WO2020241475A1 - Plated steel sheet - Google Patents

Plated steel sheet Download PDF

Info

Publication number
WO2020241475A1
WO2020241475A1 PCT/JP2020/020241 JP2020020241W WO2020241475A1 WO 2020241475 A1 WO2020241475 A1 WO 2020241475A1 JP 2020020241 W JP2020020241 W JP 2020020241W WO 2020241475 A1 WO2020241475 A1 WO 2020241475A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
colored resin
texture
steel sheet
plated steel
Prior art date
Application number
PCT/JP2020/020241
Other languages
French (fr)
Japanese (ja)
Inventor
敬士 二葉
後藤 靖人
史生 柴尾
くるみ 久米
拓哉 横道
卓哉 宮田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019098050A external-priority patent/JP7260772B2/en
Priority claimed from JP2019171137A external-priority patent/JP7339519B2/en
Priority claimed from JP2019171166A external-priority patent/JP7401735B2/en
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020217035909A priority Critical patent/KR102592017B1/en
Priority to CN202080036690.XA priority patent/CN113825640B/en
Publication of WO2020241475A1 publication Critical patent/WO2020241475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/065Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects having colour interferences or colour shifts or opalescent looking, flip-flop, two tones
    • B05D5/066Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects having colour interferences or colour shifts or opalescent looking, flip-flop, two tones achieved by multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Definitions

  • the present invention relates to a plated steel sheet.
  • This application applies to Japanese Patent Application No. 2019-171166 filed in Japan on September 20, 2019, Japanese Patent Application No. 2019-171137 filed in Japan on September 20, 2019, and Japan on May 24, 2019. Claim the priority based on Japanese Patent Application No. 2019-098050 filed in Japan, the contents of which are incorporated herein by reference.
  • Electrical equipment, building materials, and articles such as automobiles may be required to have a design.
  • a method of enhancing the design of the article there are a method of painting the surface of the article and a method of attaching a film.
  • the zinc plating layer also includes a zinc alloy plating layer.
  • plated steel sheets have appropriate corrosion resistance and are also excellent in workability. Therefore, the plated steel sheet is suitable for applications such as electrical equipment and building materials. Therefore, various proposals have been made for the purpose of enhancing the design of the plated steel sheet.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-124824
  • a transparent resin film is formed on the surface of the galvanized layer on which the hairline is formed.
  • the surface of the plating layer can be visually recognized while maintaining corrosion resistance, and the design is enhanced.
  • Patent Document 2 after rolling a galvanized steel sheet to form a texture on the surface of the galvanized layer, the surface roughness becomes within a certain range.
  • the surface of the galvanized layer is coated with a film (resin). As a result, the surface of the plating layer is visible and the design is enhanced while maintaining the corrosion resistance.
  • An object of the present invention is to provide a plated steel sheet in which the texture of the surface of the galvanized layer can be visually recognized while having a colored appearance.
  • the plated steel sheet according to one aspect of the present invention includes a base material steel sheet having a base material texture on the surface, a zinc plating layer formed on the surface of the base material steel sheet having the base material texture, and the above.
  • the zinc plating layer includes a colored resin layer formed on the zinc plating layer, the zinc plating layer has a plating texture on the surface thereof, the coloring resin layer contains a coloring agent, and the plating textures are plural.
  • the rolling direction of the base steel sheet is defined as the first direction
  • the direction orthogonal to the first direction is defined as the second direction on the surface of the plated steel sheet, including the convex portion and the plurality of concave portions.
  • the plated steel sheet satisfies the following (A) to (C).
  • the minimum thickness ( ⁇ m) of the colored resin layer is defined as DKmin, and the content (area%) of the colorant in the colored resin layer is CK.
  • F1 is 15.0 or less.
  • F1 DKmin x CK (1)
  • C When the maximum thickness ( ⁇ m) of the colored resin layer is defined as DKmax and F2 is defined by the formula (2) in the range of 100 ⁇ m length in the second direction, the F2 is 1.0. Is also big.
  • F2 (DKmax-DKmin) x CK (2) (2)
  • the plated steel sheet according to (1) above may further satisfy the following (D).
  • the roughness profile of the plating texture in the range of 1000 ⁇ m in the second direction is measured, and the highest position in each of the convex portions in the measured roughness profile is defined as the convex portion top point.
  • 10 of the convex top points of the roughness profile are specified in descending order of the highest, and a minute size of 1 ⁇ m ⁇ 1 ⁇ m centered on the specified convex top points.
  • the convex top three-dimensional average roughness Sa is more than 5 nm and 200 nm or less.
  • the plurality of the convex portions and the plurality of the concave portions extend in the first direction, and the plurality of the convex portions and the plurality of the concave portions are the said. It may be arranged in the second direction.
  • the base material texture is a hairline
  • the plated texture is a hairline
  • the plated steel sheet further satisfies the following (E) and (F). Good.
  • the surface roughness Ra of the colored resin layer in the first direction is defined as Ra (CL)
  • the surface roughness Ra of the colored resin layer in the second direction is defined as Ra (CC)
  • F3 is 1.10 or more.
  • F3 Ra (CC) / Ra (CL) (3)
  • the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side is 45 or less. May be good.
  • F1 may be 13.5 or less.
  • F2 may be larger than 2.0.
  • the F3 may be 1.15 or more.
  • the base iron exposure rate of the galvanized layer may be less than 5%.
  • the plurality of the convex portions are formed by polishing the surface of the galvanized layer, and the plurality of the concave portions may not be polished.
  • the plated steel sheet according to another aspect of the present invention includes a base steel sheet, a galvanized layer formed on the surface of the base steel sheet, and a colored resin layer formed on the galvanized layer.
  • the galvanized layer has a texture extending in one direction on its surface, and the colored resin layer contains a colorant, and all of the following (A') to (C'). Meet.
  • a roughness profile in a length range of 1000 ⁇ m in a direction perpendicular to the extending direction of the texture is measured, and 10 points are specified in ascending order of height among the measured positions on the roughness profile.
  • the determined position is defined as the concave bottom point, and among the measured positions on the roughness profile, the positions specified by 10 points in descending order of height are defined as the convex apex, and each concave bottom point and each convex apex are defined.
  • the minimum thickness ( ⁇ m) of the colored resin layer is defined as DKmin'in the range of 100 ⁇ m length in the direction orthogonal to the extending direction of the texture, and the colorant in the colored resin layer.
  • the content (area%) is defined as CK', the formula (1') is satisfied.
  • Ra (CC)' the equation (3') is satisfied.
  • the base iron exposure rate of the galvanized layer may be less than 5%.
  • the colored resin layer is a laminated resin layer, and the laminated resin layer is in the normal direction of the surface of the base steel plate.
  • the plurality of colored resin layers are the product of the content (area%) of the colorant in the colored resin layer and the thickness ( ⁇ m) of the colored resin layer in the plurality of colored resin layers.
  • the total of the above is 15.0 area% ⁇ ⁇ m or less, and among the plurality of colored resin layers, the content (area%) of the colorant in the colored resin layer and the thickness ( ⁇ m) of the colored resin layer.
  • the colored resin layer having the maximum product with is defined as the darkest colored resin layer, and the colored resin having the second largest product between the content of the colorant in the colored resin layer and the thickness of the colored resin layer is the second largest.
  • the content C 2ND (area%) of the colorant in the second dark colored resin layer and the thickness D 2ND ( ⁇ m) of the second dark colored resin layer satisfy the formula (4). May be good. 1.00 ⁇ (C 1ST x D 1ST ) / (C 2ND x D 2ND ) ⁇ 4.00 (4)
  • the thickness of the laminated resin layer may be 10.0 ⁇ m or less.
  • the laminated resin layer further includes one or a plurality of transparent resin layers containing no colorant, and the laminated resin layer is a plurality of the above.
  • the colored resin layer of No. 1 may be formed by laminating the one or more transparent resin layers.
  • the plated steel sheet according to the present disclosure has a colored appearance, but the texture of the surface of the galvanized layer can be visually recognized.
  • FIG. 1 is a schematic view of a cross section perpendicular to the first direction of the plated steel sheet of the first embodiment.
  • FIG. 2 is a cross-sectional view of the plated steel sheet of the first embodiment.
  • FIG. 3 is an enlarged view of the colored resin layer shown in FIG.
  • FIG. 4 is a plan view of the galvanized layer in which hairlines are formed as a texture on the surface.
  • FIG. 5 is a diagram showing a roughness profile of a plating texture formed on the surface of a zinc plating layer.
  • FIG. 6A is a schematic view for explaining a micro-recessed bottom region on the surface of the galvanized layer.
  • FIG. 6B is a schematic view for explaining a micro-convex top region on the surface of the galvanized layer.
  • FIG. 6A is a schematic view for explaining a micro-recessed bottom region on the surface of the galvanized layer.
  • FIG. 6B is a schematic view for explaining a micro-convex top region on the
  • FIG. 7 is a cross-sectional view perpendicular to the first direction in the portion near the surface of the galvanized layer.
  • FIG. 8 is a cross-sectional view perpendicular to the first direction in the portion near the surface of the galvanized layer of the first embodiment.
  • FIG. 9 is a schematic view of a cross section perpendicular to the extending direction of the texture in the plated steel sheet of the second embodiment.
  • FIG. 10 is a cross-sectional view of the plated steel sheet of the second embodiment.
  • FIG. 11 is an enlarged view of the colored resin layer shown in FIG.
  • FIG. 12 is a plan view of the galvanized layer in which hairlines are formed as a texture on the surface.
  • FIG. 13 is a diagram showing the roughness profile of the texture formed on the surface of the galvanized layer.
  • FIG. 14A is a schematic view for explaining a micro-recessed region on the surface of the galvanized layer.
  • FIG. 14B is a schematic view for explaining a micro-convex region on the surface of the galvanized layer.
  • FIG. 15A is a schematic view of the cut surface CS.
  • FIG. 15B is a schematic view of the cut surface CS.
  • FIG. 16 is a schematic view for explaining a method for evaluating color unevenness when the surface of the galvanized layer of the designable galvanized steel sheet of the present embodiment has a hairline as a texture.
  • FIG. 17 is a schematic view for explaining a method for evaluating color variation when the surface of the galvanized layer of the designable galvanized steel sheet of the present embodiment has a hairline as a texture.
  • the present inventors have studied a plated steel sheet in which the surface texture of the galvanized layer (hereinafter referred to as “plated texture”) can be visually recognized while having a colored appearance.
  • plated texture the surface texture of the galvanized layer
  • Patent Documents 1 and 2 a galvanized steel sheet in which a transparent resin layer is formed on a galvanized layer has already been proposed. Therefore, the present inventors first attempted to produce a galvanized steel sheet in which the resin layer formed on the galvanized layer was colored by containing a colorant containing a pigment and / or a dye.
  • the rolling direction of the base steel sheet is defined as the first direction RD.
  • a direction orthogonal to the first direction is defined as a second direction WD.
  • the direction orthogonal to the first direction RD and the second direction WD is defined as the third direction TD.
  • the content of the colorant in the colored resin layer and the thickness of the colored resin layer are visually recognized as the plating texture. Affects. Specifically, if the content of the colorant in the colored resin layer is too large, the plating texture cannot be visually recognized. Further, if the colored resin layer is too thick, the plating texture cannot be visually recognized.
  • FIG. 1 is a schematic view of a cross section of the plated steel sheet of the first embodiment perpendicular to the first direction RD.
  • the plated steel sheet 1 includes a base steel sheet 100, a galvanized layer 10, and a colored resin layer 11.
  • the base steel plate 100 has a texture 100S on its surface.
  • the texture 100S is referred to as a base material texture 100S.
  • the zinc plating layer 10 has a plating texture 10S on its surface.
  • the plating texture 10S includes a plurality of convex portions 10CO (Convex) and a plurality of concave portions 10RE (Recess).
  • the convex portion 10CO and the concave portion 10RE are arranged alternately.
  • a plurality of convex portions 10CO and a plurality of concave portions 10RE are alternately arranged in the second direction WD.
  • the colored resin layer 11 is formed on the surface of the galvanized layer 10. Therefore, although the uneven pattern (shape of the concave portion 10RE and the convex portion 10CO) of the plating texture 10S is reflected to some extent on the surface 11S of the colored resin layer 11, it is flatter than the plating texture 10S.
  • the convex portion 11CO is formed on the portion of the surface 11S of the colored resin layer 11 corresponding to the convex portion 10CO of the plating texture 10S.
  • the height of the convex portion 11CO is lower than the height of the convex portion 10CO. That is, the surface 11S of the colored resin layer 11 is flatter than the surface of the plating texture 10S.
  • the maximum thickness ( ⁇ m) of the colored resin layer 11 is defined as DKmax in the range of 100 ⁇ m length in the second direction WD. Further, the minimum thickness ( ⁇ m) of the colored resin layer 11 is defined as DKmin.
  • the colorant content CK (area%) in the colored resin layer 11 and the colored resin layer 11 are as described above. Limit the thickness of the to some extent. Then, under the restricted conditions, the difference between the maximum thickness DKmax and the minimum thickness DKmin of the colored resin layer 11 is reflected in the visible brightness difference of the plating texture.
  • the plating texture 10S can be visually recognized even when the colored resin layer 11 is formed.
  • the colored resin layer 11 has high adhesion to the zinc plating layer 10. Therefore, the present inventors have studied a method for improving the adhesion of the colored resin layer 11 to the galvanized layer 10. As a result, the surface roughness of the convex portion 10CO and the concave portion 10RE of the plating texture 10S, particularly the minute region in the concave portion 10RE, is made rough to some extent (specifically, the concave bottom three-dimensional average roughness Sas described later is more than 200 nm and 2000 nm. It has been found that the adhesion of the colored resin layer 11 to the galvanized layer 10 can be improved by (the following).
  • the present inventors have made the surface roughness of the minute region of the concave portion 10RE of the convex portion 10CO and the concave portion 10RE of the plating texture 10S to some extent, and (B) the colored resin layer.
  • the thickness of 11 and the colorant content are adjusted, and (C) the difference between the maximum thickness DKmax and the minimum thickness DKmin of the colored resin layer 11 in the cross section orthogonal to the first direction is adjusted to a certain size.
  • the plated steel sheet of the first embodiment completed based on the above findings has the following configuration.
  • the plated steel sheet of [1] is A base steel plate with a base material texture on the surface and A zinc-plated layer formed on the surface of the base steel sheet having the base material texture, A colored resin layer formed on the galvanized layer is provided.
  • the galvanized layer has a plating texture on its surface.
  • the colored resin layer contains a colorant and
  • the plating texture is With multiple protrusions, Including multiple recesses When the rolling direction of the base steel sheet is defined as the first direction and the direction orthogonal to the first direction is defined as the second direction on the surface of the plated steel sheet, the plated steel sheet has the following (A) to ( C) is satisfied.
  • the plated steel sheet of [2] is The plated steel sheet according to [1] may further satisfy the following (D).
  • D The roughness profile of the plating texture in the range of 1000 ⁇ m in the second direction is measured, and the highest position in each of the convex portions in the measured roughness profile is defined as the convex portion top point.
  • 10 of the convex top points of the roughness profile are specified in descending order of the highest, and a minute size of 1 ⁇ m ⁇ 1 ⁇ m centered on the specified convex top points.
  • the convex top three-dimensional average roughness Sa is more than 5 nm and 200 nm or less.
  • the roughness of the plating texture affects the visibility of the plating texture.
  • a plating texture is formed on the surface of the galvanized layer, not only the unevenness of the plating texture on the surface of the galvanized layer, but also the minute unevenness (roughness) due to the galvanized crystals on the surface of the plating texture. ) Also exists. If the minute irregularities caused by the galvanized crystals are small, the diffused reflection of light due to the minute irregularities caused by the galvanized crystals is suppressed. In this case, the gloss of the plating texture is increased and the whitening of the plating texture is suppressed.
  • the roughness of the concave portion in the microscopic region of the plating texture is maintained as coarse as 200 nm or more, and the roughness of the convex portion in the microscopic region is suppressed to 200 nm or less. Therefore, the concave portion of the plating texture can maintain the adhesion of the colored resin layer, and the convex portion can further enhance the visibility of the plating texture.
  • the plated steel sheet of [3] is The plated steel sheet according to [2].
  • the plurality of protrusions and the plurality of recesses may extend in the first direction.
  • the plurality of the convex portions and the plurality of the concave portions may be arranged in the second direction.
  • the plated steel sheet of [4] is The plated steel sheet according to [3].
  • the base material texture may be a hairline
  • the plating texture may be a hairline
  • the plated steel sheet is further The following (E) and (F) may be satisfied.
  • (E) The surface roughness Ra of the colored resin layer in the first direction is defined as Ra (CL), the surface roughness Ra of the colored resin layer in the second direction is defined as Ra (CC), and F3. Is defined by the equation (3), the F3 is 1.10 or more.
  • F3 Ra (CC) / Ra (CL) (3)
  • Ra (MC) When the surface roughness of the galvanized layer in the second direction is defined as Ra (MC), Ra (MC) is 0.30 ⁇ m or more.
  • the plated steel sheet of [5] is The plated steel sheet according to any one of [1] to [4].
  • the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side may be 45 or less.
  • the plated steel sheet of [6] is The plated steel sheet according to any one of [1] to [5].
  • F1 may be 13.5 or less.
  • the plated steel sheet of [7] is The plated steel sheet according to any one of [1] to [6].
  • F2 may be greater than 2.0.
  • the plated steel sheet of [8] is The plated steel sheet according to any one of [4] to [7].
  • the F3 may be 1.15 or more.
  • the plated steel sheet of [9] is The plated steel sheet according to any one of [1] to [8].
  • the base iron exposure rate of the galvanized layer may be less than 5%.
  • the plated steel sheet of [10] is The plated steel sheet according to [2].
  • the plurality of convex portions may be formed by polishing the surface of the galvanized layer.
  • the plurality of recesses may not be polished.
  • FIG. 2 is a cross-sectional view of the plated steel sheet 1 of the first embodiment.
  • the plated steel sheet 1 of the first embodiment includes a base steel sheet 100, a galvanized layer 10, and a colored resin layer 11.
  • the galvanized layer 10 is formed on the base material texture 100S on the surface of the base material steel plate 100.
  • the colored resin layer 11 is formed on the surface (texture) 10S of the galvanized layer 10.
  • the galvanized layer 10 is arranged between the base steel plate 100 and the colored resin layer 11.
  • the base steel plate 100, the galvanized layer 10, and the colored resin layer 11 will be described.
  • the base steel sheet 100 a known steel sheet applied to the plated steel sheet may be used according to each mechanical property (for example, tensile strength, workability, etc.) required for the plated steel sheet to be manufactured.
  • a steel plate for electrical equipment may be used, or a steel plate for automobile outer panels may be used.
  • the base steel plate 100 may be a hot-rolled steel plate or a cold-rolled steel plate.
  • a texture 100S is formed on the surface of the base material steel plate 100. That is, the base material steel plate 100 has a texture 100S (base material texture 100S) on its surface.
  • the plating texture 10S described later may be formed along the base material texture 100S.
  • the pattern of the plating texture 10S is similar to the pattern of the base material texture 100S.
  • the base material texture 100S is dull, the plating texture 10S is also dull.
  • the base material texture 100S is a hairline, the plating texture 10S is also a hairline.
  • the base material texture 100S and the plating texture 10S may have different patterns.
  • the base material texture 100S may be dull and the plating texture 10S may be a hairline.
  • the galvanized layer 10 is formed on the surface of the base steel plate 100.
  • the galvanized layer 10 is arranged between the base steel plate 100 and the colored resin layer 11.
  • the galvanized layer 10 is formed by a well-known galvanized method.
  • the zinc plating layer 10 is formed by, for example, an electroplating method.
  • the zinc plating layer 10 also includes a zinc alloy plating layer.
  • the galvanized layer 10 it is sufficient for the galvanized layer 10 to have a well-known chemical composition.
  • the Zn content in the chemical composition of the galvanized layer 10 may be 65% or more in mass%.
  • the sacrificial anticorrosion function is remarkably exhibited, and the corrosion resistance of the plated steel sheet 1 is remarkably enhanced.
  • the preferable lower limit of the Zn content in the chemical composition of the galvanized layer 10 is 70%, more preferably 80%.
  • the chemical composition of the galvanized layer 10 is one element or two selected from the element group consisting of Al, Co, Cr, Cu, Fe, Ni, P, Si, Sn, Mg, Mn, Mo, V, W and Zr. It is preferable to contain more than an element and Zn.
  • the zinc plating layer 10 is an electrogalvanized layer
  • the chemical composition contains at least one element selected from the element group consisting of Fe, Ni, and Co in a total amount of 5 to 20% by mass. Is even more preferable.
  • the galvanized layer 10 is a hot-dip galvanized layer
  • the chemical composition preferably contains at least one element selected from the group consisting of Mg, Al, and Si in a total amount of 5 to 20% by mass. .. In these cases, the galvanized layer 10 further exhibits excellent corrosion resistance.
  • the galvanized layer 10 may contain impurities.
  • the impurities are those that are mixed in the raw material or are mixed in the manufacturing process. Impurities are, for example, Ti, B, S, N, C, Nb, Pb, Cd, Ca, Pb, Y, La, Ce, Sr, Sb, O, F, Cl, Zr, Ag, W, H and the like. ..
  • the total content of impurities is preferably 1% or less.
  • the chemical composition of the galvanized layer 10 can be measured by, for example, the following method.
  • the colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.).
  • a remover for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • the lysate is subjected to ICP analysis using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer to determine the Zn content. If the obtained Zn content is 65% or more, it is determined that the plating layer to be measured is the zinc plating layer 10.
  • the amount of adhesion of the zinc plating layer 10 is not particularly limited, and a well-known amount of adhesion is sufficient.
  • the preferable adhesion amount of the galvanized layer 10 is 5.0 to 120.0 g / m 2 .
  • a more preferable lower limit of the adhesion amount of the galvanized layer 10 is 7.0 g / m 2 , and even more preferably 10.0 g / m 2 .
  • the upper limit of the amount of adhesion of the galvanized layer 10 is not particularly limited. From the viewpoint of economy, in the case of the galvanized layer 10 by the electroplating method, the upper limit of the preferable adhesion amount is 40.0 gm 2 , the more preferable upper limit is 35.0 g / m 2 , and more preferably 30.0 g. / M 2 .
  • FIG. 3 is an enlarged view of the colored resin layer 11 shown in FIG. With reference to FIG. 3, the colored resin layer 11 includes a resin 31 and a colorant 32. The colorant 32 is contained in the resin 31. Hereinafter, the resin 31 and the colorant 32 will be described.
  • the resin 31 is a translucent resin.
  • the “translucent resin” is a plated steel sheet 1 provided with a colored resin layer 11 containing a colorant 32 and a resin 31 in an environment equivalent to sunlight (illuminance of about 65,000 lux) in fine morning. Means that the plating texture 10S of the galvanized layer 10 can be visually recognized when the above is placed.
  • the resin 31 functions as a binder for fixing the colorant 32.
  • the resin 31 is not particularly limited as long as it has the above-defined translucency, and a well-known natural resin or a well-known synthetic resin can be used.
  • the resin 31 is, for example, an epoxy resin, a urethane resin, a polyester resin, a phenol resin, a polyether sulfone resin, a melamine alkyd resin, an acrylic resin, a polyamide resin, a polyimide resin, a silicone resin, or a poly.
  • the colorant 32 is contained in the above-mentioned resin 31 to color the colored resin layer 11.
  • the colorant 32 is well known.
  • the colorant 32 has a chromatic color.
  • a chromatic color means a color having the attributes of hue, lightness, and saturation.
  • the colorant 32 comprises, for example, one or more selected from the group consisting of inorganic pigments, organic pigments, and dyes. From the viewpoint of durability against ultraviolet rays, the colorant 32 is more preferably pigment-based (inorganic pigment and / or organic pigment).
  • the colorant 32 is an inorganic pigment
  • the colorant 32 is, for example, a neutralized precipitate pigment (sulfate, carbonate, etc.) and / or a fired pigment (metal sulfide, metal oxide, polyvalent metal composite oxide). Etc.).
  • the colorant 32 is an organic pigment
  • the colorant 32 is, for example, a chlorine pigment, an azo pigment (dissolved azo lake pigment, insoluble azo pigment, etc.), an acid condensing pigment, a polycyclic pigment (phthalocyanine pigment, an indigo type pigment).
  • the colorant 32 is a dye
  • the colorant 32 is, for example, one or more selected from the group consisting of azo dyes, indigo dyes, anthraquinone dyes, sulfide dyes, and carbonium dyes.
  • the color of the colorant 32 is not particularly limited.
  • the colorant 32 is, for example, black such as carbon black (C) and iron black (Fe 3 O 4 ).
  • the colorant 32 is not limited to black, and may be a colorant 32 of another color (white, purple-red, yellow, green-blue, red, orange, yellow, green, blue, indigo, purple, etc.). Good.
  • the particle size is not particularly limited.
  • the maximum value of the primary particle size is, for example, 3 nm to 1000 nm.
  • a plating texture 10S is formed on the surface of the galvanized layer 10 of the plated steel sheet 1. That is, the galvanized layer 10 of the plated steel sheet 1 has a plating texture 10S on its surface.
  • the “texture” means an uneven pattern formed on the surface of the base steel sheet 100 and / or the surface of the galvanized layer 10 by a physical or chemical method. That is, the texture (base material texture 100S, plating texture 10S) has a plurality of convex portions and a plurality of concave portions. The protrusions and recesses may or may not extend in one direction.
  • the texture is, for example, dull and hairline.
  • a preferred texture is a hairline.
  • the hairline is a linear uneven pattern extending in one direction.
  • FIG. 4 is a plan view of the galvanized layer 10 in which a hairline is formed as a plating texture 10S on the surface.
  • the hairline 10S is a linear uneven pattern formed on the surface of the galvanized layer 10.
  • the hairline 10S includes a plurality of grooves 10L extending in the first direction.
  • the extending directions of the plurality of grooves 10L of the hairline 10S are substantially the same.
  • the substantially same direction here is orthogonal to the extending direction of the groove 10L of the hairline 10S when the zinc plating layer 10 is viewed in the thickness direction TD (that is, in a plan view as shown in FIG. 4). It means that 90% or more of the angles formed by the adjacent grooves 10L arranged in the second direction WD is less than ⁇ 5 °.
  • Requirements (A) to (C) The plated steel sheet 1 of the first embodiment having the above-described configuration further satisfies the following (A) to (C).
  • 10 recess bottom points are specified in ascending order, and the three-dimensional average roughness Sa of a minute region of 1 ⁇ m ⁇ 1 ⁇ m centered on the specified recess bottom point is measured and measured.
  • the concave bottom three-dimensional average roughness Sa is more than 200 nm and 2000 nm or less.
  • F1 is defined by the equation (1), F1 is 15.0 or less.
  • F1 DKmin x CK (1)
  • F2 (DKmax-DKmin) x CK (2) Each requirement will be described in detail below.
  • FIG. 5 is a diagram showing a roughness profile of the plating texture 10S formed on the surface of the zinc plating layer 10.
  • an arbitrary 1000 ⁇ m length range of the second direction WD of the plating texture 10S is selected.
  • the roughness profile of the plating texture 10S is measured in the selected 1000 ⁇ m length range. It is assumed that the obtained roughness profile has a shape as shown in FIG.
  • each recess 10RE in the measured roughness profile the position having the lowest height is defined as the recess bottom point PRE.
  • 10 recessed bottom points PRE1, PRE2, ..., PRE10 are specified in ascending order from the lowest recessed bottom point PRE1.
  • the surface of the galvanized layer 10 is viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m minute recess bottom region 200 centered on each defined recess bottom point PREk (k is 1 to 10) is specified.
  • the vertical direction of the minute concave bottom region 200 is parallel to the extending direction RD of the plating texture 10S, and the horizontal direction of the minute concave bottom region 200 is parallel to the width direction WD.
  • the micro-recess bottom region 200 is a surface including the extending direction RD and the width direction WD, each side of the micro-recess bottom region 200 does not have to be parallel to the extending direction RD or the width direction WD.
  • the three-dimensional average roughness Sa is measured in each of the 10 minute recess bottom regions 200 specified by the above method.
  • the three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface.
  • the arithmetic mean value of the 10 measured three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa.
  • each convex portion 10CO in the roughness profile of any 1000 ⁇ m length range of the second direction WD of the plating texture 10S.
  • the position having the highest height is defined as the convex portion top point PCO.
  • 10 convex top points PCO1, PCO2, ..., PCO10 are specified in descending order from the highest convex top point PCO1.
  • the surface of the galvanized layer 10 is viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m microconvex top region 300 centered on each defined convex top point PCok (k is 1 to 10) is specified.
  • the vertical direction of the micro-convex top region 300 is parallel to the extending direction RD of the plating texture 10S, and the lateral direction of the micro-convex top region 300 is parallel to the width direction WD.
  • micro-convex top region 300 is a surface including the extending direction RD and the width direction WD, even if each side of the micro-convex top region 300 is not parallel to the extending direction RD or the width direction WD. Good.
  • the three-dimensional average roughness Sa is measured in each of the ten microconvex top regions 300 identified by the above method.
  • the three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface.
  • the arithmetic mean value of the 10 measured three-dimensional average roughness Sa is defined as the convex top three-dimensional average roughness Sa.
  • the concave bottom three-dimensional average roughness Sa determined by the above definition is more than 200 nm and 2000 nm or less (requirement (A)). This roughness can be based on galvanized crystals. Therefore, the plurality of galvanized recesses need not be polished. In the unevenness of the plating texture 10S, if at least the concave bottom three-dimensional average roughness Sas is coarse to some extent and is more than 200 nm and 2000 nm or less, the adhesion of the colored resin layer 11 to the zinc plating layer 10 can be improved.
  • the lower limit of the concave bottom three-dimensional average roughness Sas is preferably 250 nm, and more preferably 300 nm.
  • the upper limit of the three-dimensional average roughness Sas of the recess bottom is 1500 nm, more preferably 1000 nm, and further preferably 800 nm.
  • the value of the three-dimensional average roughness Sah at the top of the convex portion is not particularly limited as long as the concave bottom three-dimensional average roughness Sas is more than 200 nm and 2000 nm or less.
  • the three-dimensional average roughness Sah at the top of the convex portion is, for example, 2000 nm or less.
  • the plurality of convex portions may or may not be formed by polishing the surface of the galvanized layer.
  • the shape of the unevenness of the plating texture 10S is also not particularly limited.
  • FIG. 7 is a cross-sectional view perpendicular to the first direction RD in the portion near the surface of the galvanized layer 10.
  • the surface of the concave portion 10RE and the surface of the convex portion 10CO have a plating crystal.
  • both the concave bottom three-dimensional average roughness Sas and the convex top three-dimensional average roughness Sah are more than 200 nm and 2000 nm or less.
  • a cross section in this 100 ⁇ m length range (FIG. 1) is defined as an observation cross section.
  • the minimum thickness of the colored resin layer 11 is defined as DKmin ( ⁇ ).
  • DKmax the maximum thickness of the colored resin layer 11 is defined as DKmax ( ⁇ m).
  • the content (area%) of the colorant in the colored resin layer 11 is defined as CK.
  • the colorant content CK is indicated by the area ratio (area%) of the colorant in the observed cross section.
  • F1 is defined by the equation (1).
  • F1 DKmin x CK (1) At this time, F1 is 15.0 or less.
  • F1 is an index of the coloring concentration of the colored resin layer 11.
  • F1 exceeds 15.0, the thickness of the colored resin layer 11 is too thick, or the colorant content CK is too large. In this case, the coloring of the colored resin layer 11 is too dark, and the plating texture 10S of the zinc plating layer 10 is difficult to see.
  • F1 is 15.0 or less, the plating texture 10S on the surface of the zinc plating layer 10 can be sufficiently visually recognized while having an appearance colored by the colored resin layer 11 on condition that the requirements (A) and (C) are satisfied. it can.
  • the preferred upper limit of F1 is 14.0, more preferably 13.5, still more preferably 13.0, still more preferably 12.5.
  • the lower limit of F1 is not particularly limited.
  • the lower limit of F1 is, for example, 4.0.
  • the thickness of the colored resin layer 11 is measured by the following method.
  • a sample having a cross section orthogonal to the first direction RD of the plating texture 10S on the surface is taken.
  • an observation cross section in a length range of 100 ⁇ m in the second direction WD is observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM).
  • BSE reflected electron image
  • SEM scanning electron microscope
  • the base steel plate 100, the galvanized layer 10, and the colored resin layer 11 can be easily distinguished by the contrast.
  • the thickness of the colored resin layer 11 is measured at a pitch of 0.5 ⁇ m in the second direction WD.
  • the smallest thickness is defined as the minimum thickness DKmin ( ⁇ m).
  • the maximum thickness is defined as the maximum thickness DKmax ( ⁇ m).
  • the colorant content CK (area%) in the colored resin layer 11 is determined by the following method.
  • a sample having a cross section orthogonal to the first direction RD of the plating texture 10S on the surface is taken. Of the samples, the cross section orthogonal to the first direction RD of the plating texture 10S is defined as the observation surface.
  • a thin film sample in which the colored resin layer 11 and the zinc plating layer 10 on the observation surface can be observed is prepared by using a focused ion beam (FIB).
  • the thickness of the thin film sample is 50 to 200 nm.
  • the length in the direction perpendicular to the thickness direction of the colored resin layer 11 (that is, the second direction WD) is 3 ⁇ m, and the length in the thickness direction of the colored resin layer (that is, that is). , Third direction TD)
  • a field having a length including the entire colored resin layer is observed using a transmission electron microscope (TEM: Transmission Electron Microscope).
  • TEM Transmission Electron Microscope
  • the resin 31 and the colorant 32 in the colored resin layer 11 can be distinguished by the contrast.
  • the total area A1 ( ⁇ m 2 ) of the plurality of colorants in the colored resin layer 11 in the field of view is determined. Further, the area ( ⁇ m 2 ) of the colored resin layer 11 in the visual field is determined. Based on the obtained total area A1 and area A0, the colorant content (area%) in the colored resin layer 11 is obtained by the following formula.
  • CK A1 / A0 ⁇ 100
  • F2 is defined by the equation (2) in the cross section of the plating texture 10S perpendicular to the first direction RD and in the observation cross section of the plating texture 10S in the second direction WD of 100 ⁇ m length range.
  • F2 (DKmax-DKmin) x CK (2) At this time, F2 is larger than 1.0.
  • F2 is an index of the contrast of brightness in the colored resin layer 11.
  • F2 is 1.0 or less
  • the contrast of brightness in the colored resin layer 11 is low.
  • the contrast of the brightness of the colored resin layer 11 cannot be fully utilized for visually recognizing the plating texture 10S. Therefore, the plating texture 10S under the colored resin layer 11 is difficult to see.
  • the contrast of brightness in the colored resin layer 11 is sufficiently high.
  • the contrast of the brightness of the colored resin layer 11 can be fully utilized for visually recognizing the plating texture 10S.
  • the plating texture 10S under the colored resin layer 11 can be sufficiently visually recognized on the premise that the requirements (A) and (B) are satisfied.
  • the preferable lower limit of F2 is 2.0 or more than 2.0, more preferably 2.2, still more preferably 2.4.
  • the upper limit of F2 is not particularly limited.
  • the upper limit of F2 is, for example, 15.0.
  • the brightness of the entire surface of the plated steel sheet 1 of the first embodiment is not particularly specified as long as F2 or the like, which is an index of the contrast of brightness in the concave portion and the convex portion, satisfies the above-mentioned requirements. Therefore, the upper and lower limits of the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side are not particularly specified. On the other hand, the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side may be 45 or less.
  • Brightness L * is the brightness measured by the SCI method.
  • the SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing specularly reflected light.
  • a method for measuring brightness according to the SCI method is specified in JIS Z 8722 (2009).
  • object color since the measurement is performed without removing the specularly reflected light, it becomes the actual color of the object (so-called object color).
  • object color The CIELAB display color is a uniform color space defined in JIS Z 8781 (2013).
  • the three coordinates of CIELAB are indicated by L * value, a * value, and b * value.
  • the L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
  • the average thickness of the colored resin layer 11 is preferably 10.0 ⁇ m or less. If the thickness of the colored resin layer 11 exceeds 10.0 ⁇ m, smoothing (leveling) is easily performed only by the colored resin layer 11, and the impression of reflection on the surface of the colored resin layer 11 and the impression of the visible plating texture 10S are obtained. The divergence becomes large. In this case, the metallic feeling of the plated steel sheet 1 is reduced. If the average thickness of the colored resin layer 11 is 10.0 ⁇ m or less, the plating texture 10S of the zinc plating layer 10 can be visually recognized on the premise that all of the above requirements (A) to (C) are satisfied. At the same time, the metallic feeling is sufficiently enhanced. A more preferable upper limit of the average thickness of the colored resin layer 11 is 9.0 ⁇ m, and even more preferably 8.0 ⁇ m.
  • the preferable lower limit of the average thickness of the colored resin layer 11 is 0.5 ⁇ m.
  • the lower limit of the average thickness of the colored resin layer 11 is 0.7 ⁇ m, more preferably 1.0 ⁇ m, still more preferably 2.0 ⁇ m, and even more preferably 3.0 ⁇ m.
  • the average thickness of the colored resin layer 11 is measured by the following method.
  • the arithmetic mean value of the thickness measured at a pitch of 0.5 ⁇ m in the second direction WD in the above-mentioned observation cross section is defined as the average thickness ( ⁇ m) of the colored resin layer 11.
  • the three-dimensional average roughness Sah at the top of the convex portion is more than 5 nm and 200 nm or less (requirement (D)).
  • the surface of the concave portion 10RE and the convex portion 10CO of the plating texture 10S formed on the surface of the galvanized layer 10, before polishing the surface of the concave portion 10RE and the surface of the convex portion 10CO have a plating crystal.
  • nanometer-level micro-concavities and convexities micro-concave SRE and micro-convex SCO
  • the roughness of the micro-concavities and convexities (micro-concave SRE and micro-convex SCO) in the convex portion 10CO is as coarse as the roughness of the micro-concavities and convexities (micro-concave SRE and micro-convex SCO) in the concave-convex 10RE. Therefore, in the convex portion 10CO, light is diffusely reflected by the minute unevenness as in the concave portion 10RE.
  • the three-dimensional average roughness Sah at the top of the convex portion is made smaller than the three-dimensional average roughness Sah at the bottom of the concave portion.
  • the concave bottom three-dimensional average roughness Sas may be 200 nm or more
  • the convex top three-dimensional average roughness Sah may be more than 5 nm and 200 nm or less.
  • the concave portion 10RE tends to reflect light diffusely
  • the convex portion 10CO has a lower roughness than the concave portion 10RE, and the light is less likely to be diffusely reflected. Therefore, in the plating texture 10S of the zinc plating layer 10, the convex portion 10CO is easily visible.
  • the peak of the convex portion 10CO is polished to form the convex portion 10CO into a trapezoidal shape.
  • the roughness of the minute irregularities (micro concave portion SRE and minute convex portion SCO) at the convex portion 10CO can be made smaller than the roughness of the minute irregularities (micro concave concave SRE and minute convex portion SCO) at the concave portion 10 RE.
  • the three-dimensional average roughness Sah at the top of the convex portion is 200 nm or less, diffused reflection of light in the vicinity of the apex of the convex portion can be suppressed.
  • the plating texture 10S becomes more visible.
  • the three-dimensional average roughness Sah at the top of the convex portion is smaller.
  • the three-dimensional average roughness Sah at the top of the convex portion is more than 5 nm and 200 nm or less.
  • the upper limit of the three-dimensional average roughness Sah at the top of the convex portion is preferably 190 nm, more preferably 180 nm, and further preferably 170 nm.
  • the colored resin layer 11 of the plated steel sheet 1 of the first embodiment may further contain an additive in order to impart corrosion resistance, slidability, conductivity and the like to the colored resin layer 11.
  • Additives for imparting corrosion resistance are, for example, well-known rust inhibitors and inhibitors.
  • Additives for imparting slidability are, for example, well-known waxes and beads.
  • the additive for imparting conductivity is, for example, a well-known conductive agent.
  • the colored resin layer 11 may have a surface shape as described in detail below due to the type of plating texture 10S formed on the surface of the lower zinc plating layer 10.
  • the plating texture 10S is a hairline.
  • the surface roughness Ra of the colored resin layer 11 in the first direction RD of the plating texture 10S is defined as Ra (CL).
  • the surface roughness Ra of the colored resin layer 11 in the second direction WD of the plating texture 10S is defined as Ra (CC).
  • F3 is defined by the equation (3).
  • F3 Ra (CC) / Ra (CL) In this case, F3 may be 1.10 or more.
  • F3 is an index related to the metallic feeling of the plated steel sheet when the plating texture 10S is a hairline.
  • F3 is less than 1.10, the difference between the impression received from the plating texture 10S (hairline) in the absence of the colored resin layer 11 and the impression of light reflection on the surface of the colored resin layer 11 becomes too large. .. In this case, the metallic feeling is lost.
  • the plating texture 10S is a hairline, if F3 is 1.10 or more, the impression received from the plating texture 10S (hairline) in the absence of the colored resin layer 11 and the reflection of light on the surface of the colored resin layer 11 It is possible to suppress the deviation from the impression of. Therefore, a sufficient metallic feeling can be obtained.
  • the preferred lower limit of F3 is 1.15, more preferably 1.20, and even more preferably 1.25.
  • the surface roughness Ra (CL) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S of the colored resin layer 11, any 10 points are set as measurement points. The arithmetic mean roughness Ra is measured at each measurement point with an evaluation length extending in the first direction RD of the plating texture 10S. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CL).
  • the surface roughness Ra (CC) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S of the colored resin layer 11, any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the second direction WD of the plating texture 10S. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CC).
  • the requirement (F) is also a requirement when the plating texture 10S is a hairline.
  • the surface roughness Ra of the surface of the galvanized layer 10 on which the plating texture 10S is formed in the second direction WD is defined as Ra (MC).
  • the surface roughness Ra (MC) may be 0.30 ⁇ m or more.
  • the surface roughness Ra (MC) is 0.30 ⁇ m or more, a sufficient metallic feeling can be obtained when the plating texture 10S is viewed from above the colored resin layer 11.
  • the preferable lower limit of the surface roughness Ra (MC) is 0.35 ⁇ m, and more preferably 0.40 ⁇ m.
  • the upper limit of the surface roughness Ra (MC) is not particularly limited. However, it may be difficult for industrial production to excessively increase the surface roughness Ra (MC). Therefore, the upper limit of the surface roughness Ra (MC) is, for example, 2.00 ⁇ m. The upper limit of the surface roughness Ra (MC) may be, for example, 1.00 ⁇ m.
  • the surface roughness Ra (MC) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, the colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). .. In the plating texture 10S of the zinc plating layer 10 after the colored resin layer 11 is removed, any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the second direction WD. The evaluation length is 5 times the reference length (cutoff wavelength).
  • the arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (MC).
  • the base iron exposure rate of the galvanized layer 10 of the plated steel sheet 1 is less than 5%.
  • the corrosion resistance is sufficiently ensured by the galvanized layer 10 (galvanized or zinc alloy plated).
  • the corrosion resistance long-term corrosion resistance
  • the preferable base iron exposure rate is less than 5%.
  • the base iron exposure rate of the galvanized layer 10 is less than 5%, extremely good corrosion resistance that is excellent in long-term corrosion resistance can be obtained in addition to the appropriate corrosion resistance generally required for steel materials.
  • the upper limit of the exposure rate of the base iron of the galvanized layer 10 is preferably 3% or less, more preferably 2%, further preferably 1%, still more preferably 0%.
  • the base iron exposure rate is measured by the following method. Specifically, the colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). .. On the surface of the galvanized layer 10, five arbitrary rectangular regions of 1 mm ⁇ 1 mm are selected. An EPMA analysis is performed on the selected rectangular area. By image analysis, a region in which Zn is not detected (Zn undetected region) in each rectangular region is specified.
  • a region in which the detection intensity of Zn is 1/16 or less when the standard sample (pure Zn) is measured is recognized as a Zn undetected region.
  • the ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions is defined as the base iron exposure rate (area%).
  • the plated steel sheet 1 of the first embodiment may have an inorganic film or an organic-inorganic composite film formed between the colored resin layer 11 and the zinc-plated layer 10 for the purpose of improving corrosion resistance or adhesion.
  • the inorganic coating is translucent.
  • the inorganic coating is, for example, an amorphous silica coating, a zirconia coating, or a phosphate coating.
  • the organic-inorganic composite film has translucency.
  • the organic-inorganic composite film contains, for example, a silane coupling agent and an organic resin.
  • the organic-inorganic composite film has translucency.
  • a hairline is shown as an example of the texture.
  • the morphology of the texture is not limited to hairlines.
  • the texture may have a plurality of convex portions and a plurality of concave portions. Therefore, the protrusions and recesses may or may not extend in one direction.
  • the texture may be hairline, dull, or other form.
  • the texture may have an uneven pattern.
  • the manufacturing method of the first embodiment includes a preparatory step (S1) for preparing the base metal plate 100, a base material surface texture forming step (S2) for forming the base material texture 100S on the surface of the base material steel plate 100, and a base material.
  • the forming step (S6) is included. Hereinafter, each step will be described.
  • the base steel sheet 100 is prepared.
  • the base steel plate 100 may be a steel plate or may have another shape.
  • the base steel plate 100 may be a hot-rolled steel plate or a cold-rolled steel plate.
  • Base material surface texture forming step (S2) In the base material surface texture forming step (S2), the base material texture 100S is formed on the surface of the base material. At this time, the plated steel sheet has the configuration shown in FIG. In the base material surface texture forming step (S2), the base material texture 100S is formed on the surface of the base material steel plate 100 by performing a well-known texture processing on the surface of the base material steel plate 100. When the base material texture 100S is a hairline, a well-known hairline process is performed.
  • the hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape.
  • the length, depth, and frequency of the hairline can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll.
  • the zinc plating treatment may be carried out by a well-known method.
  • the galvanized layer 10 is formed using a well-known electroplating method.
  • the electroplating bath is, for example, a sulfuric acid bath, a chloride bath, a zincate bath, a cyanide bath, a pyrophosphate bath, a boric acid bath, a citric acid bath, another complex bath, or a combination thereof.
  • the electrozinc alloy plating bath contains, for example, one or more monatomic ions or complex ions selected from Co, Cr, Cu, Fe, Ni, P, Sn, Mn, Mo, V, W, and Zr. contains.
  • the chemical composition, temperature, flow velocity, and conditions (current density, energization pattern, etc.) of the electrogalvanizing bath and the electrogalvanizing alloy plating bath in the electrogalvanizing treatment can be appropriately adjusted.
  • the thickness of the zinc plating layer 10 in the electrogalvanizing treatment can be adjusted by adjusting the current value and the time within the range of the current density in the electrogalvanizing treatment.
  • a base material texture 100S is formed on the base material steel plate 100. Therefore, if the base material steel plate 100 is subjected to a zinc plating treatment to form the zinc plating layer 10, a plating texture 10S along the base material texture 100S is formed on the surface of the zinc plating layer 10.
  • a plated steel sheet including the base steel sheet 100 on which the base material texture 100S is formed and the galvanized layer 10 on which the plating texture 10S is formed is manufactured.
  • the galvanized surface texture forming step (S4) and the polishing step (S5) are both arbitrary steps. That is, it is not necessary to carry out the galvanizing surface texture forming step (S4) and the polishing step (S5). It is not necessary to carry out the galvanizing surface texture forming step (S4) and not to carry out the polishing step (S5).
  • the polishing step (S5) may be carried out without carrying out the galvanizing surface texture forming step (S4).
  • the galvanized surface texture forming step (S4) and the polishing step (S5) may be carried out.
  • both the galvanizing surface texture forming step (S4) and the polishing step (S5) are steps of scraping the peak of the convex portion 10CO of the plating texture 10S of the galvanizing layer 10.
  • each step will be described.
  • the galvanized surface texture forming step (S4) is an arbitrary step. That is, the galvanized surface texture forming step (S4) may or may not be carried out.
  • the peak of the convex portion 10CO is shaved to form a trapezoid as shown in FIG.
  • the three-dimensional average roughness Sah at the top of the convex portion is set to more than 5 nm and 200 nm or less.
  • the surface of the galvanized layer 10 (plating texture 10S) of the plated steel sheet is subjected to a well-known texture processing to obtain the top of the convex portion of the plated texture 10S.
  • the three-dimensional average roughness Sah is set to more than 5 nm and 200 nm or less. At this time, the recesses of the plating texture 10S are hardly scraped. Therefore, the concave bottom three-dimensional average roughness Sas is maintained at more than 200 nm and 2000 nm or less.
  • the hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape. There is a method of forming a hairline and the like.
  • the degree of grinding of the peak of the convex portion 10CO of the plating texture 10S on the surface of the galvanized layer 10 can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll. is there. That is, by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll, the concave bottom three-dimensional average roughness Sas is maintained at more than 200 nm and 2000 nm or less, and the convex portion top is tertiary.
  • the original average roughness Sah can be adjusted to more than 5 nm and 200 nm or less.
  • the concave bottom three-dimensional average roughness Sa is maintained at more than 200 nm and 2000 nm or less, and the convex top three-dimensional average roughness Sah is more than 5 nm and 200 nm.
  • a new hairline can be added to the plating texture 10S.
  • the base iron exposure rate can also be adjusted by adjusting the particle size of the well-known polishing belt in the galvanizing surface texture forming step (S4), the particle size of the well-known abrasive grain brush, and the surface shape of the roll.
  • the polishing step (S5) is an arbitrary step. That is, the polishing step (S5) does not have to be performed.
  • the peak of the convex portion 10CO is polished to form a trapezoidal shape as shown in FIG.
  • the top three-dimensional average roughness Sah is set to more than 5 nm and 200 nm or less.
  • the polishing treatment includes, for example, a method of polishing the surface with a well-known polishing belt, a method of polishing the surface with a well-known abrasive grain brush, and the like.
  • the shape of the convex portion 10CO and the surface roughness of the convex portion 10CO can be adjusted by adjusting the particle size of the well-known polishing belt and the particle size of the well-known abrasive grain brush.
  • the three-dimensional average roughness Sah on the top of the convex portion can be adjusted by adjusting the particle size of the well-known polishing belt and the particle size of the well-known abrasive grain brush.
  • the polishing step (S5) has a smaller grinding amount (polishing amount) than the galvanized surface texture forming step (S4).
  • the base iron exposure rate can also be adjusted by adjusting the particle size of the well-known polishing belt in the polishing step (S5) and the particle size of the well-known abrasive grain brush.
  • the polishing step (S5) may be performed at the same time as the above-mentioned galvanized surface texture forming step (S4). Production efficiency can be improved by performing at the same time.
  • the paint used for forming the colored resin layer 11 follows the surface shape of the steel material at the moment when it is applied to the plated steel sheet, and the leveling once reflecting the surface shape of the steel material is slow. That is, when the shear rate is high, the viscosity is low, and when the shear rate is low, the viscosity is high. Specifically, when the shear rate is 0.1 [1 / sec], the viscosity is 10 [Pa ⁇ s] or more, and when the shear rate is 1000 [1 / sec], 0.01 [ It is preferable to have a shear viscosity of [Pa ⁇ s] or less.
  • the shear viscosity of the paint can be adjusted by the following method.
  • the paint is a water-based emulsion paint
  • it can be adjusted by adding a well-known hydrogen-bonding viscosity modifier.
  • Such hydrogen-bonding viscosity modifiers bind each other by hydrogen bonds at low shear rates. Therefore, the viscosity of the paint can be increased.
  • hydrogen bonds are broken at high shear rates. Therefore, the viscosity of the paint decreases.
  • the surface shape of the colored resin layer 11 can be adjusted.
  • the method of forming the colored resin layer 11 on the galvanized layer 10 may be a well-known method.
  • the viscosity-adjusted paint is applied onto the galvanized layer 10 by a spraying method, a roll coater method, a curtain coater method, or a dipping pulling method. Then, the paint on the galvanized layer 10 is naturally dried or baked to form the colored resin layer 11. The drying temperature, drying time, seizure temperature, and seizure time can be adjusted as appropriate.
  • the shear viscosity of the paint used to form the colored resin layer 11 and the amount of coating on the galvanized layer 10 the three-dimensional average roughness Save, the minimum thickness DKmin of the colored resin layer 11, and the maximum thickness DKmax Can be adjusted.
  • the colorant content CK in the colored resin layer 11 can be adjusted by adjusting the content of the colorant in the paint.
  • the plated steel sheet 1 of the first embodiment can be manufactured by the above manufacturing process.
  • the plated steel sheet 1 of the first embodiment is not limited to the above manufacturing method, and if the plated steel sheet 1 having the above configuration can be manufactured, the plated steel sheet 1 of the first embodiment can be manufactured by a manufacturing method other than the above manufacturing method. May be manufactured.
  • the above manufacturing method is suitable for manufacturing the plated steel sheet 1 of the first embodiment.
  • the present inventors have investigated and investigated factors that affect the visual recognition of the texture when the resin contains a colorant. As a result, the present inventors obtained the following findings.
  • the content of the colorant in the colored resin layer and the thickness of the colored resin layer affect the visibility of the texture. give. Specifically, if the content of the colorant in the colored resin layer is too large, the texture cannot be visually recognized. Further, if the colored resin layer is too thick, the texture cannot be visually recognized.
  • the shape of the texture also affects the visibility of the texture.
  • a texture is formed on the surface of the galvanized layer, not only the unevenness of the texture but also the fine unevenness due to the galvanized crystals is present on the surface of the texture. If the fine irregularities caused by the galvanized crystals are large, the light is diffusely reflected by the fine irregularities caused by the galvanized crystals. In this case, the gloss of the texture is reduced and the texture is whitened. Therefore, when the colored resin layer is formed on the galvanized layer, the texture becomes difficult to see.
  • FIG. 9 is a schematic view of a cross section perpendicular to the extending direction of the texture in the plated steel sheet of the present embodiment.
  • the plated steel sheet includes a galvanized layer 10'and a colored resin layer 11'.
  • a texture 10S' is formed on the surface of the galvanized layer 10'.
  • the texture 10S' includes a convex portion 10CO'(Convex) and a concave portion 10RE'(Recess).
  • the colored resin layer 11' is formed on the surface of the galvanized layer 10'. Therefore, although the unevenness of the texture 10S'is reflected to some extent on the surface 11S'of the colored resin layer 11', it is flatter than the texture 10S'. Specifically, the convex portion 11CO'is formed on the portion of the surface 11S'of the colored resin layer 11' that corresponds to the convex portion 10CO'of the texture 10S'. The height of the convex portion 11CO'is lower than the height of the convex portion 10CO'. That is, the surface 11S'of the colored resin layer 11'is flatter than the surface of the texture 10S'.
  • the maximum thickness ( ⁇ m) of the colored resin layer 11' is defined as DKmax'in the range of 100 ⁇ m length in the direction perpendicular to the extending direction of the texture 10S'.
  • the minimum thickness ( ⁇ m) of the colored resin layer 11' is defined as DKmin'.
  • the present inventors adjusted the roughness of the convex portion 10CO'and the concave portion 10RE'of the (A') texture 10S' in a minute region, and adjusted the roughness of the (B') colored resin layer 11'.
  • the difference between the maximum thickness DKmax'and the minimum thickness DKmin' of the colored resin layer 11'in the cross section orthogonal to the extending direction of the (C') texture 10S' is set to some extent. It was found that the galvanized steel sheet can be made into a galvanized steel sheet in which the surface texture of the galvanized layer can be visually recognized while having a colored appearance.
  • the plated steel sheet of the second embodiment completed based on the above findings has the following configuration.
  • the plated steel sheet of [11] is Base steel plate and The galvanized layer formed on the surface of the base steel sheet and A colored resin layer formed on the galvanized layer is provided.
  • the galvanized layer has a texture extending in one direction on its surface.
  • the colored resin layer contains a colorant and All of the following (A') to (C') are satisfied.
  • A' A roughness profile in a length range of 1000 ⁇ m in a direction perpendicular to the extending direction of the texture is measured, and 10 points are specified in ascending order of height among the measured positions on the roughness profile.
  • the determined position is defined as the concave bottom point, and among the measured positions on the roughness profile, the position where 10 points are specified in descending order of height is defined as the convex apex, and each concave bottom point and each convex apex are defined.
  • the three-dimensional average roughness Sa'of a minute region of 1 ⁇ m ⁇ 1 ⁇ m centered on the above is measured and the arithmetic average value of the measured three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Saave', it is cubic.
  • the original average roughness Save'is more than 5 nm and 200 nm or less.
  • the minimum thickness ( ⁇ m) of the colored resin layer is defined as DKmin'in the range of 100 ⁇ m length in the direction orthogonal to the extending direction of the texture, and the colorant in the colored resin layer.
  • C' The formula (2') is satisfied when the maximum thickness ( ⁇ m) of the colored resin layer is defined as DKmax'in the range of 100 ⁇ m in the direction perpendicular to the extending direction of the texture. (DKmax'-DKmin') x CK'> 1.0 (2')
  • the plated steel sheet of [12] is The plated steel sheet according to [11].
  • the texture may be a hairline
  • the following (D') and (E') may be satisfied.
  • (D') The surface roughness Ra of the colored resin layer in the extending direction of the texture is defined as Ra (CL)', and the surface roughness Ra of the colored resin layer in the direction perpendicular to the extending direction of the texture is defined. Is defined as Ra (CC)', the equation (3') is satisfied.
  • (E') When the surface roughness of the galvanized layer in the direction orthogonal to the extending direction of the texture is defined as Ra (MC)', Ra (MC)'is 0.30 ⁇ m or more.
  • the plated steel sheet of [13] is The plated steel sheet according to [11] or [12].
  • the base iron exposure rate of the galvanized layer may be less than 5%.
  • FIG. 10 is a cross-sectional view of the plated steel sheet 1'of the second embodiment.
  • the direction perpendicular to the paper surface is defined as the extending direction of the texture 10S'(that is, the rolling direction of the plated steel sheet 1') RD'.
  • the thickness direction of the plated steel sheet 1' is defined as the thickness direction TD'.
  • the direction perpendicular to the texture extending direction RD'and the thickness direction TD' is defined as the width direction WD'.
  • RD', TD', and WD'by this definition are substantially the same concept as RD, TD, and WD in the first embodiment.
  • the plated steel sheet 1'of the second embodiment includes a base steel sheet 100', a galvanized layer 10', and a colored resin layer 11'.
  • the galvanized layer 10' is formed on the surface of the base steel sheet 100'.
  • the colored resin layer 11' is formed on the surface (texture) 10S' of the galvanized layer 10'.
  • the galvanized layer 10' is arranged between the base steel plate 100'and the colored resin layer 11'.
  • the base steel plate 100', the galvanized layer 10', and the colored resin layer 11' will be described.
  • the base steel sheet 100' is a plated steel sheet (electrogalvanized steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, etc.) according to each mechanical property (for example, tensile strength, workability, etc.) required for the plated steel sheet to be manufactured.
  • Known steel sheets applied to alloyed hot-dip galvanized steel sheets, etc. may be used.
  • the base steel plate 100' a steel plate for electrical equipment may be used, or a steel plate for automobile outer panels may be used.
  • the base steel plate 100' may be a hot-rolled steel plate or a cold-rolled steel plate.
  • the galvanized layer 10' is formed on the surface of the base steel sheet 100'.
  • the galvanized layer 10' is arranged between the base steel plate 100'and the colored resin layer 11'.
  • the galvanized layer 10' is formed by a well-known galvanized method.
  • the zinc plating layer 10' is formed by, for example, either an electroplating method or a hot-dip plating method.
  • the zinc plating layer 10' also includes a zinc alloy plating layer. More specifically, the zinc plating layer 10'is a concept including an electrogalvanizing layer, an electrogalvanizing alloy plating layer, a hot-dip galvanizing layer, and an alloyed hot-dip galvanizing layer.
  • the galvanized layer 10'in the second embodiment has a well-known chemical composition.
  • the Zn content in the chemical composition of the galvanized layer 10' may be 65% or more in mass%.
  • the sacrificial anticorrosion function is remarkably exhibited, and the corrosion resistance of the plated steel sheet 1'is remarkably enhanced.
  • the preferable lower limit of the Zn content in the chemical composition of the galvanized layer 10' is 70%, more preferably 80%.
  • the chemical composition of the galvanized layer 10' is one element selected from the element group consisting of Al, Co, Cr, Cu, Fe, Ni, P, Si, Sn, Mg, Mn, Mo, V, W and Zr. It preferably contains two or more elements and Zn.
  • the zinc plating layer 10' is an electrogalvanizing layer
  • the chemical composition of the zinc plating layer 10' is 5 to at least one element selected from the element group consisting of Fe, Ni, and Co in total. It is more preferably contained in an amount of 20% by mass, and the balance is made of Zn and impurities.
  • the chemical composition of the zinc-plated layer 10' is a total of 5 to 20 masses of at least one element selected from the element group consisting of Mg, Al, and Si. It is more preferable that the content is% and the balance is composed of Zn and impurities. In these cases, the galvanized layer 10' also exhibits excellent corrosion resistance.
  • the galvanized layer 10' may contain impurities.
  • the impurities are those that are mixed in the raw material or are mixed in the manufacturing process. Impurities are, for example, Ti, B, S, N, C, Nb, Pb, Cd, Ca, Pb, Y, La, Ce, Sr, Sb, O, F, Cl, Zr, Ag, W, H and the like. ..
  • the total content of impurities is preferably 1% or less.
  • the chemical composition of the galvanized layer 10' can be measured by, for example, the following method.
  • the colored resin layer 11'of the plated steel sheet 1' is removed with a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.).
  • a remover for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • the lysate is subjected to ICP analysis using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer to determine the Zn content. If the obtained Zn content is 65% or more, it is determined that the plating layer to be measured is the zinc plating layer 10'.
  • the amount of adhesion of the galvanized layer 10' is not particularly limited, and a well-known amount of adhesion is sufficient.
  • the preferable adhesion amount of the galvanized layer 10' is 5.0 to 120.0 g / m 2 .
  • the adhesion amount of the galvanized layer 10' is 5.0 g / m 2 or more, it is possible to suppress the exposure of the base iron (base steel plate 100') when the texture described later is applied to the galvanized layer 10'. ..
  • a more preferable lower limit of the adhesion amount of the galvanized layer 10' is 7.0 g / m 2 , and even more preferably 10.0 g / m 2 .
  • the upper limit of the amount of adhesion of the galvanized layer 10' is not particularly limited. From the viewpoint of economy, in the case of the galvanized layer 10'by the electroplating method, the upper limit of the preferable adhesion amount is 40.0 gm 2 , the more preferable upper limit is 35.0 g / m 2 , and more preferably 30. It is 0 g / m 2 .
  • FIG. 11 is an enlarged view of the colored resin layer 11'shown in FIG. With reference to FIG. 11, the colored resin layer 11'includes a resin 31' and a colorant 32'. The colorant 32'is contained in the resin 31'.
  • the resin 31'and the colorant 32' will be described.
  • Resin 31' is a translucent resin.
  • the "translucent resin” includes a colored resin layer 11'containing a colorant 32'and a resin 31'in an environment equivalent to sunlight (illuminance of about 65,000 lux) in fine morning. It means that the texture 10S'of the galvanized layer 10'can be visually recognized when the plated steel sheet 1'is placed.
  • the resin 31' functions as a binder for fixing the colorant 32'.
  • the resin 31' is not particularly limited as long as it is a resin having the above-defined translucency, and a well-known natural resin or a well-known synthetic resin can be used.
  • the resin 31'in the second embodiment is, for example, an epoxy resin, a urethane resin, a polyester resin, a phenol resin, a polyether sulfone resin, a melamine alkyd resin, an acrylic resin, a polyamide resin, or a polyimide resin. , Silicone resin, polyvinyl acetate resin, polyolefin resin, polystyrene resin, vinyl chloride resin, vinyl acetate resin, one or more selected from the group.
  • the colorant 32' is contained in the above-mentioned resin 31'to color the colored resin layer 11'.
  • the colorant 32'in the second embodiment is well known and widely includes inorganic pigments, organic pigments, dyes and the like used for coloring the resin layer formed on the surface of the steel sheet.
  • the colorant 32' is a chromatic colorant.
  • a chromatic color means a color having the attributes of hue, lightness, and saturation.
  • the colorant 32' consist of, for example, one or more selected from the group consisting of inorganic pigments, organic pigments, and dyes. From the viewpoint of durability against ultraviolet rays, the colorant 32'is more preferably a pigment type (inorganic pigment and / or organic pigment).
  • the colorant 32' is an inorganic pigment
  • the colorant 32' is, for example, a neutralized precipitate pigment (sulfate, carbonate, etc.) and / or a fired pigment (metal sulfide, metal oxide, polyvalent metal composite). Oxides, etc.).
  • the colorant 32' is an organic pigment
  • the colorant 32' is, for example, a chlorine pigment, an azo pigment (dissolved azo lake pigment, insoluble azo pigment, etc.), an acid condensing pigment, a polycyclic pigment (phthalocyanine pigment, indigo).
  • colorant 32' is a dye
  • the colorant 32' is, for example, one or more selected from the group consisting of azo dyes, indigo dyes, anthraquinone dyes, sulfide dyes, and carbonium dyes.
  • the color of the colorant 32' is not particularly limited.
  • the colorant 32' is, for example, the black color of carbon black (C') or iron black (Fe 3 O 4 ).
  • the colorant 32' is not limited to black, but is a colorant 32'of another color (white, purple-red, yellow, green-blue, red, orange, yellow, green, blue, indigo, purple, etc.). You may.
  • the particle size is not particularly limited.
  • the maximum value of the primary particle size is, for example, 3 nm to 1000 nm.
  • a texture 10S' is formed on the surface of the galvanized layer 10'of the plated steel sheet 1'. That is, the galvanized layer 10'of the plated steel sheet 1'has a texture 10S' on its surface.
  • the texture 10S' extends in one direction.
  • the "texture” means an uneven pattern formed on the surface of the galvanized layer 10'by a physical or chemical method.
  • a preferred texture is a hairline.
  • the hairline is a linear uneven pattern extending in one direction.
  • FIG. 12 is a plan view of the galvanized layer 10'with a hairline formed as a texture 10S' on the surface.
  • the hairline 10S' is a linear uneven pattern formed on the surface of the galvanized layer 10'.
  • the extending direction RD'of the hairline 10S' is the same direction.
  • the same direction here means the direction WD perpendicular to the extending direction RD'of the hairline 10S' when the zinc-plated layer 10'is viewed in the thickness direction TD' (that is, in a plan view as shown in FIG. 12). It means that 90% or more of the angles formed by adjacent hairlines arranged in'is less than ⁇ 5 °.
  • Requirements (A') to (C')] The plated steel sheet 1'of the second embodiment having the above-described configuration further satisfies all of the following (A') to (C').
  • the three-dimensional average roughness Sa'of a minute region of 1 ⁇ m ⁇ 1 ⁇ m centered on the bottom point of each concave portion and the apex of each convex portion is measured.
  • the arithmetic mean value of the measured three-dimensional average roughness Sa' is defined as the three-dimensional average roughness Sa'.
  • the three-dimensional average roughness Save' is more than 5 nm and 200 nm or less.
  • the minimum thickness ( ⁇ m) of the colored resin layer 11' is defined as DKmin'in the range of 100 ⁇ m length in the direction WD'orthogonal to the extending direction RD' of the texture 10S'.
  • the content (area%) of the colorant 32'in the colored resin layer 11' is defined as CK'.
  • the minimum thickness DKmin'of the colored resin layer 11'and the content CK'of the colorant 32' satisfy the formula (1').
  • FIG. 13 is a diagram showing a roughness profile of the texture 10S'formed on the surface of the galvanized layer 10'.
  • 10 points with the lowest height are specified in ascending order from the lowest height position.
  • the identified positions are defined as recess bottom points PRE1', PRE2', ..., PRE10' in ascending order of height.
  • 10 points having the highest height are specified in order from the highest height position to the highest height position.
  • the identified positions are defined as convex apex PCO1', PCO2', ..., PCO10' in descending order of height.
  • the surface of the galvanized layer 10' is viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m minute recess region 200'centered on each defined recess bottom point PREk' (k is 1 to 10) is specified.
  • the vertical direction of the minute concave region 200' is parallel to the extending direction RD'of the texture 10S', and the horizontal direction of the minute concave region 200'is parallel to the width direction WD'.
  • each side of the micro-concave region 200' is not parallel to the extending direction RD'or the width direction WD'. You may.
  • FIG. 14B when the surface of the galvanized layer 10'is viewed in a plan view, a 1 ⁇ m ⁇ 1 ⁇ m microconvex region centered on each defined convex vertex PCok'(k is 1 to 10). Identify 300'.
  • the vertical direction of the micro-convex region 300' is parallel to the extending direction RD'of the texture 10S', and the horizontal direction of the micro-convex region 300'is parallel to the width direction WD'.
  • each side of the micro-convex region 300' is parallel to the extending direction RD'or the width direction WD'. It does not have to be.
  • the three-dimensional average roughness Sa' is measured in the 10 minute concave region 200'and the 10 minute convex region 300' identified by the above method.
  • the three-dimensional average roughness Sa' is the arithmetic mean height defined by ISO 25178, which is an extension of Ra (arithmetic mean height of lines) defined by JIS B 0601 (2013) to a surface.
  • the arithmetic mean value of the measured 20 three-dimensional average roughness Sa' is defined as the three-dimensional average roughness Sa'.
  • the arithmetic average roughness Save' is more than 5 nm and 200 nm or less.
  • minute irregularities There are nanometer-level minute irregularities (hereinafter referred to as minute irregularities) caused by galvanized crystals in the portion of the texture 10S'near the apex of the convex portion or the portion near the bottom point of the concave portion.
  • minute irregularities When the minute unevenness has a certain size, the light is diffusely reflected by the minute unevenness. In this case, the gloss of the texture is reduced and the texture is whitened. Therefore, when the colored resin layer is formed on the galvanized layer, the texture becomes difficult to see. Therefore, from the viewpoint of further improving the visibility of the texture, it is preferable that the minute irregularities in the minute regions 200'and 300'are as small as possible.
  • the three-dimensional average roughness Save'based on the above definition is more than 5 nm and 200 nm or less.
  • the three-dimensional average roughness Save' is 200 nm or less, diffused reflection of light in the vicinity of the apex of the convex portion and the vicinity of the bottom point of the concave portion can be further suppressed.
  • the texture 10S' is more easily visible. The smaller the three-dimensional average roughness Save', the more preferable it is. However, it is extremely difficult to set the three-dimensional average roughness Save'to 5 nm or less.
  • the three-dimensional average roughness Save' is more than 5 nm and 200 nm or less.
  • the preferred upper limit of the three-dimensional average roughness Save'is 190 nm, more preferably 180 nm, and even more preferably 170 nm.
  • the content (area%) of the colorant in the colored resin layer 11' is defined as CK'.
  • the colorant content CK' is indicated by the area ratio (area%) of the colorant in the observed cross section.
  • the minimum thickness of the colored resin layer 11' is defined.
  • the thickness DKmin'and the content CK'of the colorant 32' satisfy the formula (1'). DKmin' ⁇ CK' ⁇ 15.0 (1')
  • the formula (1') is not satisfied, that is, if the product of the minimum thickness DKmin'and the colorant content CK' exceeds 15.0, the thickness of the colored resin layer 11'is too thick or colored.
  • the agent content CK' is too high. In this case, the colored resin layer 11'is too darkly colored, and the texture 10S'of the galvanized layer 10'is difficult to see.
  • the product of the minimum thickness DKmin'and the colorant content CK' is 15.0 or less, the color is colored by the colored resin layer 11'on the condition that the requirements (A') and the requirement (C') are satisfied. Despite its appearance, the surface texture 10S'of the galvanized layer 10'can be sufficiently visually recognized.
  • the preferred upper limit of DKmin'x CK' is 14.0, more preferably 13.0, still more preferably 12.0.
  • the lower limit of DKmin'x CK' is not particularly limited.
  • the lower limit of DKmin'x CK' is, for example, 4.0.
  • the thickness of the colored resin layer 11'in the second embodiment is measured by the following method.
  • a sample having a cross section on the surface orthogonal to the extending direction RD'of the texture 10S' is taken.
  • an observation cross section in a length range of 100 ⁇ m in the direction WD'orthogonal to the extending direction RD' of the texture 10S' was observed by a scanning electron microscope (SEM) at a magnification of 2000 times with a reflected electron image (BSE).
  • SEM scanning electron microscope
  • BSE reflected electron image
  • the thickness of the colored resin layer 11' is measured at a pitch of 0.5 ⁇ m in the direction WD'.
  • the smallest thickness is defined as the minimum thickness DKmin'( ⁇ m).
  • the maximum thickness is defined as the maximum thickness DKmax'( ⁇ m).
  • the colorant content CK'(area%) in the colored resin layer 11' is determined by the following method.
  • a thin film sample in which the colored resin layer 11'and the zinc plating layer 10'on the observation surface can be observed is prepared by using a focused ion beam device (FIB).
  • the thickness of the thin film sample is 50 to 200 nm.
  • the length in the direction perpendicular to the thickness direction of the colored resin layer 11'(that is, the direction WD') is 3 ⁇ m, and the thickness direction of the colored resin layer 11'. (That is, in the direction TD'), a field having a length including the entire colored resin layer 11'is observed using a transmission electron microscope (TEM: Transmission Electron Microscope).
  • TEM Transmission Electron Microscope
  • the resin 31'in the colored resin layer 11'and the colorant 32' can be distinguished by the contrast.
  • the total area A1'( ⁇ m 2 ) of the plurality of colorants 32'in the colored resin layer 11'in the above field of view is determined.
  • (DKmax'-DKmin') ⁇ CK' is an index of the contrast of brightness in the colored resin layer 11'.
  • (DKmax'-DKmin') ⁇ CK' is 1.0 or less, the contrast of brightness in the colored resin layer 11'is low. In this case, the contrast of the brightness of the colored resin layer 11'cannot be fully utilized for visually recognizing the texture 10S'. Therefore, the texture 10S'under the colored resin layer 11'is difficult to see.
  • the preferable lower limit of (DKmax'-DKmin') x CK' is 1.2, more preferably 1.5, still more preferably 1.8, and even more preferably 2.0.
  • the upper limit of (DKmax'-DKmin') x CK' is not particularly limited.
  • the upper limit of (DKmax'-DKmin') x CK' is, for example, 15.0.
  • the average thickness of the colored resin layer 11' is preferably 10.0 ⁇ m or less. If the thickness of the colored resin layer 11'exceeds 10.0 ⁇ m, smoothing (leveling) is easily performed only by the colored resin layer 11', and the impression of reflection on the surface of the colored resin layer 11'and the visible texture 10S' The divergence from the impression of is large. In this case, the metallic feeling of the plated steel sheet 1'is reduced. If the average thickness of the colored resin layer 11'is 10.0 ⁇ m or less, the texture 10S'of the galvanized layer 10'is visually recognized on the premise that all of the above requirements (A') to (C') are satisfied. It is possible, and the metallic feeling is sufficiently enhanced. A more preferable upper limit of the average thickness of the colored resin layer 11'is 9.0 ⁇ m, and even more preferably 8.0 ⁇ m.
  • the preferable lower limit of the average thickness of the colored resin layer 11' is 0.5 ⁇ m.
  • the corrosion resistance is further enhanced.
  • a further preferable lower limit of the average thickness of the colored resin layer 11' is 0.7 ⁇ m, more preferably 1.0 ⁇ m, still more preferably 2.0 ⁇ m, still more preferably 3.0 ⁇ m.
  • the average thickness of the colored resin layer 11' is measured by the following method.
  • the arithmetic mean value of the thickness measured at a pitch of 0.5 ⁇ m in the direction WD'in the above-mentioned observation cross section is defined as the average thickness ( ⁇ m) of the colored resin layer 11'.
  • the colored resin layer 11'of the plated steel sheet 1'of the second embodiment may further contain an additive in order to impart corrosion resistance, slidability, conductivity and the like to the colored resin layer 11'.
  • Additives for imparting corrosion resistance are, for example, well-known rust inhibitors and inhibitors.
  • Additives for imparting slidability are, for example, well-known waxes and beads.
  • the additive for imparting conductivity is, for example, a well-known conductive agent.
  • the colored resin layer 11' has a surface shape as described in detail below due to the type of texture 10S'formed on the surface of the underlying galvanized layer 10'.
  • the surface roughness Ra of the colored resin layer 11'in the extending direction RD' of the texture 10S' is defined as Ra (CL)'.
  • the texture 10S' is a hairline
  • the surface roughness Ra of the colored resin layer 11'in the direction WD' orthogonal to the extending direction RD' of the texture 10S' is defined as Ra (CC)'.
  • the surface roughness Ra (CC)'and the surface roughness Ra (CL)' satisfy the formula (3').
  • the surface roughness Ra (CC)'of the colored resin layer 11' is 1.15 times or more, more preferably 1.20 times or more, still more preferably 1.20 times or more of the surface roughness Ra (CL)'. It is 1.25 times or more.
  • the surface roughness Ra (CL)' is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S'of the colored resin layer 11', any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured at the evaluation length extending in the extending direction RD'of the texture 10S'. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CL)'.
  • the surface roughness Ra (CC)' is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S'of the colored resin layer 11', any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the direction WD'orthogonal to the extending direction RD' of the texture 10S'. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CC)'.
  • the surface roughness Ra of the surface of the galvanized layer 10'on which the texture 10S'is formed in the direction WD' orthogonal to the extending direction of the texture 10S' is defined as Ra (MC)'.
  • the surface roughness Ra (MC)' is preferably 0.30 ⁇ m or more. If the surface roughness Ra (MC)'is less than 0.30 ⁇ m, it is difficult to visually recognize the texture 10S' from above the colored resin layer 11'. When the surface roughness Ra (MC)'is 0.30 ⁇ m or more, the texture 10S'can be sufficiently visually recognized from above the colored resin layer 11'.
  • a more preferable lower limit of the surface roughness Ra (MC)' is 0.35 ⁇ m, more preferably 0.40 ⁇ m.
  • the upper limit of the surface roughness Ra (MC)' is not particularly limited. However, it may be difficult for industrial production to excessively increase the surface roughness Ra (MC)'. Therefore, the upper limit of the surface roughness Ra (MC)'is, for example, 2.00 ⁇ m.
  • the upper limit of the surface roughness Ra (MC)' may be, for example, 1.00 ⁇ m.
  • the surface roughness Ra (MC)' is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.) is used to use a colored resin layer 11'of the plated steel sheet 1'. To remove. In the texture 10S'of the galvanized layer 10'after removing the colored resin layer 11', any 10 points are set as measurement points.
  • a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.) is used to use a colored resin layer 11'of the plated steel sheet 1'.
  • a remover for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • the arithmetic mean roughness Ra is measured by the evaluation length extending in the direction WD'orthogonal to the extending direction RD'of the texture 10S'.
  • the evaluation length is 5 times the reference length (cutoff wavelength).
  • the arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra is defined as the surface roughness Ra (MC)'.
  • the base iron exposure rate of the galvanized layer 10'of the plated steel sheet 1' is less than 5%.
  • the corrosion resistance is sufficiently ensured by the galvanized layer 10'(galvanized or zinc alloy plated).
  • the corrosion resistance long-term corrosion resistance
  • the preferable base iron exposure rate is less than 5%.
  • the base iron exposure rate of the galvanized layer 10' is less than 5%, extremely good corrosion resistance such as excellent long-term corrosion resistance can be obtained in addition to the appropriate corrosion resistance generally required for steel materials.
  • the preferable upper limit of the base iron exposure rate of the galvanized layer 10' is 3% or less, more preferably 2%, further preferably 1%, still more preferably 0%.
  • the base iron exposure rate is measured by the following method. Specifically, a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.) is used to use a colored resin layer 11'of the plated steel sheet 1'. To remove. On the surface of the galvanized layer 10', five arbitrary rectangular regions of 1 mm ⁇ 1 mm are selected. An EPMA analysis is performed on the selected rectangular area. By image analysis, a region in which Zn is not detected (Zn undetected region) in each rectangular region is specified.
  • a solvent that does not attack the galvanized layer 10'or a release agent such as a remover for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • a remover for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • a region in which the detection intensity of Zn is 1/16 or less when the standard sample (pure Zn) is measured is recognized as a Zn undetected region.
  • the ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions is defined as the base iron exposure rate (area%).
  • an inorganic film or an organic-inorganic composite film may be formed between the colored resin layer 11'and the zinc-plated layer 10'for the purpose of improving corrosion resistance or adhesion.
  • the inorganic coating is translucent.
  • the inorganic coating is, for example, an amorphous silica coating, a zirconia coating, or a phosphate coating.
  • the organic-inorganic composite film has translucency.
  • the organic-inorganic composite film contains, for example, a silane coupling agent and an organic resin.
  • the organic-inorganic composite film has translucency.
  • the manufacturing method of the second embodiment includes a step of preparing the base steel plate 100'(preparation step: S1') and a step of forming a galvanized layer 10'on the base steel plate 100'(galvanizing process: S2'), a step of forming a texture on the surface of the galvanized layer 10'(texture processing step: S3'), and a step of forming a colored resin layer 11'on the plated steel plate (colored resin layer forming step: S4).
  • each step will be described.
  • the base steel plate 100' is prepared.
  • the base steel plate 100' may be a steel plate or may have another shape.
  • the base steel plate 100' may be a hot-rolled steel plate or a cold-rolled steel plate.
  • the zinc plating treatment may be carried out by a well-known method.
  • a well-known electroplating method is used to form the galvanized layer 10'.
  • the electroplating bath is, for example, a sulfuric acid bath, a chloride bath, a zincate bath, a cyanide bath, a pyrophosphate bath, a boric acid bath, a citric acid bath, another complex bath, or a combination thereof.
  • the electrozinc alloy plating bath contains, for example, one or more monatomic ions or complex ions selected from Co, Cr, Cu, Fe, Ni, P, Sn, Mn, Mo, V, W, and Zr. contains.
  • the chemical composition, temperature, flow velocity, and conditions (current density, energization pattern, etc.) of the electrogalvanizing bath and the electrogalvanizing alloy plating bath in the electrogalvanizing treatment can be appropriately adjusted.
  • the thickness of the galvanized layer 10'in the electrogalvanizing treatment can be adjusted by adjusting the current value and the time within the range of the current density in the electrogalvanizing treatment.
  • the zinc plating layer 10' may be formed by hot dip galvanizing treatment or alloying hot dip galvanizing treatment. Also in this case, a well-known galvanized bath is prepared.
  • the zinc plating bath may contain Zn as a main component and one or more elements selected from Mg, Al, and Si.
  • the galvanized layer 10' is used as a hot-dip galvanized layer
  • the base steel sheet 100' is immersed in a galvanized bath in which the bath temperature and the chemical composition of the bath are adjusted, and zinc is placed on the surface of the base steel sheet 100'.
  • a plating layer 10'(hot-dip galvanizing layer) is formed.
  • the base steel plate 100' on which the hot-dip galvanized layer is formed is subjected to a well-known heat treatment in a well-known alloying furnace to carry out a well-known heat treatment.
  • 10' is used as an alloyed hot-dip galvanized layer.
  • the thickness of the zinc plating layer 10'in the hot-dip galvanizing treatment can be adjusted by adjusting the immersion time in the zinc plating bath and the amount of zinc plating removed by gas wiping.
  • the base steel sheet 100' may be subjected to a well-known degreasing treatment such as electrolytic degreasing.
  • a plated steel sheet 1'with a base steel sheet 100'and a galvanized layer 10' is manufactured.
  • Textture processing process (S3') In the texture processing step (S3'), a well-known texture processing is performed on the surface of the galvanized layer 10'of the plated steel sheet to form the texture 10S'on the surface of the galvanized layer 10'.
  • the hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape.
  • the arithmetic mean roughness Ra (MC)'and the base iron exposure rate can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll.
  • a method for imparting a hairline it is preferable to polish the surface with a polishing belt or an abrasive brush to form a hairline from the viewpoint of surface quality. Since this manufacturing method does not include a step of forming a texture on the surface of the base material and does not have a texture on the surface of the base material, the surface of the plating before the start of the texture processing step (S3') is relatively flat. is there.
  • the concave portion of the texture is formed by polishing or the like in the texture processing step (S3'). At this time, the recess is formed so that the three-dimensional average roughness Save'is more than 5 nm and 200 nm or less.
  • the plated steel sheet 1' that includes the base steel sheet 100'and the galvanized layer 10'and has a texture 10S'extending in one direction formed on the surface of the galvanized layer 10'.
  • the paint used for forming the colored resin layer 11' follows the surface shape of the steel material at the moment when it is applied to the plated steel sheet, and the leveling once reflecting the surface shape of the steel material is slow. That is, when the shear rate is high, the viscosity is low, and when the shear rate is low, the viscosity is high. Specifically, when the shear rate is 0.1 [1 / sec], the viscosity is 10 [Pa ⁇ s] or more, and when the shear rate is 1000 [1 / sec], 0.01 [ It is preferable to have a viscosity of Pa ⁇ s] or less.
  • the shear viscosity of the paint can be adjusted by the following method.
  • the paint is a water-based emulsion paint
  • it can be adjusted by adding a well-known hydrogen-bonding viscosity modifier.
  • Such hydrogen-bonding viscosity modifiers bind each other by hydrogen bonds at low shear rates. Therefore, the viscosity of the paint can be increased.
  • hydrogen bonds are broken at high shear rates. Therefore, the viscosity of the paint decreases.
  • the surface shape of the colored resin layer 11' can be adjusted.
  • the method of forming the colored resin layer 11'on the galvanized layer 10' may be a well-known method.
  • the viscosity-adjusted paint is applied onto the galvanized layer 10'by a spraying method, a roll coater method, a curtain coater method, or a dipping pulling method. Then, the paint on the galvanized layer 10'is air-dried or baked to be dried to form the colored resin layer 11'.
  • the drying temperature, drying time, seizure temperature, and seizure time can be adjusted as appropriate.
  • the shear viscosity of the paint used to form the colored resin layer 11'and the amount of coating on the galvanized layer 10' By adjusting the shear viscosity of the paint used to form the colored resin layer 11'and the amount of coating on the galvanized layer 10', the three-dimensional average roughness Save'and the minimum thickness DKmin'of the colored resin layer 11' , Maximum thickness DKmax'can be adjusted. Further, by adjusting the content of the colorant in the paint, the colorant content CK'in the colored resin layer 11'can be adjusted.
  • the plated steel sheet 1'of the second embodiment can be manufactured.
  • the plated steel sheet 1'of the second embodiment is not limited to the above manufacturing method, and if the plated steel sheet 1'having the above configuration can be manufactured, the plating of the second embodiment can be performed by a manufacturing method other than the above manufacturing method. Steel plate 1'may be manufactured. However, the above manufacturing method is suitable for manufacturing the plated steel sheet 1'of the second embodiment.
  • the colored resin layer may be a laminated resin layer.
  • the visibility of the surface of the galvanized layer can be further enhanced, and fluctuations in color tone can be suppressed.
  • the colored resin layer as the laminated resin layer, it is possible to suppress fluctuations in the local thickness of the colored resin layer. Fluctuations in thickness correlate with fluctuations in colorant (pigment) concentration. Therefore, by suppressing the fluctuation of the thickness, the fluctuation of the colorant concentration can be suppressed, and the fluctuation of the color tone can be suppressed.
  • the preferable upper limit of the total product of the colorant content CK N and the thickness DK N in each colored resin layer is 12.0 area% ⁇ ⁇ m, 10.0 area% ⁇ ⁇ m, or 8.0 area% ⁇ . It is ⁇ m.
  • the content (area%) of the colorant in the darkest colored resin layer is defined as “C 1ST”
  • the thickness ( ⁇ m) of the darkest colored resin layer is defined as “D 1ST”
  • the color density ratio RF is 4.00 or less, the color density of the darkest colored resin layer and the color density of the second dark colored resin layer are not so different. Therefore, when the resin layer is colored to the extent that the surface of the zinc plating layer can be visually recognized, the surface of the zinc plating layer can be visually recognized, and color tone fluctuations such as color unevenness and color variation can be sufficiently suppressed.
  • the preferred upper limit of the color density ratio RF is 3.80, more preferably 3.50, still more preferably 3.00, still more preferably 2.50, still more preferably 2.00.
  • the color density ratio RF is preferably closer to 1.00. Therefore, the lower limit of the color density ratio RF is more than 1.00.
  • the RF may be 4.00 or less for each colorant having the same hue.
  • the thickness (total thickness) of the laminated resin layer is not particularly limited, but may be, for example, 10.0 ⁇ m or less. If the thickness of the laminated resin layer is 10.0 ⁇ m or less, the surface of the galvanized layer can be colored so that the surface of the galvanized layer can be visually recognized on the premise that the above requirements are satisfied. Can be visually recognized, color fluctuations such as color unevenness and color variation can be sufficiently suppressed, and the metallic feeling is sufficiently enhanced. A more preferable upper limit of the thickness of the laminated resin layer is 9.0 ⁇ m, and even more preferably 8.0 ⁇ m.
  • the lower limit of the preferable laminated resin layer is 0.5 ⁇ m.
  • the corrosion resistance is further enhanced.
  • the lower limit of the laminated resin layer is more preferably 0.7 ⁇ m, further preferably 1.0 ⁇ m, still more preferably 2.0 ⁇ m, still more preferably 3.0 ⁇ m.
  • one or a plurality of transparent resin layers containing no colorant may be laminated between the plurality of colored resin layers.
  • the "transparent resin layer” is made of a translucent resin that does not contain a colorant.
  • a translucent resin is a design-type galvanized steel sheet comprising a colored resin layer containing a colorant and a resin and a laminated resin layer containing a transparent resin layer in an environment equivalent to sunlight in the morning on a clear day (illuminance of about 65,000 lux). This means that the surface of the base steel plate can be visually recognized when the steel plate is placed.
  • the stacking order of the colored resin layer and the transparent resin layer is not particularly limited.
  • a plurality of transparent resin layers may be continuously laminated in the laminated resin layer.
  • Example 1 Hereinafter, the effects of one aspect of the present invention will be described in more detail with reference to Examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the plated steel sheet 1 of the first embodiment of the present invention. Therefore, the present invention is not limited to this one-condition example.
  • the present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the galvanized steel sheet with the test number shown in Table 1 was prepared.
  • the base steel sheet of each galvanized steel sheet was SPCC specified in JIS G 3141 (2017), and the thickness was 0.6 mm.
  • a base material surface texture forming step was carried out on each base material steel plate to form various forms of base material texture (hairline or dull) on the surface of the base material.
  • no texture was formed on the surface of the base material.
  • the column “Base material texture” in Table 1 the presence / absence and type of the base material surface texture forming step in each test number are shown.
  • each steel material is electrolytically degreased using a Na 4 SiO 4 treatment liquid having a concentration of 30 g / L, with a treatment liquid temperature of 60 ° C., a current density of 20 A / dm 2 , and a treatment time of 10 seconds. , Washed with water.
  • the steel material after electrolytic degreasing was immersed in an aqueous H 2 SO 4 solution at 60 ° C. and a concentration of 50 g / L for 10 seconds and washed with water.
  • an electrogalvanized layer was formed by electroplating. Specifically, a plating bath containing 1.0 mol / L of Zn sulphate heptahydrate and 50 g / L of anhydrous sodium sulfate and adjusting the pH to 2.0 was prepared. In electroplating, the bath temperature was set to 50 ° C. and the current density was set to 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . By the above steps, an electrogalvanized layer was formed (denoted as "EG" in the "plating type” column in Table 1).
  • an electrogalvanized layer containing Ni was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulphate heptahydrate and Ni sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0.
  • a plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing 12% Ni by mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-12% Ni" in the "Plating type” column in Table 1). ).
  • an electrogalvanized layer containing Fe was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulfate heptahydrate and Fe (II) sulfate heptahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and has a pH of 2.0.
  • a conditioned plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing Co was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulphate heptahydrate and Co sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0.
  • a plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing 2% Co in mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-2% Co" in the "Plating type” column in Table 1). ).
  • the plating solution was flowed so that the relative flow velocity was 1 m / sec.
  • the composition of the obtained electrogalvanized layer was measured by the following method.
  • the steel sheet on which the electroplating layer was formed was immersed in 10% by mass hydrochloric acid containing an inhibitor (NO.700AS manufactured by Asahi Chemical Co., Ltd.) to dissolve and peel off the electrogalvanizing layer.
  • ICP analysis was performed on the solution in which the electrogalvanized layer was dissolved to confirm the composition of the electrogalvanized layer.
  • a galvanized surface texture forming step was carried out, and further, a polishing step was carried out.
  • the peak of the convex part of the galvanized layer was ground and polished.
  • polishing belts of various particle sizes were pressed against the peaks of the convex portions of the galvanized layer, and grinding and polishing were performed by changing the rolling force and the number of polishings.
  • a polishing belt having a coarser grain size than the polishing step was used. In Test Nos.
  • the galvanized surface texture forming step and the polishing step were not carried out.
  • the column “Plating texture” in Table 1 the presence / absence and type of the galvanized surface texture forming step in each test number are shown. It should be noted that even a plated steel sheet obtained without undergoing the galvanized surface texture forming step has a plating texture as long as the base metal texture is formed through the base metal surface texture forming step. .. This is because if a galvanized steel sheet having a base material texture is subjected to a zinc plating treatment to form a zinc plating layer, a plating texture along the base material texture is formed on the surface of the zinc plating layer. .. For example, the plated steel sheet of Test No.
  • test number 5 was manufactured without going through the galvanized surface texture forming step. Therefore, regarding test number 5, "None" is described in the column “Plating texture” in Table 1. However, since the plated steel sheet of Test No. 5 was manufactured through the base material surface texture forming step, it had a plated texture.
  • the paint was scooped up with a roll and applied to the surface of the galvanized layer of the galvanized steel sheet of each test number.
  • the paint after application was baked and dried. Specifically, the galvanized steel sheet coated with the paint was placed in a furnace kept at 250 ° C. The galvanized steel sheet was held in a furnace for 1 to 5 minutes until the temperature reached by the galvanized steel sheet reached 210 ° C. After holding, the galvanized steel sheet was taken out of the furnace and cooled.
  • the viscosity of the above paint was adjusted using a viscosity modifier (manufactured by Big Chemie, trade name: BYK-425). Specifically, at a shear rate of 0.1 (1 / sec), the paint viscosity is 10 (Pa ⁇ s) or more, and at a shear rate of 1000 (1 / sec), the paint viscosity is 0.01 (Pa ⁇ s) or less. The viscosity of the paint was adjusted so as to be. By the above steps, a colored resin layer was formed on the galvanized layer of each test number.
  • the galvanized steel sheet of each test number was manufactured by the above manufacturing method.
  • Test No. 18 0.5 ⁇ m of a pigment-free urethane resin (manufactured by ADEKA Corporation, HUX-232) was applied between the colored resin layer and the galvanized layer. Then, a colored resin layer was formed.
  • a pigment-free urethane resin manufactured by ADEKA Corporation, HUX-232
  • each recess 10RE in the measured roughness profile.
  • the position having the lowest height was defined as the recess bottom point PRE.
  • 10 recessed bottom points PRE1, PRE2, ..., PRE10 were identified in ascending order from the lowest recessed bottom point PRE1.
  • the surface of the galvanized layer was viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m minute recess bottom region centered on each defined recess bottom point PREk (k is 1 to 10) was specified.
  • Three-dimensional average roughness Sa was measured in each of the 10 micro-recess bottom regions identified.
  • the three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface.
  • the arithmetic mean value of the 10 measured three-dimensional average roughness Sas was defined as the concave bottom three-dimensional average roughness Sas ( ⁇ m).
  • each convex portion 10CO in the measured roughness profile.
  • the position having the highest height was defined as the convex portion top point PCO.
  • 10 convex peak points PCO1, PCO2, ..., PCO10 were identified in descending order from the highest convex peak point PCO1.
  • the surface of the galvanized layer was viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m microconvex top region centered on each defined convex top point PCok (k is 1 to 10) was specified.
  • Three-dimensional average roughness Sa was measured in each of the 10 microconvex top regions identified.
  • the three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface.
  • the arithmetic mean value of the 10 measured three-dimensional average roughness Sas was defined as the convex top three-dimensional average roughness Sah ( ⁇ m).
  • the thickness (DKmin, DKmax) of the colored resin layer of the galvanized steel sheet of each test number was measured by the following method.
  • a sample having a cross section orthogonal to the first direction of the texture (hairline) on the surface was taken.
  • an observation cross section in a length range of 100 ⁇ m in a direction orthogonal to the extending direction of the texture (hairline) was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM).
  • BSE reflected electron image
  • SEM scanning electron microscope
  • the thickness of the colored resin layer was measured at a pitch of 0.5 ⁇ m in the direction WD.
  • the minimum thickness DKmin ( ⁇ m) was defined as the minimum thickness DKmin ( ⁇ m).
  • the maximum thickness was defined as the maximum thickness DKmax ( ⁇ m).
  • the colorant content (area%) in the colored resin layer of the galvanized steel sheet of each test number was determined by the following method. A sample having a cross section on the surface orthogonal to the first direction of the texture (hairline) was taken. In the sample, the cross section orthogonal to the first direction of the texture (hairline) was used as the observation surface. From the sample, a thin film sample in which the colored resin layer and the galvanized layer on the observation surface could be observed was prepared using FIB. The film thickness of the thin film sample was 150 nm.
  • the length in the direction perpendicular to the thickness direction of the colored resin layer (that is, the second direction WD) is 3 ⁇ m, and the length in the thickness direction of the colored resin layer (that is, that is).
  • the third direction TD a visual field having a length including the entire colored resin layer was observed using TEM.
  • the resin and the pigment in the colored resin layer could be distinguished by the contrast.
  • the surface roughness Ra was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the first direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.), and the measuring speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the surface roughness Ra was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the second direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above was defined as the surface roughness Ra (CC).
  • the surface roughness Ra (MC) was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013).
  • the colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.).
  • any 10 points were set as measurement points.
  • the arithmetic mean roughness Ra was measured with the evaluation length extending in the second direction. The evaluation length was set to 5 times the reference length (cutoff wavelength).
  • the arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra
  • the smallest arithmetic mean roughness Ra the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic average roughness Ra excluding the above was defined as the surface roughness Ra (MC) ( ⁇ m).
  • the base iron exposure rate of the galvanized steel sheet of each test number was measured by the following method.
  • a galvanized steel sheet from which the colored resin layer had been removed was prepared.
  • Five arbitrary rectangular regions of 1 mm ⁇ 1 mm were selected on the surface of the galvanized layer.
  • An EPMA analysis was performed on the selected rectangular area.
  • image analysis a region in which Zn was not detected (Zn undetected region) in each rectangular region was identified.
  • the region where the detection intensity of Zn was 1/16 or less when the standard sample (pure Zn) was measured was recognized as the Zn undetected region.
  • the ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions was defined as the base iron exposure rate (area%).
  • the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification.
  • CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination.
  • the CIE standard illuminant D65 is used to display the color of an object illuminated by daylight.
  • the viewing angle of 10 ° is specified in JIS Z 8723 (2009) “Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
  • the SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing the specularly reflected light.
  • the brightness measurement method according to the SCI method is specified in JIS Z 8722 (2009).
  • the color is the actual color of the object.
  • the CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring the color difference due to the difference between perception and the value measured by the device.
  • the three coordinates of CIELAB are indicated by L * value, a * value, and b * value.
  • the L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
  • Corrosion resistance evaluation test Corrosion resistance (long-term corrosion resistance) was evaluated for the galvanized steel sheets of each test number by the following method. A 75 mm ⁇ 100 mm test piece was taken from the galvanized steel sheet of each test number. The end face and back surface of the test piece were protected with a tape seal. Then, a salt spray test of 5% NaCl kept at 35 ° C. was carried out in accordance with JIS Z 2371 (2015). The test was carried out for 240 hours, and the rust generation rate after the test was determined.
  • the rust occurrence rate was 0%, it was judged as corrosion resistance evaluation A, and if the rust occurrence rate was more than 0% and 5% or less, it was judged as corrosion resistance evaluation B, and it was evaluated as having good corrosion resistance. If the rust generation rate was more than 5%, it was judged to be corrosion resistance evaluation C.
  • the main problem of the present invention is to improve the visibility of texture. Therefore, even if the corrosion resistance evaluation is C, the example of the test number that passed the texture visual inspection test was determined to be the example of the present invention.
  • Adhesion test The adhesion of the colored resin layer was evaluated for the galvanized steel sheet of each test number by the following method. From the galvanized steel sheets of each test number, test pieces having a width of 50 mm and a length of 50 mm were prepared. The obtained test piece was bent at 180 °. After the bending process, a tape peeling test was performed on the outside of the bent portion. The appearance of the tape peeled portion was observed with a magnifying glass having a magnification of 10 times. Then, it was evaluated according to the following evaluation criteria. The bending process was carried out in an atmosphere of 20 ° C. with a 0.6 mm spacer in between. The results obtained are shown in Table 1 below.
  • the metallic feeling of the galvanized steel sheet of each test number was measured by the following method. At any point of the plated steel sheet 1 of each test number, the glossiness G60 (Gl) in the direction parallel to the texture (hairline) and the glossiness G60 (Gc) in the direction perpendicular to the texture (hairline) are measured with a gloss meter. did. As the gloss meter, a gloss meter (trade name: UGV-6P) manufactured by Suga Test Instruments Co., Ltd. was used. Gc / Gl was determined based on the obtained glossiness Gl and the glossiness Gc.
  • the texture can be visually recognized and Gc / Gl ⁇ 0.70, it is judged that an excellent metallic feeling is obtained (evaluation “A” in Table 1). If the texture can be visually recognized and 0.70 ⁇ Gc / Gl ⁇ 0.90, it is judged that a good metallic feeling is obtained (evaluation “B” in Table 1). If the texture cannot be visually recognized, or if the texture is visible but 0.90 ⁇ Gc / Gl, it is determined that the metallic feeling is not obtained (evaluation "C” in Table 1). However, the main problem of the present invention is to improve the texture visibility. Therefore, even if the metallic feeling is determined to be C, the example of the test number that passed the texture visibility test was determined to be the example of the present invention.
  • test numbers 4 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32, the concave bottom three-dimensional average roughness Sas was more than 200 nm and 2000 nm or less. Furthermore, in these test numbers, F1 was 15.0 or less and F2 was greater than 1.0. Therefore, in these test numbers, even if the brightness was 50 or less, the texture could be visually recognized in the texture visibility test (evaluation A or B). Furthermore, these test numbers were also excellent in adhesion. Test number 2 was outside the range of the first embodiment, and the corrosion resistance was slightly lower than that of other invention examples, but it was within the range of the second embodiment, had a high metallic feeling, and had a good aesthetic appearance. Was.
  • test numbers 4, 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32 the test numbers excluding test number 5 have a convex top top three-dimensional average roughness Sah of more than 5 nm and 200 nm or less. there were. Therefore, in test numbers 4, 10 to 17, 20 to 22, 25 to 27, and 30 to 32, the texture was visible even if the brightness was lower than that of test number 5.
  • test numbers 4 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32
  • the base iron exposure rate was less than 5% for the test numbers other than the test numbers 4 and 10. Therefore, in test numbers 5, 8, 9, 11 to 17, 20 to 22, 35 to 27, and 30 to 32, the rust generation rate was less than 5% in the corrosion resistance evaluation test, and sufficient corrosion resistance was obtained ( Evaluation A or B).
  • test number 1 no plating texture was formed. Therefore, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Further, the surface roughness Ra (CL) and the surface roughness Ra (CC) did not satisfy the formula (3). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • test number 7 the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • test number 19 the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • test number 24 the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • test number 29 the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • Example 2 Next, various examples manufactured for confirming the feasibility and effect of the plated steel sheet 1'of the second embodiment of the present invention will be described below.
  • Galvanized steel sheets with test numbers shown in Table 2 were prepared.
  • the steel material (steel plate) of each galvanized steel sheet was SPCC specified in JIS G 3141 (2017), and the thickness was 0.6 mm.
  • each steel material was pretreated for plating. Specifically, each steel material is electrolytically degreased using a Na 4 SiO 4 treatment liquid having a concentration of 30 g / L at a treatment liquid temperature of 60 ° C., a current density of 20 A / dm 2 , and a treatment time of 10 seconds. , Washed with water. The steel material after electrolytic degreasing was immersed in an aqueous solution of H 2 SO 4 at a concentration of 50 g / L at 60 ° C. for 10 seconds and washed with water.
  • an electrogalvanized layer was formed by electroplating. Specifically, a plating bath containing 1.0 mol / l of Zn sulphate heptahydrate and 50 g / L of anhydrous sodium sulfate and adjusting the pH to 2.0 was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . By the above steps, an electrogalvanized layer was formed (denoted as "EG" in the "plating type” column in Table 2).
  • an electrogalvanized layer containing Ni was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulphate heptahydrate and Ni sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0.
  • a plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing Fe was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulfate heptahydrate and Fe (II) sulfate heptahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and has a pH of 2.0.
  • a conditioned plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing Co was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulphate heptahydrate and Co sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0.
  • a plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 .
  • an electrogalvanized layer containing 2% Co in mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-2% Co" in the "Plating type” column in Table 2). ).
  • the plating solution was flowed so that the relative flow velocity was 1 m / sec.
  • the composition of the obtained electrogalvanized layer was measured by the following method.
  • the steel sheet on which the electroplating layer was formed was immersed in 10% by mass hydrochloric acid containing an inhibitor (NO.700AS manufactured by Asahi Chemical Co., Ltd.) to dissolve and peel off the electrogalvanizing layer.
  • ICP analysis was performed on the solution in which the electrogalvanized layer was dissolved to confirm the composition of the electrogalvanized layer.
  • the galvanized steel sheet After forming the galvanized layer, in test numbers 2'to 16', 18' to 20', 22' to 24', and 26' to 28', the galvanized steel sheet is subjected to the rolling direction RD of the steel sheet. , Texture processing was carried out to impart hairlines to the surface of the galvanized layer. Specifically, polishing papers of various particle sizes were pressed against the surface of the galvanized layer, and various hairlines were imparted by changing the rolling force and the number of times of polishing. In the column “Texture” in Table 2, the presence / absence and type of texture processing in each test number are shown.
  • Galvanized steel sheets with hairlines formed (test numbers 2'-16', 18'-20', 22'-24', 26'-28') and galvanized steel sheets without hairlines (test numbers)
  • a colored resin layer was formed on 1', 17', 21'and 25').
  • paints having various concentrations and viscosities in which a urethane resin (manufactured by ADEKA Corporation, HUX-232) was dispersed in water as an organic resin were prepared.
  • Colorants (carbon black) of various concentrations were added to the paint.
  • trade name # 850 manufactured by Mitsubishi Chemical Corporation was used.
  • the paint was scooped up with a roll and applied to the surface of the galvanized layer of the galvanized steel sheet of each test number.
  • the paint after application was baked and dried. Specifically, the galvanized steel sheet coated with the paint was placed in a furnace kept at 250 ° C. The galvanized steel sheet was held in a furnace for 1 to 5 minutes until the temperature reached by the galvanized steel sheet reached 210 ° C. After holding, the galvanized steel sheet was taken out of the furnace and cooled.
  • the viscosity of the above paint was adjusted using a viscosity modifier (manufactured by Big Chemie, trade name: BYK-425). Specifically, at a shear rate of 0.1 (1 / sec), the paint viscosity is 10 (Pa ⁇ s) or more, and at a shear rate of 1000 (1 / sec), the paint viscosity is 0.01 (Pa ⁇ s) or less. The viscosity of the paint was adjusted so as to be. By the above steps, a colored resin layer was formed on the galvanized layer of each test number.
  • the galvanized steel sheet of each test number was manufactured by the above manufacturing method.
  • Test No. 16' 0.5 ⁇ m of a urethane resin (manufactured by ADEKA Corporation, HUX-232) containing no colorant was applied between the colored resin layer and the galvanized layer. Then, a colored resin layer was formed.
  • a urethane resin manufactured by ADEKA Corporation, HUX-232
  • the roughness profile was measured with a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.).
  • a three-dimensional surface roughness measuring machine Sudfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.
  • 10 points with lower heights are specified in ascending order of height
  • recessed bottom points PRE1', PRE2', ..., PRE10' are defined in ascending order of height.
  • 10 points with higher heights are specified in descending order of height
  • the surface of the galvanized layer was viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m minute recess region centered on each defined recess bottom point PREk'(k is 1 to 10) was specified.
  • the surface of the galvanized layer is viewed in a plan view, and a 1 ⁇ m ⁇ 1 ⁇ m microconvex region centered on each defined convex apex PCok'(k is 1 to 10) is specified. did.
  • the three-dimensional average roughness Sa' was measured in the 10 micro-concave regions and the 10 micro-convex regions specified by the above method.
  • a laser microscope (trade name: VK-9710) manufactured by KEYENCE CORPORATION was used for identifying the micro-concave region and the micro-convex region and measuring the three-dimensional average roughness Sa'.
  • VK-9710 the display resolution in the height direction was 1 nm or more, and the display resolution in the width direction was 1 nm or more.
  • the arithmetic mean value of the measured 20 (10 micro-concave regions and 10 micro-convex regions) three-dimensional average roughness Sa' was defined as the three-dimensional average roughness Sa'.
  • the thickness (DKmin', DKmax') of the colored resin layer of the galvanized steel sheet of each test number was measured by the following method.
  • a sample having a cross section orthogonal to the extending direction of the texture (hairline) was taken.
  • an observation cross section in a length range of 100 ⁇ m in a direction orthogonal to the extending direction of the texture (hairline) was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM).
  • BSE reflected electron image
  • SEM scanning electron microscope
  • the thickness of the colored resin layer was measured at a pitch of 0.5 ⁇ m in the direction WD'.
  • the minimum thickness DKmin'( ⁇ m)
  • the maximum thickness was defined as the maximum thickness DKmax'( ⁇ m).
  • the colorant content (area%) in the colored resin layer of the galvanized steel sheet of each test number was determined by the following method. A sample having a cross section on the surface orthogonal to the extending direction of the texture (hairline) was taken. In the sample, the cross section orthogonal to the extending direction of the texture (hairline) was used as the observation surface. From the sample, a thin film sample in which the colored resin layer and the galvanized layer on the observation surface could be observed was prepared using FIB. The film thickness of the thin film sample was 150 nm.
  • the length in the direction perpendicular to the thickness direction of the colored resin layer (that is, the direction WD') is 3 ⁇ m, and the length in the thickness direction (that is, the direction) of the colored resin layer.
  • TD' a visual field having a length including the entire colored resin layer was observed using TEM.
  • the resin in the colored resin layer and the colorant could be distinguished by the contrast.
  • the total area A1'( ⁇ m 2 ) of the plurality of colorants in the colored resin layer in the observed cross section was determined. Further, the area A0'( ⁇ m 2 ) of the colored resin layer in the observed cross section was determined. Based on the obtained total area A1'and area A0', the colorant content (area%) in the colored resin layer 11 was determined by the following formula.
  • CK' A1' / A0'x100
  • the surface roughness Ra (CL)' was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the extending direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.), and the measuring speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ras excluding the above was defined as the surface roughness Ra (CL)'.
  • the surface roughness Ra (CC)' was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013).
  • any 10 points were set as measurement points.
  • the arithmetic mean roughness Ra was measured by the evaluation length extending in the direction orthogonal to the extending direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength).
  • the arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic mean roughness Ra excluding the above was defined as the surface roughness Ra (CC)'.
  • the surface roughness Ra (MC)' was measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013).
  • the colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.).
  • a solvent that does not attack the galvanized layer trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.
  • any 10 points were set as measurement points.
  • the arithmetic mean roughness Ra was measured by the evaluation length extending in the direction orthogonal to the extending direction of the texture (hairline).
  • the evaluation length was set to 5 times the reference length (cutoff wavelength).
  • the arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec.
  • the largest arithmetic mean roughness Ra the second largest arithmetic mean roughness Ra
  • the smallest arithmetic mean roughness Ra the second smallest arithmetic mean roughness Ra.
  • the arithmetic mean value of the six arithmetic average roughness Ra excluding the above was defined as the surface roughness Ra (MC)'( ⁇ m).
  • the base iron exposure rate of the galvanized steel sheet of each test number was measured by the following method.
  • a galvanized steel sheet from which the colored resin layer had been removed was prepared.
  • Five arbitrary rectangular regions of 1 mm ⁇ 1 mm were selected on the surface of the galvanized layer.
  • An EPMA analysis was performed on the selected rectangular area.
  • image analysis a region in which Zn was not detected (Zn undetected region) in each rectangular region was identified.
  • the region where the detection intensity of Zn was 1/16 or less when the standard sample (pure Zn) was measured was recognized as the Zn undetected region.
  • the ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions was defined as the base iron exposure rate (area%).
  • the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification.
  • CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination.
  • the CIE standard illuminant D65 is used to display the color of an object illuminated by daylight.
  • the viewing angle of 10 ° is specified in JIS Z 8723 (2009) “Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
  • the SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing the specularly reflected light.
  • the brightness measurement method according to the SCI method is specified in JIS Z 8722 (2009).
  • the color is the actual color of the object.
  • the CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring the color difference due to the difference between perception and the value measured by the device.
  • the three coordinates of CIELAB are indicated by L * value, a * value, and b * value.
  • the L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
  • Corrosion resistance evaluation test Corrosion resistance (long-term corrosion resistance) was evaluated for the galvanized steel sheets of each test number by the following method. A 75 mm ⁇ 100 mm test piece was taken from the galvanized steel sheet of each test number. The end face and back surface of the test piece were protected with a tape seal. Then, a salt spray test of 5% NaCl kept at 35 ° C. was carried out in accordance with JIS Z 2371 (2015). The test was carried out for 240 hours, and the rust generation rate after the test was determined.
  • the main object of the present invention is to improve the aesthetic appearance such as texture visibility. Therefore, even if the corrosion resistance evaluation is C, the example of the test number that passed the texture visual inspection test was determined to be the example of the present invention.
  • the metallic feeling of the galvanized steel sheet of each test number was measured by the following method. At any point of the plated steel sheet 1 of each test number, the glossiness G60 (Gl) in the direction parallel to the texture (hairline) and the glossiness G60 (Gc) in the direction perpendicular to the texture (hairline) are measured with a gloss meter. did. As the gloss meter, a gloss meter (trade name: UGV-6P) manufactured by Suga Test Instruments Co., Ltd. was used. Gc / Gl was determined based on the obtained glossiness Gl and the glossiness Gc.
  • the texture can be visually recognized and Gc / Gl ⁇ 0.70, it is judged that an excellent metallic feeling is obtained (evaluation “A” in Table 1). If the texture can be visually recognized and 0.70 ⁇ Gc / Gl ⁇ 0.90, it is judged that a good metallic feeling is obtained (evaluation “B” in Table 1). If the texture cannot be visually recognized, or if the texture is visible but 0.90 ⁇ Gc / Gl, it is judged that the metallic feeling is not obtained (evaluation "C” in Table 1). However, the main problem of the present invention is to improve the texture visibility. Therefore, even if the metallic feeling is determined to be C, the example of the test number that passed the texture visibility test was determined to be the example of the present invention.
  • the base iron exposure rate is 5% for the test numbers other than the test number 3'. Was less than. Therefore, in the corrosion resistance evaluation test, the rust generation rate was less than 5%, and sufficient corrosion resistance was obtained (evaluation A).
  • test number 1' the three-dimensional average roughness Save' was too large. Further, the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
  • Example 3 Of Example 1 and Example 2, test numbers 12, 14-16, 20-21, 25-26, 30-31, 13'-16', 19'-20', 23'-24', 27' The same paint was used for each of ⁇ 28', and the colored resin layers were coated in a plurality of times so as to have the same total film thickness to form a laminated resin layer. Those coated with the laminated resin are listed in Tables 3A and 3B by adding # to the original test number.
  • a production line including a resin layer production apparatus combining a colored resin coating apparatus and a baking furnace was used. When the resins were laminated, the resin layer was manufactured a plurality of times using the resin layer manufacturing apparatus.
  • test numbers 15 # and 15'# a clear resin layer containing no coloring pigment was laminated as a third layer, and the number of laminated resin layers was set to 3 ("3" in the "number of layers” column of the "laminated resin layer” column. ").
  • test numbers 16 # and 16'# a clear resin layer containing no coloring pigment was laminated as the first layer, and the number of laminated resin layers was set to 3 ("3" in the "number of layers” column of the "laminated resin layer” column. ").
  • the number of colored resin layers in the laminated resin layer was set to 2 (described as “2" in the "number of laminated resin” column in the "laminated resin layer” column).
  • a sample SA including the laminated resin layer 30 was collected at the center position of the CD in the width direction of the cut surface.
  • Each of the three sample SAs contained at least a laminated resin layer 30 and a galvanized layer 10.
  • the length of the CD in the width direction of the cut surface was 10 mm, and the length in the direction perpendicular to the ND in the normal direction and the CD in the width direction of the cut surface was 10 mm.
  • a sample in which the laminated resin layer 30 and the galvanized layer 10 can be observed with a transmission electron microscope was prepared for the cut out sample SA by using a focused ion beam device (FIB).
  • FIB focused ion beam device
  • the surface (observation surface) including the normal direction ND and the cut surface width direction CD of the sample SA was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM).
  • BSE backscattered electron image
  • the base steel plate, the galvanized layer, and the laminated resin layer could be easily distinguished by the contrast.
  • each colored resin layer was identifiable by its contrast because resin layers having different compositions were used.
  • the content CK (volume%) of the pigment in each colored resin layer and the average thickness DK of each colored resin layer were determined by the following method.
  • the total area A1 ( ⁇ m 2 ) of the plurality of pigments in the colored resin layer on the observation surface was determined.
  • the area A0 ( ⁇ m 2 ) of the colored resin layer on the observation surface was determined.
  • the area ratios of the pigments described above were obtained in three samples, and the average of the obtained three area ratios was defined as the pigment content CK (volume%) of the colored resin layer.
  • the thickness ( ⁇ m) was measured at any one point of each colored resin layer.
  • the average of the three thicknesses obtained in the three sample SAs was defined as the thickness DK ( ⁇ m) of the colored resin layer.
  • Color density index IK CK x DK
  • the total value of the color density index of each colored resin layer was obtained.
  • the obtained total value is shown in the "total color density index" column of the "laminated resin layer” column in Tables 3A and 3B.
  • the thickness of the laminated resin layer 30 was measured by the following method. With reference to FIGS. 15A and 15B, in the cut surface CS, the direction perpendicular to the normal direction ND is defined as the cut surface width direction CD (corresponding to the plate width direction TD in this embodiment).
  • the cut surface CS was divided into three equal parts along the cut surface width direction CD. In each of the three equal compartments X1 to X3, a sample SA including the laminated resin layer 30 was collected at the center position of the CD in the width direction of the cut surface. Each of the three sample SAs contained at least a laminated resin layer 30 and a galvanized layer 10. The length of the CD in the width direction of the cut surface was 10 mm.
  • the length in the direction perpendicular to the normal direction ND and the cut surface width direction CD was set to 10 mm.
  • Gold vapor deposition was applied to the cut surface CS of the cut-out sample SA.
  • the sample SA was sandwiched between the backing plates, embedded in the resin, and polished to prepare an observation sample having the cut surface CS as the observation surface.
  • the observation surface of the observation sample was observed with a 2000x backscattered electron image (BSE) using a scanning electron microscope (SEM).
  • BSE backscattered electron image
  • SEM scanning electron microscope
  • the base steel plate 100, the galvanized layer 10, and the laminated resin layer 30 could be easily distinguished by the contrast in the observation with the reflected electron image (BSE) of the scanning electron microscope (SEM).
  • the thickness of the laminated resin layer 30 was measured at 10 points at a pitch of 100 ⁇ m in the cut surface width direction CD.
  • the average value of the thicknesses (30 points in total) measured by the three sample SAs was defined as the thickness ( ⁇ m) of the laminated resin layer 30.
  • the measured thickness ( ⁇ m) of the laminated resin layer is shown in the “total film thickness” in the “laminated resin layer” column in Table 1.
  • the colored resin layer having the largest color density index IK is defined as “the darkest colored resin layer L 1ST ", and the coloring having the highest color density index IK next to the darkest colored resin layer L 1ST.
  • the resin layer, that is, the colored resin layer having the second highest color density index IK was defined as “second dark colored resin layer L 2ND ".
  • the pigment content (area%) of the darkest colored resin layer L 1ST was defined as “C 1ST ", and the thickness ( ⁇ m) of the darkest colored resin layer L 1ST was defined as "D 1ST ".
  • Pigment content of the second dark colored resin layer L 2ND (area%) is defined as "C 2ND", thickness of the second dark colored resin layer L 2ND the ([mu] m) is defined as "D 2ND”.
  • the "lamination position" in the " darkest colored resin layer L 1ST " column in Tables 3A and 3B indicates how many layers the darkest colored resin layer L 1ST was. For example, test number 12 # indicates that the darkest colored resin layer L1ST was the first layer.
  • the “lamination position” in the “second dark colored resin layer L 2ND ” column in Tables 3A and 3B indicates how many layers the second dark colored resin layer L 2ND was. For example, test number 12 # indicates that the second dark colored resin layer L 2ND was the second layer.
  • the color unevenness was evaluated as follows. Score G: 90% or more of the color difference ⁇ E * between two adjacent points is 2.0 or less Score P: 11% or more of the color difference ⁇ E * between two adjacent points is more than 2.0
  • the L * values, a * values, and b * values of the measurement points P1 to P81, Q1 and Q2 are colorimeters manufactured by Konica Minolta Co., Ltd. Product name: CM-2600d) was used.
  • CM-2600d Colorimeters manufactured by Konica Minolta Co., Ltd.
  • a CIE standard light source D65 was used as a light source, the viewing angle was 10 °, and the L * value, a * value, and b * value were obtained in the CIELAB display color by the SCE method.
  • the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification.
  • CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination.
  • the CIE standard illuminant D65 is used to display the color of an object illuminated by daylight.
  • the viewing angle of 10 ° is specified in JIS Z 8723 (2009) “Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
  • the SCE method is called a specular light removal method, and means a method of measuring color by removing specular light.
  • the definition of the SCE method is defined in JIS Z 8722 (2009).
  • the color is close to the color seen by the actual human eye (so-called visual color).
  • the CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring color differences due to differences in perception and equipment.
  • the three coordinates of CIELAB are indicated by L * value, a * value, and b * value.
  • the L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
  • a * Value indicates a color between red and green. If the a * value is negative, it means a color closer to green, and if it is positive, it means a color closer to red.
  • b * Value means a color between yellow and blue. If b * is negative, it means a color closer to blue, and if it is positive, it means a color closer to yellow. [Evaluation results]
  • test numbers that were not laminated resinized were rated “P” for either "color unevenness” or “color variation”, or both.
  • all the test numbers (marked with #) made of laminated resin were evaluated as "G” for both "color unevenness” and "color variation”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A plated steel sheet according to one embodiment of the present invention comprises a base material steel sheet having a base material texture on the surface, a galvanized layer formed on the surface having the base material texture of the base material steel sheet, and a colored resin layer formed on the surface of the galvanized layer, wherein a plating texture is formed on the surface of the galvanized layer, the colored resin layer includes a colorant, the plating texture has a plurality of protrusions and a plurality of depressions, the depression bottom three-dimensional average roughness Sas is more than 200 nm and equal to or less than 2000 nm, DKmin × CK is 15.0 or less, and (DKmax - DKmin) × CK is greater than 1.0. A plated steel sheet according to another embodiment of the present invention includes a base material steel sheet, a galvanized layer formed on the surface of the base material steel sheet, and a colored resin layer formed on the galvanized layer, wherein a texture extending in one direction is formed on the surface of the galvanized layer, the colored resin layer includes a colorant, the three-dimensional average roughness Saave' is more than 5 nm and equal to or less than 200 nm, and DKmin' × CK' is 15.0 or less, and (DKmax' - DKmin') × CK' is larger than 1.0.

Description

めっき鋼板Plated steel sheet
 本発明は、めっき鋼板に関する。
 本願は、2019年9月20日に日本に出願された特願2019-171166号、2019年9月20日に日本に出願された特願2019-171137号、及び2019年5月24日に日本に出願された特願2019-098050号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plated steel sheet.
This application applies to Japanese Patent Application No. 2019-171166 filed in Japan on September 20, 2019, Japanese Patent Application No. 2019-171137 filed in Japan on September 20, 2019, and Japan on May 24, 2019. Claim the priority based on Japanese Patent Application No. 2019-098050 filed in Japan, the contents of which are incorporated herein by reference.
 電気機器、建材、及び、自動車等の物品は、意匠性が求められる場合がある。物品の意匠性を高める方法として、物品の表面に対して塗装を施す方法や、フィルムを張り付ける方法がある。 Electrical equipment, building materials, and articles such as automobiles may be required to have a design. As a method of enhancing the design of the article, there are a method of painting the surface of the article and a method of attaching a film.
 最近では、自然志向の欧米を中心に、金属の質感を活かした材料が好まれる傾向にある。金属の質感を活かす場合、素材として、無塗装のままでも耐食性に優れるステンレス鋼板やアルミ板が用いられている。また、ステンレス鋼板及びアルミ板のメタリック感をさらに現出させることを目的として、ヘアラインに代表されるテクスチャが表面に形成されたステンレス鋼板やアルミ板も提供されている。しかしながら、ステンレス鋼板やアルミ板は高価である。そのため、ステンレス鋼板やアルミ板に替わる、安価な材料が求められている。 Recently, there is a tendency for materials that take advantage of the texture of metal to be preferred, especially in Europe and the United States, which are nature-oriented. When utilizing the texture of metal, stainless steel plates and aluminum plates, which have excellent corrosion resistance even when unpainted, are used as materials. Further, for the purpose of further expressing the metallic feeling of the stainless steel plate and the aluminum plate, a stainless steel plate and an aluminum plate having a texture typified by a hairline formed on the surface are also provided. However, stainless steel plates and aluminum plates are expensive. Therefore, there is a demand for inexpensive materials that can replace stainless steel plates and aluminum plates.
 このようなステンレス鋼板やアルミ板の代替材料の一つとして、表面に亜鉛めっき層を備えためっき鋼板が検討されている。本明細書において、亜鉛めっき層は、亜鉛合金めっき層も含む。めっき鋼板は、ステンレス鋼板やアルミ板と同様に、適度な耐食性を備え、かつ、加工性にも優れる。そのため、めっき鋼板は、電気機器や建材等の用途に適する。そこで、めっき鋼板の意匠性を高めることを目的として、種々の提案がされている。 As one of the alternative materials for such stainless steel sheets and aluminum plates, plated steel sheets having a zinc plating layer on the surface are being studied. In the present specification, the zinc plating layer also includes a zinc alloy plating layer. Like stainless steel sheets and aluminum plates, plated steel sheets have appropriate corrosion resistance and are also excellent in workability. Therefore, the plated steel sheet is suitable for applications such as electrical equipment and building materials. Therefore, various proposals have been made for the purpose of enhancing the design of the plated steel sheet.
 たとえば、特開2006-124824号公報(特許文献1)では、亜鉛めっき鋼板にヘアライン仕上げを実施した後、ヘアラインが形成された亜鉛めっき層の表面に透明樹脂皮膜を形成している。これにより、耐食性を維持しつつ、めっき層の表面を視認可能として、意匠性を高めている。 For example, in Japanese Patent Application Laid-Open No. 2006-124824 (Patent Document 1), after hairline finishing is performed on a galvanized steel sheet, a transparent resin film is formed on the surface of the galvanized layer on which the hairline is formed. As a result, the surface of the plating layer can be visually recognized while maintaining corrosion resistance, and the design is enhanced.
 また、特表2013-536901号公報(特許文献2)では、亜鉛めっき鋼板に対して圧延を実施して、亜鉛めっき層の表面にテクスチャを形成した後、表面粗さが一定範囲内となる有機フィルム(樹脂)で亜鉛めっき層の表面をコーティングしている。これにより、耐食性を維持しつつ、めっき層の表面を視認可能として意匠性を高めている。 Further, in Japanese Patent Application Laid-Open No. 2013-536901 (Patent Document 2), after rolling a galvanized steel sheet to form a texture on the surface of the galvanized layer, the surface roughness becomes within a certain range. The surface of the galvanized layer is coated with a film (resin). As a result, the surface of the plating layer is visible and the design is enhanced while maintaining the corrosion resistance.
日本国特開2006-124824号公報Japanese Patent Application Laid-Open No. 2006-124824 日本国特表2013-536901号公報Japan Special Table 2013-536901
 最近ではさらに、金属の質感を活かしつつ、着色した外観を有する材料が求められ始めている。より具体的には、着色した外観を有しつつ、亜鉛めっき層の表面のテクスチャも視認可能なめっき鋼板が望まれている。 Recently, there has been a growing demand for materials that have a colored appearance while taking advantage of the texture of metal. More specifically, there is a demand for a plated steel sheet having a colored appearance and a visible texture on the surface of the galvanized layer.
 本発明の目的は、着色した外観でありながら、亜鉛めっき層の表面のテクスチャを視認可能な、めっき鋼板を提供することである。 An object of the present invention is to provide a plated steel sheet in which the texture of the surface of the galvanized layer can be visually recognized while having a colored appearance.
(1)本発明の一態様に係るめっき鋼板は、表面に母材テクスチャを有する母材鋼板と、前記母材鋼板の前記母材テクスチャを有する前記表面に形成されている亜鉛めっき層と、前記亜鉛めっき層上に形成されている着色樹脂層とを備え、前記亜鉛めっき層は、その表面にめっきテクスチャを有し、前記着色樹脂層は着色剤を含有しており、前記めっきテクスチャは、複数の凸部と、複数の凹部とを含み、前記母材鋼板の圧延方向を第1方向と定義し、前記めっき鋼板の表面において、前記第1方向と直交する方向を第2方向と定義したとき、めっき鋼板は、次の(A)~(C)を満たす。
(A)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凹部における最も低い位置を凹部底点と定義したとき、前記粗さプロファイルの複数の前記凹部底点のうち、最も低い順に10個の前記凹部底点を特定し、特定された前記凹部底点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凹部底三次元平均粗さSasと定義したとき、凹部底三次元平均粗さSasが200nm超2000nm以下である。
(B)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKminと定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCKと定義し、F1を式(1)で定義したとき、前記F1は15.0以下である。
 F1=DKmin×CK (1)
(C)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmaxと定義し、F2を式(2)で定義したとき、前記F2は1.0よりも大きい。
 F2=(DKmax-DKmin)×CK (2)
(2)上記(1)に記載のめっき鋼板は、さらに、次の(D)を満たしてもよい。
(D)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凸部における最も高い位置を凸部頂上点と定義したとき、前記粗さプロファイルの複数の前記凸部頂上点のうち、最も高い順に10個の前記凸部頂上点を特定し、特定された前記凸部頂上点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凸部頂上三次元平均粗さSasと定義したとき、凸部頂上三次元平均粗さSahが5nm超200nm以下である。
(3)上記(2)に記載のめっき鋼板では、複数の前記凸部と複数の前記凹部とは、前記第1方向に延びており、複数の前記凸部と複数の前記凹部とは、前記第2方向に配列されていてもよい。
(4)上記(3)に記載のめっき鋼板では、前記母材テクスチャはヘアラインであり、前記めっきテクスチャはヘアラインであり、前記めっき鋼板はさらに、次の(E)及び(F)を満たしてもよい。
(E)前記第1方向の前記着色樹脂層の表面粗さRaをRa(CL)と定義し、前記第2方向の前記着色樹脂層の表面粗さRaをRa(CC)と定義し、F3を式(3)で定義したとき、前記F3は1.10以上である。
 F3=Ra(CC)/Ra(CL) (3)
(F)前記第2方向の前記亜鉛めっき層の表面粗さをRa(MC)と定義したとき、Ra(MC)が0.30μm以上である。
(5)上記(1)~上記(4)のいずれか1項に記載のめっき鋼板では、前記めっき鋼板を前記着色樹脂層側から見た場合の明度L(SCI)が45以下であってもよい。
(6)上記(1)~上記(5)のいずれか1項に記載のめっき鋼板では、F1は13.5以下であってもよい。
(7)上記(1)~上記(6)のいずれか1項に記載のめっき鋼板では、F2は2.0よりも大きくてもよい。
(8)上記(4)~上記(7)のいずれか1項に記載のめっき鋼板では、前記F3は1.15以上であってもよい。
(9)上記(1)~上記(8)のいずれか1項に記載のめっき鋼板では、前記亜鉛めっき層の地鉄露出率が5%未満であってもよい。
(10)上記(2)に記載のめっき鋼板では、複数の前記凸部は、前記亜鉛めっき層の表面を研磨して形成されており、複数の前記凹部は、研磨されていなくてもよい。
(11)本発明の別の態様に係るめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されている亜鉛めっき層と、前記亜鉛めっき層上に形成されている着色樹脂層とを備え、前記亜鉛めっき層は、その表面に、一方向に延びているテクスチャを有し、前記着色樹脂層は着色剤を含有しており、次の(A’)~(C’)の全てを満たす。
(A’)前記テクスチャの延在方向に垂直な方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル上の位置のうち、高さが低い順に10点特定した位置を凹部底点と定義し、測定された前記粗さプロファイル上の位置のうち、高さが高い順に10点特定した位置を凸部頂点と定義し、各凹部底点及び各凸部頂点を中心とした1μm×1μmの微小領域の三次元平均粗さSa’を測定し、測定された三次元平均粗さSa’の算術平均値を三次元平均粗さSaave’と定義したとき、三次元平均粗さSaave’が5nm超200nm以下である。
(B’)前記テクスチャの延在方向に直交する方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKmin’と定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCK’と定義したとき、式(1’)を満たす。
 DKmin’×CK’≦15.0 (1’)
(C’)前記テクスチャの延在方向に垂直な方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmax’と定義したとき、式(2’)を満たす。
 (DKmax’-DKmin’)×CK’>1.0 (2’)
(12)上記(11)に記載のめっき鋼板では、前記テクスチャは、ヘアラインであり、次の(D’)及び(E’)を満たしてもよい。
(D’)前記テクスチャの延在方向の前記着色樹脂層の表面粗さRaをRa(CL)’と定義し、前記テクスチャの延在方向と垂直な方向の前記着色樹脂層の表面粗さRaをRa(CC)’と定義したとき、式(3’)を満たす。
 Ra(CC)’≧Ra(CL)’×1.10 (3’)
(E’)前記テクスチャの延在方向と直交する方向の亜鉛めっき層の表面粗さをRa(MC)’と定義したとき、Ra(MC)’が0.30μm以上である。
(13)上記(11)又は上記(12)に記載のめっき鋼板では、前記亜鉛めっき層の地鉄露出率が5%未満であってもよい。
(14)上記(1)~(13)のいずれか一項に記載のめっき鋼板では、前記着色樹脂層が積層樹脂層であり、前記積層樹脂層は、前記母材鋼板の表面の法線方向に積層される複数の着色樹脂層を備え、前記複数の着色樹脂層において、前記着色樹脂層中の前記着色剤の含有量(面積%)と前記着色樹脂層の厚さ(μm)との積の総和が15.0面積%・μm以下であり、前記複数の着色樹脂層のうち、前記着色樹脂層中の前記着色剤の含有量(面積%)と前記着色樹脂層の厚さ(μm)との積が最大となる着色樹脂層を最濃色着色樹脂層と定義し、前記着色樹脂層中の前記着色剤の含有量と前記着色樹脂層の厚さとの積が2番目に大きい着色樹脂層を第2濃色着色樹脂層と定義したとき、前記最濃色着色樹脂層の前記着色剤の含有量C1ST(面積%)、前記最濃色着色樹脂層の厚さD1ST(μm)、前記第2濃色着色樹脂層の前記着色剤の含有量C2ND(面積%)、及び、前記第2濃色着色樹脂層の厚さD2ND(μm)は、式(4)を満たしてもよい。
 1.00<(C1ST×D1ST)/(C2ND×D2ND)≦4.00 (4)
(15)上記(14)に記載のめっき鋼板では、前記積層樹脂層の厚さは、10.0μm以下であってもよい。
(16)上記(14)又は上記(15)に記載のめっき鋼板では、前記積層樹脂層はさらに、前記着色剤を含有しない1又は複数の透明樹脂層を含み、前記積層樹脂層は、前記複数の着色樹脂層と、前記1又は複数の透明樹脂層とが積層して形成されていてもよい。
(1) The plated steel sheet according to one aspect of the present invention includes a base material steel sheet having a base material texture on the surface, a zinc plating layer formed on the surface of the base material steel sheet having the base material texture, and the above. The zinc plating layer includes a colored resin layer formed on the zinc plating layer, the zinc plating layer has a plating texture on the surface thereof, the coloring resin layer contains a coloring agent, and the plating textures are plural. When the rolling direction of the base steel sheet is defined as the first direction, and the direction orthogonal to the first direction is defined as the second direction on the surface of the plated steel sheet, including the convex portion and the plurality of concave portions. , The plated steel sheet satisfies the following (A) to (C).
(A) When the roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the lowest position in each of the recesses in the measured roughness profile is defined as the recess bottom point. Among the plurality of recess bottom points of the roughness profile, 10 recess bottom points are identified in ascending order, and a three-dimensional average of a minute region of 1 μm × 1 μm centered on the identified recess bottom points. When the roughness Sa is measured and the arithmetic average value of the measured 10 three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa, the concave bottom three-dimensional average roughness Sa is more than 200 nm and 2000 nm or less. Is.
(B) In the range of 100 μm length in the second direction, the minimum thickness (μm) of the colored resin layer is defined as DKmin, and the content (area%) of the colorant in the colored resin layer is CK. When F1 is defined by the equation (1), the F1 is 15.0 or less.
F1 = DKmin x CK (1)
(C) When the maximum thickness (μm) of the colored resin layer is defined as DKmax and F2 is defined by the formula (2) in the range of 100 μm length in the second direction, the F2 is 1.0. Is also big.
F2 = (DKmax-DKmin) x CK (2)
(2) The plated steel sheet according to (1) above may further satisfy the following (D).
(D) The roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the highest position in each of the convex portions in the measured roughness profile is defined as the convex portion top point. When this is done, 10 of the convex top points of the roughness profile are specified in descending order of the highest, and a minute size of 1 μm × 1 μm centered on the specified convex top points. When the three-dimensional average roughness Sa of the region is measured and the arithmetic average value of the measured ten three-dimensional average roughness Sa is defined as the convex top three-dimensional average roughness Sa, the convex top three-dimensional average roughness The Sah is more than 5 nm and 200 nm or less.
(3) In the plated steel sheet according to (2) above, the plurality of the convex portions and the plurality of the concave portions extend in the first direction, and the plurality of the convex portions and the plurality of the concave portions are the said. It may be arranged in the second direction.
(4) In the plated steel sheet according to (3) above, the base material texture is a hairline, the plated texture is a hairline, and the plated steel sheet further satisfies the following (E) and (F). Good.
(E) The surface roughness Ra of the colored resin layer in the first direction is defined as Ra (CL), the surface roughness Ra of the colored resin layer in the second direction is defined as Ra (CC), and F3. Is defined by the equation (3), the F3 is 1.10 or more.
F3 = Ra (CC) / Ra (CL) (3)
(F) When the surface roughness of the galvanized layer in the second direction is defined as Ra (MC), Ra (MC) is 0.30 μm or more.
(5) In the plated steel sheet according to any one of (1) to (4) above, the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side is 45 or less. May be good.
(6) In the plated steel sheet according to any one of (1) to (5) above, F1 may be 13.5 or less.
(7) In the plated steel sheet according to any one of (1) to (6) above, F2 may be larger than 2.0.
(8) In the plated steel sheet according to any one of (4) to (7) above, the F3 may be 1.15 or more.
(9) In the plated steel sheet according to any one of (1) to (8) above, the base iron exposure rate of the galvanized layer may be less than 5%.
(10) In the plated steel sheet according to (2) above, the plurality of the convex portions are formed by polishing the surface of the galvanized layer, and the plurality of the concave portions may not be polished.
(11) The plated steel sheet according to another aspect of the present invention includes a base steel sheet, a galvanized layer formed on the surface of the base steel sheet, and a colored resin layer formed on the galvanized layer. The galvanized layer has a texture extending in one direction on its surface, and the colored resin layer contains a colorant, and all of the following (A') to (C'). Meet.
(A') A roughness profile in a length range of 1000 μm in a direction perpendicular to the extending direction of the texture is measured, and 10 points are specified in ascending order of height among the measured positions on the roughness profile. The determined position is defined as the concave bottom point, and among the measured positions on the roughness profile, the positions specified by 10 points in descending order of height are defined as the convex apex, and each concave bottom point and each convex apex are defined. When the three-dimensional average roughness Sa'of a minute region of 1 μm × 1 μm centered on the above is measured and the arithmetic average value of the measured three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Saave', it is cubic. The original average roughness Save'is more than 5 nm and 200 nm or less.
(B') The minimum thickness (μm) of the colored resin layer is defined as DKmin'in the range of 100 μm length in the direction orthogonal to the extending direction of the texture, and the colorant in the colored resin layer. When the content (area%) is defined as CK', the formula (1') is satisfied.
DKmin'× CK'≤15.0 (1')
(C') The formula (2') is satisfied when the maximum thickness (μm) of the colored resin layer is defined as DKmax'in the range of 100 μm in the direction perpendicular to the extending direction of the texture.
(DKmax'-DKmin') x CK'> 1.0 (2')
(12) In the plated steel sheet according to (11) above, the texture is a hairline and may satisfy the following (D') and (E').
(D') The surface roughness Ra of the colored resin layer in the extending direction of the texture is defined as Ra (CL)', and the surface roughness Ra of the colored resin layer in the direction perpendicular to the extending direction of the texture is defined. Is defined as Ra (CC)', the equation (3') is satisfied.
Ra (CC)'≧ Ra (CL)' × 1.10 (3')
(E') When the surface roughness of the galvanized layer in the direction orthogonal to the extending direction of the texture is defined as Ra (MC)', Ra (MC)'is 0.30 μm or more.
(13) In the plated steel sheet according to the above (11) or (12), the base iron exposure rate of the galvanized layer may be less than 5%.
(14) In the plated steel plate according to any one of (1) to (13) above, the colored resin layer is a laminated resin layer, and the laminated resin layer is in the normal direction of the surface of the base steel plate. The plurality of colored resin layers are the product of the content (area%) of the colorant in the colored resin layer and the thickness (μm) of the colored resin layer in the plurality of colored resin layers. The total of the above is 15.0 area% · μm or less, and among the plurality of colored resin layers, the content (area%) of the colorant in the colored resin layer and the thickness (μm) of the colored resin layer. The colored resin layer having the maximum product with is defined as the darkest colored resin layer, and the colored resin having the second largest product between the content of the colorant in the colored resin layer and the thickness of the colored resin layer is the second largest. When the layer is defined as the second dark colored resin layer, the content of the colorant in the darkest colored resin layer C 1ST (area%) and the thickness of the darkest colored resin layer D 1ST (μm). The content C 2ND (area%) of the colorant in the second dark colored resin layer and the thickness D 2ND (μm) of the second dark colored resin layer satisfy the formula (4). May be good.
1.00 <(C 1ST x D 1ST ) / (C 2ND x D 2ND ) ≤ 4.00 (4)
(15) In the plated steel sheet according to (14) above, the thickness of the laminated resin layer may be 10.0 μm or less.
(16) In the plated steel sheet according to the above (14) or (15), the laminated resin layer further includes one or a plurality of transparent resin layers containing no colorant, and the laminated resin layer is a plurality of the above. The colored resin layer of No. 1 may be formed by laminating the one or more transparent resin layers.
 本開示によるめっき鋼板は、着色した外観でありながら、亜鉛めっき層の表面のテクスチャを視認可能である。 The plated steel sheet according to the present disclosure has a colored appearance, but the texture of the surface of the galvanized layer can be visually recognized.
図1は、第1実施形態のめっき鋼板において、第1方向に垂直な断面の模式図である。FIG. 1 is a schematic view of a cross section perpendicular to the first direction of the plated steel sheet of the first embodiment. 図2は、第1実施形態のめっき鋼板の断面図である。FIG. 2 is a cross-sectional view of the plated steel sheet of the first embodiment. 図3は、図2に示す着色樹脂層の拡大図である。FIG. 3 is an enlarged view of the colored resin layer shown in FIG. 図4は、表面にテクスチャとしてヘアラインが形成されている亜鉛めっき層の平面図である。FIG. 4 is a plan view of the galvanized layer in which hairlines are formed as a texture on the surface. 図5は、亜鉛めっき層の表面に形成されためっきテクスチャの粗さプロファイルを示す図である。FIG. 5 is a diagram showing a roughness profile of a plating texture formed on the surface of a zinc plating layer. 図6Aは、亜鉛めっき層の表面における微小凹部底領域を説明するための模式図である。FIG. 6A is a schematic view for explaining a micro-recessed bottom region on the surface of the galvanized layer. 図6Bは、亜鉛めっき層の表面における微小凸部頂上領域を説明するための模式図である。FIG. 6B is a schematic view for explaining a micro-convex top region on the surface of the galvanized layer. 図7は亜鉛めっき層の表面近傍部分での第1方向に垂直な断面図である。FIG. 7 is a cross-sectional view perpendicular to the first direction in the portion near the surface of the galvanized layer. 図8は、第1実施形態の亜鉛めっき層の表面近傍部分での第1方向に垂直な断面図である。FIG. 8 is a cross-sectional view perpendicular to the first direction in the portion near the surface of the galvanized layer of the first embodiment. 図9は、第2実施形態のめっき鋼板において、テクスチャの延在方向に垂直な断面の模式図である。FIG. 9 is a schematic view of a cross section perpendicular to the extending direction of the texture in the plated steel sheet of the second embodiment. 図10は、第2実施形態のめっき鋼板の断面図である。FIG. 10 is a cross-sectional view of the plated steel sheet of the second embodiment. 図11は、図10に示す着色樹脂層の拡大図である。FIG. 11 is an enlarged view of the colored resin layer shown in FIG. 図12は、表面にテクスチャとしてヘアラインが形成されている亜鉛めっき層の平面図である。FIG. 12 is a plan view of the galvanized layer in which hairlines are formed as a texture on the surface. 図13は、亜鉛めっき層の表面に形成されたテクスチャの粗さプロファイルを示す図である。FIG. 13 is a diagram showing the roughness profile of the texture formed on the surface of the galvanized layer. 図14Aは、亜鉛めっき層の表面における微小凹部領域を説明するための模式図である。FIG. 14A is a schematic view for explaining a micro-recessed region on the surface of the galvanized layer. 図14Bは、亜鉛めっき層の表面における微小凸部領域を説明するための模式図である。FIG. 14B is a schematic view for explaining a micro-convex region on the surface of the galvanized layer. 図15Aは、切断面CSの模式図である。FIG. 15A is a schematic view of the cut surface CS. 図15Bは、切断面CSの模式図である。FIG. 15B is a schematic view of the cut surface CS. 図16は、本実施形態の意匠性亜鉛めっき鋼板の亜鉛めっき層の表面がテクスチャとしてヘアラインを有している場合における、色むらの評価方法を説明するための模式図である。FIG. 16 is a schematic view for explaining a method for evaluating color unevenness when the surface of the galvanized layer of the designable galvanized steel sheet of the present embodiment has a hairline as a texture. 図17は、本実施形態の意匠性亜鉛めっき鋼板の亜鉛めっき層の表面がテクスチャとしてヘアラインを有している場合における、色ばらつきの評価方法を説明するための模式図である。FIG. 17 is a schematic view for explaining a method for evaluating color variation when the surface of the galvanized layer of the designable galvanized steel sheet of the present embodiment has a hairline as a texture.
(第1の実施形態)
 本発明者らは、着色した外観でありながら、亜鉛めっき層の表面のテクスチャ(以下、めっきテクスチャという)を視認可能なめっき鋼板の検討を行った。特許文献1及び2に記載のとおり、亜鉛めっき層上に、透明樹脂層が形成された亜鉛めっき鋼板は既に提案されている。そこで、本発明者らは始めに、亜鉛めっき層上に形成される樹脂層に顔料及び/又は染料を含む着色剤を含有させて着色した亜鉛めっき鋼板の製造を試みた。
(First Embodiment)
The present inventors have studied a plated steel sheet in which the surface texture of the galvanized layer (hereinafter referred to as “plated texture”) can be visually recognized while having a colored appearance. As described in Patent Documents 1 and 2, a galvanized steel sheet in which a transparent resin layer is formed on a galvanized layer has already been proposed. Therefore, the present inventors first attempted to produce a galvanized steel sheet in which the resin layer formed on the galvanized layer was colored by containing a colorant containing a pigment and / or a dye.
 その結果、樹脂層に着色剤を含有させた場合、条件によっては、亜鉛めっき層の表面に形成されためっきテクスチャが視認できない場合があることが判明した。そこで、本発明者らは、樹脂に着色剤を含有させた場合に、めっきテクスチャの視認に影響を与える因子について、調査及び検討を行った。その結果、本発明者らは、次の知見を得た。以降の説明において、母材鋼板の圧延方向を、第1方向RDと定義する。また、めっき鋼板の表面において、第1方向と直交する方向(めっき鋼板の幅方向)を、第2方向WDと定義する。第1方向RD及び第2方向WDと直交する方向(めっき鋼板の厚さ方向)を第3方向TDと定義する。 As a result, it was found that when the resin layer contains a colorant, the plating texture formed on the surface of the zinc plating layer may not be visible depending on the conditions. Therefore, the present inventors have investigated and investigated factors that affect the visibility of the plating texture when the resin contains a colorant. As a result, the present inventors obtained the following findings. In the following description, the rolling direction of the base steel sheet is defined as the first direction RD. Further, on the surface of the plated steel sheet, a direction orthogonal to the first direction (width direction of the plated steel sheet) is defined as a second direction WD. The direction orthogonal to the first direction RD and the second direction WD (the thickness direction of the plated steel sheet) is defined as the third direction TD.
 表面にめっきテクスチャが形成された亜鉛めっき層上に、着色剤を含む着色樹脂層を形成する場合、着色樹脂層中の着色剤の含有量と、着色樹脂層の厚さとは、めっきテクスチャの視認に影響を与える。具体的には、着色樹脂層中の着色剤の含有量が多すぎれば、めっきテクスチャが視認できなくなる。さらに、着色樹脂層が厚すぎれば、めっきテクスチャが視認できなくなる。 When a colored resin layer containing a colorant is formed on a zinc plating layer having a plating texture formed on the surface, the content of the colorant in the colored resin layer and the thickness of the colored resin layer are visually recognized as the plating texture. Affects. Specifically, if the content of the colorant in the colored resin layer is too large, the plating texture cannot be visually recognized. Further, if the colored resin layer is too thick, the plating texture cannot be visually recognized.
 さらに、第1方向RDに垂直な断面において、めっきテクスチャ上に形成されている樹脂の厚さは、めっきテクスチャの凹凸に応じて変動する。図1は、第1実施形態のめっき鋼板において、第1方向RDに垂直な断面の模式図である。図1を参照して、めっき鋼板1は、母材鋼板100と、亜鉛めっき層10と、着色樹脂層11とを含む。母材鋼板100は、その表面に、テクスチャ100Sを有する。以下、テクスチャ100Sを母材テクスチャ100Sという。亜鉛めっき層10は、その表面に、めっきテクスチャ10Sを有する。めっきテクスチャ10Sは、複数の凸部10CO(Convex)と、複数の凹部10RE(Recess)とを含む。凸部10CO及び凹部10REは、交互に配列されている。図1では、複数の凸部10COと複数の凹部10REとが、第2方向WDに交互に並んでいる。 Further, in the cross section perpendicular to the first direction RD, the thickness of the resin formed on the plating texture varies depending on the unevenness of the plating texture. FIG. 1 is a schematic view of a cross section of the plated steel sheet of the first embodiment perpendicular to the first direction RD. With reference to FIG. 1, the plated steel sheet 1 includes a base steel sheet 100, a galvanized layer 10, and a colored resin layer 11. The base steel plate 100 has a texture 100S on its surface. Hereinafter, the texture 100S is referred to as a base material texture 100S. The zinc plating layer 10 has a plating texture 10S on its surface. The plating texture 10S includes a plurality of convex portions 10CO (Convex) and a plurality of concave portions 10RE (Recess). The convex portion 10CO and the concave portion 10RE are arranged alternately. In FIG. 1, a plurality of convex portions 10CO and a plurality of concave portions 10RE are alternately arranged in the second direction WD.
 着色樹脂層11は、亜鉛めっき層10の表面上に形成されている。そのため、着色樹脂層11の表面11Sには、めっきテクスチャ10Sの凹凸模様(凹部10RE及び凸部10COの形状)がある程度反映されるものの、めっきテクスチャ10Sよりは平坦化している。具体的には、着色樹脂層11の表面11Sのうち、めっきテクスチャ10Sの凸部10COに対応する部分には、凸部11COが形成される。凸部11COの高さは、凸部10COの高さよりも低い。つまり、着色樹脂層11の表面11Sの方が、めっきテクスチャ10Sの表面よりも、より平坦化している。 The colored resin layer 11 is formed on the surface of the galvanized layer 10. Therefore, although the uneven pattern (shape of the concave portion 10RE and the convex portion 10CO) of the plating texture 10S is reflected to some extent on the surface 11S of the colored resin layer 11, it is flatter than the plating texture 10S. Specifically, the convex portion 11CO is formed on the portion of the surface 11S of the colored resin layer 11 corresponding to the convex portion 10CO of the plating texture 10S. The height of the convex portion 11CO is lower than the height of the convex portion 10CO. That is, the surface 11S of the colored resin layer 11 is flatter than the surface of the plating texture 10S.
 ここで、第2方向WDの100μm長さの範囲において、着色樹脂層11の最大厚さ(μm)をDKmaxと定義する。また、着色樹脂層11の最小厚さ(μm)をDKminと定義する。着色樹脂層11により着色した場合であっても、めっきテクスチャ10Sを視認可能にするためには、上述のとおり、着色樹脂層11中の着色剤含有量CK(面積%)と、着色樹脂層11の厚さとをある程度に制限する。そして、その制限した条件下においては、着色樹脂層11の最大厚さDKmaxと最小厚さDKminとの差が、めっきテクスチャを視認可能な明度差に反映される。具体的には、着色樹脂層11の最大厚さDKmaxと最小厚さDKminの差をある程度大きくすることにより、めっきテクスチャ10Sの凹部10REと凸部10COとで明度に差が生じる。その結果、着色樹脂層11を形成した場合であっても、めっきテクスチャ10Sを視認できる。 Here, the maximum thickness (μm) of the colored resin layer 11 is defined as DKmax in the range of 100 μm length in the second direction WD. Further, the minimum thickness (μm) of the colored resin layer 11 is defined as DKmin. In order to make the plating texture 10S visible even when colored by the colored resin layer 11, the colorant content CK (area%) in the colored resin layer 11 and the colored resin layer 11 are as described above. Limit the thickness of the to some extent. Then, under the restricted conditions, the difference between the maximum thickness DKmax and the minimum thickness DKmin of the colored resin layer 11 is reflected in the visible brightness difference of the plating texture. Specifically, by increasing the difference between the maximum thickness DKmax and the minimum thickness DKmin of the colored resin layer 11 to some extent, a difference in brightness is generated between the concave portion 10RE and the convex portion 10CO of the plating texture 10S. As a result, the plating texture 10S can be visually recognized even when the colored resin layer 11 is formed.
 また、着色樹脂層11の亜鉛めっき層10に対する密着性は高い方が好ましい。そこで、本発明者らは、着色樹脂層11の亜鉛めっき層10に対する密着性を向上させる方法について、検討を行った。その結果、めっきテクスチャ10Sの凸部10CO及び凹部10REの、特に凹部10REでの微小領域の表面粗さをある程度粗くする(具体的には、後述する凹部底三次元平均粗さSasを200nm超2000nm以下にする)ことにより、着色樹脂層11の亜鉛めっき層10に対する密着性を向上させることができることを見出した。 Further, it is preferable that the colored resin layer 11 has high adhesion to the zinc plating layer 10. Therefore, the present inventors have studied a method for improving the adhesion of the colored resin layer 11 to the galvanized layer 10. As a result, the surface roughness of the convex portion 10CO and the concave portion 10RE of the plating texture 10S, particularly the minute region in the concave portion 10RE, is made rough to some extent (specifically, the concave bottom three-dimensional average roughness Sas described later is more than 200 nm and 2000 nm. It has been found that the adhesion of the colored resin layer 11 to the galvanized layer 10 can be improved by (the following).
 以上の知見に基づいて、本発明者らは、(A)めっきテクスチャ10Sの凸部10CO及び凹部10REのうち、凹部10REでの微小領域の表面粗さをある程度粗くし、(B)着色樹脂層11の厚さと着色剤含有量とを調整し、(C)第1方向と直交する断面での着色樹脂層11の最大厚さDKmaxと最小厚さDKminとの差をある程度の大きさに調整する、ことにより、着色した外観でありながら、亜鉛めっき層の表面のめっきテクスチャを視認可能であり、さらに、着色樹脂層の密着性に優れる、めっき鋼板とすることができることを見出した。 Based on the above findings, the present inventors have made the surface roughness of the minute region of the concave portion 10RE of the convex portion 10CO and the concave portion 10RE of the plating texture 10S to some extent, and (B) the colored resin layer. The thickness of 11 and the colorant content are adjusted, and (C) the difference between the maximum thickness DKmax and the minimum thickness DKmin of the colored resin layer 11 in the cross section orthogonal to the first direction is adjusted to a certain size. As a result, it has been found that a plated steel sheet can be obtained in which the plating texture on the surface of the galvanized layer can be visually recognized while having a colored appearance, and the adhesion of the colored resin layer is excellent.
 以上の知見に基づいて完成した第1実施形態のめっき鋼板は、次の構成を有する。 The plated steel sheet of the first embodiment completed based on the above findings has the following configuration.
 [1]のめっき鋼板は、
 表面に母材テクスチャを有する母材鋼板と、
 前記母材鋼板の前記母材テクスチャを有する前記表面に形成されている亜鉛めっき層と、
 前記亜鉛めっき層上に形成されている着色樹脂層とを備え、
 前記亜鉛めっき層は、その表面にめっきテクスチャを有し、
 前記着色樹脂層は着色剤を含有しており、
 前記めっきテクスチャは、
 複数の凸部と、
 複数の凹部とを含み、
 前記母材鋼板の圧延方向を第1方向と定義し、前記めっき鋼板の表面において、前記第1方向と直交する方向を第2方向と定義したとき、めっき鋼板は、次の(A)~(C)を満たす。
(A)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凹部における最も低い位置を凹部底点と定義したとき、前記粗さプロファイルの複数の前記凹部底点のうち、最も低い順に10個の前記凹部底点を特定し、特定された前記凹部底点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凹部底三次元平均粗さSasと定義したとき、凹部底三次元平均粗さSasが200nm超2000nm以下である。
(B)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKminと定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCKと定義し、F1を式(1)で定義したとき、前記F1は15.0以下である。
 F1=DKmin×CK (1)
(C)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmaxと定義し、F2を式(2)で定義したとき、前記F2は1.0よりも大きい。
 F2=(DKmax-DKmin)×CK (2)
The plated steel sheet of [1] is
A base steel plate with a base material texture on the surface and
A zinc-plated layer formed on the surface of the base steel sheet having the base material texture,
A colored resin layer formed on the galvanized layer is provided.
The galvanized layer has a plating texture on its surface.
The colored resin layer contains a colorant and
The plating texture is
With multiple protrusions,
Including multiple recesses
When the rolling direction of the base steel sheet is defined as the first direction and the direction orthogonal to the first direction is defined as the second direction on the surface of the plated steel sheet, the plated steel sheet has the following (A) to ( C) is satisfied.
(A) When the roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the lowest position in each of the recesses in the measured roughness profile is defined as the recess bottom point. Among the plurality of recess bottom points of the roughness profile, 10 recess bottom points are specified in ascending order, and a three-dimensional average of a minute region of 1 μm × 1 μm centered on the identified recess bottom points. When the roughness Sa is measured and the arithmetic average value of the measured 10 three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa, the concave bottom three-dimensional average roughness Sa is more than 200 nm and 2000 nm or less. Is.
(B) In the range of 100 μm length in the second direction, the minimum thickness (μm) of the colored resin layer is defined as DKmin, and the content (area%) of the colorant in the colored resin layer is CK. When F1 is defined by the equation (1), the F1 is 15.0 or less.
F1 = DKmin x CK (1)
(C) When the maximum thickness (μm) of the colored resin layer is defined as DKmax and F2 is defined by the formula (2) in the range of 100 μm length in the second direction, the F2 is 1.0. Is also big.
F2 = (DKmax-DKmin) x CK (2)
 [2]のめっき鋼板は、
 [1]に記載のめっき鋼板であってさらに、次の(D)を満たしてもよい。
(D)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凸部における最も高い位置を凸部頂上点と定義したとき、前記粗さプロファイルの複数の前記凸部頂上点のうち、最も高い順に10個の前記凸部頂上点を特定し、特定された前記凸部頂上点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凸部頂上三次元平均粗さSasと定義したとき、凸部頂上三次元平均粗さSahが5nm超200nm以下である。
The plated steel sheet of [2] is
The plated steel sheet according to [1] may further satisfy the following (D).
(D) The roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the highest position in each of the convex portions in the measured roughness profile is defined as the convex portion top point. When this is done, 10 of the convex top points of the roughness profile are specified in descending order of the highest, and a minute size of 1 μm × 1 μm centered on the specified convex top points. When the three-dimensional average roughness Sa of the region is measured and the arithmetic average value of the measured ten three-dimensional average roughness Sa is defined as the convex top three-dimensional average roughness Sa, the convex top three-dimensional average roughness The Sah is more than 5 nm and 200 nm or less.
 めっきテクスチャの粗さは、めっきテクスチャの視認に影響を与える。亜鉛めっき層の表面にめっきテクスチャが形成されている場合、亜鉛めっき層の表面には、めっきテクスチャの凹凸だけでなく、めっきテクスチャの表面に、亜鉛めっきの結晶に起因した微小な凹凸(粗さ)も存在する。亜鉛めっきの結晶に起因した微小凹凸が小さければ、亜鉛めっきの結晶に起因した微小凹凸による光の乱反射が抑制される。この場合、めっきテクスチャの光沢が高まり、めっきテクスチャの白化が抑制される。[2]のめっき鋼板では、めっきテクスチャのうち凹部の微視的領域での粗さを200nm以上と粗く維持し、さらに、凸部の微視的領域での粗さを200nm以下に抑える。そのため、めっきテクスチャの凹部により、着色樹脂層の密着性を維持しつつ、凸部により、めっきテクスチャの視認性をより高めることができる。 The roughness of the plating texture affects the visibility of the plating texture. When a plating texture is formed on the surface of the galvanized layer, not only the unevenness of the plating texture on the surface of the galvanized layer, but also the minute unevenness (roughness) due to the galvanized crystals on the surface of the plating texture. ) Also exists. If the minute irregularities caused by the galvanized crystals are small, the diffused reflection of light due to the minute irregularities caused by the galvanized crystals is suppressed. In this case, the gloss of the plating texture is increased and the whitening of the plating texture is suppressed. In the plated steel sheet of [2], the roughness of the concave portion in the microscopic region of the plating texture is maintained as coarse as 200 nm or more, and the roughness of the convex portion in the microscopic region is suppressed to 200 nm or less. Therefore, the concave portion of the plating texture can maintain the adhesion of the colored resin layer, and the convex portion can further enhance the visibility of the plating texture.
 [3]のめっき鋼板は、
 [2]に記載のめっき鋼板であって、
 複数の前記凸部と複数の前記凹部とは、前記第1方向に延びていてもよく、
 複数の前記凸部と複数の前記凹部とは、前記第2方向に配列されていてもよい。
The plated steel sheet of [3] is
The plated steel sheet according to [2].
The plurality of protrusions and the plurality of recesses may extend in the first direction.
The plurality of the convex portions and the plurality of the concave portions may be arranged in the second direction.
 [4]のめっき鋼板は、
 [3]に記載のめっき鋼板であって、
 前記母材テクスチャはヘアラインであってもよく、
 前記めっきテクスチャはヘアラインであってもよく、
 前記めっき鋼板はさらに、
 次の(E)及び(F)を満たしてもよい。
(E)前記第1方向の前記着色樹脂層の表面粗さRaをRa(CL)と定義し、前記第2方向の前記着色樹脂層の表面粗さRaをRa(CC)と定義し、F3を式(3)で定義したとき、前記F3は1.10以上である。
 F3=Ra(CC)/Ra(CL) (3)
(F)前記第2方向の前記亜鉛めっき層の表面粗さをRa(MC)と定義したとき、Ra(MC)が0.30μm以上である。
The plated steel sheet of [4] is
The plated steel sheet according to [3].
The base material texture may be a hairline
The plating texture may be a hairline
The plated steel sheet is further
The following (E) and (F) may be satisfied.
(E) The surface roughness Ra of the colored resin layer in the first direction is defined as Ra (CL), the surface roughness Ra of the colored resin layer in the second direction is defined as Ra (CC), and F3. Is defined by the equation (3), the F3 is 1.10 or more.
F3 = Ra (CC) / Ra (CL) (3)
(F) When the surface roughness of the galvanized layer in the second direction is defined as Ra (MC), Ra (MC) is 0.30 μm or more.
 [5]のめっき鋼板は、
 [1]~[4]のいずれか1項に記載のめっき鋼板であって、
 前記めっき鋼板を前記着色樹脂層側から見た場合の明度L(SCI)が45以下であってもよい。
The plated steel sheet of [5] is
The plated steel sheet according to any one of [1] to [4].
The brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side may be 45 or less.
 [6]のめっき鋼板は、
 [1]~[5]のいずれか1項に記載のめっき鋼板であって、
 F1は13.5以下であってもよい。
The plated steel sheet of [6] is
The plated steel sheet according to any one of [1] to [5].
F1 may be 13.5 or less.
 [7]のめっき鋼板は、
 [1]~[6]のいずれか1項に記載のめっき鋼板であって、
 F2は2.0よりも大きくてもよい。
The plated steel sheet of [7] is
The plated steel sheet according to any one of [1] to [6].
F2 may be greater than 2.0.
 [8]のめっき鋼板は、
 [4]~[7]のいずれか1項に記載のめっき鋼板であって、
 前記F3は1.15以上であってもよい。
The plated steel sheet of [8] is
The plated steel sheet according to any one of [4] to [7].
The F3 may be 1.15 or more.
 [9]のめっき鋼板は、
 [1]~[8]のいずれか1項に記載のめっき鋼板であって、
 前記亜鉛めっき層の地鉄露出率が5%未満であってもよい。
The plated steel sheet of [9] is
The plated steel sheet according to any one of [1] to [8].
The base iron exposure rate of the galvanized layer may be less than 5%.
 [10]のめっき鋼板は、
 [2]に記載のめっき鋼板であって、
 複数の前記凸部は、前記亜鉛めっき層の表面を研磨して形成されていてもよく、
 複数の前記凹部は、研磨されていなくてもよい。
The plated steel sheet of [10] is
The plated steel sheet according to [2].
The plurality of convex portions may be formed by polishing the surface of the galvanized layer.
The plurality of recesses may not be polished.
 以下、第1実施形態のめっき鋼板について詳述する。 Hereinafter, the plated steel sheet of the first embodiment will be described in detail.
 [めっき鋼板1について]
 図2は、第1実施形態のめっき鋼板1の断面図である。図2を参照して、第1実施形態のめっき鋼板1は、母材鋼板100と、亜鉛めっき層10と、着色樹脂層11とを備える。亜鉛めっき層10は、母材鋼板100の表面の母材テクスチャ100S上に形成されている。着色樹脂層11は、亜鉛めっき層10の表面(テクスチャ)10S上に形成されている。亜鉛めっき層10は、母材鋼板100と、着色樹脂層11との間に配置されている。以下、母材鋼板100、亜鉛めっき層10、及び、着色樹脂層11について、説明する。
[About galvanized steel sheet 1]
FIG. 2 is a cross-sectional view of the plated steel sheet 1 of the first embodiment. With reference to FIG. 2, the plated steel sheet 1 of the first embodiment includes a base steel sheet 100, a galvanized layer 10, and a colored resin layer 11. The galvanized layer 10 is formed on the base material texture 100S on the surface of the base material steel plate 100. The colored resin layer 11 is formed on the surface (texture) 10S of the galvanized layer 10. The galvanized layer 10 is arranged between the base steel plate 100 and the colored resin layer 11. Hereinafter, the base steel plate 100, the galvanized layer 10, and the colored resin layer 11 will be described.
 [母材鋼板100について]
 母材鋼板100は、製造するめっき鋼板に求められる各機械的性質(たとえば、引張強度、加工性等)に応じて、めっき鋼板に適用される公知の鋼板を使用すればよい。たとえば、母材鋼板100として、電気機器用途の鋼板を使用してもよいし、自動車外板用途の鋼板を使用してもよい。母材鋼板100は熱延鋼板であってもよいし、冷延鋼板であってもよい。
[About base steel sheet 100]
As the base steel sheet 100, a known steel sheet applied to the plated steel sheet may be used according to each mechanical property (for example, tensile strength, workability, etc.) required for the plated steel sheet to be manufactured. For example, as the base steel plate 100, a steel plate for electrical equipment may be used, or a steel plate for automobile outer panels may be used. The base steel plate 100 may be a hot-rolled steel plate or a cold-rolled steel plate.
 母材鋼板100の表面には、テクスチャ100S(母材テクスチャ100S)が形成されている。即ち、母材鋼板100は、その表面にテクスチャ100S(母材テクスチャ100S)を有する。後述のめっきテクスチャ10Sは、母材テクスチャ100Sに沿って形成されてもよい。この場合、めっきテクスチャ10Sの模様は、母材テクスチャ100Sの模様と相似である。たとえば、母材テクスチャ100Sがダルである場合、めっきテクスチャ10Sもダルである。母材テクスチャ100Sがヘアラインである場合、めっきテクスチャ10Sもヘアラインである。一方、母材テクスチャ100Sとめっきテクスチャ10Sとが異なる模様であってもよい。たとえば、母材テクスチャ100Sがダルであり、めっきテクスチャ10Sがヘアラインであってもよい。 A texture 100S (base material texture 100S) is formed on the surface of the base material steel plate 100. That is, the base material steel plate 100 has a texture 100S (base material texture 100S) on its surface. The plating texture 10S described later may be formed along the base material texture 100S. In this case, the pattern of the plating texture 10S is similar to the pattern of the base material texture 100S. For example, when the base material texture 100S is dull, the plating texture 10S is also dull. When the base material texture 100S is a hairline, the plating texture 10S is also a hairline. On the other hand, the base material texture 100S and the plating texture 10S may have different patterns. For example, the base material texture 100S may be dull and the plating texture 10S may be a hairline.
 [亜鉛めっき層10について]
 亜鉛めっき層10は、母材鋼板100の表面上に形成されている。第1実施形態において、亜鉛めっき層10は、母材鋼板100と着色樹脂層11との間に配置されている。亜鉛めっき層10は、周知の亜鉛めっき処理法により形成されている。具体的には、亜鉛めっき層10はたとえば、電気めっき法により形成されている。本明細書において、亜鉛めっき層10は、亜鉛合金めっき層も含む。
[About the galvanized layer 10]
The galvanized layer 10 is formed on the surface of the base steel plate 100. In the first embodiment, the galvanized layer 10 is arranged between the base steel plate 100 and the colored resin layer 11. The galvanized layer 10 is formed by a well-known galvanized method. Specifically, the zinc plating layer 10 is formed by, for example, an electroplating method. In the present specification, the zinc plating layer 10 also includes a zinc alloy plating layer.
 亜鉛めっき層10は周知の化学組成を有すれば足りる。例えば、亜鉛めっき層10の化学組成中のZn含有量は、質量%で65%以上であってもよい。Zn含有量が質量%で65%以上であれば、犠牲防食機能が顕著に発揮され、めっき鋼板1の耐食性が顕著に高まる。亜鉛めっき層10の化学組成中のZn含有量の好ましい下限は70%であり、さらに好ましくは80%である。 It is sufficient for the galvanized layer 10 to have a well-known chemical composition. For example, the Zn content in the chemical composition of the galvanized layer 10 may be 65% or more in mass%. When the Zn content is 65% or more in mass%, the sacrificial anticorrosion function is remarkably exhibited, and the corrosion resistance of the plated steel sheet 1 is remarkably enhanced. The preferable lower limit of the Zn content in the chemical composition of the galvanized layer 10 is 70%, more preferably 80%.
 亜鉛めっき層10の化学組成は、Al、Co、Cr、Cu、Fe、Ni、P、Si、Sn、Mg、Mn、Mo、V、W、Zrからなる元素群から選択される1元素又は2元素以上と、Znとを含有するのが好ましい。また、亜鉛めっき層10が電気亜鉛めっき層である場合の化学組成は、Fe、Ni、及び、Coからなる元素群から選択される少なくとも1元素以上を、合計で5~20質量%含有することがさらに好ましい。また、亜鉛めっき層10が溶融亜鉛めっき層である場合の化学組成は、Mg、Al、Siからなる群から選択される少なくとも1元素以上を、合計で5~20質量%含有することがさらに好ましい。これらの場合、亜鉛めっき層10はさらに、優れた耐食性を示す。 The chemical composition of the galvanized layer 10 is one element or two selected from the element group consisting of Al, Co, Cr, Cu, Fe, Ni, P, Si, Sn, Mg, Mn, Mo, V, W and Zr. It is preferable to contain more than an element and Zn. When the zinc plating layer 10 is an electrogalvanized layer, the chemical composition contains at least one element selected from the element group consisting of Fe, Ni, and Co in a total amount of 5 to 20% by mass. Is even more preferable. When the galvanized layer 10 is a hot-dip galvanized layer, the chemical composition preferably contains at least one element selected from the group consisting of Mg, Al, and Si in a total amount of 5 to 20% by mass. .. In these cases, the galvanized layer 10 further exhibits excellent corrosion resistance.
 亜鉛めっき層10は、不純物を含有していてもよい。ここで、不純物とは、原料中に混入している、又は、製造工程において混入するものである。不純物はたとえば、Ti、B、S、N、C、Nb、Pb、Cd、Ca、Pb、Y、La、Ce、Sr、Sb、O、F、Cl、Zr、Ag、W、H等である。亜鉛めっき層10の化学組成において、不純物の総含有量が1%以下であるのが好ましい。 The galvanized layer 10 may contain impurities. Here, the impurities are those that are mixed in the raw material or are mixed in the manufacturing process. Impurities are, for example, Ti, B, S, N, C, Nb, Pb, Cd, Ca, Pb, Y, La, Ce, Sr, Sb, O, F, Cl, Zr, Ag, W, H and the like. .. In the chemical composition of the galvanized layer 10, the total content of impurities is preferably 1% or less.
 亜鉛めっき層10の化学組成は、たとえば、次の方法により測定可能である。亜鉛めっき層10を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤でめっき鋼板1の着色樹脂層11を除去する。その後、インヒビター入りの塩酸を用いて、亜鉛めっき層10を溶解する。溶解液に対して、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析装置を用いたICP分析を実施して、Zn含有量を求める。求めたZn含有量が65%以上であれば、測定対象のめっき層が亜鉛めっき層10であると判断する。 The chemical composition of the galvanized layer 10 can be measured by, for example, the following method. The colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). Then, the galvanized layer 10 is dissolved with hydrochloric acid containing an inhibitor. The lysate is subjected to ICP analysis using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer to determine the Zn content. If the obtained Zn content is 65% or more, it is determined that the plating layer to be measured is the zinc plating layer 10.
 [亜鉛めっき層10の付着量について]
 亜鉛めっき層10の付着量は特に制限されず、周知の付着量であれば足りる。亜鉛めっき層10の好ましい付着量は、5.0~120.0g/mである。亜鉛めっき層10の付着量が5.0g/m以上であれば、亜鉛めっき層10に後述のめっきテクスチャを付与した場合、地鉄(母材鋼板100)が露出するのを抑制できる。亜鉛めっき層10の付着量のさらに好ましい下限は7.0g/mであり、さらに好ましくは10.0g/mである。亜鉛めっき層10の付着量の上限については特に制限されない。経済性の観点から、電気めっき法による亜鉛めっき層10であれば、好ましい付着量の上限は40.0gmであり、さらに好ましい上限は35.0g/mであり、さらに好ましくは30.0g/mである。
[Adhesion amount of galvanized layer 10]
The amount of adhesion of the zinc plating layer 10 is not particularly limited, and a well-known amount of adhesion is sufficient. The preferable adhesion amount of the galvanized layer 10 is 5.0 to 120.0 g / m 2 . When the adhesion amount of the galvanized layer 10 is 5.0 g / m 2 or more, it is possible to suppress the exposure of the base iron (base steel sheet 100) when the galvanized layer 10 is given the plating texture described later. A more preferable lower limit of the adhesion amount of the galvanized layer 10 is 7.0 g / m 2 , and even more preferably 10.0 g / m 2 . The upper limit of the amount of adhesion of the galvanized layer 10 is not particularly limited. From the viewpoint of economy, in the case of the galvanized layer 10 by the electroplating method, the upper limit of the preferable adhesion amount is 40.0 gm 2 , the more preferable upper limit is 35.0 g / m 2 , and more preferably 30.0 g. / M 2 .
 [着色樹脂層11について]
 着色樹脂層11は、亜鉛めっき層10の表面(めっきテクスチャ)10S上に形成されている。図3は、図2に示す着色樹脂層11の拡大図である。図3を参照して、着色樹脂層11は、樹脂31と、着色剤32とを備える。着色剤32は、樹脂31中に含有されている。以下、樹脂31及び着色剤32について説明する。
[About the colored resin layer 11]
The colored resin layer 11 is formed on the surface (plating texture) 10S of the zinc plating layer 10. FIG. 3 is an enlarged view of the colored resin layer 11 shown in FIG. With reference to FIG. 3, the colored resin layer 11 includes a resin 31 and a colorant 32. The colorant 32 is contained in the resin 31. Hereinafter, the resin 31 and the colorant 32 will be described.
 [樹脂31について]
 樹脂31は、透光性を有する樹脂である。第1実施形態において、「透光性を有する樹脂」とは、晴天午前の太陽光相当(照度約65000ルクス)の環境に着色剤32及び樹脂31を含有する着色樹脂層11を備えるめっき鋼板1を置いたとき、亜鉛めっき層10のめっきテクスチャ10Sを視認できることを意味する。樹脂31は、着色剤32を固着するバインダーとして機能する。
[About resin 31]
The resin 31 is a translucent resin. In the first embodiment, the “translucent resin” is a plated steel sheet 1 provided with a colored resin layer 11 containing a colorant 32 and a resin 31 in an environment equivalent to sunlight (illuminance of about 65,000 lux) in fine morning. Means that the plating texture 10S of the galvanized layer 10 can be visually recognized when the above is placed. The resin 31 functions as a binder for fixing the colorant 32.
 樹脂31は、上述の定義の透光性を有する樹脂であれば特に限定されず、周知の天然樹脂、又は、周知の合成樹脂を用いることができる。樹脂31はたとえば、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリエーテルサルホン系樹脂、メラミンアルキッド系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリ酢酸ビニル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂からなる群から選択される1種又は2種以上である。 The resin 31 is not particularly limited as long as it has the above-defined translucency, and a well-known natural resin or a well-known synthetic resin can be used. The resin 31 is, for example, an epoxy resin, a urethane resin, a polyester resin, a phenol resin, a polyether sulfone resin, a melamine alkyd resin, an acrylic resin, a polyamide resin, a polyimide resin, a silicone resin, or a poly. One or more selected from the group consisting of vinyl acetate-based resin, polyolefin-based resin, polystyrene-based resin, vinyl chloride-based resin, and vinyl acetate-based resin.
 [着色剤32について]
 着色剤32は、上述の樹脂31中に含有されることにより、着色樹脂層11を着色する。着色剤32は周知のものである。着色剤32は、有彩色を有する。有彩色とは、色相、明度及び彩度の属性を有する色を意味する。着色剤32はたとえば、無機顔料、有機顔料、及び、染料からなる群から選択される1種以上からなる。紫外線への耐久性の観点から、着色剤32は顔料系(無機顔料及び/又は有機顔料)であることがより好ましい。
[About Colorant 32]
The colorant 32 is contained in the above-mentioned resin 31 to color the colored resin layer 11. The colorant 32 is well known. The colorant 32 has a chromatic color. A chromatic color means a color having the attributes of hue, lightness, and saturation. The colorant 32 comprises, for example, one or more selected from the group consisting of inorganic pigments, organic pigments, and dyes. From the viewpoint of durability against ultraviolet rays, the colorant 32 is more preferably pigment-based (inorganic pigment and / or organic pigment).
 着色剤32が無機顔料である場合、着色剤32はたとえば、中和沈殿顔料(硫酸塩、炭酸塩等)、及び/又は、焼成顔料(金属硫化物、金属酸化物、多価金属複合酸化物等)である。着色剤32が有機顔料である場合、着色剤32はたとえば、塩素性顔料、アゾ顔料(溶製アゾレーキ顔料、不溶性アゾ顔料等)、酸縮合顔料、多環式顔料(フタロシアニン系顔料、インジゴ型顔料、キナクリドン型顔料、アントラキノン型顔料等)、及び、金属錯体顔料(アゾキレート顔料、遷移金属錯体顔料等)からなる群から選択される1種以上である。着色剤32が染料である場合、着色剤32はたとえば、アゾ染料、インジゴ染料、アントラキノン染料、硫化染料、及び、カーボニウム染料からなる群から選択される1種以上である。 When the colorant 32 is an inorganic pigment, the colorant 32 is, for example, a neutralized precipitate pigment (sulfate, carbonate, etc.) and / or a fired pigment (metal sulfide, metal oxide, polyvalent metal composite oxide). Etc.). When the colorant 32 is an organic pigment, the colorant 32 is, for example, a chlorine pigment, an azo pigment (dissolved azo lake pigment, insoluble azo pigment, etc.), an acid condensing pigment, a polycyclic pigment (phthalocyanine pigment, an indigo type pigment). , Kinacridone type pigment, anthraquinone type pigment, etc.), and one or more selected from the group consisting of metal complex pigments (azochelate pigment, transition metal complex pigment, etc.). When the colorant 32 is a dye, the colorant 32 is, for example, one or more selected from the group consisting of azo dyes, indigo dyes, anthraquinone dyes, sulfide dyes, and carbonium dyes.
 着色剤32の色は特に限定されない。着色剤32はたとえば、カーボンブラック(C)、鉄黒(Fe)等の黒色である。ただし、着色剤32は黒色に限定されず、他の色の着色剤32(白色、紫赤色、黄色、緑青色、赤色、橙色、黄色、緑色、青色、藍色、紫色等)であってもよい。 The color of the colorant 32 is not particularly limited. The colorant 32 is, for example, black such as carbon black (C) and iron black (Fe 3 O 4 ). However, the colorant 32 is not limited to black, and may be a colorant 32 of another color (white, purple-red, yellow, green-blue, red, orange, yellow, green, blue, indigo, purple, etc.). Good.
 着色剤32が顔料である場合、粒子径は特に限定されない。着色剤32が顔料である場合の一次粒径の最大値はたとえば、3nm~1000nmである。 When the colorant 32 is a pigment, the particle size is not particularly limited. When the colorant 32 is a pigment, the maximum value of the primary particle size is, for example, 3 nm to 1000 nm.
 [亜鉛めっき層10の表面に形成されるめっきテクスチャ10Sについて]
 めっき鋼板1の亜鉛めっき層10の表面には、めっきテクスチャ10Sが形成されている。即ち、めっき鋼板1の亜鉛めっき層10は、その表面にめっきテクスチャ10Sを有する。第1実施形態において「テクスチャ」とは、物理的又は化学的手法によって、母材鋼板100の表面及び/又は亜鉛めっき層10の表面に形成された凹凸模様を意味する。つまり、テクスチャ(母材テクスチャ100S、めっきテクスチャ10S)は、複数の凸部と、複数の凹部とを有する。凸部及び凹部は、一方向に延びていてもよいし、延びていなくてもよい。テクスチャはたとえば、ダルであり、ヘアラインである。好ましいテクスチャは、ヘアラインである。ヘアラインは、一方向に延びる線状の凹凸模様である。
[About the plating texture 10S formed on the surface of the zinc plating layer 10]
A plating texture 10S is formed on the surface of the galvanized layer 10 of the plated steel sheet 1. That is, the galvanized layer 10 of the plated steel sheet 1 has a plating texture 10S on its surface. In the first embodiment, the “texture” means an uneven pattern formed on the surface of the base steel sheet 100 and / or the surface of the galvanized layer 10 by a physical or chemical method. That is, the texture (base material texture 100S, plating texture 10S) has a plurality of convex portions and a plurality of concave portions. The protrusions and recesses may or may not extend in one direction. The texture is, for example, dull and hairline. A preferred texture is a hairline. The hairline is a linear uneven pattern extending in one direction.
 [めっきテクスチャ10Sがヘアラインの場合]
 図4は、表面にめっきテクスチャ10Sとしてヘアラインが形成されている亜鉛めっき層10の平面図である。図4を参照して、ヘアライン10Sは、亜鉛めっき層10の表面に形成されている直線状の凹凸模様である。ヘアライン10Sは、第1方向に延在する複数の溝10Lを含む。ヘアライン10Sの複数の溝10Lの延在方向は実質的に同一の方向である。ここでいう実質的に同一の方向とは、亜鉛めっき層10を厚さ方向TDに見た場合(つまり、図4のような平面視において)、ヘアライン10Sの溝10Lの延在方向と直交する第2方向WDに配列された、互いに隣り合う溝10L同士のなす角度のうち90%以上が、±5°未満であることを意味する。
[When the plating texture 10S is a hairline]
FIG. 4 is a plan view of the galvanized layer 10 in which a hairline is formed as a plating texture 10S on the surface. With reference to FIG. 4, the hairline 10S is a linear uneven pattern formed on the surface of the galvanized layer 10. The hairline 10S includes a plurality of grooves 10L extending in the first direction. The extending directions of the plurality of grooves 10L of the hairline 10S are substantially the same. The substantially same direction here is orthogonal to the extending direction of the groove 10L of the hairline 10S when the zinc plating layer 10 is viewed in the thickness direction TD (that is, in a plan view as shown in FIG. 4). It means that 90% or more of the angles formed by the adjacent grooves 10L arranged in the second direction WD is less than ± 5 °.
 [要件(A)~(C)について]
 上述の構成を有する第1実施形態のめっき鋼板1はさらに、次の(A)~(C)を満たす。
 要件(A):
 めっきテクスチャ10Sの第2方向WDの1000μmの長さの範囲の粗さプロファイルを測定し、測定された粗さプロファイル中の各凹部10REにおける最も低い位置を凹部底点と定義し、粗さプロファイルの複数の凹部底点のうち、最も低い順に10個の凹部底点を特定し、特定された凹部底点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凹部底三次元平均粗さSasと定義したとき、凹部底三次元平均粗さSasが200nm超2000nm以下である。
 要件(B):
 第2方向WDの100μm長さの範囲において、着色樹脂層11の最小厚さ(μm)をDKminと定義し、着色樹脂層11中の着色剤32の含有量(面積%)をCKと定義し、F1を式(1)で定義したとき、F1は15.0以下である。
 F1=DKmin×CK (1)
 要件(C):
 第2方向WDの100μm長さの範囲において、着色樹脂層11の最大厚さ(μm)をDKmaxと定義し、F2を式(2)で定義したとき、F2は1.0よりも大きい。
 F2=(DKmax-DKmin)×CK (2)
 以下、各要件について詳述する。
[Requirements (A) to (C)]
The plated steel sheet 1 of the first embodiment having the above-described configuration further satisfies the following (A) to (C).
Requirement (A):
The roughness profile in the range of 1000 μm in the second direction WD of the plating texture 10S is measured, and the lowest position in each recess 10RE in the measured roughness profile is defined as the recess bottom point, and the roughness profile is defined. Of the plurality of recess bottom points, 10 recess bottom points are specified in ascending order, and the three-dimensional average roughness Sa of a minute region of 1 μm × 1 μm centered on the specified recess bottom point is measured and measured. When the arithmetic average value of the 10 three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa, the concave bottom three-dimensional average roughness Sa is more than 200 nm and 2000 nm or less.
Requirement (B):
Within the range of 100 μm length in the second direction WD, the minimum thickness (μm) of the colored resin layer 11 is defined as DKmin, and the content (area%) of the colorant 32 in the colored resin layer 11 is defined as CK. , F1 is defined by the equation (1), F1 is 15.0 or less.
F1 = DKmin x CK (1)
Requirement (C):
When the maximum thickness (μm) of the colored resin layer 11 is defined as DKmax and F2 is defined by the formula (2) in the range of 100 μm length of the second direction WD, F2 is larger than 1.0.
F2 = (DKmax-DKmin) x CK (2)
Each requirement will be described in detail below.
 [テクスチャの凹凸の表面粗さについて]
 図5は、亜鉛めっき層10の表面に形成されためっきテクスチャ10Sの粗さプロファイルを示す図である。図5を参照して、めっきテクスチャ10Sの第2方向WDの任意の1000μm長さ範囲を選定する。選定された1000μm長さ範囲において、めっきテクスチャ10Sの粗さプロファイルを測定する。得られた粗さプロファイルが図5のような形状であったと仮定する。
[About the surface roughness of texture irregularities]
FIG. 5 is a diagram showing a roughness profile of the plating texture 10S formed on the surface of the zinc plating layer 10. With reference to FIG. 5, an arbitrary 1000 μm length range of the second direction WD of the plating texture 10S is selected. The roughness profile of the plating texture 10S is measured in the selected 1000 μm length range. It is assumed that the obtained roughness profile has a shape as shown in FIG.
 [凹部底三次元平均粗さSasについて]
 測定された粗さプロファイル中の各凹部10REに注目する。各凹部10REにおいて、高さが最も低い位置を、凹部底点PREと定義する。1000μm長さ範囲での粗さプロファイル中の複数の凹部底点PREのうち、最も低い凹部底点PRE1から、低い順に10点の凹部底点PRE1、PRE2、…、PRE10を特定する。
[About concave bottom three-dimensional average roughness Sas]
Note each recess 10RE in the measured roughness profile. In each recess 10RE, the position having the lowest height is defined as the recess bottom point PRE. Of the plurality of recessed bottom points PRE in the roughness profile in the 1000 μm length range, 10 recessed bottom points PRE1, PRE2, ..., PRE10 are specified in ascending order from the lowest recessed bottom point PRE1.
 図6Aに示すとおり、亜鉛めっき層10の表面を平面視して、定義された各凹部底点PREk(kは1~10)を中心とした1μm×1μmの微小凹部底領域200を特定する。図6Aでは微小凹部底領域200の縦方向をめっきテクスチャ10Sの延在方向RDと平行とし、微小凹部底領域200の横方向を幅方向WDと平行としている。しかしながら、微小凹部底領域200は、延在方向RD及び幅方向WDを含む面であれば、微小凹部底領域200の各辺が、延在方向RD又は幅方向WDに平行でなくてもよい。 As shown in FIG. 6A, the surface of the galvanized layer 10 is viewed in a plan view, and a 1 μm × 1 μm minute recess bottom region 200 centered on each defined recess bottom point PREk (k is 1 to 10) is specified. In FIG. 6A, the vertical direction of the minute concave bottom region 200 is parallel to the extending direction RD of the plating texture 10S, and the horizontal direction of the minute concave bottom region 200 is parallel to the width direction WD. However, if the micro-recess bottom region 200 is a surface including the extending direction RD and the width direction WD, each side of the micro-recess bottom region 200 does not have to be parallel to the extending direction RD or the width direction WD.
 以上の方法で特定された10個の微小凹部底領域200の各々において、三次元平均粗さSaを測定する。三次元平均粗さSaは、JIS B 0601(2013)で規定されているRa(線の算術平均粗さ)を面に拡張した、ISO 25178で規定される算術平均粗さである。測定された10個の三次元平均粗さSaの算術平均値を、凹部底三次元平均粗さSasと定義する。 The three-dimensional average roughness Sa is measured in each of the 10 minute recess bottom regions 200 specified by the above method. The three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface. The arithmetic mean value of the 10 measured three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa.
 [凸部頂上三次元平均粗さSahについて]
 図5を参照して、めっきテクスチャ10Sの第2方向WDの任意の1000μm長さ範囲の粗さプロファイル中の各凸部10COに注目する。各凸部10COにおいて、高さが最も高い位置を、凸部頂上点PCOと定義する。1000μm長さ範囲での粗さプロファイル中の複数の凸部頂上点PCOのうち、最も高い凸部頂上点PCO1から、高い順に10点の凸部頂上点PCO1、PCO2、…、PCO10を特定する。
[About the three-dimensional average roughness Sah at the top of the convex part]
With reference to FIG. 5, attention is paid to each convex portion 10CO in the roughness profile of any 1000 μm length range of the second direction WD of the plating texture 10S. In each convex portion 10CO, the position having the highest height is defined as the convex portion top point PCO. Among the plurality of convex top points PCOs in the roughness profile in the 1000 μm length range, 10 convex top points PCO1, PCO2, ..., PCO10 are specified in descending order from the highest convex top point PCO1.
 図6Bに示すとおり、亜鉛めっき層10の表面を平面視して、定義された各凸部頂上点PCOk(kは1~10)を中心とした1μm×1μmの微小凸部頂上領域300を特定する。図6Bでは微小凸部頂上領域300の縦方向をめっきテクスチャ10Sの延在方向RDと平行とし、微小凸部頂上領域300の横方向を幅方向WDと平行としている。しかしながら、微小凸部頂上領域300は、延在方向RD及び幅方向WDを含む面であれば、微小凸部頂上領域300の各辺が、延在方向RD又は幅方向WDに平行でなくてもよい。 As shown in FIG. 6B, the surface of the galvanized layer 10 is viewed in a plan view, and a 1 μm × 1 μm microconvex top region 300 centered on each defined convex top point PCok (k is 1 to 10) is specified. To do. In FIG. 6B, the vertical direction of the micro-convex top region 300 is parallel to the extending direction RD of the plating texture 10S, and the lateral direction of the micro-convex top region 300 is parallel to the width direction WD. However, if the micro-convex top region 300 is a surface including the extending direction RD and the width direction WD, even if each side of the micro-convex top region 300 is not parallel to the extending direction RD or the width direction WD. Good.
 以上の方法で特定された10個の微小凸部頂上領域300の各々において、三次元平均粗さSaを測定する。三次元平均粗さSaは、JIS B 0601(2013)で規定されているRa(線の算術平均粗さ)を面に拡張した、ISO 25178で規定される算術平均粗さである。測定された10個の三次元平均粗さSaの算術平均値を、凸部頂上三次元平均粗さSahと定義する。 The three-dimensional average roughness Sa is measured in each of the ten microconvex top regions 300 identified by the above method. The three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface. The arithmetic mean value of the 10 measured three-dimensional average roughness Sa is defined as the convex top three-dimensional average roughness Sa.
 [要件(A)について]
 上述の定義により求められた凹部底三次元平均粗さSasは、200nm超2000nm以下である(要件(A))。この粗さは、亜鉛めっきの結晶に基づくものとすることができる。従って、亜鉛めっきの複数の凹部は、研磨されていなくてもよい。めっきテクスチャ10Sの凹凸において、少なくとも凹部底三次元平均粗さSasがある程度粗く、200nm超2000nm以下であれば、着色樹脂層11の亜鉛めっき層10に対する密着性を向上させることができる。凹部底三次元平均粗さSasの好ましい下限は250nmであり、さらに好ましくは300nmである。凹部底三次元平均粗さSasの好ましい上限は1500nmであり、さらに好ましくは1000nmであり、さらに好ましくは800nmである。
[About requirement (A)]
The concave bottom three-dimensional average roughness Sa determined by the above definition is more than 200 nm and 2000 nm or less (requirement (A)). This roughness can be based on galvanized crystals. Therefore, the plurality of galvanized recesses need not be polished. In the unevenness of the plating texture 10S, if at least the concave bottom three-dimensional average roughness Sas is coarse to some extent and is more than 200 nm and 2000 nm or less, the adhesion of the colored resin layer 11 to the zinc plating layer 10 can be improved. The lower limit of the concave bottom three-dimensional average roughness Sas is preferably 250 nm, and more preferably 300 nm. The upper limit of the three-dimensional average roughness Sas of the recess bottom is 1500 nm, more preferably 1000 nm, and further preferably 800 nm.
 めっきテクスチャ10Sのうち、少なくとも凹部底三次元平均粗さSasが200nm超2000nm以下であれば、凸部頂上三次元平均粗さSahの値は特に限定されない。凸部頂上三次元平均粗さSahはたとえば、2000nm以下である。Sahが限定されない以上、複数の凸部は、亜鉛めっき層の表面を研磨して形成されたものであってもよいし、研磨されていなくてもよい。めっきテクスチャ10Sの凹凸の形状も特に限定されない。 Of the plating texture 10S, the value of the three-dimensional average roughness Sah at the top of the convex portion is not particularly limited as long as the concave bottom three-dimensional average roughness Sas is more than 200 nm and 2000 nm or less. The three-dimensional average roughness Sah at the top of the convex portion is, for example, 2000 nm or less. As long as Sah is not limited, the plurality of convex portions may or may not be formed by polishing the surface of the galvanized layer. The shape of the unevenness of the plating texture 10S is also not particularly limited.
 図7は亜鉛めっき層10の表面近傍部分での第1方向RDに垂直な断面図である。図7を参照して、亜鉛めっき層10の表面に形成されためっきテクスチャ10Sの凹部10RE及び凸部10COでは、研磨する前では、凹部10REの表面及び凸部10COの表面には、めっき結晶に起因したナノメートルレベルの微小な凹凸(微小凹部SRE及び微小凸部SCO)が存在する。この場合、凹部底三次元平均粗さSas及び凸部頂上三次元平均粗さSahはいずれも、200nm超2000nm以下である。 FIG. 7 is a cross-sectional view perpendicular to the first direction RD in the portion near the surface of the galvanized layer 10. With reference to FIG. 7, in the concave portion 10RE and the convex portion 10CO of the plating texture 10S formed on the surface of the galvanized layer 10, before polishing, the surface of the concave portion 10RE and the surface of the convex portion 10CO have a plating crystal. There are nanometer-level micro-concavities and convexities (micro-concave SRE and micro-convex SCO) caused by this. In this case, both the concave bottom three-dimensional average roughness Sas and the convex top three-dimensional average roughness Sah are more than 200 nm and 2000 nm or less.
 [要件(B)について]
 図1を参照して、めっきテクスチャ10Sの第1方向RDと直交する第2方向WDの任意の100μm長さ範囲の断面に注目する。この100μm長さ範囲の断面(図1)を、観察断面と定義する。観察断面において、着色樹脂層11の厚さのうち、最小厚さをDKmin(μ)と定義する。観察断面において、着色樹脂層11の厚さのうち、最大厚さをDKmax(μm)と定義する。
[About requirement (B)]
With reference to FIG. 1, attention is paid to a cross section in an arbitrary 100 μm length range of the second direction WD orthogonal to the first direction RD of the plating texture 10S. A cross section in this 100 μm length range (FIG. 1) is defined as an observation cross section. In the observation cross section, the minimum thickness of the colored resin layer 11 is defined as DKmin (μ). In the observation cross section, the maximum thickness of the colored resin layer 11 is defined as DKmax (μm).
 さらに、観察断面において、着色樹脂層11中の着色剤の含有量(面積%)をCKと定義する。上記のとおり、本明細書において、着色剤含有量CKは、観察断面における着色剤の面積率(面積%)で示す。 Further, in the observation cross section, the content (area%) of the colorant in the colored resin layer 11 is defined as CK. As described above, in the present specification, the colorant content CK is indicated by the area ratio (area%) of the colorant in the observed cross section.
 ここで、F1を式(1)で定義する。
 F1=DKmin×CK (1)
 このとき、F1は15.0以下である。
Here, F1 is defined by the equation (1).
F1 = DKmin x CK (1)
At this time, F1 is 15.0 or less.
 F1は着色樹脂層11の着色濃度の指標である。F1が15.0を超える場合、着色樹脂層11の厚さが厚すぎる、又は、着色剤含有量CKが多すぎる。この場合、着色樹脂層11の着色が濃すぎ、亜鉛めっき層10のめっきテクスチャ10Sが視認しにくい。F1が15.0以下であれば、要件(A)及び(C)を満たすことを条件として、着色樹脂層11により着色した外観でありながら、亜鉛めっき層10の表面のめっきテクスチャ10Sを十分視認できる。F1の好ましい上限は14.0であり、さらに好ましくは13.5であり、さらに好ましくは13.0であり、さらに好ましくは12.5である。なお、F1の下限は特に限定されない。F1の下限はたとえば、4.0である。 F1 is an index of the coloring concentration of the colored resin layer 11. When F1 exceeds 15.0, the thickness of the colored resin layer 11 is too thick, or the colorant content CK is too large. In this case, the coloring of the colored resin layer 11 is too dark, and the plating texture 10S of the zinc plating layer 10 is difficult to see. If F1 is 15.0 or less, the plating texture 10S on the surface of the zinc plating layer 10 can be sufficiently visually recognized while having an appearance colored by the colored resin layer 11 on condition that the requirements (A) and (C) are satisfied. it can. The preferred upper limit of F1 is 14.0, more preferably 13.5, still more preferably 13.0, still more preferably 12.5. The lower limit of F1 is not particularly limited. The lower limit of F1 is, for example, 4.0.
 着色樹脂層11の厚さは、次の方法で測定する。めっきテクスチャ10Sの第1方向RDと直交する断面を表面に持つサンプルを採取する。サンプルのうち、第2方向WDに100μmの長さ範囲の観察断面を、走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察する。走査型電子顕微鏡(SEM)の反射電子像(BSE)での観察において、母材鋼板100、亜鉛めっき層10、及び、着色樹脂層11は、コントラストにより容易に判別可能である。観察断面において、第2方向WDに0.5μmピッチで着色樹脂層11の厚さを測定する。測定された厚さのうち、最小の厚さを最小厚さDKmin(μm)と定義する。測定された厚さのうち、最大の厚さを最大厚さDKmax(μm)と定義する。着色樹脂層11か否かの判断(つまり、樹脂に着色剤が含まれているか否かの判断)が必要な場合、後述のTEM観察により着色樹脂層11か否かを判断してもよい。 The thickness of the colored resin layer 11 is measured by the following method. A sample having a cross section orthogonal to the first direction RD of the plating texture 10S on the surface is taken. Of the sample, an observation cross section in a length range of 100 μm in the second direction WD is observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM). In the observation with the reflected electron image (BSE) of the scanning electron microscope (SEM), the base steel plate 100, the galvanized layer 10, and the colored resin layer 11 can be easily distinguished by the contrast. In the observation cross section, the thickness of the colored resin layer 11 is measured at a pitch of 0.5 μm in the second direction WD. Of the measured thicknesses, the smallest thickness is defined as the minimum thickness DKmin (μm). Of the measured thicknesses, the maximum thickness is defined as the maximum thickness DKmax (μm). When it is necessary to determine whether or not it is the colored resin layer 11 (that is, whether or not the resin contains a colorant), it may be determined whether or not it is the colored resin layer 11 by TEM observation described later.
 着色樹脂層11中の着色剤含有量CK(面積%)は、次の方法で求める。めっきテクスチャ10Sの第1方向RDと直交する断面を表面に持つサンプルを採取する。サンプルのうち、めっきテクスチャ10Sの第1方向RDと直交する断面を観察面と定義する。サンプルから、収束イオンビーム装置(FIB:Focused Ion Beam)を用いて、観察面の着色樹脂層11と亜鉛めっき層10とを観察可能な薄膜試料を作製する。薄膜試料の厚さは50~200nmとする。作製した薄膜試料の観察面のうち、着色樹脂層11の厚さ方向と垂直な方向(つまり、第2方向WD)の長さが3μmであって、かつ、着色樹脂層の厚さ方向(つまり、第3方向TD)において、着色樹脂層全体を含む長さを有する視野を、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて観察する。TEM観察において、着色樹脂層11中の樹脂31と着色剤32とは、コントラストにより識別可能である。上記視野中の着色樹脂層11中の複数の着色剤の総面積A1(μm)を求める。さらに、上記視野中の着色樹脂層11の面積(μm)を求める。求めた総面積A1及び面積A0に基づいて、次式により着色樹脂層11中の着色剤含有量(面積%)を求める。
 CK=A1/A0×100
The colorant content CK (area%) in the colored resin layer 11 is determined by the following method. A sample having a cross section orthogonal to the first direction RD of the plating texture 10S on the surface is taken. Of the samples, the cross section orthogonal to the first direction RD of the plating texture 10S is defined as the observation surface. From the sample, a thin film sample in which the colored resin layer 11 and the zinc plating layer 10 on the observation surface can be observed is prepared by using a focused ion beam (FIB). The thickness of the thin film sample is 50 to 200 nm. Of the observation surfaces of the prepared thin film sample, the length in the direction perpendicular to the thickness direction of the colored resin layer 11 (that is, the second direction WD) is 3 μm, and the length in the thickness direction of the colored resin layer (that is, that is). , Third direction TD), a field having a length including the entire colored resin layer is observed using a transmission electron microscope (TEM: Transmission Electron Microscope). In the TEM observation, the resin 31 and the colorant 32 in the colored resin layer 11 can be distinguished by the contrast. The total area A1 (μm 2 ) of the plurality of colorants in the colored resin layer 11 in the field of view is determined. Further, the area (μm 2 ) of the colored resin layer 11 in the visual field is determined. Based on the obtained total area A1 and area A0, the colorant content (area%) in the colored resin layer 11 is obtained by the following formula.
CK = A1 / A0 × 100
 [要件(C)について]
 めっきテクスチャ10Sの第1方向RDに垂直な断面であって、めっきテクスチャ10Sの第2方向WDの100μm長さ範囲の観察断面において、F2を式(2)で定義する。
 F2=(DKmax-DKmin)×CK (2)
 このとき、F2は1.0よりも大きい。
[About requirement (C)]
F2 is defined by the equation (2) in the cross section of the plating texture 10S perpendicular to the first direction RD and in the observation cross section of the plating texture 10S in the second direction WD of 100 μm length range.
F2 = (DKmax-DKmin) x CK (2)
At this time, F2 is larger than 1.0.
 F2は、着色樹脂層11での明度のコントラストの指標である。F2が1.0以下であれば、着色樹脂層11での明度のコントラストが低い。この場合、着色樹脂層11の明度のコントラストを、めっきテクスチャ10Sの視認に十分に活用できない。そのため、着色樹脂層11下のめっきテクスチャ10Sが視認しにくい。 F2 is an index of the contrast of brightness in the colored resin layer 11. When F2 is 1.0 or less, the contrast of brightness in the colored resin layer 11 is low. In this case, the contrast of the brightness of the colored resin layer 11 cannot be fully utilized for visually recognizing the plating texture 10S. Therefore, the plating texture 10S under the colored resin layer 11 is difficult to see.
 F2が1.0よりも高ければ、着色樹脂層11での明度のコントラストが十分に高い。この場合、着色樹脂層11の明度のコントラストを、めっきテクスチャ10Sの視認に十分に活用できる。その結果、要件(A)及び要件(B)を満たすことを前提として、着色樹脂層11下のめっきテクスチャ10Sを十分に視認することができる。 If F2 is higher than 1.0, the contrast of brightness in the colored resin layer 11 is sufficiently high. In this case, the contrast of the brightness of the colored resin layer 11 can be fully utilized for visually recognizing the plating texture 10S. As a result, the plating texture 10S under the colored resin layer 11 can be sufficiently visually recognized on the premise that the requirements (A) and (B) are satisfied.
 F2の好ましい下限は2.0又は2.0超であり、さらに好ましくは2.2であり、さらに好ましくは2.4である。なお、F2の上限は特に限定されない。F2の上限はたとえば、15.0である。 The preferable lower limit of F2 is 2.0 or more than 2.0, more preferably 2.2, still more preferably 2.4. The upper limit of F2 is not particularly limited. The upper limit of F2 is, for example, 15.0.
 [めっき鋼板を着色樹脂層側から見た場合の明度L(SCI)]
 第1実施形態のめっき鋼板1は、凹部及び凸部における明度のコントラストの指標であるF2などが上述の要件を満たす限り、その表面全体での明度は特に規定されない。従って、めっき鋼板を着色樹脂層側から見た場合の明度L(SCI)の上下限値は特に規定されない。一方、めっき鋼板を着色樹脂層側から見た場合の明度L(SCI)が45以下であってもよい。めっき鋼板の明度L(SCI)が低いほど、肉眼で見ためっき鋼板の黒色度が増す。通常のめっき鋼板では、その表面の明度L(SCI)が45以下とすると、めっきテクスチャの視認が難しくなる。一方、第1実施形態のめっき鋼板1は、上記要件(A)~(C)を満たすので、めっき鋼板を着色樹脂層側から見た場合の明度L(SCI)が45以下であっても、亜鉛めっき層の表面のテクスチャを視認可能である。
[Brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side]
The brightness of the entire surface of the plated steel sheet 1 of the first embodiment is not particularly specified as long as F2 or the like, which is an index of the contrast of brightness in the concave portion and the convex portion, satisfies the above-mentioned requirements. Therefore, the upper and lower limits of the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side are not particularly specified. On the other hand, the brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side may be 45 or less. The lower the brightness L * (SCI) of the plated steel sheet, the greater the blackness of the plated steel sheet as seen by the naked eye. In a normal plated steel sheet, if the surface brightness L * (SCI) is 45 or less, it becomes difficult to visually recognize the plated texture. On the other hand, since the plated steel sheet 1 of the first embodiment satisfies the above requirements (A) to (C), even if the lightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side is 45 or less. , The texture of the surface of the galvanized layer is visible.
 明度L(SCI)とは、SCI方式で測定された明度である。SCI方式は正反射光込み方式といい、正反射光を除去せずに色を測定する方法を意味する。SCI方式に従った明度測定方法は、JIS Z 8722(2009)に規定されている。SCI方式では、正反射光を除去せずに測定するため、実際の物体の色(いわゆる物体色)となる。CIELAB表示色は、JIS Z 8781(2013)に規定されている均等色空間である。CIELABの3つの座標は、L値、a値、b値で示される。L値は明度を示し、0~100で示される。L値が0の場合は黒色を意味し、L値が100の場合は白の拡散色を意味する。 Brightness L * (SCI) is the brightness measured by the SCI method. The SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing specularly reflected light. A method for measuring brightness according to the SCI method is specified in JIS Z 8722 (2009). In the SCI method, since the measurement is performed without removing the specularly reflected light, it becomes the actual color of the object (so-called object color). The CIELAB display color is a uniform color space defined in JIS Z 8781 (2013). The three coordinates of CIELAB are indicated by L * value, a * value, and b * value. The L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
 [着色樹脂層11の厚さについて]
 第1実施形態のめっき鋼板1において、好ましくは、着色樹脂層11の平均厚さは10.0μm以下である。着色樹脂層11の厚さが10.0μmを超えれば、着色樹脂層11のみで平滑化(レベリング)しやすくなり、着色樹脂層11の表面での反射の印象と視認できるめっきテクスチャ10Sの印象との乖離が大きくなる。この場合、めっき鋼板1のメタリック感が低下する。着色樹脂層11の平均厚さが10.0μm以下であれば、上述の要件(A)~(C)の全てを満たすことを前提として、亜鉛めっき層10のめっきテクスチャ10Sを視認可能であり、かつ、メタリック感も十分に高まる。着色樹脂層11の平均厚さのさらに好ましい上限は9.0μmであり、さらに好ましくは8.0μmである。
[About the thickness of the colored resin layer 11]
In the plated steel sheet 1 of the first embodiment, the average thickness of the colored resin layer 11 is preferably 10.0 μm or less. If the thickness of the colored resin layer 11 exceeds 10.0 μm, smoothing (leveling) is easily performed only by the colored resin layer 11, and the impression of reflection on the surface of the colored resin layer 11 and the impression of the visible plating texture 10S are obtained. The divergence becomes large. In this case, the metallic feeling of the plated steel sheet 1 is reduced. If the average thickness of the colored resin layer 11 is 10.0 μm or less, the plating texture 10S of the zinc plating layer 10 can be visually recognized on the premise that all of the above requirements (A) to (C) are satisfied. At the same time, the metallic feeling is sufficiently enhanced. A more preferable upper limit of the average thickness of the colored resin layer 11 is 9.0 μm, and even more preferably 8.0 μm.
 また、着色樹脂層11の平均厚さの好ましい下限は0.5μmである。着色樹脂層11の平均厚さが0.5μm以上であれば、耐食性がさらに高まる。着色樹脂層11の平均厚さのさらに好ましい下限は0.7μmであり、さらに好ましくは1.0μmであり、さらに好ましくは2.0μmであり、さらに好ましくは3.0μmである。 Further, the preferable lower limit of the average thickness of the colored resin layer 11 is 0.5 μm. When the average thickness of the colored resin layer 11 is 0.5 μm or more, the corrosion resistance is further enhanced. The lower limit of the average thickness of the colored resin layer 11 is 0.7 μm, more preferably 1.0 μm, still more preferably 2.0 μm, and even more preferably 3.0 μm.
 着色樹脂層11の平均厚さは、次の方法で測定する。上述の観察断面において第2方向WDに0.5μmピッチで測定した厚さの算術平均値を、着色樹脂層11の平均厚さ(μm)と定義する。 The average thickness of the colored resin layer 11 is measured by the following method. The arithmetic mean value of the thickness measured at a pitch of 0.5 μm in the second direction WD in the above-mentioned observation cross section is defined as the average thickness (μm) of the colored resin layer 11.
 [要件(D)について]
 第1実施形態のめっき鋼板1において、好ましくは、凸部頂上三次元平均粗さSahは5nm超200nm以下である(要件(D))。
[About requirement (D)]
In the plated steel sheet 1 of the first embodiment, preferably, the three-dimensional average roughness Sah at the top of the convex portion is more than 5 nm and 200 nm or less (requirement (D)).
 図7を参照して、亜鉛めっき層10の表面に形成されためっきテクスチャ10Sの凹部10RE及び凸部10COでは、研磨する前では、凹部10REの表面及び凸部10COの表面には、めっき結晶に起因したナノメートルレベルの微小な凹凸(微小凹部SRE及び微小凸部SCO)が存在する。つまり、凸部10COにおける微小凹凸(微小凹部SRE及び微小凸部SCO)の粗さが、凹部10REにおける微小凹凸(微小凹部SRE及び微小凸部SCO)の粗さと同等に粗い。そのため、凸部10COでは、凹部10REと同様に、微小凹凸により光が乱反射する。 With reference to FIG. 7, in the concave portion 10RE and the convex portion 10CO of the plating texture 10S formed on the surface of the galvanized layer 10, before polishing, the surface of the concave portion 10RE and the surface of the convex portion 10CO have a plating crystal. There are nanometer-level micro-concavities and convexities (micro-concave SRE and micro-convex SCO) caused by this. That is, the roughness of the micro-concavities and convexities (micro-concave SRE and micro-convex SCO) in the convex portion 10CO is as coarse as the roughness of the micro-concavities and convexities (micro-concave SRE and micro-convex SCO) in the concave-convex 10RE. Therefore, in the convex portion 10CO, light is diffusely reflected by the minute unevenness as in the concave portion 10RE.
 そこで、要件(D)では、凸部頂上三次元平均粗さSahを凹部底三次元平均粗さSasよりも小さくする。具体的には、上述のとおり、凹部底三次元平均粗さSasは200nm以上であるのに対して、凸部頂上三次元平均粗さSahを5nm超200nm以下としてもよい。この場合、凹部10REでは光が乱反射しやすいのに対して、凸部10COでは凹部10REよりも粗さが低く、光が乱反射しにくい。したがって、亜鉛めっき層10のめっきテクスチャ10Sにおいて、凸部10COを視認しやすい状態となる。たとえば、図8に示すとおり、凸部10COの山頂を研磨して、凸部10COを台形状とする。これにより、凸部10COでの微小凹凸(微小凹部SRE及び微小凸部SCO)の粗さを、凹部10REでの微小凹凸(微小凹部SRE及び微小凸部SCO)の粗さよりも小さくできる。 Therefore, in the requirement (D), the three-dimensional average roughness Sah at the top of the convex portion is made smaller than the three-dimensional average roughness Sah at the bottom of the concave portion. Specifically, as described above, the concave bottom three-dimensional average roughness Sas may be 200 nm or more, whereas the convex top three-dimensional average roughness Sah may be more than 5 nm and 200 nm or less. In this case, the concave portion 10RE tends to reflect light diffusely, whereas the convex portion 10CO has a lower roughness than the concave portion 10RE, and the light is less likely to be diffusely reflected. Therefore, in the plating texture 10S of the zinc plating layer 10, the convex portion 10CO is easily visible. For example, as shown in FIG. 8, the peak of the convex portion 10CO is polished to form the convex portion 10CO into a trapezoidal shape. As a result, the roughness of the minute irregularities (micro concave portion SRE and minute convex portion SCO) at the convex portion 10CO can be made smaller than the roughness of the minute irregularities (micro concave concave SRE and minute convex portion SCO) at the concave portion 10 RE.
 凸部頂上三次元平均粗さSahが200nm以下であれば、凸部頂点近傍における光の乱反射を抑制できる。この場合、着色樹脂層11を有する第1実施形態のめっき鋼板1において、めっきテクスチャ10Sがさらに視認しやすくなる。なお、凸部頂上三次元平均粗さSahは小さいほど好ましい。しかしながら、凸部頂上三次元平均粗さSahを5nm以下にすることは極めて困難である。したがって、第1実施形態において、凸部頂上三次元平均粗さSahは5nm超200nm以下である。凸部頂上三次元平均粗さSahの好ましい上限は190nmであり、さらに好ましくは180nmであり、さらに好ましくは170nmである。 If the three-dimensional average roughness Sah at the top of the convex portion is 200 nm or less, diffused reflection of light in the vicinity of the apex of the convex portion can be suppressed. In this case, in the plated steel sheet 1 of the first embodiment having the colored resin layer 11, the plating texture 10S becomes more visible. It is preferable that the three-dimensional average roughness Sah at the top of the convex portion is smaller. However, it is extremely difficult to make the three-dimensional average roughness Sah at the top of the convex portion 5 nm or less. Therefore, in the first embodiment, the three-dimensional average roughness Sah at the top of the convex portion is more than 5 nm and 200 nm or less. The upper limit of the three-dimensional average roughness Sah at the top of the convex portion is preferably 190 nm, more preferably 180 nm, and further preferably 170 nm.
 [着色樹脂層11の他の形態について]
 第1実施形態のめっき鋼板1の着色樹脂層11はさらに、着色樹脂層11に耐食性、摺動性、導電性等を付与するために、添加剤を含有してもよい。耐食性を付与するための添加剤はたとえば、周知の防錆剤やインヒビターである。摺動性を付与するための添加剤はたとえば、周知のワックスやビーズである。導電性を付与するための添加剤はたとえば、周知の導電剤である。
[About other forms of the colored resin layer 11]
The colored resin layer 11 of the plated steel sheet 1 of the first embodiment may further contain an additive in order to impart corrosion resistance, slidability, conductivity and the like to the colored resin layer 11. Additives for imparting corrosion resistance are, for example, well-known rust inhibitors and inhibitors. Additives for imparting slidability are, for example, well-known waxes and beads. The additive for imparting conductivity is, for example, a well-known conductive agent.
[めっきテクスチャ10Sがヘアラインである場合の着色樹脂層11の表面形状について(要件(E)について)]
 着色樹脂層11は、下層である亜鉛めっき層10の表面に形成されためっきテクスチャ10Sの種類に起因して、以下で詳述するような表面形状を有してもよい。
[About the surface shape of the colored resin layer 11 when the plating texture 10S is a hairline (about requirement (E))]
The colored resin layer 11 may have a surface shape as described in detail below due to the type of plating texture 10S formed on the surface of the lower zinc plating layer 10.
 ここで、めっきテクスチャ10Sがヘアラインである場合を想定する。めっきテクスチャ10Sの第1方向RDにおける、着色樹脂層11の表面粗さRaをRa(CL)と定義する。めっきテクスチャ10Sの第2方向WDにおける、着色樹脂層11の表面粗さRaをRa(CC)と定義する。そして、F3を式(3)で定義する。
 F3=Ra(CC)/Ra(CL)
 この場合、F3は1.10以上であってもよい。
Here, it is assumed that the plating texture 10S is a hairline. The surface roughness Ra of the colored resin layer 11 in the first direction RD of the plating texture 10S is defined as Ra (CL). The surface roughness Ra of the colored resin layer 11 in the second direction WD of the plating texture 10S is defined as Ra (CC). Then, F3 is defined by the equation (3).
F3 = Ra (CC) / Ra (CL)
In this case, F3 may be 1.10 or more.
 F3は、めっきテクスチャ10Sがヘアラインである場合におけるめっき鋼板のメタリック感に関する指標である。F3が1.10未満である場合、着色樹脂層11がない状態でのめっきテクスチャ10S(ヘアライン)から受ける印象と、着色樹脂層11の表面での光の反射の印象との乖離が大きくなりすぎる。この場合、メタリック感が喪われる。めっきテクスチャ10Sがヘアラインである場合、F3が1.10以上であれば、着色樹脂層11がない状態でのめっきテクスチャ10S(ヘアライン)から受ける印象と、着色樹脂層11の表面での光の反射の印象との乖離を抑えることができる。そのため、十分なメタリック感が得られる。F3の好ましい下限は1.15であり、さらに好ましくは1.20であり、さらに好ましくは1.25である。 F3 is an index related to the metallic feeling of the plated steel sheet when the plating texture 10S is a hairline. When F3 is less than 1.10, the difference between the impression received from the plating texture 10S (hairline) in the absence of the colored resin layer 11 and the impression of light reflection on the surface of the colored resin layer 11 becomes too large. .. In this case, the metallic feeling is lost. When the plating texture 10S is a hairline, if F3 is 1.10 or more, the impression received from the plating texture 10S (hairline) in the absence of the colored resin layer 11 and the reflection of light on the surface of the colored resin layer 11 It is possible to suppress the deviation from the impression of. Therefore, a sufficient metallic feeling can be obtained. The preferred lower limit of F3 is 1.15, more preferably 1.20, and even more preferably 1.25.
 表面粗さRa(CL)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、着色樹脂層11の表面11Sにおいて、任意の10箇所を測定箇所とする。各測定箇所においてめっきテクスチャ10Sの第1方向RDに延びる評価長で、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CL)と定義する。 The surface roughness Ra (CL) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S of the colored resin layer 11, any 10 points are set as measurement points. The arithmetic mean roughness Ra is measured at each measurement point with an evaluation length extending in the first direction RD of the plating texture 10S. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CL).
 同様に、表面粗さRa(CC)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、着色樹脂層11の表面11Sにおいて、任意の10箇所を測定箇所とする。各測定箇所において、めっきテクスチャ10Sの第2方向WDに延びる評価長で、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CC)と定義する。 Similarly, the surface roughness Ra (CC) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S of the colored resin layer 11, any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the second direction WD of the plating texture 10S. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CC).
 [めっきテクスチャ10Sがヘアラインである場合の亜鉛めっき層10の表面形状について(要件(F)について)]
 要件(F)も要件(E)と同様に、めっきテクスチャ10Sがヘアラインである場合の要件である。めっきテクスチャ10Sが形成された亜鉛めっき層10の表面の、第2方向WDでの表面粗さRaをRa(MC)と定義する。めっきテクスチャ10Sがヘアラインである場合、表面粗さRa(MC)は0.30μm以上であってもよい。表面粗さRa(MC)が0.30μm以上であれば、着色樹脂層11上からめっきテクスチャ10Sを見たとき、十分なメタリック感が得られる。表面粗さRa(MC)の好ましい下限は0.35μmであり、さらに好ましくは0.40μmである。表面粗さRa(MC)の上限は特に限定されない。しかしながら、表面粗さRa(MC)を過剰に高めることは、工業生産上困難である場合がある。そのため、表面粗さRa(MC)の上限はたとえば、2.00μmである。表面粗さRa(MC)の上限はたとえば、1.00μmであってもよい。
[About the surface shape of the galvanized layer 10 when the plating texture 10S is a hairline (requirement (F))]
Similar to the requirement (E), the requirement (F) is also a requirement when the plating texture 10S is a hairline. The surface roughness Ra of the surface of the galvanized layer 10 on which the plating texture 10S is formed in the second direction WD is defined as Ra (MC). When the plating texture 10S is a hairline, the surface roughness Ra (MC) may be 0.30 μm or more. When the surface roughness Ra (MC) is 0.30 μm or more, a sufficient metallic feeling can be obtained when the plating texture 10S is viewed from above the colored resin layer 11. The preferable lower limit of the surface roughness Ra (MC) is 0.35 μm, and more preferably 0.40 μm. The upper limit of the surface roughness Ra (MC) is not particularly limited. However, it may be difficult for industrial production to excessively increase the surface roughness Ra (MC). Therefore, the upper limit of the surface roughness Ra (MC) is, for example, 2.00 μm. The upper limit of the surface roughness Ra (MC) may be, for example, 1.00 μm.
 表面粗さRa(MC)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、亜鉛めっき層10を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤で、めっき鋼板1の着色樹脂層11を除去する。着色樹脂層11を除去した後の亜鉛めっき層10のめっきテクスチャ10Sにおいて、任意の10箇所を測定箇所とする。各測定箇所において、第2方向WDに延びる評価長で、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(MC)と定義する。 The surface roughness Ra (MC) is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, the colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). .. In the plating texture 10S of the zinc plating layer 10 after the colored resin layer 11 is removed, any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the second direction WD. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (MC).
 [地鉄露出率について]
 好ましくは、めっき鋼板1の亜鉛めっき層10の地鉄露出率は、5%未満である。第1実施形態において、耐食性は、亜鉛めっき層10(亜鉛めっき又は亜鉛合金めっき)により十分に確保される。しかしながら、めっきテクスチャ10Sの付与時に亜鉛めっき層10の表面を研削した結果、地鉄が露出した場合、ガルバニック腐食の影響により、長期間での耐食性(長期耐食性)が低下する場合がある。このような長期耐食性の低下は、地鉄露出率が5%以上で顕著となることが多い。そのため、第1実施形態では、好ましい地鉄露出率は、5%未満である。
[About the base iron exposure rate]
Preferably, the base iron exposure rate of the galvanized layer 10 of the plated steel sheet 1 is less than 5%. In the first embodiment, the corrosion resistance is sufficiently ensured by the galvanized layer 10 (galvanized or zinc alloy plated). However, if the surface of the galvanized layer 10 is ground when the plating texture 10S is applied and the base iron is exposed, the corrosion resistance (long-term corrosion resistance) for a long period of time may be lowered due to the influence of galvanic corrosion. Such a decrease in long-term corrosion resistance is often remarkable when the base iron exposure rate is 5% or more. Therefore, in the first embodiment, the preferable base iron exposure rate is less than 5%.
 亜鉛めっき層10の地鉄露出率が5%未満であれば、一般に鋼材に求められる適度な耐食性に加えて、長期耐食性にも優れるような、極めて良好な耐食性が得られる。亜鉛めっき層10の地鉄露出率の好ましい上限は3%以下であり、さらに好ましくは2%であり、さらに好ましくは1%であり、さらに好ましくは0%である。 If the base iron exposure rate of the galvanized layer 10 is less than 5%, extremely good corrosion resistance that is excellent in long-term corrosion resistance can be obtained in addition to the appropriate corrosion resistance generally required for steel materials. The upper limit of the exposure rate of the base iron of the galvanized layer 10 is preferably 3% or less, more preferably 2%, further preferably 1%, still more preferably 0%.
 地鉄露出率は、次の方法により測定する。具体的には、亜鉛めっき層10を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤で、めっき鋼板1の着色樹脂層11を除去する。亜鉛めっき層10の表面において、1mm×1mmの任意の矩形領域を5箇所選択する。選択された矩形領域に対してEPMA分析を実施する。画像解析により、各矩形領域中のZnが検出されない領域(Zn未検出領域)を特定する。第1実施形態では、Znの検出強度が標準試料(純Zn)を測定した場合の1/16以下となる領域を、Zn未検出領域と認定する。5つの矩形領域の総面積に対する、5つの矩形領域中のZn未検出領域の総面積の割合(面積%)を、地鉄露出率(面積%)と定義する。 The base iron exposure rate is measured by the following method. Specifically, the colored resin layer 11 of the plated steel sheet 1 is removed with a solvent that does not attack the galvanized layer 10 or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). .. On the surface of the galvanized layer 10, five arbitrary rectangular regions of 1 mm × 1 mm are selected. An EPMA analysis is performed on the selected rectangular area. By image analysis, a region in which Zn is not detected (Zn undetected region) in each rectangular region is specified. In the first embodiment, a region in which the detection intensity of Zn is 1/16 or less when the standard sample (pure Zn) is measured is recognized as a Zn undetected region. The ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions is defined as the base iron exposure rate (area%).
 [その他の被膜について]
 なお、第1実施形態のめっき鋼板1は、着色樹脂層11と亜鉛めっき層10との間に、耐食性又は密着性を高める目的で、無機被膜又は有機無機複合被膜を形成してもよい。無機被膜は透光性を有する。無機被膜はたとえば、非晶質のシリカ被膜、ジルコニア被膜、又はりん酸塩被膜である。有機無機複合被膜は透光性を有する。有機無機複合被膜はたとえば、シランカップリング剤及び有機樹脂を含有する。有機無機複合被膜は透光性を有する。
[About other coatings]
The plated steel sheet 1 of the first embodiment may have an inorganic film or an organic-inorganic composite film formed between the colored resin layer 11 and the zinc-plated layer 10 for the purpose of improving corrosion resistance or adhesion. The inorganic coating is translucent. The inorganic coating is, for example, an amorphous silica coating, a zirconia coating, or a phosphate coating. The organic-inorganic composite film has translucency. The organic-inorganic composite film contains, for example, a silane coupling agent and an organic resin. The organic-inorganic composite film has translucency.
 [テクスチャの形態について]
 図4では、テクスチャの一例としてヘアラインを示した。しかしながら、上述のとおり、テクスチャの形態はヘアラインに限定されない。テクスチャは、複数の凸部と、複数の凹部とを有すればよい。したがって、凸部及び凹部は、一方向に延びていてもよいし、のびていなくてもよい。テクスチャはヘアラインでもよいし、ダルでもよいし、他の形態でもよい。テクスチャは、凹凸模様が形成されていればよい。
[About texture morphology]
In FIG. 4, a hairline is shown as an example of the texture. However, as mentioned above, the morphology of the texture is not limited to hairlines. The texture may have a plurality of convex portions and a plurality of concave portions. Therefore, the protrusions and recesses may or may not extend in one direction. The texture may be hairline, dull, or other form. The texture may have an uneven pattern.
 [製造方法]
 第1実施形態のめっき鋼板1の製造方法の一例を説明する。以降に説明する製造方法は、第1実施形態のめっき鋼板1を製造するための一例である。したがって、上述の構成を有するめっき鋼板1は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、第1実施形態のめっき鋼板1の製造方法の好ましい一例である。
[Production method]
An example of the manufacturing method of the plated steel sheet 1 of the first embodiment will be described. The manufacturing method described below is an example for manufacturing the plated steel sheet 1 of the first embodiment. Therefore, the plated steel sheet 1 having the above-described configuration may be manufactured by a manufacturing method other than the manufacturing methods described below. However, the manufacturing method described below is a preferable example of the manufacturing method of the plated steel sheet 1 of the first embodiment.
 第1実施形態の製造方法は、母材鋼板100を準備する準備工程(S1)と、母材鋼板100の表面に母材テクスチャ100Sを形成する母材表面テクスチャ形成工程(S2)と、母材鋼板100に対して亜鉛めっき層10を形成する亜鉛めっき処理工程(S3)と、任意の工程であり、亜鉛めっき層10の表面にさらにテクスチャ加工をする場合に実施する亜鉛めっき表面テクスチャ形成工程(S4)と、任意の工程であり、必要に応じて亜鉛めっき層10の凸部10COの山頂を研磨する研磨工程(S5)と、亜鉛めっき層10上に着色樹脂層11を形成する着色樹脂層形成工程(S6)とを含む。以下、各工程について説明する。 The manufacturing method of the first embodiment includes a preparatory step (S1) for preparing the base metal plate 100, a base material surface texture forming step (S2) for forming the base material texture 100S on the surface of the base material steel plate 100, and a base material. A zinc plating treatment step (S3) for forming the galvanized layer 10 on the steel plate 100, and a zinc plated surface texture forming step (S3) that is an arbitrary step and is performed when the surface of the galvanized layer 10 is further textured. S4) and an arbitrary step, a polishing step (S5) of polishing the peak of the convex portion 10CO of the galvanized layer 10 as needed, and a colored resin layer 11 forming a colored resin layer 11 on the galvanized layer 10. The forming step (S6) is included. Hereinafter, each step will be described.
 [準備工程(S1)]
 準備工程(S1)では、母材鋼板100を準備する。母材鋼板100は、鋼板であってもよいし、その他の形状であってもよい。母材鋼板100が鋼板である場合、母材鋼板100は熱延鋼板であってもよいし、冷延鋼板であってもよい
[Preparation step (S1)]
In the preparation step (S1), the base steel sheet 100 is prepared. The base steel plate 100 may be a steel plate or may have another shape. When the base steel plate 100 is a steel plate, the base steel plate 100 may be a hot-rolled steel plate or a cold-rolled steel plate.
 [母材表面テクスチャ形成工程(S2)]
 母材表面テクスチャ形成工程(S2)は、母材表面に母材テクスチャ100Sを形成する。このとき、めっき鋼板は図1に示す構成となる。母材表面テクスチャ形成工程(S2)では、母材鋼板100の表面に対して周知のテクスチャ加工を実施することにより、母材鋼板100の表面に対して母材テクスチャ100Sを形成する。母材テクスチャ100Sがヘアラインである場合、周知のヘアライン加工を実施する。ヘアライン加工方法はたとえば、周知の研磨ベルトで表面を研磨してヘアラインを形成する方法、周知の砥粒ブラシで表面を研磨してヘアラインを形成する方法、ヘアライン形状を付与したロールで圧延転写してヘアラインを形成する方法等がある。ヘアラインの長さや深さ、頻度は、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、調整可能である。
[Base material surface texture forming step (S2)]
In the base material surface texture forming step (S2), the base material texture 100S is formed on the surface of the base material. At this time, the plated steel sheet has the configuration shown in FIG. In the base material surface texture forming step (S2), the base material texture 100S is formed on the surface of the base material steel plate 100 by performing a well-known texture processing on the surface of the base material steel plate 100. When the base material texture 100S is a hairline, a well-known hairline process is performed. The hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape. There is a method of forming a hairline and the like. The length, depth, and frequency of the hairline can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll.
 [亜鉛めっき処理工程(S3)]
 亜鉛めっき処理工程(S3)では、準備された母材鋼板100に対して、亜鉛めっき処理を実施して、母材鋼板100の表面に亜鉛めっき層10を形成する。
[Zinc plating process (S3)]
In the galvanizing treatment step (S3), the prepared base steel sheet 100 is subjected to galvanizing treatment to form the galvanized layer 10 on the surface of the base steel sheet 100.
 亜鉛めっき処理は、周知の方法を実施すればよい。たとえば、周知の電気めっき法を用いて亜鉛めっき層10を形成する。この場合、電気亜鉛めっき浴、及び、電気亜鉛合金めっき浴は、周知の浴を用いれば足りる。電気めっき浴はたとえば、硫酸浴、塩化物浴、ジンケート浴、シアン化物浴、ピロリン酸浴、ホウ酸浴、クエン酸浴、その他錯体浴及びこれらの組合せ等である。電気亜鉛合金めっき浴はたとえば、Znイオンの他に、Co、Cr、Cu、Fe、Ni、P、Sn、Mn、Mo、V、W、Zrから選ばれる1つ以上の単イオン又は錯イオンを含有する。 The zinc plating treatment may be carried out by a well-known method. For example, the galvanized layer 10 is formed using a well-known electroplating method. In this case, it is sufficient to use a well-known bath for the electric zinc plating bath and the electric zinc alloy plating bath. The electroplating bath is, for example, a sulfuric acid bath, a chloride bath, a zincate bath, a cyanide bath, a pyrophosphate bath, a boric acid bath, a citric acid bath, another complex bath, or a combination thereof. In addition to Zn ions, the electrozinc alloy plating bath contains, for example, one or more monatomic ions or complex ions selected from Co, Cr, Cu, Fe, Ni, P, Sn, Mn, Mo, V, W, and Zr. contains.
 電気亜鉛めっき処理における、電気亜鉛めっき浴及び電気亜鉛合金めっき浴の化学組成、温度、流速、及び、めっき処理時の条件(電流密度、通電パターン等)は、適宜調整が可能である。電気亜鉛めっき処理における亜鉛めっき層10の厚さは、電気亜鉛めっき処理時における電流密度の範囲内で電流値と時間とを調整することにより、調整可能である。 The chemical composition, temperature, flow velocity, and conditions (current density, energization pattern, etc.) of the electrogalvanizing bath and the electrogalvanizing alloy plating bath in the electrogalvanizing treatment can be appropriately adjusted. The thickness of the zinc plating layer 10 in the electrogalvanizing treatment can be adjusted by adjusting the current value and the time within the range of the current density in the electrogalvanizing treatment.
 母材鋼板100には、母材テクスチャ100Sが形成されている。そのため、母材鋼板100に対して亜鉛めっき処理を実施して、亜鉛めっき層10を形成すれば、亜鉛めっき層10の表面には、母材テクスチャ100Sに沿っためっきテクスチャ10Sが形成される。以上の製造工程により、母材テクスチャ100Sが形成されている母材鋼板100と、めっきテクスチャ10Sが形成された亜鉛めっき層10とを備えるめっき鋼板が製造される。 A base material texture 100S is formed on the base material steel plate 100. Therefore, if the base material steel plate 100 is subjected to a zinc plating treatment to form the zinc plating layer 10, a plating texture 10S along the base material texture 100S is formed on the surface of the zinc plating layer 10. Through the above manufacturing process, a plated steel sheet including the base steel sheet 100 on which the base material texture 100S is formed and the galvanized layer 10 on which the plating texture 10S is formed is manufactured.
 [亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)について]
 亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)はいずれも任意の工程である。つまり、亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)を実施しなくてもよい。亜鉛めっき表面テクスチャ形成工程(S4)を実施して、研磨工程(S5)を実施しなくてもよい。亜鉛めっき表面テクスチャ形成工程(S4)を実施せず、研磨工程(S5)を実施してもよい。亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)を実施してもよい。亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)を実施する場合、いずれを先に実施してもよい。亜鉛めっき表面テクスチャ形成工程(S4)及び研磨工程(S5)はいずれも、亜鉛めっき層10のめっきテクスチャ10Sの凸部10COの山頂を削る工程である。以下、各工程を説明する。
[About the galvanized surface texture forming step (S4) and polishing step (S5)]
The galvanized surface texture forming step (S4) and the polishing step (S5) are both arbitrary steps. That is, it is not necessary to carry out the galvanizing surface texture forming step (S4) and the polishing step (S5). It is not necessary to carry out the galvanizing surface texture forming step (S4) and not to carry out the polishing step (S5). The polishing step (S5) may be carried out without carrying out the galvanizing surface texture forming step (S4). The galvanized surface texture forming step (S4) and the polishing step (S5) may be carried out. When the galvanizing surface texture forming step (S4) and the polishing step (S5) are carried out, either of them may be carried out first. Both the galvanizing surface texture forming step (S4) and the polishing step (S5) are steps of scraping the peak of the convex portion 10CO of the plating texture 10S of the galvanizing layer 10. Hereinafter, each step will be described.
 [亜鉛めっき表面テクスチャ形成工程(S4)]
 亜鉛めっき表面テクスチャ形成工程(S4)は、任意の工程である。つまり、亜鉛めっき表面テクスチャ形成工程(S4)は実施してもよいし、実施しなくてもよい。実施する場合、亜鉛めっき表面テクスチャ形成工程(S4)では、図7に示す亜鉛めっき層10の表面のめっきテクスチャ10Sのうち、凸部10COの山頂を削って、図8に示すような台形状とし、凸部頂上三次元平均粗さSahを5nm超200nm以下にする。具体的には、亜鉛めっき表面テクスチャ形成工程(S4)では、めっき鋼板の亜鉛めっき層10の表面(めっきテクスチャ10S)に対して周知のテクスチャ加工を実施することにより、めっきテクスチャ10Sの凸部頂上三次元平均粗さSahを5nm超200nm以下にする。このとき、めっきテクスチャ10Sの凹部はほとんど削られない。そのため、凹部底三次元平均粗さSasは200nm超2000nm以下で維持される。
[Galvanized surface texture forming step (S4)]
The galvanized surface texture forming step (S4) is an arbitrary step. That is, the galvanized surface texture forming step (S4) may or may not be carried out. When this is carried out, in the galvanizing surface texture forming step (S4), of the plating texture 10S on the surface of the galvanizing layer 10 shown in FIG. 7, the peak of the convex portion 10CO is shaved to form a trapezoid as shown in FIG. The three-dimensional average roughness Sah at the top of the convex portion is set to more than 5 nm and 200 nm or less. Specifically, in the galvanized surface texture forming step (S4), the surface of the galvanized layer 10 (plating texture 10S) of the plated steel sheet is subjected to a well-known texture processing to obtain the top of the convex portion of the plated texture 10S. The three-dimensional average roughness Sah is set to more than 5 nm and 200 nm or less. At this time, the recesses of the plating texture 10S are hardly scraped. Therefore, the concave bottom three-dimensional average roughness Sas is maintained at more than 200 nm and 2000 nm or less.
 めっきテクスチャ10Sがヘアラインである場合、周知のヘアライン加工を実施する。ヘアライン加工方法はたとえば、周知の研磨ベルトで表面を研磨してヘアラインを形成する方法、周知の砥粒ブラシで表面を研磨してヘアラインを形成する方法、ヘアライン形状を付与したロールで圧延転写してヘアラインを形成する方法等がある。亜鉛めっき層10の表面のめっきテクスチャ10Sの凸部10COの山頂の研削度合いは、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、調整可能である。つまり、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、凹部底三次元平均粗さSasを200nm超2000nm以下に維持しつつ、凸部頂上三次元平均粗さSahを5nm超200nm以下に調整可能である。亜鉛めっき表面テクスチャ形成工程(S4)においてヘアライン加工を実施する場合はさらに、凹部底三次元平均粗さSasを200nm超2000nm以下に維持しつつ、凸部頂上三次元平均粗さSahを5nm超200nm以下に調整するだけでなく、めっきテクスチャ10Sに、新たなヘアラインも付与できる。なお、地鉄露出率も、亜鉛めっき表面テクスチャ形成工程(S4)における周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、調整可能である。 When the plating texture 10S is a hairline, a well-known hairline process is performed. The hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape. There is a method of forming a hairline and the like. The degree of grinding of the peak of the convex portion 10CO of the plating texture 10S on the surface of the galvanized layer 10 can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll. is there. That is, by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll, the concave bottom three-dimensional average roughness Sas is maintained at more than 200 nm and 2000 nm or less, and the convex portion top is tertiary. The original average roughness Sah can be adjusted to more than 5 nm and 200 nm or less. When the hairline processing is performed in the galvanized surface texture forming step (S4), the concave bottom three-dimensional average roughness Sa is maintained at more than 200 nm and 2000 nm or less, and the convex top three-dimensional average roughness Sah is more than 5 nm and 200 nm. In addition to the following adjustments, a new hairline can be added to the plating texture 10S. The base iron exposure rate can also be adjusted by adjusting the particle size of the well-known polishing belt in the galvanizing surface texture forming step (S4), the particle size of the well-known abrasive grain brush, and the surface shape of the roll.
 [研磨工程(S5)]
 研磨工程(S5)は任意の工程である。つまり、研磨工程(S5)は実施しなくてもよい。実施する場合、研磨工程(S5)では、図7に示す亜鉛めっき層10の表面のめっきテクスチャ10Sのうち、凸部10COの山頂を研磨して、図8に示すような台形状とし、凸部頂上三次元平均粗さSahを5nm超200nm以下にする。この研磨処理により、凹部底三次元平均粗さSasを200nm超2000nm以下に維持しつつ、凸部頂上三次元平均粗さSahを5nm超200nm以下とする。研磨処理はたとえば、周知の研磨ベルトで表面を研磨する方法、周知の砥粒ブラシで表面を研磨する方法等がある。凸部10COの形状及び凸部10COの表面の粗さは、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度を調整することにより、調整可能である。つまり、凸部頂上三次元平均粗さSahは、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度を調整することにより、調整可能である。研磨工程(S5)は、亜鉛めっき表面テクスチャ形成工程(S4)よりも研削量(研磨量)が少ない。なお、地鉄露出率も、研磨工程(S5)における周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度を調整することにより、調整可能である。
[Polishing step (S5)]
The polishing step (S5) is an arbitrary step. That is, the polishing step (S5) does not have to be performed. In the polishing step (S5), of the plating texture 10S on the surface of the galvanized layer 10 shown in FIG. 7, the peak of the convex portion 10CO is polished to form a trapezoidal shape as shown in FIG. The top three-dimensional average roughness Sah is set to more than 5 nm and 200 nm or less. By this polishing treatment, the three-dimensional average roughness Sah at the bottom of the concave portion is maintained at more than 200 nm and 2000 nm or less, and the three-dimensional average roughness Sah at the top of the convex portion is adjusted to more than 5 nm and 200 nm or less. The polishing treatment includes, for example, a method of polishing the surface with a well-known polishing belt, a method of polishing the surface with a well-known abrasive grain brush, and the like. The shape of the convex portion 10CO and the surface roughness of the convex portion 10CO can be adjusted by adjusting the particle size of the well-known polishing belt and the particle size of the well-known abrasive grain brush. That is, the three-dimensional average roughness Sah on the top of the convex portion can be adjusted by adjusting the particle size of the well-known polishing belt and the particle size of the well-known abrasive grain brush. The polishing step (S5) has a smaller grinding amount (polishing amount) than the galvanized surface texture forming step (S4). The base iron exposure rate can also be adjusted by adjusting the particle size of the well-known polishing belt in the polishing step (S5) and the particle size of the well-known abrasive grain brush.
 研磨工程(S5)は前述の亜鉛めっき表面テクスチャ形成工程(S4)と同時に行ってもよい。同時に行う事によって生産効率を高めることができる。 The polishing step (S5) may be performed at the same time as the above-mentioned galvanized surface texture forming step (S4). Production efficiency can be improved by performing at the same time.
 [着色樹脂層形成工程(S6)]
 着色樹脂層形成工程(S6)では、めっきテクスチャ10Sが形成されためっき鋼板の亜鉛めっき層10上に、着色樹脂層11を形成する。以下、着色樹脂層形成工程(S6)について詳述する。
[Colored resin layer forming step (S6)]
In the colored resin layer forming step (S6), the colored resin layer 11 is formed on the zinc plating layer 10 of the plated steel sheet on which the plating texture 10S is formed. Hereinafter, the colored resin layer forming step (S6) will be described in detail.
 着色樹脂層11の形成に使用する塗料は、めっき鋼板に塗布した瞬間には鋼材の表面形状に追従し、いったん鋼材の表面形状を反映した後のレベリングは遅いものであることが好ましい。つまり、せん断速度が速い場合には粘度が低く、せん断速度が遅い場合には粘度が高い塗料であることが好ましい。具体的には、せん断速度が0.1[1/sec]の場合には10[Pa・s]以上の粘度を有し、せん断速度が1000[1/sec]の場合には0.01[Pa・s]以下のせん断粘度を有することが好ましい。 It is preferable that the paint used for forming the colored resin layer 11 follows the surface shape of the steel material at the moment when it is applied to the plated steel sheet, and the leveling once reflecting the surface shape of the steel material is slow. That is, when the shear rate is high, the viscosity is low, and when the shear rate is low, the viscosity is high. Specifically, when the shear rate is 0.1 [1 / sec], the viscosity is 10 [Pa · s] or more, and when the shear rate is 1000 [1 / sec], 0.01 [ It is preferable to have a shear viscosity of [Pa · s] or less.
 塗料のせん断粘度の調整は、次の方法で行うことができる。塗料が水系のエマルジョン塗料である場合、水素結合性の周知の粘度調整剤を加えて調整することができる。このような水素結合性の粘度調整剤は、低せん断速度時には水素結合によって互いに拘束しあう。そのため、塗料の粘度を高めることができる。一方、高せん断速度時には水素結合が切断される。そのため、塗料の粘度が低下する。 The shear viscosity of the paint can be adjusted by the following method. When the paint is a water-based emulsion paint, it can be adjusted by adding a well-known hydrogen-bonding viscosity modifier. Such hydrogen-bonding viscosity modifiers bind each other by hydrogen bonds at low shear rates. Therefore, the viscosity of the paint can be increased. On the other hand, hydrogen bonds are broken at high shear rates. Therefore, the viscosity of the paint decreases.
 着色樹脂層11の形成に用いる塗料のせん断粘度を調整することにより、上述の着色樹脂層11の表面形状を調整することができる。 By adjusting the shear viscosity of the paint used to form the colored resin layer 11, the surface shape of the colored resin layer 11 can be adjusted.
 亜鉛めっき層10上に着色樹脂層11を形成する方法は、周知の方法でよい。たとえば、粘度を調整された塗料を、吹き付け法、ロールコーター法、カーテンコーター法、又は、浸漬引き上げ法により、亜鉛めっき層10上に塗布する。その後、亜鉛めっき層10上の塗料に対して、自然乾燥、又は、焼付け乾燥を実施して、着色樹脂層11を形成する。乾燥温度、乾燥時間、焼付き温度、焼付時間は、適宜調整可能である。着色樹脂層11の形成に用いる塗料のせん断粘度及び亜鉛めっき層10上での塗布量等を調整することにより、三次元平均粗さSaave、着色樹脂層11の最小厚さDKmin、最大厚さDKmaxを調整できる。また、塗料中の着色剤の含有量を調整することにより、着色樹脂層11中の着色剤含有量CKを調整できる。 The method of forming the colored resin layer 11 on the galvanized layer 10 may be a well-known method. For example, the viscosity-adjusted paint is applied onto the galvanized layer 10 by a spraying method, a roll coater method, a curtain coater method, or a dipping pulling method. Then, the paint on the galvanized layer 10 is naturally dried or baked to form the colored resin layer 11. The drying temperature, drying time, seizure temperature, and seizure time can be adjusted as appropriate. By adjusting the shear viscosity of the paint used to form the colored resin layer 11 and the amount of coating on the galvanized layer 10, the three-dimensional average roughness Save, the minimum thickness DKmin of the colored resin layer 11, and the maximum thickness DKmax Can be adjusted. Further, the colorant content CK in the colored resin layer 11 can be adjusted by adjusting the content of the colorant in the paint.
 以上の製造工程により、第1実施形態のめっき鋼板1を製造できる。なお、第1実施形態のめっき鋼板1は、上記製造方法に限定されず、上述の構成を有するめっき鋼板1が製造できれば、上記製造方法以外の他の製造方法で第1実施形態のめっき鋼板1を製造してもよい。ただし、上記製造方法は、第1実施形態のめっき鋼板1の製造に好適である。 The plated steel sheet 1 of the first embodiment can be manufactured by the above manufacturing process. The plated steel sheet 1 of the first embodiment is not limited to the above manufacturing method, and if the plated steel sheet 1 having the above configuration can be manufactured, the plated steel sheet 1 of the first embodiment can be manufactured by a manufacturing method other than the above manufacturing method. May be manufactured. However, the above manufacturing method is suitable for manufacturing the plated steel sheet 1 of the first embodiment.
(第2の実施形態)
 第1の実施形態に係るめっき鋼板では、着色樹脂層の密着性及び亜鉛めっき層の表面のテクスチャの視認性の両方を高めることを試みた。しかしながら、めっき鋼板の用途次第では、着色樹脂層の密着性よりもテクスチャ視認性の方が優先される場合がある。本発明者らは、着色した外観でありながら、亜鉛めっき層の表面のテクスチャの視認性が一層高いめっき鋼板の検討を行った。特許文献1及び2に記載のとおり、亜鉛めっき層上に、透明樹脂層が形成された亜鉛めっき鋼板は既に提案されている。そこで、本発明者らは始めに、亜鉛めっき層上に形成される樹脂層に着色剤を含有させて着色した亜鉛めっき鋼板の製造を試みた。
(Second Embodiment)
In the plated steel sheet according to the first embodiment, it was attempted to improve both the adhesion of the colored resin layer and the visibility of the surface texture of the galvanized layer. However, depending on the use of the plated steel sheet, texture visibility may be prioritized over adhesion of the colored resin layer. The present inventors have studied a plated steel sheet having a colored appearance but having a higher visibility of the texture of the surface of the galvanized layer. As described in Patent Documents 1 and 2, a galvanized steel sheet in which a transparent resin layer is formed on a galvanized layer has already been proposed. Therefore, the present inventors first attempted to produce a galvanized steel sheet in which a resin layer formed on the galvanized layer was colored by containing a colorant.
 その結果、樹脂層に着色剤を含有させた場合、条件によっては、亜鉛めっき層の表面に形成されたテクスチャが視認できない場合があることが判明した。そこで、本発明者らは、樹脂に着色剤を含有させた場合に、テクスチャの視認に影響を与える因子について、調査及び検討を行った。その結果、本発明者らは、次の知見を得た。 As a result, it was found that when the resin layer contains a colorant, the texture formed on the surface of the galvanized layer may not be visible depending on the conditions. Therefore, the present inventors have investigated and investigated factors that affect the visual recognition of the texture when the resin contains a colorant. As a result, the present inventors obtained the following findings.
 表面にテクスチャが形成された亜鉛めっき層上に、着色剤を含む着色樹脂層を形成する場合、着色樹脂層中の着色剤の含有量と、着色樹脂層の厚さとは、テクスチャの視認に影響を与える。具体的には、着色樹脂層中の着色剤の含有量が多すぎれば、テクスチャが視認できなくなる。さらに、着色樹脂層が厚すぎれば、テクスチャが視認できなくなる。 When a colored resin layer containing a colorant is formed on a zinc-plated layer having a texture formed on the surface, the content of the colorant in the colored resin layer and the thickness of the colored resin layer affect the visibility of the texture. give. Specifically, if the content of the colorant in the colored resin layer is too large, the texture cannot be visually recognized. Further, if the colored resin layer is too thick, the texture cannot be visually recognized.
 さらに、テクスチャの形状も、テクスチャの視認に影響を与える。亜鉛めっき層の表面にテクスチャが形成されている場合、亜鉛めっき層の表面には、テクスチャの凹凸だけでなく、テクスチャの表面に、亜鉛めっきの結晶に起因した微小な凹凸も存在する。亜鉛めっきの結晶に起因した微小凹凸が大きければ、亜鉛めっきの結晶に起因した微小凹凸により光が乱反射される。この場合、テクスチャの光沢が低下してテクスチャが白化する。そのため、亜鉛めっき層上に着色樹脂層を形成した場合、テクスチャが視認しにくくなる。したがって、テクスチャの視認性を一層向上させる観点からは、一方向に延在するテクスチャの山頂(凸部)又は底(凹部)での微視的領域での粗さ(微小凹凸)は抑えた方が好ましい。 Furthermore, the shape of the texture also affects the visibility of the texture. When a texture is formed on the surface of the galvanized layer, not only the unevenness of the texture but also the fine unevenness due to the galvanized crystals is present on the surface of the texture. If the fine irregularities caused by the galvanized crystals are large, the light is diffusely reflected by the fine irregularities caused by the galvanized crystals. In this case, the gloss of the texture is reduced and the texture is whitened. Therefore, when the colored resin layer is formed on the galvanized layer, the texture becomes difficult to see. Therefore, from the viewpoint of further improving the visibility of the texture, it is better to suppress the roughness (micro unevenness) in the microscopic region at the peak (convex part) or bottom (concave part) of the texture extending in one direction. Is preferable.
 さらに、テクスチャの延在方向に垂直な断面において、テクスチャ上に形成されている樹脂の厚さは、テクスチャの凹凸に応じて変動する。図9は、本実施形態のめっき鋼板において、テクスチャの延在方向に垂直な断面の模式図である。図9を参照して、めっき鋼板は、亜鉛めっき層10’と、着色樹脂層11’とを含む。亜鉛めっき層10’の表面には、テクスチャ10S’が形成されている。テクスチャ10S’は、凸部10CO’(Convex)と、凹部10RE’(Recess)とを含む。 Furthermore, in the cross section perpendicular to the extending direction of the texture, the thickness of the resin formed on the texture varies depending on the unevenness of the texture. FIG. 9 is a schematic view of a cross section perpendicular to the extending direction of the texture in the plated steel sheet of the present embodiment. With reference to FIG. 9, the plated steel sheet includes a galvanized layer 10'and a colored resin layer 11'. A texture 10S'is formed on the surface of the galvanized layer 10'. The texture 10S'includes a convex portion 10CO'(Convex) and a concave portion 10RE'(Recess).
 着色樹脂層11’は、亜鉛めっき層10’の表面上に形成されている。そのため、着色樹脂層11’の表面11S’には、テクスチャ10S’の凹凸がある程度反映されるものの、テクスチャ10S’よりは平坦化している。具体的には、着色樹脂層11’の表面11S’のうち、テクスチャ10S’の凸部10CO’に対応する部分には、凸部11CO’が形成される。凸部11CO’の高さは、凸部10CO’の高さよりも低い。つまり、着色樹脂層11’の表面11S’の方が、テクスチャ10S’の表面よりも、より平坦化している。 The colored resin layer 11'is formed on the surface of the galvanized layer 10'. Therefore, although the unevenness of the texture 10S'is reflected to some extent on the surface 11S'of the colored resin layer 11', it is flatter than the texture 10S'. Specifically, the convex portion 11CO'is formed on the portion of the surface 11S'of the colored resin layer 11' that corresponds to the convex portion 10CO'of the texture 10S'. The height of the convex portion 11CO'is lower than the height of the convex portion 10CO'. That is, the surface 11S'of the colored resin layer 11'is flatter than the surface of the texture 10S'.
 ここで、テクスチャ10S’の延在方向に垂直な方向の100μm長さの範囲において、着色樹脂層11’の最大厚さ(μm)をDKmax’と定義する。また、着色樹脂層11’の最小厚さ(μm)をDKmin’と定義する。着色樹脂層11’により着色した場合であっても、テクスチャ10S’を視認可能にするためには、上述のとおり、着色樹脂層11’中の着色剤含有量と、着色樹脂層11’の厚さとをある程度に制限する。そして、その制限した条件下においては、着色樹脂層11’の最大厚さDKmax’と最小厚さDKmin’との差が明度差に反映される。具体的には、着色樹脂層11’の最大厚さDKmax’と最小厚さDKmin’の差をある程度大きくすることにより、テクスチャ10S’の凹部10RE’と凸部10CO’とで明度に差が生じる。その結果、着色樹脂層11’を形成した場合であっても、テクスチャ10S’を視認できる。 Here, the maximum thickness (μm) of the colored resin layer 11'is defined as DKmax'in the range of 100 μm length in the direction perpendicular to the extending direction of the texture 10S'. Further, the minimum thickness (μm) of the colored resin layer 11'is defined as DKmin'. In order to make the texture 10S'visible even when it is colored by the colored resin layer 11', as described above, the content of the colorant in the colored resin layer 11'and the thickness of the colored resin layer 11' Limit the plastic to some extent. Then, under the restricted conditions, the difference between the maximum thickness DKmax'and the minimum thickness DKmin'of the colored resin layer 11'is reflected in the difference in brightness. Specifically, by increasing the difference between the maximum thickness DKmax'and the minimum thickness DKmin' of the colored resin layer 11'to some extent, a difference in brightness is generated between the concave portion 10RE'and the convex portion 10CO'of the texture 10S'. .. As a result, the texture 10S'can be visually recognized even when the colored resin layer 11'is formed.
 以上の知見に基づいて、本発明者らは、(A’)テクスチャ10S’の凸部10CO’及び凹部10RE’の微小領域での粗さを調整し、(B’)着色樹脂層11’の厚さと着色剤含有量とを調整し、(C’)テクスチャ10S’の延在方向と直交する断面での着色樹脂層11’の最大厚さDKmax’と最小厚さDKmin’との差をある程度の大きさにする、ことにより、着色した外観でありながら、亜鉛めっき層の表面のテクスチャを視認可能な、めっき鋼板とすることができることを見出した。 Based on the above findings, the present inventors adjusted the roughness of the convex portion 10CO'and the concave portion 10RE'of the (A') texture 10S' in a minute region, and adjusted the roughness of the (B') colored resin layer 11'. By adjusting the thickness and the colorant content, the difference between the maximum thickness DKmax'and the minimum thickness DKmin' of the colored resin layer 11'in the cross section orthogonal to the extending direction of the (C') texture 10S' is set to some extent. It was found that the galvanized steel sheet can be made into a galvanized steel sheet in which the surface texture of the galvanized layer can be visually recognized while having a colored appearance.
 以上の知見に基づいて完成した第2実施形態のめっき鋼板は、次の構成を有する。 The plated steel sheet of the second embodiment completed based on the above findings has the following configuration.
 [11]のめっき鋼板は、
 母材鋼板と、
 前記母材鋼板の表面に形成されている亜鉛めっき層と、
 前記亜鉛めっき層上に形成されている着色樹脂層とを備え、
 前記亜鉛めっき層は、その表面に、一方向に延びているテクスチャを有し、
 前記着色樹脂層は着色剤を含有しており、
 次の(A’)~(C’)の全てを満たす。
(A’)前記テクスチャの延在方向に垂直な方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル上の位置のうち、高さが低い順に10点特定した位置を凹部底点と定義し、測定された前記粗さプロファイル上の位置のうち、高さが高い順に10点特定した位置を凸部頂点と定義し、各凹部底点及び各凸部頂点を中心とした1μm×1μmの微小領域の三次元平均粗さSa’を測定し、測定された三次元平均粗さSa’の算術平均値を三次元平均粗さSaave’と定義したとき、三次元平均粗さSaave’が5nm超200nm以下である。
(B’)前記テクスチャの延在方向に直交する方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKmin’と定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCK’と定義したとき、式(1’)を満たす。
 DKmin’×CK’≦15.0 (1’)
(C’)前記テクスチャの延在方向に垂直な方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmax’と定義したとき、式(2’)を満たす。
 (DKmax’-DKmin’)×CK’>1.0 (2’)
The plated steel sheet of [11] is
Base steel plate and
The galvanized layer formed on the surface of the base steel sheet and
A colored resin layer formed on the galvanized layer is provided.
The galvanized layer has a texture extending in one direction on its surface.
The colored resin layer contains a colorant and
All of the following (A') to (C') are satisfied.
(A') A roughness profile in a length range of 1000 μm in a direction perpendicular to the extending direction of the texture is measured, and 10 points are specified in ascending order of height among the measured positions on the roughness profile. The determined position is defined as the concave bottom point, and among the measured positions on the roughness profile, the position where 10 points are specified in descending order of height is defined as the convex apex, and each concave bottom point and each convex apex are defined. When the three-dimensional average roughness Sa'of a minute region of 1 μm × 1 μm centered on the above is measured and the arithmetic average value of the measured three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Saave', it is cubic. The original average roughness Save'is more than 5 nm and 200 nm or less.
(B') The minimum thickness (μm) of the colored resin layer is defined as DKmin'in the range of 100 μm length in the direction orthogonal to the extending direction of the texture, and the colorant in the colored resin layer. When the content (area%) is defined as CK', the formula (1') is satisfied.
DKmin'× CK'≤15.0 (1')
(C') The formula (2') is satisfied when the maximum thickness (μm) of the colored resin layer is defined as DKmax'in the range of 100 μm in the direction perpendicular to the extending direction of the texture.
(DKmax'-DKmin') x CK'> 1.0 (2')
 [12]のめっき鋼板は、
 [11]に記載のめっき鋼板であって、
 前記テクスチャは、ヘアラインであってもよく、
 次の(D’)及び(E’)を満たしてもよい。
(D’)前記テクスチャの延在方向の前記着色樹脂層の表面粗さRaをRa(CL)’と定義し、前記テクスチャの延在方向と垂直な方向の前記着色樹脂層の表面粗さRaをRa(CC)’と定義したとき、式(3’)を満たす。
 Ra(CC)’≧Ra(CL)’×1.10 (3’)
(E’)前記テクスチャの延在方向と直交する方向の亜鉛めっき層の表面粗さをRa(MC)’と定義したとき、Ra(MC)’が0.30μm以上である。
The plated steel sheet of [12] is
The plated steel sheet according to [11].
The texture may be a hairline
The following (D') and (E') may be satisfied.
(D') The surface roughness Ra of the colored resin layer in the extending direction of the texture is defined as Ra (CL)', and the surface roughness Ra of the colored resin layer in the direction perpendicular to the extending direction of the texture is defined. Is defined as Ra (CC)', the equation (3') is satisfied.
Ra (CC)'≧ Ra (CL)' × 1.10 (3')
(E') When the surface roughness of the galvanized layer in the direction orthogonal to the extending direction of the texture is defined as Ra (MC)', Ra (MC)'is 0.30 μm or more.
 [13]のめっき鋼板は、
 [11]又は[12]に記載のめっき鋼板であって、
 前記亜鉛めっき層の地鉄露出率が5%未満であってもよい。
The plated steel sheet of [13] is
The plated steel sheet according to [11] or [12].
The base iron exposure rate of the galvanized layer may be less than 5%.
 以下、第2実施形態のめっき鋼板について詳述する。 Hereinafter, the plated steel sheet of the second embodiment will be described in detail.
 [めっき鋼板1’について]
 図10は、第2実施形態のめっき鋼板1’の断面図である。図10において、紙面に垂直な方向を、テクスチャ10S’の延在方向(つまり、めっき鋼板1’の圧延方向)RD’と定義する。めっき鋼板1’の厚さ方向を、厚さ方向TD’と定義する。めっき鋼板1’のうち、テクスチャの延在方向RD’及び厚さ方向TD’に対して垂直な方向を、幅方向WD’と定義する。なお、この定義によるRD’、TD’、及びWD’は、第1実施形態におけるRD、TD、及びWDと実質的に同じ概念である。
[About galvanized steel sheet 1']
FIG. 10 is a cross-sectional view of the plated steel sheet 1'of the second embodiment. In FIG. 10, the direction perpendicular to the paper surface is defined as the extending direction of the texture 10S'(that is, the rolling direction of the plated steel sheet 1') RD'. The thickness direction of the plated steel sheet 1'is defined as the thickness direction TD'. Of the plated steel sheets 1', the direction perpendicular to the texture extending direction RD'and the thickness direction TD' is defined as the width direction WD'. In addition, RD', TD', and WD'by this definition are substantially the same concept as RD, TD, and WD in the first embodiment.
 図10を参照して、第2実施形態のめっき鋼板1’は、母材鋼板100’と、亜鉛めっき層10’と、着色樹脂層11’とを備える。亜鉛めっき層10’は、母材鋼板100’の表面上に形成されている。着色樹脂層11’は、亜鉛めっき層10’の表面(テクスチャ)10S’上に形成されている。亜鉛めっき層10’は、母材鋼板100’と、着色樹脂層11’との間に配置されている。以下、母材鋼板100’、亜鉛めっき層10’、及び、着色樹脂層11’について、説明する。 With reference to FIG. 10, the plated steel sheet 1'of the second embodiment includes a base steel sheet 100', a galvanized layer 10', and a colored resin layer 11'. The galvanized layer 10'is formed on the surface of the base steel sheet 100'. The colored resin layer 11'is formed on the surface (texture) 10S' of the galvanized layer 10'. The galvanized layer 10'is arranged between the base steel plate 100'and the colored resin layer 11'. Hereinafter, the base steel plate 100', the galvanized layer 10', and the colored resin layer 11' will be described.
 [母材鋼板100’について]
 母材鋼板100’は、製造するめっき鋼板に求められる各機械的性質(たとえば、引張強度、加工性等)に応じて、めっき鋼板(電気亜鉛めっき鋼板、電気亜鉛合金めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等)に適用される公知の鋼板を使用すればよい。たとえば、母材鋼板100’として、電気機器用途の鋼板を使用してもよいし、自動車外板用途の鋼板を使用してもよい。母材鋼板100’は熱延鋼板であってもよいし、冷延鋼板であってもよい。
[About base steel sheet 100']
The base steel sheet 100'is a plated steel sheet (electrogalvanized steel sheet, electrogalvanized steel sheet, hot-dip galvanized steel sheet, etc.) according to each mechanical property (for example, tensile strength, workability, etc.) required for the plated steel sheet to be manufactured. , Known steel sheets applied to alloyed hot-dip galvanized steel sheets, etc.) may be used. For example, as the base steel plate 100', a steel plate for electrical equipment may be used, or a steel plate for automobile outer panels may be used. The base steel plate 100'may be a hot-rolled steel plate or a cold-rolled steel plate.
 [亜鉛めっき層10’について]
 亜鉛めっき層10’は、母材鋼板100’の表面上に形成されている。第2実施形態において、亜鉛めっき層10’は、母材鋼板100’と着色樹脂層11’との間に配置されている。亜鉛めっき層10’は、周知の亜鉛めっき処理法により形成されている。具体的には、亜鉛めっき層10’はたとえば、電気めっき法、溶融めっき法のいずれかのめっき法により形成されている。本明細書において、亜鉛めっき層10’は、亜鉛合金めっき層も含む。より具体的には、亜鉛めっき層10’は、電気亜鉛めっき層、電気亜鉛合金めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層を含む概念である。
[About galvanized layer 10']
The galvanized layer 10'is formed on the surface of the base steel sheet 100'. In the second embodiment, the galvanized layer 10'is arranged between the base steel plate 100'and the colored resin layer 11'. The galvanized layer 10'is formed by a well-known galvanized method. Specifically, the zinc plating layer 10'is formed by, for example, either an electroplating method or a hot-dip plating method. In the present specification, the zinc plating layer 10'also includes a zinc alloy plating layer. More specifically, the zinc plating layer 10'is a concept including an electrogalvanizing layer, an electrogalvanizing alloy plating layer, a hot-dip galvanizing layer, and an alloyed hot-dip galvanizing layer.
 第2実施形態における亜鉛めっき層10’は周知の化学組成を有すれば足りる。例えば、亜鉛めっき層10’の化学組成中のZn含有量は、質量%で65%以上であってもよい。Zn含有量が質量%で65%以上であれば、犠牲防食機能が顕著に発揮され、めっき鋼板1’の耐食性が顕著に高まる。亜鉛めっき層10’の化学組成中のZn含有量の好ましい下限は70%であり、さらに好ましくは80%である。 It suffices that the galvanized layer 10'in the second embodiment has a well-known chemical composition. For example, the Zn content in the chemical composition of the galvanized layer 10'may be 65% or more in mass%. When the Zn content is 65% or more in mass%, the sacrificial anticorrosion function is remarkably exhibited, and the corrosion resistance of the plated steel sheet 1'is remarkably enhanced. The preferable lower limit of the Zn content in the chemical composition of the galvanized layer 10'is 70%, more preferably 80%.
 亜鉛めっき層10’の化学組成は、Al、Co、Cr、Cu、Fe、Ni、P、Si、Sn、Mg、Mn、Mo、V、W、Zrからなる元素群から選択される1元素又は2元素以上と、Znとを含有するのが好ましい。また、亜鉛めっき層10’が電気亜鉛めっき層である場合の亜鉛めっき層10’の化学組成は、Fe、Ni、及び、Coからなる元素群から選択される少なくとも1元素以上を合計で5~20質量%含有し、残部はZn及び不純物からなることがさらに好ましい。また、亜鉛めっき層10’が溶融亜鉛めっき層である場合の亜鉛めっき層10’の化学組成は、Mg、Al、Siからなる元素群から選択される少なくとも1元素以上を合計で5~20質量%含有し、残部がZn及び不純物からなることがさらに好ましい。これらの場合、亜鉛めっき層10’はさらに、優れた耐食性を示す。 The chemical composition of the galvanized layer 10'is one element selected from the element group consisting of Al, Co, Cr, Cu, Fe, Ni, P, Si, Sn, Mg, Mn, Mo, V, W and Zr. It preferably contains two or more elements and Zn. When the zinc plating layer 10'is an electrogalvanizing layer, the chemical composition of the zinc plating layer 10'is 5 to at least one element selected from the element group consisting of Fe, Ni, and Co in total. It is more preferably contained in an amount of 20% by mass, and the balance is made of Zn and impurities. When the zinc-plated layer 10'is a hot-dip galvanized layer, the chemical composition of the zinc-plated layer 10'is a total of 5 to 20 masses of at least one element selected from the element group consisting of Mg, Al, and Si. It is more preferable that the content is% and the balance is composed of Zn and impurities. In these cases, the galvanized layer 10'also exhibits excellent corrosion resistance.
 亜鉛めっき層10’は、不純物を含有していてもよい。ここで、不純物とは、原料中に混入している、又は、製造工程において混入するものである。不純物はたとえば、Ti、B、S、N、C、Nb、Pb、Cd、Ca、Pb、Y、La、Ce、Sr、Sb、O、F、Cl、Zr、Ag、W、H等である。亜鉛めっき層10’の化学組成において、不純物の総含有量が1%以下であるのが好ましい。 The galvanized layer 10'may contain impurities. Here, the impurities are those that are mixed in the raw material or are mixed in the manufacturing process. Impurities are, for example, Ti, B, S, N, C, Nb, Pb, Cd, Ca, Pb, Y, La, Ce, Sr, Sb, O, F, Cl, Zr, Ag, W, H and the like. .. In the chemical composition of the galvanized layer 10', the total content of impurities is preferably 1% or less.
 亜鉛めっき層10’の化学組成は、たとえば、次の方法により測定可能である。亜鉛めっき層10’を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤でめっき鋼板1’の着色樹脂層11’を除去する。その後、インヒビター入りの塩酸を用いて、亜鉛めっき層10’を溶解する。溶解液に対して、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析装置を用いたICP分析を実施して、Zn含有量を求める。求めたZn含有量が65%以上であれば、測定対象のめっき層が亜鉛めっき層10’であると判断する。 The chemical composition of the galvanized layer 10'can be measured by, for example, the following method. The colored resin layer 11'of the plated steel sheet 1'is removed with a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). Then, the galvanized layer 10'is dissolved using hydrochloric acid containing an inhibitor. The lysate is subjected to ICP analysis using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer to determine the Zn content. If the obtained Zn content is 65% or more, it is determined that the plating layer to be measured is the zinc plating layer 10'.
 [亜鉛めっき層10’の付着量について]
 亜鉛めっき層10’の付着量は特に制限されず、周知の付着量であれば足りる。亜鉛めっき層10’の好ましい付着量は、5.0~120.0g/mである。亜鉛めっき層10’の付着量が5.0g/m以上であれば、亜鉛めっき層10’に後述のテクスチャを付与した場合、地鉄(母材鋼板100’)が露出するのを抑制できる。亜鉛めっき層10’の付着量のさらに好ましい下限は7.0g/mであり、さらに好ましくは10.0g/mである。亜鉛めっき層10’の付着量の上限については特に制限されない。経済性の観点から、電気めっき法による亜鉛めっき層10’であれば、好ましい付着量の上限は40.0gmであり、さらに好ましい上限は35.0g/mであり、さらに好ましくは30.0g/mである。
[Adhesion amount of galvanized layer 10']
The amount of adhesion of the galvanized layer 10'is not particularly limited, and a well-known amount of adhesion is sufficient. The preferable adhesion amount of the galvanized layer 10'is 5.0 to 120.0 g / m 2 . When the adhesion amount of the galvanized layer 10'is 5.0 g / m 2 or more, it is possible to suppress the exposure of the base iron (base steel plate 100') when the texture described later is applied to the galvanized layer 10'. .. A more preferable lower limit of the adhesion amount of the galvanized layer 10'is 7.0 g / m 2 , and even more preferably 10.0 g / m 2 . The upper limit of the amount of adhesion of the galvanized layer 10'is not particularly limited. From the viewpoint of economy, in the case of the galvanized layer 10'by the electroplating method, the upper limit of the preferable adhesion amount is 40.0 gm 2 , the more preferable upper limit is 35.0 g / m 2 , and more preferably 30. It is 0 g / m 2 .
 [着色樹脂層11’について]
 着色樹脂層11’は、亜鉛めっき層10’の表面(テクスチャ)10S’上に形成されている。図11は、図10に示す着色樹脂層11’の拡大図である。図11を参照して、着色樹脂層11’は、樹脂31’と、着色剤32’とを備える。着色剤32’は、樹脂31’中に含有されている。以下、樹脂31’及び着色剤32’について説明する。
[About colored resin layer 11']
The colored resin layer 11'is formed on the surface (texture) 10S' of the galvanized layer 10'. FIG. 11 is an enlarged view of the colored resin layer 11'shown in FIG. With reference to FIG. 11, the colored resin layer 11'includes a resin 31' and a colorant 32'. The colorant 32'is contained in the resin 31'. Hereinafter, the resin 31'and the colorant 32' will be described.
 [樹脂31’について]
 樹脂31’は、透光性を有する樹脂である。第2実施形態において、「透光性を有する樹脂」とは、晴天午前の太陽光相当(照度約65000ルクス)の環境に着色剤32’及び樹脂31’を含有する着色樹脂層11’を備えるめっき鋼板1’を置いたとき、亜鉛めっき層10’のテクスチャ10S’を視認できることを意味する。樹脂31’は、着色剤32’を固着するバインダーとして機能する。
[About resin 31']
Resin 31'is a translucent resin. In the second embodiment, the "translucent resin" includes a colored resin layer 11'containing a colorant 32'and a resin 31'in an environment equivalent to sunlight (illuminance of about 65,000 lux) in fine morning. It means that the texture 10S'of the galvanized layer 10'can be visually recognized when the plated steel sheet 1'is placed. The resin 31'functions as a binder for fixing the colorant 32'.
 樹脂31’は、上述の定義の透光性を有する樹脂であれば特に限定されず、周知の天然樹脂、又は、周知の合成樹脂を用いることができる。第2実施形態における樹脂31’はたとえば、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリエーテルサルホン系樹脂、メラミンアルキッド系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリ酢酸ビニル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂からなる群から選択される1種又は2種以上である。 The resin 31'is not particularly limited as long as it is a resin having the above-defined translucency, and a well-known natural resin or a well-known synthetic resin can be used. The resin 31'in the second embodiment is, for example, an epoxy resin, a urethane resin, a polyester resin, a phenol resin, a polyether sulfone resin, a melamine alkyd resin, an acrylic resin, a polyamide resin, or a polyimide resin. , Silicone resin, polyvinyl acetate resin, polyolefin resin, polystyrene resin, vinyl chloride resin, vinyl acetate resin, one or more selected from the group.
 [着色剤32’について]
 着色剤32’は、上述の樹脂31’中に含有されることにより、着色樹脂層11’を着色する。第2実施形態における着色剤32’は周知のものであって、無機顔料、有機顔料、染料等、鋼板表面に形成する樹脂層を着色する際に用いるものを広く含む。着色剤32’は、有彩色の着色剤である。有彩色とは、色相、明度及び彩度の属性を有する色を意味する。着色剤32’はたとえば、無機顔料、有機顔料、及び、染料からなる群から選択される1種以上からなる。なお、紫外線への耐久性の観点から、着色剤32’は顔料系(無機顔料及び/又は有機顔料)がより好ましい。
[About colorant 32']
The colorant 32'is contained in the above-mentioned resin 31'to color the colored resin layer 11'. The colorant 32'in the second embodiment is well known and widely includes inorganic pigments, organic pigments, dyes and the like used for coloring the resin layer formed on the surface of the steel sheet. The colorant 32'is a chromatic colorant. A chromatic color means a color having the attributes of hue, lightness, and saturation. The colorant 32'consist of, for example, one or more selected from the group consisting of inorganic pigments, organic pigments, and dyes. From the viewpoint of durability against ultraviolet rays, the colorant 32'is more preferably a pigment type (inorganic pigment and / or organic pigment).
 着色剤32’が無機顔料である場合、着色剤32’はたとえば、中和沈殿顔料(硫酸塩、炭酸塩等)、及び/又は、焼成顔料(金属硫化物、金属酸化物、多価金属複合酸化物等)である。着色剤32’が有機顔料である場合、着色剤32’はたとえば、塩素性顔料、アゾ顔料(溶製アゾレーキ顔料、不溶性アゾ顔料等)、酸縮合顔料、多環式顔料(フタロシアニン系顔料、インジゴ型顔料、キナクリドン型顔料、アントラキノン型顔料等)、金属錯体顔料(アゾキレート顔料、遷移金属錯体顔料等)からなる群から選択される1種以上である。着色剤32’が染料である場合、着色剤32’はたとえば、アゾ染料、インジゴ染料、アントラキノン染料、硫化染料、カーボニウム染料からなる群から選択される1種以上である。 When the colorant 32'is an inorganic pigment, the colorant 32'is, for example, a neutralized precipitate pigment (sulfate, carbonate, etc.) and / or a fired pigment (metal sulfide, metal oxide, polyvalent metal composite). Oxides, etc.). When the colorant 32'is an organic pigment, the colorant 32'is, for example, a chlorine pigment, an azo pigment (dissolved azo lake pigment, insoluble azo pigment, etc.), an acid condensing pigment, a polycyclic pigment (phthalocyanine pigment, indigo). One or more selected from the group consisting of type pigments, quinacridone type pigments, anthraquinone type pigments, etc.) and metal complex pigments (azochelate pigments, transition metal complex pigments, etc.). When the colorant 32'is a dye, the colorant 32'is, for example, one or more selected from the group consisting of azo dyes, indigo dyes, anthraquinone dyes, sulfide dyes, and carbonium dyes.
 着色剤32’の色は特に限定されない。着色剤32’はたとえば、カーボンブラック(C’)、鉄黒(Fe)の黒色である。ただし、着色剤32’は黒色に限定されず、他の色の着色剤32’(白色、紫赤色、黄色、緑青色、赤色、橙色、黄色、緑色、青色、藍色、紫色等)であってもよい。 The color of the colorant 32'is not particularly limited. The colorant 32'is, for example, the black color of carbon black (C') or iron black (Fe 3 O 4 ). However, the colorant 32'is not limited to black, but is a colorant 32'of another color (white, purple-red, yellow, green-blue, red, orange, yellow, green, blue, indigo, purple, etc.). You may.
 着色剤32’が顔料である場合、粒子径は特に限定されない。着色剤32’が顔料である場合の一次粒径の最大値はたとえば、3nm~1000nmである。 When the colorant 32'is a pigment, the particle size is not particularly limited. When the colorant 32'is a pigment, the maximum value of the primary particle size is, for example, 3 nm to 1000 nm.
 [亜鉛めっき層10’の表面に形成されるテクスチャ10S’について]
 めっき鋼板1’の亜鉛めっき層10’の表面には、テクスチャ10S’が形成されている。即ち、めっき鋼板1’の亜鉛めっき層10’は、その表面にテクスチャ10S’を有する。テクスチャ10S’は一方向に延在している。第2実施形態において「テクスチャ」とは、物理的又は化学的手法によって、亜鉛めっき層10’の表面に形成された凹凸模様を意味する。好ましいテクスチャは、ヘアラインである。ヘアラインは、一方向に延在する線状の凹凸模様である。
[About the texture 10S'formed on the surface of the galvanized layer 10']
A texture 10S'is formed on the surface of the galvanized layer 10'of the plated steel sheet 1'. That is, the galvanized layer 10'of the plated steel sheet 1'has a texture 10S' on its surface. The texture 10S'extends in one direction. In the second embodiment, the "texture" means an uneven pattern formed on the surface of the galvanized layer 10'by a physical or chemical method. A preferred texture is a hairline. The hairline is a linear uneven pattern extending in one direction.
 [テクスチャ10S’がヘアラインの場合]
 図12は、表面にテクスチャ10S’としてヘアラインが形成されている亜鉛めっき層10’の平面図である。図12を参照して、ヘアライン10S’は、亜鉛めっき層10’の表面に形成されている直線状の凹凸模様である。ヘアライン10S’の延在方向RD’は同一方向である。ここでいう同一方向とは、亜鉛めっき層10’を厚さ方向TD’に見た場合(つまり、図12のような平面視において)、ヘアライン10S’の延在方向RD’と垂直な方向WD’に配列された、互いに隣り合うヘアライン同士のなす角度のうち90%以上が、±5°未満であることを意味する。
[When texture 10S'is a hairline]
FIG. 12 is a plan view of the galvanized layer 10'with a hairline formed as a texture 10S' on the surface. With reference to FIG. 12, the hairline 10S'is a linear uneven pattern formed on the surface of the galvanized layer 10'. The extending direction RD'of the hairline 10S'is the same direction. The same direction here means the direction WD perpendicular to the extending direction RD'of the hairline 10S' when the zinc-plated layer 10'is viewed in the thickness direction TD' (that is, in a plan view as shown in FIG. 12). It means that 90% or more of the angles formed by adjacent hairlines arranged in'is less than ± 5 °.
 [要件(A’)~(C’)について]
 上述の構成を有する第2実施形態のめっき鋼板1’はさらに、次の(A’)~(C’)の全てを満たす。
 要件(A’):
 テクスチャ10S’の延在方向RD’に直交する方向WD’の1000μmの長さの範囲の粗さプロファイルを測定し、測定された粗さプロファイル上の位置のうち、高さが低い順に10点特定した位置を凹部底点と定義し、測定された粗さプロファイル上の位置のうち、高さが高い順に10点特定した位置を凸部頂点と定義する。各凹部底点及び各凸部頂点を中心とした1μm×1μmの微小領域の三次元平均粗さSa’を測定する。測定された三次元平均粗さSa’の算術平均値を三次元平均粗さSaave’と定義する。このとき、三次元平均粗さSaave’が5nm超200nm以下である。
 要件(B’):
 テクスチャ10S’の延在方向RD’に直交する方向WD’の100μm長さの範囲において、着色樹脂層11’の最小厚さ(μm)をDKmin’と定義する。さらに、着色樹脂層11’中の着色剤32’の含有量(面積%)をCK’と定義する。このとき、着色樹脂層11’の最小厚さDKmin’と着色剤32’の含有量CK’とは、式(1’)を満たす。
 DKmin’×CK’≦15.0 (1’)
 要件(C’):
 テクスチャ10S’の延在方向RD’に直交する方向WD’の100μm長さの範囲において、着色樹脂層11’の最大厚さ(μm)をDKmax’と定義する。このとき、着色樹脂層11’の最大厚さDKmax’と、着色樹脂層11’の最小厚さDKmin’と、着色剤32’の含有量CK’とは、式(2’)を満たす。
 (DKmax’-DKmin’)×CK’>1.0 (2’)
 以下、各要件について詳述する。
[Requirements (A') to (C')]
The plated steel sheet 1'of the second embodiment having the above-described configuration further satisfies all of the following (A') to (C').
Requirement (A'):
Measure the roughness profile in the range of 1000 μm in the direction WD'orthogonal to the extending direction RD'of the texture 10S', and identify 10 points in ascending order of height among the positions on the measured roughness profile. The determined position is defined as the bottom point of the recess, and among the positions on the measured roughness profile, the position where 10 points are specified in descending order of height is defined as the apex of the convex portion. The three-dimensional average roughness Sa'of a minute region of 1 μm × 1 μm centered on the bottom point of each concave portion and the apex of each convex portion is measured. The arithmetic mean value of the measured three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Sa'. At this time, the three-dimensional average roughness Save'is more than 5 nm and 200 nm or less.
Requirement (B'):
The minimum thickness (μm) of the colored resin layer 11'is defined as DKmin'in the range of 100 μm length in the direction WD'orthogonal to the extending direction RD' of the texture 10S'. Further, the content (area%) of the colorant 32'in the colored resin layer 11'is defined as CK'. At this time, the minimum thickness DKmin'of the colored resin layer 11'and the content CK'of the colorant 32' satisfy the formula (1').
DKmin'× CK'≤15.0 (1')
Requirement (C'):
The maximum thickness (μm) of the colored resin layer 11'is defined as DKmax'in the range of 100 μm length in the direction WD'orthogonal to the extending direction RD' of the texture 10S'. At this time, the maximum thickness DKmax'of the colored resin layer 11', the minimum thickness DKmin' of the colored resin layer 11', and the content CK'of the colorant 32' satisfy the formula (2').
(DKmax'-DKmin') x CK'> 1.0 (2')
Each requirement will be described in detail below.
 [要件(A’)について]
 図13は、亜鉛めっき層10’の表面に形成されたテクスチャ10S’の粗さプロファイルを示す図である。図13を参照して、テクスチャ10S’の延在方向RD’に直交する方向WD’の任意の1000μm長さ範囲を選定する。選定された1000μm長さ範囲において、テクスチャ10S’の粗さプロファイルを測定する。得られた粗さプロファイルが図13のような形状であったと仮定する。
[About requirements (A')]
FIG. 13 is a diagram showing a roughness profile of the texture 10S'formed on the surface of the galvanized layer 10'. With reference to FIG. 13, an arbitrary 1000 μm length range of the direction WD'orthogonal to the extending direction RD' of the texture 10S'is selected. The roughness profile of the texture 10S'is measured in the selected 1000 μm length range. It is assumed that the obtained roughness profile has a shape as shown in FIG.
 測定された粗さプロファイル上の位置のうち、高さが低い位置を、高さが最低の位置から高さが低い順に10点特定する。特定された位置を、高さが低い順に、凹部底点PRE1’、PRE2’、…、PRE10’と定義する。また、測定された粗さプロファイル上の位置のうち、高さが高い位置を、高さが最高の位置から高さが高い順に10点特定する。特定された位置を、高さが高い順に、凸部頂点PCO1’、PCO2’、…、PCO10’と定義する。 Among the positions on the measured roughness profile, 10 points with the lowest height are specified in ascending order from the lowest height position. The identified positions are defined as recess bottom points PRE1', PRE2', ..., PRE10' in ascending order of height. Further, among the positions on the measured roughness profile, 10 points having the highest height are specified in order from the highest height position to the highest height position. The identified positions are defined as convex apex PCO1', PCO2', ..., PCO10' in descending order of height.
 図14Aに示すとおり、亜鉛めっき層10’の表面を平面視して、定義された各凹部底点PREk’(kは1~10)を中心とした1μm×1μmの微小凹部領域200’を特定する。図14Aでは微小凹部領域200’の縦方向をテクスチャ10S’の延在方向RD’と平行とし、微小凹部領域200’の横方向を幅方向WD’と平行としている。しかしながら、微小凹部領域200’は、延在方向RD’及び幅方向WD’を含む面であれば、微小凹部領域200’の各辺が、延在方向RD’又は幅方向WD’に平行でなくてもよい。 As shown in FIG. 14A, the surface of the galvanized layer 10'is viewed in a plan view, and a 1 μm × 1 μm minute recess region 200'centered on each defined recess bottom point PREk' (k is 1 to 10) is specified. To do. In FIG. 14A, the vertical direction of the minute concave region 200'is parallel to the extending direction RD'of the texture 10S', and the horizontal direction of the minute concave region 200'is parallel to the width direction WD'. However, if the micro-concave region 200'is a surface including the extending direction RD'and the width direction WD', each side of the micro-concave region 200'is not parallel to the extending direction RD'or the width direction WD'. You may.
 同様に、図14Bに示すとおり、亜鉛めっき層10’の表面を平面視して、定義された各凸部頂点PCOk’(kは1~10)を中心とした1μm×1μmの微小凸部領域300’を特定する。図14Bでは微小凸部領域300’の縦方向をテクスチャ10S’の延在方向RD’と平行とし、微小凸部領域300’の横方向を幅方向WD’と平行としている。しかしながら、微小凸部領域300’は、延在方向RD’及び幅方向WD’を含む面であれば、微小凸部領域300’の各辺が、延在方向RD’又は幅方向WD’に平行でなくてもよい。 Similarly, as shown in FIG. 14B, when the surface of the galvanized layer 10'is viewed in a plan view, a 1 μm × 1 μm microconvex region centered on each defined convex vertex PCok'(k is 1 to 10). Identify 300'. In FIG. 14B, the vertical direction of the micro-convex region 300'is parallel to the extending direction RD'of the texture 10S', and the horizontal direction of the micro-convex region 300'is parallel to the width direction WD'. However, if the micro-convex region 300'is a surface including the extending direction RD'and the width direction WD', each side of the micro-convex region 300'is parallel to the extending direction RD'or the width direction WD'. It does not have to be.
 以上の方法で特定された10個の微小凹部領域200’、及び、10個の微小凸部領域300’において、三次元平均粗さSa’を測定する。三次元平均粗さSa’は、JIS B 0601(2013)で規定されているRa(線の算術平均高さ)を面に拡張した、ISO 25178で規定される算術平均高さである。測定された20個の三次元平均粗さSa’の算術平均値を三次元平均粗さSaave’と定義する。このとき、算術平均粗さSaave’は5nm超200nm以下である。 The three-dimensional average roughness Sa'is measured in the 10 minute concave region 200'and the 10 minute convex region 300' identified by the above method. The three-dimensional average roughness Sa'is the arithmetic mean height defined by ISO 25178, which is an extension of Ra (arithmetic mean height of lines) defined by JIS B 0601 (2013) to a surface. The arithmetic mean value of the measured 20 three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Sa'. At this time, the arithmetic average roughness Save'is more than 5 nm and 200 nm or less.
 テクスチャ10S’の凸部頂点近傍部分、又は、凹部底点近傍部分には亜鉛めっき結晶に起因したナノメートルレベルの微小な凹凸(以下、微小凹凸という)が存在する。微小凹凸がある程度の大きさである場合、微小凹凸により光が乱反射する。この場合、テクスチャの光沢が低下してテクスチャが白化する。そのため、亜鉛めっき層上に着色樹脂層を形成した場合、テクスチャが視認しにくくなる。したがって、テクスチャの視認性を一層向上させる観点からは、微小領域200’及び300’での微小凹凸はなるべく小さい方が好ましい。 There are nanometer-level minute irregularities (hereinafter referred to as minute irregularities) caused by galvanized crystals in the portion of the texture 10S'near the apex of the convex portion or the portion near the bottom point of the concave portion. When the minute unevenness has a certain size, the light is diffusely reflected by the minute unevenness. In this case, the gloss of the texture is reduced and the texture is whitened. Therefore, when the colored resin layer is formed on the galvanized layer, the texture becomes difficult to see. Therefore, from the viewpoint of further improving the visibility of the texture, it is preferable that the minute irregularities in the minute regions 200'and 300'are as small as possible.
 第2実施形態では、上記定義に基づく三次元平均粗さSaave’が5nm超200nm以下である。三次元平均粗さSaave’が200nm以下である場合、凸部頂点近傍及び凹部底点近傍における光の乱反射を一層抑制することができる。この場合、着色樹脂層11’を有する第2実施形態のめっき鋼板1’において、テクスチャ10S’が一層視認しやすくなる。なお、三次元平均粗さSaave’は小さいほど好ましい。しかしながら、三次元平均粗さSaave’を5nm以下にすることは極めて困難である。したがって、第2実施形態において、三次元平均粗さSaave’は5nm超200nm以下である。三次元平均粗さSaave’の好ましい上限は190nmであり、さらに好ましくは180nmであり、さらに好ましくは170nmである。 In the second embodiment, the three-dimensional average roughness Save'based on the above definition is more than 5 nm and 200 nm or less. When the three-dimensional average roughness Save'is 200 nm or less, diffused reflection of light in the vicinity of the apex of the convex portion and the vicinity of the bottom point of the concave portion can be further suppressed. In this case, in the plated steel sheet 1'of the second embodiment having the colored resin layer 11', the texture 10S'is more easily visible. The smaller the three-dimensional average roughness Save', the more preferable it is. However, it is extremely difficult to set the three-dimensional average roughness Save'to 5 nm or less. Therefore, in the second embodiment, the three-dimensional average roughness Save'is more than 5 nm and 200 nm or less. The preferred upper limit of the three-dimensional average roughness Save'is 190 nm, more preferably 180 nm, and even more preferably 170 nm.
 [要件(B’)について]
 図9を参照して、テクスチャ10S’の延在方向RD’と直交する方向WD’の任意の100μm長さ範囲の断面に注目する。この100μm長さ範囲の断面(図9)を、観察断面と定義する。観察断面において、着色樹脂層11’の厚さのうち、最小厚さをDKmin’(μ)と定義する。観察断面において、着色樹脂層11’の厚さのうち、最大厚さをDKmax’(μm)と定義する。
[About requirements (B')]
With reference to FIG. 9, attention is paid to a cross section in an arbitrary 100 μm length range in the direction WD'orthogonal to the extending direction RD' of the texture 10S'. This cross section in the 100 μm length range (FIG. 9) is defined as an observation cross section. In the observation cross section, the minimum thickness of the colored resin layer 11'is defined as DKmin'(μ). In the observation cross section, the maximum thickness of the colored resin layer 11'is defined as DKmax'(μm).
 さらに、観察断面において、着色樹脂層11’中の着色剤の含有量(面積%)をCK’と定義する。上記のとおり、本明細書において、着色剤含有量CK’は、観察断面における着色剤の面積率(面積%)で示す。 Further, in the observation cross section, the content (area%) of the colorant in the colored resin layer 11'is defined as CK'. As described above, in the present specification, the colorant content CK'is indicated by the area ratio (area%) of the colorant in the observed cross section.
 以上のとおり、着色樹脂層11’の最小厚さDKmin’(μm)、最大厚さDKmax’(μm)、着色剤含有量CK’(面積%)を定義したとき、着色樹脂層11’の最小厚さDKmin’と着色剤32’の含有量CK’とは、式(1’)を満たす。
 DKmin’×CK’≦15.0 (1’)
As described above, when the minimum thickness DKmin'(μm), the maximum thickness DKmax'(μm), and the colorant content CK'(area%) of the colored resin layer 11'are defined, the minimum thickness of the colored resin layer 11' is defined. The thickness DKmin'and the content CK'of the colorant 32' satisfy the formula (1').
DKmin'× CK'≤15.0 (1')
 式(1’)を満たさない場合、つまり、最小厚さDKmin’と着色剤含有量CK’との積が15.0を超える場合、着色樹脂層11’の厚さが厚すぎる、又は、着色剤含有量CK’が多すぎる。この場合、着色樹脂層11’の着色が濃すぎ、亜鉛めっき層10’のテクスチャ10S’が視認しにくい。最小厚さDKmin’と着色剤含有量CK’との積が15.0以下であれば、要件(A’)及び要件(C’)を満たすことを条件として、着色樹脂層11’により着色した外観でありながら、亜鉛めっき層10’の表面のテクスチャ10S’を十分視認できる。DKmin’×CK’の好ましい上限は14.0であり、さらに好ましくは13.0であり、さらに好ましくは12.0である。なお、DKmin’×CK’の下限は特に限定されない。DKmin’×CK’の下限はたとえば、4.0である。 If the formula (1') is not satisfied, that is, if the product of the minimum thickness DKmin'and the colorant content CK' exceeds 15.0, the thickness of the colored resin layer 11'is too thick or colored. The agent content CK'is too high. In this case, the colored resin layer 11'is too darkly colored, and the texture 10S'of the galvanized layer 10'is difficult to see. If the product of the minimum thickness DKmin'and the colorant content CK' is 15.0 or less, the color is colored by the colored resin layer 11'on the condition that the requirements (A') and the requirement (C') are satisfied. Despite its appearance, the surface texture 10S'of the galvanized layer 10'can be sufficiently visually recognized. The preferred upper limit of DKmin'x CK' is 14.0, more preferably 13.0, still more preferably 12.0. The lower limit of DKmin'x CK' is not particularly limited. The lower limit of DKmin'x CK' is, for example, 4.0.
 第2実施形態における着色樹脂層11’の厚さは、次の方法で測定する。テクスチャ10S’の延在方向RD’と直交する断面を表面に持つサンプルを採取する。サンプルのうち、テクスチャ10S’の延在方向RD’と直交する方向WD’に100μmの長さ範囲の観察断面を、走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察する。走査型電子顕微鏡(SEM)の反射電子像(BSE)での観察において、母材鋼板100’、亜鉛めっき層10’、及び、着色樹脂層11’は、コントラストにより容易に判別可能である。観察断面において、方向WD’に0.5μmピッチで着色樹脂層11’の厚さを測定する。測定された厚さのうち、最小の厚さを最小厚さDKmin’(μm)と定義する。測定された厚さのうち、最大の厚さを最大厚さDKmax’(μm)と定義する。着色樹脂層11’か否かの判断(つまり、樹脂に着色剤が含まれているか否かの判断)が必要な場合、後述のTEM観察により着色樹脂層11’か否かを判断してもよい。 The thickness of the colored resin layer 11'in the second embodiment is measured by the following method. A sample having a cross section on the surface orthogonal to the extending direction RD'of the texture 10S'is taken. Of the samples, an observation cross section in a length range of 100 μm in the direction WD'orthogonal to the extending direction RD' of the texture 10S' was observed by a scanning electron microscope (SEM) at a magnification of 2000 times with a reflected electron image (BSE). Observe. In the observation with a backscattered electron image (BSE) of a scanning electron microscope (SEM), the base steel plate 100', the galvanized layer 10', and the colored resin layer 11'can be easily distinguished by the contrast. In the observation cross section, the thickness of the colored resin layer 11'is measured at a pitch of 0.5 μm in the direction WD'. Of the measured thicknesses, the smallest thickness is defined as the minimum thickness DKmin'(μm). Of the measured thicknesses, the maximum thickness is defined as the maximum thickness DKmax'(μm). When it is necessary to judge whether or not it is the colored resin layer 11'(that is, whether or not the resin contains a colorant), even if it is judged whether or not it is the colored resin layer 11'by TEM observation described later. Good.
 着色樹脂層11’中の着色剤含有量CK’(面積%)は、次の方法で求める。テクスチャ10S’の延在方向RD’と直交する断面を表面に持つサンプルを採取する。サンプルのうち、テクスチャ10S’の延在方向RD’と直交する断面を観察面と定義する。サンプルから、収束イオンビーム装置(FIB:Focused Ion Beam)を用いて、観察面の着色樹脂層11’と亜鉛めっき層10’とを観察可能な薄膜試料を作製する。薄膜試料の厚さは50~200nmとする。作製した薄膜試料の観察面のうち、着色樹脂層11’の厚さ方向と垂直な方向(つまり、方向WD’)の長さが3μmであって、かつ、着色樹脂層11’の厚さ方向(つまり、方向TD’)において、着色樹脂層11’全体を含む長さを有する視野を、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて観察する。TEM観察において、着色樹脂層11’中の樹脂31’と着色剤32’とは、コントラストにより識別可能である。上記視野中の着色樹脂層11’中の複数の着色剤32’の総面積A1’(μm)を求める。さらに、上記視野中の着色樹脂層11’の面積A0’(μm)を求める。求めた総面積A1’及び面積A0’に基づいて、次式により着色樹脂層11’中の着色剤含有量(面積%)を求める。
 CK=A1’/A0’×100
The colorant content CK'(area%) in the colored resin layer 11'is determined by the following method. A sample having a cross section on the surface orthogonal to the extending direction RD'of the texture 10S'is taken. Of the samples, the cross section orthogonal to the extending direction RD'of the texture 10S'is defined as the observation surface. From the sample, a thin film sample in which the colored resin layer 11'and the zinc plating layer 10'on the observation surface can be observed is prepared by using a focused ion beam device (FIB). The thickness of the thin film sample is 50 to 200 nm. Of the observation surfaces of the prepared thin film sample, the length in the direction perpendicular to the thickness direction of the colored resin layer 11'(that is, the direction WD') is 3 μm, and the thickness direction of the colored resin layer 11'. (That is, in the direction TD'), a field having a length including the entire colored resin layer 11'is observed using a transmission electron microscope (TEM: Transmission Electron Microscope). In the TEM observation, the resin 31'in the colored resin layer 11'and the colorant 32' can be distinguished by the contrast. The total area A1'(μm 2 ) of the plurality of colorants 32'in the colored resin layer 11'in the above field of view is determined. Further, the area A0'(μm 2 ) of the colored resin layer 11'in the field of view is determined. Based on the obtained total area A1'and area A0', the colorant content (area%) in the colored resin layer 11'is determined by the following formula.
CK = A1'/ A0'x100
 [要件(C’)について]
 テクスチャ10S’の延在方向RD’に垂直な断面であって、テクスチャ10S’の延在方向RD’に直交する方向WD’の100μm長さ範囲の観察断面において、着色樹脂層11’の最大厚さDKmax’と、着色樹脂層11’の最小厚さDKmin’と、着色剤32’の含有量CK’とは、式(2’)を満たす。
 (DKmax’-DKmin’)×CK’>1.0 (2’)
[About requirements (C')]
The maximum thickness of the colored resin layer 11'in the observation cross section in the 100 μm length range of the direction WD'that is perpendicular to the extending direction RD'of the texture 10S'and is orthogonal to the extending direction RD' of the texture 10S' The DKmax', the minimum thickness DKmin' of the colored resin layer 11', and the content CK'of the colorant 32' satisfy the formula (2').
(DKmax'-DKmin') x CK'> 1.0 (2')
 (DKmax’-DKmin’)×CK’は、着色樹脂層11’での明度のコントラストの指標である。(DKmax’-DKmin’)×CK’が1.0以下であれば、着色樹脂層11’での明度のコントラストが低い。この場合、着色樹脂層11’の明度のコントラストを、テクスチャ10S’の視認に十分に活用できない。そのため、着色樹脂層11’下のテクスチャ10S’が視認しにくい。 (DKmax'-DKmin') × CK'is an index of the contrast of brightness in the colored resin layer 11'. When (DKmax'-DKmin') × CK'is 1.0 or less, the contrast of brightness in the colored resin layer 11'is low. In this case, the contrast of the brightness of the colored resin layer 11'cannot be fully utilized for visually recognizing the texture 10S'. Therefore, the texture 10S'under the colored resin layer 11'is difficult to see.
 (DKmax’-DKmin’)×CK’が1.0よりも高ければ、着色樹脂層11’での明度のコントラストが十分に高い。この場合、着色樹脂層11’の明度のコントラストを、テクスチャ10S’の視認に十分に活用できる。その結果、要件(A’)及び要件(B’)を満たすことを前提として、着色樹脂層11’下のテクスチャ10S’を十分に視認することができる。 If (DKmax'-DKmin') x CK'is higher than 1.0, the contrast of brightness in the colored resin layer 11'is sufficiently high. In this case, the contrast of the brightness of the colored resin layer 11'can be fully utilized for visually recognizing the texture 10S'. As a result, the texture 10S'under the colored resin layer 11'can be sufficiently visually recognized on the premise that the requirement (A') and the requirement (B') are satisfied.
 (DKmax’-DKmin’)×CK’の好ましい下限は1.2であり、さらに好ましくは1.5であり、さらに好ましくは1.8であり、さらに好ましくは2.0である。なお、(DKmax’-DKmin’)×CK’の上限は特に限定されない。(DKmax’-DKmin’)×CK’の上限はたとえば、15.0である。 The preferable lower limit of (DKmax'-DKmin') x CK'is 1.2, more preferably 1.5, still more preferably 1.8, and even more preferably 2.0. The upper limit of (DKmax'-DKmin') x CK'is not particularly limited. The upper limit of (DKmax'-DKmin') x CK'is, for example, 15.0.
 [着色樹脂層11’の厚さについて]
 第2実施形態のめっき鋼板1’において、好ましくは、着色樹脂層11’の平均厚さは10.0μm以下である。着色樹脂層11’の厚さが10.0μmを超えれば、着色樹脂層11’のみで平滑化(レベリング)しやすくなり、着色樹脂層11’の表面での反射の印象と視認できるテクスチャ10S’の印象との乖離が大きくなる。この場合、めっき鋼板1’のメタリック感が低下する。着色樹脂層11’の平均厚さが10.0μm以下であれば、上述の要件(A’)~(C’)の全てを満たすことを前提として、亜鉛めっき層10’のテクスチャ10S’を視認可能であり、かつ、メタリック感も十分に高まる。着色樹脂層11’の平均厚さのさらに好ましい上限は9.0μmであり、さらに好ましくは8.0μmである。
[Thickness of colored resin layer 11']
In the plated steel sheet 1'of the second embodiment, the average thickness of the colored resin layer 11' is preferably 10.0 μm or less. If the thickness of the colored resin layer 11'exceeds 10.0 μm, smoothing (leveling) is easily performed only by the colored resin layer 11', and the impression of reflection on the surface of the colored resin layer 11'and the visible texture 10S' The divergence from the impression of is large. In this case, the metallic feeling of the plated steel sheet 1'is reduced. If the average thickness of the colored resin layer 11'is 10.0 μm or less, the texture 10S'of the galvanized layer 10'is visually recognized on the premise that all of the above requirements (A') to (C') are satisfied. It is possible, and the metallic feeling is sufficiently enhanced. A more preferable upper limit of the average thickness of the colored resin layer 11'is 9.0 μm, and even more preferably 8.0 μm.
 また、着色樹脂層11’の平均厚さの好ましい下限は0.5μmである。着色樹脂層11’の平均厚さが0.5μm以上であれば、耐食性がさらに高まる。着色樹脂層11’の平均厚さのさらに好ましい下限は0.7μmであり、さらに好ましくは1.0μmであり、さらに好ましくは2.0μmであり、さらに好ましくは3.0μmである。 Further, the preferable lower limit of the average thickness of the colored resin layer 11'is 0.5 μm. When the average thickness of the colored resin layer 11'is 0.5 μm or more, the corrosion resistance is further enhanced. A further preferable lower limit of the average thickness of the colored resin layer 11'is 0.7 μm, more preferably 1.0 μm, still more preferably 2.0 μm, still more preferably 3.0 μm.
 着色樹脂層11’の平均厚さは、次の方法で測定する。上述の観察断面において方向WD’に0.5μmピッチで測定した厚さの算術平均値を、着色樹脂層11’の平均厚さ(μm)と定義する。 The average thickness of the colored resin layer 11'is measured by the following method. The arithmetic mean value of the thickness measured at a pitch of 0.5 μm in the direction WD'in the above-mentioned observation cross section is defined as the average thickness (μm) of the colored resin layer 11'.
 [着色樹脂層11’の他の形態について]
 第2実施形態のめっき鋼板1’の着色樹脂層11’はさらに、着色樹脂層11’に耐食性、摺動性、導電性等を付与するために、添加剤を含有してもよい。耐食性を付与するための添加剤はたとえば、周知の防錆剤やインヒビターである。摺動性を付与するための添加剤はたとえば、周知のワックスやビーズである。導電性を付与するための添加剤はたとえば、周知の導電剤である。
[About other forms of colored resin layer 11']
The colored resin layer 11'of the plated steel sheet 1'of the second embodiment may further contain an additive in order to impart corrosion resistance, slidability, conductivity and the like to the colored resin layer 11'. Additives for imparting corrosion resistance are, for example, well-known rust inhibitors and inhibitors. Additives for imparting slidability are, for example, well-known waxes and beads. The additive for imparting conductivity is, for example, a well-known conductive agent.
[好ましい着色樹脂層11’の表面形状について(要件(D’)について)]
 好ましくは、着色樹脂層11’は、下層である亜鉛めっき層10’の表面に形成されたテクスチャ10S’の種類に起因して、以下で詳述するような表面形状を有する。
[Preferable surface shape of colored resin layer 11'(requirement (D'))]
Preferably, the colored resin layer 11'has a surface shape as described in detail below due to the type of texture 10S'formed on the surface of the underlying galvanized layer 10'.
 テクスチャ10S’の延在方向RD’における、着色樹脂層11’の表面粗さRaをRa(CL)’と定義する。テクスチャ10S’がヘアラインである場合、テクスチャ10S’の延在方向RD’と直交する方向WD’における、着色樹脂層11’の表面粗さRaをRa(CC)’と定義する。このとき、好ましくは、表面粗さRa(CC)’と表面粗さRa(CL)’とは、式(3’)を満たす。
 Ra(CC)’≧Ra(CL)’×1.10 (3’)
The surface roughness Ra of the colored resin layer 11'in the extending direction RD' of the texture 10S'is defined as Ra (CL)'. When the texture 10S'is a hairline, the surface roughness Ra of the colored resin layer 11'in the direction WD' orthogonal to the extending direction RD' of the texture 10S'is defined as Ra (CC)'. At this time, preferably, the surface roughness Ra (CC)'and the surface roughness Ra (CL)' satisfy the formula (3').
Ra (CC)'≧ Ra (CL)' × 1.10 (3')
 着色樹脂層11’の表面粗さRa(CC)’が表面粗さRa(CL)’に対して1.10倍未満である場合、着色樹脂層11’がない状態でのテクスチャ10S’から受ける印象と、着色樹脂層11’の表面での光の反射の印象との乖離が大きくなりすぎる。この場合、メタリック感が喪われる。表面粗さRa(CC)’が表面粗さRa(CL)’に対して1.10倍以上であれば、着色樹脂層11’がない状態でのテクスチャ10S’から受ける印象と、着色樹脂層11’の表面での光の反射の印象との乖離を抑えることができる。そのため、十分なメタリック感が得られる。さらに好ましくは、着色樹脂層11’の表面粗さRa(CC)’は表面粗さRa(CL)’の1.15倍以上であり、さらに好ましくは1.20倍以上であり、さらに好ましくは1.25倍以上である。 When the surface roughness Ra (CC)'of the colored resin layer 11'is less than 1.10 times the surface roughness Ra (CL)', it is received from the texture 10S'without the colored resin layer 11'. The gap between the impression and the impression of light reflection on the surface of the colored resin layer 11'becomes too large. In this case, the metallic feeling is lost. If the surface roughness Ra (CC)'is 1.10 times or more the surface roughness Ra (CL)', the impression received from the texture 10S'without the colored resin layer 11'and the colored resin layer It is possible to suppress the deviation from the impression of light reflection on the surface of 11'. Therefore, a sufficient metallic feeling can be obtained. More preferably, the surface roughness Ra (CC)'of the colored resin layer 11'is 1.15 times or more, more preferably 1.20 times or more, still more preferably 1.20 times or more of the surface roughness Ra (CL)'. It is 1.25 times or more.
 表面粗さRa(CL)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、着色樹脂層11’の表面11S’において、任意の10箇所を測定箇所とする。各測定箇所において、テクスチャ10S’の延在方向RD’に延びる評価長さにて、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CL)’と定義する。 The surface roughness Ra (CL)'is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S'of the colored resin layer 11', any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured at the evaluation length extending in the extending direction RD'of the texture 10S'. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CL)'.
 同様に、表面粗さRa(CC)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、着色樹脂層11’の表面11S’において、任意の10箇所を測定箇所とする。各測定箇所において、テクスチャ10S’の延在方向RD’に直交する方向WD’に延びる評価長さにて、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CC)’と定義する。 Similarly, the surface roughness Ra (CC)'is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, on the surface 11S'of the colored resin layer 11', any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the direction WD'orthogonal to the extending direction RD' of the texture 10S'. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (CC)'.
 [亜鉛めっき層10’の表面形状について(要件(E’)について)]
 テクスチャ10S’が形成された亜鉛めっき層10’の表面の、テクスチャ10S’の延在方向に直交する方向WD’での表面粗さRaをRa(MC)’と定義する。テクスチャ10S’がヘアラインである場合、好ましくは、表面粗さRa(MC)’は0.30μm以上である。表面粗さRa(MC)’が0.30μm未満であれば、着色樹脂層11’上からテクスチャ10S’を視認しにくい。表面粗さRa(MC)’が0.30μm以上であれば、着色樹脂層11’上からテクスチャ10S’を十分に視認できる。表面粗さRa(MC)’のさらに好ましい下限は0.35μmであり、さらに好ましくは0.40μmである。表面粗さRa(MC)’の上限は特に限定されない。しかしながら、表面粗さRa(MC)’を過剰に高めることは、工業生産上困難である場合がある。そのため、表面粗さRa(MC)’の上限はたとえば、2.00μmである。表面粗さRa(MC)’の上限はたとえば、1.00μmであってもよい。
[About the surface shape of the galvanized layer 10'(About the requirement (E'))]
The surface roughness Ra of the surface of the galvanized layer 10'on which the texture 10S'is formed in the direction WD' orthogonal to the extending direction of the texture 10S'is defined as Ra (MC)'. When the texture 10S'is a hairline, the surface roughness Ra (MC)' is preferably 0.30 μm or more. If the surface roughness Ra (MC)'is less than 0.30 μm, it is difficult to visually recognize the texture 10S' from above the colored resin layer 11'. When the surface roughness Ra (MC)'is 0.30 μm or more, the texture 10S'can be sufficiently visually recognized from above the colored resin layer 11'. A more preferable lower limit of the surface roughness Ra (MC)'is 0.35 μm, more preferably 0.40 μm. The upper limit of the surface roughness Ra (MC)'is not particularly limited. However, it may be difficult for industrial production to excessively increase the surface roughness Ra (MC)'. Therefore, the upper limit of the surface roughness Ra (MC)'is, for example, 2.00 μm. The upper limit of the surface roughness Ra (MC)'may be, for example, 1.00 μm.
 表面粗さRa(MC)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定する。具体的には、亜鉛めっき層10’を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤で、めっき鋼板1’の着色樹脂層11’を除去する。着色樹脂層11’を除去した後の亜鉛めっき層10’のテクスチャ10S’において、任意の10箇所を測定箇所とする。各測定箇所において、テクスチャ10S’の延在方向RD’と直交する方向WD’に延びる評価長さにて、算術平均粗さRaを測定する。評価長さは、基準長さ(カットオフ波長)の5倍とする。算術平均粗さRaの測定は、触針式の粗さ計を用いて行い、測定速度は、0.5mm/secとする。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(MC)’と定義する。 The surface roughness Ra (MC)'is measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). Specifically, a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.) is used to use a colored resin layer 11'of the plated steel sheet 1'. To remove. In the texture 10S'of the galvanized layer 10'after removing the colored resin layer 11', any 10 points are set as measurement points. At each measurement point, the arithmetic mean roughness Ra is measured by the evaluation length extending in the direction WD'orthogonal to the extending direction RD'of the texture 10S'. The evaluation length is 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra is measured using a stylus type roughness meter, and the measurement speed is 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above is defined as the surface roughness Ra (MC)'.
 [地鉄露出率について]
 好ましくは、めっき鋼板1’の亜鉛めっき層10’の地鉄露出率は、5%未満である。第2実施形態において、耐食性は、亜鉛めっき層10’(亜鉛めっき又は亜鉛合金めっき)により十分に確保される。しかしながら、テクスチャ10S’の付与時に亜鉛めっき層10’の表面を研削した結果、地鉄が露出した場合、ガルバニック腐食の影響により、長期間での耐食性(長期耐食性)が低下する場合がある。このような長期耐食性の低下は、地鉄露出率5%以上で顕著となることが多い。そのため、第2実施形態では、好ましい地鉄露出率は、5%未満である。
[About the base iron exposure rate]
Preferably, the base iron exposure rate of the galvanized layer 10'of the plated steel sheet 1'is less than 5%. In the second embodiment, the corrosion resistance is sufficiently ensured by the galvanized layer 10'(galvanized or zinc alloy plated). However, if the surface of the galvanized layer 10'is ground when the texture 10S'is applied and the base iron is exposed, the corrosion resistance (long-term corrosion resistance) for a long period of time may be lowered due to the influence of galvanic corrosion. Such a decrease in long-term corrosion resistance is often remarkable when the base iron exposure rate is 5% or more. Therefore, in the second embodiment, the preferable base iron exposure rate is less than 5%.
 亜鉛めっき層10’の地鉄露出率が5%未満であれば、一般に鋼材に求められる適度な耐食性に加えて、長期耐食性にも優れるような、極めて良好な耐食性が得られる。亜鉛めっき層10’の地鉄露出率の好ましい上限は3%以下であり、さらに好ましくは2%であり、さらに好ましくは1%であり、さらに好ましくは0%である。 If the base iron exposure rate of the galvanized layer 10'is less than 5%, extremely good corrosion resistance such as excellent long-term corrosion resistance can be obtained in addition to the appropriate corrosion resistance generally required for steel materials. The preferable upper limit of the base iron exposure rate of the galvanized layer 10'is 3% or less, more preferably 2%, further preferably 1%, still more preferably 0%.
 地鉄露出率は、次の方法により測定する。具体的には、亜鉛めっき層10’を侵さない溶剤やリムーバー(たとえば、三彩化工株式会社製の商品名:ネオリバーS-701)などの剥離剤で、めっき鋼板1’の着色樹脂層11’を除去する。亜鉛めっき層10’の表面において、1mm×1mmの任意の矩形領域を5箇所選択する。選択された矩形領域に対してEPMA分析を実施する。画像解析により、各矩形領域中のZnが検出されない領域(Zn未検出領域)を特定する。第2実施形態では、Znの検出強度が標準試料(純Zn)を測定した場合の1/16以下となる領域を、Zn未検出領域と認定する。5つの矩形領域の総面積に対する、5つの矩形領域中のZn未検出領域の総面積の割合(面積%)を、地鉄露出率(面積%)と定義する。 The base iron exposure rate is measured by the following method. Specifically, a solvent that does not attack the galvanized layer 10'or a release agent such as a remover (for example, a trade name of Neo River S-701 manufactured by Sansai Kako Co., Ltd.) is used to use a colored resin layer 11'of the plated steel sheet 1'. To remove. On the surface of the galvanized layer 10', five arbitrary rectangular regions of 1 mm × 1 mm are selected. An EPMA analysis is performed on the selected rectangular area. By image analysis, a region in which Zn is not detected (Zn undetected region) in each rectangular region is specified. In the second embodiment, a region in which the detection intensity of Zn is 1/16 or less when the standard sample (pure Zn) is measured is recognized as a Zn undetected region. The ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions is defined as the base iron exposure rate (area%).
 なお、第2実施形態のめっき鋼板1’は、着色樹脂層11’と亜鉛めっき層10’との間に、耐食性又は密着性を高める目的で、無機被膜又は有機無機複合被膜を形成してもよい。無機被膜は透光性を有する。無機被膜はたとえば、非晶質のシリカ被膜、ジルコニア被膜、又はりん酸塩被膜である。有機無機複合被膜は透光性を有する。有機無機複合被膜はたとえば、シランカップリング剤及び有機樹脂を含有する。有機無機複合被膜は透光性を有する。 In the plated steel sheet 1'of the second embodiment, an inorganic film or an organic-inorganic composite film may be formed between the colored resin layer 11'and the zinc-plated layer 10'for the purpose of improving corrosion resistance or adhesion. Good. The inorganic coating is translucent. The inorganic coating is, for example, an amorphous silica coating, a zirconia coating, or a phosphate coating. The organic-inorganic composite film has translucency. The organic-inorganic composite film contains, for example, a silane coupling agent and an organic resin. The organic-inorganic composite film has translucency.
 [製造方法]
 第2実施形態のめっき鋼板1’の製造方法の一例を説明する。以降に説明する製造方法は、第2実施形態のめっき鋼板1’を製造するための一例である。したがって、上述の構成を有するめっき鋼板1’は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、第2実施形態のめっき鋼板1’の製造方法の好ましい一例である。
[Production method]
An example of the manufacturing method of the plated steel sheet 1'of the second embodiment will be described. The manufacturing method described below is an example for manufacturing the plated steel sheet 1'of the second embodiment. Therefore, the plated steel sheet 1'having the above-described configuration may be manufactured by a manufacturing method other than the manufacturing methods described below. However, the manufacturing method described below is a preferable example of the manufacturing method of the plated steel sheet 1'of the second embodiment.
 第2実施形態の製造方法は、母材鋼板100’を準備する工程(準備工程:S1’)と、母材鋼板100’に対して亜鉛めっき層10’を形成する工程(亜鉛めっき処理工程:S2’)と、亜鉛めっき層10’の表面にテクスチャを形成する工程(テクスチャ加工工程:S3’)と、めっき鋼板に対して着色樹脂層11’を形成する工程(着色樹脂層形成工程:S4’)とを含む。以下、各工程について説明する。 The manufacturing method of the second embodiment includes a step of preparing the base steel plate 100'(preparation step: S1') and a step of forming a galvanized layer 10'on the base steel plate 100'(galvanizing process: S2'), a step of forming a texture on the surface of the galvanized layer 10'(texture processing step: S3'), and a step of forming a colored resin layer 11'on the plated steel plate (colored resin layer forming step: S4). ') And include. Hereinafter, each step will be described.
 [準備工程(S1’)]
 準備工程(S1’)では、母材鋼板100’を準備する。母材鋼板100’は、鋼板であってもよいし、その他の形状であってもよい。母材鋼板100’が鋼板である場合、母材鋼板100’は熱延鋼板であってもよいし、冷延鋼板であってもよい。
[Preparation process (S1')]
In the preparation step (S1'), the base steel plate 100'is prepared. The base steel plate 100'may be a steel plate or may have another shape. When the base steel plate 100'is a steel plate, the base steel plate 100' may be a hot-rolled steel plate or a cold-rolled steel plate.
 [亜鉛めっき処理工程(S2’)]
 亜鉛めっき処理工程(S2’)では、準備された母材鋼板100’に対して、亜鉛めっき処理を実施して、母材鋼板100’の表面に亜鉛めっき層10’を形成する。
[Zinc plating process (S2')]
In the galvanizing treatment step (S2'), the prepared base steel sheet 100'is subjected to galvanizing treatment to form a zinc plating layer 10'on the surface of the base steel sheet 100'.
 亜鉛めっき処理は、周知の方法を実施すればよい。たとえば、周知の電気めっき法を用いて亜鉛めっき層10’を形成する。この場合、電気亜鉛めっき浴、及び、電気亜鉛合金めっき浴は、周知の浴を用いれば足りる。電気めっき浴はたとえば、硫酸浴、塩化物浴、ジンケート浴、シアン化物浴、ピロリン酸浴、ホウ酸浴、クエン酸浴、その他錯体浴及びこれらの組合せ等である。電気亜鉛合金めっき浴はたとえば、Znイオンの他に、Co、Cr、Cu、Fe、Ni、P、Sn、Mn、Mo、V、W、Zrから選ばれる1つ以上の単イオン又は錯イオンを含有する。 The zinc plating treatment may be carried out by a well-known method. For example, a well-known electroplating method is used to form the galvanized layer 10'. In this case, it is sufficient to use a well-known bath for the electric zinc plating bath and the electric zinc alloy plating bath. The electroplating bath is, for example, a sulfuric acid bath, a chloride bath, a zincate bath, a cyanide bath, a pyrophosphate bath, a boric acid bath, a citric acid bath, another complex bath, or a combination thereof. In addition to Zn ions, the electrozinc alloy plating bath contains, for example, one or more monatomic ions or complex ions selected from Co, Cr, Cu, Fe, Ni, P, Sn, Mn, Mo, V, W, and Zr. contains.
 電気亜鉛めっき処理における、電気亜鉛めっき浴及び電気亜鉛合金めっき浴の化学組成、温度、流速、及び、めっき処理時の条件(電流密度、通電パターン等)は、適宜調整が可能である。電気亜鉛めっき処理における亜鉛めっき層10’の厚さは、電気亜鉛めっき処理時における電流密度の範囲内で電流値と時間とを調整することにより、調整可能である。 The chemical composition, temperature, flow velocity, and conditions (current density, energization pattern, etc.) of the electrogalvanizing bath and the electrogalvanizing alloy plating bath in the electrogalvanizing treatment can be appropriately adjusted. The thickness of the galvanized layer 10'in the electrogalvanizing treatment can be adjusted by adjusting the current value and the time within the range of the current density in the electrogalvanizing treatment.
 亜鉛めっき層10’を溶融亜鉛めっき処理又は合金化溶融亜鉛めっき処理により形成してもよい。この場合においても、周知の亜鉛めっき浴を準備する。亜鉛めっき浴はたとえば、Znを主体として、Mg、Al、Siから選ばれる1つ以上の元素を含有してもよい。亜鉛めっき層10’を溶融亜鉛めっき層とする場合、浴温が及び浴の化学組成が調整された亜鉛めっき浴に母材鋼板100’を浸漬して、母材鋼板100’の表面上に亜鉛めっき層10’(溶融亜鉛めっき層)を形成する。また、亜鉛めっき層10’を合金化溶融亜鉛めっき層とする場合、溶融亜鉛めっき層が形成された母材鋼板100’を周知の合金化炉内で周知の熱処理を実施して、亜鉛めっき層10’を合金化溶融亜鉛めっき層とする。溶融亜鉛めっき処理における亜鉛めっき層10’の厚さは、亜鉛めっき浴への浸漬時間及びガスワイピングでの亜鉛めっきの除去量を調整することにより、調整可能である。なお、めっき処理前に、母材鋼板100’に対して、電解脱脂等の周知の脱脂処理を実施してもよい。 The zinc plating layer 10'may be formed by hot dip galvanizing treatment or alloying hot dip galvanizing treatment. Also in this case, a well-known galvanized bath is prepared. For example, the zinc plating bath may contain Zn as a main component and one or more elements selected from Mg, Al, and Si. When the galvanized layer 10'is used as a hot-dip galvanized layer, the base steel sheet 100' is immersed in a galvanized bath in which the bath temperature and the chemical composition of the bath are adjusted, and zinc is placed on the surface of the base steel sheet 100'. A plating layer 10'(hot-dip galvanizing layer) is formed. When the galvanized layer 10'is used as an alloyed hot-dip galvanized layer, the base steel plate 100' on which the hot-dip galvanized layer is formed is subjected to a well-known heat treatment in a well-known alloying furnace to carry out a well-known heat treatment. 10'is used as an alloyed hot-dip galvanized layer. The thickness of the zinc plating layer 10'in the hot-dip galvanizing treatment can be adjusted by adjusting the immersion time in the zinc plating bath and the amount of zinc plating removed by gas wiping. Before the plating treatment, the base steel sheet 100'may be subjected to a well-known degreasing treatment such as electrolytic degreasing.
 以上の製造工程により、母材鋼板100’と、亜鉛めっき層10’とを備えるめっき鋼板1’が製造される。 Through the above manufacturing process, a plated steel sheet 1'with a base steel sheet 100'and a galvanized layer 10' is manufactured.
 [テクスチャ加工工程(S3’)]
 テクスチャ加工工程(S3’)では、めっき鋼板の亜鉛めっき層10’の表面に対して周知のテクスチャ加工を実施することにより、亜鉛めっき層10’の表面に対してテクスチャ10S’を形成する。
[Texture processing process (S3')]
In the texture processing step (S3'), a well-known texture processing is performed on the surface of the galvanized layer 10'of the plated steel sheet to form the texture 10S'on the surface of the galvanized layer 10'.
 テクスチャ10S’がヘアラインである場合、周知のヘアライン加工を実施する。ヘアライン加工方法はたとえば、周知の研磨ベルトで表面を研磨してヘアラインを形成する方法、周知の砥粒ブラシで表面を研磨してヘアラインを形成する方法、ヘアライン形状を付与したロールで圧延転写してヘアラインを形成する方法等がある。ヘアラインの長さや深さ、頻度は、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、調整可能である。つまり、算術平均粗さRa(MC)’及び地鉄露出率は、周知の研磨ベルトの粒度や、周知の砥粒ブラシの粒度やロールの表面形状を調整することにより、調整可能である。なお、ヘアラインを付与する方法としては、表面品質の観点から、研磨ベルト又は砥粒ブラシで表面を研磨してヘアラインを形成することが好ましい。なお、この製造方法においては、母材表面にテクスチャを形成する工程を含まず、母材表面にテクスチャを有しないため、テクスチャ加工工程(S3’)の開始前のめっきの表面は比較的平坦である。そのため、テクスチャの凹部は、テクスチャ加工工程(S3’)による研磨等によって形成される。このとき、三次元平均粗さSaave’が5nm超200nm以下となるように、凹部を形成する。 If the texture 10S'is a hairline, perform a well-known hairline process. The hairline processing method includes, for example, a method of polishing the surface with a well-known polishing belt to form a hairline, a method of polishing the surface with a well-known abrasive grain brush to form a hairline, and a method of rolling and transferring with a roll having a hairline shape. There is a method of forming a hairline and the like. The length, depth, and frequency of the hairline can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll. That is, the arithmetic mean roughness Ra (MC)'and the base iron exposure rate can be adjusted by adjusting the particle size of the well-known polishing belt, the particle size of the well-known abrasive grain brush, and the surface shape of the roll. As a method for imparting a hairline, it is preferable to polish the surface with a polishing belt or an abrasive brush to form a hairline from the viewpoint of surface quality. Since this manufacturing method does not include a step of forming a texture on the surface of the base material and does not have a texture on the surface of the base material, the surface of the plating before the start of the texture processing step (S3') is relatively flat. is there. Therefore, the concave portion of the texture is formed by polishing or the like in the texture processing step (S3'). At this time, the recess is formed so that the three-dimensional average roughness Save'is more than 5 nm and 200 nm or less.
 以上の製造工程により、母材鋼板100’と、亜鉛めっき層10’とを備え、亜鉛めっき層10’の表面に、一方向に延在するテクスチャ10S’が形成されているめっき鋼板1’が製造される。 Through the above manufacturing process, the plated steel sheet 1'that includes the base steel sheet 100'and the galvanized layer 10'and has a texture 10S'extending in one direction formed on the surface of the galvanized layer 10'. Manufactured.
 [着色樹脂層形成工程(S4’)]
 着色樹脂層形成工程(S4’)では、テクスチャ10S’が形成されためっき鋼板の亜鉛めっき層10’上に、着色樹脂層11’を形成する。以下、着色樹脂層形成工程(S4’)について詳述する。
[Colored resin layer forming step (S4')]
In the colored resin layer forming step (S4'), the colored resin layer 11'is formed on the zinc-plated layer 10'of the plated steel sheet on which the texture 10S'is formed. Hereinafter, the colored resin layer forming step (S4') will be described in detail.
 着色樹脂層11’の形成に使用する塗料は、めっき鋼板に塗布した瞬間には鋼材の表面形状に追従し、いったん鋼材の表面形状を反映した後のレベリングは遅いものであることが好ましい。つまり、せん断速度が速い場合には粘度が低く、せん断速度が遅い場合には粘度が高い塗料であることが好ましい。具体的には、せん断速度が0.1[1/sec]の場合には10[Pa・s]以上の粘度を有し、せん断速度が1000[1/sec]の場合には0.01[Pa・s]以下の粘度を有することが好ましい。 It is preferable that the paint used for forming the colored resin layer 11'follows the surface shape of the steel material at the moment when it is applied to the plated steel sheet, and the leveling once reflecting the surface shape of the steel material is slow. That is, when the shear rate is high, the viscosity is low, and when the shear rate is low, the viscosity is high. Specifically, when the shear rate is 0.1 [1 / sec], the viscosity is 10 [Pa · s] or more, and when the shear rate is 1000 [1 / sec], 0.01 [ It is preferable to have a viscosity of Pa · s] or less.
 塗料のせん断粘度の調整は、次の方法で行うことができる。塗料が水系のエマルジョン塗料である場合、水素結合性の周知の粘度調整剤を加えて調整することができる。このような水素結合性の粘度調整剤は、低せん断速度時には水素結合によって互いに拘束しあう。そのため、塗料の粘度を高めることができる。一方、高せん断速度時には水素結合が切断される。そのため、塗料の粘度が低下する。 The shear viscosity of the paint can be adjusted by the following method. When the paint is a water-based emulsion paint, it can be adjusted by adding a well-known hydrogen-bonding viscosity modifier. Such hydrogen-bonding viscosity modifiers bind each other by hydrogen bonds at low shear rates. Therefore, the viscosity of the paint can be increased. On the other hand, hydrogen bonds are broken at high shear rates. Therefore, the viscosity of the paint decreases.
 着色樹脂層11’の形成に用いる塗料のせん断粘度を調整することにより、上述の着色樹脂層11’の表面形状を調整することができる。 By adjusting the shear viscosity of the paint used to form the colored resin layer 11', the surface shape of the colored resin layer 11' can be adjusted.
 亜鉛めっき層10’上に着色樹脂層11’を形成する方法は、周知の方法でよい。たとえば、粘度を調整された塗料を、吹き付け法、ロールコーター法、カーテンコーター法、又は、浸漬引き上げ法により、亜鉛めっき層10’上に塗布する。その後、亜鉛めっき層10’上の塗料に対して、自然乾燥、又は、焼付け乾燥を実施して、着色樹脂層11’を形成する。乾燥温度、乾燥時間、焼付き温度、焼付時間は、適宜調整可能である。着色樹脂層11’の形成に用いる塗料のせん断粘度及び亜鉛めっき層10’上での塗布量等を調整することにより、三次元平均粗さSaave’、着色樹脂層11’の最小厚さDKmin’、最大厚さDKmax’を調整できる。また、塗料中の着色剤の含有量を調整することにより、着色樹脂層11’中の着色剤含有量CK’を調整できる。 The method of forming the colored resin layer 11'on the galvanized layer 10'may be a well-known method. For example, the viscosity-adjusted paint is applied onto the galvanized layer 10'by a spraying method, a roll coater method, a curtain coater method, or a dipping pulling method. Then, the paint on the galvanized layer 10'is air-dried or baked to be dried to form the colored resin layer 11'. The drying temperature, drying time, seizure temperature, and seizure time can be adjusted as appropriate. By adjusting the shear viscosity of the paint used to form the colored resin layer 11'and the amount of coating on the galvanized layer 10', the three-dimensional average roughness Save'and the minimum thickness DKmin'of the colored resin layer 11' , Maximum thickness DKmax'can be adjusted. Further, by adjusting the content of the colorant in the paint, the colorant content CK'in the colored resin layer 11'can be adjusted.
 以上の製造工程により、第2実施形態のめっき鋼板1’を製造できる。なお、第2実施形態のめっき鋼板1’は、上記製造方法に限定されず、上述の構成を有するめっき鋼板1’が製造できれば、上記製造方法以外の他の製造方法で第2実施形態のめっき鋼板1’を製造してもよい。ただし、上記製造方法は、第2実施形態のめっき鋼板1’の製造に好適である。 By the above manufacturing process, the plated steel sheet 1'of the second embodiment can be manufactured. The plated steel sheet 1'of the second embodiment is not limited to the above manufacturing method, and if the plated steel sheet 1'having the above configuration can be manufactured, the plating of the second embodiment can be performed by a manufacturing method other than the above manufacturing method. Steel plate 1'may be manufactured. However, the above manufacturing method is suitable for manufacturing the plated steel sheet 1'of the second embodiment.
 以上、本発明の第1実施形態及び第2実施形態それぞれについて説明したが、これら第1実施形態の構成と、第2実施形態の構成とを適宜組み合わせることも妨げられない。第1実施形態の説明において例示された具体的態様を、第2実施形態のめっき鋼板に適用してもよいし、その逆も許容される。 Although each of the first embodiment and the second embodiment of the present invention has been described above, it is not hindered to appropriately combine the configurations of the first embodiment and the configurations of the second embodiment. The specific embodiment exemplified in the description of the first embodiment may be applied to the plated steel sheet of the second embodiment, and vice versa.
 本発明の第1実施形態のめっき鋼板1、及び第2実施形態のめっき鋼板1’では、着色樹脂層を積層樹脂層としてもよい。これにより、亜鉛めっき層の表面の視認性を一層高め、色調の変動を抑制することができる。これは、着色樹脂層を積層樹脂層とすることで、着色樹脂層の局所的な厚さの変動を抑えることができるからである。厚さの変動は着色料(顔料)の濃度の変動と相関する。そのため、厚さの変動を抑えることにより、着色料濃度の変動が抑えられ、色調の変動を抑えることができる。 In the plated steel sheet 1 of the first embodiment and the plated steel sheet 1'of the second embodiment of the present invention, the colored resin layer may be a laminated resin layer. As a result, the visibility of the surface of the galvanized layer can be further enhanced, and fluctuations in color tone can be suppressed. This is because by using the colored resin layer as the laminated resin layer, it is possible to suppress fluctuations in the local thickness of the colored resin layer. Fluctuations in thickness correlate with fluctuations in colorant (pigment) concentration. Therefore, by suppressing the fluctuation of the thickness, the fluctuation of the colorant concentration can be suppressed, and the fluctuation of the color tone can be suppressed.
 さらに、各着色樹脂層中の着色料の含有量CKと厚さDKとの積の総和を15.0面積%・μm以下としてもよい。即ち、各着色樹脂層中の着色料の含有量CKと厚さDKとが、下記式を満たしてもよい。
 Σ[k=1→n](CK×DK)≦15.0
 これにより、亜鉛めっき層の表面を視認可能な程度に、積層樹脂層を着色することができる。そして、亜鉛めっき層の表面の視認性を一層向上させ、かつ、色むらや色ばらつきといった色調変動を十分に抑制できる。各着色樹脂層中の着色料の含有量CKと厚さDKとの積の総和の好ましい上限は12.0面積%・μm、10.0面積%・μm、又は8.0面積%・μmである。
Further, the total product of the colorant content CK N and the thickness DK N in each colored resin layer may be 15.0 area% · μm or less. That is, the content CK N and the thickness DK N of the colorant in each colored resin layer may satisfy the following formula.
Σ [k = 1 → n] (CK k × DK k ) ≦ 15.0
As a result, the laminated resin layer can be colored to the extent that the surface of the zinc plating layer can be visually recognized. Then, the visibility of the surface of the zinc plating layer can be further improved, and color tone fluctuations such as color unevenness and color variation can be sufficiently suppressed. The preferable upper limit of the total product of the colorant content CK N and the thickness DK N in each colored resin layer is 12.0 area% · μm, 10.0 area% · μm, or 8.0 area% ·. It is μm.
 さらに、最濃色着色樹脂層の着色剤の含有量(面積%)を「C1ST」と定義し、最濃色着色樹脂層の厚さ(μm)を「D1ST」と定義し、第2濃色着色樹脂層の着色料の含有量(面積%)を「C2ND」と定義し、第2濃色着色樹脂層の厚さ(μm)を「D2ND」と定義したとき、積層樹脂層は、次の式(4)を満たしてもよい。
 1.00<(C1ST×D1ST)/(C2ND×D2ND)≦4.00 (4)
 つまり、最濃色着色樹脂層の色濃度指標I1ST(=C1ST×D1ST)の、第2濃色着色樹脂層の色濃度指標I2ND(=C2ND×D2ND)に対する比を、4.00以下にしてもよい。以下、(C1ST×D1ST)/(C2ND×D2ND)を「色濃度比RF」と称する。
Further, the content (area%) of the colorant in the darkest colored resin layer is defined as "C 1ST ", the thickness (μm) of the darkest colored resin layer is defined as "D 1ST ", and the second When the colorant content (area%) of the dark colored resin layer is defined as "C 2ND " and the thickness (μm) of the second dark colored resin layer is defined as "D 2ND ", the laminated resin layer May satisfy the following equation (4).
1.00 <(C 1ST x D 1ST ) / (C 2ND x D 2ND ) ≤ 4.00 (4)
That is, the ratio of the color density index I 1ST (= C 1ST × D 1ST ) of the darkest colored resin layer to the color density index I 2ND (= C 2ND × D 2ND ) of the second dark colored resin layer is 4 It may be less than .00. Hereinafter, (C 1ST × D 1ST ) / (C 2ND × D 2ND ) will be referred to as “color density ratio RF”.
 色濃度比RFが4.00以下であれば、最濃色着色樹脂層の色濃度と、第2濃色着色樹脂層との色濃度とがそれほど大きく異ならない。そのため、亜鉛めっき層の表面を視認可能な程度に樹脂層を着色した場合において、亜鉛めっき層の表面を視認可能であり、かつ、色むらや色ばらつきといった色調変動を十分に抑制できる。 When the color density ratio RF is 4.00 or less, the color density of the darkest colored resin layer and the color density of the second dark colored resin layer are not so different. Therefore, when the resin layer is colored to the extent that the surface of the zinc plating layer can be visually recognized, the surface of the zinc plating layer can be visually recognized, and color tone fluctuations such as color unevenness and color variation can be sufficiently suppressed.
 色濃度比RFの好ましい上限は3.80であり、さらに好ましくは3.50であり、さらに好ましくは3.00であり、さらに好ましくは2.50であり、さらに好ましくは2.00である。色濃度比RFは、1.00に近づくほど好ましい。そのため、色濃度比RFの下限は1.00超である。なお、複数の着色樹脂層LKの各々が、色相の異なる複数種類の着色剤を含有する場合、同じ色相の着色剤ごとに、上記RFが4.00以下になればよい。 The preferred upper limit of the color density ratio RF is 3.80, more preferably 3.50, still more preferably 3.00, still more preferably 2.50, still more preferably 2.00. The color density ratio RF is preferably closer to 1.00. Therefore, the lower limit of the color density ratio RF is more than 1.00. When each of the plurality of colored resin layers LK contains a plurality of types of colorants having different hues, the RF may be 4.00 or less for each colorant having the same hue.
 積層樹脂層の厚さ(合計厚さ)は特に限定されないが、例えば10.0μm以下としてもよい。積層樹脂層の厚さが10.0μm以下であれば、上述の要件を満たすことを前提として、亜鉛めっき層の表面を視認可能な程度に積層樹脂層を着色しても、亜鉛めっき層の表面を視認可能であり、かつ、色むらや色ばらつきといった色調変動を十分に抑制でき、かつ、メタリック感も十分に高まる。積層樹脂層の厚さのさらに好ましい上限は9.0μmであり、さらに好ましくは8.0μmである。 The thickness (total thickness) of the laminated resin layer is not particularly limited, but may be, for example, 10.0 μm or less. If the thickness of the laminated resin layer is 10.0 μm or less, the surface of the galvanized layer can be colored so that the surface of the galvanized layer can be visually recognized on the premise that the above requirements are satisfied. Can be visually recognized, color fluctuations such as color unevenness and color variation can be sufficiently suppressed, and the metallic feeling is sufficiently enhanced. A more preferable upper limit of the thickness of the laminated resin layer is 9.0 μm, and even more preferably 8.0 μm.
 また、好ましい積層樹脂層の下限は0.5μmである。積層樹脂層が0.5μm以上であれば、耐食性がさらに高まる。積層樹脂層のさらに好ましい下限は0.7μmであり、さらに好ましくは1.0μmであり、さらに好ましくは2.0μmであり、さらに好ましくは3.0μmである。 Further, the lower limit of the preferable laminated resin layer is 0.5 μm. When the laminated resin layer is 0.5 μm or more, the corrosion resistance is further enhanced. The lower limit of the laminated resin layer is more preferably 0.7 μm, further preferably 1.0 μm, still more preferably 2.0 μm, still more preferably 3.0 μm.
 積層樹脂層30は、複数の着色樹脂層の間に、着色剤を含有しない1又は複数の透明樹脂層が積層されていてもよい。「透明樹脂層」とは、着色剤を含有せず、透光性を有する樹脂からなる。透光性を有する樹脂とは、晴天午前の太陽光相当(照度約65000ルクス)の環境に、着色剤及び樹脂を含有する着色樹脂層及び透明樹脂層を含む積層樹脂層を備える意匠性亜鉛めっき鋼板を置いたとき、母材鋼板の表面を視認できることを意味する。着色樹脂層及び透明樹脂層の積層順は特に限定されない。積層樹脂層内において、複数の透明樹脂層が連続して積層されていてもよい。 In the laminated resin layer 30, one or a plurality of transparent resin layers containing no colorant may be laminated between the plurality of colored resin layers. The "transparent resin layer" is made of a translucent resin that does not contain a colorant. A translucent resin is a design-type galvanized steel sheet comprising a colored resin layer containing a colorant and a resin and a laminated resin layer containing a transparent resin layer in an environment equivalent to sunlight in the morning on a clear day (illuminance of about 65,000 lux). This means that the surface of the base steel plate can be visually recognized when the steel plate is placed. The stacking order of the colored resin layer and the transparent resin layer is not particularly limited. A plurality of transparent resin layers may be continuously laminated in the laminated resin layer.
(実施例1)
 以下、実施例により本発明の一態様の効果をさらに具体的に説明する。以下の実施例での条件は、本発明の第1実施形態のめっき鋼板1の実施可能性及び効果を確認するために採用した一条件例である。したがって、本発明はこの一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
(Example 1)
Hereinafter, the effects of one aspect of the present invention will be described in more detail with reference to Examples. The conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the plated steel sheet 1 of the first embodiment of the present invention. Therefore, the present invention is not limited to this one-condition example. The present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
 表1に記載の試験番号の亜鉛めっき鋼板を準備した。各亜鉛めっき鋼板の母材鋼板はJIS G 3141(2017)に規定されているSPCCとし、厚さは0.6mmとした。 The galvanized steel sheet with the test number shown in Table 1 was prepared. The base steel sheet of each galvanized steel sheet was SPCC specified in JIS G 3141 (2017), and the thickness was 0.6 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各母材鋼板に対して、母材表面テクスチャ形成工程を実施して、母材表面に種々の態様の母材テクスチャ(ヘアライン又はダル)を形成した。なお、試験番号1、18、23、28では、母材表面にテクスチャを形成しなかった。表1の列「母材テクスチャ」に、各試験番号における母材表面テクスチャ形成工程の有無、及び種別を示した。 A base material surface texture forming step was carried out on each base material steel plate to form various forms of base material texture (hairline or dull) on the surface of the base material. In Test Nos. 1, 18, 23, and 28, no texture was formed on the surface of the base material. In the column “Base material texture” in Table 1, the presence / absence and type of the base material surface texture forming step in each test number are shown.
 各母材鋼板に対して、めっき前処理を実施した。具体的には、各鋼材に対して、濃度30g/LのNaSiO処理液を用いて、処理液温度を60℃、電流密度を20A/dm、処理時間を10秒として電解脱脂し、水洗した。電解脱脂後の鋼材を、60℃の濃度50g/LであるHSO水溶液に10秒間浸漬し、水洗した。 Pre-plating was performed on each base steel sheet. Specifically, each steel material is electrolytically degreased using a Na 4 SiO 4 treatment liquid having a concentration of 30 g / L, with a treatment liquid temperature of 60 ° C., a current density of 20 A / dm 2 , and a treatment time of 10 seconds. , Washed with water. The steel material after electrolytic degreasing was immersed in an aqueous H 2 SO 4 solution at 60 ° C. and a concentration of 50 g / L for 10 seconds and washed with water.
 めっき前処理後の各試験番号の鋼板に対して、次のめっき処理を実施して、電気亜鉛めっき層を形成した。具体的には、試験番号1~17では、電気めっきにより電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物を1.0mol/Lと、無水硫酸ナトリウム50g/Lとを含み、pHを2.0に調整しためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度を50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、電気亜鉛めっき層を形成した(表1中の「めっき種」欄で「EG」と表記)。 The following plating treatment was carried out on the steel sheets of each test number after the pre-plating treatment to form an electrogalvanized layer. Specifically, in test numbers 1 to 17, an electrogalvanized layer was formed by electroplating. Specifically, a plating bath containing 1.0 mol / L of Zn sulphate heptahydrate and 50 g / L of anhydrous sodium sulfate and adjusting the pH to 2.0 was prepared. In electroplating, the bath temperature was set to 50 ° C. and the current density was set to 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . By the above steps, an electrogalvanized layer was formed (denoted as "EG" in the "plating type" column in Table 1).
 試験番号18~22では、亜鉛めっき層として、Niを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Ni六水和物とを合計で1.2mol/L含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で12%のNiを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表1中の「めっき種」欄で「Zn-12%Ni」と表記)。 In test numbers 18 to 22, an electrogalvanized layer containing Ni was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulphate heptahydrate and Ni sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0. A plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 12% Ni by mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-12% Ni" in the "Plating type" column in Table 1). ).
 試験番号23~27では、亜鉛めっき層として、Feを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Fe(II)七水和物とを合計で1.2mol/L含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で14%のFeを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表1中の「めっき種」欄で「Zn-14%Fe」と表記)。 In test numbers 23 to 27, an electrogalvanized layer containing Fe was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulfate heptahydrate and Fe (II) sulfate heptahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and has a pH of 2.0. A conditioned plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 14% Fe by mass% and the balance being Zn and impurities was formed (denoted as "Zn-14% Fe" in the "Plating type" column in Table 1). ).
 試験番号28~32では、亜鉛めっき層として、Coを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Co六水和物とを合計で1.2mol/L含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で2%のCoを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表1中の「めっき種」欄で「Zn-2%Co」と表記)。 In test numbers 28 to 32, an electrogalvanized layer containing Co was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / L of Zn sulphate heptahydrate and Co sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0. A plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 2% Co in mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-2% Co" in the "Plating type" column in Table 1). ).
 各試験番号の電気めっき処理では、相対流速が1m/secとなるように、めっき液を流動させた。また、得られた電気亜鉛めっき層の組成は次の方法で測定した。電気めっき層が形成された鋼板をインヒビター(朝日化学製 NO.700AS)入りの10質量%塩酸に浸漬して、電気亜鉛めっき層を溶解剥離した。その後、電気亜鉛めっき層が溶解した溶液に対してICP分析を実施して、電気亜鉛めっき層の組成を確認した。 In the electroplating treatment of each test number, the plating solution was flowed so that the relative flow velocity was 1 m / sec. The composition of the obtained electrogalvanized layer was measured by the following method. The steel sheet on which the electroplating layer was formed was immersed in 10% by mass hydrochloric acid containing an inhibitor (NO.700AS manufactured by Asahi Chemical Co., Ltd.) to dissolve and peel off the electrogalvanizing layer. Then, ICP analysis was performed on the solution in which the electrogalvanized layer was dissolved to confirm the composition of the electrogalvanized layer.
 亜鉛めっき層を形成した後、試験番号2~4、6~17、19~22、24~27、29~32では、亜鉛めっき表面テクスチャ形成工程を実施し、さらに、研磨工程を実施して、亜鉛めっき層の凸部の山頂を研削及び研磨した。亜鉛めっき表面テクスチャ形成工程及び研磨工程では、種々の粒度の研磨ベルトを亜鉛めっき層の凸部山頂に押しあて、圧下力、研磨回数を変えて、研削及び研磨を実施した。亜鉛めっき表面テクスチャ形成工程では、研磨工程よりも粒度の粗い研磨ベルトを用いた。なお、試験番号1、5、18、23及び28では、亜鉛めっき表面テクスチャ形成工程及び研磨工程を実施しなかった。表1の列「めっきテクスチャ」に、各試験番号における亜鉛めっき表面テクスチャ形成工程の有無、及び種別を示した。
 なお、たとえ亜鉛めっき表面テクスチャ形成工程を経ずに得られためっき鋼板であっても、母材表面テクスチャ形成工程を経て母材テクスチャが形成されている限り、めっきテクスチャを有することに留意されたい。母材テクスチャを有する母材鋼板に対して亜鉛めっき処理を実施して、亜鉛めっき層を形成すれば、亜鉛めっき層の表面には、母材テクスチャに沿っためっきテクスチャが形成されるからである。例えば、試験番号5のめっき鋼板は亜鉛めっき表面テクスチャ形成工程を経ずに製造された。従って試験番号5に関し、表1の列「めっきテクスチャ」には「なし」と記載した。しかしながら、試験番号5のめっき鋼板は母材表面テクスチャ形成工程を経て製造されたので、めっきテクスチャを有していた。
After forming the galvanized layer, in test numbers 2 to 4, 6 to 17, 19 to 22, 24 to 27, and 29 to 32, a galvanized surface texture forming step was carried out, and further, a polishing step was carried out. The peak of the convex part of the galvanized layer was ground and polished. In the galvanized surface texture forming step and the polishing step, polishing belts of various particle sizes were pressed against the peaks of the convex portions of the galvanized layer, and grinding and polishing were performed by changing the rolling force and the number of polishings. In the galvanizing surface texture forming step, a polishing belt having a coarser grain size than the polishing step was used. In Test Nos. 1, 5, 18, 23 and 28, the galvanized surface texture forming step and the polishing step were not carried out. In the column “Plating texture” in Table 1, the presence / absence and type of the galvanized surface texture forming step in each test number are shown.
It should be noted that even a plated steel sheet obtained without undergoing the galvanized surface texture forming step has a plating texture as long as the base metal texture is formed through the base metal surface texture forming step. .. This is because if a galvanized steel sheet having a base material texture is subjected to a zinc plating treatment to form a zinc plating layer, a plating texture along the base material texture is formed on the surface of the zinc plating layer. .. For example, the plated steel sheet of Test No. 5 was manufactured without going through the galvanized surface texture forming step. Therefore, regarding test number 5, "None" is described in the column "Plating texture" in Table 1. However, since the plated steel sheet of Test No. 5 was manufactured through the base material surface texture forming step, it had a plated texture.
 ヘアラインが形成された亜鉛めっき鋼板(試験番号2~17、19~22、24~17、29~32)、及び、ヘアラインが形成されなかった亜鉛めっき鋼板(試験番号1、18、23、28)に対して、着色樹脂層を形成した。着色樹脂層のうち、有機樹脂として、ウレタン系樹脂(株式会社ADEKA製、HUX-232)を水に分散させた、種々の濃度と粘度の塗料を準備した。塗料に種々の濃度の顔料(カーボンブラック)を添加した。カーボンブラックは三菱ケミカル株式会社製の商品名#850を用いた。 Galvanized steel sheets with hairlines formed (test numbers 2 to 17, 19 to 22, 24 to 17, 29 to 32) and galvanized steel sheets without hairlines ( test numbers 1, 18, 23, 28) On the other hand, a colored resin layer was formed. Among the colored resin layers, paints having various concentrations and viscosities in which a urethane resin (manufactured by ADEKA Corporation, HUX-232) was dispersed in water as an organic resin were prepared. Pigments of various concentrations (carbon black) were added to the paint. For carbon black, trade name # 850 manufactured by Mitsubishi Chemical Corporation was used.
 塗料をロールですくい上げ、各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面に塗布した。塗布後の塗料に対して、焼付き乾燥を実施した。具体的には、塗料が塗布された亜鉛めっき鋼板を250℃に保持した炉に装入した。亜鉛めっき鋼板の到達温度が210℃に到達するまで、亜鉛めっき鋼板を炉内で1分~5分間保持した。保持後、亜鉛めっき鋼板を炉から取り出して冷却した。 The paint was scooped up with a roll and applied to the surface of the galvanized layer of the galvanized steel sheet of each test number. The paint after application was baked and dried. Specifically, the galvanized steel sheet coated with the paint was placed in a furnace kept at 250 ° C. The galvanized steel sheet was held in a furnace for 1 to 5 minutes until the temperature reached by the galvanized steel sheet reached 210 ° C. After holding, the galvanized steel sheet was taken out of the furnace and cooled.
 上記塗料の粘度は、粘度調整剤(ビックケミー製、商品名:BYK-425)を用いて調整した。具体的には、せん断速度0.1(1/sec)では塗料粘度が10(Pa・s)以上となり、せん断速度1000(1/sec)では塗料粘度が0.01(Pa・s)以下となるように、塗料の粘度を調整した。以上の工程により、各試験番号の亜鉛めっき層上に、着色樹脂層を形成した。 The viscosity of the above paint was adjusted using a viscosity modifier (manufactured by Big Chemie, trade name: BYK-425). Specifically, at a shear rate of 0.1 (1 / sec), the paint viscosity is 10 (Pa · s) or more, and at a shear rate of 1000 (1 / sec), the paint viscosity is 0.01 (Pa · s) or less. The viscosity of the paint was adjusted so as to be. By the above steps, a colored resin layer was formed on the galvanized layer of each test number.
 以上の製造方法により、各試験番号の亜鉛めっき鋼板を製造した。なお、試験番号18では、着色樹脂層と亜鉛めっき層との間に、顔料を含まない、ウレタン系樹脂(株式会社ADEKA製、HUX-232)を0.5μm塗布した。その後、着色樹脂層を形成した。 The galvanized steel sheet of each test number was manufactured by the above manufacturing method. In Test No. 18, 0.5 μm of a pigment-free urethane resin (manufactured by ADEKA Corporation, HUX-232) was applied between the colored resin layer and the galvanized layer. Then, a colored resin layer was formed.
 [評価試験]
 [凹部底三次元平均粗さSas及び凸部頂上三次元平均粗さSah測定試験]
 各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面のテクスチャ(ヘアライン)の最大三次元平均粗さを次の方法で測定した。初めに、亜鉛めっき層を侵さない溶剤(三彩化工株式会社製の商品名:ネオリバーS-701)を用いて、亜鉛めっき鋼板の着色樹脂層を除去した。亜鉛めっき層の表面のうち、テクスチャ(ヘアライン)の延在方向(第1方向)に直交する第2方向の任意の1000μm長さ範囲を1箇所選定した。選定された1000μm長さ範囲において、テクスチャの粗さプロファイルを測定した。粗さプロファイルは、三次元表面粗さ測定機(東京精密製 サーフコム1500DX3)で測定した。
[Evaluation test]
[Concave bottom three-dimensional average roughness Sas and convex top three-dimensional average roughness Sah measurement test]
The maximum three-dimensional average roughness of the surface texture (hairline) of the galvanized layer of the galvanized steel sheet of each test number was measured by the following method. First, the colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). From the surface of the galvanized layer, one arbitrary 1000 μm length range in the second direction orthogonal to the extending direction (first direction) of the texture (hairline) was selected. The texture roughness profile was measured in the selected 1000 μm length range. The roughness profile was measured with a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.).
 測定された粗さプロファイル中の各凹部10REに注目した。各凹部10REにおいて、高さが最も低い位置を、凹部底点PREと定義した。1000μm長さ範囲での粗さプロファイル中の複数の凹部底点PREのうち、最も低い凹部底点PRE1から、低い順に10点の凹部底点PRE1、PRE2、…、PRE10を特定した。 Attention was paid to each recess 10RE in the measured roughness profile. In each recess 10RE, the position having the lowest height was defined as the recess bottom point PRE. Among the plurality of recessed bottom points PRE in the roughness profile in the 1000 μm length range, 10 recessed bottom points PRE1, PRE2, ..., PRE10 were identified in ascending order from the lowest recessed bottom point PRE1.
 図6Aに示すとおり、亜鉛めっき層の表面を平面視して、定義された各凹部底点PREk(kは1~10)を中心とした1μm×1μmの微小凹部底領域を特定した。特定された10個の微小凹部底領域の各々において、三次元平均粗さSaを測定した。三次元平均粗さSaは、JIS B 0601(2013)で規定されているRa(線の算術平均粗さ)を面に拡張した、ISO 25178で規定される算術平均粗さである。測定された10個の三次元平均粗さSaの算術平均値を、凹部底三次元平均粗さSas(μm)と定義した。 As shown in FIG. 6A, the surface of the galvanized layer was viewed in a plan view, and a 1 μm × 1 μm minute recess bottom region centered on each defined recess bottom point PREk (k is 1 to 10) was specified. Three-dimensional average roughness Sa was measured in each of the 10 micro-recess bottom regions identified. The three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface. The arithmetic mean value of the 10 measured three-dimensional average roughness Sas was defined as the concave bottom three-dimensional average roughness Sas (μm).
 同様に、測定された粗さプロファイル中の各凸部10COに注目した。各凸部10COにおいて、高さが最も高い位置を、凸部頂上点PCOと定義した。1000μm長さ範囲での粗さプロファイル中の複数の凸部頂上点PCOのうち、最も高い凸部頂上点PCO1から、高い順に10点の凸部頂上点PCO1、PCO2、…、PCO10を特定した。 Similarly, attention was paid to each convex portion 10CO in the measured roughness profile. In each convex portion 10CO, the position having the highest height was defined as the convex portion top point PCO. Among the plurality of convex peak point PCOs in the roughness profile in the 1000 μm length range, 10 convex peak points PCO1, PCO2, ..., PCO10 were identified in descending order from the highest convex peak point PCO1.
 図6Bに示すとおり、亜鉛めっき層の表面を平面視して、定義された各凸部頂上点PCOk(kは1~10)を中心とした1μm×1μmの微小凸部頂上領域を特定した。特定された10個の微小凸部頂上領域の各々において、三次元平均粗さSaを測定した。三次元平均粗さSaは、JIS B 0601(2013)で規定されているRa(線の算術平均粗さ)を面に拡張した、ISO 25178で規定される算術平均粗さである。測定された10個の三次元平均粗さSaの算術平均値を、凸部頂上三次元平均粗さSah(μm)と定義した。 As shown in FIG. 6B, the surface of the galvanized layer was viewed in a plan view, and a 1 μm × 1 μm microconvex top region centered on each defined convex top point PCok (k is 1 to 10) was specified. Three-dimensional average roughness Sa was measured in each of the 10 microconvex top regions identified. The three-dimensional average roughness Sa is the arithmetic average roughness defined by ISO 25178, which is an extension of Ra (arithmetic mean roughness of lines) defined by JIS B 0601 (2013) to a surface. The arithmetic mean value of the 10 measured three-dimensional average roughness Sas was defined as the convex top three-dimensional average roughness Sah (μm).
 [DKmin、DKmax測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層の厚さ(DKmin、DKmax)を次の方法で測定した。各試験番号の亜鉛めっき鋼板において、テクスチャ(ヘアライン)の第1方向と直交する断面を表面に持つサンプルを採取した。サンプルのうち、テクスチャ(ヘアライン)の延在方向と直交する方向に100μmの長さ範囲の観察断面を、走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察した。観察断面において、方向WDに0.5μmピッチで着色樹脂層の厚さを測定した。測定された厚さのうち、最小の厚さを最小厚さDKmin(μm)と定義した。測定された厚さのうち、最大の厚さを最大厚さDKmax(μm)と定義した。
[DKmin, DKmax measurement test]
The thickness (DKmin, DKmax) of the colored resin layer of the galvanized steel sheet of each test number was measured by the following method. In the galvanized steel sheet of each test number, a sample having a cross section orthogonal to the first direction of the texture (hairline) on the surface was taken. Among the samples, an observation cross section in a length range of 100 μm in a direction orthogonal to the extending direction of the texture (hairline) was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM). In the observation cross section, the thickness of the colored resin layer was measured at a pitch of 0.5 μm in the direction WD. Of the measured thicknesses, the smallest thickness was defined as the minimum thickness DKmin (μm). Of the measured thicknesses, the maximum thickness was defined as the maximum thickness DKmax (μm).
 [着色剤含有量CK測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層中の着色剤含有量(面積%)を次の方法で求めた。テクスチャ(ヘアライン)の第1方向と直交する断面を表面に持つサンプルを採取した。サンプルにおいて、テクスチャ(ヘアライン)の第1方向と直交する断面を観察面とした。サンプルから、FIBを用いて、観察面の着色樹脂層と亜鉛めっき層とを観察可能な薄膜試料を作製した。薄膜試料の膜厚は150nmとした。作製した薄膜試料の観察面のうち、着色樹脂層の厚さ方向と垂直な方向(つまり、第2方向WD)の長さが3μmであって、かつ、着色樹脂層の厚さ方向(つまり、第3方向TD)において、着色樹脂層全体を含む長さを有する視野を、TEMを用いて観察した。TEM観察において、着色樹脂層中の樹脂と顔料とは、コントラストにより識別可能であった。観察断面中の着色樹脂層中の複数の顔料の総面積A1(μm)を求めた。さらに、観察断面中の着色樹脂層の面積(μm)を求めた。求めた総面積A1及び面積A0に基づいて、次式により着色樹脂層11中の着色剤含有量(面積%)を求めた。
 CK=A1/A0×100
[Colorant content CK measurement test]
The colorant content (area%) in the colored resin layer of the galvanized steel sheet of each test number was determined by the following method. A sample having a cross section on the surface orthogonal to the first direction of the texture (hairline) was taken. In the sample, the cross section orthogonal to the first direction of the texture (hairline) was used as the observation surface. From the sample, a thin film sample in which the colored resin layer and the galvanized layer on the observation surface could be observed was prepared using FIB. The film thickness of the thin film sample was 150 nm. Of the observation surfaces of the prepared thin film sample, the length in the direction perpendicular to the thickness direction of the colored resin layer (that is, the second direction WD) is 3 μm, and the length in the thickness direction of the colored resin layer (that is, that is). In the third direction TD), a visual field having a length including the entire colored resin layer was observed using TEM. In the TEM observation, the resin and the pigment in the colored resin layer could be distinguished by the contrast. The total area A1 (μm 2 ) of the plurality of pigments in the colored resin layer in the observed cross section was determined. Further, the area (μm 2 ) of the colored resin layer in the observed cross section was determined. Based on the obtained total area A1 and area A0, the colorant content (area%) in the colored resin layer 11 was determined by the following formula.
CK = A1 / A0 × 100
 [着色樹脂層の粗さRa(CC)及びRa(CL)測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層中の粗さRa(CC)及びRa(CL)を次の方法で求めた。
[Roughness Ra (CC) and Ra (CL) measurement test of colored resin layer]
The roughness Ra (CC) and Ra (CL) in the colored resin layer of the galvanized steel sheet of each test number were determined by the following method.
 表面粗さRa(CL)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。着色樹脂層の表面において、任意の10箇所を測定箇所とした。各測定箇所において、テクスチャ(ヘアライン)の第1方向に延びる評価長さで、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、三次元表面粗さ測定機(東京精密製 サーフコム1500DX3)を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CL)と定義した。 The surface roughness Ra (CL) was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the first direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.), and the measuring speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above was defined as the surface roughness Ra (CL).
 同様に、表面粗さRa(CC)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。着色樹脂層の表面において、任意の10箇所を測定箇所とした。各測定箇所において、テクスチャ(ヘアライン)の第2方向に延びる評価長さで、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、上述の三次元表面粗さ測定機を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CC)と定義した。 Similarly, the surface roughness Ra (CC) was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the second direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above was defined as the surface roughness Ra (CC).
 [亜鉛めっき層の表面粗さRa(MC)測定試験]
 各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面粗さRa(MC)を次の方法で求めた。
[Surface roughness Ra (MC) measurement test of galvanized layer]
The surface roughness Ra (MC) of the galvanized layer of the galvanized steel sheet of each test number was determined by the following method.
 表面粗さRa(MC)は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。亜鉛めっき層を侵さない溶剤(三彩化工株式会社製の商品名:ネオリバーS-701)を用いて、亜鉛めっき鋼板の着色樹脂層を除去した。着色樹脂層を除去した後の亜鉛めっき層のテクスチャ(ヘアライン)において、任意の10箇所を測定箇所とした。各測定箇所において、第2方向に延びる評価長さで、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、上述の三次元表面粗さ測定機を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(MC)(μm)と定義した。 The surface roughness Ra (MC) was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). The colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). In the texture (hairline) of the galvanized layer after removing the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured with the evaluation length extending in the second direction. The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic average roughness Ra excluding the above was defined as the surface roughness Ra (MC) (μm).
 [地鉄露出率測定試験]
 各試験番号の亜鉛めっき鋼板の地鉄露出率を、次の方法により測定した。着色樹脂層が除去された亜鉛めっき鋼板を準備した。亜鉛めっき層の表面において、1mm×1mmの任意の矩形領域を5箇所選択した。選択された矩形領域に対してEPMA分析を実施した。画像解析により、各矩形領域中のZnが検出されない領域(Zn未検出領域)を特定した。Znの検出強度が標準試料(純Zn)を測定した場合の1/16以下となる領域を、Zn未検出領域と認定した。5つの矩形領域の総面積に対する、5つの矩形領域中のZn未検出領域の総面積の割合(面積%)を、地鉄露出率(面積%)と定義した。
[Base iron exposure rate measurement test]
The base iron exposure rate of the galvanized steel sheet of each test number was measured by the following method. A galvanized steel sheet from which the colored resin layer had been removed was prepared. Five arbitrary rectangular regions of 1 mm × 1 mm were selected on the surface of the galvanized layer. An EPMA analysis was performed on the selected rectangular area. By image analysis, a region in which Zn was not detected (Zn undetected region) in each rectangular region was identified. The region where the detection intensity of Zn was 1/16 or less when the standard sample (pure Zn) was measured was recognized as the Zn undetected region. The ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions was defined as the base iron exposure rate (area%).
 [テクスチャ視認試験]
 各試験番号の亜鉛めっき鋼板を、晴天午前の太陽光相当(照度約65000ルクス)の環境に置いた。そして、光源と鋼板と目線との角度をさまざまに変えて観察し、テクスチャが視認できるか否かを確認した。鋼板表面の鉛直方向に対して5°~80°まですべての角度でテクスチャが視認できれば、非常に良好であり合格と評価した(表1中で評価「A」)。また、鋼板表面の鉛直方向に対して5°~80°までの角度のうち一部でテクスチャが視認できれば合格と評価した(表1中で評価「B」)。一方、テクスチャを全く視認できなければ、不合格と評価した(表1中で評価「C」)。
[Texture visibility test]
The galvanized steel sheet of each test number was placed in an environment equivalent to sunlight (illuminance of about 65,000 lux) on a clear morning. Then, the angle between the light source, the steel plate, and the line of sight was changed and observed, and it was confirmed whether or not the texture could be visually recognized. If the texture could be visually recognized at all angles from 5 ° to 80 ° with respect to the vertical direction of the steel sheet surface, it was evaluated as very good and passed (evaluation "A" in Table 1). Further, if the texture could be visually recognized at a part of the angles from 5 ° to 80 ° with respect to the vertical direction of the steel sheet surface, it was evaluated as acceptable (evaluation "B" in Table 1). On the other hand, if the texture was not visible at all, it was evaluated as rejected (evaluation "C" in Table 1).
 [明度測定試験]
 各試験番号の亜鉛めっき鋼板に対して、次の方法により、明度L値を参考値として測定した。測定には、コニカミノルタ株式会社製の測色計(商品名:CM-2600d)を用いた。測定においては、光源としてCIE標準光源D65を用い、視野角度10°として、SCI方式によりCIELAB表示色でL値を求めた。
[Brightness measurement test]
For the galvanized steel sheet of each test number, the brightness L * value was measured as a reference value by the following method. A colorimeter (trade name: CM-2600d) manufactured by Konica Minolta Co., Ltd. was used for the measurement. In the measurement, a CIE standard light source D65 was used as a light source, the viewing angle was 10 °, and the L * value was obtained in the CIELAB display color by the SCI method.
 ここで、CIE標準光源D65は、JIS Z 8720(2000)「測色用イルミナイト(標準の光)及び標準光源」に規定されており、ISO 10526(2007)にも同じ規定がある。CIEは、Commission Internationale de l’Eclairageの略称であり、国際照明委員会を意味する。CIE標準光源D65は、昼光で照明される物体色を表示する場合に使用される。視野角度10°については、JIS Z 8723(2009)「表面色の視覚比較方法」に規定されており、ISO/DIS 3668にも同じ規定がある。 Here, the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification. CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination. The CIE standard illuminant D65 is used to display the color of an object illuminated by daylight. The viewing angle of 10 ° is specified in JIS Z 8723 (2009) "Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
 SCI方式は正反射光込み方式といい、正反射光を除去せずに色を測定する方法を意味する。SCI方式に従った明度測定方法は、JIS Z 8722(2009)に規定されている。SCI方式では、正反射光を除去せずに測定するため、実際の物体の色となる。 The SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing the specularly reflected light. The brightness measurement method according to the SCI method is specified in JIS Z 8722 (2009). In the SCI method, since the measurement is performed without removing the specularly reflected light, the color is the actual color of the object.
 CIELAB表示色は、知覚と、装置による測定値との違いによる色差を測定するために、1976年に勧告され、JIS Z 8781(2013)に規定されている均等色空間である。CIELABの3つの座標は、L値、a値、b値で示される。L値は明度を示し、0~100で示される。L値が0の場合は黒色を意味し、L値が100の場合は白の拡散色を意味する。 The CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring the color difference due to the difference between perception and the value measured by the device. The three coordinates of CIELAB are indicated by L * value, a * value, and b * value. The L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
 [耐食性評価試験]
 各試験番号の亜鉛めっき鋼板に対して、次の方法により、耐食性(長期耐食性)を評価した。各試験番号の亜鉛めっき鋼板から、75mm×100mmの試験片を採取した。試験片の端面及び裏面をテープシールで保護した。その後、35℃に保持された5%NaClの塩水噴霧試験を、JIS Z 2371(2015)に準拠して実施した。試験を240時間実施し、試験後の錆発生率を求めた。錆発生率が0%であれば、耐食性評価Aと判定し、錆発生率が0%超5%以下であれば、耐食性評価Bと判定し、耐食性良好と評価した。また、錆発生率が5%超であれば、耐食性評価Cと判定した。ただし、本発明の主たる課題はテクスチャ視認性の向上にある。そのため、耐食性評価がCであっても、テクスチャ視認試験に合格した試験番号の例は、本発明例と判断した。
[Corrosion resistance evaluation test]
Corrosion resistance (long-term corrosion resistance) was evaluated for the galvanized steel sheets of each test number by the following method. A 75 mm × 100 mm test piece was taken from the galvanized steel sheet of each test number. The end face and back surface of the test piece were protected with a tape seal. Then, a salt spray test of 5% NaCl kept at 35 ° C. was carried out in accordance with JIS Z 2371 (2015). The test was carried out for 240 hours, and the rust generation rate after the test was determined. If the rust occurrence rate was 0%, it was judged as corrosion resistance evaluation A, and if the rust occurrence rate was more than 0% and 5% or less, it was judged as corrosion resistance evaluation B, and it was evaluated as having good corrosion resistance. If the rust generation rate was more than 5%, it was judged to be corrosion resistance evaluation C. However, the main problem of the present invention is to improve the visibility of texture. Therefore, even if the corrosion resistance evaluation is C, the example of the test number that passed the texture visual inspection test was determined to be the example of the present invention.
 [密着性試験]
 各試験番号の亜鉛めっき鋼板に対して、次の方法により、着色樹脂層の密着性を評価した。各試験番号の亜鉛めっき鋼板から、幅50mm×長さ50mmの試験片を作製した。得られた試験片に対して180°の折り曲げ加工を実施した。折り曲げ加工後、折り曲げ部の外側に対してテープ剥離試験を実施した。テープ剥離部の外観を拡大率10倍のルーペで観察した。そして、以下の評価基準で評価した。折り曲げ加工は、20℃の雰囲気中において、0.6mmのスペーサーを間に挟んで実施した。得られた結果を、以下の表1に示す。
 (評価基準)
 A:塗膜に剥離が認められない
 B:極一部の塗膜に剥離が認められる(剥離面積≦2%)
 C:一部の塗膜に剥離が認められる(2%<剥離面積≦20%)
 D:塗膜に剥離が認められる(剥離面積>20%)
 評価がA~Cである場合、密着性に優れると判断した。評価がDである場合、密着性が低いと判断した。ただし、本発明の主たる課題はテクスチャ視認性の向上にある。そのため、密着性がDと判定されたものであっても、テクスチャ視認試験に合格した試験番号の例は、本発明例と判断した。
[Adhesion test]
The adhesion of the colored resin layer was evaluated for the galvanized steel sheet of each test number by the following method. From the galvanized steel sheets of each test number, test pieces having a width of 50 mm and a length of 50 mm were prepared. The obtained test piece was bent at 180 °. After the bending process, a tape peeling test was performed on the outside of the bent portion. The appearance of the tape peeled portion was observed with a magnifying glass having a magnification of 10 times. Then, it was evaluated according to the following evaluation criteria. The bending process was carried out in an atmosphere of 20 ° C. with a 0.6 mm spacer in between. The results obtained are shown in Table 1 below.
(Evaluation criteria)
A: No peeling is observed on the coating film B: Peeling is observed on a very small part of the coating film (peeling area ≤ 2%)
C: Peeling is observed on some coating films (2% <peeling area ≤ 20%)
D: Peeling is observed on the coating film (peeling area> 20%)
When the evaluation was A to C, it was judged that the adhesion was excellent. When the evaluation was D, it was judged that the adhesion was low. However, the main problem of the present invention is to improve the texture visibility. Therefore, even if the adhesion is determined to be D, the example of the test number that has passed the texture visibility test is determined to be the example of the present invention.
 [メタリック感評価試験]
 次の方法により、各試験番号の亜鉛めっき鋼板のメタリック感を測定した。各試験番号のめっき鋼板1の任意の点において、テクスチャ(ヘアライン)と平行方向の光沢度G60(Gl)と、テクスチャ(ヘアライン)と直行方向の光沢度G60(Gc)とを光沢度計で測定した。光沢度計は、スガ試験機株式会社製のグロスメーター(商品名:UGV-6P)を用いた。得られた光沢度Glと、光沢度Gcとに基づいて、Gc/Glを求めた。テクスチャを視認でき、かつ、Gc/Gl≦0.70であれば、優れたメタリック感が得られていると判断した(表1中で評価「A」)。テクスチャを視認でき、かつ、0.70<Gc/Gl≦0.90であれば、良好なメタリック感が得られていると判断した(表1中で評価「B」)。テクスチャを視認できない、又はテクスチャを視認できても0.90<Gc/Glであれば、メタリック感が得られていないと判断した(表1中で評価「C」)。ただし、本発明の主たる課題はテクスチャ視認性の向上にある。そのため、メタリック感がC判定であっても、テクスチャ視認試験に合格した試験番号の例は、本発明例と判断した。
[Metallic feeling evaluation test]
The metallic feeling of the galvanized steel sheet of each test number was measured by the following method. At any point of the plated steel sheet 1 of each test number, the glossiness G60 (Gl) in the direction parallel to the texture (hairline) and the glossiness G60 (Gc) in the direction perpendicular to the texture (hairline) are measured with a gloss meter. did. As the gloss meter, a gloss meter (trade name: UGV-6P) manufactured by Suga Test Instruments Co., Ltd. was used. Gc / Gl was determined based on the obtained glossiness Gl and the glossiness Gc. If the texture can be visually recognized and Gc / Gl ≦ 0.70, it is judged that an excellent metallic feeling is obtained (evaluation “A” in Table 1). If the texture can be visually recognized and 0.70 <Gc / Gl ≦ 0.90, it is judged that a good metallic feeling is obtained (evaluation “B” in Table 1). If the texture cannot be visually recognized, or if the texture is visible but 0.90 <Gc / Gl, it is determined that the metallic feeling is not obtained (evaluation "C" in Table 1). However, the main problem of the present invention is to improve the texture visibility. Therefore, even if the metallic feeling is determined to be C, the example of the test number that passed the texture visibility test was determined to be the example of the present invention.
 [評価結果]
 表1を参照して、試験番号4、5、8~17、20~22、25~27、30~32では、凹部底三次元平均粗さSasは200nm超2000nm以下であった。さらにこれら試験番号では、F1が15.0以下であり、F2が1.0よりも大きかった。そのためこれら試験番号では、明度が50以下であっても、テクスチャ視認試験において、テクスチャを視認可能であった(評価A又はB)。さらにこれら試験番号では、密着性にも優れた。試験番号2は、第1実施形態の範囲外であり、耐食性が他の発明例と比較して若干低かったが、第2実施形態の範囲内であり、メタリック感が高く、良好な美観を有していた。
[Evaluation results]
With reference to Table 1, in test numbers 4, 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32, the concave bottom three-dimensional average roughness Sas was more than 200 nm and 2000 nm or less. Furthermore, in these test numbers, F1 was 15.0 or less and F2 was greater than 1.0. Therefore, in these test numbers, even if the brightness was 50 or less, the texture could be visually recognized in the texture visibility test (evaluation A or B). Furthermore, these test numbers were also excellent in adhesion. Test number 2 was outside the range of the first embodiment, and the corrosion resistance was slightly lower than that of other invention examples, but it was within the range of the second embodiment, had a high metallic feeling, and had a good aesthetic appearance. Was.
 なお、試験番号4、5、8~17、20~22、25~27、30~32のうち、試験番号5を除く試験番号では、凸部頂上三次元平均粗さSahが5nm超200nm以下であった。そのため、試験番号4、10~17、20~22、25~27、30~32では、試験番号5と比較して、明度が低くても、テクスチャを視認可能であった。 Of the test numbers 4, 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32, the test numbers excluding test number 5 have a convex top top three-dimensional average roughness Sah of more than 5 nm and 200 nm or less. there were. Therefore, in test numbers 4, 10 to 17, 20 to 22, 25 to 27, and 30 to 32, the texture was visible even if the brightness was lower than that of test number 5.
 なお、試験番号4、5、8~17、20~22、25~27、30~32のうち、試験番号4、10以外の試験番号では、地鉄露出率が5%未満であった。そのため、試験番号5、8、9、11~17、20~22、35~27、30~32では、耐食性評価試験において、錆発生率が5%未満であり、十分な耐食性が得られた(評価A又はB)。 Of the test numbers 4, 5, 8 to 17, 20 to 22, 25 to 27, and 30 to 32, the base iron exposure rate was less than 5% for the test numbers other than the test numbers 4 and 10. Therefore, in test numbers 5, 8, 9, 11 to 17, 20 to 22, 35 to 27, and 30 to 32, the rust generation rate was less than 5% in the corrosion resistance evaluation test, and sufficient corrosion resistance was obtained ( Evaluation A or B).
 一方、試験番号1では、めっきテクスチャが形成されなかった。そのため、着色樹脂層の最大厚さDKmaxと、最小厚さDKminと、着色剤含有量CKとが式(2)を満たさなかった。さらに、表面粗さRa(CL)及び表面粗さRa(CC)が式(3)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 On the other hand, in test number 1, no plating texture was formed. Therefore, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Further, the surface roughness Ra (CL) and the surface roughness Ra (CC) did not satisfy the formula (3). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号3及び6では、着色樹脂層の最小厚さDKmin及び着色樹脂層中の着色剤含有量CKが式(1)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test numbers 3 and 6, the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号7では、着色樹脂層の最大厚さDKmaxと、最小厚さDKminと、着色剤含有量CKとが式(2)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 7, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号18では、めっきテクスチャが形成されなかった。そのため、着色樹脂層の最大厚さDKmaxと、最小厚さDKminと、着色剤含有量CKとが式(2)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 18, no plating texture was formed. Therefore, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号19では、着色樹脂層の最小厚さDKmin及び着色樹脂層中の着色剤含有量CKが式(1)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 19, the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号23では、めっきテクスチャが形成されなかった。そのため、着色樹脂層の最大厚さDKmaxと、最小厚さDKminと、着色剤含有量CKとが式(2)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 23, no plating texture was formed. Therefore, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号24では、着色樹脂層の最小厚さDKmin及び着色樹脂層中の着色剤含有量CKが式(1)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 24, the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号28では、めっきテクスチャが形成されなかった。そのため、着色樹脂層の最大厚さDKmaxと、最小厚さDKminと、着色剤含有量CKとが式(2)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 28, no plating texture was formed. Therefore, the maximum thickness DKmax of the colored resin layer, the minimum thickness DKmin, and the colorant content CK did not satisfy the formula (2). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号29では、着色樹脂層の最小厚さDKmin及び着色樹脂層中の着色剤含有量CKが式(1)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 29, the minimum thickness DKmin of the colored resin layer and the colorant content CK in the colored resin layer did not satisfy the formula (1). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 以上、本発明の第1実施形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The first embodiment of the present invention has been described above. However, the embodiments described above are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the present invention.
(実施例2)
 次に、本発明の第2実施形態のめっき鋼板1’の実施可能性及び効果を確認するために製造された種々の実施例について、以下に説明する。
 表2に記載の試験番号の亜鉛めっき鋼板を準備した。各亜鉛めっき鋼板の鋼材(鋼板)はJIS G 3141(2017)に規定されているSPCCとし、厚さは0.6mmとした。
(Example 2)
Next, various examples manufactured for confirming the feasibility and effect of the plated steel sheet 1'of the second embodiment of the present invention will be described below.
Galvanized steel sheets with test numbers shown in Table 2 were prepared. The steel material (steel plate) of each galvanized steel sheet was SPCC specified in JIS G 3141 (2017), and the thickness was 0.6 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各鋼材に対して、めっき前処理を実施した。具体的には、各鋼材に対して、濃度30g/LのNaSiO処理液を用いて、処理液温度を60℃、電流密度を20A/dm、処理時間を10秒として電解脱脂し、水洗した。電解脱脂後の鋼材を、60℃の濃度50g/LであるHSO水溶液に10秒間浸漬し、水洗した。 Each steel material was pretreated for plating. Specifically, each steel material is electrolytically degreased using a Na 4 SiO 4 treatment liquid having a concentration of 30 g / L at a treatment liquid temperature of 60 ° C., a current density of 20 A / dm 2 , and a treatment time of 10 seconds. , Washed with water. The steel material after electrolytic degreasing was immersed in an aqueous solution of H 2 SO 4 at a concentration of 50 g / L at 60 ° C. for 10 seconds and washed with water.
 めっき前処理後の各試験番号の鋼材に対して、次のめっき処理を実施して、電気亜鉛めっき層を形成した。具体的には、試験番号1’~16’では、電気めっきにより電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物を1.0mol/lと、無水硫酸ナトリウム50g/Lとを含み、pHを2.0に調整しためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度を50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、電気亜鉛めっき層を形成した(表2中の「めっき種」欄で「EG」と表記)。 The following plating treatment was carried out on the steel materials of each test number after the pre-plating treatment to form an electrogalvanized layer. Specifically, in test numbers 1'to 16', an electrogalvanized layer was formed by electroplating. Specifically, a plating bath containing 1.0 mol / l of Zn sulphate heptahydrate and 50 g / L of anhydrous sodium sulfate and adjusting the pH to 2.0 was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . By the above steps, an electrogalvanized layer was formed (denoted as "EG" in the "plating type" column in Table 2).
 試験番号17’~20’では、亜鉛めっき層として、Niを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Ni六水和物とを合計で1.2mol/l含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で12%のNiを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表2中の「めっき種」欄で「Zn-12%Ni」と表記)。 In test numbers 17'to 20', an electrogalvanized layer containing Ni was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulphate heptahydrate and Ni sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0. A plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 12% Ni by mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-12% Ni" in the "Plating type" column in Table 2). ).
 試験番号21’~24’では、亜鉛めっき層として、Feを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Fe(II)七水和物とを合計で1.2mol/l含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で14%のFeを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表2中の「めっき種」欄で「Zn-14%Fe」と表記)。 In test numbers 21'to 24', an electrogalvanized layer containing Fe was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulfate heptahydrate and Fe (II) sulfate heptahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and has a pH of 2.0. A conditioned plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 14% Fe by mass% and the balance being Zn and impurities was formed (denoted as "Zn-14% Fe" in the "Plating type" column in Table 2). ).
 試験番号25’~28’では、亜鉛めっき層として、Coを含有する電気亜鉛めっき層を形成した。具体的には、硫酸Zn七水和物と硫酸Co六水和物とを合計で1.2mol/l含有し、さらに、無水硫酸ナトリウムを50g/L含有し、pHが2.0に調整されためっき浴を準備した。電気めっきでは、浴温を50℃とし、電流密度50A/dmとした。付着量が30.0g/m程度となるように、めっき時間を調整した。以上の工程により、質量%で2%のCoを含有し、残部がZn及び不純物からなる電気亜鉛めっき層を形成した(表2中の「めっき種」欄で「Zn-2%Co」と表記)。 In test numbers 25'to 28', an electrogalvanized layer containing Co was formed as the galvanized layer. Specifically, it contains a total of 1.2 mol / l of Zn sulphate heptahydrate and Co sulphate hexahydrate, and further contains 50 g / L of anhydrous sodium sulfate, and the pH is adjusted to 2.0. A plating bath was prepared. In electroplating, the bath temperature was 50 ° C. and the current density was 50 A / dm 2 . The plating time was adjusted so that the adhesion amount was about 30.0 g / m 2 . Through the above steps, an electrogalvanized layer containing 2% Co in mass% and the balance consisting of Zn and impurities was formed (denoted as "Zn-2% Co" in the "Plating type" column in Table 2). ).
 各試験番号の電気めっき処理では、相対流速が1m/secとなるように、めっき液を流動させた。また、得られた電気亜鉛めっき層の組成は次の方法で測定した。電気めっき層が形成された鋼板をインヒビター(朝日化学製 NO.700AS)入りの10質量%塩酸に浸漬して、電気亜鉛めっき層を溶解剥離した。その後、電気亜鉛めっき層が溶解した溶液に対してICP分析を実施して、電気亜鉛めっき層の組成を確認した。 In the electroplating treatment of each test number, the plating solution was flowed so that the relative flow velocity was 1 m / sec. The composition of the obtained electrogalvanized layer was measured by the following method. The steel sheet on which the electroplating layer was formed was immersed in 10% by mass hydrochloric acid containing an inhibitor (NO.700AS manufactured by Asahi Chemical Co., Ltd.) to dissolve and peel off the electrogalvanizing layer. Then, ICP analysis was performed on the solution in which the electrogalvanized layer was dissolved to confirm the composition of the electrogalvanized layer.
 亜鉛めっき層を形成した後、試験番号2’~16’、18’~20’、22’~24’、26’~28’では、亜鉛めっき鋼板に対して、鋼板の圧延方向RDに沿って、テクスチャ加工を実施して、亜鉛めっき層の表面にヘアラインを付与した。具体的には、種々の粒度の研磨紙を亜鉛めっき層の表面に押しあて、圧下力、研磨回数を変えて、種々のヘアラインを付与した。表2の列「テクスチャ」に、各試験番号におけるテクスチャ加工の有無、及び種別を示した。 After forming the galvanized layer, in test numbers 2'to 16', 18' to 20', 22' to 24', and 26' to 28', the galvanized steel sheet is subjected to the rolling direction RD of the steel sheet. , Texture processing was carried out to impart hairlines to the surface of the galvanized layer. Specifically, polishing papers of various particle sizes were pressed against the surface of the galvanized layer, and various hairlines were imparted by changing the rolling force and the number of times of polishing. In the column "Texture" in Table 2, the presence / absence and type of texture processing in each test number are shown.
 ヘアラインが形成された亜鉛めっき鋼板(試験番号2’~16’、18’~20’、22’~24’、26’~28’)、及び、ヘアラインが形成されなかった亜鉛めっき鋼板(試験番号1’、17’、21’及び25’)に対して、着色樹脂層を形成した。着色樹脂層のうち、有機樹脂として、ウレタン系樹脂(株式会社ADEKA製、HUX-232)を水に分散させた、種々の濃度と粘度の塗料を準備した。塗料に種々の濃度の着色剤(カーボンブラック)を添加した。カーボンブラックは三菱ケミカル株式会社製の商品名#850を用いた。 Galvanized steel sheets with hairlines formed (test numbers 2'-16', 18'-20', 22'-24', 26'-28') and galvanized steel sheets without hairlines (test numbers) A colored resin layer was formed on 1', 17', 21'and 25'). Among the colored resin layers, paints having various concentrations and viscosities in which a urethane resin (manufactured by ADEKA Corporation, HUX-232) was dispersed in water as an organic resin were prepared. Colorants (carbon black) of various concentrations were added to the paint. For carbon black, trade name # 850 manufactured by Mitsubishi Chemical Corporation was used.
 塗料をロールですくい上げ、各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面に塗布した。塗布後の塗料に対して、焼付き乾燥を実施した。具体的には、塗料が塗布された亜鉛めっき鋼板を250℃に保持した炉に装入した。亜鉛めっき鋼板の到達温度が210℃に到達するまで、亜鉛めっき鋼板を炉内で1分~5分間保持した。保持後、亜鉛めっき鋼板を炉から取り出して冷却した。 The paint was scooped up with a roll and applied to the surface of the galvanized layer of the galvanized steel sheet of each test number. The paint after application was baked and dried. Specifically, the galvanized steel sheet coated with the paint was placed in a furnace kept at 250 ° C. The galvanized steel sheet was held in a furnace for 1 to 5 minutes until the temperature reached by the galvanized steel sheet reached 210 ° C. After holding, the galvanized steel sheet was taken out of the furnace and cooled.
 上記塗料の粘度は、粘度調整剤(ビックケミー製、商品名:BYK-425)を用いて調整した。具体的には、せん断速度0.1(1/sec)では塗料粘度が10(Pa・s)以上となり、せん断速度1000(1/sec)では塗料粘度が0.01(Pa・s)以下となるように、塗料の粘度を調整した。以上の工程により、各試験番号の亜鉛めっき層上に、着色樹脂層を形成した。 The viscosity of the above paint was adjusted using a viscosity modifier (manufactured by Big Chemie, trade name: BYK-425). Specifically, at a shear rate of 0.1 (1 / sec), the paint viscosity is 10 (Pa · s) or more, and at a shear rate of 1000 (1 / sec), the paint viscosity is 0.01 (Pa · s) or less. The viscosity of the paint was adjusted so as to be. By the above steps, a colored resin layer was formed on the galvanized layer of each test number.
 以上の製造方法により、各試験番号の亜鉛めっき鋼板を製造した。なお、試験番号16’では、着色樹脂層と亜鉛めっき層との間に、着色剤を含まない、ウレタン系樹脂(株式会社ADEKA製、HUX-232)を0.5μm塗布した。その後、着色樹脂層を形成した。 The galvanized steel sheet of each test number was manufactured by the above manufacturing method. In Test No. 16', 0.5 μm of a urethane resin (manufactured by ADEKA Corporation, HUX-232) containing no colorant was applied between the colored resin layer and the galvanized layer. Then, a colored resin layer was formed.
 [評価試験]
 [三次元平均粗さSaave’測定試験]
 各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面のテクスチャ(ヘアライン)の最大三次元平均粗さを次の方法で測定した。初めに、亜鉛めっき層を侵さない溶剤(三彩化工株式会社製の商品名:ネオリバーS-701)を用いて、亜鉛めっき鋼板の着色樹脂層を除去した。亜鉛めっき層の表面のうち、テクスチャ(ヘアライン)の延在方向に直交する方向の任意の1000μm長さ範囲を1箇所選定した。選定された1000μm長さ範囲において、テクスチャの粗さプロファイルを測定した。粗さプロファイルは、三次元表面粗さ測定機(東京精密製 サーフコム1500DX3)で測定した。測定された粗さプロファイル上の位置のうち、高さが低い位置を、高さが低い順に10点特定し、高さが低い順に、凹部底点PRE1’、PRE2’、…、PRE10’と定義した。測定された粗さプロファイル上の位置のうち、高さが高い位置を、高さが高い順に10点特定し、高さが高い順に、凸部頂点PCO1’、PCO2’、…、PCO10’と定義した。
[Evaluation test]
[Three-dimensional average roughness Save'measurement test]
The maximum three-dimensional average roughness of the surface texture (hairline) of the galvanized layer of the galvanized steel sheet of each test number was measured by the following method. First, the colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). From the surface of the galvanized layer, one arbitrary 1000 μm length range in the direction orthogonal to the extending direction of the texture (hairline) was selected. The texture roughness profile was measured in the selected 1000 μm length range. The roughness profile was measured with a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.). Among the positions on the measured roughness profile, 10 points with lower heights are specified in ascending order of height, and recessed bottom points PRE1', PRE2', ..., PRE10' are defined in ascending order of height. did. Among the positions on the measured roughness profile, 10 points with higher heights are specified in descending order of height, and convex vertices PCO1', PCO2', ..., PCO10'are defined in descending order of height. did.
 図14Aに示すとおり、亜鉛めっき層の表面を平面視して、定義された各凹部底点PREk’(kは1~10)を中心とした1μm×1μmの微小凹部領域を特定した。同様に、図14Bに示すとおり、亜鉛めっき層の表面を平面視して、定義された各凸部頂点PCOk’(kは1~10)を中心とした1μm×1μmの微小凸部領域を特定した。 As shown in FIG. 14A, the surface of the galvanized layer was viewed in a plan view, and a 1 μm × 1 μm minute recess region centered on each defined recess bottom point PREk'(k is 1 to 10) was specified. Similarly, as shown in FIG. 14B, the surface of the galvanized layer is viewed in a plan view, and a 1 μm × 1 μm microconvex region centered on each defined convex apex PCok'(k is 1 to 10) is specified. did.
 以上の方法で特定された10個の微小凹部領域、及び、10個の微小凸部領域において、三次元平均粗さSa’を測定した。微小凹部領域及び微小凸部領域の特定及び三次元平均粗さSa’の測定には、株式会社キーエンス製のレーザー顕微鏡(商品名:VK-9710)を用いた。なお、VK-9710では、高さ方向の表示分解能が1nm以上であり、幅方向の表示分解能が1nm以上であった。測定された20個(10個の微小凹部領域及び10個の微小凸部領域)の三次元平均粗さSa’の算術平均値を、三次元平均粗さSaave’と定義した。 The three-dimensional average roughness Sa'was measured in the 10 micro-concave regions and the 10 micro-convex regions specified by the above method. A laser microscope (trade name: VK-9710) manufactured by KEYENCE CORPORATION was used for identifying the micro-concave region and the micro-convex region and measuring the three-dimensional average roughness Sa'. In VK-9710, the display resolution in the height direction was 1 nm or more, and the display resolution in the width direction was 1 nm or more. The arithmetic mean value of the measured 20 (10 micro-concave regions and 10 micro-convex regions) three-dimensional average roughness Sa'was defined as the three-dimensional average roughness Sa'.
 [DKmin’、DKmax’測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層の厚さ(DKmin’、DKmax’)を次の方法で測定した。各試験番号の亜鉛めっき鋼板において、テクスチャ(ヘアライン)の延在方向と直交する断面を表面に持つサンプルを採取した。サンプルのうち、テクスチャ(ヘアライン)の延在方向と直交する方向に100μmの長さ範囲の観察断面を、走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察した。観察断面において、方向WD’に0.5μmピッチで着色樹脂層の厚さを測定した。測定された厚さのうち、最小の厚さを最小厚さDKmin’(μm)と定義した。測定された厚さのうち、最大の厚さを最大厚さDKmax’(μm)と定義した。
[DKmin', DKmax' measurement test]
The thickness (DKmin', DKmax') of the colored resin layer of the galvanized steel sheet of each test number was measured by the following method. For the galvanized steel sheet of each test number, a sample having a cross section orthogonal to the extending direction of the texture (hairline) was taken. Among the samples, an observation cross section in a length range of 100 μm in a direction orthogonal to the extending direction of the texture (hairline) was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM). In the observation cross section, the thickness of the colored resin layer was measured at a pitch of 0.5 μm in the direction WD'. Of the measured thicknesses, the smallest thickness was defined as the minimum thickness DKmin'(μm). Of the measured thicknesses, the maximum thickness was defined as the maximum thickness DKmax'(μm).
 [着色剤含有量CK’測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層中の着色剤含有量(面積%)を次の方法で求めた。テクスチャ(ヘアライン)の延在方向と直交する断面を表面に持つサンプルを採取した。サンプルにおいて、テクスチャ(ヘアライン)の延在方向と直交する断面を観察面とした。サンプルから、FIBを用いて、観察面の着色樹脂層と亜鉛めっき層とを観察可能な薄膜試料を作製した。薄膜試料の膜厚は150nmとした。作製した薄膜試料の観察面のうち、着色樹脂層の厚さ方向と垂直な方向(つまり、方向WD’)の長さが3μmであって、かつ、着色樹脂層の厚さ方向(つまり、方向TD’)において、着色樹脂層全体を含む長さを有する視野を、TEMを用いて観察した。TEM観察において、着色樹脂層中の樹脂と着色剤とは、コントラストにより識別可能であった。観察断面中の着色樹脂層中の複数の着色剤の総面積A1’(μm)を求めた。さらに、観察断面中の着色樹脂層の面積A0’(μm)を求めた。求めた総面積A1’及び面積A0’に基づいて、次式により着色樹脂層11中の着色剤含有量(面積%)を求めた。
 CK’=A1’/A0’×100
[Colorant content CK'measurement test]
The colorant content (area%) in the colored resin layer of the galvanized steel sheet of each test number was determined by the following method. A sample having a cross section on the surface orthogonal to the extending direction of the texture (hairline) was taken. In the sample, the cross section orthogonal to the extending direction of the texture (hairline) was used as the observation surface. From the sample, a thin film sample in which the colored resin layer and the galvanized layer on the observation surface could be observed was prepared using FIB. The film thickness of the thin film sample was 150 nm. Of the observation surfaces of the prepared thin film sample, the length in the direction perpendicular to the thickness direction of the colored resin layer (that is, the direction WD') is 3 μm, and the length in the thickness direction (that is, the direction) of the colored resin layer. In TD'), a visual field having a length including the entire colored resin layer was observed using TEM. In the TEM observation, the resin in the colored resin layer and the colorant could be distinguished by the contrast. The total area A1'(μm 2 ) of the plurality of colorants in the colored resin layer in the observed cross section was determined. Further, the area A0'(μm 2 ) of the colored resin layer in the observed cross section was determined. Based on the obtained total area A1'and area A0', the colorant content (area%) in the colored resin layer 11 was determined by the following formula.
CK'= A1' / A0'x100
 [着色樹脂層の粗さRa(CC)’及びRa(CL)’測定試験]
 各試験番号の亜鉛めっき鋼板の着色樹脂層中の粗さRa(CC)’及びRa(CL)’を次の方法で求めた。
[Roughness Ra (CC)'and Ra (CL)' measurement test of colored resin layer]
The roughness Ra (CC)'and Ra (CL)'in the colored resin layer of the galvanized steel sheet of each test number were determined by the following method.
 表面粗さRa(CL)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。着色樹脂層の表面において、任意の10箇所を測定箇所とした。各測定箇所において、テクスチャ(ヘアライン)の延在方向に延びる評価長さにて、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、三次元表面粗さ測定機(東京精密製 サーフコム1500DX3)を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CL)’と定義した。 The surface roughness Ra (CL)'was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the extending direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using a three-dimensional surface roughness measuring machine (Surfcom 1500DX3 manufactured by Tokyo Seimitsu Co., Ltd.), and the measuring speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ras excluding the above was defined as the surface roughness Ra (CL)'.
 同様に、表面粗さRa(CC)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。着色樹脂層の表面において、任意の10箇所を測定箇所とした。各測定箇所において、テクスチャ(ヘアライン)の延在方向に直交する方向に延びる評価長さにて、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、上述の三次元表面粗さ測定機を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(CC)’と定義した。 Similarly, the surface roughness Ra (CC)'was measured by the method for measuring the arithmetic mean roughness specified in JIS B 0601 (2013). On the surface of the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the direction orthogonal to the extending direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic mean roughness Ra excluding the above was defined as the surface roughness Ra (CC)'.
 [亜鉛めっき層の表面粗さRa(MC)’測定試験]
 各試験番号の亜鉛めっき鋼板の亜鉛めっき層の表面粗さRa(MC)’を次の方法で求めた。
[Surface roughness Ra (MC)'measurement test of galvanized layer]
The surface roughness Ra (MC)'of the galvanized layer of the galvanized steel sheet of each test number was determined by the following method.
 表面粗さRa(MC)’は、JIS B 0601(2013)に規定された算術平均粗さの測定方法により測定した。亜鉛めっき層を侵さない溶剤(三彩化工株式会社製の商品名:ネオリバーS-701)を用いて、亜鉛めっき鋼板の着色樹脂層を除去した。着色樹脂層を除去した後の亜鉛めっき層のテクスチャ(ヘアライン)において、任意の10箇所を測定箇所とした。各測定箇所において、テクスチャ(ヘアライン)の延在方向と直交する方向に延びる評価長さにて、算術平均粗さRaを測定した。評価長さは、基準長さ(カットオフ波長)の5倍とした。算術平均粗さRaの測定は、上述の三次元表面粗さ測定機を用いて行い、測定速度は、0.5mm/secとした。求めた10個の算術平均粗さRaのうち、最大の算術平均粗さRa、2番目に大きい算術平均粗さRa、最小の算術平均粗さRa、及び、2番目に小さい算術平均粗さRaを除いた、6個の算術平均粗さRaの算術平均値を、表面粗さRa(MC)’(μm)と定義した。 The surface roughness Ra (MC)'was measured by the arithmetic mean roughness measuring method specified in JIS B 0601 (2013). The colored resin layer of the galvanized steel sheet was removed using a solvent that does not attack the galvanized layer (trade name: Neo River S-701 manufactured by Sansai Kako Co., Ltd.). In the texture (hairline) of the galvanized layer after removing the colored resin layer, any 10 points were set as measurement points. At each measurement point, the arithmetic mean roughness Ra was measured by the evaluation length extending in the direction orthogonal to the extending direction of the texture (hairline). The evaluation length was set to 5 times the reference length (cutoff wavelength). The arithmetic average roughness Ra was measured using the above-mentioned three-dimensional surface roughness measuring machine, and the measurement speed was 0.5 mm / sec. Of the 10 arithmetic mean roughness Ras obtained, the largest arithmetic mean roughness Ra, the second largest arithmetic mean roughness Ra, the smallest arithmetic mean roughness Ra, and the second smallest arithmetic mean roughness Ra. The arithmetic mean value of the six arithmetic average roughness Ra excluding the above was defined as the surface roughness Ra (MC)'(μm).
 [地鉄露出率測定試験]
 各試験番号の亜鉛めっき鋼板の地鉄露出率を、次の方法により測定した。着色樹脂層が除去された亜鉛めっき鋼板を準備した。亜鉛めっき層の表面において、1mm×1mmの任意の矩形領域を5箇所選択した。選択された矩形領域に対してEPMA分析を実施した。画像解析により、各矩形領域中のZnが検出されない領域(Zn未検出領域)を特定した。Znの検出強度が標準試料(純Zn)を測定した場合の1/16以下となる領域を、Zn未検出領域と認定した。5つの矩形領域の総面積に対する、5つの矩形領域中のZn未検出領域の総面積の割合(面積%)を、地鉄露出率(面積%)と定義した。
[Base iron exposure rate measurement test]
The base iron exposure rate of the galvanized steel sheet of each test number was measured by the following method. A galvanized steel sheet from which the colored resin layer had been removed was prepared. Five arbitrary rectangular regions of 1 mm × 1 mm were selected on the surface of the galvanized layer. An EPMA analysis was performed on the selected rectangular area. By image analysis, a region in which Zn was not detected (Zn undetected region) in each rectangular region was identified. The region where the detection intensity of Zn was 1/16 or less when the standard sample (pure Zn) was measured was recognized as the Zn undetected region. The ratio (area%) of the total area of the Zn undetected region in the five rectangular regions to the total area of the five rectangular regions was defined as the base iron exposure rate (area%).
 [テクスチャ視認試験]
 各試験番号の亜鉛めっき鋼板を、晴天午前の太陽光相当(照度約65000ルクス)の環境に置いた。そして、光源と鋼板と目線との角度をさまざまに変えて観察し、テクスチャが視認できるか否かを確認した。鋼板表面の鉛直方向に対して5°~80°まですべての角度でテクスチャが視認できれば、非常に良好であり合格と評価した(表1中で評価「A」)。また、鋼板表面の鉛直方向に対して5°~80°までの角度のうち一部でテクスチャが視認できれば合格と評価した(表1中で評価「B」)。一方、テクスチャを全く視認できなければ、不合格と評価した(表1中で評価「C」)。
[Texture visibility test]
The galvanized steel sheet of each test number was placed in an environment equivalent to sunlight (illuminance of about 65,000 lux) on a clear morning. Then, the angle between the light source, the steel plate, and the line of sight was changed and observed, and it was confirmed whether or not the texture could be visually recognized. If the texture could be visually recognized at all angles from 5 ° to 80 ° with respect to the vertical direction of the steel sheet surface, it was evaluated as very good and passed (evaluation "A" in Table 1). Further, if the texture could be visually recognized at a part of the angles from 5 ° to 80 ° with respect to the vertical direction of the steel sheet surface, it was evaluated as acceptable (evaluation "B" in Table 1). On the other hand, if the texture was not visible at all, it was evaluated as rejected (evaluation "C" in Table 1).
 [明度測定試験]
 各試験番号の亜鉛めっき鋼板に対して、次の方法により、明度L値を参考値として測定した。測定には、コニカミノルタ株式会社製の測色計(商品名:CM-2600d)を用いた。測定においては、光源としてCIE標準光源D65を用い、視野角度10°として、SCI方式によりCIELAB表示色でL値を求めた。
[Brightness measurement test]
The galvanized steel sheet of each test number was measured by the following method using the brightness L * value as a reference value. A colorimeter (trade name: CM-2600d) manufactured by Konica Minolta Co., Ltd. was used for the measurement. In the measurement, a CIE standard light source D65 was used as a light source, the viewing angle was 10 °, and the L * value was obtained in the CIELAB display color by the SCI method.
 ここで、CIE標準光源D65は、JIS Z 8720(2000)「測色用イルミナイト(標準の光)及び標準光源」に規定されており、ISO 10526(2007)にも同じ規定がある。CIEは、Commission Internationale de l’Eclairageの略称であり、国際照明委員会を意味する。CIE標準光源D65は、昼光で照明される物体色を表示する場合に使用される。視野角度10°については、JIS Z 8723(2009)「表面色の視覚比較方法」に規定されており、ISO/DIS 3668にも同じ規定がある。 Here, the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification. CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination. The CIE standard illuminant D65 is used to display the color of an object illuminated by daylight. The viewing angle of 10 ° is specified in JIS Z 8723 (2009) "Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
 SCI方式は正反射光込み方式といい、正反射光を除去せずに色を測定する方法を意味する。SCI方式に従った明度測定方法は、JIS Z 8722(2009)に規定されている。SCI方式では、正反射光を除去せずに測定するため、実際の物体の色となる。 The SCI method is called a specularly reflected light inclusion method, and means a method of measuring color without removing the specularly reflected light. The brightness measurement method according to the SCI method is specified in JIS Z 8722 (2009). In the SCI method, since the measurement is performed without removing the specularly reflected light, the color is the actual color of the object.
 CIELAB表示色は、知覚と、装置による測定値との違いによる色差を測定するために、1976年に勧告され、JIS Z 8781(2013)に規定されている均等色空間である。CIELABの3つの座標は、L値、a値、b値で示される。L値は明度を示し、0~100で示される。L値が0の場合は黒色を意味し、L値が100の場合は白の拡散色を意味する。 The CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring the color difference due to the difference between perception and the value measured by the device. The three coordinates of CIELAB are indicated by L * value, a * value, and b * value. The L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white.
 [耐食性評価試験]
 各試験番号の亜鉛めっき鋼板に対して、次の方法により、耐食性(長期耐食性)を評価した。各試験番号の亜鉛めっき鋼板から、75mm×100mmの試験片を採取した。試験片の端面及び裏面をテープシールで保護した。その後、35℃に保持された5%NaClの塩水噴霧試験を、JIS Z 2371(2015)に準拠して実施した。試験を240時間実施し、試験後の錆発生率を求めた。錆発生率が0%であれば、耐食性評価Aと判定し、錆発生率が0%超5%以下であれば耐食性評価Bと判定し、耐食性良好と評価した。また、錆発生率が5%超であれば、耐食性評価Cと判定した。ただし、本発明の主たる課題はテクスチャ視認性などの美観の向上にある。そのため、耐食性評価がCであっても、テクスチャ視認試験に合格した試験番号の例は、本発明例と判断した。
[Corrosion resistance evaluation test]
Corrosion resistance (long-term corrosion resistance) was evaluated for the galvanized steel sheets of each test number by the following method. A 75 mm × 100 mm test piece was taken from the galvanized steel sheet of each test number. The end face and back surface of the test piece were protected with a tape seal. Then, a salt spray test of 5% NaCl kept at 35 ° C. was carried out in accordance with JIS Z 2371 (2015). The test was carried out for 240 hours, and the rust generation rate after the test was determined. When the rust occurrence rate was 0%, it was judged as corrosion resistance evaluation A, and when the rust occurrence rate was more than 0% and 5% or less, it was judged as corrosion resistance evaluation B, and it was evaluated as having good corrosion resistance. If the rust generation rate was more than 5%, it was judged to be corrosion resistance evaluation C. However, the main object of the present invention is to improve the aesthetic appearance such as texture visibility. Therefore, even if the corrosion resistance evaluation is C, the example of the test number that passed the texture visual inspection test was determined to be the example of the present invention.
 [メタリック感評価試験]
 次の方法により、各試験番号の亜鉛めっき鋼板のメタリック感を測定した。各試験番号のめっき鋼板1の任意の点において、テクスチャ(ヘアライン)と平行方向の光沢度G60(Gl)と、テクスチャ(ヘアライン)と直行方向の光沢度G60(Gc)とを光沢度計で測定した。光沢度計は、スガ試験機株式会社製のグロスメーター(商品名:UGV-6P)を用いた。得られた光沢度Glと、光沢度Gcとに基づいて、Gc/Glを求めた。テクスチャを視認でき、かつ、Gc/Gl≦0.70であれば、優れたメタリック感が得られていると判断した(表1中で評価「A」)。テクスチャを視認でき、かつ、0.70<Gc/Gl≦0.90であれば、良好なメタリック感が得られていると判断した(表1中で評価「B」)。テクスチャを視認できない、またはテクスチャを視認できても0.90<Gc/Glであれば、メタリック感が得られていないと判断した(表1中で評価「C」)。ただし、本発明の主たる課題はテクスチャ視認性の向上にある。そのため、メタリック感がC判定であっても、テクスチャ視認試験に合格した試験番号の例は、本発明例と判断した。
[Metallic feeling evaluation test]
The metallic feeling of the galvanized steel sheet of each test number was measured by the following method. At any point of the plated steel sheet 1 of each test number, the glossiness G60 (Gl) in the direction parallel to the texture (hairline) and the glossiness G60 (Gc) in the direction perpendicular to the texture (hairline) are measured with a gloss meter. did. As the gloss meter, a gloss meter (trade name: UGV-6P) manufactured by Suga Test Instruments Co., Ltd. was used. Gc / Gl was determined based on the obtained glossiness Gl and the glossiness Gc. If the texture can be visually recognized and Gc / Gl ≦ 0.70, it is judged that an excellent metallic feeling is obtained (evaluation “A” in Table 1). If the texture can be visually recognized and 0.70 <Gc / Gl ≦ 0.90, it is judged that a good metallic feeling is obtained (evaluation “B” in Table 1). If the texture cannot be visually recognized, or if the texture is visible but 0.90 <Gc / Gl, it is judged that the metallic feeling is not obtained (evaluation "C" in Table 1). However, the main problem of the present invention is to improve the texture visibility. Therefore, even if the metallic feeling is determined to be C, the example of the test number that passed the texture visibility test was determined to be the example of the present invention.
 [評価結果]
 表1を参照して、試験番号3’、6’~16’、19’、20’、23’、24’、27’及び28’では、三次元平均粗さSaave’が5nm超200nm以下であり、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たした。さらに、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たした。そのため、テクスチャ視認試験において、テクスチャを視認可能であった(評価A又はB)。
[Evaluation results]
With reference to Table 1, in test numbers 3', 6'-16', 19', 20', 23', 24', 27' and 28', the three-dimensional average roughness Save'is greater than 5 nm and less than 200 nm. Yes, the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer satisfied the formula (1'). Further, the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer satisfy the formula (2'). Therefore, the texture was visible in the texture visibility test (evaluation A or B).
 なお、試験番号3’、6’~16’、19’、20’、23’、24’、27’及び28’のうち、試験番号3’以外の試験番号では、地鉄露出率が5%未満であった。そのため、耐食性評価試験において、錆発生率が5%未満であり、十分な耐食性が得られた(評価A)。 Of the test numbers 3', 6'to 16', 19', 20', 23', 24', 27'and 28', the base iron exposure rate is 5% for the test numbers other than the test number 3'. Was less than. Therefore, in the corrosion resistance evaluation test, the rust generation rate was less than 5%, and sufficient corrosion resistance was obtained (evaluation A).
 一方、試験番号1’では、三次元平均粗さSaave’が大きすぎた。さらに、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 On the other hand, in test number 1', the three-dimensional average roughness Save' was too large. Further, the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号2’では、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 2', the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer did not satisfy the formula (1'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号4’では、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 4', the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer did not satisfy the formula (1'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号5’では、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 5', the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号17’では、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 17', the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号18’では、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 18', the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer did not satisfy the formula (1'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号21’では、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 21', the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号22’では、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 22', the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer did not satisfy the formula (1'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号25’では、着色樹脂層の最大厚さDKmax’と、最小厚さDKmin’と、着色剤含有量CK’とが式(2’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 25', the maximum thickness DKmax', the minimum thickness DKmin', and the colorant content CK'of the colored resin layer did not satisfy the formula (2'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
 試験番号26’では、着色樹脂層の最小厚さDKmin’及び着色樹脂層中の着色剤の含有量CK’が式(1’)を満たさなかった。そのため、テクスチャ視認試験において、テクスチャを視認できなかった(評価C)。 In test number 26', the minimum thickness DKmin'of the colored resin layer and the colorant content CK'in the colored resin layer did not satisfy the formula (1'). Therefore, the texture could not be visually recognized in the texture visibility test (evaluation C).
(実施例3)
 実施例1および実施例2のうち、試験番号12、14~16、20~21、25~26、30~31、13’~16’、19’~20’、23’~24’、27’~28’について、それぞれ同じ塗料を使用し、着色樹脂層の合計膜厚が同等となるように複数回に分けて塗装し、積層樹脂層とした。積層樹脂を塗装したものは元となった試験番号に#をつけて表3A及び表3Bに記載した。積層樹脂層形成工程では、着色樹脂塗布装置及び焼付炉を組み合わせた樹脂層製造装置を含む製造ラインを用いた。樹脂を積層させる場合には、樹脂層製造装置を用いた樹脂層の製造を複数回実施した。試験番号15#と15’#では、着色顔料を含まないクリヤ樹脂層を第三層として積層し、積層樹脂層数を3とした(「積層樹脂層」欄の「積層数」欄において「3」と記載)。試験番号16#と16’#では、着色顔料を含まないクリヤ樹脂層を第一層として積層し、積層樹脂層数を3とした(「積層樹脂層」欄の「積層数」欄において「3」と記載)。その他の積層樹脂化した試験番号では積層樹脂層中の着色樹脂層数を2とした(「積層樹脂層」欄の「積層数」欄において「2」と記載)。
(Example 3)
Of Example 1 and Example 2, test numbers 12, 14-16, 20-21, 25-26, 30-31, 13'-16', 19'-20', 23'-24', 27' The same paint was used for each of ~ 28', and the colored resin layers were coated in a plurality of times so as to have the same total film thickness to form a laminated resin layer. Those coated with the laminated resin are listed in Tables 3A and 3B by adding # to the original test number. In the laminated resin layer forming step, a production line including a resin layer production apparatus combining a colored resin coating apparatus and a baking furnace was used. When the resins were laminated, the resin layer was manufactured a plurality of times using the resin layer manufacturing apparatus. In test numbers 15 # and 15'#, a clear resin layer containing no coloring pigment was laminated as a third layer, and the number of laminated resin layers was set to 3 ("3" in the "number of layers" column of the "laminated resin layer" column. "). In test numbers 16 # and 16'#, a clear resin layer containing no coloring pigment was laminated as the first layer, and the number of laminated resin layers was set to 3 ("3" in the "number of layers" column of the "laminated resin layer" column. "). In the other test numbers for using laminated resin, the number of colored resin layers in the laminated resin layer was set to 2 (described as "2" in the "number of laminated resin" column in the "laminated resin layer" column).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [評価試験]
 [各着色樹脂層LK中の顔料の含有量CK及び厚さDKの測定]
 各試験番号の積層樹脂層の各着色樹脂層の顔料の含有量CK及び厚さDKを、次の方法により測定した。図15Aを参照して、意匠性亜鉛めっき鋼板を法線方向NDに切断して、法線方向ND及び板幅方向TDを含む切断面CSを作製した。図15Bを参照して、切断面CSにおいて、法線方向NDに垂直な方向(本実施例では板幅方向TD)を切断面幅方向CDと定義した。切断面CSを、切断面幅方向CDに3等分に区画した。3等分された区画X1~X3の各々において、切断面幅方向CDの中央位置であって、積層樹脂層30を含むサンプルSAを採取した。3つのサンプルSAの各々は、少なくとも積層樹脂層30と、亜鉛めっき層10とを含んだ。切断面幅方向CDの長さは10mmとし、法線方向ND及び切断面幅方向CDに垂直な方向の長さを10mmとした。切出したサンプルSAについて収束イオンビーム装置(FIB)を用いて、積層樹脂層30と亜鉛めっき層10を透過電子顕微鏡で観察できるサンプルを作製した。
[Evaluation test]
[Measurement of pigment content CK and thickness DK in each colored resin layer LK]
The pigment content CK and thickness DK of each colored resin layer of the laminated resin layer of each test number were measured by the following methods. With reference to FIG. 15A, the designable galvanized steel sheet was cut in the normal direction ND to prepare a cut surface CS including the normal direction ND and the plate width direction TD. With reference to FIG. 15B, in the cut surface CS, the direction perpendicular to the normal direction ND (plate width direction TD in this embodiment) is defined as the cut surface width direction CD. The cut surface CS was divided into three equal parts along the cut surface width direction CD. In each of the three equal compartments X1 to X3, a sample SA including the laminated resin layer 30 was collected at the center position of the CD in the width direction of the cut surface. Each of the three sample SAs contained at least a laminated resin layer 30 and a galvanized layer 10. The length of the CD in the width direction of the cut surface was 10 mm, and the length in the direction perpendicular to the ND in the normal direction and the CD in the width direction of the cut surface was 10 mm. A sample in which the laminated resin layer 30 and the galvanized layer 10 can be observed with a transmission electron microscope was prepared for the cut out sample SA by using a focused ion beam device (FIB).
 サンプルSAの法線方向ND及び切断面幅方向CDを含む面(観察面)を、走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察した。走査型電子顕微鏡(SEM)の反射電子像(BSE)での観察において、母材鋼板、亜鉛めっき層、及び、積層樹脂層は、コントラストにより容易に判別可能であった。また、積層樹脂層のうち、各着色樹脂層は、組成の異なる樹脂層を使用したためそのコントラストにより識別可能であった。
 各着色樹脂層を識別した後、各着色樹脂層中の顔料の含有量CK(体積%)と、各着色樹脂層の平均厚さDKとを次の方法で求めた。
The surface (observation surface) including the normal direction ND and the cut surface width direction CD of the sample SA was observed with a 2000 times reflected electron image (BSE) using a scanning electron microscope (SEM). In the observation with the backscattered electron image (BSE) of the scanning electron microscope (SEM), the base steel plate, the galvanized layer, and the laminated resin layer could be easily distinguished by the contrast. Further, among the laminated resin layers, each colored resin layer was identifiable by its contrast because resin layers having different compositions were used.
After identifying each colored resin layer, the content CK (volume%) of the pigment in each colored resin layer and the average thickness DK of each colored resin layer were determined by the following method.
 透過型電子顕微鏡観察において、観察面での着色樹脂層中の複数の顔料の総面積A1(μm)を求めた。そして、観察面でのその着色樹脂層の面積A0(μm)を求めた。求めた総面積A1及び面積A0に基づいて、次式により着色樹脂層中の顔料の面積率(面積%)を求めた。
 面積率=A1/A0×100
In the observation with a transmission electron microscope, the total area A1 (μm 2 ) of the plurality of pigments in the colored resin layer on the observation surface was determined. Then, the area A0 (μm 2 ) of the colored resin layer on the observation surface was determined. Based on the obtained total area A1 and area A0, the area ratio (area%) of the pigment in the colored resin layer was determined by the following formula.
Area ratio = A1 / A0 × 100
 3つのサンプルにおいて上述の顔料の面積率を求め、求めた3つの面積率の平均を、その着色樹脂層の顔料含有量CK(体積%)と定義した。 The area ratios of the pigments described above were obtained in three samples, and the average of the obtained three area ratios was defined as the pigment content CK (volume%) of the colored resin layer.
 また、各サンプルSAにおいて、各着色樹脂層の任意の1点で厚さ(μm)を測定した。3つのサンプルSAにおいて得られた3つの厚さの平均を、その着色樹脂層の厚さDK(μm)と定義した。以上の方法により、識別された各着色樹脂層の顔料含有量CK(面積%)と、厚さDK(μm)とを求めた。 Further, in each sample SA, the thickness (μm) was measured at any one point of each colored resin layer. The average of the three thicknesses obtained in the three sample SAs was defined as the thickness DK (μm) of the colored resin layer. By the above method, the pigment content CK (area%) and the thickness DK (μm) of each of the identified colored resin layers were determined.
 各着色樹脂層の顔料含有量CK及び厚さDKに基づいて、各着色樹脂層の色濃度の指標となる色濃度指標IKを、次の式により求めた。
 色濃度指標IK=CK×DK
Based on the pigment content CK and the thickness DK of each colored resin layer, the color density index IK, which is an index of the color density of each colored resin layer, was obtained by the following formula.
Color density index IK = CK x DK
 また、各着色樹脂層の色濃度指標の合計値を求めた。求めた合計値を、表3A及び表3B中の「積層樹脂層」欄の「総色濃度指標」欄に示す。 In addition, the total value of the color density index of each colored resin layer was obtained. The obtained total value is shown in the "total color density index" column of the "laminated resin layer" column in Tables 3A and 3B.
 [積層樹脂層の厚さの測定]
 積層樹脂層30の厚さは、次の方法で測定した。図15A及び図15Bを参照して、切断面CSにおいて、法線方向NDに垂直な方向を切断面幅方向CD(本実施例では板幅方向TDに相当)と定義した。切断面CSを、切断面幅方向CDに3等分に区画した。3等分された区画X1~X3の各々において、切断面幅方向CDの中央位置であって、積層樹脂層30を含むサンプルSAを採取した。3つのサンプルSAの各々は、少なくとも積層樹脂層30と、亜鉛めっき層10とを含んだ。切断面幅方向CDの長さは10mmとした。サンプルSAのうち、法線方向ND及び切断面幅方向CDに垂直な方向の長さは10mmとした。切出したサンプルSAの切断面CSに金蒸着を施した。その後サンプルSAを当て板で挟んで樹脂に埋め込み、研磨して切断面CSを観察面とする観察用サンプルを作製した。観察用サンプルの観察面を走査型電子顕微鏡(SEM)を用いて2000倍の反射電子像(BSE)で観察した。走査型電子顕微鏡(SEM)の反射電子像(BSE)での観察において母材鋼板100、亜鉛めっき層10、及び、積層樹脂層30は、コントラストにより容易に判別可能であった。各サンプルSAにおいて、切断面幅方向CDに100μmピッチで積層樹脂層30の厚さを10点測定した。3つのサンプルSAで測定された厚さ(合計30点)の平均値を、積層樹脂層30の厚さ(μm)と定義した。表1中の「積層樹脂層」欄の「総膜厚」に、測定された積層樹脂層の厚さ(μm)を示す。
[Measurement of thickness of laminated resin layer]
The thickness of the laminated resin layer 30 was measured by the following method. With reference to FIGS. 15A and 15B, in the cut surface CS, the direction perpendicular to the normal direction ND is defined as the cut surface width direction CD (corresponding to the plate width direction TD in this embodiment). The cut surface CS was divided into three equal parts along the cut surface width direction CD. In each of the three equal compartments X1 to X3, a sample SA including the laminated resin layer 30 was collected at the center position of the CD in the width direction of the cut surface. Each of the three sample SAs contained at least a laminated resin layer 30 and a galvanized layer 10. The length of the CD in the width direction of the cut surface was 10 mm. Of the sample SA, the length in the direction perpendicular to the normal direction ND and the cut surface width direction CD was set to 10 mm. Gold vapor deposition was applied to the cut surface CS of the cut-out sample SA. After that, the sample SA was sandwiched between the backing plates, embedded in the resin, and polished to prepare an observation sample having the cut surface CS as the observation surface. The observation surface of the observation sample was observed with a 2000x backscattered electron image (BSE) using a scanning electron microscope (SEM). The base steel plate 100, the galvanized layer 10, and the laminated resin layer 30 could be easily distinguished by the contrast in the observation with the reflected electron image (BSE) of the scanning electron microscope (SEM). In each sample SA, the thickness of the laminated resin layer 30 was measured at 10 points at a pitch of 100 μm in the cut surface width direction CD. The average value of the thicknesses (30 points in total) measured by the three sample SAs was defined as the thickness (μm) of the laminated resin layer 30. The measured thickness (μm) of the laminated resin layer is shown in the “total film thickness” in the “laminated resin layer” column in Table 1.
 [最濃色着色樹脂層L1STと第2濃色着色樹脂層L2NDとの選定]
 各着色樹脂層のうち、色濃度指標IKが最大の着色樹脂層を「最濃色着色樹脂層L1ST」と定義し、最濃色着色樹脂層L1STの次に色濃度指標IKが高い着色樹脂層、つまり、色濃度指標IKが2番目に高い着色樹脂層を、「第2濃色着色樹脂層L2ND」と定義した。なお、最濃色着色樹脂層L1STの顔料含有量(面積%)を「C1ST」と定義し、最濃色着色樹脂層L1STの厚さ(μm)を「D1ST」と定義した。第2濃色着色樹脂層L2NDの顔料含有量(面積%)を「C2ND」と定義し、第2濃色着色樹脂層L2NDの厚さ(μm)を「D2ND」と定義した。最濃色着色樹脂層L1STの顔料含有量C1ST、厚さD1ST、第2濃色着色樹脂層L2NDの顔料含有量C2ND、厚さ(μm)D2NDを表3A及び表3Bに示す。なお、表3A及び表3B中の「最濃色着色樹脂層L1ST」欄の「積層位置」は、最濃色着色樹脂層L1STが第何層であったかを示す。たとえば、試験番号12#では、最濃色着色樹脂層L1STが第1層であったことを示す。同様に、表3A及び表3B中の「第2濃色着色樹脂層L2ND」欄の「積層位置」は、第2濃色着色樹脂層L2NDが第何層であったかを示す。たとえば、試験番号12#では、第2濃色着色樹脂層L2NDが第2層であったことを示す。
[Selection of the darkest colored resin layer L 1ST and the second dark colored resin layer L 2ND ]
Among the colored resin layers, the colored resin layer having the largest color density index IK is defined as "the darkest colored resin layer L 1ST ", and the coloring having the highest color density index IK next to the darkest colored resin layer L 1ST. The resin layer, that is, the colored resin layer having the second highest color density index IK was defined as "second dark colored resin layer L 2ND ". The pigment content (area%) of the darkest colored resin layer L 1ST was defined as "C 1ST ", and the thickness (μm) of the darkest colored resin layer L 1ST was defined as "D 1ST ". Pigment content of the second dark colored resin layer L 2ND (area%) is defined as "C 2ND", thickness of the second dark colored resin layer L 2ND the ([mu] m) is defined as "D 2ND". The thickest colored resin layer L 1ST pigment content C 1ST, thickness D 1ST, pigment content of the second dark colored resin layer L 2ND C 2ND, the thickness (μm) D 2ND in Table 3A and Table 3B Shown. The "lamination position" in the " darkest colored resin layer L 1ST " column in Tables 3A and 3B indicates how many layers the darkest colored resin layer L 1ST was. For example, test number 12 # indicates that the darkest colored resin layer L1ST was the first layer. Similarly, the “lamination position” in the “second dark colored resin layer L 2ND ” column in Tables 3A and 3B indicates how many layers the second dark colored resin layer L 2ND was. For example, test number 12 # indicates that the second dark colored resin layer L 2ND was the second layer.
 さらに、最濃色着色樹脂層L1STの顔料含有量C1ST、厚さD1ST、第2濃色着色樹脂層L2NDの顔料含有量C2ND、厚さ(μm)D2NDを用いて、次式により、色濃度比RFを求めた。
 色濃度比RF=(C1ST×D1ST)/(C2ND×D2ND
 求めた色濃度比RFを表3A及び表3B中の「積層樹脂層」欄の「色濃度比RF」欄に示す。
Further, by using the thickest colored resin layer L 1ST pigment content C 1ST, thickness D 1ST, pigment content of the second dark colored resin layer L 2ND C 2ND, the thickness (μm) D 2ND, following The color density ratio RF was determined by the formula.
Color density ratio RF = (C 1ST x D 1ST ) / (C 2ND x D 2ND )
The obtained color density ratio RF is shown in the "color density ratio RF" column of the "laminated resin layer" column in Tables 3A and 3B.
 [亜鉛めっき層表面視認試験]
 晴天午前の太陽光相当(照度約65000ルクス)の環境に各試料を置き、母材鋼板100の表面を視認できたかどうかで判定した。
[Galvanized layer surface visibility test]
Each sample was placed in an environment equivalent to sunlight (illuminance of about 65,000 lux) in the morning on a clear day, and it was judged whether or not the surface of the base steel sheet 100 could be visually recognized.
 [色むら評価試験]
 次の方法により、各試験番号の意匠性亜鉛めっき鋼板の色むらを評価した。図16を参照して、各試験番号の意匠性亜鉛めっき鋼板1のヘアライン23の延在方向HDと直行する1200mmの任意の測定線分OD1において、15mmピッチで81点の測定点(P1~P81)を特定した。各測定点P1~P81において、L表色系におけるL値、a値、及びb値を求めた。そして、隣り合う2つの測定点PiとPi+1(iは1~80の自然数)におけるΔL値、Δa値、Δb*値を次式により求めた。
 ΔL=Li-Li+1
 Δa=ai-ai+1
 Δb=bi-bi+1
[Color unevenness evaluation test]
The color unevenness of the designable galvanized steel sheet of each test number was evaluated by the following method. With reference to FIG. 16, 81 measurement points (P1 to P81) at an arbitrary measurement line segment OD1 of 1200 mm perpendicular to the extending direction HD of the hairline 23 of the designable galvanized steel sheet 1 of each test number at a pitch of 15 mm. ) Was identified. At each measurement point P1 to P81, the L * a * b * color system's L * value, a * value, and b * value were determined. Then, the ΔL * value, the Δa * value, and the Δb * value at the two adjacent measurement points Pi and Pi + 1 (i is a natural number of 1 to 80) were obtained by the following equations.
ΔL * = L * i-L * i + 1
Δa * = a * i-a * i + 1
Δb * = b * i-b * i + 1
 そして、求めたΔL、Δa、Δbに基づいて、次式により、隣り合う2つの測定点での色差ΔEを求めた。
 ΔE*=((ΔL+(Δa+(Δb
Then, based on the obtained ΔL * , Δa * , and Δb * , the color difference ΔE * at two adjacent measurement points was obtained by the following equation.
ΔE * = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 )
 得られた80個のΔEに基づいて、次のとおり色むらを評価した。
 評点G:隣接する2点間の色差ΔEの90%以上が2.0以下
 評点P:隣接する2点間の色差ΔEの11%以上が2.0超
Based on the obtained 80 ΔE * , the color unevenness was evaluated as follows.
Score G: 90% or more of the color difference ΔE * between two adjacent points is 2.0 or less Score P: 11% or more of the color difference ΔE * between two adjacent points is more than 2.0
 得られた結果を、表3A及び表3B中の「評価試験」欄の「色むら」欄に示す。 The obtained results are shown in the "color unevenness" column of the "evaluation test" column in Tables 3A and 3B.
 [色ばらつき評価試験]
 次の方法により、各試験番号の意匠性亜鉛めっき鋼板の色ばらつきを評価した。図17を参照して、各試験番号の意匠性亜鉛めっき鋼板1において、圧延方向RDに50000mmピッチ(50mピッチ)で20点の各測定位置S1~S20を特定した。そして、各測定位置S1~S20において、ヘアラインの延在方向HDと直行する方向(直行方向OD)に1000mm間隔の測定点Q1及びQ2の色差ΔEを求めた。
[Color variation evaluation test]
The color variation of the designable galvanized steel sheet of each test number was evaluated by the following method. With reference to FIG. 17, in the designable galvanized steel sheet 1 of each test number, 20 measurement positions S1 to S20 were specified at a pitch of 50,000 mm (50 m pitch) in the rolling direction RD. Then, at each of the measurement positions S1 to S20, the color difference ΔE * of the measurement points Q1 and Q2 at intervals of 1000 mm in the direction orthogonal to the extending direction HD of the hairline (orthogonal direction OD) was obtained.
 得られた20個の色差ΔEに基づいて、次のとおり色ばらつきを評価した。
 評点G:20点の全てがΔE*≦3.0
 評点P:20点のうちΔE*>3.0が1点以上存在
Based on the obtained 20 color differences ΔE * , the color variations were evaluated as follows.
Score G: All 20 points are ΔE * ≤ 3.0
Score P: 1 or more ΔE *> 3.0 out of 20 points
 得られた結果を、表1中の「評価試験」欄の「色ばらつき」欄に示す。 The obtained results are shown in the "Color variation" column of the "Evaluation test" column in Table 1.
 なお、色むら評価試験、及び、色ばらつき評価試験において、各測定点P1~P81、Q1及びQ2のL値、a値、及びb値は、コニカミノルタ株式会社製の測色計(商品名:CM-2600d)を用いた。測定においては、光源としてCIE標準光源D65を用い、視野角度10°として、SCE方式によりCIELAB表示色でL値、a値、及びb値を求めた。 In the color unevenness evaluation test and the color variation evaluation test, the L * values, a * values, and b * values of the measurement points P1 to P81, Q1 and Q2 are colorimeters manufactured by Konica Minolta Co., Ltd. Product name: CM-2600d) was used. In the measurement, a CIE standard light source D65 was used as a light source, the viewing angle was 10 °, and the L * value, a * value, and b * value were obtained in the CIELAB display color by the SCE method.
 ここで、CIE標準光源D65は、JIS Z 8720(2000)「測色用イルミナイト(標準の光)及び標準光源」に規定されており、ISO 10526(2007)にも同じ規定がある。CIEは、Commission Internationale de l’Eclairageの略称であり、国際照明委員会を意味する。CIE標準光源D65は、昼光で照明される物体色を表示する場合に使用される。視野角度10°については、JIS Z 8723(2009)「表面色の視覚比較方法」に規定されており、ISO/DIS 3668にも同じ規定がある。 Here, the CIE standard light source D65 is specified in JIS Z 8720 (2000) "Illuminite for color measurement (standard light) and standard light source", and ISO 10526 (2007) also has the same specification. CIE is an abbreviation for Commission International de l'Eclairage, which means the International Commission on Illumination. The CIE standard illuminant D65 is used to display the color of an object illuminated by daylight. The viewing angle of 10 ° is specified in JIS Z 8723 (2009) "Visual comparison method of surface color", and ISO / DIS 3668 also has the same specification.
 SCE方式は正反射光除去方式といい、正反射光を除去して色を測定する方法を意味する。SCE方式の定義は、JIS Z 8722(2009)に規定されている。SCE方式では、正反射光を除去して測定するため、実際の人の目で見た色に近い色となる(いわゆる視感色)。 The SCE method is called a specular light removal method, and means a method of measuring color by removing specular light. The definition of the SCE method is defined in JIS Z 8722 (2009). In the SCE method, since the specularly reflected light is removed for measurement, the color is close to the color seen by the actual human eye (so-called visual color).
 CIELAB表示色は、知覚と装置の違いによる色差を測定するために、1976年に勧告され、JIS Z 8781(2013)に規定されている均等色空間である。CIELABの3つの座標は、L値、a値、b値で示される。L値は明度を示し、0~100で示される。L値が0の場合は黒色を意味し、L値が100の場合は白の拡散色を意味する。a値は赤と緑の間の色を示す。a値がマイナスであれば、緑寄りの色を意味し、プラスであれば赤寄りの色を意味する。b値は黄色と青色の間の色を意味する。bがマイナスであれば青寄りの色を意味し、プラスであれば、黄色寄りの色を意味する。
[評価結果]
The CIELAB display color is a uniform color space recommended in 1976 and defined in JIS Z 8781 (2013) for measuring color differences due to differences in perception and equipment. The three coordinates of CIELAB are indicated by L * value, a * value, and b * value. The L * value indicates the brightness and is indicated by 0 to 100. When the L * value is 0, it means black, and when the L * value is 100, it means a diffuse color of white. a * Value indicates a color between red and green. If the a * value is negative, it means a color closer to green, and if it is positive, it means a color closer to red. b * Value means a color between yellow and blue. If b * is negative, it means a color closer to blue, and if it is positive, it means a color closer to yellow.
[Evaluation results]
 表3A及び表3Bを参照して、積層樹脂化していない試験番号(#を付記していないもの)は「色むら」と「色ばらつき」のどちらか、または両方が「P」評価だったのに対し、積層樹脂化した試験番号(#を付記したもの)は全て「色むら」と「色ばらつき」の両方が「G」評価となった。 With reference to Tables 3A and 3B, the test numbers that were not laminated resinized (those not marked with #) were rated "P" for either "color unevenness" or "color variation", or both. On the other hand, all the test numbers (marked with #) made of laminated resin were evaluated as "G" for both "color unevenness" and "color variation".
1、1’     めっき鋼板
10、10’   亜鉛めっき層
10S、10S’ テクスチャ
11、11’   着色樹脂層
30       積層樹脂層
31、31’   樹脂
32、32’   着色剤
100、100’ 母材鋼板
1, 1'plated steel sheet 10, 10'zinc plated layer 10S, 10S'texture 11, 11'colored resin layer 30 laminated resin layer 31, 31'resin 32, 32'colorant 100, 100'base steel sheet

Claims (16)

  1.  めっき鋼板であって、
     表面に母材テクスチャを有する母材鋼板と、
     前記母材鋼板の前記母材テクスチャを有する前記表面に形成されている亜鉛めっき層と、
     前記亜鉛めっき層上に形成されている着色樹脂層とを備え、
     前記亜鉛めっき層は、その表面にめっきテクスチャを有し、
     前記着色樹脂層は着色剤を含有しており、
     前記めっきテクスチャは、
     複数の凸部と、
     複数の凹部とを含み、
     前記母材鋼板の圧延方向を第1方向と定義し、前記めっき鋼板の表面において、前記第1方向と直交する方向を第2方向と定義したとき、めっき鋼板は、次の(A)~(C)を満たす、
     めっき鋼板。
    (A)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凹部における最も低い位置を凹部底点と定義したとき、前記粗さプロファイルの複数の前記凹部底点のうち、最も低い順に10個の前記凹部底点を特定し、特定された前記凹部底点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凹部底三次元平均粗さSasと定義したとき、凹部底三次元平均粗さSasが200nm超2000nm以下である。
    (B)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKminと定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCKと定義し、F1を式(1)で定義したとき、前記F1は15.0以下である。
     F1=DKmin×CK (1)
    (C)前記第2方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmaxと定義し、F2を式(2)で定義したとき、前記F2は1.0よりも大きい。
     F2=(DKmax-DKmin)×CK (2)
    It is a plated steel sheet
    A base steel plate with a base material texture on the surface and
    A zinc-plated layer formed on the surface of the base steel sheet having the base material texture,
    A colored resin layer formed on the galvanized layer is provided.
    The galvanized layer has a plating texture on its surface.
    The colored resin layer contains a colorant and
    The plating texture is
    With multiple protrusions,
    Including multiple recesses
    When the rolling direction of the base steel sheet is defined as the first direction and the direction orthogonal to the first direction is defined as the second direction on the surface of the plated steel sheet, the plated steel sheet has the following (A) to ( C) is satisfied
    Plated steel plate.
    (A) When the roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the lowest position in each of the recesses in the measured roughness profile is defined as the recess bottom point. Among the plurality of recess bottom points of the roughness profile, 10 recess bottom points are specified in ascending order, and a three-dimensional average of a minute region of 1 μm × 1 μm centered on the identified recess bottom points. When the roughness Sa is measured and the arithmetic average value of the measured 10 three-dimensional average roughness Sa is defined as the concave bottom three-dimensional average roughness Sa, the concave bottom three-dimensional average roughness Sa is more than 200 nm and 2000 nm or less. Is.
    (B) In the range of 100 μm length in the second direction, the minimum thickness (μm) of the colored resin layer is defined as DKmin, and the content (area%) of the colorant in the colored resin layer is CK. When F1 is defined by the equation (1), the F1 is 15.0 or less.
    F1 = DKmin x CK (1)
    (C) When the maximum thickness (μm) of the colored resin layer is defined as DKmax and F2 is defined by the formula (2) in the range of 100 μm length in the second direction, the F2 is 1.0. Is also big.
    F2 = (DKmax-DKmin) x CK (2)
  2.  請求項1に記載のめっき鋼板であってさらに、次の(D)を満たす、
     めっき鋼板。
    (D)前記めっきテクスチャの前記第2方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル中の各前記凸部における最も高い位置を凸部頂上点と定義したとき、前記粗さプロファイルの複数の前記凸部頂上点のうち、最も高い順に10個の前記凸部頂上点を特定し、特定された前記凸部頂上点を中心とした1μm×1μmの微小領域の三次元平均粗さSaを測定し、測定された10個の三次元平均粗さSaの算術平均値を凸部頂上三次元平均粗さSasと定義したとき、凸部頂上三次元平均粗さSahが5nm超200nm以下である。
    The plated steel sheet according to claim 1, further satisfying the following (D).
    Plated steel plate.
    (D) The roughness profile of the plating texture in the range of 1000 μm in the second direction is measured, and the highest position in each of the convex portions in the measured roughness profile is defined as the convex portion top point. When this is done, 10 of the convex top points of the roughness profile are specified in descending order of the highest, and a minute size of 1 μm × 1 μm centered on the specified convex top points. When the three-dimensional average roughness Sa of the region is measured and the arithmetic average value of the measured ten three-dimensional average roughness Sa is defined as the convex top three-dimensional average roughness Sa, the convex top three-dimensional average roughness The Sah is more than 5 nm and 200 nm or less.
  3.  請求項2に記載のめっき鋼板であって、
     複数の前記凸部と複数の前記凹部とは、前記第1方向に延びており、
     複数の前記凸部と複数の前記凹部とは、前記第2方向に配列されている、
     めっき鋼板。
    The plated steel sheet according to claim 2.
    The plurality of the convex portions and the plurality of the concave portions extend in the first direction.
    The plurality of protrusions and the plurality of recesses are arranged in the second direction.
    Plated steel plate.
  4.  請求項3に記載のめっき鋼板であって、
     前記母材テクスチャはヘアラインであり、
     前記めっきテクスチャはヘアラインであり、
     前記めっき鋼板はさらに、
     次の(E)及び(F)を満たす、
     めっき鋼板。
    (E)前記第1方向の前記着色樹脂層の表面粗さRaをRa(CL)と定義し、前記第2方向の前記着色樹脂層の表面粗さRaをRa(CC)と定義し、F3を式(3)で定義したとき、前記F3は1.10以上である。
     F3=Ra(CC)/Ra(CL) (3)
    (F)前記第2方向の前記亜鉛めっき層の表面粗さをRa(MC)と定義したとき、Ra(MC)が0.30μm以上である。
    The plated steel sheet according to claim 3.
    The base material texture is a hairline
    The plating texture is a hairline
    The plated steel sheet is further
    Satisfy the following (E) and (F),
    Plated steel plate.
    (E) The surface roughness Ra of the colored resin layer in the first direction is defined as Ra (CL), the surface roughness Ra of the colored resin layer in the second direction is defined as Ra (CC), and F3. Is defined by the equation (3), the F3 is 1.10 or more.
    F3 = Ra (CC) / Ra (CL) (3)
    (F) When the surface roughness of the galvanized layer in the second direction is defined as Ra (MC), Ra (MC) is 0.30 μm or more.
  5.  請求項1~請求項4のいずれか1項に記載のめっき鋼板であって、
     前記めっき鋼板を前記着色樹脂層側から見た場合の明度L(SCI)が45以下である、
     めっき鋼板。
    The plated steel sheet according to any one of claims 1 to 4.
    The brightness L * (SCI) when the plated steel sheet is viewed from the colored resin layer side is 45 or less.
    Plated steel plate.
  6.  請求項1~請求項5のいずれか1項に記載のめっき鋼板であって、
     F1は13.5以下である、
     めっき鋼板。
    The plated steel sheet according to any one of claims 1 to 5.
    F1 is 13.5 or less,
    Plated steel plate.
  7.  請求項1~請求項6のいずれか1項に記載のめっき鋼板であって、
     F2は2.0よりも大きい、
     めっき鋼板。
    The plated steel sheet according to any one of claims 1 to 6.
    F2 is greater than 2.0,
    Plated steel plate.
  8.  請求項4~請求項7のいずれか1項に記載のめっき鋼板であって、
     前記F3は1.15以上である、
     めっき鋼板。
    The plated steel sheet according to any one of claims 4 to 7.
    The F3 is 1.15 or more.
    Plated steel plate.
  9.  請求項1~請求項8のいずれか1項に記載のめっき鋼板であって、
     前記亜鉛めっき層の地鉄露出率が5%未満である、
     めっき鋼板。
    The plated steel sheet according to any one of claims 1 to 8.
    The base iron exposure rate of the galvanized layer is less than 5%.
    Plated steel plate.
  10.  請求項2に記載のめっき鋼板であって、
     複数の前記凸部は、前記亜鉛めっき層の表面を研磨して形成されており、
     複数の前記凹部は、研磨されていない、
     めっき鋼板。
    The plated steel sheet according to claim 2.
    The plurality of convex portions are formed by polishing the surface of the galvanized layer.
    The plurality of recesses are not polished,
    Plated steel plate.
  11.  めっき鋼板であって、
     母材鋼板と、
     前記母材鋼板の表面に形成されている亜鉛めっき層と、
     前記亜鉛めっき層上に形成されている着色樹脂層とを備え、
     前記亜鉛めっき層は、その表面に、一方向に延びているテクスチャを有し、
     前記着色樹脂層は着色剤を含有しており、
     次の(A’)~(C’)の全てを満たす、
     めっき鋼板。
    (A’)前記テクスチャの延在方向に垂直な方向の1000μmの長さの範囲の粗さプロファイルを測定し、測定された前記粗さプロファイル上の位置のうち、高さが低い順に10点特定した位置を凹部底点と定義し、測定された前記粗さプロファイル上の位置のうち、高さが高い順に10点特定した位置を凸部頂点と定義し、各凹部底点及び各凸部頂点を中心とした1μm×1μmの微小領域の三次元平均粗さSa’を測定し、測定された三次元平均粗さSa’の算術平均値を三次元平均粗さSaave’と定義したとき、三次元平均粗さSaave’が5nm超200nm以下である。
    (B’)前記テクスチャの延在方向に直交する方向の100μm長さの範囲において、前記着色樹脂層の最小厚さ(μm)をDKmin’と定義し、前記着色樹脂層中の前記着色剤の含有量(面積%)をCK’と定義したとき、式(1’)を満たす。
     DKmin’×CK’≦15.0 (1’)
    (C’)前記テクスチャの延在方向に垂直な方向の100μm長さの範囲において、前記着色樹脂層の最大厚さ(μm)をDKmax’と定義したとき、式(2’)を満たす。
     (DKmax’-DKmin’)×CK’>1.0 (2’)
    It is a plated steel sheet
    Base steel plate and
    The galvanized layer formed on the surface of the base steel sheet and
    A colored resin layer formed on the galvanized layer is provided.
    The galvanized layer has a texture extending in one direction on its surface.
    The colored resin layer contains a colorant and
    Satisfy all of the following (A') to (C'),
    Plated steel plate.
    (A') The roughness profile in the range of a length of 1000 μm in the direction perpendicular to the extending direction of the texture is measured, and 10 points are specified in ascending order of height among the measured positions on the roughness profile. The determined position is defined as the concave bottom point, and among the measured positions on the roughness profile, the position where 10 points are specified in descending order of height is defined as the convex apex, and each concave bottom point and each convex apex are defined. When the three-dimensional average roughness Sa'of a minute region of 1 μm × 1 μm centered on the above is measured and the arithmetic average value of the measured three-dimensional average roughness Sa'is defined as the three-dimensional average roughness Saave', it is cubic. The original average roughness Save'is more than 5 nm and 200 nm or less.
    (B') The minimum thickness (μm) of the colored resin layer is defined as DKmin'in the range of 100 μm length in the direction orthogonal to the extending direction of the texture, and the colorant in the colored resin layer. When the content (area%) is defined as CK', the formula (1') is satisfied.
    DKmin'× CK'≤15.0 (1')
    (C') The formula (2') is satisfied when the maximum thickness (μm) of the colored resin layer is defined as DKmax'in the range of 100 μm in the direction perpendicular to the extending direction of the texture.
    (DKmax'-DKmin') x CK'> 1.0 (2')
  12.  請求項11に記載のめっき鋼板であって、
     前記テクスチャは、ヘアラインであり、
     次の(D’)及び(E’)を満たす、
     めっき鋼板。
    (D’)前記テクスチャの延在方向の前記着色樹脂層の表面粗さRaをRa(CL)’と定義し、前記テクスチャの延在方向と垂直な方向の前記着色樹脂層の表面粗さRaをRa(CC)’と定義したとき、式(3’)を満たす。
     Ra(CC)’≧Ra(CL)’×1.10 (3’)
    (E’)前記テクスチャの延在方向と直交する方向の亜鉛めっき層の表面粗さをRa(MC)’と定義したとき、Ra(MC)’が0.30μm以上である。
    The plated steel sheet according to claim 11.
    The texture is a hairline
    Satisfy the following (D') and (E'),
    Plated steel plate.
    (D') The surface roughness Ra of the colored resin layer in the extending direction of the texture is defined as Ra (CL)', and the surface roughness Ra of the colored resin layer in the direction perpendicular to the extending direction of the texture is defined. Is defined as Ra (CC)', the equation (3') is satisfied.
    Ra (CC)'≧ Ra (CL)' × 1.10 (3')
    (E') When the surface roughness of the galvanized layer in the direction orthogonal to the extending direction of the texture is defined as Ra (MC)', Ra (MC)'is 0.30 μm or more.
  13.  請求項11又は請求項12に記載のめっき鋼板であって、
     前記亜鉛めっき層の地鉄露出率が5%未満である、
     めっき鋼板。
    The plated steel sheet according to claim 11 or 12.
    The base iron exposure rate of the galvanized layer is less than 5%.
    Plated steel plate.
  14.  請求項1~13のいずれか一項に記載のめっき鋼板であって、
     前記着色樹脂層が積層樹脂層であり、
     前記積層樹脂層は、
     前記母材鋼板の表面の法線方向に積層される複数の着色樹脂層を備え、
     前記複数の着色樹脂層において、前記着色樹脂層中の前記着色剤の含有量(面積%)と前記着色樹脂層の厚さ(μm)との積の総和が15.0面積%・μm以下であり、
     前記複数の着色樹脂層のうち、前記着色樹脂層中の前記着色剤の含有量(面積%)と前記着色樹脂層の厚さ(μm)との積が最大となる着色樹脂層を最濃色着色樹脂層と定義し、前記着色樹脂層中の前記着色剤の含有量と前記着色樹脂層の厚さとの積が2番目に大きい着色樹脂層を第2濃色着色樹脂層と定義したとき、
     前記最濃色着色樹脂層の前記着色剤の含有量C1ST(面積%)、前記最濃色着色樹脂層の厚さD1ST(μm)、前記第2濃色着色樹脂層の前記着色剤の含有量C2ND(面積%)、及び、前記第2濃色着色樹脂層の厚さD2ND(μm)は、式(4)を満たす、
    めっき鋼板。
     1.00<(C1ST×D1ST)/(C2ND×D2ND)≦4.00 (4)
    The plated steel sheet according to any one of claims 1 to 13.
    The colored resin layer is a laminated resin layer.
    The laminated resin layer is
    A plurality of colored resin layers laminated in the normal direction of the surface of the base steel plate are provided.
    In the plurality of colored resin layers, the total product of the content (area%) of the colorant in the colored resin layer and the thickness (μm) of the colored resin layer is 15.0 area% · μm or less. Yes,
    Among the plurality of colored resin layers, the colored resin layer having the maximum product of the content (area%) of the colorant in the colored resin layer and the thickness (μm) of the colored resin layer is the darkest color. When defined as a colored resin layer, and the colored resin layer having the second largest product of the content of the colorant in the colored resin layer and the thickness of the colored resin layer is defined as the second dark colored resin layer,
    The content of the colorant in the darkest colored resin layer C 1ST (area%), the thickness D 1ST (μm) of the darkest colored resin layer, and the colorant of the second dark colored resin layer. The content C 2ND (area%) and the thickness D 2ND (μm) of the second dark colored resin layer satisfy the formula (4).
    Plated steel plate.
    1.00 <(C 1ST x D 1ST ) / (C 2ND x D 2ND ) ≤ 4.00 (4)
  15.  請求項14に記載のめっき鋼板であって、
     前記積層樹脂層の厚さは、10.0μm以下である、
     めっき鋼板。
    The plated steel sheet according to claim 14.
    The thickness of the laminated resin layer is 10.0 μm or less.
    Plated steel plate.
  16.  請求項14又は請求項15に記載のめっき鋼板であって、
     前記積層樹脂層はさらに、
     前記着色剤を含有しない1又は複数の透明樹脂層を含み、
     前記積層樹脂層は、
     前記複数の着色樹脂層と、前記1又は複数の透明樹脂層とが積層して形成されている、
     めっき鋼板。
    The plated steel sheet according to claim 14 or 15.
    The laminated resin layer further
    Contains one or more transparent resin layers that do not contain the colorant
    The laminated resin layer is
    The plurality of colored resin layers and the one or a plurality of transparent resin layers are laminated and formed.
    Plated steel plate.
PCT/JP2020/020241 2019-05-24 2020-05-22 Plated steel sheet WO2020241475A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217035909A KR102592017B1 (en) 2019-05-24 2020-05-22 plated steel plate
CN202080036690.XA CN113825640B (en) 2019-05-24 2020-05-22 Plated steel sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019098050A JP7260772B2 (en) 2019-05-24 2019-05-24 Designable galvanized steel sheet
JP2019-098050 2019-05-24
JP2019-171166 2019-09-20
JP2019-171137 2019-09-20
JP2019171137A JP7339519B2 (en) 2019-09-20 2019-09-20 plated steel plate
JP2019171166A JP7401735B2 (en) 2019-09-20 2019-09-20 plated steel plate

Publications (1)

Publication Number Publication Date
WO2020241475A1 true WO2020241475A1 (en) 2020-12-03

Family

ID=73553451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020241 WO2020241475A1 (en) 2019-05-24 2020-05-22 Plated steel sheet

Country Status (3)

Country Link
KR (1) KR102592017B1 (en)
CN (1) CN113825640B (en)
WO (1) WO2020241475A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202988A (en) * 2002-12-26 2004-07-22 Nisshin Steel Co Ltd Clear black coated metal plate utilizing appearance of metallic material
JP2005023427A (en) * 2000-03-07 2005-01-27 Jfe Steel Kk Hot dip galvannealed steel sheet
JP2005206870A (en) * 2004-01-22 2005-08-04 Nisshin Steel Co Ltd Hot-dipped steel sheet provided with abrasive mesh pattern
JP2006124824A (en) * 2004-09-28 2006-05-18 Nippon Steel Corp HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
WO2013176219A1 (en) * 2012-05-23 2013-11-28 新日鐵住金株式会社 Al alloy-plated steel material having hairline appearance
JP3192959U (en) * 2014-06-27 2014-09-11 東洋鋼鈑株式会社 Decorative steel plate
EP3205408A1 (en) * 2016-02-11 2017-08-16 AJU Steel Co., Ltd. Method of manufacturing color steel sheet having polished stainless steel texture, and color steel sheet manufactured by the method
WO2018230716A1 (en) * 2017-06-16 2018-12-20 新日鐵住金株式会社 Plated steel material
US20190054716A1 (en) * 2017-08-21 2019-02-21 Lg Electronics Inc. Outer plate of refrigerator and method for manufacturing the same
WO2019074102A1 (en) * 2017-10-12 2019-04-18 新日鐵住金株式会社 Zinc-based electroplated steel sheet
WO2019194229A1 (en) * 2018-04-03 2019-10-10 日本製鉄株式会社 Electrogalvanized steel sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286071A (en) * 1992-04-10 1993-11-02 Kawasaki Steel Corp Resin composite type vibration-damping steel plate having excellent adhesive property
JP3209686B2 (en) * 1995-08-29 2001-09-17 株式会社神戸製鋼所 Colored resin-coated metal sheet and method for producing the same
KR100567175B1 (en) * 1999-10-08 2006-04-03 제이에프이 스틸 가부시키가이샤 Surface treated zinc-based metal plated steel sheet
KR100700436B1 (en) * 2003-01-31 2007-03-28 제이에프이 스틸 가부시키가이샤 Black galvanized steel sheet
WO2009101707A1 (en) * 2008-02-15 2009-08-20 Nippon Steel Corporation Galvanized steel sheet with thin primary corrosion-proof coating layer, excelling in surface conductivity, and process for producing the same
JP5286071B2 (en) * 2008-12-25 2013-09-11 積水化学工業株式会社 Cap structure for drain piping of air conditioning equipment
JP5754102B2 (en) * 2009-10-27 2015-07-22 Jfeスチール株式会社 Galvanized steel sheet
CN103080385B (en) 2010-08-30 2016-08-17 Ak钢铁产权公司 There is the zinc-plated carbon steel of similar rustless steel End Product characteristics
JP6211987B2 (en) * 2014-04-22 2017-10-11 株式会社神戸製鋼所 Mold for hot forming of Zn-plated steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023427A (en) * 2000-03-07 2005-01-27 Jfe Steel Kk Hot dip galvannealed steel sheet
JP2004202988A (en) * 2002-12-26 2004-07-22 Nisshin Steel Co Ltd Clear black coated metal plate utilizing appearance of metallic material
JP2005206870A (en) * 2004-01-22 2005-08-04 Nisshin Steel Co Ltd Hot-dipped steel sheet provided with abrasive mesh pattern
JP2006124824A (en) * 2004-09-28 2006-05-18 Nippon Steel Corp HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
WO2013176219A1 (en) * 2012-05-23 2013-11-28 新日鐵住金株式会社 Al alloy-plated steel material having hairline appearance
JP3192959U (en) * 2014-06-27 2014-09-11 東洋鋼鈑株式会社 Decorative steel plate
EP3205408A1 (en) * 2016-02-11 2017-08-16 AJU Steel Co., Ltd. Method of manufacturing color steel sheet having polished stainless steel texture, and color steel sheet manufactured by the method
WO2018230716A1 (en) * 2017-06-16 2018-12-20 新日鐵住金株式会社 Plated steel material
US20190054716A1 (en) * 2017-08-21 2019-02-21 Lg Electronics Inc. Outer plate of refrigerator and method for manufacturing the same
WO2019074102A1 (en) * 2017-10-12 2019-04-18 新日鐵住金株式会社 Zinc-based electroplated steel sheet
WO2019194229A1 (en) * 2018-04-03 2019-10-10 日本製鉄株式会社 Electrogalvanized steel sheet

Also Published As

Publication number Publication date
CN113825640B (en) 2023-09-15
CN113825640A (en) 2021-12-21
KR102592017B1 (en) 2023-10-24
KR20210152501A (en) 2021-12-15

Similar Documents

Publication Publication Date Title
CN111699282B (en) Zinc-based plated steel sheet
TWI541387B (en) Plated steel
JP6447800B1 (en) Plated steel
KR102085626B1 (en) Zinc-based electroplated steel sheet
WO2020241475A1 (en) Plated steel sheet
JP7207472B2 (en) Galvanized steel sheet
JP7401735B2 (en) plated steel plate
JP7339519B2 (en) plated steel plate
JP5858198B2 (en) Plating steel material, painted steel material, and manufacturing method of plated steel material
JP7260772B2 (en) Designable galvanized steel sheet
WO2023068303A1 (en) Plated steel sheet
CN114729439A (en) Hot-dip coated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217035909

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815580

Country of ref document: EP

Kind code of ref document: A1