WO2020241227A1 - Oxide sintered body and sputtering target - Google Patents

Oxide sintered body and sputtering target Download PDF

Info

Publication number
WO2020241227A1
WO2020241227A1 PCT/JP2020/018873 JP2020018873W WO2020241227A1 WO 2020241227 A1 WO2020241227 A1 WO 2020241227A1 JP 2020018873 W JP2020018873 W JP 2020018873W WO 2020241227 A1 WO2020241227 A1 WO 2020241227A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
crystal grains
sintered body
znin
crystal
Prior art date
Application number
PCT/JP2020/018873
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 宮田
達昭 篠田
幸樹 田尾
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020048344A external-priority patent/JP2020196660A/en
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Publication of WO2020241227A1 publication Critical patent/WO2020241227A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sintered body and a sputtering target.
  • Amorphous oxide semiconductors have higher carrier mobility when thin film transistors (TFTs) are formed than, for example, amorphous silicon semiconductors.
  • amorphous oxide semiconductors have a large optical bandgap and high visible light transmission.
  • the thin film of the amorphous oxide semiconductor can be formed at a lower temperature than the amorphous silicon semiconductor. Taking advantage of these characteristics, the thin film of amorphous oxide semiconductor can be applied to next-generation large displays that can be driven at high speed with high resolution and flexible displays that use resin substrates that require film formation at low temperatures. It is expected.
  • an amorphous oxide semiconductor containing indium As the amorphous oxide semiconductor, an amorphous oxide semiconductor containing indium has been proposed, and an In-Ga-Zn-O (IGZO) amorphous oxide semiconductor containing indium, gallium, zinc and oxygen, indium and gallium.
  • In-Ga-Zn-Sn-O (IGZTO) amorphous oxide semiconductors containing zinc, tin and oxygen are attracting attention.
  • the thin film of the amorphous oxide semiconductor is formed by a sputtering method using a sputtering target having the same composition as this amorphous oxide semiconductor.
  • this sputtering method if an abnormal discharge occurs during sputtering, the sputtering target may crack. Therefore, in order to suppress cracking of the sputtering target, it has been studied to adjust the content of the crystal phase in the sputtering target (see JP-A-2014-58415).
  • the present invention has been made based on such circumstances, and an object of the present invention is to provide an oxide sintered body and a sputtering target capable of suppressing the occurrence of cracks.
  • the oxide sintered body according to one aspect of the present invention made to solve the above problems is an oxide sintered body containing In, Zn and Fe, and substantially contains crystal grains of zinc oxide (ZnO). In 2 O 3 crystal single-phase structure having In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains substantially containing no Fe, as described above.
  • the grains of ZnIn oxide contain Fe.
  • the oxide sintered body can be obtained so as to have substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains.
  • the oxide sintered body has substantially no zinc oxide crystal grains, has In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains substantially contain Fe.
  • the occurrence of cracks can be suppressed by having an In 2 O 3 crystal single-phase structure that does not contain the target.
  • the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure.
  • the strength can be easily increased.
  • the occurrence of cracks can be suppressed more reliably.
  • the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 .
  • the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 to increase the bulk resistance. It is easy to increase the strength while suppressing it.
  • the oxide sintered body does not have substantially no crystal grains of ZnInFe oxide. As a result, it is possible to easily obtain the above-mentioned configuration having substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains while suppressing the Fe content ratio.
  • the oxide sintered body has an In atom number of 45 atm% or more and 80 atm% or less, a Zn atom number of 20 atm% or more and 55 atm% or less, and an Fe atom number of 0 with respect to the total atomic number of In, Zn and Fe. It is preferable that it is 1 atm% or more and 1.5 atm% or less. As a result, it is easy to increase the strength while suppressing the bulk resistance. As a result, the occurrence of cracks can be suppressed more reliably.
  • the bulk resistance of the oxide sintered body is preferably 1 ⁇ 10 -2 ⁇ cm or less. As described above, when the bulk resistance is not more than the above upper limit, the destabilization of the discharge during sputtering can be suppressed, and the occurrence of cracks in the oxide sintered body due to the abnormal discharge is sufficiently suppressed. be able to.
  • the relative density of the oxide sintered body is preferably 96% or more. As described above, when the relative density is at least the above lower limit, the occurrence of cracks can be sufficiently suppressed by increasing the strength.
  • the sputtering target according to another aspect of the present invention made to solve the above problems is a sputtering target containing In, Zn and Fe, and has substantially no crystal grains of zinc oxide (ZnO). , and a grain of the crystal grains and ZnIn oxides of in oxide, the crystal grains of the in oxide is in 2 O 3 crystal single phase structure is substantially free of Fe, the ZnIn oxide The crystal grains contain Fe.
  • the sputtering target can suppress the occurrence of cracks.
  • the "crystal grain” refers to a region surrounded by grain boundary phases in a reflected electron image observed at a magnification of 1000 by a scanning electron microscope (SEM).
  • crystal grains contain Fe means that Fe is detected in the crystal grains at 0.1 atm% or more when elemental analysis of the crystal grains is performed by energy dispersive X-ray spectroscopy (EDX). That is, “the crystal grains do not substantially contain Fe” means that Fe is not detected in the crystal grains in an amount of 0.1 atm% or more.
  • “Substantially free of crystal grains” means that the region surrounded by the grain boundary phase is not visible in the reflected electron image observed at 1000 times by a scanning electron microscope (SEM).
  • “Bulk resistance” refers to the volumetric resistance measured by the 4-probe method.
  • the “relative density” means a value calculated by (measured density / true density) x 100 [%].
  • the "measured density” means a value obtained by the Archimedes method.
  • the oxide sintered body and the sputtering target according to the present invention can suppress the occurrence of cracks.
  • FIG. 1 is a schematic cross-sectional view showing an oxide sintered body according to an embodiment of the present invention.
  • FIG. 2 shows No. It is a reflected electron image of the oxide sintered body of 3.
  • FIG. 3 shows No. It is a reflected electron image of the oxide sintered body of 4.
  • FIG. 4 shows No. It is a reflected electron image of the oxide sintered body of 5.
  • FIG. 5 shows No. It is a reflected electron image of the oxide sintered body of 6.
  • FIG. 6 shows No. It is a reflected electron image of the oxide sintered body of 7.
  • FIG. 7 shows No. It is a reflected electron image of the oxide sintered body of 1.
  • FIG. 8 shows No. 9 is a backscattered electron image of the oxide sintered body of 9.
  • FIG. 9 shows No.
  • FIG. 10 shows No. It is a reflected electron image of 12 oxide sintered bodies.
  • FIG. 11 shows No. It is an analysis result of the X-ray diffraction spectrum of the oxide sintered body of 9.
  • FIG. 12 shows No. It is an analysis result of the X-ray diffraction spectrum of 10 oxide sintered bodies.
  • FIG. 13 shows No. It is the analysis result of the X-ray diffraction spectrum of the oxide sintered body of 13.
  • FIG. 14 shows No. It is the analysis result of the X-ray diffraction spectrum of 14 oxide sintered bodies.
  • the oxide sintered body 1 of FIG. 1 contains In (indium), Zn (zinc) and Fe (iron).
  • the oxide sintered body 1 has In oxide crystal grains and ZnIn oxide crystal grains.
  • the oxide sintered body 1 has substantially no zinc oxide crystal grains (that is, has substantially no oxide crystal grains that do not substantially contain metal elements other than Zn).
  • the crystal grains of the ZnIn oxide contain Fe.
  • the crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe.
  • the crystal structure of the In oxide crystal grains and the crystal structure of the ZnIn oxide crystal grains can be obtained by analyzing the X-ray diffraction spectrum of each crystal grain.
  • the oxide sintered body 1 may contain In, Zn and Fe and unavoidable impurities as metal elements. In other words, it is preferable that the oxide sintered body 1 does not substantially contain metal elements other than In, Zn and Fe.
  • the oxide sintered body 1 is used, for example, as a sputtering target capable of forming a thin film of an amorphous oxide semiconductor. In contributes to the improvement of carrier mobility of the thin film. Further, Zn contributes to the stabilization of the amorphous structure of the thin film.
  • the oxide sintered body 1 has ZnIn oxide crystal grains that substantially do not contain metal elements other than Zn and In, and Fe is contained in the crystal structure of the ZnIn oxide crystal grains. Is solidly dissolved.
  • Fe is dissolved in the crystal structure of the crystal grains of ZnIn oxide, and by adding a small amount of Fe, a compound of zinc oxide and In oxide (specifically, The growth of the ZnIn oxide, which is a compound of In 2 O 3 and Zn O), can be significantly promoted. That is, the oxide sintered body 1 can eliminate the crystal grains of zinc oxide and significantly increase the volume fraction of the ZnIn oxide by adding a small amount of Fe. As a result, it is considered that the oxide sintered body 1 can easily improve the uniform dispersibility of Zn.
  • the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure.
  • the proportion of Zn 2 In 2 O 5 as the crystal grains of the Zn In oxide increases.
  • the crystal grains of the ZnIn oxide have a Zn 2 In 2 O 5 crystal single-phase structure, the pore area in the crystal becomes large, and minute cracks are likely to be formed.
  • the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure, so that the strength is increased and the occurrence of cracks is more reliably suppressed. Can be done.
  • the amount of Fe added can be suppressed and the bulk resistance can be easily controlled to be small.
  • the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 .
  • the oxide sintered body 1 tends to suppress bulk resistance and increase its strength.
  • the crystal grains of the ZnIn oxide do not have the crystal structure of Zn 2 In 2 O 5 .
  • the oxide sintered body 1 does not substantially have crystal grains of ZnInFe oxide.
  • the above-mentioned configuration can be easily obtained in the oxide sintered body 1 having substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains while suppressing the Fe content ratio. .. That is, as described above, the oxide sintered body 1 selectively dissolves Fe in the crystal structure of the crystal grains of ZnIn oxide, thereby suppressing the content ratio of Fe and the zinc oxide crystal. It is possible to eliminate grains and efficiently grow ZnIn oxide crystal grains.
  • the upper limit of the number of atoms is preferably 80 atm%, more preferably 75 atm%, and even more preferably 70 atm%. If the number of atoms is less than the above lower limit, the carrier mobility of the thin film of the amorphous oxide semiconductor formed by using the oxide sintered body 1 may be insufficient. On the contrary, when the number of atoms exceeds the upper limit, the leak current of the thin film increases or the threshold voltage shifts to the negative side, so that the thin film may become a conductor.
  • the lower limit of the number of atoms of Zn with respect to the total number of atoms of In, Zn and Fe 20 atm% is preferable, 25 atm% is more preferable, and 30 atm% is further preferable.
  • the upper limit of the number of atoms 55 atm% is preferable, and 50 atm% is more preferable. If the number of atoms is less than the above lower limit, the number of other metal atoms becomes relatively large, which may cause the thin film to become a conductor. On the contrary, when the number of atoms exceeds the above upper limit, the carrier concentration may be suppressed and the carrier mobility of the thin film may be insufficient.
  • the lower limit of the number of atoms of Fe with respect to the total number of atoms of In, Zn and Fe 0.1 atm% is preferable, and 0.3 atm% is more preferable.
  • the upper limit of the number of atoms is preferably 1.5 atm%, more preferably 1.0 atm%. If the number of atoms is less than the above lower limit, the growth of ZnIn oxide crystal grains may not be sufficiently promoted. On the other hand, if the number of atoms exceeds the above upper limit, the bulk resistance of the oxide sintered body 1 may increase, or the relative density of the oxide sintered body 1 may become insufficient.
  • the oxide sintered body 1 has an In atom number of 45 atm% or more and 80 atm% or less, a Zn atom number of 20 atm% or more and 55 atm% or less, and a Fe atom number with respect to the total atomic number of In, Zn and Fe. It is preferably 0.1 atm% or more and 1.5 atm% or less, the number of In atoms is 50 atm% or more and 70 atm% or less, the number of Zn atoms is 30 atm% or more and 50 atm% or less, and the number of Fe atoms is 0.1 atm% or more. It is more preferably 1.0 atom% or less. By adjusting the number of atoms of In, Zn and Fe within the above range, the oxide sintered body 1 can easily increase its strength while suppressing the bulk resistance. As a result, the occurrence of cracks can be suppressed more reliably.
  • the upper limit of the bulk resistance of the oxide sintered body 1 1 ⁇ 10 ⁇ 2 ⁇ cm is preferable, 5 ⁇ 10 -3 ⁇ cm is more preferable, and 4 ⁇ 10 -3 ⁇ cm is further preferable. If the bulk resistance exceeds the upper limit, the discharge may become unstable during sputtering, and the oxide sintered body 1 may be cracked due to the abnormal discharge.
  • the lower limit of the bulk resistance is not particularly limited, but may be, for example, 1 ⁇ 10 -4 ⁇ cm.
  • the lower limit of the relative density of the oxide sintered body 1 is preferably 96%, more preferably 97%. If the relative density does not reach the lower limit, the strength becomes insufficient and cracks may occur.
  • the relative density is preferably large, and the upper limit thereof can be, for example, 100%.
  • the oxide sintered body 1 can be easily obtained to have a structure in which it has substantially no zinc oxide crystal grains and has ZnIn oxide crystal grains. ..
  • the oxide sintered body 1 has substantially no zinc oxide crystal grains, has In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains contain Fe.
  • the occurrence of cracks can be suppressed by having an In 2 O 3 crystal single-phase structure that is substantially free of.
  • the sputtering target is a sputtering target containing In, Zn, and Fe, which has substantially no zinc oxide crystal grains and has In oxide crystal grains and ZnIn oxide crystal grains.
  • the crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe, and the crystal grains of the ZnIn oxide contain Fe.
  • the sputtering target has the oxide sintered body 1 of FIG.
  • the specific configuration of the sputtering target is the same as that of the oxide sintered body 1.
  • the sputtering target can suppress the occurrence of cracks in the same manner as the oxide sintered body 1.
  • the oxide sintered body and the sputtering target may contain, for example, Sn (tin) as another metal element.
  • Zinc oxide powder with a purity of 99.99% (ZnO), indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ) are shown in Table 1.
  • Raw material powder was obtained by blending in several ratios. Water was added to this raw material powder, and the mixture was mixed and pulverized for 18 hours in a ball mill using a nylon pod and zirconia balls as a medium. Next, the obtained mixed powder was dried and granulated. The mixed powder after granulation was set in a graphite mold and hot-pressed under the conditions shown in Table 1. In this hot press, N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
  • the X-ray diffraction spectrum of the obtained oxide sintered body was analyzed, and the crystal structure and content ratio of the crystal grains of In oxide, zinc oxide and ZnIn oxide were determined. The results are shown in Table 2.
  • ZnIn oxide Zn 5 In 2 O 8
  • Zn 5 In 2 O 8 is a compound of In 2 O 3 and Zn O
  • the atoms shown in Table 3 are zinc oxide powder (ZnO) with a purity of 99.99%, indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ).
  • Raw material powder was obtained by blending in several ratios. Water, a binder containing polyvinyl alcohol as a main component, and a dispersant containing an acrylic polymer as a main component were added, and the mixture was mixed and pulverized in a ball mill using a nylon pod and zirconia balls as a medium for 3 hours. Next, the obtained mixed powder was dried and granulated.
  • the mixed powder after granulation was placed in a molding die and pressed at 3 ton / cm 2 with a cold hydrostatic press to obtain a molded product.
  • This molded product was heated to 1550 ° C. under normal pressure and atmospheric atmosphere, held for 2 hours, naturally lowered to a temperature, and sintered. 3 to No.
  • An oxide sintered body of 8 was obtained.
  • No. 3 to No. The reflected electron images of No. 7 observed at 1000 times by a scanning electron microscope (SEM) are shown in FIGS. 2 to 6.
  • No. 3 to No. 7 The X-ray diffraction spectrum of No. 8 was analyzed to determine the crystal structure of the crystal grains of In oxide, zinc oxide and ZnIn oxide. As shown in FIGS. 2 to 6, No. 3 to No. 7 has In oxide crystal grains (In 2 O 3 crystal single-phase structure) X and Zn In oxide crystal grains Y, but does not substantially have zinc oxide crystal grains. Further, as a result of the analysis of the X-ray diffraction spectrum, the amount of Fe added was 0.9 atm% or less. 3, No. 4 and No. In No. 7, the crystal grains of ZnIn oxide had a crystal single-phase structure of Zn 3 In 2 O 6 , whereas the amount of Fe added was increased to 1.5 atm%.
  • the crystal grains of the ZnIn oxide have Zn 3 In 2 O 6 and Zn 2 In 2 O 5, and a striped structure appears in Zn 3 In 2 O 6 .
  • the striped structure has disappeared, and the crystal grains of the ZnIn oxide have a crystal single-phase structure of Zn 2 In 2 O 5 .
  • the relative density of the oxide sintered body decreases as the amount of Fe added increases, and when the amount of Fe added reaches 5.0 atm%, the relative density decreases to about 87%. There is.
  • the bulk resistance can be controlled to 3.7 ⁇ 10 -3 ⁇ cm or less, but the amount of Fe added is 5.0 atm. When it increases to%, the bulk resistance increases to 8 ⁇ 10 -3 or more and becomes unstable.
  • Zinc oxide powder (ZnO) with a purity of 99.99%, indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ) are shown in Table 6.
  • Raw material powder was obtained by blending in several ratios. Water, a binder containing polyvinyl alcohol as a main component, and a dispersant containing an acrylic polymer as a main component were added, and the mixture was mixed and pulverized with a nylon pod and a ball mill using zirconia balls as a medium for 3 hours. Next, the obtained mixed powder was dried and granulated.
  • the mixed powder after granulation was placed in a molding die and pressed at 3 ton / cm 2 with a cold hydrostatic press to obtain a molded product.
  • This molded product was heated to 1550 ° C. under normal pressure and atmospheric atmosphere, held for 2 hours, naturally lowered to a temperature, and sintered. 9-No. 14 oxide sintered bodies were obtained. No. 9, No. 10 and No.
  • the reflected electron images of No. 12 observed by a scanning electron microscope (SEM) at a magnification of 5000 are shown in FIGS. 8 to 10.
  • No. No. 9 was composed of three phases of In 2 O 3 crystal grains, Zn 3 In 2 O 6 crystal grains, and Zn 2 In 2 O 5 crystal grains, and it was confirmed that Zn O crystal grains did not exist.
  • No. No. 10 was composed of two phases of In 2 O 3 crystal grains and Zn 3 In 2 O 6 crystal grains, and it was confirmed that Zn O crystal grains did not exist.
  • the ratio of the number of Zn atoms (Zn / In) to the number of In atoms is as small as 0.10.
  • FIG. 13 in No.
  • the oxide sintered body according to one aspect of the present invention can suppress the occurrence of cracks, and is therefore preferably used as a sputtering target.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention addresses the problem of providing an oxide sintered body which can be prevented from the occurrence of cracking. The oxide sintered body according to one embodiment of the present invention is an oxide sintered body containing In, Zn and Fe, does not contain zinc oxide crystal grains substantially, and contains In oxide crystal grains and ZnIn oxide crystal grains, wherein each of the In oxide crystal grains has an In2O3 crystal single-phase structure that does not contain Fe substantially, and each of the ZnIn oxide crystal grains contains Fe.

Description

酸化物焼結体及びスパッタリングターゲットOxide sintered body and sputtering target
 本発明は、酸化物焼結体及びスパッタリングターゲットに関する。 The present invention relates to an oxide sintered body and a sputtering target.
 アモルファス酸化物半導体は、例えばアモルファスシリコン半導体に比べて薄膜トランジスタ(Thin Film Transistor:TFT)を形成した際のキャリア移動度が高い。また、アモルファス酸化物半導体は光学バンドギャップが大きく、可視光の透過性が高い。さらに、アモルファス酸化物半導体の薄膜は、アモルファスシリコン半導体よりも低温で成膜することができる。これらの特徴を活かして、アモルファス酸化物半導体の薄膜は、高解像度で高速駆動できる次世代の大型ディスプレイや、低温での成膜が要求される樹脂基板を用いた可撓性ディスプレイへの応用が期待されている。 Amorphous oxide semiconductors have higher carrier mobility when thin film transistors (TFTs) are formed than, for example, amorphous silicon semiconductors. In addition, amorphous oxide semiconductors have a large optical bandgap and high visible light transmission. Further, the thin film of the amorphous oxide semiconductor can be formed at a lower temperature than the amorphous silicon semiconductor. Taking advantage of these characteristics, the thin film of amorphous oxide semiconductor can be applied to next-generation large displays that can be driven at high speed with high resolution and flexible displays that use resin substrates that require film formation at low temperatures. It is expected.
 アモルファス酸化物半導体としては、インジウムを含む非晶質酸化物半導体が提案されており、インジウム、ガリウム、亜鉛及び酸素を含むIn-Ga-Zn-O(IGZO)アモルファス酸化物半導体や、インジウム、ガリウム、亜鉛、スズ及び酸素を含むIn-Ga-Zn-Sn-O(IGZTO)アモルファス酸化物半導体が注目されている。 As the amorphous oxide semiconductor, an amorphous oxide semiconductor containing indium has been proposed, and an In-Ga-Zn-O (IGZO) amorphous oxide semiconductor containing indium, gallium, zinc and oxygen, indium and gallium. In-Ga-Zn-Sn-O (IGZTO) amorphous oxide semiconductors containing zinc, tin and oxygen are attracting attention.
 アモルファス酸化物半導体の薄膜は、このアモルファス酸化物半導体と同じ組成を有するスパッタリングターゲットを用いたスパッタリング法によって形成される。このスパッタリング法では、スパッタリング中に異常放電が生じると、スパッタリングターゲットが割れることがある。そのため、スパッタリングターゲットの割れを抑制するため、スパッタリングターゲット中の結晶相の含有量を調節することが検討されている(特開2014-58415号公報参照)。 The thin film of the amorphous oxide semiconductor is formed by a sputtering method using a sputtering target having the same composition as this amorphous oxide semiconductor. In this sputtering method, if an abnormal discharge occurs during sputtering, the sputtering target may crack. Therefore, in order to suppress cracking of the sputtering target, it has been studied to adjust the content of the crystal phase in the sputtering target (see JP-A-2014-58415).
特開2014-58415号公報Japanese Unexamined Patent Publication No. 2014-58415
 上記公報には、インジウム、ガリウム、亜鉛、スズ及び酸素を含むスパッタリングターゲットにおいて、スパッタリング中におけるスパッタリングターゲットの割れを抑制すべく、InGaZn相の体積割合を3%以下に抑えることが記載されている。 The above publication describes that in a sputtering target containing indium, gallium, zinc, tin and oxygen, the volume ratio of InGaZn 2 O 5 phase is suppressed to 3% or less in order to suppress cracking of the sputtering target during sputtering. ing.
 しかしながら、本発明者等が鋭意検討したところ、InGaZn等の結晶相の体積割合を制御するのみではスパッタリング中におけるスパッタリングターゲットの割れを十分に抑制することができない場合があることが分かった。 However, as a result of diligent studies by the present inventors, it has been found that cracking of the sputtering target during sputtering may not be sufficiently suppressed only by controlling the volume ratio of the crystal phase such as InGaZn 2 O 5 . ..
 本発明は、このような事情に基づいてなされたもので、割れの発生を抑制可能な酸化物焼結体及びスパッタリングターゲットを提供することを課題とする。 The present invention has been made based on such circumstances, and an object of the present invention is to provide an oxide sintered body and a sputtering target capable of suppressing the occurrence of cracks.
 上記課題を解決するためになされた本発明の一態様に係る酸化物焼結体は、In、Zn及びFeを含む酸化物焼結体であって、酸化亜鉛(ZnO)の結晶粒を実質的に有さず、In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であり、上記ZnIn酸化物の結晶粒がFeを含む。 The oxide sintered body according to one aspect of the present invention made to solve the above problems is an oxide sintered body containing In, Zn and Fe, and substantially contains crystal grains of zinc oxide (ZnO). In 2 O 3 crystal single-phase structure having In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains substantially containing no Fe, as described above. The grains of ZnIn oxide contain Fe.
 当該酸化物焼結体は、ZnIn酸化物の結晶粒がFeを含むことで、酸化亜鉛の結晶粒を実質的に有さず、かつZnIn酸化物の結晶粒を有する構成を得られる。当該酸化物焼結体は、酸化亜鉛の結晶粒を実質的に有さず、In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であることで、割れの発生を抑制することができる。 Since the ZnIn oxide crystal grains contain Fe, the oxide sintered body can be obtained so as to have substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains. The oxide sintered body has substantially no zinc oxide crystal grains, has In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains substantially contain Fe. The occurrence of cracks can be suppressed by having an In 2 O 3 crystal single-phase structure that does not contain the target.
 上記ZnIn酸化物の結晶粒が、ZnIn結晶単相構造ではないことが好ましい。このように、上記ZnIn酸化物の結晶粒が、ZnIn結晶単相構造ではないことで、強度を大きくしやすい。その結果、割れの発生をより確実に抑制することができる。 It is preferable that the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure. As described above, since the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure, the strength can be easily increased. As a result, the occurrence of cracks can be suppressed more reliably.
 上記ZnIn酸化物の結晶粒が、ZnIn、ZnIn及びZnInの結晶構造の少なくともいずれか1つを有するとよい。このように、上記ZnIn酸化物の結晶粒が、ZnIn、ZnIn及びZnInの結晶構造の少なくともいずれか1つを有することによって、バルク抵抗を抑えつつ、強度を大きくしやすい。 It is preferable that the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 . As described above, the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 to increase the bulk resistance. It is easy to increase the strength while suppressing it.
 当該酸化物焼結体は、ZnInFe酸化物の結晶粒を実質的に有しないことが好ましい。これにより、Feの含有割合を抑えつつ、酸化亜鉛の結晶粒を実質的に有さず、かつZnIn酸化物の結晶粒を有する上述の構成を容易に得られる。 It is preferable that the oxide sintered body does not have substantially no crystal grains of ZnInFe oxide. As a result, it is possible to easily obtain the above-mentioned configuration having substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains while suppressing the Fe content ratio.
 当該酸化物焼結体は、In、Zn及びFeの合計原子数に対し、Inの原子数が45atm%以上80atm%以下、Znの原子数が20atm%以上55atm%以下、Feの原子数が0.1atm%以上1.5atm%以下であるとよい。これにより、バルク抵抗を抑えつつ強度を大きくしやすい。その結果、割れの発生をより確実に抑制することができる。 The oxide sintered body has an In atom number of 45 atm% or more and 80 atm% or less, a Zn atom number of 20 atm% or more and 55 atm% or less, and an Fe atom number of 0 with respect to the total atomic number of In, Zn and Fe. It is preferable that it is 1 atm% or more and 1.5 atm% or less. As a result, it is easy to increase the strength while suppressing the bulk resistance. As a result, the occurrence of cracks can be suppressed more reliably.
 当該酸化物焼結体のバルク抵抗としては1×10-2Ωcm以下が好ましい。このように、バルク抵抗が上記上限以下であることによって、スパッタリング中における放電の不安定化を抑制することができ、異常放電に起因する当該酸化物焼結体の割れの発生を十分に抑制することができる。 The bulk resistance of the oxide sintered body is preferably 1 × 10 -2 Ωcm or less. As described above, when the bulk resistance is not more than the above upper limit, the destabilization of the discharge during sputtering can be suppressed, and the occurrence of cracks in the oxide sintered body due to the abnormal discharge is sufficiently suppressed. be able to.
 当該酸化物焼結体の相対密度としては96%以上が好ましい。このように、相対密度が上記下限以上であることによって、強度を大きくすることで割れの発生を十分に抑制することができる。 The relative density of the oxide sintered body is preferably 96% or more. As described above, when the relative density is at least the above lower limit, the occurrence of cracks can be sufficiently suppressed by increasing the strength.
 上記課題を解決するためになされた本発明の他の一態様に係るスパッタリングターゲットは、In、Zn及びFeを含むスパッタリングターゲットであって、酸化亜鉛(ZnO)の結晶粒を実質的に有さず、In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であり、上記ZnIn酸化物の結晶粒がFeを含む。 The sputtering target according to another aspect of the present invention made to solve the above problems is a sputtering target containing In, Zn and Fe, and has substantially no crystal grains of zinc oxide (ZnO). , and a grain of the crystal grains and ZnIn oxides of in oxide, the crystal grains of the in oxide is in 2 O 3 crystal single phase structure is substantially free of Fe, the ZnIn oxide The crystal grains contain Fe.
 当該スパッタリングターゲットは割れの発生を抑制することができる。 The sputtering target can suppress the occurrence of cracks.
 なお、本発明において、「結晶粒」とは、走査型電子顕微鏡(SEM)によって1000倍で観察した反射電子像における粒界相に囲まれた領域をいう。また、「結晶粒がFeを含む」とは、エネルギー分散型X線分光(EDX)によって結晶粒の元素分析を行った場合にFeがその結晶粒中に0.1atm%以上検出されることをいい、「結晶粒がFeを実質的に含まない」とは、Feがその結晶粒中に0.1atm%以上検出されないことをいう。「結晶粒を実質的に有しない」とは、走査型電子顕微鏡(SEM)によって1000倍で観察した反射電子像において粒界相に囲まれる領域が視認されないことをいう。「バルク抵抗」とは、4探針法で測定される体積抵抗をいう。「相対密度」とは、(実測密度/真密度)×100[%]で算出される値をいう。また、「実測密度」とは、アルキメデス法によって求められる値をいう。 In the present invention, the "crystal grain" refers to a region surrounded by grain boundary phases in a reflected electron image observed at a magnification of 1000 by a scanning electron microscope (SEM). Further, "crystal grains contain Fe" means that Fe is detected in the crystal grains at 0.1 atm% or more when elemental analysis of the crystal grains is performed by energy dispersive X-ray spectroscopy (EDX). That is, "the crystal grains do not substantially contain Fe" means that Fe is not detected in the crystal grains in an amount of 0.1 atm% or more. "Substantially free of crystal grains" means that the region surrounded by the grain boundary phase is not visible in the reflected electron image observed at 1000 times by a scanning electron microscope (SEM). "Bulk resistance" refers to the volumetric resistance measured by the 4-probe method. The "relative density" means a value calculated by (measured density / true density) x 100 [%]. The "measured density" means a value obtained by the Archimedes method.
 以上説明したように、本発明に係る酸化物焼結体及びスパッタリングターゲットは、割れの発生を抑制することができる。 As described above, the oxide sintered body and the sputtering target according to the present invention can suppress the occurrence of cracks.
図1は、本発明の一実施形態に係る酸化物焼結体を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an oxide sintered body according to an embodiment of the present invention. 図2は、No.3の酸化物焼結体の反射電子像である。FIG. 2 shows No. It is a reflected electron image of the oxide sintered body of 3. 図3は、No.4の酸化物焼結体の反射電子像である。FIG. 3 shows No. It is a reflected electron image of the oxide sintered body of 4. 図4は、No.5の酸化物焼結体の反射電子像である。FIG. 4 shows No. It is a reflected electron image of the oxide sintered body of 5. 図5は、No.6の酸化物焼結体の反射電子像である。FIG. 5 shows No. It is a reflected electron image of the oxide sintered body of 6. 図6は、No.7の酸化物焼結体の反射電子像である。FIG. 6 shows No. It is a reflected electron image of the oxide sintered body of 7. 図7は、No.1の酸化物焼結体の反射電子像である。FIG. 7 shows No. It is a reflected electron image of the oxide sintered body of 1. 図8は、No.9の酸化物焼結体の反射電子像である。FIG. 8 shows No. 9 is a backscattered electron image of the oxide sintered body of 9. 図9は、No.10の酸化物焼結体の反射電子像である。FIG. 9 shows No. It is a reflected electron image of 10 oxide sintered body. 図10は、No.12の酸化物焼結体の反射電子像である。FIG. 10 shows No. It is a reflected electron image of 12 oxide sintered bodies. 図11は、No.9の酸化物焼結体のX線回折スペクトルの解析結果である。FIG. 11 shows No. It is an analysis result of the X-ray diffraction spectrum of the oxide sintered body of 9. 図12は、No.10の酸化物焼結体のX線回折スペクトルの解析結果である。FIG. 12 shows No. It is an analysis result of the X-ray diffraction spectrum of 10 oxide sintered bodies. 図13は、No.13の酸化物焼結体のX線回折スペクトルの解析結果である。FIG. 13 shows No. It is the analysis result of the X-ray diffraction spectrum of the oxide sintered body of 13. 図14は、No.14の酸化物焼結体のX線回折スペクトルの解析結果である。FIG. 14 shows No. It is the analysis result of the X-ray diffraction spectrum of 14 oxide sintered bodies.
 以下、図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[酸化物焼結体]
 図1の酸化物焼結体1は、In(インジウム)、Zn(亜鉛)及びFe(鉄)を含む。当該酸化物焼結体1は、In酸化物の結晶粒と、ZnIn酸化物の結晶粒とを有する。当該酸化物焼結体1は、酸化亜鉛の結晶粒を実質的に有しない(すなわち、Zn以外の金属元素を実質的に含まない酸化物の結晶粒を実質的に有しない)。上記ZnIn酸化物の結晶粒はFeを含む。上記In酸化物の結晶粒は、Feを実質的に含まないIn結晶単相構造である。なお、In酸化物の結晶粒の結晶構造及びZnIn酸化物の結晶粒の結晶構造は、各結晶粒のX線回折スペクトルを解析して求めることができる。
[Oxide sintered body]
The oxide sintered body 1 of FIG. 1 contains In (indium), Zn (zinc) and Fe (iron). The oxide sintered body 1 has In oxide crystal grains and ZnIn oxide crystal grains. The oxide sintered body 1 has substantially no zinc oxide crystal grains (that is, has substantially no oxide crystal grains that do not substantially contain metal elements other than Zn). The crystal grains of the ZnIn oxide contain Fe. The crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe. The crystal structure of the In oxide crystal grains and the crystal structure of the ZnIn oxide crystal grains can be obtained by analyzing the X-ray diffraction spectrum of each crystal grain.
 当該酸化物焼結体1は、金属元素として、In、Zn及びFeと不可避的不純物とを含んでいてもよい。換言すると、当該酸化物焼結体1は、In、Zn及びFe以外の金属元素を実質的に含まないことが好ましい。 The oxide sintered body 1 may contain In, Zn and Fe and unavoidable impurities as metal elements. In other words, it is preferable that the oxide sintered body 1 does not substantially contain metal elements other than In, Zn and Fe.
 当該酸化物焼結体1は、例えばアモルファス酸化物半導体の薄膜を形成可能なスパッタリングターゲットに用いられる。Inは、上記薄膜のキャリア移動度の向上に寄与する。また、Znは、上記薄膜のアモルファス構造の安定化に寄与する。 The oxide sintered body 1 is used, for example, as a sputtering target capable of forming a thin film of an amorphous oxide semiconductor. In contributes to the improvement of carrier mobility of the thin film. Further, Zn contributes to the stabilization of the amorphous structure of the thin film.
 上述のように、Feは、上記ZnIn酸化物の結晶粒に含まれる。詳しくは、当該酸化物焼結体1は、Zn及びIn以外の金属元素を実質的に含まないZnIn酸化物の結晶粒を有しており、このZnIn酸化物の結晶粒の結晶構造中にFeが固溶している。当該酸化物焼結体1は、FeをZnIn酸化物の結晶粒の結晶構造中に固溶させることで、Feの微量の添加によって、酸化亜鉛とIn酸化物との化合物(具体的には、InとZnOとの化合物)である上記ZnIn酸化物の成長を大幅に促すことができる。すなわち、当該酸化物焼結体1は、Feの微量の添加によって、酸化亜鉛の結晶粒をなくすと共に、上記ZnIn酸化物の体積率を大幅に高めることができる。これにより、当該酸化物焼結体1は、Znの均一分散性を高めやすいと考えられる。 As described above, Fe is contained in the crystal grains of the ZnIn oxide. Specifically, the oxide sintered body 1 has ZnIn oxide crystal grains that substantially do not contain metal elements other than Zn and In, and Fe is contained in the crystal structure of the ZnIn oxide crystal grains. Is solidly dissolved. In the oxide sintered body 1, Fe is dissolved in the crystal structure of the crystal grains of ZnIn oxide, and by adding a small amount of Fe, a compound of zinc oxide and In oxide (specifically, The growth of the ZnIn oxide, which is a compound of In 2 O 3 and Zn O), can be significantly promoted. That is, the oxide sintered body 1 can eliminate the crystal grains of zinc oxide and significantly increase the volume fraction of the ZnIn oxide by adding a small amount of Fe. As a result, it is considered that the oxide sintered body 1 can easily improve the uniform dispersibility of Zn.
 上記ZnIn酸化物の結晶粒は、ZnIn結晶単相構造ではないことが好ましい。当該酸化物焼結体1は、Feの添加量が増加すると、上記ZnIn酸化物の結晶粒としてZnInの割合が大きくなる。また、例えばFeの添加量が大きくなり過ぎると、上記ZnIn酸化物の結晶粒がZnIn結晶単相構造となり、結晶内の空孔面積が大きくなるとともに微小なクラックが形成されやすくなる。そのため、当該酸化物焼結体1は、上記ZnIn酸化物の結晶粒が、ZnIn結晶単相構造ではないことで、強度を大きくし、割れの発生をより確実に抑制することができる。また、当該酸化物焼結体1は、上記ZnIn酸化物の結晶粒が、ZnIn結晶単相構造ではないことで、Feの添加量を抑え、バルク抵抗を小さく制御しやすい。 It is preferable that the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure. In the oxide sintered body 1, as the amount of Fe added increases, the proportion of Zn 2 In 2 O 5 as the crystal grains of the Zn In oxide increases. Further, for example, when the amount of Fe added becomes too large, the crystal grains of the ZnIn oxide have a Zn 2 In 2 O 5 crystal single-phase structure, the pore area in the crystal becomes large, and minute cracks are likely to be formed. Become. Therefore, in the oxide sintered body 1, the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure, so that the strength is increased and the occurrence of cracks is more reliably suppressed. Can be done. Further, in the oxide sintered body 1, since the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure, the amount of Fe added can be suppressed and the bulk resistance can be easily controlled to be small.
 上記ZnIn酸化物の結晶粒が、ZnIn、ZnIn及びZnInの結晶構造の少なくともいずれか1つを有することが好ましい。これにより、当該酸化物焼結体1は、バルク抵抗を抑えると共に強度を大きくしやすい。この場合、上記ZnIn酸化物の結晶粒は、ZnInの結晶構造を有しないことが好ましい。 It is preferable that the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8 . As a result, the oxide sintered body 1 tends to suppress bulk resistance and increase its strength. In this case, it is preferable that the crystal grains of the ZnIn oxide do not have the crystal structure of Zn 2 In 2 O 5 .
 当該酸化物焼結体1は、ZnInFe酸化物の結晶粒を実質的に有しないことが好ましい。これにより、当該酸化物焼結体1は、Feの含有割合を抑えつつ、酸化亜鉛の結晶粒を実質的に有さず、かつZnIn酸化物の結晶粒を有する上述の構成を容易に得られる。つまり、当該酸化物焼結体1は、上述のように、FeをZnIn酸化物の結晶粒の結晶構造中に選択的に固溶させることで、Feの含有割合を抑えつつ、酸化亜鉛の結晶粒をなくすと共に、ZnIn酸化物の結晶粒を効率的に成長させることができる。 It is preferable that the oxide sintered body 1 does not substantially have crystal grains of ZnInFe oxide. As a result, the above-mentioned configuration can be easily obtained in the oxide sintered body 1 having substantially no zinc oxide crystal grains and having ZnIn oxide crystal grains while suppressing the Fe content ratio. .. That is, as described above, the oxide sintered body 1 selectively dissolves Fe in the crystal structure of the crystal grains of ZnIn oxide, thereby suppressing the content ratio of Fe and the zinc oxide crystal. It is possible to eliminate grains and efficiently grow ZnIn oxide crystal grains.
 In、Zn及びFeの合計原子数に対するInの原子数の下限としては、45atm%が好ましく、50atm%がより好ましい。一方、上記原子数の上限としては、80atm%が好ましく、75atm%がより好ましく、70atm%がさらに好ましい。上記原子数が上記下限に満たないと、当該酸化物焼結体1を用いて形成されるアモルファス酸化物半導体の薄膜のキャリア移動度が不十分になるおそれがある。逆に、上記原子数が上記上限を超えると、上記薄膜のリーク電流が増大したり、閾値電圧が負側にシフトしたりするため、上記薄膜が導体化するおそれがある。 As the lower limit of the number of atoms of In with respect to the total number of atoms of In, Zn and Fe, 45 atm% is preferable, and 50 atm% is more preferable. On the other hand, the upper limit of the number of atoms is preferably 80 atm%, more preferably 75 atm%, and even more preferably 70 atm%. If the number of atoms is less than the above lower limit, the carrier mobility of the thin film of the amorphous oxide semiconductor formed by using the oxide sintered body 1 may be insufficient. On the contrary, when the number of atoms exceeds the upper limit, the leak current of the thin film increases or the threshold voltage shifts to the negative side, so that the thin film may become a conductor.
 In、Zn及びFeの合計原子数に対するZnの原子数の下限としては、20atm%が好ましく、25atm%がより好ましく、30atm%がさらに好ましい。一方、上記原子数の上限としては、55atm%が好ましく、50atm%がより好ましい。上記原子数が上記下限に満たないと、他の金属原子数が相対的に大きくなることで、上記薄膜が導体化するおそれがある。逆に、上記原子数が上記上限を超えると、キャリア濃度が抑制され、上記薄膜のキャリア移動度が不十分となるおそれがある。 As the lower limit of the number of atoms of Zn with respect to the total number of atoms of In, Zn and Fe, 20 atm% is preferable, 25 atm% is more preferable, and 30 atm% is further preferable. On the other hand, as the upper limit of the number of atoms, 55 atm% is preferable, and 50 atm% is more preferable. If the number of atoms is less than the above lower limit, the number of other metal atoms becomes relatively large, which may cause the thin film to become a conductor. On the contrary, when the number of atoms exceeds the above upper limit, the carrier concentration may be suppressed and the carrier mobility of the thin film may be insufficient.
 In、Zn及びFeの合計原子数に対するFeの原子数の下限としては、0.1atm%が好ましく、0.3atm%がより好ましい。一方、上記原子数の上限としては、1.5atm%が好ましく、1.0atm%がより好ましい。上記原子数が上記下限に満たないと、ZnIn酸化物の結晶粒の成長を十分に促進することができないおそれがある。一方、上記原子数が上記上限を超えると、当該酸化物焼結体1のバルク抵抗が大きくなるおそれや、当該酸化物焼結体1の相対密度が不十分となるおそれがある。 As the lower limit of the number of atoms of Fe with respect to the total number of atoms of In, Zn and Fe, 0.1 atm% is preferable, and 0.3 atm% is more preferable. On the other hand, the upper limit of the number of atoms is preferably 1.5 atm%, more preferably 1.0 atm%. If the number of atoms is less than the above lower limit, the growth of ZnIn oxide crystal grains may not be sufficiently promoted. On the other hand, if the number of atoms exceeds the above upper limit, the bulk resistance of the oxide sintered body 1 may increase, or the relative density of the oxide sintered body 1 may become insufficient.
 当該酸化物焼結体1は、In、Zn及びFeの合計原子数に対し、Inの原子数が45atm%以上80atm%以下、Znの原子数が20atm%以上55atm%以下、Feの原子数が0.1atm%以上1.5atm%以下であることが好ましく、Inの原子数が50atm%以上70atm%以下、Znの原子数が30atm%以上50atm%以下、Feの原子数が0.1atm%以上1.0atm%以下であることがより好ましい。当該酸化物焼結体1は、In、Zn及びFeの原子数を上記範囲内に調節することで、バルク抵抗を抑えつつ強度を大きくしやすい。その結果、割れの発生をより確実に抑制することができる。 The oxide sintered body 1 has an In atom number of 45 atm% or more and 80 atm% or less, a Zn atom number of 20 atm% or more and 55 atm% or less, and a Fe atom number with respect to the total atomic number of In, Zn and Fe. It is preferably 0.1 atm% or more and 1.5 atm% or less, the number of In atoms is 50 atm% or more and 70 atm% or less, the number of Zn atoms is 30 atm% or more and 50 atm% or less, and the number of Fe atoms is 0.1 atm% or more. It is more preferably 1.0 atom% or less. By adjusting the number of atoms of In, Zn and Fe within the above range, the oxide sintered body 1 can easily increase its strength while suppressing the bulk resistance. As a result, the occurrence of cracks can be suppressed more reliably.
 当該酸化物焼結体1のバルク抵抗の上限としては、1×10-2Ωcmが好ましく、5×10-3Ωcmがより好ましく、4×10-3Ωcmがさらに好ましい。上記バルク抵抗が上記上限を超えると、スパッタリング中に放電の不安定化を招来するおそれがあり、異常放電に起因して当該酸化物焼結体1に割れが生じるおそれがある。なお、上記バルク抵抗の下限としては、特に限定されるものではないが、例えば1×10-4Ωcmとすることができる。 As the upper limit of the bulk resistance of the oxide sintered body 1, 1 × 10 −2 Ωcm is preferable, 5 × 10 -3 Ωcm is more preferable, and 4 × 10 -3 Ωcm is further preferable. If the bulk resistance exceeds the upper limit, the discharge may become unstable during sputtering, and the oxide sintered body 1 may be cracked due to the abnormal discharge. The lower limit of the bulk resistance is not particularly limited, but may be, for example, 1 × 10 -4 Ωcm.
 当該酸化物焼結体1の相対密度の下限としては、96%が好ましく、97%がより好ましい。上記相対密度が上記下限に満たないと、強度が不十分となり割れを生じるおそれがある。なお、上記相対密度は大きい方が好ましく、その上限としては、例えば100%とすることができる。 The lower limit of the relative density of the oxide sintered body 1 is preferably 96%, more preferably 97%. If the relative density does not reach the lower limit, the strength becomes insufficient and cracks may occur. The relative density is preferably large, and the upper limit thereof can be, for example, 100%.
<利点>
 当該酸化物焼結体1は、ZnIn酸化物の結晶粒がFeを含むことで、酸化亜鉛の結晶粒を実質的に有さず、かつZnIn酸化物の結晶粒を有する構成を容易に得られる。当該酸化物焼結体1は、酸化亜鉛の結晶粒を実質的に有さず、In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であることで、割れの発生を抑制することができる。
<Advantage>
Since the ZnIn oxide crystal grains contain Fe, the oxide sintered body 1 can be easily obtained to have a structure in which it has substantially no zinc oxide crystal grains and has ZnIn oxide crystal grains. .. The oxide sintered body 1 has substantially no zinc oxide crystal grains, has In oxide crystal grains and ZnIn oxide crystal grains, and the In oxide crystal grains contain Fe. The occurrence of cracks can be suppressed by having an In 2 O 3 crystal single-phase structure that is substantially free of.
[スパッタリングターゲット]
 次に、本発明の他の一態様であるスパッタリングターゲットについて説明する。当該スパッタリングターゲットは、In、Zn及びFeを含むスパッタリングターゲットであって、酸化亜鉛の結晶粒を実質的に有さず、In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であり、上記ZnIn酸化物の結晶粒がFeを含む。当該スパッタリングターゲットは、図1の酸化物焼結体1を有する。当該スパッタリングターゲットの具体的構成は、当該酸化物焼結体1と同じである。
[Sputtering target]
Next, a sputtering target, which is another aspect of the present invention, will be described. The sputtering target is a sputtering target containing In, Zn, and Fe, which has substantially no zinc oxide crystal grains and has In oxide crystal grains and ZnIn oxide crystal grains. The crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe, and the crystal grains of the ZnIn oxide contain Fe. The sputtering target has the oxide sintered body 1 of FIG. The specific configuration of the sputtering target is the same as that of the oxide sintered body 1.
<利点>
 当該スパッタリングターゲットは、当該酸化物焼結体1と同様に割れの発生を抑制することができる。
<Advantage>
The sputtering target can suppress the occurrence of cracks in the same manner as the oxide sintered body 1.
[その他の実施形態]
 上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced or added based on the description of the present specification and common general technical knowledge, and all of them are construed as belonging to the scope of the present invention. Should be.
 例えば、当該酸化物焼結体及びスパッタリングターゲットは、他の金属元素として、例えばSn(錫)を含んでいてもよい。 For example, the oxide sintered body and the sputtering target may contain, for example, Sn (tin) as another metal element.
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limitedly interpreted based on the description of this Example.
(ホットプレスによる酸化物焼結体の作製)
〔No.1、No.2〕
 純度99.99%の酸化亜鉛粉末(ZnO)、純度99.99%の酸化インジウム粉末(In)、純度99.4%の酸化鉄粉末(Fe)を表1に示す原子数比率で配合して原料粉末を得た。この原料粉末に水を加えて、ナイロンポッド及びメディアとしてジルコニアボールを使用したボールミルで18時間混合及び粉砕した。次に、得られた混合粉末を乾燥して造粒を行った。造粒後の混合粉末を黒鉛型にセットし、表1の条件でホットプレスを行った。このホットプレスでは、炉内にはNガスを導入し、N雰囲気下で焼結した。
(Preparation of oxide sintered body by hot pressing)
[No. 1, No. 2]
Zinc oxide powder with a purity of 99.99% (ZnO), indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ) are shown in Table 1. Raw material powder was obtained by blending in several ratios. Water was added to this raw material powder, and the mixture was mixed and pulverized for 18 hours in a ball mill using a nylon pod and zirconia balls as a medium. Next, the obtained mixed powder was dried and granulated. The mixed powder after granulation was set in a graphite mold and hot-pressed under the conditions shown in Table 1. In this hot press, N 2 gas was introduced into the furnace and sintered in an N 2 atmosphere.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた酸化物焼結体のX線回折スペクトルを解析し、In酸化物、酸化亜鉛及びZnIn酸化物の結晶粒の結晶構造及び含有割合を求めた。その結果を表2に示す。 The X-ray diffraction spectrum of the obtained oxide sintered body was analyzed, and the crystal structure and content ratio of the crystal grains of In oxide, zinc oxide and ZnIn oxide were determined. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、Feの微量の添加によって、InとZnOとの化合物であるZnIn酸化物(ZnIn)の成長が大幅に促進されていることが分かる。 As shown in Tables 1 and 2, the growth of ZnIn oxide (Zn 5 In 2 O 8 ), which is a compound of In 2 O 3 and Zn O, is significantly promoted by the addition of a small amount of Fe. I understand.
(常圧焼結による酸化物焼結体の作製)
〔No.3~No.8〕
 純度99.99%の酸化亜鉛粉末(ZnO)、純度99.99%の酸化インジウム粉末(In)、純度99.4%の酸化鉄粉末(Fe)を表3に示す原子数比率で配合して原料粉末を得た。水と、ポリビニルアルコールを主成分とするバインダーと、アクリル系重合体を主成分とする分散剤とを加えて、ナイロンポッド及びメディアとしてジルコニアボールを使用したボールミルで3時間混合及び粉砕した。次に、得られた混合粉末を乾燥して造粒を行った。造粒後の混合粉末を成形型に入れ、冷間静水圧プレスで3ton/cmで加圧して成形体を得た。この成形体を、常圧、大気雰囲気下で1550℃まで昇温し、2時間保持後、自然降温して焼結し、No.3~No.8の酸化物焼結体を得た。No.3~No.7について、走査型電子顕微鏡(SEM)によって1000倍で観察した反射電子像を図2~図6に示す。
(Preparation of oxide sintered body by atmospheric pressure sintering)
[No. 3 to No. 8]
The atoms shown in Table 3 are zinc oxide powder (ZnO) with a purity of 99.99%, indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ). Raw material powder was obtained by blending in several ratios. Water, a binder containing polyvinyl alcohol as a main component, and a dispersant containing an acrylic polymer as a main component were added, and the mixture was mixed and pulverized in a ball mill using a nylon pod and zirconia balls as a medium for 3 hours. Next, the obtained mixed powder was dried and granulated. The mixed powder after granulation was placed in a molding die and pressed at 3 ton / cm 2 with a cold hydrostatic press to obtain a molded product. This molded product was heated to 1550 ° C. under normal pressure and atmospheric atmosphere, held for 2 hours, naturally lowered to a temperature, and sintered. 3 to No. An oxide sintered body of 8 was obtained. No. 3 to No. The reflected electron images of No. 7 observed at 1000 times by a scanning electron microscope (SEM) are shown in FIGS. 2 to 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔結晶構造〕
 No.3~No.8について、X線回折スペクトルを解析し、In酸化物、酸化亜鉛及びZnIn酸化物の結晶粒の結晶構造を求めた。図2~図6に示すように、No.3~No.7は、In酸化物の結晶粒(In結晶単相構造)X及びZnIn酸化物の結晶粒Yを有する一方、酸化亜鉛の結晶粒を実質的に有していない。また、X線回折スペクトルの解析の結果、Feの添加量が0.9atm%以下であるNo.3、No.4及びNo.7では、ZnIn酸化物の結晶粒がZnInの結晶単相構造であるのに対し、Feの添加量を1.5atm%に増やしたNo.5では、ZnIn酸化物の結晶粒がZnInとZnInとを有しており、ZnIn内に縞状組織が現れている。また、Feの添加量を5.0atm%まで増加させたNo.6では、上記縞状組織はなくなっており、ZnIn酸化物の結晶粒は、ZnInの結晶単相構造となっている。
〔Crystal structure〕
No. 3 to No. The X-ray diffraction spectrum of No. 8 was analyzed to determine the crystal structure of the crystal grains of In oxide, zinc oxide and ZnIn oxide. As shown in FIGS. 2 to 6, No. 3 to No. 7 has In oxide crystal grains (In 2 O 3 crystal single-phase structure) X and Zn In oxide crystal grains Y, but does not substantially have zinc oxide crystal grains. Further, as a result of the analysis of the X-ray diffraction spectrum, the amount of Fe added was 0.9 atm% or less. 3, No. 4 and No. In No. 7, the crystal grains of ZnIn oxide had a crystal single-phase structure of Zn 3 In 2 O 6 , whereas the amount of Fe added was increased to 1.5 atm%. In No. 5, the crystal grains of the ZnIn oxide have Zn 3 In 2 O 6 and Zn 2 In 2 O 5, and a striped structure appears in Zn 3 In 2 O 6 . In addition, No. 1 in which the amount of Fe added was increased to 5.0 atm%. In No. 6, the striped structure has disappeared, and the crystal grains of the ZnIn oxide have a crystal single-phase structure of Zn 2 In 2 O 5 .
 図2、図3及び図6から分かるように、Feの添加量を0.9atm%まで増加させていくことで、In酸化物の結晶粒(In)の面積が低下すると共に、ZnIn酸化物の結晶粒(ZnIn)の面積が増大している。また、図2~図6から分かるように、Feの添加量が多くなるに伴って、結晶粒内の空孔Zの面積が大きくなっている。加えて、図5から分かるように、Feの添加量を5.0atm%まで増加させたNo.6では、微小なクラックが形成されている。 As can be seen from FIGS. 2, 3 and 6, by increasing the amount of Fe added to 0.9 atm%, the area of In oxide crystal grains (In 2 O 3 ) is reduced and ZnIn is increased. The area of oxide crystal grains (Zn 3 In 2 O 6 ) is increasing. Further, as can be seen from FIGS. 2 to 6, the area of the pores Z in the crystal grains increases as the amount of Fe added increases. In addition, as can be seen from FIG. 5, the amount of Fe added was increased to 5.0 atm%. In No. 6, minute cracks are formed.
〔相対密度〕
 No.3~No.8について、アルキメデス法で計測した相対密度を表4に示す。
[Relative density]
No. 3 to No. Table 4 shows the relative densities measured by the Archimedes method for item 8.
〔バルク抵抗〕
 No.3~No.8について、4探針法で測定したバルク密度を表4に示す。
[Bulk resistance]
No. 3 to No. Table 4 shows the bulk densities measured by the 4-probe method for No. 8.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、Feの添加量が多くなるにつれて酸化物焼結体の相対密度が小さくなっており、Feの添加量が5.0atm%になると相対密度は87%程度まで小さくなっている。 As can be seen from Table 4, the relative density of the oxide sintered body decreases as the amount of Fe added increases, and when the amount of Fe added reaches 5.0 atm%, the relative density decreases to about 87%. There is.
 また、表4から分かるように、Feの添加量が1.5atm%以下の場合にはバルク抵抗は3.7×10-3Ωcm以下に制御できているが、Feの添加量が5.0atm%まで増加するとバルク抵抗は8×10-3以上に増加すると共に不安定化している。 Further, as can be seen from Table 4, when the amount of Fe added is 1.5 atm% or less, the bulk resistance can be controlled to 3.7 × 10 -3 Ωcm or less, but the amount of Fe added is 5.0 atm. When it increases to%, the bulk resistance increases to 8 × 10 -3 or more and becomes unstable.
〔Feの存在場所〕
 ホットプレス法で作製したNo.1の酸化物焼結体の反射電子像を図7に示す。表2にも示すように、この酸化物焼結体のX線回折スペクトルを解析したところ、In、ZnO及びZnIn以外の結晶粒は観察されなかった。この酸化物焼結体におけるIn酸化物の結晶粒(In結晶単相構造)X、ZnIn酸化物の結晶粒(ZnIn結晶単相構造)Y、及び酸化亜鉛の結晶粒(ZnO結晶単相構造)Pに対し、エネルギー分散型X線分光(EDX)によって元素分析を行った結果を表5に示す。
[Location of Fe]
No. produced by the hot press method. The reflected electron image of the oxide sintered body of No. 1 is shown in FIG. As shown in Table 2, when the X-ray diffraction spectrum of this oxide sintered body was analyzed, no crystal grains other than In 2 O 3 , Zn O and Zn 5 In 2 O 8 were observed. In oxide crystal grains (In 2 O 3 crystal single-phase structure) X, Zn In oxide crystal grains (Zn 5 In 2 O 8 crystal single-phase structure) Y, and zinc oxide crystals in this oxide sintered body. Table 5 shows the results of elemental analysis of grains (ZnO crystal single-phase structure) P by energy dispersion type X-ray spectroscopy (EDX).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上述のように、X線回折スペクトルの解析の結果、No.1の酸化物焼結体からはZnInFe酸化物の結晶粒は観察されなかった。一方、エネルギー分散型X線分光(EDX)による元素分析では、表5に示すように、FeはZnIn酸化物の結晶粒にのみ含まれることが分かった。このことから、Feは、ZnIn酸化物の結晶粒の結晶構造中に選択的に固溶していると考えられる。 As described above, as a result of the analysis of the X-ray diffraction spectrum, No. No crystal grains of ZnInFe oxide were observed from the oxide sintered body of No. 1. On the other hand, elemental analysis by energy dispersive X-ray spectroscopy (EDX) revealed that Fe was contained only in the crystal grains of the ZnIn oxide, as shown in Table 5. From this, it is considered that Fe is selectively dissolved in the crystal structure of the crystal grains of the ZnIn oxide.
(常圧焼結による酸化物焼結体の作製)
〔No.9~No.No.14〕
 純度99.99%の酸化亜鉛粉末(ZnO)、純度99.99%の酸化インジウム粉末(In)、純度99.4%の酸化鉄粉末(Fe)を表6に示す原子数比率で配合して原料粉末を得た。水と、ポリビニルアルコールを主成分とするバインダーと、アクリル系重合体を主成分とする分散剤とを加えて、ナイロンポッド及びメディアとしてジルコニアボールを使用したボールミルで3時間混合及び粉砕した。次に、得られた混合粉末を乾燥して造粒を行った。造粒後の混合粉末を成形型に入れ、冷間静水圧プレスで3ton/cmで加圧して成形体を得た。この成形体を、常圧、大気雰囲気下で1550℃まで昇温し、2時間保持後、自然降温して焼結し、No.9~No.14の酸化物焼結体を得た。No.9、No.10及びNo.12について、走査型電子顕微鏡(SEM)によって5000倍で観察した反射電子像を図8~図10に示す。
(Preparation of oxide sintered body by atmospheric pressure sintering)
[No. 9-No. No. 14]
Zinc oxide powder (ZnO) with a purity of 99.99%, indium oxide powder with a purity of 99.99% (In 2 O 3 ), and iron oxide powder with a purity of 99.4% (Fe 2 O 3 ) are shown in Table 6. Raw material powder was obtained by blending in several ratios. Water, a binder containing polyvinyl alcohol as a main component, and a dispersant containing an acrylic polymer as a main component were added, and the mixture was mixed and pulverized with a nylon pod and a ball mill using zirconia balls as a medium for 3 hours. Next, the obtained mixed powder was dried and granulated. The mixed powder after granulation was placed in a molding die and pressed at 3 ton / cm 2 with a cold hydrostatic press to obtain a molded product. This molded product was heated to 1550 ° C. under normal pressure and atmospheric atmosphere, held for 2 hours, naturally lowered to a temperature, and sintered. 9-No. 14 oxide sintered bodies were obtained. No. 9, No. 10 and No. The reflected electron images of No. 12 observed by a scanning electron microscope (SEM) at a magnification of 5000 are shown in FIGS. 8 to 10.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔結晶構造〕
 No.9、No.10、No.13及びNo.14について、X線回折スペクトルを解析し、結晶性評価を行った。No.9、No.10、No.13及びNo.14のX線回折スペクトルの解析結果を図11~図14に示す。なお、結晶性評価は、X線回折スペクトルのピークを各結晶粒の特定の結晶面に帰属させることで行った。
〔Crystal structure〕
No. 9, No. 10, No. 13 and No. The X-ray diffraction spectrum of No. 14 was analyzed and the crystallinity was evaluated. No. 9, No. 10, No. 13 and No. The analysis results of the X-ray diffraction spectrum of No. 14 are shown in FIGS. 11 to 14. The crystallinity evaluation was performed by assigning the peak of the X-ray diffraction spectrum to a specific crystal plane of each crystal grain.
 図11に示すように、No.9は、In結晶粒、ZnIn結晶粒、ZnIn結晶粒の3相から構成され、ZnO結晶粒は存在しないことが確認された。図12に示すように、No.10は、In結晶粒及びZnIn結晶粒の2相から構成され、ZnO結晶粒は存在しないことが確認された。一方、Inの原子数に対するZnの原子数の比(Zn/In)が0.10と小さいNo.13は、図13に示すように、In結晶粒及びZnIn結晶粒の2つの結晶粒が確認されており、ZnIn酸化物の結晶粒がZnInの結晶単相構造であることが分かった。また、Inの原子数に対するZnの原子数の比(Zn/In)が8.81と大きいNo.14は、図14に示すように、ZnIn酸化物及びIn結晶粒を含まないIn(ZnO)17という単相構造の結晶相から構成されていることが確認された。 As shown in FIG. 11, No. No. 9 was composed of three phases of In 2 O 3 crystal grains, Zn 3 In 2 O 6 crystal grains, and Zn 2 In 2 O 5 crystal grains, and it was confirmed that Zn O crystal grains did not exist. As shown in FIG. 12, No. No. 10 was composed of two phases of In 2 O 3 crystal grains and Zn 3 In 2 O 6 crystal grains, and it was confirmed that Zn O crystal grains did not exist. On the other hand, the ratio of the number of Zn atoms (Zn / In) to the number of In atoms is as small as 0.10. As shown in FIG. 13, in No. 13, two crystal grains of In 2 O 3 crystal grain and Zn 2 In 2 O 5 crystal grain were confirmed, and the crystal grain of Zn In oxide was Zn 2 In 2 O 5 . It was found to have a crystal single-phase structure. In addition, the ratio of the number of Zn atoms (Zn / In) to the number of In atoms is as large as 8.81. As shown in FIG. 14, it was confirmed that No. 14 was composed of a crystal phase having a single-phase structure of In 2 O 3 (ZnO) 17 containing no Zn In oxide and In 2 O 3 crystal grains.
〔Feの存在場所〕
 No.9、No.10及びNo.12について、In酸化物の結晶粒(In結晶単相構造)X、並びにZnIn酸化物の結晶粒(ZnIn結晶粒Y1及びZnIn結晶粒Y2)に対し、エネルギー分散型X線分光(EDX)によって元素分析を行った。この分析結果を表7に示す。
[Location of Fe]
No. 9, No. 10 and No. For No. 12, the In oxide crystal grains (In 2 O 3 crystal single-phase structure) X and the Zn In oxide crystal grains (Zn 2 In 2 O 5 crystal grains Y1 and Zn 3 In 2 O 6 crystal grains Y2) On the other hand, elemental analysis was performed by energy dispersive X-ray spectroscopy (EDX). The results of this analysis are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 X線回折スペクトルの解析の結果、No.9、No.10及びNo.12の酸化物焼結体からはZnInFe酸化物の結晶粒は観察されなかった。一方、エネルギー分散型X線分光(EDX)による元素分析では、表7に示すように、FeはZnIn酸化物の結晶粒にのみ含まれることが分かった。このことから、Feは、ZnIn酸化物の結晶粒の結晶構造中に選択的に固溶していると考えられる。 As a result of analysis of the X-ray diffraction spectrum, No. 9, No. 10 and No. No crystal grains of ZnInFe oxide were observed from the oxide sintered body of No. 12. On the other hand, elemental analysis by energy dispersive X-ray spectroscopy (EDX) revealed that Fe was contained only in the crystal grains of the ZnIn oxide, as shown in Table 7. From this, it is considered that Fe is selectively dissolved in the crystal structure of the crystal grains of the ZnIn oxide.
 なお、No.11についても、X線回折スペクトルを解析し、In酸化物、酸化亜鉛及びZnIn酸化物の結晶粒の結晶構造を求めたところ、In酸化物の結晶粒(In結晶単相構造)及びZnIn酸化物の結晶粒(ZnIn結晶単相構造)の2相から構成され、ZnO結晶粒は存在しないことが確認された。No.11についてエネルギー分散型X線分光(EDX)によって元素分析を行った結果、FeはIn酸化物の結晶粒からは検出されない一方、積算時間を長くすることでZnIn酸化物の結晶粒からは検出された。 In addition, No. As for No. 11, the X-ray diffraction spectrum was analyzed to determine the crystal structure of the crystal grains of In oxide, zinc oxide and ZnIn oxide. As a result, the crystal grains of In oxide (In 2 O 3 crystal single phase structure) and It was confirmed that it was composed of two phases of ZnIn oxide crystal grains (Zn 3 In 2 O 6 crystal single phase structure) and that ZnO crystal grains did not exist. No. As a result of elemental analysis of No. 11 by energy dispersive X-ray spectroscopy (EDX), Fe was not detected in the grain of In oxide, but was detected in the grain of ZnIn oxide by increasing the integration time. It was.
 以上説明したように、本発明の一態様に係る酸化物焼結体は、割れの発生を抑制できるので、スパッタリングターゲットとして好適に用いられる。 As described above, the oxide sintered body according to one aspect of the present invention can suppress the occurrence of cracks, and is therefore preferably used as a sputtering target.
1 酸化物焼結体
X In酸化物の結晶粒
Y、Y1、Y2 ZnIn酸化物の結晶粒
Z 空孔
P 酸化亜鉛の結晶粒
1 Oxide sintered body X In oxide crystal grains Y, Y1, Y2 ZnIn oxide crystal grains Z Pore P Zinc oxide crystal grains

Claims (9)

  1.  In、Zn及びFeを含む酸化物焼結体であって、
     酸化亜鉛(ZnO)の結晶粒を実質的に有さず、
     In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、
     上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であり、
     上記ZnIn酸化物の結晶粒がFeを含む酸化物焼結体。
    An oxide sintered body containing In, Zn and Fe.
    It has virtually no zinc oxide (ZnO) crystal grains,
    It has In oxide crystal grains and ZnIn oxide crystal grains.
    The crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe.
    An oxide sintered body in which the crystal grains of the ZnIn oxide contain Fe.
  2.  上記ZnIn酸化物の結晶粒が、ZnIn結晶単相構造ではない請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the crystal grains of the ZnIn oxide do not have a Zn 2 In 2 O 5 crystal single-phase structure.
  3.  上記ZnIn酸化物の結晶粒が、ZnIn、ZnIn及びZnInの結晶構造の少なくともいずれか1つを有する請求項1に記載の酸化物焼結体。 The oxide sintering according to claim 1, wherein the crystal grains of the ZnIn oxide have at least one of the crystal structures of Zn 3 In 2 O 6 , Zn 4 In 2 O 7, and Zn 5 In 2 O 8. body.
  4.  ZnInFe酸化物の結晶粒を実質的に有しない請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, which does not substantially have crystal grains of ZnInFe oxide.
  5.  In、Zn及びFeの合計原子数に対し、
     Inの原子数が45atm%以上80atm%以下、
     Znの原子数が20atm%以上55atm%以下、
     Feの原子数が0.1atm%以上1.5atm%以下
     である請求項1に記載の酸化物焼結体。
    For the total number of atoms of In, Zn and Fe
    The number of In atoms is 45 atm% or more and 80 atm% or less,
    The number of Zn atoms is 20 atm% or more and 55 atm% or less,
    The oxide sintered body according to claim 1, wherein the number of atoms of Fe is 0.1 atm% or more and 1.5 atm% or less.
  6.  バルク抵抗が1×10-2Ωcm以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the bulk resistance is 1 × 10 −2 Ωcm or less.
  7.  相対密度が96%以上である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, which has a relative density of 96% or more.
  8.  請求項1から請求項7のいずれか1項に記載の酸化物焼結体を有するスパッタリングターゲット。 A sputtering target having the oxide sintered body according to any one of claims 1 to 7.
  9.  In、Zn及びFeを含むスパッタリングターゲットであって、
     酸化亜鉛(ZnO)の結晶粒を実質的に有さず、
     In酸化物の結晶粒とZnIn酸化物の結晶粒とを有し、
     上記In酸化物の結晶粒がFeを実質的に含まないIn結晶単相構造であり、
     上記ZnIn酸化物の結晶粒がFeを含むスパッタリングターゲット。
    A sputtering target containing In, Zn and Fe.
    It has virtually no zinc oxide (ZnO) crystal grains,
    It has In oxide crystal grains and ZnIn oxide crystal grains.
    The crystal grains of the In oxide have an In 2 O 3 crystal single-phase structure that does not substantially contain Fe.
    A sputtering target in which the crystal grains of the ZnIn oxide contain Fe.
PCT/JP2020/018873 2019-05-30 2020-05-11 Oxide sintered body and sputtering target WO2020241227A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-101329 2019-05-30
JP2019101329 2019-05-30
JP2020048344A JP2020196660A (en) 2019-05-30 2020-03-18 Sintered oxide and sputtering target
JP2020-048344 2020-03-18

Publications (1)

Publication Number Publication Date
WO2020241227A1 true WO2020241227A1 (en) 2020-12-03

Family

ID=73552550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018873 WO2020241227A1 (en) 2019-05-30 2020-05-11 Oxide sintered body and sputtering target

Country Status (1)

Country Link
WO (1) WO2020241227A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211209B2 (en) * 1982-01-29 1990-03-13 Yamada Kikai Kogyo Kk
WO2009081885A1 (en) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. Oxide semiconductor field effect transistor and method for manufacturing the same
WO2014112368A1 (en) * 2013-01-15 2014-07-24 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and production methods for both
WO2017168906A1 (en) * 2016-03-28 2017-10-05 三井金属鉱業株式会社 Sputtering target material, manufacturing method therefor, and sputtering target
JP2018016495A (en) * 2016-07-25 2018-02-01 住友電気工業株式会社 Oxide sintered compact manufacturing method therefor, sputtering target and method for manufacturing semiconductor device
JP2019102793A (en) * 2017-11-29 2019-06-24 株式会社神戸製鋼所 Oxide semiconductor thin film, thin-film transistor and sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211209B2 (en) * 1982-01-29 1990-03-13 Yamada Kikai Kogyo Kk
WO2009081885A1 (en) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. Oxide semiconductor field effect transistor and method for manufacturing the same
WO2014112368A1 (en) * 2013-01-15 2014-07-24 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and production methods for both
WO2017168906A1 (en) * 2016-03-28 2017-10-05 三井金属鉱業株式会社 Sputtering target material, manufacturing method therefor, and sputtering target
JP2018016495A (en) * 2016-07-25 2018-02-01 住友電気工業株式会社 Oxide sintered compact manufacturing method therefor, sputtering target and method for manufacturing semiconductor device
JP2019102793A (en) * 2017-11-29 2019-06-24 株式会社神戸製鋼所 Oxide semiconductor thin film, thin-film transistor and sputtering target

Similar Documents

Publication Publication Date Title
US10515787B2 (en) Oxide sintered body and sputtering target, and method for producing same
JP5883368B2 (en) Oxide sintered body and sputtering target
JP5883367B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5750063B2 (en) Oxide sintered body and sputtering target
WO2015122417A1 (en) Sintered oxide and sputtering target
TW201625504A (en) Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same
JP5884001B1 (en) Oxide sintered body and sputtering target comprising the oxide sintered body
WO2020241227A1 (en) Oxide sintered body and sputtering target
JP2020196660A (en) Sintered oxide and sputtering target
US20190177230A1 (en) Oxide sintered body and sputtering target, and methods for manufacturing same
JP6774624B2 (en) Oxide target material
JP2018059185A (en) Sputtering target material
US20190062900A1 (en) Oxide sintered body and sputtering target
KR102106849B1 (en) Oxide sintered body and sputtering target
US11104615B2 (en) Oxide sintered body and sputtering target
JP2017019668A (en) Oxide sintered body and sputtering target and manufacturing method therefor
WO2017183263A1 (en) Oxide sintered body, sputtering target, and methods for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815043

Country of ref document: EP

Kind code of ref document: A1