ボイド)を含んでもよい。 The airgel of the present invention may include a structure other than the bulk portion and the pore portion described above as long as it satisfies the physical properties described later. As an example, a void different from the above-mentioned pore portion may be included.
 また、別の一例として、後述する物理特性を充足する限りにおいて、製造上不可避成分として残存する水、有機溶剤、界面活性剤、触媒およびこれらの分解物を含むことができる。さらに、他の一例として、後述する物理特性を充足する限りにおいて、製造上不可避成分として製造空間や製造装置から混入する塵埃を含むことができる。 Further, as another example, water, an organic solvent, a surfactant, a catalyst, and decomposition products thereof that remain as unavoidable components in production can be included as long as the physical properties described later are satisfied. Further, as another example, as long as the physical properties described later are satisfied, dust mixed from the manufacturing space or the manufacturing apparatus can be included as an unavoidable component in manufacturing.
 また本発明のエアロゲル複合体は、上述した構成以外に、機能性付与、外観向上、装飾性付与などを意図して添加する成分を含むことができる。例えば、帯電防止剤、潤滑剤、無機顔料、有機顔料、無機染料、有機染料を含むことができる。これらは多孔質樹脂基体、エアロゲルそれぞれに含有させることができる。 Further, the airgel composite of the present invention may contain components to be added with the intention of imparting functionality, improving appearance, imparting decorativeness, etc., in addition to the above-mentioned constitution. For example, antistatic agents, lubricants, inorganic pigments, organic pigments, inorganic dyes, and organic dyes can be included. These can be contained in each of the porous resin substrate and the airgel.
(2-2)エアロゲルの密度
 本発明のエアロゲルは、密度が0.15g/cm以下と低くすることができる。ここで密度は、水銀圧入法により求められるものである。エアロゲルは、密度が低いほど熱伝導率が小さくなり、それに伴って、断熱性が向上する。本発明のエアロゲルは、密度が0.15g/cm以下であるため、熱伝導率が0.01W/m・K以下と小さい。
(2-2) Airgel Density The airgel of the present invention has a density as low as 0.15 g / cm 3 or less. Here, the density is obtained by the mercury intrusion method. The lower the density of airgel, the lower the thermal conductivity, and the higher the heat insulating property. Since the airgel of the present invention has a density of 0.15 g / cm 3 or less, the thermal conductivity is as small as 0.01 W / m · K or less.
 このような利点から、本実施形態のエアロゲル複合体は、極低温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等における断熱材としての用途等に適用できる。また、本実施形態のエアロゲル複合体料は、断熱材としての用途の他に、撥水用、吸音用、静振用、触媒担持用等として利用することができる。 From such an advantage, the airgel composite of the present embodiment can be applied to applications as a heat insulating material in a cryogenic container, a space field, a building field, an automobile field, a home appliance field, a semiconductor field, an industrial facility, and the like. In addition to the use as a heat insulating material, the airgel composite material of the present embodiment can be used for water repellency, sound absorption, static vibration, catalyst support, and the like.
 次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。 Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
<エアロゲル複合体の作製>
(実験例1)
 界面活性剤として、非イオン性界面活性剤(BASFシ社製:プルロニックPE9400)3.28gを、0.005mol/L酢酸水溶液28.96gに溶解させた後、さらに加水分解性化合物として尿素(ナカライテスク製)4.00gを加えて溶解させた。この水溶液に、主原料であるシラン化合物10.0gを添加した後、室温で60分攪拌混合し、シラン化合物の加水分解反応を行なわせ、ゾルを生成させた。
<Preparation of airgel complex>
(Experimental Example 1)
As a surfactant, 3.28 g of a nonionic surfactant (BASF Shi Co., Ltd .: Pluronic PE9400) was dissolved in 28.96 g of a 0.005 mol / L acetic acid aqueous solution, and then urea (Nacalai Tesque) was further used as a hydrolyzable compound. (Made by Tesque) 4.00 g was added and dissolved. After 10.0 g of the silane compound as the main raw material was added to this aqueous solution, the mixture was stirred and mixed at room temperature for 60 minutes to carry out a hydrolysis reaction of the silane compound to generate a sol.
 シラン化合物は、3官能シラン化合物であるメチルトリメトキシシラン(MTMS)および2官能シラン化合物であるジメチルジメトキシシラン(DMDMS)、4官能シラン化合物であるテトラメトキシシラン(以下、TMOSと略記する場合がある。)、から選択し、2官能シラン化合物の質量百分率Dx、3官能シラン化合物の質量百分率Tx、および4官能シラン化合物の質量百分率Qx=10:65:25で添加した。 The silane compound may be abbreviated as methyltrimethoxysilane (MTMS), which is a trifunctional silane compound, dimethyldimethoxysilane (DMDMS), which is a bifunctional silane compound, and tetramethoxysilane (hereinafter, TMOS), which is a tetrafunctional silane compound. ), And added at a mass percentage Dx of the bifunctional silane compound, a mass percentage Tx of the trifunctional silane compound, and a mass percentage Qx of the tetrafunctional silane compound = 10:65:25.
 ついで、生成したゾルを密閉可能な容器(W×D×H=60mm×110mm×20mm)に移し、そこに多孔質樹脂基体としてポリエステル製不織布(W×D×H=55mm×105mm×5mm)を十分に浸漬させ、密閉し60℃で静置、ゲル化させウエットゲルを形成した。 Then, the generated sol was transferred to a sealable container (W × D × H = 60 mm × 110 mm × 20 mm), and a polyester non-woven fabric (W × D × H = 55 mm × 105 mm × 5 mm) was placed therein as a porous resin substrate. It was sufficiently immersed, sealed, allowed to stand at 60 ° C., and gelled to form a wet gel.
 その後、続けて96時間静置することにより、ウエットゲルを熟成させた。次いで、密閉容器よりウエットゲルを取り出し、ウエットゲル体積の5倍量に相当するメタノール(MeOH)溶液中に浸漬して、60℃で8時間の条件下で溶媒交換を繰返し5回行なった後に、イソプロピルアルコール(IPA)とヘプタン(Hep)を1:4~1:3の体積比で混合した、ウエットゲル体積の5倍量に相当するIPA/Hep混合溶液中に浸漬して、60℃で8時間の条件下でさらに溶媒交換を行った。 After that, the wet gel was aged by allowing it to stand for 96 hours in succession. Next, the wet gel was taken out from the closed container, immersed in a MeOH solution corresponding to 5 times the volume of the wet gel, and the solvent was exchanged repeatedly 5 times under the condition of 60 ° C. for 8 hours. Immerse in an IPA / hep mixed solution corresponding to 5 times the volume of the wet gel, which is a mixture of isopropyl alcohol (IPA) and heptan (Hep) in a volume ratio of 1: 4 to 1: 3, and 8 at 60 ° C. Further solvent exchange was carried out under time conditions.
 その後、ウエットゲル体積の5倍量に相当するHep溶液に浸漬して、60℃で8時間の条件下でさらに溶媒交換を繰返し2回行った。なお、溶媒交換に使用したメタノールとイソプロパノールは、いずれもナカライテスク社製のものを用いた。 After that, the mixture was immersed in a Hep solution corresponding to 5 times the volume of the wet gel, and the solvent was exchanged twice under the condition of 60 ° C. for 8 hours. The methanol and isopropanol used for the solvent exchange were both manufactured by Nacalai Tesque.
 次に、ウエットゲル中の溶媒の蒸発速度を制御できる容器(乾燥機)に入れ、乾燥を開始した。乾燥温度は、溶媒の沸点以下とし、低表面張力溶媒に交換(置換)したゲルを、乾燥開始直後から4時間までの溶媒蒸発速度を0.2g/(h・cm)に調整した。その後は徐々に溶媒蒸発速度を低下させ、ゲル質量が一定になった時点で乾燥を終了し、シート状のエアロゲル複合体を作製した。その他の実施例も同様に作製した。 Next, the solvent in the wet gel was placed in a container (dryer) whose evaporation rate could be controlled, and drying was started. The drying temperature was set to be equal to or lower than the boiling point of the solvent, and the solvent evaporation rate of the gel exchanged (replaced) with a low surface tension solvent was adjusted to 0.2 g / (h · cm 3 ) from immediately after the start of drying to 4 hours. After that, the solvent evaporation rate was gradually reduced, and when the gel mass became constant, drying was completed to prepare a sheet-shaped airgel composite. Other examples were prepared in the same manner.
(比較例)
 比較例1、2は、実施例1と同様に作製した。比較例3は、特開2018-111803号公報(特許文献2)実施例1に記載のエアロゲル複合材料と同じ組成物を作製し使用した。
(Comparison example)
Comparative Examples 1 and 2 were produced in the same manner as in Example 1. In Comparative Example 3, the same composition as the airgel composite material described in Example 1 of JP-A-2018-11183 (Patent Document 2) was prepared and used.
<各種評価>
 以下の条件に従って、各実施例及び比較例で得られたエアロゲル複合体料について測定、評価を行った。測定は、特に指定の無い限り23℃55%RHの雰囲気を保持して行った。
<Various evaluations>
The airgel complex charges obtained in each Example and Comparative Example were measured and evaluated according to the following conditions. Unless otherwise specified, the measurement was carried out while maintaining an atmosphere of 23 ° C. and 55% RH.
(粉落ち性評価)
 [切断粉落ち量]
 エアロゲル複合体の各試料を、横50mm×縦100mm×厚み5mmとなるように作製し、はさみで10cmの長さを裁断した際の粉落ち量を切断粉落ち量として測定した。実験は3回行いその平均値をとった。結果を表1に示す。
 [曲げ粉落ち量]
 エアロゲル複合体の各試料を、横50mm×縦100mm×厚み5mmとなるように作製し、Φ26の塩ビ管に一周巻き付け、その際の粉落ち量を測定した。実験は3回行いその平均値をとった。結果を表1に示す。
(Evaluation of powder removal property)
[Amount of cutting powder dropped]
Each sample of the airgel composite was prepared so as to have a width of 50 mm, a length of 100 mm, and a thickness of 5 mm, and the amount of powder removed when the length of 10 cm was cut with scissors was measured as the amount of powder removed. The experiment was performed three times and the average value was taken. The results are shown in Table 1.
[Amount of bending powder dropped]
Each sample of the airgel complex was prepared so as to have a width of 50 mm, a length of 100 mm, and a thickness of 5 mm, and was wound around a Φ26 PVC pipe, and the amount of powder dropped at that time was measured. The experiment was performed three times and the average value was taken. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例のエアロゲル複合体は、粉落ち量が少ないことがわかる。なお、比較例3(特許文献1実施例1に記載)のエアロゲル複合体は、試料を作製する段階ですでに粉落ちし、明らかに本発明の実施例に比べ粉落ち量が多いものであり(比較例2よりも多い)、さらに試験の結果の再現性にすら問題のあるものであったことから、表1には結果を示していない。 From Table 1, it can be seen that the airgel composite of the embodiment of the present invention has a small amount of powder falling off. The airgel composite of Comparative Example 3 (described in Example 1 of Patent Document 1) has already fallen off at the stage of preparing a sample, and the amount of powder fallen is clearly larger than that of the example of the present invention. (More than in Comparative Example 2), and even the reproducibility of the test results was problematic, so the results are not shown in Table 1.
(実験例2)
 実験例1のエアロゲル複合体の製造方法に準じ、表2記載の組成のエアロゲル複合体を作製し、同様の評価を行った。実験の再現性に難しさがあることから粉落ちの絶対量が実験例1と異なるが、同一実験内では十分な比較をすることができる。
 本実験例2では、切断粉落ち量7.5mg以下を〇、曲げ粉落ち量5.0mg以下を〇と判断し、それ以外を×とした。
 なお、Dxが30質量%を超える組成物およびQxが含まれない組成物は、エアロゲル自体の反応の進行に問題が発生し、評価するに足りるものが得られなかった。
(Experimental Example 2)
An airgel composite having the composition shown in Table 2 was prepared according to the method for producing an airgel composite of Experimental Example 1, and the same evaluation was performed. Although the absolute amount of powder falling is different from that of Experimental Example 1 due to the difficulty in reproducibility of the experiment, sufficient comparison can be made within the same experiment.
In Experimental Example 2, the amount of cut powder dropped 7.5 mg or less was judged to be 〇, the amount of bent powder dropped 5.0 mg or less was judged to be 〇, and the others were marked with x.
The composition having a Dx of more than 30% by mass and the composition not containing Qx had a problem in the progress of the reaction of the airgel itself, and could not be evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明の範囲にある実施例のエアロゲル複合体は、反応性よくエアロゲル複合体を作製することができ、粉落ち量が少ないことがわかる。

 
 
From Table 2, it can be seen that the airgel composites of the examples in the scope of the present invention can produce the airgel composite with good reactivity and the amount of powder falling off is small.


Claims (2)

  1.  少なくとも多孔質樹脂基体とエアロゲルとからなるエアロゲル複合体であって、該エアロゲルは、シラン化合物の加水分解縮合物からなり、該シラン化合物が、4官能シラン化合物、3官能シラン化合物および2官能シラン化合物の質量百分率を、それぞれQx、Tx、Dxとするとき、0<Qx<50、50≦Tx<100、0≦Dx<30(ただしQx+Tx+Dx=100)であるエアロゲル複合体。 An aerogel complex composed of at least a porous resin substrate and an airgel, the airgel is composed of a hydrolyzed condensate of a silane compound, and the silane compound is a tetrafunctional silane compound, a trifunctional silane compound and a bifunctional silane compound. An airgel complex in which 0 <Qx <50, 50 ≦ Tx <100, 0 ≦ Dx <30 (where Qx + Tx + Dx = 100), where the mass percentages of are Qx, Tx, and Dx, respectively.
  2.  前記多孔質樹脂基体が、繊維状樹脂基体、発泡樹脂基体である、請求項1に記載のエアロゲル複合体。 The airgel composite according to claim 1, wherein the porous resin substrate is a fibrous resin substrate or a foamed resin substrate.
PCT/JP2020/020679 2019-05-27 2020-05-26 Aerogel complex WO2020241620A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019098683 2019-05-27
JP2019-098683 2019-05-27
JP2019-151348 2019-08-21
JP2019151348A JP6683870B1 (en) 2019-05-27 2019-08-21 Airgel complex

Publications (1)

Publication Number Publication Date
WO2020241620A1 true WO2020241620A1 (en) 2020-12-03

Family

ID=70286887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020679 WO2020241620A1 (en) 2019-05-27 2020-05-26 Aerogel complex

Country Status (3)

Country Link
JP (1) JP6683870B1 (en)
TW (1) TW202104440A (en)
WO (1) WO2020241620A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163178A1 (en) * 2021-01-26 2022-08-04 国立研究開発法人物質・材料研究機構 Method for producing polysiloxane porous body, polysiloxane porous body, heat-insulating material, and heat-insulating container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010551A1 (en) * 2015-07-15 2017-01-19 日立化成株式会社 Aerogel composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010551A1 (en) * 2015-07-15 2017-01-19 日立化成株式会社 Aerogel composite material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEI, CHAOSHUAI ET AL.: "A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels", MOLECULES, vol. 23, no. 4, 30 March 2018 (2018-03-30), pages 797, XP055767397, DOI: https://doi.org/10.3390/molecules23040797 *
OKAZAKI, TORU ET AL.: "Study on the rigidity improvement of non-woven composite aerogel insulation material according to the non- woven fabric oriented design", TRANSACTIONS OF THE JSME, vol. 82, no. 842, 2016, pages 16 - 00135, XP055767399, DOI: https://doi.org/10.1299/transjsme.16-00135 *

Also Published As

Publication number Publication date
JP2020193316A (en) 2020-12-03
JP6683870B1 (en) 2020-04-22
TW202104440A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP7196854B2 (en) Coating liquid, method for producing coating film, and coating film
JP7196852B2 (en) Coating liquid, method for producing coating film, and coating film
WO2019069494A1 (en) Coating liquid, method for manufacturing coating film, and coating film
TWI829911B (en) Coating fluids, composite materials and coating films
WO2017038777A1 (en) Aerogel composite, support material with aerogel composite, and heat-insulating material
WO2020241620A1 (en) Aerogel complex
JP6764050B1 (en) Airgel and its manufacturing method
WO2020208756A1 (en) Composite material, sheet, and heat insulator
WO2017170498A1 (en) Aerogel composite, and support member and adiabatic material provided with aerogel composite
JP7196907B2 (en) Method for suppressing corrosion under insulation and paste for suppressing corrosion under insulation
WO2020084668A1 (en) Aerogel composite material
JP7196853B2 (en) Coating liquid, method for producing coating film, and coating film
JP2017178644A (en) Method for producing aerogel complex, aerogel complex, and support member and heat insulation material with aerogel complex
WO2021029107A1 (en) Aerogel and aerogel production method
CN113396134B (en) Aerogel felt
JP2021165387A (en) Aerogel powder composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814598

Country of ref document: EP

Kind code of ref document: A1