WO2020240665A1 - Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system - Google Patents

Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system Download PDF

Info

Publication number
WO2020240665A1
WO2020240665A1 PCT/JP2019/020918 JP2019020918W WO2020240665A1 WO 2020240665 A1 WO2020240665 A1 WO 2020240665A1 JP 2019020918 W JP2019020918 W JP 2019020918W WO 2020240665 A1 WO2020240665 A1 WO 2020240665A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
distribution
space
permittivity
dielectric constant
Prior art date
Application number
PCT/JP2019/020918
Other languages
French (fr)
Japanese (ja)
Inventor
博 末延
田中 泰
道生 瀧川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/020918 priority Critical patent/WO2020240665A1/en
Publication of WO2020240665A1 publication Critical patent/WO2020240665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the present invention relates to a technique for measuring the spatial distribution of characteristic values such as the dielectric constant of a space to be measured using electromagnetic waves.
  • the smoke emitted from a rocket engine is called a plume, and it is known that this type of plume is composed of plasma.
  • the plasma behaves as a dielectric having a complex dielectric constant (complex permittivity) with respect to the electromagnetic wave, and scatters the electromagnetic wave.
  • the complex permittivity of plasma is determined by the distribution of plasma parameters.
  • the plasma parameters include electron density, collision frequency, and plasma frequency.
  • the electron density is a quantity representing the density of electrons constituting the plasma
  • the collision frequency is a quantity representing the frequency with which electrons collide with other particles.
  • the plasma frequency can be determined based on the electron density.
  • One of the methods for measuring plasma parameters is to insert a metal probe electrode into the plasma space where the plasma exists, measure the change in the current value that occurs in the probe electrode when scanning the plasma space, and use that measured value.
  • This is a method of calculating plasma parameters based on the above.
  • this measurement method has a problem that a measurement error occurs because the distribution of plasma is disturbed by inserting the probe electrode into the plasma space. Therefore, in the measurement method disclosed in Non-Patent Document 1 below, transmission measurement of electromagnetic waves is performed in a plurality of paths in the plasma space. Then, the electron density distribution is measured by obtaining the difference in transmission phase depending on the path.
  • Non-Patent Document 1 has a problem that the frequency band used is limited because it is necessary to know the frequency band through which electromagnetic waves pass through the plasma space in advance.
  • an object of the present invention is to provide a dielectric constant measuring device and a dielectric constant measuring system capable of measuring the spatial distribution of the dielectric constant of the measured space without being limited by the frequency band used by the electromagnetic wave.
  • Another object of the present invention is to provide a plasma parameter measuring device and a plasma parameter measuring system capable of measuring the spatial distribution of plasma parameters in a space to be measured without being limited by the frequency band used by electromagnetic waves.
  • the dielectric constant measuring device corresponds to a transmitting antenna arranged to face the measured space, a transmitter that emits an electromagnetic wave from the transmitting antenna toward the measured space, and the emitted electromagnetic wave.
  • a dielectric constant measuring device used in a measuring system including at least one receiving antenna that receives scattered waves from the measured space and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna.
  • the dielectric constant distribution and the scattering characteristic are obtained by using the scattering characteristic measuring unit that calculates the measured amount of the scattering characteristic of the measured space from the received signal and the estimated amount of the dielectric constant distribution in the measured space.
  • the dielectric constant distribution so as to reduce the magnitude of the error between the measured amount and the estimated amount and the scattering characteristic estimation unit that calculates the estimated amount of the scattering characteristic based on the mathematical model showing the relationship between the two. It is characterized by including an update unit that updates the estimated amount of.
  • the plasma parameter measuring device includes a transmitting antenna arranged so as to face the measured space containing a substance in a plasma state, a transmitter that emits an electromagnetic wave from the transmitting antenna toward the measured space, and a transmitter.
  • a measurement system including at least one receiving antenna that receives a scattered wave corresponding to the emitted electromagnetic wave from the measured space and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna.
  • the plasma parameter measuring device used is the scattering characteristic measuring unit that calculates the measured amount of the scattering characteristic of the measured space from the received signal, and the estimated amount of the plasma parameter distribution in the measured space.
  • the magnitude of the error between the measured amount and the estimated amount is reduced between the scattering characteristic estimation unit that calculates the estimated amount of the scattering characteristic based on the mathematical model showing the relationship between the parameter distribution and the scattering characteristic. It is characterized by including an update unit that updates the estimated amount of the plasma parameter distribution so as to be performed.
  • the dielectric constant distribution can be measured without being limited by the frequency band used by electromagnetic waves.
  • the plasma parameter distribution can be measured without being limited by the frequency band used by electromagnetic waves.
  • FIG. 1 shows the schematic structure of the dielectric constant measurement system of Embodiment 1 which concerns on this invention.
  • FIG. It is a block diagram which shows schematic the hardware structure example of the dielectric constant measuring apparatus of Embodiment 1.
  • FIG. It is a figure which shows an example of the dielectric model used for the mathematical model which concerns on Embodiment 1.
  • FIG. It is a figure which shows the matrix used for the mathematical model which concerns on Embodiment 1.
  • It is a flowchart shows typically an example of the operation procedure of the dielectric constant measuring apparatus of Embodiment 1.
  • FIG. It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 2 which concerns on this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a permittivity measurement system 1 according to a first embodiment of the present invention.
  • the dielectric constant measuring system 1 has a transmitting antenna TX arranged to face the measured space SF containing a substance in a plasma state (for example, a plume), and a transmitting antenna TX toward the measured space SF.
  • the transmitter 20 that radiates the transmitted electromagnetic wave Tw, the receiving antenna RX that is arranged opposite to the measured space SF and receives the scattered wave Sw from the measured space SF, and the digital reception signal RS based on the output signal of the receiving antenna RX.
  • the measurement target in the first embodiment and the second to fifth embodiments described later is a substance in a plasma state, but the measurement target is not limited to this. Not limited to the substance in the plasma state, any substance that scatters the transmitted electromagnetic wave Tw can be the measurement target.
  • the transmitter 20 operates according to the transmission control signal Tc supplied from the dielectric constant measuring device 11, generates a transmission signal in a high frequency band such as a microwave band, and supplies the transmission signal to the transmission antenna TX to transmit the transmission antenna.
  • the transmitted electromagnetic wave Tw can be radiated from the TX toward the measured space SF.
  • the transmitted electromagnetic wave Tw is scattered by a substance in the space SF to be measured.
  • the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw.
  • the receiver 30 has a frequency conversion function that converts the output signal of the receiving antenna RX into an analog signal having a frequency lower than the frequency of the output signal, and a phase detection that phase-detects the analog signal to generate an analog received signal. It has a function and an A / D conversion function that converts the analog received signal into a digital received signal RS (hereinafter, simply referred to as "received signal RS").
  • the received signal RS is a complex signal composed of an in-phase signal component and an orthogonal signal component.
  • the permittivity measuring device 11 calculates the estimator MS of the scattering characteristic of the space SF to be measured from the control unit 40 that supplies the transmission control signal Tc to the transmitter 20 and the received signal RS.
  • the scattering characteristic estimation unit 42 that calculates the estimated amount ES of the scattering characteristics based on the mathematical model prepared in advance, and the measured amount MS and the estimated amount ES. Is provided with an update unit 43 for updating the estimated amount Pd of the dielectric constant distribution.
  • a dielectric constant measuring device 11 All or part of the functions of such a dielectric constant measuring device 11 are, for example, a semiconductor having a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). Or it can be realized by multiple processors. Alternatively, all or part of the functions of the dielectric constant measuring device 11 may be a single or multiple processors including an arithmetic unit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes software or firmware program code. It may be realized by.
  • arithmetic unit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes software or firmware program code. It may be realized by.
  • all or part of the functions of the dielectric constant measuring device 11 can be realized by a single or a plurality of processors including a combination of a semiconductor integrated circuit such as a DSP, ASIC or FPGA and an arithmetic unit such as a CPU or GPU. Is.
  • FIG. 2 is a functional block diagram showing a schematic configuration of a signal processing device 70, which is an example of a hardware configuration of the permittivity measuring device 11 of the first embodiment.
  • the signal processing device 70 shown in FIG. 2 includes a processor 71, a memory 72, a storage device 73, an input / output interface circuit 74, and a signal path 75.
  • the signal path 75 is a bus for connecting the processor 71, the input / output interface circuit 74, the memory 72, and the storage device 73 to each other.
  • the input / output interface circuit 74 has a function of transferring a signal input from the outside to the processor 71 and a function of outputting a signal transferred from the processor 71 to the outside.
  • the memory 72 includes a work memory used when the processor 71 executes digital signal processing, and a temporary storage memory in which data used in the digital signal processing is expanded.
  • the memory 72 may be composed of a flash memory and a semiconductor memory such as SDRAM (Synchronous Dynamic Random Access Memory).
  • the storage device 73 can be used as a storage area for storing a program code of software or firmware to be executed by the arithmetic unit.
  • the storage device 73 may be composed of a flash memory or a non-volatile semiconductor memory such as a ROM (Read Only Memory).
  • the number of processors 71 is one, but the number is not limited to this.
  • the hardware configuration of the permittivity measuring device 11 may be realized by using a plurality of processors that operate in cooperation with each other.
  • the scattering characteristic measuring unit 41 analyzes the received signal RS to obtain the intensity of the scattered wave Sw, the phase of the scattered wave Sw, the frequency characteristic related to the intensity, and the frequency characteristic related to the phase.
  • the measured amount MS of the scattering characteristic can be calculated.
  • the scattering characteristic estimation unit 42 uses the estimation amount Pd of the permittivity distribution in the space SF to be measured, and estimates the scattering characteristic ES based on a mathematical model showing the relationship between the dielectric constant distribution and the scattering characteristic. Can be calculated. By using a mathematical model, it is possible to calculate the estimated amount ES of scattering characteristics at high speed with a low calculation load.
  • FIG. 3 is a diagram showing an example of a dielectric model of the space SF to be measured used in the mathematical model.
  • This dielectric model is a multilayer dielectric model in which a plurality of dielectric layers are symmetrically distributed with respect to an axis orthogonal to both the X-axis and the Z-axis (the axis in the direction perpendicular to the paper surface). Therefore, the dielectric model of FIG. 3 has axial symmetry.
  • the dielectric model of Figure 3 the first layer L1 having a dielectric constant epsilon 1, a second layer L2 having a dielectric constant epsilon 2, and the third layer L3 having a dielectric constant epsilon 3, the dielectric constant epsilon 4 It is composed of a fourth layer L4 having a dielectric constant of ⁇ 0 , and is surrounded by a peripheral region L 0 having a dielectric constant ⁇ 0 .
  • the number of layers of the dielectric layer is four, but the number of layers is not limited to this, and the number of layers may be determined according to the desired resolution of the dielectric constant distribution.
  • Spatial distribution of the permittivity ⁇ of the dielectric model where r is the distance (radius) from the central axis, that is, the axis of symmetry, and ⁇ is the angle from the X axis in the XZ plane including the X and Z axes. Can be expressed by a function related to the distance r and the angle ⁇ .
  • the dielectric model of FIG. 3 is suitable for the analysis of such plumes because the plumes injected from the rocket engine form a nearly axisymmetric flow.
  • Equation (1) is a mathematical expression representing an example of a mathematical model based on a multilayer dielectric model.
  • S (f, ⁇ ) is the scattering characteristic
  • f is the frequency of the transmitted electromagnetic wave Tw
  • is the angle around the axis of symmetry
  • j is a complex unit
  • k 0 is the wave number in vacuum
  • r r is the receiving point.
  • H n (2) (x ) is the second kind Hankel function
  • J n (x) is a Bessel function.
  • a 0n in the formula (1) is an element of the first row and first column of the inverse matrix A n -1 for the matrix A n shown in FIG.
  • k i is the i-th layer of the multilayer dielectric model (i is a positive integer) wave number
  • radius of r 0 is axisymmetric scatterers, r i, of the i-th layer The radius.
  • H n (2) '(x) is the first derivative of the Type 2 Hankel function
  • J n '(x) is the first derivative of the Bessel function.
  • the wave number k i is given by the following equation (3).
  • ⁇ i is the permittivity of the i-th layer
  • is the magnetic permeability.
  • the scattering characteristic estimation unit 42 Given the value of the frequency f of the transmitted electromagnetic wave Tw and the value of the angle ⁇ , and given the estimated values of the permittivity ⁇ 1 to ⁇ 4 as the estimator Pd of the permittivity distribution, the scattering characteristic estimation unit 42 uses the equation ( The estimator ES of the scattering characteristic S (f, ⁇ ) can be calculated based on 1).
  • the update unit 43 includes a comparison unit 44 and a dielectric constant distribution estimation unit 45.
  • the comparison unit 44 calculates the error ⁇ between the measured amount MS of the scattering characteristic and the estimated amount ES calculated based on the mathematical model.
  • the permittivity distribution estimation unit 45 corrects the current estimator of the permittivity distribution so that the magnitude of the error ⁇ becomes small according to the update formula of the adaptive algorithm such as the steepest descent method (Stepest Descent Algorithm).
  • the updated estimator Pd of the permittivity distribution can be calculated.
  • the updated estimator Pd is supplied to the scattering characteristic estimation unit 42.
  • the scattering characteristic estimation unit 42 can calculate the estimated amount ES of the scattering characteristic based on the updated estimated amount Pd.
  • the scattering characteristic estimation unit 42 and the update unit 43 can converge the estimation amount Pd of the dielectric constant distribution by executing an iterative operation based on the adaptive algorithm.
  • FIG. 5 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 11.
  • the permittivity measuring device 11 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain the received signal RS (step ST31).
  • the control unit 40 supplies the transmission control signal Tc to the transmitter 20.
  • the transmitter 20 radiates the transmission electromagnetic wave Tw from the transmission antenna TX by supplying the transmission signal in the frequency band corresponding to the transmission control signal Tc to the transmission antenna TX.
  • the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw.
  • the receiver 30 generates a received signal RS based on the output signal of the receiving antenna RX, and supplies the received signal RS to the scattering characteristic measuring unit 41.
  • the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured from the received signal RS (step ST32).
  • the scattering characteristic estimation unit 42 and the update unit 43 initialize the estimation distribution of the dielectric constant by setting the estimation amount Pd of the dielectric constant distribution as the initial estimation amount (step ST33). For example, a uniform distribution of permittivity may be set as the initial estimator of the permittivity distribution.
  • the scattering characteristic estimation unit 42 and the update unit 43 update the estimated amount Pd of the dielectric constant distribution by executing an iterative operation based on a predetermined adaptive algorithm (steps ST34 to ST36).
  • the scattering characteristic estimation unit 42 calculates the estimated amount ES of the scattering characteristic based on the mathematical model showing the relationship between the dielectric constant distribution and the scattering characteristic in the space SF to be measured (step ST34).
  • the update unit 43 updates the estimator Pd of the permittivity distribution so as to reduce the magnitude of the error ⁇ between the estimator MS and the estimator ES of the scattering characteristics (step ST35).
  • the permittivity distribution estimation unit 45 calculates the updated estimator Pd of the permittivity distribution according to an update formula of a predetermined adaptive algorithm such as the steepest descent method. Then, the updated estimator Pd is supplied to the scattering characteristic estimation unit 42.
  • the permittivity distribution estimation unit 45 determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST36). For example, when the number of iterative operations reaches the upper limit value, or when the magnitude of the error ⁇ satisfies a predetermined convergence condition, the permittivity distribution estimation unit 45 can determine that the iterative operation is completed ( YES in step ST36). For example, as a predetermined convergence condition, there is a condition that the magnitude of the error ⁇ is continuously equal to or less than a certain value a predetermined number of times.
  • step ST36 When it is determined that the iterative calculation is not completed (NO in step ST36), the scattering characteristic estimation unit 42, the comparison unit 44, and the dielectric constant distribution estimation unit 45 are performed in steps ST34 and ST35 based on the updated estimator Pd. Is executed again.
  • step ST36 the permittivity measuring device 12 outputs the last updated estimated amount CPd of the permittivity distribution (step ST38).
  • the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw in the space SF to be measured, and the receiver 30 receives the receiving antenna RX.
  • the received signal RS is generated based on the output signal of.
  • the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured, and the scattering characteristic estimation unit 42 calculates the estimated amount ES of the scattering characteristic based on the mathematical model.
  • the update unit 43 can estimate the permittivity distribution by updating the estimator Pd of the permittivity distribution so as to reduce the magnitude of the error ⁇ between the measured quantity MS and the estimated quantity ES.
  • the dielectric constant distribution without being limited by the frequency band used by the transmitted electromagnetic wave Tw.
  • the probe electrode since the probe electrode is not inserted into the measurement space SF, the distribution of the measurement target is not disturbed. Therefore, it is possible to measure the dielectric constant distribution without being restricted by the measurement target.
  • the scattering characteristic estimation unit 42 and the update unit 43 converge the estimated amount Pd of the permittivity distribution by executing an iterative operation based on a predetermined adaptive algorithm, the permittivity distribution can be estimated with high accuracy. Is.
  • FIG. 6 is a diagram showing a schematic configuration of a permittivity measurement system 2 according to a second embodiment of the present invention.
  • the permittivity measuring system 2 includes a transmitting antenna TX, a transmitter 20, a receiving antenna RX, and a receiver 30, and measures the permittivity distribution of the space SF to be measured based on the received signal RS. It is configured to include a dielectric constant measuring device 12.
  • the configuration of the permittivity measuring device 12 of the present embodiment is the same as the configuration of the permittivity measuring device 11 of the first embodiment except that the parameter distribution calculation unit 46 is provided.
  • the update unit 43 can calculate the estimated amount CPd of the dielectric constant distribution. Assuming that this estimated quantity CPd is expressed by the relative permittivity ⁇ , the parameter distribution calculation unit 46 uses the relative permittivity ⁇ and based on the following equations (4) to (6), the electron density of the space SF to be measured spatial distribution of n e (hereinafter referred to as "electron density distribution.”), spatial distribution of the plasma collision frequency [nu (hereinafter referred to as “collision frequency distribution”.) and the spatial distribution of the plasma frequency omega p (hereinafter referred to as "plasma frequency distribution" ) Can be calculated as the plasma parameter distribution.
  • ⁇ 0 is the permittivity in vacuum
  • is the angular frequency of the transmitted electromagnetic wave Tw.
  • me is the mass of an electron
  • e is an elementary charge. Since the real part and the imaginary part of the complex permittivity ⁇ on the left side of the equation (4) are given by the estimated amount CPd of the permittivity distribution, the equation determined by the real part on the left side and the right side of the equation (4) and the equation ( The collision frequency ⁇ and the plasma frequency ⁇ p can be calculated from the equation determined by the imaginary parts on the left and right sides of 4). Using equation (6), it is possible to calculate the electron density n e of the plasma frequency omega p.
  • FIG. 7 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 12. Steps ST31 to ST36 in FIG. 7 are the same as steps ST31 to ST36 in FIG.
  • step ST36 when it is determined in step ST36 that the iterative calculation is completed (YES in step ST36), the parameter distribution calculation unit 46 uses the last updated estimator CPd of the dielectric constant distribution to be used.
  • the plasma parameter distribution is calculated (step ST37).
  • the permittivity measuring device 12 outputs the data Ep showing the plasma parameter distribution and the estimated amount CPd of the permittivity distribution (step ST39).
  • the permittivity measuring device 12 of the second embodiment can accurately estimate the plasma parameter distribution based on the estimated amount CPd of the permittivity distribution.
  • FIG. 8 is a diagram showing a schematic configuration of a permittivity measurement system 3 according to a third embodiment of the present invention.
  • the dielectric constant measuring system 3 includes a transmitting antenna TX, a transmitter 20, a receiving antenna RX, and a receiver 30, and measures the dielectric constant distribution of the space SF to be measured based on the received signal RS. It is configured to include a dielectric constant measuring device 13.
  • the configuration of the permittivity measuring device 13 is the same as the configuration of the permittivity measuring device 12 of the second embodiment except that the control unit 40C is provided instead of the control unit 40 of the second embodiment.
  • the permittivity measurement system 3 is provided with a moving mechanism 50.
  • the moving mechanism 50 is a mechanism that operates according to the position control signal Pc supplied from the control unit 40C and positions the receiving antenna RX by moving it relative to the transmitting antenna TX.
  • the permittivity measurement system 3 can receive the scattered wave Sw at a plurality of reception positions and can estimate the permittivity distribution for the plurality of reception positions, so that the estimation accuracy can be improved. ..
  • the moving mechanism 50 may be configured to move the receiving antenna RX along the arcuate line RM surrounding the measured space SF on a plane intersecting the measured space SF. It is possible.
  • the permittivity measuring device 13 can estimate the permittivity distribution using the angular characteristics of scattering.
  • the moving mechanism 50 of the present embodiment is configured to mechanically move the receiving antenna RX.
  • the configuration of the moving mechanism 50 may be modified so that the transmitting antenna TX is mechanically moved, or both the transmitting antenna TX and the receiving antenna RX are mechanically moved.
  • FIG. 9 to 12 are graphs showing the results obtained by executing the simulation calculation using the configuration of the permittivity measurement system 3 and the mathematical model according to the first embodiment. A uniform distribution was used as the initial permittivity distribution (initial estimator).
  • FIG. 9 shows the angular characteristics of scattering.
  • the horizontal axis represents the angle ⁇
  • the vertical axis represents the logarithm of the absolute value of the scattering characteristic S (f, ⁇ ).
  • Figure 10 is a graph showing the spatial distribution of the electron density n e of the first to fourth layers in the multilayer dielectric model.
  • the horizontal axis represents the radius r (unit: m)
  • the vertical axis indicates the electron density n e.
  • the horizontal axis indicates the radius r (unit: m).
  • the estimation result obtained by the simulation calculation is displayed by a solid line, and the target calculation result obtained from the dielectric constant distribution of the correct answer is displayed by a broken line.
  • the estimation result and the target calculation result are almost the same, and it can be seen that the permittivity distribution and the plasma parameter distribution are estimated accurately.
  • FIG. 13 is a diagram showing a schematic configuration of the permittivity measurement system 4 according to the fourth embodiment of the present invention.
  • one receiving antenna RX is used.
  • M receiving antennas RX 1 to RX M are used.
  • the receiving antennas RX 1 to RX M are held by an annular holding member 51 surrounding the space SF to be measured.
  • the dielectric constant measuring system 4 includes a transmitting antenna TX, a transmitter 20, M receiving antennas RX 1 to RX M arranged so as to surround the space SF to be measured, and a receiving antenna.
  • the dielectric constant distribution of the receiver 30D that generates the digital reception signals RS 1 to RS M of the M channel based on the output signals of RX 1 to RX M and the measured space SF based on the digital reception signals RS 1 to RS M. It is configured to include a dielectric constant measuring device 14 for measuring.
  • the receiver 30D has a frequency conversion function for converting the output signals of the receiving antennas RX 1 to RX M into analog signals of M channels (M receiving channels) having a frequency lower than the frequency of the output signals, and the analog.
  • a phase detection function that phase-detects a signal to generate an analog reception signal of M channel, and the analog reception signal is referred to as an M channel digital reception signal RS 1 to RS M (hereinafter, simply referred to as "reception signal RS 1 to RS M "). It has an A / D conversion function that converts to.).
  • Each of the received signals RS 1 to RS M is a complex signal composed of an in-phase signal component and an orthogonal signal component.
  • the permittivity measuring device 14 is an estimator of the scattering characteristics of the space SF to be measured from the control unit 40 that supplies the transmission control signal Tc to the transmitter 20 and the received signals RS 1 to RS M MS 1.
  • Scattering characteristic measuring section 41D by analyzing each of the received signals RS 1 ⁇ RS M, the intensity of the scattered wave Sw and scattered waves Sw phase, as well as the frequency characteristics relating to its strength, and, like the frequency characteristics related to the phase Measurements of scattering characteristics MS 1 to MS M can be calculated.
  • the scattering characteristic estimation unit 42D uses the estimation amount Pd of the dielectric constant distribution of the space SF to be measured, and estimates the scattering characteristics ES 1 to ES M based on the same mathematical model as the mathematical model according to the first embodiment. Can be calculated. By using a mathematical model similar to the mathematical model of the first embodiment, it is possible to calculate the estimated scattering characteristics ES 1 to ES M at high speed with a low calculation load.
  • the update unit 43D includes a comparison unit 44D and a dielectric constant distribution estimation unit 45D.
  • Comparing unit 44D calculates an error ⁇ 1 ⁇ ⁇ M between the measured quantity MS 1 ⁇ MS M and estimator ES 1 ⁇ ES M calculated on the basis of the mathematical model of the scattering characteristics.
  • Permittivity distribution estimation unit 45D in accordance with update equation of the adaptive algorithm such as the steepest descent method, by modifying the current estimate of permittivity distribution such that the magnitude of the error ⁇ 1 ⁇ ⁇ M is reduced, the dielectric
  • the updated estimator Pd of the rate distribution can be calculated. For example, the magnitude of the error ⁇ 1 ⁇ ⁇ M, mean squared error need be calculated.
  • the updated estimator Pd is supplied to the scattering characteristic estimation unit 42D.
  • the scattering characteristic estimation unit 42D can calculate the scattering characteristic estimators ES 1 to ES M based on the updated estimator Pd.
  • the scattering characteristic estimation unit 42D and the update unit 43D can converge the estimation amount Pd of the dielectric constant distribution by executing an iterative operation based on the adaptive algorithm.
  • FIG. 14 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 14.
  • the permittivity measuring device 11 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain reception signals RS 1 to RS M of a plurality of channels (step ST41).
  • the scattering characteristic measuring unit 41D calculates the measured quantities MS 1 to MS M of the scattering characteristic of the space SF to be measured from the received signals RS 1 to RS M (step ST42).
  • the scattering characteristic estimation unit 42D and the update unit 43D initialize the estimation distribution of the permittivity by setting the estimation amount Pd of the dielectric constant distribution of the space SF to be measured as the initial estimation amount (step ST43). For example, a uniform distribution of permittivity may be set as the initial estimator of the permittivity distribution.
  • the scattering characteristic estimation unit 42D and the update unit 43D update the estimated amount Pd of the dielectric constant distribution by executing an iterative operation based on a predetermined adaptive algorithm (steps ST44 to ST46).
  • the scattering characteristic estimation unit 42D uses the estimator Pd of the permittivity distribution in the space SF to be measured, and the scattering characteristics are based on a mathematical model showing the relationship between the permittivity distribution and the scattering characteristics.
  • Estimators ES 1 to ES M are calculated (step ST44).
  • Updating unit 43 updates the estimated amount of Pd permittivity distribution so as to reduce the magnitude of the error ⁇ 1 ⁇ ⁇ M between the measured quantity MS 1 ⁇ MS M scattering properties and the estimated amounts ES 1 ⁇ ES M (Step ST45).
  • permittivity distribution estimation unit 45D in accordance with update equation of predetermined adaptive algorithm such as the steepest descent method, updated estimate of the permittivity distribution The quantity Pd is calculated, and the updated estimated quantity Pd is supplied to the scattering characteristic estimation unit 42D.
  • the permittivity distribution estimation unit 45D determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST46). For example, if the number of iterative operations has reached the upper limit value, or when the magnitude of the error ⁇ 1 ⁇ ⁇ M is a predetermined convergence condition is satisfied, it is determined that the permittivity distribution estimation unit 45D terminates the iterative operation Can be done (YES in step ST46).
  • the predetermined convergence condition the condition that the magnitude of the error ⁇ 1 ⁇ ⁇ M is equal to or less than a predetermined value continuously for a predetermined number of times and the like.
  • the scattering characteristic estimation unit 42D, the comparison unit 44D, and the dielectric constant distribution estimation unit 45D are performed in steps ST44 and ST45 based on the updated estimator Pd. Is executed again.
  • the parameter distribution calculation unit 46 uses the last updated estimator CPd of the dielectric constant distribution to use the above equation (4).
  • the plasma parameter distribution is calculated based on (6) (step ST47). Then, the permittivity measuring device 12 outputs the data Ep showing the plasma parameter distribution and the estimated amount CPd of the permittivity distribution (step ST49).
  • the permittivity measurement system 1 of the fourth embodiment can instantly obtain an angular distribution of scattering characteristics by using a plurality of receiving antennas RX 1 to RX M surrounding the space SF to be measured. Therefore, the permittivity distribution can be estimated accurately even for the space SF to be measured having a scatterer that fluctuates in a short time.
  • FIG. 15 is a diagram showing a schematic configuration of a permittivity measuring system 5 according to a fifth embodiment of the present invention.
  • the permittivity measuring system 5 includes a transmitting antenna TX, a transmitter 20, M receiving antennas RX 1 to RX M, and a receiver 30D, and receives signals RS 1 to RS M of the M channel.
  • the permittivity measuring device 15 for measuring the permittivity distribution of the space SF to be measured is provided based on the above.
  • the configuration of the permittivity measuring device 15 is the same as the configuration of the permittivity measuring device 14 of the fourth embodiment except that the control unit 40E is provided instead of the control unit 40 of the fourth embodiment.
  • the permittivity measuring system 5 includes a moving mechanism 52.
  • the control unit 40E supplies the transmission control signal Tc to the transmitter 20 and supplies the position control signal Pc to the moving mechanism 52.
  • the moving mechanism 52 operates according to the position control signal Pc supplied from the control unit 40E, and positions the transmitting antenna TX and the receiving antennas RX 1 to RX M as a whole by moving them relative to the space SF to be measured. is there.
  • FIG. 16 is a schematic view showing the positional relationship between the space SF to be measured and the receiving antennas RX 1 to RX M.
  • the space SF to be measured has an axisymmetric distribution with respect to the central axis Y.
  • the receiving antennas RX 1 to RX M are arranged so as to surround the space SF to be measured on the plane CS orthogonal to the central axis Y.
  • the moving mechanism 52 can move the receiving antennas RX 1 to RX M surrounding the space to be measured SF along the central axis Y.
  • the permittivity measurement system 5 can obtain a three-dimensional distribution of the permittivity in the space SF to be measured.
  • Embodiment 6 Next, a sixth embodiment of the present invention will be described.
  • the plasma parameter distribution is calculated based on the estimation result of the dielectric constant distribution.
  • the plasma parameter distribution is estimated without estimating the dielectric constant distribution.
  • FIG. 17 is a diagram showing a schematic configuration of the plasma parameter measurement system 6 of the sixth embodiment according to the present invention.
  • the plasma parameter measurement system 6 has a transmitting antenna TX arranged to face the measured space SF containing a substance in a plasma state (for example, a plume), and a transmitting antenna TX toward the measured space SF.
  • the transmitter 20 that radiates the transmitted electromagnetic wave Tw, the receiving antenna RX that is arranged opposite to the measured space SF and receives the scattered wave Sw from the measured space SF, and the digital reception signal RS based on the output signal of the receiving antenna RX.
  • the receiver 30 to be generated, the moving mechanism 50 to move and position the receiving antenna RX relative to the transmitting antenna TX, and the plasma parameter distribution (electron density distribution, electron density distribution) in the measured space SF based on the digital received signal RS. It is configured to include a plasma parameter measuring device 16 for measuring the plasma frequency distribution and the collision frequency distribution).
  • the configuration of the transmitter 20, the transmitting antenna TX, the receiving antenna RX, the receiver 30, and the moving mechanism 50 in the present embodiment includes the transmitter 20, the transmitting antenna TX, the receiving antenna RX, the receiver 30, and the moving mechanism 50 in the third embodiment.
  • the configuration is the same as that of the mechanism 50.
  • the plasma parameter measuring device 16 supplies the transmission control signal Tc to the transmitter 20 and the position control signal Pc to the moving mechanism 50, and the estimator MS of the scattering characteristic of the space SF to be measured from the received signal RS.
  • It is configured to include an update unit 43E that updates the estimator Ed of the plasma parameter distribution so as to reduce the value, and a dielectric constant distribution calculation unit 47 that calculates the dielectric constant distribution of the space SF to be measured from the updated estimator Ed. ing.
  • the configuration of the scattering characteristic measuring unit 41 and the control unit 40C in the present embodiment is the same as the configuration of the scattering characteristic measuring unit 41 and the control unit 40C in the third embodiment.
  • the scattering characteristic estimation unit 42E uses the estimated amount Ed of the plasma parameter distribution in the space SF to be measured, and calculates the estimated amount ES of the scattering characteristic based on a mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristic. be able to. By using a mathematical model, it is possible to calculate the estimated amount ES of scattering characteristics at high speed with a low computational load.
  • the above equation (1) based on the multilayer dielectric model can be used.
  • the scattering characteristic estimation unit 42E can calculate the estimator ES of the scattering characteristic S (f, ⁇ ) based on the equation (1).
  • the complex permittivity ⁇ i of the i-th layer has the electron density ne (i) and the collision frequency ⁇ (i ) of the i-layer as shown in the following equation (8). ) Is used.
  • the scattering characteristic estimation unit 42E can calculate the estimator ES of the scattering characteristic S (f, ⁇ ) based on the equation (1).
  • the update unit 43E includes a comparison unit 44 and a parameter distribution estimation unit 45E.
  • the comparison unit 44 calculates the error ⁇ between the measured amount MS of the scattering characteristic and the estimated amount ES calculated based on the mathematical model.
  • the parameter distribution estimation unit 45E corrects the current estimator of the plasma parameter distribution so that the magnitude of the error ⁇ becomes small according to the update formula of the adaptive algorithm such as the steepest descent method (Stepest Descent Algorithm).
  • the updated estimator Ed of the parameter distribution can be calculated.
  • the updated estimator Ed is supplied to the scattering characteristic estimation unit 42E.
  • the scattering characteristic estimation unit 42E can calculate the estimated amount ES of the scattering characteristic based on the updated estimated amount Ed.
  • the scattering characteristic estimation unit 42E and the update unit 43E can converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on the adaptive algorithm.
  • FIG. 18 is a flowchart schematically showing an example of the operation procedure of the plasma parameter measuring device 16.
  • the plasma parameter measuring device 16 radiates an electromagnetic wave from the transmitting antenna TX toward the measured space SF to obtain the received signal RS (step ST31). Subsequently, the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured from the received signal RS (step ST32).
  • the scattering characteristic estimation unit 42E and the update unit 43E set the estimated amount Ed of the plasma parameter distribution to the initial estimated amount and initialize the estimated distribution of the plasma parameters (step ST53). For example, as the initial estimator of the plasma parameter distribution, an amount corresponding to a uniform distribution of the dielectric constant may be set. After that, the scattering characteristic estimation unit 42E and the update unit 43E update the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptation algorithm (steps ST54 to ST56).
  • the scattering characteristic estimation unit 42E calculates the estimated amount ES of the scattering characteristics based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics in the space SF to be measured (step ST54).
  • the update unit 43E updates the estimator Ed of the plasma parameter distribution so as to reduce the magnitude of the error ⁇ between the estimator MS and the estimator ES of the scattering characteristics (step ST55).
  • the parameter distribution estimation unit 45E calculates the updated estimator Ed of the plasma parameter distribution according to an update formula of a predetermined adaptive algorithm such as the steepest descent method.
  • the updated estimator Ed is supplied to the scattering characteristic estimation unit 42E.
  • the parameter distribution estimation unit 45E determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST56). For example, when the number of iterative operations reaches the upper limit value, or when the magnitude of the error ⁇ satisfies a predetermined convergence condition, the parameter distribution estimation unit 45E can determine that the iterative operation is completed (step). YES of ST56). For example, as a predetermined convergence condition, there is a condition that the magnitude of the error ⁇ is continuously equal to or less than a certain value a predetermined number of times.
  • the scattering characteristic estimation unit 42E, the comparison unit 44, and the parameter distribution estimation unit 45E perform steps ST54 and ST55 based on the updated estimator Ed. Try again.
  • the permittivity distribution calculation unit 47 uses the estimator CEd of the last updated plasma parameter distribution and uses a predetermined calculation formula (for example, YES). , Equations (7) and (8)) to calculate the permittivity distribution (step ST57). Then, the plasma parameter measuring device 16 outputs the data Pp showing the dielectric constant distribution and the estimated amount CEd of the plasma parameter distribution (step ST59).
  • the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw in the measured space SF
  • the receiver 30 receives the receiving antenna RX.
  • the received signal RS is generated based on the output signal of.
  • the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured
  • the scattering characteristic estimating unit 42E calculates the estimated amount ES of the scattering characteristic based on the mathematical model.
  • the update unit 43E can estimate the plasma parameter distribution by updating the estimated amount Ed of the plasma parameter distribution so as to reduce the magnitude of the error ⁇ between the measured amount MS and the estimated amount ES.
  • the scattering characteristic estimation unit 42E and the update unit 43E converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptive algorithm, the plasma parameter distribution can be estimated with high accuracy. Is.
  • the plasma parameter measurement system 6 is provided with a moving mechanism 50.
  • the plasma parameter measurement system 6 can receive the scattered wave Sw at a plurality of reception positions, and can estimate the plasma parameter distribution for the plurality of reception positions, so that the estimation accuracy can be improved. ..
  • FIG. 19 is a diagram showing a schematic configuration of the plasma parameter measurement system 7 according to the seventh embodiment of the present invention.
  • one receiving antenna RX is used.
  • M receiving antennas RX 1 to RX M are used.
  • the receiving antennas RX 1 to RX M are held by an annular holding member 51 surrounding the space SF to be measured.
  • the plasma parameter measurement system 7 includes M transmission antennas TX, a transmitter 20, and M units facing each other so as to surround a space SF to be measured including a substance in a plasma state (for example, a plume).
  • a substance in a plasma state for example, a plume.
  • a plasma parameter measuring device 17 that measures the plasma parameter distribution (electron density distribution, plasma frequency distribution, and collision frequency distribution) of the space SF to be measured based on the measurement space SF, and a transmitting antenna TX and receiving antennas RX 1 to RX for the space SF to be measured. It is configured to include a moving mechanism 52 that relatively moves and positions the entire M.
  • Transmitter 20 in the present embodiment the configuration of the transmission antenna TX, the receiving antennas RX 1 ⁇ RX M, receiver 30D and the moving mechanism 52, transmitter 20, transmit antennas TX in the fifth embodiment, the receiving antennas RX 1 ⁇
  • the configuration is the same as that of the RX M , the receiver 30D, and the moving mechanism 52.
  • Plasma parameter measurement device 17 includes a control unit 40E supplied to the moving mechanism 52 of the position control signal Pc supplied to the transmission control signal Tc to the transmitter 20, from the received signal RS 1 ⁇ RS M scattering characteristic of the measurement space SF
  • the scattering characteristic measurement unit 41F that calculates the measured quantities MS 1 to MS M , respectively, and the scattering characteristic estimation unit that calculates the estimated amount ES 1 to ES M of the scattering characteristics corresponding to the M channels based on the mathematical model prepared in advance.
  • the dielectric constant distribution calculation unit 47 that calculates the dielectric constant distribution of the space SF to be measured from the updated estimator Ed is provided.
  • the configuration of the scattering characteristic measuring unit 41D and the control unit 40E in the present embodiment is the same as the configuration of the scattering characteristic measuring unit 41D and the control unit 40E in the fifth embodiment.
  • the scattering characteristic estimation unit 42F uses the estimated amount Ed of the plasma parameter distribution in the space SF to be measured, and the estimated amount ES 1 to ES of the scattering characteristics based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics. M can be calculated. By using a mathematical model similar to the mathematical model of the sixth embodiment, it is possible to calculate the estimated scattering characteristics ES 1 to ES M at high speed with a low calculation load.
  • the update unit 43F includes a comparison unit 44D and a parameter distribution estimation unit 45F.
  • Comparing unit 44D calculates an error ⁇ 1 ⁇ ⁇ M between the measured quantity MS 1 ⁇ MS M and estimator ES 1 ⁇ ES M calculated on the basis of the mathematical model of the scattering characteristics.
  • Parameter distribution estimating unit 45F in accordance with update equation of the adaptive algorithm such as the steepest descent method, by modifying the current estimate of the plasma parameter distribution such that the magnitude of the error ⁇ 1 ⁇ ⁇ M is reduced, plasma parameters
  • the updated estimator Ed of the distribution can be calculated. For example, the magnitude of the error ⁇ 1 ⁇ ⁇ M, mean squared error need be calculated.
  • the updated estimator Ed is supplied to the scattering characteristic estimation unit 42F.
  • the scattering characteristic estimation unit 42F can calculate the scattering characteristic estimators ES 1 to ES M based on the updated estimator Ed.
  • the scattering characteristic estimation unit 42F and the update unit 43F can converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on the adaptive algorithm.
  • FIG. 20 is a flowchart schematically showing an example of the operation procedure of the plasma parameter measuring device 17.
  • the plasma parameter measuring device 17 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain the received signals RS 1 to RS M of a plurality of channels (step). ST41). Subsequently, the scattering characteristic measuring unit 41D calculates the measured quantities MS 1 to MS M of the scattering characteristic of the space SF to be measured from the received signals RS 1 to RS M (step ST42).
  • the scattering characteristic estimation unit 42F and the update unit 43F initialize the estimated distribution of plasma parameters by setting the estimated amount Ed of the plasma parameter distribution of the space SF to be measured as the initial estimated amount (step ST63). For example, as the initial estimator of the plasma parameter distribution, an amount corresponding to a uniform distribution of the dielectric constant may be set. After that, the scattering characteristic estimation unit 42F and the update unit 43F update the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptation algorithm (steps ST64 to ST66).
  • the scattering characteristic estimation unit 42F calculates the estimated scattering characteristics ES 1 to ES M based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics in the space SF to be measured (step ST64).
  • Update unit 43F is updated estimate Ed of the plasma parameter distribution to reduce the magnitude of the error ⁇ 1 ⁇ ⁇ M between the measured quantity MS 1 ⁇ MS M scattering properties and the estimated amounts ES 1 ⁇ ES M (Step ST65).
  • the parameter distribution estimating unit 45F in accordance with update equation of predetermined adaptive algorithm such as the steepest descent method, updated estimates of the plasma parameter distribution Ed is calculated, and the updated estimator Ed is supplied to the scattering characteristic estimation unit 42F.
  • the parameter distribution estimation unit 45F determines whether or not to end the iterative operation based on the adaptive algorithm (step ST66). For example, if the number of iterative operations has reached the upper limit value or, if the magnitude of the error ⁇ 1 ⁇ ⁇ M is a predetermined convergence condition is satisfied, determining a parameter distribution estimating unit 45F finishes the iterative operation Can be done (YES in step ST66).
  • the predetermined convergence condition the condition that the magnitude of the error ⁇ 1 ⁇ ⁇ M is equal to or less than a predetermined value continuously for a predetermined number of times and the like.
  • the scattering characteristic estimation unit 42F, the comparison unit 44D, and the parameter distribution estimation unit 45F perform steps ST64 and ST65 based on the updated estimator Ed. Try again.
  • the permittivity distribution calculation unit 47 uses the estimator CEd of the last updated plasma parameter distribution and uses a predetermined calculation formula (for example, YES). , Equations (7) and (8)) to calculate the permittivity distribution (step ST67). Then, the plasma parameter measuring device 16 outputs the data Pp showing the dielectric constant distribution and the estimated amount CEd of the plasma parameter distribution (step ST69).
  • the plasma parameter measurement system 7 of the seventh embodiment can instantly obtain an angular distribution of scattering characteristics by using a plurality of receiving antennas RX 1 to RX M surrounding the space SF to be measured. Therefore, it is possible to accurately estimate the plasma parameter distribution even for the measured space SF having a scatterer that fluctuates in a short time.
  • all or a part of the functions of the permittivity measuring devices 11 to 15 and the plasma parameter measuring devices 16 and 17 of the second to seventh embodiments may be, for example, DSP. It can be realized by one or more processors having semiconductor integrated circuits such as ASIC or FPGA. Alternatively, all or part of the functionality of each device may be implemented by one or more processors, including arithmetic units such as CPUs or GPUs, that execute software or firmware program code. Alternatively, it is also possible to realize all or part of the functions of each device by a single or a plurality of processors including a combination of a semiconductor integrated circuit such as a DSP, ASIC or FPGA and a computing device such as a CPU or GPU. The hardware configuration of each device may be realized by the signal processing device 70 shown in FIG.
  • the permittivity measuring device, the permittivity measuring system, the plasma parameter measuring device, and the plasma parameter measuring system according to the present invention can estimate the spatial distribution of characteristic values such as the permittivity in the space under test with high accuracy. , Suitable for use in rocket engine plume analysis.

Abstract

A dielectric constant measurement device (11) that is for use in a measurement system that includes a transmitter (20) that radiates electromagnetic waves from a transmission antenna (TX) toward a measurement space (SF), a reception antenna (RX) that receives, from the measurement space (SF), scattered waves that correspond to the radiated electromagnetic waves, and a receiver (30) that generates a reception signal (RS) on the basis of an output signal from the reception antenna (RX). The dielectric constant measurement device (11) comprises a scattering characteristics measurement unit (41) that calculates a scattering characteristics measurement (MS) from the reception signal (RS), a scattering characteristics estimation unit (42) that uses a mathematical model to calculate a scattering characteristics estimate (ES), and an updating unit (43) that updates a dielectric constant distribution estimate such that the magnitude of the difference between the measurement (MS) and the estimate (ES) decreases.

Description

誘電率測定装置、誘電率測定システム、プラズマパラメータ測定装置及びプラズマパラメータ測定システムPermittivity measuring device, permittivity measuring system, plasma parameter measuring device and plasma parameter measuring system
 本発明は、電磁波を用いて被測定空間の誘電率などの特性値の空間分布を測定する技術に関するものである。 The present invention relates to a technique for measuring the spatial distribution of characteristic values such as the dielectric constant of a space to be measured using electromagnetic waves.
 電磁波を用いて当該電磁波を透過または散乱させる媒質の特性を測定する技術は、種々の技術分野において広く使用されている。たとえば、ロケットエンジンから噴射される噴煙は、プルーム(Plume)と呼ばれており、この種のプルームはプラズマで構成されていることが知られている。プラズマは電磁波に対して複素誘電率(複素数の誘電率)をもつ誘電体として振る舞い、当該電磁波を散乱させる。プラズマの複素誘電率は、プラズマパラメータの分布によって決定される。ここで、プラズマパラメータとしては、電子密度、衝突周波数及びプラズマ周波数が挙げられる。電子密度は、プラズマを構成する電子の密度を表す量であり、衝突周波数は電子が他の粒子と衝突する頻度を表す量である。プラズマ周波数は、電子密度に基づいて決定することが可能である。 Techniques for measuring the characteristics of a medium that transmits or scatters electromagnetic waves using electromagnetic waves are widely used in various technical fields. For example, the smoke emitted from a rocket engine is called a plume, and it is known that this type of plume is composed of plasma. The plasma behaves as a dielectric having a complex dielectric constant (complex permittivity) with respect to the electromagnetic wave, and scatters the electromagnetic wave. The complex permittivity of plasma is determined by the distribution of plasma parameters. Here, the plasma parameters include electron density, collision frequency, and plasma frequency. The electron density is a quantity representing the density of electrons constituting the plasma, and the collision frequency is a quantity representing the frequency with which electrons collide with other particles. The plasma frequency can be determined based on the electron density.
 プラズマパラメータの測定法の1つは、プラズマが存在するプラズマ空間内に金属製のプローブ電極を挿入してプラズマ空間を走査したときにプローブ電極に生じる電流値の変化を測定し、その測定値に基づいてプラズマパラメータを算出する方法である。しかしながら、この測定法では、プラズマ空間内にプローブ電極を挿入することでプラズマの分布が乱れるため、測定誤差が生じるという課題がある。そこで、下記の非特許文献1に開示されている測定法では、プラズマ空間の複数の経路で電磁波の透過測定が実行される。そして、経路による透過位相の差を求めることで電子密度分布が測定されている。 One of the methods for measuring plasma parameters is to insert a metal probe electrode into the plasma space where the plasma exists, measure the change in the current value that occurs in the probe electrode when scanning the plasma space, and use that measured value. This is a method of calculating plasma parameters based on the above. However, this measurement method has a problem that a measurement error occurs because the distribution of plasma is disturbed by inserting the probe electrode into the plasma space. Therefore, in the measurement method disclosed in Non-Patent Document 1 below, transmission measurement of electromagnetic waves is performed in a plurality of paths in the plasma space. Then, the electron density distribution is measured by obtaining the difference in transmission phase depending on the path.
 非特許文献1に開示されている測定法では、プラズマ空間を電磁波が透過する周波数帯域を事前に知っておく必要があるので、使用周波数帯域が制限されるという課題がある。 The measurement method disclosed in Non-Patent Document 1 has a problem that the frequency band used is limited because it is necessary to know the frequency band through which electromagnetic waves pass through the plasma space in advance.
 上記に鑑みて本発明の目的は、電磁波の使用周波数帯域の制限を受けずに被測定空間の誘電率の空間分布を測定することができる誘電率測定装置及び誘電率測定システムを提供すること、並びに、電磁波の使用周波数帯域の制限を受けずに被測定空間のプラズマパラメータの空間分布を測定することができるプラズマパラメータ測定装置及びプラズマパラメータ測定システムを提供することにある。 In view of the above, an object of the present invention is to provide a dielectric constant measuring device and a dielectric constant measuring system capable of measuring the spatial distribution of the dielectric constant of the measured space without being limited by the frequency band used by the electromagnetic wave. Another object of the present invention is to provide a plasma parameter measuring device and a plasma parameter measuring system capable of measuring the spatial distribution of plasma parameters in a space to be measured without being limited by the frequency band used by electromagnetic waves.
 本発明の一態様による誘電率測定装置は、被測定空間と対向配置された送信アンテナと、前記送信アンテナから前記被測定空間に向けて電磁波を放射させる送信器と、当該放射された電磁波に対応する散乱波を前記被測定空間から受信する少なくとも1つの受信アンテナと、前記少なくとも1つの受信アンテナの出力信号に基づいて受信信号を生成する受信器とを含む測定システムにおいて使用される誘電率測定装置であって、前記受信信号から前記被測定空間の散乱特性の測定量を算出する散乱特性測定部と、前記被測定空間における誘電率分布の推定量を用い、前記誘電率分布と前記散乱特性との間の関係を示す数理モデルに基づいて前記散乱特性の推定量を算出する散乱特性推定部と、前記測定量と前記推定量との間の誤差の大きさを小さくするように前記誘電率分布の推定量を更新する更新部とを備えることを特徴とする。 The dielectric constant measuring device according to one aspect of the present invention corresponds to a transmitting antenna arranged to face the measured space, a transmitter that emits an electromagnetic wave from the transmitting antenna toward the measured space, and the emitted electromagnetic wave. A dielectric constant measuring device used in a measuring system including at least one receiving antenna that receives scattered waves from the measured space and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna. The dielectric constant distribution and the scattering characteristic are obtained by using the scattering characteristic measuring unit that calculates the measured amount of the scattering characteristic of the measured space from the received signal and the estimated amount of the dielectric constant distribution in the measured space. The dielectric constant distribution so as to reduce the magnitude of the error between the measured amount and the estimated amount and the scattering characteristic estimation unit that calculates the estimated amount of the scattering characteristic based on the mathematical model showing the relationship between the two. It is characterized by including an update unit that updates the estimated amount of.
 本発明の他の態様によるプラズマパラメータ測定装置は、プラズマ状態の物質を含む被測定空間と対向配置された送信アンテナと、前記送信アンテナから前記被測定空間に向けて電磁波を放射させる送信器と、当該放射された電磁波に対応する散乱波を前記被測定空間から受信する少なくとも1つの受信アンテナと、前記少なくとも1つの受信アンテナの出力信号に基づいて受信信号を生成する受信器とを含む測定システムにおいて使用されるプラズマパラメータ測定装置であって、前記受信信号から前記被測定空間の散乱特性の測定量を算出する散乱特性測定部と、前記被測定空間におけるプラズマパラメータ分布の推定量を用い、前記プラズマパラメータ分布と前記散乱特性との間の関係を示す数理モデルに基づいて前記散乱特性の推定量を算出する散乱特性推定部と、前記測定量と前記推定量との間の誤差の大きさを小さくするように前記プラズマパラメータ分布の推定量を更新する更新部とを備えることを特徴とする。 The plasma parameter measuring device according to another aspect of the present invention includes a transmitting antenna arranged so as to face the measured space containing a substance in a plasma state, a transmitter that emits an electromagnetic wave from the transmitting antenna toward the measured space, and a transmitter. In a measurement system including at least one receiving antenna that receives a scattered wave corresponding to the emitted electromagnetic wave from the measured space and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna. The plasma parameter measuring device used is the scattering characteristic measuring unit that calculates the measured amount of the scattering characteristic of the measured space from the received signal, and the estimated amount of the plasma parameter distribution in the measured space. The magnitude of the error between the measured amount and the estimated amount is reduced between the scattering characteristic estimation unit that calculates the estimated amount of the scattering characteristic based on the mathematical model showing the relationship between the parameter distribution and the scattering characteristic. It is characterized by including an update unit that updates the estimated amount of the plasma parameter distribution so as to be performed.
 本発明の一態様によれば、電磁波の使用周波数帯域の制限を受けずに誘電率分布を測定することができる。また、本発明の他の態様によれば、電磁波の使用周波数帯域の制限を受けずにプラズマパラメータ分布を測定することができる。 According to one aspect of the present invention, the dielectric constant distribution can be measured without being limited by the frequency band used by electromagnetic waves. Further, according to another aspect of the present invention, the plasma parameter distribution can be measured without being limited by the frequency band used by electromagnetic waves.
本発明に係る実施の形態1の誘電率測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 1 which concerns on this invention. 実施の形態1の誘電率測定装置のハードウェア構成例を概略的に示すブロック図である。It is a block diagram which shows schematic the hardware structure example of the dielectric constant measuring apparatus of Embodiment 1. FIG. 実施の形態1に係る数理モデルに使用される誘電体モデルの一例を示す図である。It is a figure which shows an example of the dielectric model used for the mathematical model which concerns on Embodiment 1. FIG. 実施の形態1に係る数理モデルに使用される行列を示す図である。It is a figure which shows the matrix used for the mathematical model which concerns on Embodiment 1. 実施の形態1の誘電率測定装置の動作手順の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the operation procedure of the dielectric constant measuring apparatus of Embodiment 1. FIG. 本発明に係る実施の形態2の誘電率測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 2 which concerns on this invention. 実施の形態2の誘電率測定装置の動作手順の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the operation procedure of the dielectric constant measuring apparatus of Embodiment 2. 本発明に係る実施の形態3の誘電率測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 3 which concerns on this invention. シミュレーション計算を実行して得られた散乱の角度特性を表すグラフである。It is a graph which shows the angular characteristic of scattering obtained by executing the simulation calculation. シミュレーション計算を実行して得られた電子密度分布を表すグラフである。It is a graph which shows the electron density distribution obtained by executing the simulation calculation. シミュレーション計算を実行して得られた比誘電率の実部の空間分布を表すグラフである。It is a graph which shows the spatial distribution of the real part of the relative permittivity obtained by executing the simulation calculation. シミュレーション計算を実行して得られた比誘電率の虚部の空間分布を表すグラフである。It is a graph showing the spatial distribution of the imaginary part of the relative permittivity obtained by executing the simulation calculation. 本発明に係る実施の形態4の誘電率測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 4 which concerns on this invention. 実施の形態4の誘電率測定装置の動作手順の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the operation procedure of the dielectric constant measuring apparatus of Embodiment 4. 本発明に係る実施の形態5の誘電率測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the dielectric constant measurement system of Embodiment 5 which concerns on this invention. 被測定空間と複数の受信アンテナとの間の位置関係を表す概略図である。It is the schematic which shows the positional relationship between a space under measurement and a plurality of receiving antennas. 本発明に係る実施の形態6のプラズマパラメータ測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the plasma parameter measurement system of Embodiment 6 which concerns on this invention. 実施の形態6のプラズマパラメータ測定装置の動作手順の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the operation procedure of the plasma parameter measurement apparatus of Embodiment 6. 本発明に係る実施の形態7のプラズマパラメータ測定システムの概略構成を示す図である。It is a figure which shows the schematic structure of the plasma parameter measurement system of Embodiment 7 which concerns on this invention. 実施の形態7のプラズマパラメータ測定装置の動作手順の一例を概略的に示すフローチャートである。It is a flowchart which shows typically an example of the operation procedure of the plasma parameter measuring apparatus of Embodiment 7.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. In addition, the components having the same reference numerals in the entire drawing shall have the same configuration and the same function.
実施の形態1.
 図1は、本発明に係る実施の形態1の誘電率測定システム1の概略構成を示す図である。図1に示されるように誘電率測定システム1は、プラズマ状態の物質(たとえば、プルーム)を含む被測定空間SFと対向配置された送信アンテナTXと、送信アンテナTXから被測定空間SFに向けて送信電磁波Twを放射させる送信器20と、被測定空間SFと対向配置されて被測定空間SFから散乱波Swを受信する受信アンテナRXと、受信アンテナRXの出力信号に基づいてディジタル受信信号RSを生成する受信器30と、ディジタル受信信号RSに基づいて、被測定空間SFにおける複素誘電率の空間分布(以下「誘電率分布」という。)を測定する誘電率測定装置11とを備えて構成されている。なお、実施の形態1及び後述の実施の形態2~5での測定対象は、プラズマ状態の物質であるが、これに限定されるものではない。プラズマ状態の物質に限らず、送信電磁波Twを散乱させる物質であればその物質を測定対象とすることができる。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of a permittivity measurement system 1 according to a first embodiment of the present invention. As shown in FIG. 1, the dielectric constant measuring system 1 has a transmitting antenna TX arranged to face the measured space SF containing a substance in a plasma state (for example, a plume), and a transmitting antenna TX toward the measured space SF. The transmitter 20 that radiates the transmitted electromagnetic wave Tw, the receiving antenna RX that is arranged opposite to the measured space SF and receives the scattered wave Sw from the measured space SF, and the digital reception signal RS based on the output signal of the receiving antenna RX. It is configured to include a receiver 30 to be generated and a dielectric constant measuring device 11 for measuring a spatial distribution of complex dielectric constants (hereinafter referred to as “dielectric constant distribution”) in the space SF to be measured based on a digital reception signal RS. ing. The measurement target in the first embodiment and the second to fifth embodiments described later is a substance in a plasma state, but the measurement target is not limited to this. Not limited to the substance in the plasma state, any substance that scatters the transmitted electromagnetic wave Tw can be the measurement target.
 送信器20は、誘電率測定装置11から供給された送信制御信号Tcに従って動作し、マイクロ波帯などの高周波帯の送信信号を生成し、当該送信信号を送信アンテナTXに供給することで送信アンテナTXから被測定空間SFに向けて送信電磁波Twを放射させることができる。送信電磁波Twは、被測定空間SF内の物質によって散乱される。受信アンテナRXは、送信電磁波Twの散乱によって生じた散乱波Swを受信する。 The transmitter 20 operates according to the transmission control signal Tc supplied from the dielectric constant measuring device 11, generates a transmission signal in a high frequency band such as a microwave band, and supplies the transmission signal to the transmission antenna TX to transmit the transmission antenna. The transmitted electromagnetic wave Tw can be radiated from the TX toward the measured space SF. The transmitted electromagnetic wave Tw is scattered by a substance in the space SF to be measured. The receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw.
 受信器30は、受信アンテナRXの出力信号を、当該出力信号の周波数よりも低い周波数を有するアナログ信号に変換する周波数変換機能と、当該アナログ信号を位相検波してアナログ受信信号を生成する位相検波機能と、当該アナログ受信信号をディジタル受信信号RS(以下、単に「受信信号RS」という。)に変換するA/D変換機能とを有している。受信信号RSは、同相信号成分と直交信号成分とからなる複素信号である。 The receiver 30 has a frequency conversion function that converts the output signal of the receiving antenna RX into an analog signal having a frequency lower than the frequency of the output signal, and a phase detection that phase-detects the analog signal to generate an analog received signal. It has a function and an A / D conversion function that converts the analog received signal into a digital received signal RS (hereinafter, simply referred to as "received signal RS"). The received signal RS is a complex signal composed of an in-phase signal component and an orthogonal signal component.
 図1に示されるように誘電率測定装置11は、送信器20に送信制御信号Tcを供給する制御部40と、受信信号RSから被測定空間SFの散乱特性の測定量MSを算出する散乱特性測定部41と、予め用意された数理モデルに基づいて散乱特性の推定量ESを算出する散乱特性推定部42と、測定量MSと推定量ESとの間の誤差Δの大きさを小さくするように誘電率分布の推定量Pdを更新する更新部43とを備えて構成されている。 As shown in FIG. 1, the permittivity measuring device 11 calculates the estimator MS of the scattering characteristic of the space SF to be measured from the control unit 40 that supplies the transmission control signal Tc to the transmitter 20 and the received signal RS. To reduce the magnitude of the error Δ between the measuring unit 41, the scattering characteristic estimation unit 42 that calculates the estimated amount ES of the scattering characteristics based on the mathematical model prepared in advance, and the measured amount MS and the estimated amount ES. Is provided with an update unit 43 for updating the estimated amount Pd of the dielectric constant distribution.
 このような誘電率測定装置11の機能の全部または一部は、たとえば、DSP(Digital Signal Processor),ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などの半導体集積回路を有する単数または複数のプロセッサにより実現可能である。あるいは、誘電率測定装置11の機能の全部または一部は、ソフトウェアまたはファームウェアのプログラムコードを実行する、CPU(Central Processing Unit)またはGPU(Graphics Processing Unit)などの演算装置を含む単数または複数のプロセッサで実現されてもよい。あるいは、DSP,ASICまたはFPGAなどの半導体集積回路と、CPUまたはGPUなどの演算装置との組み合わせを含む単数または複数のプロセッサによって誘電率測定装置11の機能の全部または一部を実現することも可能である。 All or part of the functions of such a dielectric constant measuring device 11 are, for example, a semiconductor having a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). Or it can be realized by multiple processors. Alternatively, all or part of the functions of the dielectric constant measuring device 11 may be a single or multiple processors including an arithmetic unit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) that executes software or firmware program code. It may be realized by. Alternatively, all or part of the functions of the dielectric constant measuring device 11 can be realized by a single or a plurality of processors including a combination of a semiconductor integrated circuit such as a DSP, ASIC or FPGA and an arithmetic unit such as a CPU or GPU. Is.
 図2は、実施の形態1の誘電率測定装置11のハードウェア構成例である信号処理装置70の概略構成を示す機能ブロック図である。図2に示される信号処理装置70は、プロセッサ71、メモリ72、記憶装置73、入出力インタフェース回路74及び信号路75を備えている。信号路75は、プロセッサ71、入出力インタフェース回路74、メモリ72及び記憶装置73を相互に接続するためのバスである。入出力インタフェース回路74は、外部から入力された信号をプロセッサ71に転送する機能を有するとともに、プロセッサ71から転送された信号を外部に出力する機能を有している。 FIG. 2 is a functional block diagram showing a schematic configuration of a signal processing device 70, which is an example of a hardware configuration of the permittivity measuring device 11 of the first embodiment. The signal processing device 70 shown in FIG. 2 includes a processor 71, a memory 72, a storage device 73, an input / output interface circuit 74, and a signal path 75. The signal path 75 is a bus for connecting the processor 71, the input / output interface circuit 74, the memory 72, and the storage device 73 to each other. The input / output interface circuit 74 has a function of transferring a signal input from the outside to the processor 71 and a function of outputting a signal transferred from the processor 71 to the outside.
 メモリ72は、プロセッサ71がディジタル信号処理を実行する際に使用されるワークメモリと、当該ディジタル信号処理で使用されるデータが展開される一時記憶メモリとを含む。たとえば、メモリ72は、フラッシュメモリ及びSDRAM(Synchronous Dynamic Random Access Memory)などの半導体メモリで構成されればよい。また、記憶装置73は、プロセッサ71がCPUまたはGPUなどの演算装置を含む場合には、当該演算装置で実行されるべきソフトウェアまたはファームウェアのプログラムコードを格納する記憶領域として利用可能である。たとえば、記憶装置73は、フラッシュメモリまたはROM(Read Only Memory)などの不揮発性の半導体メモリで構成されればよい。 The memory 72 includes a work memory used when the processor 71 executes digital signal processing, and a temporary storage memory in which data used in the digital signal processing is expanded. For example, the memory 72 may be composed of a flash memory and a semiconductor memory such as SDRAM (Synchronous Dynamic Random Access Memory). Further, when the processor 71 includes an arithmetic unit such as a CPU or GPU, the storage device 73 can be used as a storage area for storing a program code of software or firmware to be executed by the arithmetic unit. For example, the storage device 73 may be composed of a flash memory or a non-volatile semiconductor memory such as a ROM (Read Only Memory).
 なお、図2の例では、プロセッサ71の個数は1つであるが、これに限定されるものではない。互いに連携して動作する複数個のプロセッサを用いて誘電率測定装置11のハードウェア構成が実現されてもよい。 In the example of FIG. 2, the number of processors 71 is one, but the number is not limited to this. The hardware configuration of the permittivity measuring device 11 may be realized by using a plurality of processors that operate in cooperation with each other.
 図1を参照すると、散乱特性測定部41は、受信信号RSを解析することにより、散乱波Swの強度及び散乱波Swの位相、並びに、その強度に関する周波数特性、及び、その位相に関する周波数特性といった散乱特性の測定量MSを算出することができる。 With reference to FIG. 1, the scattering characteristic measuring unit 41 analyzes the received signal RS to obtain the intensity of the scattered wave Sw, the phase of the scattered wave Sw, the frequency characteristic related to the intensity, and the frequency characteristic related to the phase. The measured amount MS of the scattering characteristic can be calculated.
 一方、散乱特性推定部42は、被測定空間SFにおける誘電率分布の推定量Pdを使用し、誘電率分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ESを算出することができる。数理モデルを用いることにより低い演算負荷で高速に散乱特性の推定量ESを算出することが可能となる。 On the other hand, the scattering characteristic estimation unit 42 uses the estimation amount Pd of the permittivity distribution in the space SF to be measured, and estimates the scattering characteristic ES based on a mathematical model showing the relationship between the dielectric constant distribution and the scattering characteristic. Can be calculated. By using a mathematical model, it is possible to calculate the estimated amount ES of scattering characteristics at high speed with a low calculation load.
 図3は、数理モデルに使用される被測定空間SFの誘電体モデルの一例を示す図である。この誘電体モデルは、複数の誘電体層が、X軸及びZ軸の双方に直交する軸(紙面に垂直な方向の軸)に関して対称的に分布する多層誘電体モデルである。このため、図3の誘電体モデルは軸対称性を有する。また、図3の誘電体モデルは、誘電率εをもつ第1層L1と、誘電率εをもつ第2層L2と、誘電率εをもつ第3層L3と、誘電率εをもつ第4層L4とで構成されており、誘電率εをもつ周辺領域L0に囲まれている。図3の例では、誘電体層の層数は4層であるが、これに限定されるものではなく、誘電率分布の所望の解像度に応じて層数が決定されればよい。X軸及びZ軸を含むX-Z平面内において、中心軸すなわち対称軸からの距離(半径)をrとし、X軸からの角度をθとするとき、誘電体モデルの誘電率εの空間分布は、距離r及び角度θに関する関数で表現可能である。ロケットエンジンから噴射されるプルームは、ほぼ軸対称な流れを形成するので、図3の誘電体モデルは、そのようなプルームの解析に適している。 FIG. 3 is a diagram showing an example of a dielectric model of the space SF to be measured used in the mathematical model. This dielectric model is a multilayer dielectric model in which a plurality of dielectric layers are symmetrically distributed with respect to an axis orthogonal to both the X-axis and the Z-axis (the axis in the direction perpendicular to the paper surface). Therefore, the dielectric model of FIG. 3 has axial symmetry. The dielectric model of Figure 3, the first layer L1 having a dielectric constant epsilon 1, a second layer L2 having a dielectric constant epsilon 2, and the third layer L3 having a dielectric constant epsilon 3, the dielectric constant epsilon 4 It is composed of a fourth layer L4 having a dielectric constant of ε 0 , and is surrounded by a peripheral region L 0 having a dielectric constant ε 0 . In the example of FIG. 3, the number of layers of the dielectric layer is four, but the number of layers is not limited to this, and the number of layers may be determined according to the desired resolution of the dielectric constant distribution. Spatial distribution of the permittivity ε of the dielectric model, where r is the distance (radius) from the central axis, that is, the axis of symmetry, and θ is the angle from the X axis in the XZ plane including the X and Z axes. Can be expressed by a function related to the distance r and the angle θ. The dielectric model of FIG. 3 is suitable for the analysis of such plumes because the plumes injected from the rocket engine form a nearly axisymmetric flow.
 次式(1)は、多層誘電体モデルに基づく数理モデルの一例を表す数式である。

Figure JPOXMLDOC01-appb-I000001
The following equation (1) is a mathematical expression representing an example of a mathematical model based on a multilayer dielectric model.

Figure JPOXMLDOC01-appb-I000001
 式(1)において、S(f,θ)は散乱特性、fは送信電磁波Twの周波数、θは対称軸回りの角度、jは複素単位、kは真空中の波数、rは受信点の対称軸からの位置、rは送信点の対称軸からの位置、H (2)(x)は第2種ハンケル関数、J(x)はベッセル関数である。 In equation (1), S (f, θ) is the scattering characteristic, f is the frequency of the transmitted electromagnetic wave Tw, θ is the angle around the axis of symmetry, j is a complex unit, k 0 is the wave number in vacuum, and r r is the receiving point. position from the axis of symmetry of the r t position from the axis of symmetry of the transmission point, H n (2) (x ) is the second kind Hankel function, J n (x) is a Bessel function.
 式(1)中のa0nは、次式(2)に示されるように、図4に示される行列Aに対する逆行列A -1の1行1列目の要素である。

Figure JPOXMLDOC01-appb-I000002
A 0n in the formula (1), as shown in the following equation (2) is an element of the first row and first column of the inverse matrix A n -1 for the matrix A n shown in FIG.

Figure JPOXMLDOC01-appb-I000002
 図4に示される行列Aにおいて、kは、多層誘電体モデルの第i層(iは正整数)における波数、rは軸対称散乱体の半径、rは、第i層の内半径である。また、H (2)’(x)は第2種ハンケル関数の一次微分、J’(x)はベッセル関数の一次微分である。さらに、波数kは、次式(3)で与えられる。

Figure JPOXMLDOC01-appb-I000003
 ここで、εは第i層の誘電率、μは透磁率である。
In matrix A n shown in FIG. 4, k i is the i-th layer of the multilayer dielectric model (i is a positive integer) wave number, radius of r 0 is axisymmetric scatterers, r i, of the i-th layer The radius. Further, H n (2) '(x) is the first derivative of the Type 2 Hankel function, and J n '(x) is the first derivative of the Bessel function. Further, the wave number k i is given by the following equation (3).

Figure JPOXMLDOC01-appb-I000003
Here, ε i is the permittivity of the i-th layer, and μ is the magnetic permeability.
 送信電磁波Twの周波数fの値と角度θの値とが与えられ、誘電率分布の推定量Pdとして誘電率ε~εの推定値が与えられると、散乱特性推定部42は、式(1)に基づいて散乱特性S(f,θ)の推定量ESを算出することができる。 Given the value of the frequency f of the transmitted electromagnetic wave Tw and the value of the angle θ, and given the estimated values of the permittivity ε 1 to ε 4 as the estimator Pd of the permittivity distribution, the scattering characteristic estimation unit 42 uses the equation ( The estimator ES of the scattering characteristic S (f, θ) can be calculated based on 1).
 次に、図1を参照すると、更新部43は、比較部44及び誘電率分布推定部45を含む。比較部44は、散乱特性の測定量MSと数理モデルに基づいて算出された推定量ESとの間の誤差Δを算出する。誘電率分布推定部45は、最急降下法(Steepest Descent Algorithm)などの適応アルゴリズムの更新式に従い、当該誤差Δの大きさが小さくなるように誘電率分布の現在の推定量を修正することにより、誘電率分布の更新された推定量Pdを算出することができる。更新された推定量Pdは、散乱特性推定部42に供給される。散乱特性推定部42は、更新された推定量Pdに基づいて散乱特性の推定量ESを算出することができる。散乱特性推定部42及び更新部43は、適応アルゴリズムに基づく反復演算を実行することにより誘電率分布の推定量Pdを収束させることが可能である。 Next, referring to FIG. 1, the update unit 43 includes a comparison unit 44 and a dielectric constant distribution estimation unit 45. The comparison unit 44 calculates the error Δ between the measured amount MS of the scattering characteristic and the estimated amount ES calculated based on the mathematical model. The permittivity distribution estimation unit 45 corrects the current estimator of the permittivity distribution so that the magnitude of the error Δ becomes small according to the update formula of the adaptive algorithm such as the steepest descent method (Stepest Descent Algorithm). The updated estimator Pd of the permittivity distribution can be calculated. The updated estimator Pd is supplied to the scattering characteristic estimation unit 42. The scattering characteristic estimation unit 42 can calculate the estimated amount ES of the scattering characteristic based on the updated estimated amount Pd. The scattering characteristic estimation unit 42 and the update unit 43 can converge the estimation amount Pd of the dielectric constant distribution by executing an iterative operation based on the adaptive algorithm.
 次に、図5を参照しつつ、誘電率測定装置11の動作について説明する。図5は、誘電率測定装置11の動作手順の一例を概略的に示すフローチャートである。 Next, the operation of the permittivity measuring device 11 will be described with reference to FIG. FIG. 5 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 11.
 先ず、誘電率測定装置11は、送信アンテナTXから被測定空間SFに向けて電磁波を放射させて受信信号RSを得る(ステップST31)。具体的には、制御部40は、送信制御信号Tcを送信器20に供給する。送信器20は、当該送信制御信号Tcに応じた周波数帯域の送信信号を送信アンテナTXに供給することにより送信アンテナTXから送信電磁波Twを放射させる。受信アンテナRXは、送信電磁波Twの散乱によって生じた散乱波Swを受信する。受信器30は、受信アンテナRXの出力信号に基づいて受信信号RSを生成し、当該受信信号RSを散乱特性測定部41に供給する。 First, the permittivity measuring device 11 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain the received signal RS (step ST31). Specifically, the control unit 40 supplies the transmission control signal Tc to the transmitter 20. The transmitter 20 radiates the transmission electromagnetic wave Tw from the transmission antenna TX by supplying the transmission signal in the frequency band corresponding to the transmission control signal Tc to the transmission antenna TX. The receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw. The receiver 30 generates a received signal RS based on the output signal of the receiving antenna RX, and supplies the received signal RS to the scattering characteristic measuring unit 41.
 その後、散乱特性測定部41は、受信信号RSから被測定空間SFの散乱特性の測定量MSを算出する(ステップST32)。一方、散乱特性推定部42及び更新部43は、誘電率分布の推定量Pdを初期推定量に設定して誘電率の推定分布を初期化する(ステップST33)。たとえば、誘電率分布の初期推定量としては、誘電率の一様分布が設定されればよい。その後、散乱特性推定部42及び更新部43は、所定の適応アルゴリズムに基づく反復演算を実行することにより誘電率分布の推定量Pdを更新する(ステップST34~ST36)。 After that, the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured from the received signal RS (step ST32). On the other hand, the scattering characteristic estimation unit 42 and the update unit 43 initialize the estimation distribution of the dielectric constant by setting the estimation amount Pd of the dielectric constant distribution as the initial estimation amount (step ST33). For example, a uniform distribution of permittivity may be set as the initial estimator of the permittivity distribution. After that, the scattering characteristic estimation unit 42 and the update unit 43 update the estimated amount Pd of the dielectric constant distribution by executing an iterative operation based on a predetermined adaptive algorithm (steps ST34 to ST36).
 すなわち、散乱特性推定部42は、上記のとおり、被測定空間SFにおける誘電率分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ESを算出する(ステップST34)。更新部43は、散乱特性の測定量MSと推定量ESとの間の誤差Δの大きさを小さくするように誘電率分布の推定量Pdを更新する(ステップST35)。具体的には、比較部44が誤差Δを算出した後、誘電率分布推定部45は、最急降下法などの所定の適応アルゴリズムの更新式に従い、誘電率分布の更新された推定量Pdを算出し、当該更新された推定量Pdを散乱特性推定部42に供給する。 That is, as described above, the scattering characteristic estimation unit 42 calculates the estimated amount ES of the scattering characteristic based on the mathematical model showing the relationship between the dielectric constant distribution and the scattering characteristic in the space SF to be measured (step ST34). The update unit 43 updates the estimator Pd of the permittivity distribution so as to reduce the magnitude of the error Δ between the estimator MS and the estimator ES of the scattering characteristics (step ST35). Specifically, after the comparison unit 44 calculates the error Δ, the permittivity distribution estimation unit 45 calculates the updated estimator Pd of the permittivity distribution according to an update formula of a predetermined adaptive algorithm such as the steepest descent method. Then, the updated estimator Pd is supplied to the scattering characteristic estimation unit 42.
 ステップST35の後、誘電率分布推定部45は、適応アルゴリズムに基づく反復演算を終了するか否かを判定する(ステップST36)。たとえば、反復演算の回数が上限値に到達した場合、あるいは、誤差Δの大きさが所定の収束条件を満たす場合には、誘電率分布推定部45は反復演算を終了すると判定することができる(ステップST36のYES)。たとえば、所定の収束条件としては、誤差Δの大きさが所定回数連続して一定値以下となるという条件が挙げられる。 After step ST35, the permittivity distribution estimation unit 45 determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST36). For example, when the number of iterative operations reaches the upper limit value, or when the magnitude of the error Δ satisfies a predetermined convergence condition, the permittivity distribution estimation unit 45 can determine that the iterative operation is completed ( YES in step ST36). For example, as a predetermined convergence condition, there is a condition that the magnitude of the error Δ is continuously equal to or less than a certain value a predetermined number of times.
 反復演算を終了しないとの判定がなされた場合(ステップST36のNO)、散乱特性推定部42、比較部44及び誘電率分布推定部45は、更新された推定量Pdに基づき、ステップST34,ST35を再度実行する。最終的に反復演算を終了するとの判定がなされた場合(ステップST36のYES)、誘電率測定装置12は、最後に更新された誘電率分布の推定量CPdを出力する(ステップST38)。 When it is determined that the iterative calculation is not completed (NO in step ST36), the scattering characteristic estimation unit 42, the comparison unit 44, and the dielectric constant distribution estimation unit 45 are performed in steps ST34 and ST35 based on the updated estimator Pd. Is executed again. When it is finally determined that the iterative calculation is completed (YES in step ST36), the permittivity measuring device 12 outputs the last updated estimated amount CPd of the permittivity distribution (step ST38).
 以上に説明したように実施の形態1の誘電率測定装置11では、受信アンテナRXが、被測定空間SFにおける送信電磁波Twの散乱により発生した散乱波Swを受信し、受信器30が受信アンテナRXの出力信号に基づいて受信信号RSを生成する。散乱特性測定部41は、被測定空間SFの散乱特性の測定量MSを算出し、散乱特性推定部42は数理モデルに基づいて散乱特性の推定量ESを算出する。更新部43は、測定量MSと推定量ESとの間の誤差Δの大きさを小さくするように誘電率分布の推定量Pdを更新することにより誘電率分布を推定することができる。このように従来技術と比べると、送信電磁波Twの使用周波数帯域の制限を受けずに誘電率分布の推定を行うことが可能である。本実施の形態では、被測定空間SFにプローブ電極が挿入されないため、測定対象の分布が乱されない。よって、測定対象の制限を受けずに誘電率分布の測定を行うことが可能である。また、数理モデルを用いて前方散乱(透過)の特性のみならず後方散乱の特性も推定することができるという利点がある。 As described above, in the permittivity measuring device 11 of the first embodiment, the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw in the space SF to be measured, and the receiver 30 receives the receiving antenna RX. The received signal RS is generated based on the output signal of. The scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured, and the scattering characteristic estimation unit 42 calculates the estimated amount ES of the scattering characteristic based on the mathematical model. The update unit 43 can estimate the permittivity distribution by updating the estimator Pd of the permittivity distribution so as to reduce the magnitude of the error Δ between the measured quantity MS and the estimated quantity ES. As described above, as compared with the prior art, it is possible to estimate the dielectric constant distribution without being limited by the frequency band used by the transmitted electromagnetic wave Tw. In the present embodiment, since the probe electrode is not inserted into the measurement space SF, the distribution of the measurement target is not disturbed. Therefore, it is possible to measure the dielectric constant distribution without being restricted by the measurement target. In addition, there is an advantage that not only the characteristics of forward scattering (transmission) but also the characteristics of backscattering can be estimated using a mathematical model.
 さらに、散乱特性推定部42及び更新部43は、所定の適応アルゴリズムに基づく反復演算を実行することにより誘電率分布の推定量Pdを収束させるので、誘電率分布を高精度に推定することが可能である。 Further, since the scattering characteristic estimation unit 42 and the update unit 43 converge the estimated amount Pd of the permittivity distribution by executing an iterative operation based on a predetermined adaptive algorithm, the permittivity distribution can be estimated with high accuracy. Is.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。本実施の形態では、誘電率分布の推定結果を用いてプラズマパラメータの空間分布(以下「プラズマパラメータ分布」という。)が算出される。図6は、本発明に係る実施の形態2の誘電率測定システム2の概略構成を示す図である。
Embodiment 2.
Next, the second embodiment according to the present invention will be described. In the present embodiment, the spatial distribution of plasma parameters (hereinafter referred to as “plasma parameter distribution”) is calculated using the estimation result of the dielectric constant distribution. FIG. 6 is a diagram showing a schematic configuration of a permittivity measurement system 2 according to a second embodiment of the present invention.
 図6に示されるように誘電率測定システム2は、送信アンテナTX、送信器20、受信アンテナRX及び受信器30を備えるとともに、受信信号RSに基づいて被測定空間SFの誘電率分布を測定する誘電率測定装置12を備えて構成されている。本実施の形態の誘電率測定装置12の構成は、パラメータ分布算出部46を有する点を除いて、実施の形態1の誘電率測定装置11の構成と同じである。 As shown in FIG. 6, the permittivity measuring system 2 includes a transmitting antenna TX, a transmitter 20, a receiving antenna RX, and a receiver 30, and measures the permittivity distribution of the space SF to be measured based on the received signal RS. It is configured to include a dielectric constant measuring device 12. The configuration of the permittivity measuring device 12 of the present embodiment is the same as the configuration of the permittivity measuring device 11 of the first embodiment except that the parameter distribution calculation unit 46 is provided.
 上記のとおり、更新部43は、誘電率分布の推定量CPdを算出することができる。この推定量CPdが複素誘電率εで表現されるとすると、パラメータ分布算出部46は、複素誘電率εを用いて、次式(4)~(6)に基づき、被測定空間SFの電子密度nの空間分布(以下「電子密度分布」という。)、プラズマの衝突周波数νの空間分布(以下「衝突周波数分布」という。)及びプラズマ周波数ωの空間分布(以下「プラズマ周波数分布」という。)をプラズマパラメータ分布として算出することができる。

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
As described above, the update unit 43 can calculate the estimated amount CPd of the dielectric constant distribution. Assuming that this estimated quantity CPd is expressed by the relative permittivity ε, the parameter distribution calculation unit 46 uses the relative permittivity ε and based on the following equations (4) to (6), the electron density of the space SF to be measured spatial distribution of n e (hereinafter referred to as "electron density distribution."), spatial distribution of the plasma collision frequency [nu (hereinafter referred to as "collision frequency distribution".) and the spatial distribution of the plasma frequency omega p (hereinafter referred to as "plasma frequency distribution" ) Can be calculated as the plasma parameter distribution.

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 式(4)において、εは真空中の誘電率、ωは送信電磁波Twの角周波数である。また、式(6)において、mは電子の質量、eは素電荷である。式(4)の左辺の複素誘電率εの実部及び虚部は、誘電率分布の推定量CPdによって与えられるので、式(4)の左辺及び右辺の実部で定まる等式と、式(4)の左辺及び右辺の虚部で定まる等式とから、衝突周波数ν及びプラズマ周波数ωを算出することができる。式(6)を用いて、プラズマ周波数ωから電子密度nを算出することが可能である。 In equation (4), ε 0 is the permittivity in vacuum, and ω is the angular frequency of the transmitted electromagnetic wave Tw. Further, in the equation (6), me is the mass of an electron and e is an elementary charge. Since the real part and the imaginary part of the complex permittivity ε on the left side of the equation (4) are given by the estimated amount CPd of the permittivity distribution, the equation determined by the real part on the left side and the right side of the equation (4) and the equation ( The collision frequency ν and the plasma frequency ω p can be calculated from the equation determined by the imaginary parts on the left and right sides of 4). Using equation (6), it is possible to calculate the electron density n e of the plasma frequency omega p.
 次に、図7を参照しつつ、誘電率測定装置12の動作について説明する。図7は、誘電率測定装置12の動作手順の一例を概略的に示すフローチャートである。図7のステップST31~ST36は、図5のステップST31~ST36と同様である。 Next, the operation of the permittivity measuring device 12 will be described with reference to FIG. 7. FIG. 7 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 12. Steps ST31 to ST36 in FIG. 7 are the same as steps ST31 to ST36 in FIG.
 図7を参照すると、ステップST36で反復演算を終了するとの判定がなされた場合(ステップST36のYES)、パラメータ分布算出部46は、最後に更新された誘電率分布の推定量CPdを用いて、プラズマパラメータ分布を算出する(ステップST37)。そして、誘電率測定装置12は、プラズマパラメータ分布を示すデータEpと誘電率分布の推定量CPdとを出力する(ステップST39)。 Referring to FIG. 7, when it is determined in step ST36 that the iterative calculation is completed (YES in step ST36), the parameter distribution calculation unit 46 uses the last updated estimator CPd of the dielectric constant distribution to be used. The plasma parameter distribution is calculated (step ST37). Then, the permittivity measuring device 12 outputs the data Ep showing the plasma parameter distribution and the estimated amount CPd of the permittivity distribution (step ST39).
 以上に説明したように実施の形態2の誘電率測定装置12は、誘電率分布の推定量CPdに基づいてプラズマパラメータ分布を精度よく推定することができる。 As described above, the permittivity measuring device 12 of the second embodiment can accurately estimate the plasma parameter distribution based on the estimated amount CPd of the permittivity distribution.
実施の形態3.
 次に、本発明に係る実施の形態3について説明する。図8は、本発明に係る実施の形態3の誘電率測定システム3の概略構成を示す図である。図8に示されるように誘電率測定システム3は、送信アンテナTX、送信器20、受信アンテナRX及び受信器30を備えるとともに、受信信号RSに基づいて被測定空間SFの誘電率分布を測定する誘電率測定装置13を備えて構成されている。誘電率測定装置13の構成は、実施の形態2の制御部40に代えて制御部40Cを有する点を除いて、実施の形態2の誘電率測定装置12の構成と同じである。
Embodiment 3.
Next, the third embodiment according to the present invention will be described. FIG. 8 is a diagram showing a schematic configuration of a permittivity measurement system 3 according to a third embodiment of the present invention. As shown in FIG. 8, the dielectric constant measuring system 3 includes a transmitting antenna TX, a transmitter 20, a receiving antenna RX, and a receiver 30, and measures the dielectric constant distribution of the space SF to be measured based on the received signal RS. It is configured to include a dielectric constant measuring device 13. The configuration of the permittivity measuring device 13 is the same as the configuration of the permittivity measuring device 12 of the second embodiment except that the control unit 40C is provided instead of the control unit 40 of the second embodiment.
 また誘電率測定システム3は、移動機構50を備えている。移動機構50は、制御部40Cから供給された位置制御信号Pcに従って動作し、送信アンテナTXに対して受信アンテナRXを相対的に移動させて位置づけする機構である。これにより、誘電率測定システム3は、散乱波Swを複数の受信位置で受信することができ、当該複数の受信位置について誘電率分布を推定することができるので、推定精度の向上が可能となる。たとえば、図8に示されるように、被測定空間SFを交差する平面上において被測定空間SFを取り囲む円弧状の線RMに沿って受信アンテナRXを移動させるように移動機構50を構成することが可能である。これにより、誘電率測定装置13は、散乱の角度特性を用いて誘電率分布を推定することができる。 The permittivity measurement system 3 is provided with a moving mechanism 50. The moving mechanism 50 is a mechanism that operates according to the position control signal Pc supplied from the control unit 40C and positions the receiving antenna RX by moving it relative to the transmitting antenna TX. As a result, the permittivity measurement system 3 can receive the scattered wave Sw at a plurality of reception positions and can estimate the permittivity distribution for the plurality of reception positions, so that the estimation accuracy can be improved. .. For example, as shown in FIG. 8, the moving mechanism 50 may be configured to move the receiving antenna RX along the arcuate line RM surrounding the measured space SF on a plane intersecting the measured space SF. It is possible. As a result, the permittivity measuring device 13 can estimate the permittivity distribution using the angular characteristics of scattering.
 なお、本実施の形態の移動機構50は、受信アンテナRXを機械的に移動させるように構成されている。この代わりに、送信アンテナTXを機械的に移動させるように、あるいは送信アンテナTX及び受信アンテナRXの双方を機械的に移動させるように移動機構50の構成が変更されてもよい。 The moving mechanism 50 of the present embodiment is configured to mechanically move the receiving antenna RX. Instead, the configuration of the moving mechanism 50 may be modified so that the transmitting antenna TX is mechanically moved, or both the transmitting antenna TX and the receiving antenna RX are mechanically moved.
 図9~図12は、誘電率測定システム3の構成と実施の形態1に係る数理モデルとを用いてシミュレーション計算を実行して得られた結果を表すグラフである。初期の誘電率分布(初期推定量)としては一様分布が使用された。図9は、散乱の角度特性を表している。図9のグラフにおいて、横軸は角度θを示し、縦軸は散乱特性S(f,θ)の絶対値の対数を示す。図10は、多層誘電体モデルにおける第1層~第4層の電子密度nの空間分布を示すグラフである。図10のグラフにおいて、横軸は半径r(単位:m)を示し、縦軸は電子密度nを示す。図11は、比誘電率ε(=ε/ε)の実部の空間分布を表すグラフであり、図12は、比誘電率εの虚部の空間分布を表すグラフである。図11及び図12のグラフにおいて、横軸は半径r(単位:m)を示す。図9~図12のグラフでは、シミュレーション計算により得られた推定結果が実線で表示され、正解の誘電率分布から得られた目標となる計算結果が破線で表示されている。推定結果と目標となる計算結果とはほぼ一致しており、誘電率分布とプラズマパラメータ分布とが精度よく推定されていることが分かる。 9 to 12 are graphs showing the results obtained by executing the simulation calculation using the configuration of the permittivity measurement system 3 and the mathematical model according to the first embodiment. A uniform distribution was used as the initial permittivity distribution (initial estimator). FIG. 9 shows the angular characteristics of scattering. In the graph of FIG. 9, the horizontal axis represents the angle θ, and the vertical axis represents the logarithm of the absolute value of the scattering characteristic S (f, θ). Figure 10 is a graph showing the spatial distribution of the electron density n e of the first to fourth layers in the multilayer dielectric model. In the graph of FIG. 10, the horizontal axis represents the radius r (unit: m), and the vertical axis indicates the electron density n e. FIG. 11 is a graph showing the spatial distribution of the real part of the relative permittivity ε r (= ε / ε 0 ), and FIG. 12 is a graph showing the spatial distribution of the imaginary part of the relative permittivity ε r . In the graphs of FIGS. 11 and 12, the horizontal axis indicates the radius r (unit: m). In the graphs of FIGS. 9 to 12, the estimation result obtained by the simulation calculation is displayed by a solid line, and the target calculation result obtained from the dielectric constant distribution of the correct answer is displayed by a broken line. The estimation result and the target calculation result are almost the same, and it can be seen that the permittivity distribution and the plasma parameter distribution are estimated accurately.
実施の形態4.
 次に、本発明に係る実施の形態4について説明する。図13は、本発明に係る実施の形態4の誘電率測定システム4の概略構成を示す図である。実施の形態1~3では、1つの受信アンテナRXが使用されている。これに対し、本実施の形態では、M個の受信アンテナRX~RX(Mは2以上の整数)が使用される。受信アンテナRX~RXは、被測定空間SFを取り囲む環状の保持部材51によって保持されている。
Embodiment 4.
Next, the fourth embodiment according to the present invention will be described. FIG. 13 is a diagram showing a schematic configuration of the permittivity measurement system 4 according to the fourth embodiment of the present invention. In the first to third embodiments, one receiving antenna RX is used. On the other hand, in the present embodiment, M receiving antennas RX 1 to RX M (M is an integer of 2 or more) are used. The receiving antennas RX 1 to RX M are held by an annular holding member 51 surrounding the space SF to be measured.
 図13に示されるように誘電率測定システム4は、送信アンテナTXと、送信器20と、被測定空間SFを取り囲むように対向配置されたM個の受信アンテナRX~RXと、受信アンテナRX~RXの出力信号に基づいてMチャンネルのディジタル受信信号RS~RSを生成する受信器30Dと、ディジタル受信信号RS~RSに基づいて被測定空間SFの誘電率分布を測定する誘電率測定装置14とを備えて構成されている。 As shown in FIG. 13, the dielectric constant measuring system 4 includes a transmitting antenna TX, a transmitter 20, M receiving antennas RX 1 to RX M arranged so as to surround the space SF to be measured, and a receiving antenna. The dielectric constant distribution of the receiver 30D that generates the digital reception signals RS 1 to RS M of the M channel based on the output signals of RX 1 to RX M and the measured space SF based on the digital reception signals RS 1 to RS M. It is configured to include a dielectric constant measuring device 14 for measuring.
 受信器30Dは、受信アンテナRX~RXの出力信号を、当該出力信号の周波数よりも低い周波数を有するMチャンネル(M個の受信チャンネル)のアナログ信号に変換する周波数変換機能と、当該アナログ信号を位相検波してMチャンネルのアナログ受信信号を生成する位相検波機能と、当該アナログ受信信号をMチャンネルのディジタル受信信号RS~RS(以下、単に「受信信号RS~RS」という。)に変換するA/D変換機能とを有している。受信信号RS~RSの各々は、同相信号成分と直交信号成分とからなる複素信号である。 The receiver 30D has a frequency conversion function for converting the output signals of the receiving antennas RX 1 to RX M into analog signals of M channels (M receiving channels) having a frequency lower than the frequency of the output signals, and the analog. A phase detection function that phase-detects a signal to generate an analog reception signal of M channel, and the analog reception signal is referred to as an M channel digital reception signal RS 1 to RS M (hereinafter, simply referred to as "reception signal RS 1 to RS M "). It has an A / D conversion function that converts to.). Each of the received signals RS 1 to RS M is a complex signal composed of an in-phase signal component and an orthogonal signal component.
 図13に示されるように誘電率測定装置14は、送信器20に送信制御信号Tcを供給する制御部40と、受信信号RS~RSから被測定空間SFの散乱特性の測定量MS~MSをそれぞれ算出する散乱特性測定部41Dと、予め用意された数理モデルに基づいてMチャンネルにそれぞれ対応する散乱特性の推定量ES~ESを算出する散乱特性推定部42と、測定量MS~MSと推定量ES~ESとの間の誤差Δ~Δの大きさを小さくするように誘電率分布の推定量Pdを更新する更新部43Dとを備えて構成されている。 As shown in FIG. 13, the permittivity measuring device 14 is an estimator of the scattering characteristics of the space SF to be measured from the control unit 40 that supplies the transmission control signal Tc to the transmitter 20 and the received signals RS 1 to RS M MS 1. -Measurement with the scattering characteristic measuring unit 41D that calculates MS M, and the scattering characteristic estimation unit 42 that calculates the estimated amount ES 1 to ES M of the scattering characteristics corresponding to each M channel based on the mathematical model prepared in advance. configured to include an update unit 43D for updating the estimated amount of Pd permittivity distribution so as to reduce the magnitude of the error Δ 1 ~ Δ M between the amount MS 1 ~ MS M and estimator ES 1 ~ ES M Has been done.
 散乱特性測定部41Dは、受信信号RS~RSの各々を解析することにより、散乱波Swの強度及び散乱波Swの位相、並びに、その強度に関する周波数特性、及び、その位相に関する周波数特性といった散乱特性の測定量MS~MSを算出することができる。 Scattering characteristic measuring section 41D, by analyzing each of the received signals RS 1 ~ RS M, the intensity of the scattered wave Sw and scattered waves Sw phase, as well as the frequency characteristics relating to its strength, and, like the frequency characteristics related to the phase Measurements of scattering characteristics MS 1 to MS M can be calculated.
 散乱特性推定部42Dは、被測定空間SFの誘電率分布の推定量Pdを使用し、実施の形態1に係る数理モデルと同様の数理モデルに基づいて散乱特性の推定量ES~ESを算出することができる。実施の形態1の数理モデルと同様の数理モデルを用いることにより低い演算負荷で高速に散乱特性の推定量ES~ESを算出することが可能となる。 The scattering characteristic estimation unit 42D uses the estimation amount Pd of the dielectric constant distribution of the space SF to be measured, and estimates the scattering characteristics ES 1 to ES M based on the same mathematical model as the mathematical model according to the first embodiment. Can be calculated. By using a mathematical model similar to the mathematical model of the first embodiment, it is possible to calculate the estimated scattering characteristics ES 1 to ES M at high speed with a low calculation load.
 更新部43Dは、比較部44D及び誘電率分布推定部45Dを含む。比較部44Dは、散乱特性の測定量MS~MSと数理モデルに基づいて算出された推定量ES~ESとの間の誤差Δ~Δを算出する。誘電率分布推定部45Dは、最急降下法などの適応アルゴリズムの更新式に従い、当該誤差Δ~Δの大きさが小さくなるように誘電率分布の現在の推定量を修正することにより、誘電率分布の更新された推定量Pdを算出することができる。たとえば、誤差Δ~Δの大きさとしては、二乗平均誤差が算出されればよい。更新された推定量Pdは、散乱特性推定部42Dに供給される。散乱特性推定部42Dは、更新された推定量Pdに基づいて散乱特性の推定量ES~ESを算出することができる。散乱特性推定部42D及び更新部43Dは、適応アルゴリズムに基づく反復演算を実行することにより誘電率分布の推定量Pdを収束させることが可能である。 The update unit 43D includes a comparison unit 44D and a dielectric constant distribution estimation unit 45D. Comparing unit 44D calculates an error Δ 1 ~ Δ M between the measured quantity MS 1 ~ MS M and estimator ES 1 ~ ES M calculated on the basis of the mathematical model of the scattering characteristics. Permittivity distribution estimation unit 45D in accordance with update equation of the adaptive algorithm such as the steepest descent method, by modifying the current estimate of permittivity distribution such that the magnitude of the error Δ 1 ~ Δ M is reduced, the dielectric The updated estimator Pd of the rate distribution can be calculated. For example, the magnitude of the error Δ 1 ~ Δ M, mean squared error need be calculated. The updated estimator Pd is supplied to the scattering characteristic estimation unit 42D. The scattering characteristic estimation unit 42D can calculate the scattering characteristic estimators ES 1 to ES M based on the updated estimator Pd. The scattering characteristic estimation unit 42D and the update unit 43D can converge the estimation amount Pd of the dielectric constant distribution by executing an iterative operation based on the adaptive algorithm.
 次に、図14を参照しつつ、誘電率測定装置14の動作について説明する。図14は、誘電率測定装置14の動作手順の一例を概略的に示すフローチャートである。 Next, the operation of the permittivity measuring device 14 will be described with reference to FIG. FIG. 14 is a flowchart schematically showing an example of the operation procedure of the permittivity measuring device 14.
 先ず、誘電率測定装置11は、送信アンテナTXから被測定空間SFに向けて電磁波を放射させて複数チャンネルの受信信号RS~RSを得る(ステップST41)。その後、散乱特性測定部41Dは、受信信号RS~RSから被測定空間SFの散乱特性の測定量MS~MSを算出する(ステップST42)。一方、散乱特性推定部42D及び更新部43Dは、被測定空間SFの誘電率分布の推定量Pdを初期推定量に設定して誘電率の推定分布を初期化する(ステップST43)。たとえば、誘電率分布の初期推定量としては、誘電率の一様分布が設定されればよい。その後、散乱特性推定部42D及び更新部43Dは、所定の適応アルゴリズムに基づく反復演算を実行することにより誘電率分布の推定量Pdを更新する(ステップST44~ST46)。 First, the permittivity measuring device 11 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain reception signals RS 1 to RS M of a plurality of channels (step ST41). After that, the scattering characteristic measuring unit 41D calculates the measured quantities MS 1 to MS M of the scattering characteristic of the space SF to be measured from the received signals RS 1 to RS M (step ST42). On the other hand, the scattering characteristic estimation unit 42D and the update unit 43D initialize the estimation distribution of the permittivity by setting the estimation amount Pd of the dielectric constant distribution of the space SF to be measured as the initial estimation amount (step ST43). For example, a uniform distribution of permittivity may be set as the initial estimator of the permittivity distribution. After that, the scattering characteristic estimation unit 42D and the update unit 43D update the estimated amount Pd of the dielectric constant distribution by executing an iterative operation based on a predetermined adaptive algorithm (steps ST44 to ST46).
 すなわち、散乱特性推定部42Dは、上記のとおり、被測定空間SFにおける誘電率分布の推定量Pdを使用し、誘電率分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ES~ESを算出する(ステップST44)。更新部43は、散乱特性の測定量MS~MSと推定量ES~ESとの間の誤差Δ~Δの大きさを小さくするように誘電率分布の推定量Pdを更新する(ステップST45)。具体的には、比較部44Dが誤差Δ~Δを算出した後、誘電率分布推定部45Dは、最急降下法などの所定の適応アルゴリズムの更新式に従い、誘電率分布の更新された推定量Pdを算出し、当該更新された推定量Pdを散乱特性推定部42Dに供給する。 That is, as described above, the scattering characteristic estimation unit 42D uses the estimator Pd of the permittivity distribution in the space SF to be measured, and the scattering characteristics are based on a mathematical model showing the relationship between the permittivity distribution and the scattering characteristics. Estimators ES 1 to ES M are calculated (step ST44). Updating unit 43 updates the estimated amount of Pd permittivity distribution so as to reduce the magnitude of the error Δ 1 ~ Δ M between the measured quantity MS 1 ~ MS M scattering properties and the estimated amounts ES 1 ~ ES M (Step ST45). Specifically, after the comparing unit 44D has calculated error Δ 1 ~ Δ M, permittivity distribution estimation unit 45D in accordance with update equation of predetermined adaptive algorithm such as the steepest descent method, updated estimate of the permittivity distribution The quantity Pd is calculated, and the updated estimated quantity Pd is supplied to the scattering characteristic estimation unit 42D.
 ステップST45の後、誘電率分布推定部45Dは、適応アルゴリズムに基づく反復演算を終了するか否かを判定する(ステップST46)。たとえば、反復演算の回数が上限値に到達した場合、あるいは、誤差Δ~Δの大きさが所定の収束条件を満たす場合には、誘電率分布推定部45Dは反復演算を終了すると判定することができる(ステップST46のYES)。たとえば、所定の収束条件としては、誤差Δ~Δの大きさが所定回数連続して一定値以下となるという条件が挙げられる。 After step ST45, the permittivity distribution estimation unit 45D determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST46). For example, if the number of iterative operations has reached the upper limit value, or when the magnitude of the error Δ 1 ~ Δ M is a predetermined convergence condition is satisfied, it is determined that the permittivity distribution estimation unit 45D terminates the iterative operation Can be done (YES in step ST46). For example, the predetermined convergence condition, the condition that the magnitude of the error Δ 1 ~ Δ M is equal to or less than a predetermined value continuously for a predetermined number of times and the like.
 反復演算を終了しないとの判定がなされた場合(ステップST46のNO)、散乱特性推定部42D、比較部44D及び誘電率分布推定部45Dは、更新された推定量Pdに基づき、ステップST44,ST45を再度実行する。最終的に反復演算を終了するとの判定がなされた場合(ステップST46のYES)、パラメータ分布算出部46は、最後に更新された誘電率分布の推定量CPdを用いて、上記の式(4)~(6)に基づき、プラズマパラメータ分布を算出する(ステップST47)。そして、誘電率測定装置12は、プラズマパラメータ分布を示すデータEpと誘電率分布の推定量CPdとを出力する(ステップST49)。 When it is determined that the iterative calculation is not completed (NO in step ST46), the scattering characteristic estimation unit 42D, the comparison unit 44D, and the dielectric constant distribution estimation unit 45D are performed in steps ST44 and ST45 based on the updated estimator Pd. Is executed again. When it is finally determined that the iterative calculation is completed (YES in step ST46), the parameter distribution calculation unit 46 uses the last updated estimator CPd of the dielectric constant distribution to use the above equation (4). The plasma parameter distribution is calculated based on (6) (step ST47). Then, the permittivity measuring device 12 outputs the data Ep showing the plasma parameter distribution and the estimated amount CPd of the permittivity distribution (step ST49).
 以上に説明したように実施の形態4の誘電率測定システム1は、被測定空間SFを取り囲む複数の受信アンテナRX~RXを用いて、瞬時に散乱特性の角度分布を得ることができる。このため、短時間に変動する散乱体を有する被測定空間SFに対しても精度よく誘電率分布の推定を行うことができる。 As described above, the permittivity measurement system 1 of the fourth embodiment can instantly obtain an angular distribution of scattering characteristics by using a plurality of receiving antennas RX 1 to RX M surrounding the space SF to be measured. Therefore, the permittivity distribution can be estimated accurately even for the space SF to be measured having a scatterer that fluctuates in a short time.
実施の形態5.
 次に、本発明に係る実施の形態5について説明する。図15は、本発明に係る実施の形態5の誘電率測定システム5の概略構成を示す図である。図15に示されるように誘電率測定システム5は、送信アンテナTX、送信器20、M個の受信アンテナRX~RX及び受信器30Dを備えるとともに、Mチャンネルの受信信号RS~RSに基づいて被測定空間SFの誘電率分布を測定する誘電率測定装置15を備えて構成されている。誘電率測定装置15の構成は、実施の形態4の制御部40に代えて制御部40Eを有する点を除いて、実施の形態4の誘電率測定装置14の構成と同じである。
Embodiment 5.
Next, the fifth embodiment according to the present invention will be described. FIG. 15 is a diagram showing a schematic configuration of a permittivity measuring system 5 according to a fifth embodiment of the present invention. As shown in FIG. 15, the permittivity measuring system 5 includes a transmitting antenna TX, a transmitter 20, M receiving antennas RX 1 to RX M, and a receiver 30D, and receives signals RS 1 to RS M of the M channel. The permittivity measuring device 15 for measuring the permittivity distribution of the space SF to be measured is provided based on the above. The configuration of the permittivity measuring device 15 is the same as the configuration of the permittivity measuring device 14 of the fourth embodiment except that the control unit 40E is provided instead of the control unit 40 of the fourth embodiment.
 また誘電率測定システム5は、移動機構52を備えている。制御部40Eは、送信制御信号Tcを送信器20に供給し、位置制御信号Pcを移動機構52に供給する。移動機構52は、制御部40Eから供給された位置制御信号Pcに従って動作し、被測定空間SFに対して送信アンテナTX及び受信アンテナRX~RX全体を相対的に移動させて位置づけする機構である。 Further, the permittivity measuring system 5 includes a moving mechanism 52. The control unit 40E supplies the transmission control signal Tc to the transmitter 20 and supplies the position control signal Pc to the moving mechanism 52. The moving mechanism 52 operates according to the position control signal Pc supplied from the control unit 40E, and positions the transmitting antenna TX and the receiving antennas RX 1 to RX M as a whole by moving them relative to the space SF to be measured. is there.
 図16は、被測定空間SFと受信アンテナRX~RXとの間の位置関係を表す概略図である。被測定空間SFは、中心軸Yに関して軸対称な分布を有している。受信アンテナRX~RXは、中心軸Yに直交する平面CS上において被測定空間SFを取り囲むように配置されている。移動機構52は、保持部材51を中心軸Yに沿って移動させることにより、被測定空間SFを取り囲む受信アンテナRX~RXを中心軸Yに沿って移動させることができる。 FIG. 16 is a schematic view showing the positional relationship between the space SF to be measured and the receiving antennas RX 1 to RX M. The space SF to be measured has an axisymmetric distribution with respect to the central axis Y. The receiving antennas RX 1 to RX M are arranged so as to surround the space SF to be measured on the plane CS orthogonal to the central axis Y. By moving the holding member 51 along the central axis Y, the moving mechanism 52 can move the receiving antennas RX 1 to RX M surrounding the space to be measured SF along the central axis Y.
 上記した構成を有することにより、誘電率測定システム5は、被測定空間SFにおける誘電率の3次元的な分布を得ることが可能となる。 By having the above-mentioned configuration, the permittivity measurement system 5 can obtain a three-dimensional distribution of the permittivity in the space SF to be measured.
実施の形態6.
 次に、本発明に係る実施の形態6について説明する。上記実施の形態2~5では、誘電率分布の推定結果に基づいてプラズマパラメータ分布が算出される。実施の形態6及び後述の実施の形態7では、誘電率分布を推定せずにプラズマパラメータ分布が推定される。
Embodiment 6.
Next, a sixth embodiment of the present invention will be described. In the above embodiments 2 to 5, the plasma parameter distribution is calculated based on the estimation result of the dielectric constant distribution. In the sixth embodiment and the seventh embodiment described later, the plasma parameter distribution is estimated without estimating the dielectric constant distribution.
 図17は、本発明に係る実施の形態6のプラズマパラメータ測定システム6の概略構成を示す図である。図17に示されるようにプラズマパラメータ測定システム6は、プラズマ状態の物質(たとえば、プルーム)を含む被測定空間SFと対向配置された送信アンテナTXと、送信アンテナTXから被測定空間SFに向けて送信電磁波Twを放射させる送信器20と、被測定空間SFと対向配置されて被測定空間SFから散乱波Swを受信する受信アンテナRXと、受信アンテナRXの出力信号に基づいてディジタル受信信号RSを生成する受信器30と、送信アンテナTXに対して受信アンテナRXを相対的に移動させて位置づけする移動機構50と、ディジタル受信信号RSに基づいて被測定空間SFにおけるプラズマパラメータ分布(電子密度分布、プラズマ周波数分布及び衝突周波数分布)を測定するプラズマパラメータ測定装置16とを備えて構成されている。 FIG. 17 is a diagram showing a schematic configuration of the plasma parameter measurement system 6 of the sixth embodiment according to the present invention. As shown in FIG. 17, the plasma parameter measurement system 6 has a transmitting antenna TX arranged to face the measured space SF containing a substance in a plasma state (for example, a plume), and a transmitting antenna TX toward the measured space SF. The transmitter 20 that radiates the transmitted electromagnetic wave Tw, the receiving antenna RX that is arranged opposite to the measured space SF and receives the scattered wave Sw from the measured space SF, and the digital reception signal RS based on the output signal of the receiving antenna RX. The receiver 30 to be generated, the moving mechanism 50 to move and position the receiving antenna RX relative to the transmitting antenna TX, and the plasma parameter distribution (electron density distribution, electron density distribution) in the measured space SF based on the digital received signal RS. It is configured to include a plasma parameter measuring device 16 for measuring the plasma frequency distribution and the collision frequency distribution).
 本実施の形態における送信器20、送信アンテナTX、受信アンテナRX、受信器30及び移動機構50の構成は、実施の形態3における送信器20、送信アンテナTX、受信アンテナRX、受信器30及び移動機構50の構成と同じである。 The configuration of the transmitter 20, the transmitting antenna TX, the receiving antenna RX, the receiver 30, and the moving mechanism 50 in the present embodiment includes the transmitter 20, the transmitting antenna TX, the receiving antenna RX, the receiver 30, and the moving mechanism 50 in the third embodiment. The configuration is the same as that of the mechanism 50.
 プラズマパラメータ測定装置16は、送信制御信号Tcを送信器20に供給し位置制御信号Pcを移動機構50に供給する制御部40Cと、受信信号RSから被測定空間SFの散乱特性の測定量MSを算出する散乱特性測定部41と、予め用意された数理モデルに基づいて散乱特性の推定量ESを算出する散乱特性推定部42Eと、測定量MSと推定量ESとの間の誤差Δの大きさを小さくするようにプラズマパラメータ分布の推定量Edを更新する更新部43Eと、更新された推定量Edから被測定空間SFの誘電率分布を算出する誘電率分布算出部47とを備えて構成されている。本実施の形態における散乱特性測定部41及び制御部40Cの構成は、実施の形態3における散乱特性測定部41及び制御部40Cの構成と同じである。 The plasma parameter measuring device 16 supplies the transmission control signal Tc to the transmitter 20 and the position control signal Pc to the moving mechanism 50, and the estimator MS of the scattering characteristic of the space SF to be measured from the received signal RS. The magnitude of the error Δ between the measured amount MS and the estimated amount ES, the scattering characteristic measuring unit 41 to be calculated, the scattering characteristic estimation unit 42E that calculates the estimated amount ES of the scattering characteristic based on the mathematical model prepared in advance, and the measured amount MS. It is configured to include an update unit 43E that updates the estimator Ed of the plasma parameter distribution so as to reduce the value, and a dielectric constant distribution calculation unit 47 that calculates the dielectric constant distribution of the space SF to be measured from the updated estimator Ed. ing. The configuration of the scattering characteristic measuring unit 41 and the control unit 40C in the present embodiment is the same as the configuration of the scattering characteristic measuring unit 41 and the control unit 40C in the third embodiment.
 散乱特性推定部42Eは、被測定空間SFにおけるプラズマパラメータ分布の推定量Edを使用し、プラズマパラメータ分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ESを算出することができる。数理モデルを用いることにより低い演算負荷で高速に散乱特性の推定量ESを算出することが可能である。 The scattering characteristic estimation unit 42E uses the estimated amount Ed of the plasma parameter distribution in the space SF to be measured, and calculates the estimated amount ES of the scattering characteristic based on a mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristic. be able to. By using a mathematical model, it is possible to calculate the estimated amount ES of scattering characteristics at high speed with a low computational load.
 数理モデルとしては、多層誘電体モデルに基づく上記式(1)が使用可能である。また上記式(4)を考慮すれば、式(1)における第i層の複素誘電率εは、次式(7)に示すように、第i層の電子密度n (i)及びプラズマ周波数ω (i)を用いて表される(ここで、ω=2πf)。

Figure JPOXMLDOC01-appb-I000007
As the mathematical model, the above equation (1) based on the multilayer dielectric model can be used. In consideration of the above equation (4), the complex permittivity ε i of the i-th layer in the equation (1) is the electron density ne (i) and the plasma of the i-layer as shown in the following equation (7). It is expressed using the frequency ω p (i) (where ω = 2πf).

Figure JPOXMLDOC01-appb-I000007
 よって、送信電磁波Twの周波数fの値と角度θの値とが与えられ、プラズマパラメータ分布の推定量Edとして電子密度n (1)~n (4)及びプラズマ周波数ω (1)~ω (4)の推定値が与えられれば、散乱特性推定部42Eは、式(1)に基づいて散乱特性S(f,θ)の推定量ESを算出することができる。 Therefore, the value of the frequency f of the transmitted electromagnetic wave Tw and the value of the angle θ are given, and the electron densities ne (1) to ne (4) and the plasma frequencies ω p (1) to are used as the estimators Ed of the plasma parameter distribution. Given the estimated value of ω p (4) , the scattering characteristic estimation unit 42E can calculate the estimator ES of the scattering characteristic S (f, θ) based on the equation (1).
 また、上記式(6)を考慮すれば、第i層の複素誘電率εは、次式(8)に示すように、第i層の電子密度n (i)及び衝突周波数ν(i)を用いて表される。

Figure JPOXMLDOC01-appb-I000008
Further, in consideration of the above equation (6), the complex permittivity ε i of the i-th layer has the electron density ne (i) and the collision frequency ν (i ) of the i-layer as shown in the following equation (8). ) Is used.

Figure JPOXMLDOC01-appb-I000008
 よって、送信電磁波Twの周波数fの値と角度θの値とが与えられ、プラズマパラメータ分布の推定量Edとして電子密度n (1)~n (4)及び衝突周波数ν(1)~ν(4)の推定値が与えられれば、散乱特性推定部42Eは、式(1)に基づいて散乱特性S(f,θ)の推定量ESを算出することができる。 Therefore, the value of the frequency f of the transmitted electromagnetic wave Tw and the value of the angle θ are given, and the electron densities ne (1) to ne (4) and the collision frequencies ν (1) to ν are used as the estimators Ed of the plasma parameter distribution. Given the estimated value of (4) , the scattering characteristic estimation unit 42E can calculate the estimator ES of the scattering characteristic S (f, θ) based on the equation (1).
 更新部43Eは、比較部44及びパラメータ分布推定部45Eを含む。比較部44は、散乱特性の測定量MSと数理モデルに基づいて算出された推定量ESとの間の誤差Δを算出する。パラメータ分布推定部45Eは、最急降下法(Steepest Descent Algorithm)などの適応アルゴリズムの更新式に従い、当該誤差Δの大きさが小さくなるようにプラズマパラメータ分布の現在の推定量を修正することにより、プラズマパラメータ分布の更新された推定量Edを算出することができる。更新された推定量Edは、散乱特性推定部42Eに供給される。散乱特性推定部42Eは、更新された推定量Edに基づいて散乱特性の推定量ESを算出することができる。散乱特性推定部42E及び更新部43Eは、適応アルゴリズムに基づく反復演算を実行することによりプラズマパラメータ分布の推定量Edを収束させることが可能である。 The update unit 43E includes a comparison unit 44 and a parameter distribution estimation unit 45E. The comparison unit 44 calculates the error Δ between the measured amount MS of the scattering characteristic and the estimated amount ES calculated based on the mathematical model. The parameter distribution estimation unit 45E corrects the current estimator of the plasma parameter distribution so that the magnitude of the error Δ becomes small according to the update formula of the adaptive algorithm such as the steepest descent method (Stepest Descent Algorithm). The updated estimator Ed of the parameter distribution can be calculated. The updated estimator Ed is supplied to the scattering characteristic estimation unit 42E. The scattering characteristic estimation unit 42E can calculate the estimated amount ES of the scattering characteristic based on the updated estimated amount Ed. The scattering characteristic estimation unit 42E and the update unit 43E can converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on the adaptive algorithm.
 次に、図18を参照しつつ、プラズマパラメータ測定装置16の動作について説明する。図18は、プラズマパラメータ測定装置16の動作手順の一例を概略的に示すフローチャートである。 Next, the operation of the plasma parameter measuring device 16 will be described with reference to FIG. FIG. 18 is a flowchart schematically showing an example of the operation procedure of the plasma parameter measuring device 16.
 先ず、上記実施の形態1の場合と同様に、プラズマパラメータ測定装置16は、送信アンテナTXから被測定空間SFに向けて電磁波を放射させて受信信号RSを得る(ステップST31)。続いて、散乱特性測定部41は、受信信号RSから被測定空間SFの散乱特性の測定量MSを算出する(ステップST32)。 First, as in the case of the first embodiment, the plasma parameter measuring device 16 radiates an electromagnetic wave from the transmitting antenna TX toward the measured space SF to obtain the received signal RS (step ST31). Subsequently, the scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured from the received signal RS (step ST32).
 その後、散乱特性推定部42E及び更新部43Eは、プラズマパラメータ分布の推定量Edを初期推定量に設定してプラズマパラメータの推定分布を初期化する(ステップST53)。たとえば、プラズマパラメータ分布の初期推定量としては、誘電率の一様分布に相当する量が設定されればよい。その後、散乱特性推定部42E及び更新部43Eは、所定の適応アルゴリズムに基づく反復演算を実行することによりプラズマパラメータ分布の推定量Edを更新する(ステップST54~ST56)。 After that, the scattering characteristic estimation unit 42E and the update unit 43E set the estimated amount Ed of the plasma parameter distribution to the initial estimated amount and initialize the estimated distribution of the plasma parameters (step ST53). For example, as the initial estimator of the plasma parameter distribution, an amount corresponding to a uniform distribution of the dielectric constant may be set. After that, the scattering characteristic estimation unit 42E and the update unit 43E update the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptation algorithm (steps ST54 to ST56).
 すなわち、散乱特性推定部42Eは、上記のとおり、被測定空間SFにおけるプラズマパラメータ分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ESを算出する(ステップST54)。更新部43Eは、散乱特性の測定量MSと推定量ESとの間の誤差Δの大きさを小さくするようにプラズマパラメータ分布の推定量Edを更新する(ステップST55)。具体的には、比較部44Eが誤差Δを算出した後、パラメータ分布推定部45Eは、最急降下法などの所定の適応アルゴリズムの更新式に従い、プラズマパラメータ分布の更新された推定量Edを算出し、当該更新された推定量Edを散乱特性推定部42Eに供給する。 That is, as described above, the scattering characteristic estimation unit 42E calculates the estimated amount ES of the scattering characteristics based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics in the space SF to be measured (step ST54). The update unit 43E updates the estimator Ed of the plasma parameter distribution so as to reduce the magnitude of the error Δ between the estimator MS and the estimator ES of the scattering characteristics (step ST55). Specifically, after the comparison unit 44E calculates the error Δ, the parameter distribution estimation unit 45E calculates the updated estimator Ed of the plasma parameter distribution according to an update formula of a predetermined adaptive algorithm such as the steepest descent method. , The updated estimator Ed is supplied to the scattering characteristic estimation unit 42E.
 ステップST55の後、パラメータ分布推定部45Eは、適応アルゴリズムに基づく反復演算を終了するか否かを判定する(ステップST56)。たとえば、反復演算の回数が上限値に到達した場合、あるいは、誤差Δの大きさが所定の収束条件を満たす場合には、パラメータ分布推定部45Eは反復演算を終了すると判定することができる(ステップST56のYES)。たとえば、所定の収束条件としては、誤差Δの大きさが所定回数連続して一定値以下となるという条件が挙げられる。 After step ST55, the parameter distribution estimation unit 45E determines whether or not to end the iterative calculation based on the adaptive algorithm (step ST56). For example, when the number of iterative operations reaches the upper limit value, or when the magnitude of the error Δ satisfies a predetermined convergence condition, the parameter distribution estimation unit 45E can determine that the iterative operation is completed (step). YES of ST56). For example, as a predetermined convergence condition, there is a condition that the magnitude of the error Δ is continuously equal to or less than a certain value a predetermined number of times.
 反復演算を終了しないとの判定がなされた場合(ステップST56のNO)、散乱特性推定部42E、比較部44及びパラメータ分布推定部45Eは、更新された推定量Edに基づき、ステップST54,ST55を再度実行する。最終的に反復演算を終了するとの判定がなされた場合(ステップST56のYES)、誘電率分布算出部47は、最後に更新されたプラズマパラメータ分布の推定量CEdを用い、所定の計算式(たとえば、式(7),(8))に基づいて誘電率分布を算出する(ステップST57)。そして、プラズマパラメータ測定装置16は、誘電率分布を示すデータPpとプラズマパラメータ分布の推定量CEdとを出力する(ステップST59)。 When it is determined that the iterative calculation is not completed (NO in step ST56), the scattering characteristic estimation unit 42E, the comparison unit 44, and the parameter distribution estimation unit 45E perform steps ST54 and ST55 based on the updated estimator Ed. Try again. When it is finally determined that the iterative calculation is completed (YES in step ST56), the permittivity distribution calculation unit 47 uses the estimator CEd of the last updated plasma parameter distribution and uses a predetermined calculation formula (for example, YES). , Equations (7) and (8)) to calculate the permittivity distribution (step ST57). Then, the plasma parameter measuring device 16 outputs the data Pp showing the dielectric constant distribution and the estimated amount CEd of the plasma parameter distribution (step ST59).
 以上に説明したように実施の形態6のプラズマパラメータ測定装置16では、受信アンテナRXが、被測定空間SFにおける送信電磁波Twの散乱により発生した散乱波Swを受信し、受信器30が受信アンテナRXの出力信号に基づいて受信信号RSを生成する。散乱特性測定部41は、被測定空間SFの散乱特性の測定量MSを算出し、散乱特性推定部42Eは数理モデルに基づいて散乱特性の推定量ESを算出する。更新部43Eは、測定量MSと推定量ESとの間の誤差Δの大きさを小さくするようにプラズマパラメータ分布の推定量Edを更新することによりプラズマパラメータ分布を推定することができる。このように従来技術と比べると、送信電磁波Twの使用周波数帯域の制限を受けずにプラズマパラメータ分布の推定を行うことが可能である。本実施の形態では、被測定空間SFにプローブ電極が挿入されないため、測定対象の分布が乱されない。よって、測定対象の制限を受けずにプラズマパラメータ分布の測定を行うことが可能である。また、数理モデルを用いて前方散乱(透過)の特性のみならず後方散乱の特性も推定することができるという利点がある。 As described above, in the plasma parameter measuring device 16 of the sixth embodiment, the receiving antenna RX receives the scattered wave Sw generated by the scattering of the transmitted electromagnetic wave Tw in the measured space SF, and the receiver 30 receives the receiving antenna RX. The received signal RS is generated based on the output signal of. The scattering characteristic measuring unit 41 calculates the measured amount MS of the scattering characteristic of the space SF to be measured, and the scattering characteristic estimating unit 42E calculates the estimated amount ES of the scattering characteristic based on the mathematical model. The update unit 43E can estimate the plasma parameter distribution by updating the estimated amount Ed of the plasma parameter distribution so as to reduce the magnitude of the error Δ between the measured amount MS and the estimated amount ES. As described above, as compared with the prior art, it is possible to estimate the plasma parameter distribution without being limited by the frequency band used by the transmitted electromagnetic wave Tw. In the present embodiment, since the probe electrode is not inserted into the measurement space SF, the distribution of the measurement target is not disturbed. Therefore, it is possible to measure the plasma parameter distribution without being restricted by the measurement target. In addition, there is an advantage that not only the characteristics of forward scattering (transmission) but also the characteristics of backscattering can be estimated using a mathematical model.
 また、散乱特性推定部42E及び更新部43Eは、所定の適応アルゴリズムに基づく反復演算を実行することによりプラズマパラメータ分布の推定量Edを収束させるので、プラズマパラメータ分布を高精度に推定することが可能である。 Further, since the scattering characteristic estimation unit 42E and the update unit 43E converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptive algorithm, the plasma parameter distribution can be estimated with high accuracy. Is.
 さらにプラズマパラメータ測定システム6は移動機構50を備えている。これにより、プラズマパラメータ測定システム6は、散乱波Swを複数の受信位置で受信することができ、当該複数の受信位置についてプラズマパラメータ分布を推定することができるので、推定精度の向上が可能となる。 Further, the plasma parameter measurement system 6 is provided with a moving mechanism 50. As a result, the plasma parameter measurement system 6 can receive the scattered wave Sw at a plurality of reception positions, and can estimate the plasma parameter distribution for the plurality of reception positions, so that the estimation accuracy can be improved. ..
実施の形態7.
 次に、本発明に係る実施の形態7について説明する。図19は、本発明に係る実施の形態7のプラズマパラメータ測定システム7の概略構成を示す図である。実施の形態6では、1つの受信アンテナRXが使用されている。これに対し、本実施の形態では、実施の形態4,5と同様に、M個の受信アンテナRX~RXが使用される。受信アンテナRX~RXは、被測定空間SFを取り囲む環状の保持部材51によって保持されている。
Embodiment 7.
Next, the seventh embodiment according to the present invention will be described. FIG. 19 is a diagram showing a schematic configuration of the plasma parameter measurement system 7 according to the seventh embodiment of the present invention. In the sixth embodiment, one receiving antenna RX is used. On the other hand, in the present embodiment, as in the fourth and fifth embodiments, M receiving antennas RX 1 to RX M are used. The receiving antennas RX 1 to RX M are held by an annular holding member 51 surrounding the space SF to be measured.
 図19に示されるようにプラズマパラメータ測定システム7は、送信アンテナTXと、送信器20と、プラズマ状態の物質(たとえば、プルーム)を含む被測定空間SFを取り囲むように対向配置されたM個の受信アンテナRX~RXと、受信アンテナRX~RXの出力信号に基づいてMチャンネルのディジタル受信信号RS~RSを生成する受信器30Dと、ディジタル受信信号RS~RSに基づいて被測定空間SFのプラズマパラメータ分布(電子密度分布、プラズマ周波数分布及び衝突周波数分布)を測定するプラズマパラメータ測定装置17と、被測定空間SFに対して送信アンテナTX及び受信アンテナRX~RX全体を相対的に移動させて位置づけする移動機構52とを備えて構成されている。 As shown in FIG. 19, the plasma parameter measurement system 7 includes M transmission antennas TX, a transmitter 20, and M units facing each other so as to surround a space SF to be measured including a substance in a plasma state (for example, a plume). To the receivers 30D that generate the digital reception signals RS 1 to RS M of the M channel based on the output signals of the reception antennas RX 1 to RX M and the reception antennas RX 1 to RX M , and the digital reception signals RS 1 to RS M. A plasma parameter measuring device 17 that measures the plasma parameter distribution (electron density distribution, plasma frequency distribution, and collision frequency distribution) of the space SF to be measured based on the measurement space SF, and a transmitting antenna TX and receiving antennas RX 1 to RX for the space SF to be measured. It is configured to include a moving mechanism 52 that relatively moves and positions the entire M.
 本実施の形態における送信器20、送信アンテナTX、受信アンテナRX~RX、受信器30D及び移動機構52の構成は、実施の形態5における送信器20、送信アンテナTX、受信アンテナRX~RX、受信器30D及び移動機構52の構成と同じである。 Transmitter 20 in the present embodiment, the configuration of the transmission antenna TX, the receiving antennas RX 1 ~ RX M, receiver 30D and the moving mechanism 52, transmitter 20, transmit antennas TX in the fifth embodiment, the receiving antennas RX 1 ~ The configuration is the same as that of the RX M , the receiver 30D, and the moving mechanism 52.
 プラズマパラメータ測定装置17は、送信制御信号Tcを送信器20に供給し位置制御信号Pcを移動機構52に供給する制御部40Eと、受信信号RS~RSから被測定空間SFの散乱特性の測定量MS~MSをそれぞれ算出する散乱特性測定部41Fと、予め用意された数理モデルに基づいてMチャンネルにそれぞれ対応する散乱特性の推定量ES~ESを算出する散乱特性推定部42Fと、測定量MS~MSと推定量ES~ESとの間の誤差Δ~Δの大きさを小さくするようにプラズマパラメータ分布の推定量Edを更新する更新部43Fと、更新された推定量Edから被測定空間SFの誘電率分布を算出する誘電率分布算出部47とを備えて構成されている。本実施の形態における散乱特性測定部41D及び制御部40Eの構成は、実施の形態5における散乱特性測定部41D及び制御部40Eの構成と同じである。 Plasma parameter measurement device 17 includes a control unit 40E supplied to the moving mechanism 52 of the position control signal Pc supplied to the transmission control signal Tc to the transmitter 20, from the received signal RS 1 ~ RS M scattering characteristic of the measurement space SF The scattering characteristic measurement unit 41F that calculates the measured quantities MS 1 to MS M , respectively, and the scattering characteristic estimation unit that calculates the estimated amount ES 1 to ES M of the scattering characteristics corresponding to the M channels based on the mathematical model prepared in advance. and 42F, and the update unit 43F for updating the measurand MS 1 ~ MS M and the estimated amount Ed plasma parameter distribution to reduce the magnitude of the error Δ 1 ~ Δ M between the estimator ES 1 ~ ES M , The dielectric constant distribution calculation unit 47 that calculates the dielectric constant distribution of the space SF to be measured from the updated estimator Ed is provided. The configuration of the scattering characteristic measuring unit 41D and the control unit 40E in the present embodiment is the same as the configuration of the scattering characteristic measuring unit 41D and the control unit 40E in the fifth embodiment.
 散乱特性推定部42Fは、被測定空間SFにおけるプラズマパラメータ分布の推定量Edを使用し、プラズマパラメータ分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ES~ESを算出することができる。実施の形態6の数理モデルと同様の数理モデルを用いることにより低い演算負荷で高速に散乱特性の推定量ES~ESを算出することが可能である。 The scattering characteristic estimation unit 42F uses the estimated amount Ed of the plasma parameter distribution in the space SF to be measured, and the estimated amount ES 1 to ES of the scattering characteristics based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics. M can be calculated. By using a mathematical model similar to the mathematical model of the sixth embodiment, it is possible to calculate the estimated scattering characteristics ES 1 to ES M at high speed with a low calculation load.
 更新部43Fは、比較部44D及びパラメータ分布推定部45Fを含む。比較部44Dは、散乱特性の測定量MS~MSと数理モデルに基づいて算出された推定量ES~ESとの間の誤差Δ~Δを算出する。パラメータ分布推定部45Fは、最急降下法などの適応アルゴリズムの更新式に従い、当該誤差Δ~Δの大きさが小さくなるようにプラズマパラメータ分布の現在の推定量を修正することにより、プラズマパラメータ分布の更新された推定量Edを算出することができる。たとえば、誤差Δ~Δの大きさとしては、二乗平均誤差が算出されればよい。更新された推定量Edは、散乱特性推定部42Fに供給される。散乱特性推定部42Fは、更新された推定量Edに基づいて散乱特性の推定量ES~ESを算出することができる。散乱特性推定部42F及び更新部43Fは、適応アルゴリズムに基づく反復演算を実行することによりプラズマパラメータ分布の推定量Edを収束させることが可能である。 The update unit 43F includes a comparison unit 44D and a parameter distribution estimation unit 45F. Comparing unit 44D calculates an error Δ 1 ~ Δ M between the measured quantity MS 1 ~ MS M and estimator ES 1 ~ ES M calculated on the basis of the mathematical model of the scattering characteristics. Parameter distribution estimating unit 45F in accordance with update equation of the adaptive algorithm such as the steepest descent method, by modifying the current estimate of the plasma parameter distribution such that the magnitude of the error Δ 1 ~ Δ M is reduced, plasma parameters The updated estimator Ed of the distribution can be calculated. For example, the magnitude of the error Δ 1 ~ Δ M, mean squared error need be calculated. The updated estimator Ed is supplied to the scattering characteristic estimation unit 42F. The scattering characteristic estimation unit 42F can calculate the scattering characteristic estimators ES 1 to ES M based on the updated estimator Ed. The scattering characteristic estimation unit 42F and the update unit 43F can converge the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on the adaptive algorithm.
 次に、図20を参照しつつ、プラズマパラメータ測定装置17の動作について説明する。図20は、プラズマパラメータ測定装置17の動作手順の一例を概略的に示すフローチャートである。 Next, the operation of the plasma parameter measuring device 17 will be described with reference to FIG. FIG. 20 is a flowchart schematically showing an example of the operation procedure of the plasma parameter measuring device 17.
 先ず、上記実施の形態5の場合と同様に、プラズマパラメータ測定装置17は、送信アンテナTXから被測定空間SFに向けて電磁波を放射させて複数チャンネルの受信信号RS~RSを得る(ステップST41)。続けて、散乱特性測定部41Dは、受信信号RS~RSから被測定空間SFの散乱特性の測定量MS~MSを算出する(ステップST42)。 First, as in the case of the fifth embodiment, the plasma parameter measuring device 17 radiates an electromagnetic wave from the transmitting antenna TX toward the space SF to be measured to obtain the received signals RS 1 to RS M of a plurality of channels (step). ST41). Subsequently, the scattering characteristic measuring unit 41D calculates the measured quantities MS 1 to MS M of the scattering characteristic of the space SF to be measured from the received signals RS 1 to RS M (step ST42).
 その後、散乱特性推定部42F及び更新部43Fは、被測定空間SFのプラズマパラメータ分布の推定量Edを初期推定量に設定してプラズマパラメータの推定分布を初期化する(ステップST63)。たとえば、プラズマパラメータ分布の初期推定量としては、誘電率の一様分布に相当する量が設定されればよい。その後、散乱特性推定部42F及び更新部43Fは、所定の適応アルゴリズムに基づく反復演算を実行することによりプラズマパラメータ分布の推定量Edを更新する(ステップST64~ST66)。 After that, the scattering characteristic estimation unit 42F and the update unit 43F initialize the estimated distribution of plasma parameters by setting the estimated amount Ed of the plasma parameter distribution of the space SF to be measured as the initial estimated amount (step ST63). For example, as the initial estimator of the plasma parameter distribution, an amount corresponding to a uniform distribution of the dielectric constant may be set. After that, the scattering characteristic estimation unit 42F and the update unit 43F update the estimated amount Ed of the plasma parameter distribution by executing an iterative operation based on a predetermined adaptation algorithm (steps ST64 to ST66).
 すなわち、散乱特性推定部42Fは、被測定空間SFにおけるプラズマパラメータ分布と散乱特性との間の関係を示す数理モデルに基づいて散乱特性の推定量ES~ESを算出する(ステップST64)。更新部43Fは、散乱特性の測定量MS~MSと推定量ES~ESとの間の誤差Δ~Δの大きさを小さくするようにプラズマパラメータ分布の推定量Edを更新する(ステップST65)。具体的には、比較部44Dが誤差Δ~Δを算出した後、パラメータ分布推定部45Fは、最急降下法などの所定の適応アルゴリズムの更新式に従い、プラズマパラメータ分布の更新された推定量Edを算出し、当該更新された推定量Edを散乱特性推定部42Fに供給する。 That is, the scattering characteristic estimation unit 42F calculates the estimated scattering characteristics ES 1 to ES M based on the mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics in the space SF to be measured (step ST64). Update unit 43F is updated estimate Ed of the plasma parameter distribution to reduce the magnitude of the error Δ 1 ~ Δ M between the measured quantity MS 1 ~ MS M scattering properties and the estimated amounts ES 1 ~ ES M (Step ST65). Specifically, after the comparing unit 44D has calculated error Δ 1 ~ Δ M, the parameter distribution estimating unit 45F in accordance with update equation of predetermined adaptive algorithm such as the steepest descent method, updated estimates of the plasma parameter distribution Ed is calculated, and the updated estimator Ed is supplied to the scattering characteristic estimation unit 42F.
 ステップST65の後、パラメータ分布推定部45Fは、適応アルゴリズムに基づく反復演算を終了するか否かを判定する(ステップST66)。たとえば、反復演算の回数が上限値に到達した場合、あるいは、誤差Δ~Δの大きさが所定の収束条件を満たす場合には、パラメータ分布推定部45Fは反復演算を終了すると判定することができる(ステップST66のYES)。たとえば、所定の収束条件としては、誤差Δ~Δの大きさが所定回数連続して一定値以下となるという条件が挙げられる。 After step ST65, the parameter distribution estimation unit 45F determines whether or not to end the iterative operation based on the adaptive algorithm (step ST66). For example, if the number of iterative operations has reached the upper limit value or, if the magnitude of the error Δ 1 ~ Δ M is a predetermined convergence condition is satisfied, determining a parameter distribution estimating unit 45F finishes the iterative operation Can be done (YES in step ST66). For example, the predetermined convergence condition, the condition that the magnitude of the error Δ 1 ~ Δ M is equal to or less than a predetermined value continuously for a predetermined number of times and the like.
 反復演算を終了しないとの判定がなされた場合(ステップST66のNO)、散乱特性推定部42F、比較部44D及びパラメータ分布推定部45Fは、更新された推定量Edに基づき、ステップST64,ST65を再度実行する。最終的に反復演算を終了するとの判定がなされた場合(ステップST66のYES)、誘電率分布算出部47は、最後に更新されたプラズマパラメータ分布の推定量CEdを用い、所定の計算式(たとえば、式(7),(8))に基づいて誘電率分布を算出する(ステップST67)。そして、プラズマパラメータ測定装置16は、誘電率分布を示すデータPpとプラズマパラメータ分布の推定量CEdとを出力する(ステップST69)。 When it is determined that the iterative calculation is not completed (NO in step ST66), the scattering characteristic estimation unit 42F, the comparison unit 44D, and the parameter distribution estimation unit 45F perform steps ST64 and ST65 based on the updated estimator Ed. Try again. When it is finally determined that the iterative calculation is completed (YES in step ST66), the permittivity distribution calculation unit 47 uses the estimator CEd of the last updated plasma parameter distribution and uses a predetermined calculation formula (for example, YES). , Equations (7) and (8)) to calculate the permittivity distribution (step ST67). Then, the plasma parameter measuring device 16 outputs the data Pp showing the dielectric constant distribution and the estimated amount CEd of the plasma parameter distribution (step ST69).
 以上に説明したように実施の形態7のプラズマパラメータ測定システム7は、被測定空間SFを取り囲む複数の受信アンテナRX~RXを用いて瞬時に散乱特性の角度分布を得ることができる。このため、短時間に変動する散乱体を有する被測定空間SFに対しても精度よくプラズマパラメータ分布の推定を行うことができる。 As described above, the plasma parameter measurement system 7 of the seventh embodiment can instantly obtain an angular distribution of scattering characteristics by using a plurality of receiving antennas RX 1 to RX M surrounding the space SF to be measured. Therefore, it is possible to accurately estimate the plasma parameter distribution even for the measured space SF having a scatterer that fluctuates in a short time.
 以上、図面を参照して本発明に係る実施の形態1~7について述べたが、実施の形態1~7は本発明の例示であり、実施の形態1~7以外の様々な実施の形態を採用することもできる。本発明の範囲内において、実施の形態1~7の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 Although the embodiments 1 to 7 according to the present invention have been described above with reference to the drawings, the embodiments 1 to 7 are examples of the present invention, and various embodiments other than the embodiments 1 to 7 are used. It can also be adopted. Within the scope of the present invention, any combination of embodiments 1 to 7, modification of any component of each embodiment, or omission of any component of each embodiment is possible.
 たとえば、実施の形態1の場合と同様に、実施の形態2~7の誘電率測定装置11~15及びプラズマパラメータ測定装置16,17の各装置の機能の全部または一部は、たとえば、DSP,ASICまたはFPGAなどの半導体集積回路を有する単数または複数のプロセッサにより実現可能である。あるいは、各装置の機能の全部または一部は、ソフトウェアまたはファームウェアのプログラムコードを実行する、CPUまたはGPUなどの演算装置を含む単数または複数のプロセッサで実現されてもよい。あるいは、DSP,ASICまたはFPGAなどの半導体集積回路と、CPUまたはGPUなどの演算装置との組み合わせを含む単数または複数のプロセッサによって各装置の機能の全部または一部を実現することも可能である。図2に示した信号処理装置70によって各装置のハードウェア構成が実現されてもよい。 For example, as in the case of the first embodiment, all or a part of the functions of the permittivity measuring devices 11 to 15 and the plasma parameter measuring devices 16 and 17 of the second to seventh embodiments may be, for example, DSP. It can be realized by one or more processors having semiconductor integrated circuits such as ASIC or FPGA. Alternatively, all or part of the functionality of each device may be implemented by one or more processors, including arithmetic units such as CPUs or GPUs, that execute software or firmware program code. Alternatively, it is also possible to realize all or part of the functions of each device by a single or a plurality of processors including a combination of a semiconductor integrated circuit such as a DSP, ASIC or FPGA and a computing device such as a CPU or GPU. The hardware configuration of each device may be realized by the signal processing device 70 shown in FIG.
 本発明に係る誘電率測定装置、誘電率測定システム、プラズマパラメータ測定装置及びプラズマパラメータ測定システムは、被測定空間における誘電率などの特性値の空間分布を高精度に推定することができるので、たとえば、ロケットエンジンのプルームの解析に用いられるのに適している。 The permittivity measuring device, the permittivity measuring system, the plasma parameter measuring device, and the plasma parameter measuring system according to the present invention can estimate the spatial distribution of characteristic values such as the permittivity in the space under test with high accuracy. , Suitable for use in rocket engine plume analysis.
 1~5 プラズマパラメータ測定システム、2,6 誘電率測定システム、11~15 誘電率測定装置、16,17 プラズマパラメータ測定装置、20 送信器、30,30D 受信器、40,40C,40E 制御部、41,41D 散乱特性測定部、42,42D,42E,42F 散乱特性推定部、43,43D,43E,43F 更新部、44,44D 比較部、45,45D 誘電率分布推定部、45E,45F パラメータ分布推定部、46 パラメータ分布算出部、47 誘電率分布算出部、50,52 移動機構、51 保持部材、TX 送信アンテナ、RX,RX~RX 受信アンテナ、SF 被測定空間。 1 to 5 plasma parameter measurement system, 2,6 dielectric constant measurement system, 11 to 15 dielectric constant measurement device, 16,17 plasma parameter measurement device, 20 transmitters, 30, 30D receiver, 40, 40C, 40E control unit, 41,41D scattering characteristic measurement unit, 42,42D, 42E, 42F scattering characteristic estimation unit, 43,43D, 43E, 43F update unit, 44,44D comparison unit, 45,45D dielectric constant distribution estimation unit, 45E, 45F parameter distribution Estimating unit, 46 parameter distribution calculation unit, 47 dielectric constant distribution calculation unit, 50, 52 moving mechanism, 51 holding member, TX transmitting antenna, RX, RX 1 to RX M receiving antenna, SF measured space.

Claims (19)

  1.  被測定空間と対向配置された送信アンテナと、前記送信アンテナから前記被測定空間に向けて電磁波を放射させる送信器と、当該放射された電磁波に対応する散乱波を前記被測定空間から受信する少なくとも1つの受信アンテナと、前記少なくとも1つの受信アンテナの出力信号に基づいて受信信号を生成する受信器とを含む測定システムにおいて使用される誘電率測定装置であって、
     前記受信信号から前記被測定空間の散乱特性の測定量を算出する散乱特性測定部と、
     前記被測定空間における誘電率分布の推定量を用い、前記誘電率分布と前記散乱特性との間の関係を示す数理モデルに基づいて前記散乱特性の推定量を算出する散乱特性推定部と、
     前記測定量と前記推定量との間の誤差の大きさを小さくするように前記誘電率分布の推定量を更新する更新部と
    を備えることを特徴とする誘電率測定装置。
    A transmitting antenna arranged to face the measured space, a transmitter that radiates an electromagnetic wave from the transmitting antenna toward the measured space, and at least a scattered wave corresponding to the radiated electromagnetic wave is received from the measured space. A dielectric constant measuring device used in a measuring system including one receiving antenna and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna.
    A scattering characteristic measuring unit that calculates a measured amount of scattering characteristics in the space to be measured from the received signal,
    A scattering characteristic estimation unit that calculates an estimated amount of the scattering characteristics based on a mathematical model showing the relationship between the dielectric constant distribution and the scattering characteristics using the estimated amount of the dielectric constant distribution in the space to be measured.
    A permittivity measuring device comprising an updating unit that updates the estimated amount of the dielectric constant distribution so as to reduce the magnitude of an error between the measured amount and the estimated amount.
  2.  請求項1に記載の誘電率測定装置であって、前記散乱特性推定部及び前記更新部は、所定の適応アルゴリズムに基づく反復演算を実行することにより前記誘電率分布の推定量を収束させることを特徴とする誘電率測定装置。 The permittivity measuring device according to claim 1, wherein the scattering characteristic estimation unit and the update unit converge the estimated amount of the permittivity distribution by executing an iterative operation based on a predetermined adaptive algorithm. A featured permittivity measuring device.
  3.  請求項1または請求項2に記載の誘電率測定装置であって、前記誘電率分布の推定量を用いて電子密度分布、衝突周波数分布及びプラズマ周波数のうちの少なくとも1つをプラズマパラメータ分布として算出するパラメータ分布算出部をさらに備えることを特徴とする誘電率測定装置。 The permittivity measuring device according to claim 1 or 2, wherein at least one of the electron density distribution, the collision frequency distribution, and the plasma frequency is calculated as a plasma parameter distribution using the estimated amount of the permittivity distribution. A permittivity measuring device, further comprising a parameter distribution calculation unit.
  4.  請求項1から請求項3のうちのいずれか1項に記載の誘電率測定装置であって、前記被測定空間は、プルームが存在するプラズマ空間であることを特徴とする誘電率測定装置。 The permittivity measuring device according to any one of claims 1 to 3, wherein the space to be measured is a plasma space in which a plume exists.
  5.  請求項1から請求項4のうちのいずれか1項に記載の誘電率測定装置であって、前記電磁波の周波数帯はマイクロ波帯であることを特徴とする誘電率測定装置。 The permittivity measuring device according to any one of claims 1 to 4, wherein the frequency band of the electromagnetic wave is a microwave band.
  6.  請求項1から請求項5のうちのいずれか1項に記載の誘電率測定装置であって、
     前記少なくとも1つの受信アンテナは、前記被測定空間を取り囲むように対向配置された複数の受信アンテナを含み、
     前記受信器は、前記複数の受信アンテナの出力信号に基づいて複数チャンネルの受信信号を生成し、
     前記散乱特性測定部は、前記複数チャンネルの当該受信信号から前記散乱特性の複数の測定量をそれぞれ算出し、
     前記散乱特性推定部は、前記数理モデルに基づいて前記複数チャンネルにそれぞれ対応する前記散乱特性の複数の推定量を算出し、
     前記更新部は、前記複数の測定量と前記複数の推定量との間の誤差の大きさを小さくするように前記誘電率分布の推定量を更新する、
    ことを特徴とする誘電率測定装置。
    The dielectric constant measuring device according to any one of claims 1 to 5.
    The at least one receiving antenna includes a plurality of receiving antennas arranged to face each other so as to surround the space to be measured.
    The receiver generates a plurality of channels of received signals based on the output signals of the plurality of receiving antennas.
    The scattering characteristic measuring unit calculates a plurality of measured quantities of the scattering characteristic from the received signals of the plurality of channels, respectively.
    The scattering characteristic estimation unit calculates a plurality of estimated amounts of the scattering characteristics corresponding to the plurality of channels based on the mathematical model.
    The updater updates the estimate of the permittivity distribution so as to reduce the magnitude of the error between the plurality of measurements and the plurality of estimates.
    A permittivity measuring device characterized by this.
  7.  請求項1から請求項5のうちのいずれか1項に記載の誘電率測定装置と、前記送信アンテナと、前記送信器と、前記少なくとも1つの受信アンテナと、前記受信器とを備えることを特徴とする誘電率測定システム。 The dielectric constant measuring device according to any one of claims 1 to 5, the transmitting antenna, the transmitter, at least one receiving antenna, and the receiver are provided. Dielectric constant measurement system.
  8.  請求項7に記載の誘電率測定システムであって、前記送信アンテナに対して前記少なくとも1つの受信アンテナを相対的に移動させる移動機構をさらに備えることを特徴とする誘電率測定システム。 The dielectric constant measuring system according to claim 7, further comprising a moving mechanism for moving at least one receiving antenna relative to the transmitting antenna.
  9.  請求項6に記載の誘電率測定装置と、前記送信アンテナと、前記送信器と、前記複数の受信アンテナと、前記受信器とを備えることを特徴とする誘電率測定システム。 The permittivity measuring system according to claim 6, further comprising the permittivity measuring device, the transmitting antenna, the transmitter, the plurality of receiving antennas, and the receiver.
  10.  請求項9に記載の誘電率測定システムであって、前記被測定空間に対して前記送信アンテナ及び前記複数の受信アンテナを相対的に移動させる移動機構をさらに備えることを特徴とする誘電率測定システム。 The dielectric constant measuring system according to claim 9, further comprising a moving mechanism for moving the transmitting antenna and the plurality of receiving antennas relative to the space to be measured. ..
  11.  請求項10に記載の誘電率測定システムであって、
     前記複数の受信アンテナは、前記被測定空間の対称軸の周りに環状に配置され、
     前記移動機構は、前記対称軸に沿って前記送信アンテナ及び前記複数の受信アンテナを相対的に移動させるように構成されている、
    ことを特徴とする誘電率測定システム。
    The dielectric constant measuring system according to claim 10.
    The plurality of receiving antennas are arranged in an annular shape around the axis of symmetry of the space to be measured.
    The moving mechanism is configured to relatively move the transmitting antenna and the plurality of receiving antennas along the axis of symmetry.
    A permittivity measurement system characterized by this.
  12.  プラズマ状態の物質を含む被測定空間と対向配置された送信アンテナと、前記送信アンテナから前記被測定空間に向けて電磁波を放射させる送信器と、当該放射された電磁波に対応する散乱波を前記被測定空間から受信する少なくとも1つの受信アンテナと、前記少なくとも1つの受信アンテナの出力信号に基づいて受信信号を生成する受信器とを含む測定システムにおいて使用されるプラズマパラメータ測定装置であって、
     前記受信信号から前記被測定空間の散乱特性の測定量を算出する散乱特性測定部と、
     前記被測定空間におけるプラズマパラメータ分布の推定量を用い、前記プラズマパラメータ分布と前記散乱特性との間の関係を示す数理モデルに基づいて前記散乱特性の推定量を算出する散乱特性推定部と、
     前記測定量と前記推定量との間の誤差の大きさを小さくするように前記プラズマパラメータ分布の推定量を更新する更新部と
    を備えることを特徴とするプラズマパラメータ測定装置。
    A transmitting antenna arranged to face the measured space containing a substance in a plasma state, a transmitter that radiates an electromagnetic wave from the transmitting antenna toward the measured space, and a scattered wave corresponding to the radiated electromagnetic wave are subjected to the subject. A plasma parameter measuring device used in a measuring system including at least one receiving antenna receiving from a measurement space and a receiver that generates a receiving signal based on the output signal of the at least one receiving antenna.
    A scattering characteristic measuring unit that calculates a measured amount of scattering characteristics in the space to be measured from the received signal,
    A scattering characteristic estimation unit that calculates an estimated amount of the scattering characteristics based on a mathematical model showing the relationship between the plasma parameter distribution and the scattering characteristics using the estimated amount of the plasma parameter distribution in the space to be measured.
    A plasma parameter measuring apparatus including an update unit that updates the estimated amount of the plasma parameter distribution so as to reduce the magnitude of an error between the measured amount and the estimated amount.
  13.  請求項12に記載のプラズマパラメータ測定装置であって、前記散乱特性推定部及び前記更新部は、所定の適応アルゴリズムに基づく反復演算を実行することにより前記プラズマパラメータ分布の推定量を収束させることを特徴とするプラズマパラメータ測定装置。 The plasma parameter measuring device according to claim 12, wherein the scattering characteristic estimation unit and the updating unit converge the estimated amount of the plasma parameter distribution by executing an iterative calculation based on a predetermined adaptive algorithm. A featured plasma parameter measuring device.
  14.  請求項12または請求項13に記載のプラズマパラメータ測定装置であって、
     前記少なくとも1つの受信アンテナは、前記被測定空間を取り囲むように対向配置された複数の受信アンテナを含み、
     前記受信器は、前記複数の受信アンテナの出力信号に基づいて複数チャンネルの受信信号を生成し、
     前記散乱特性測定部は、前記複数チャンネルの当該受信信号から前記散乱特性の複数の測定量をそれぞれ算出し、
     前記散乱特性推定部は、前記数理モデルに基づいて前記複数チャンネルにそれぞれ対応する前記散乱特性の複数の推定量を算出し、
     前記更新部は、前記複数の測定量と前記複数の推定量との間の誤差の大きさを小さくするように前記プラズマパラメータ分布の推定量を更新する、
    ことを特徴とするプラズマパラメータ測定装置。
    The plasma parameter measuring apparatus according to claim 12 or 13.
    The at least one receiving antenna includes a plurality of receiving antennas arranged to face each other so as to surround the space to be measured.
    The receiver generates a plurality of channels of received signals based on the output signals of the plurality of receiving antennas.
    The scattering characteristic measuring unit calculates a plurality of measured quantities of the scattering characteristic from the received signals of the plurality of channels, respectively.
    The scattering characteristic estimation unit calculates a plurality of estimated amounts of the scattering characteristics corresponding to the plurality of channels based on the mathematical model.
    The updating unit updates the estimated amount of the plasma parameter distribution so as to reduce the magnitude of the error between the plurality of measured quantities and the plurality of estimated quantities.
    A plasma parameter measuring device characterized in that.
  15.  請求項12または請求項13に記載のプラズマパラメータ測定装置と、前記送信アンテナと、前記送信器と、前記少なくとも1つの受信アンテナと、前記受信器とを備えることを特徴とするプラズマパラメータ測定システム。 A plasma parameter measurement system comprising the plasma parameter measuring device according to claim 12 or 13, the transmitting antenna, the transmitter, at least one receiving antenna, and the receiver.
  16.  請求項15に記載のプラズマパラメータ測定システムであって、前記送信アンテナに対して前記少なくとも1つの受信アンテナを相対的に移動させる移動機構をさらに備えることを特徴とするプラズマパラメータ測定システム。 The plasma parameter measurement system according to claim 15, further comprising a moving mechanism for moving at least one receiving antenna relative to the transmitting antenna.
  17.  請求項14に記載のプラズマパラメータ測定装置と、前記送信アンテナと、前記送信器と、前記複数の受信アンテナと、前記受信器とを備えることを特徴とするプラズマパラメータ測定システム。 A plasma parameter measurement system comprising the plasma parameter measuring device according to claim 14, the transmitting antenna, the transmitter, the plurality of receiving antennas, and the receiver.
  18.  請求項17に記載のプラズマパラメータ測定システムであって、前記被測定空間に対して前記送信アンテナ及び前記複数の受信アンテナを相対的に移動させる移動機構をさらに備えることを特徴とするプラズマパラメータ測定システム。 The plasma parameter measurement system according to claim 17, further comprising a moving mechanism for moving the transmitting antenna and the plurality of receiving antennas relative to the space to be measured. ..
  19.  請求項18に記載のプラズマパラメータ測定システムであって、
     前記複数の受信アンテナは、前記被測定空間の対称軸の周りに環状に配置され、
     前記移動機構は、前記対称軸に沿って前記送信アンテナ及び前記複数の受信アンテナを相対的に移動させるように構成されている、
    ことを特徴とするプラズマパラメータ測定システム。
    The plasma parameter measurement system according to claim 18.
    The plurality of receiving antennas are arranged in an annular shape around the axis of symmetry of the space to be measured.
    The moving mechanism is configured to relatively move the transmitting antenna and the plurality of receiving antennas along the axis of symmetry.
    A plasma parameter measurement system characterized by this.
PCT/JP2019/020918 2019-05-27 2019-05-27 Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system WO2020240665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020918 WO2020240665A1 (en) 2019-05-27 2019-05-27 Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020918 WO2020240665A1 (en) 2019-05-27 2019-05-27 Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system

Publications (1)

Publication Number Publication Date
WO2020240665A1 true WO2020240665A1 (en) 2020-12-03

Family

ID=73553669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020918 WO2020240665A1 (en) 2019-05-27 2019-05-27 Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system

Country Status (1)

Country Link
WO (1) WO2020240665A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266692A (en) * 1999-03-19 2000-09-29 Sanyo Electric Co Ltd Evaluation device of plasma processing apparatus
US20100277184A1 (en) * 2009-04-29 2010-11-04 The Boeing Company Non-destructive determination of electromagnetic properties
JP2013125699A (en) * 2011-12-15 2013-06-24 Japan Atomic Energy Agency Calculation device, calculation method, and calculation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266692A (en) * 1999-03-19 2000-09-29 Sanyo Electric Co Ltd Evaluation device of plasma processing apparatus
US20100277184A1 (en) * 2009-04-29 2010-11-04 The Boeing Company Non-destructive determination of electromagnetic properties
JP2013125699A (en) * 2011-12-15 2013-06-24 Japan Atomic Energy Agency Calculation device, calculation method, and calculation program

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRAOKA, TAKAHIRO ET AL.: "Reconstructing Permittivity Distributions of 3D Scatterers", PROCEEDINGS OF 1997 IEICE SOCIETY CONFERENCE, 1997, pages 38 *
ISHIDA, KENICHI ET AL.: "Reconstructing 2D Permittivity Distributions by Constructing Equivalent Current Distributions", PROCEEDINGS OF 2005 IEICE SOCIETY CONFERENCE, pages 2 *
SHAWN OHLER, GILCHRIST BRIAN, GALLIMORE ALEC: "Nonintrusive Electron Number Density Measurements in the Plume of a 1 kW Arcjet Using a Modern Microwave Interferometer", IEEE TRANSACTIONS ON PLASMA SCIENCE, vol. 23, no. 3, June 1995 (1995-06-01), pages 428 - 435, XP055764663 *
SUSUMU TAKEDA, TAKASHIGE TSUKISHIMA: "The Microwave Measurements for Plasmas", OYO BUTURI, vol. 36, no. 4, 1967, pages 246 - 256, XP055764668 *

Similar Documents

Publication Publication Date Title
KR101220952B1 (en) System and technique for calibrating radar arrays
JP7001069B2 (en) Knowledge generator for inference, knowledge generation method for inference, and program
CN109633576B (en) Polarized SAR high-precision calibration algorithm under channel noise
EP2449626B1 (en) Self calibrating conformal phased array
CN111200896B (en) Plasma parameter diagnosis method based on broadband reflection coefficient curve curvature analysis
BR102012011523A2 (en) BEAM FORMING DEVICE, METHOD AND UNIT, ACTIVE IMAGE DEVICE AND METHOD FORMING A SCENE IMAGE, PROCESSING METHOD, COMPUTER PROGRAM, AND COMPUTER-READABLE NON-TRANSITIONAL MEASURE
CN104730503B (en) Determine methods and compensation method of the high resolution SAR reference target RCS on calibration influence
US10120072B2 (en) Method for determining a distance between an FMCW ranging device and a target
KR20150091975A (en) Doppler radar test system
CN104614714B (en) Double calibration treatment method based on minimum weighted mean square error
US6900438B2 (en) Baseline compensating method and camera used in millimeter wave imaging
Martín et al. Aircraft tracking by means of the Acoustical Doppler Effect
WO2020240665A1 (en) Dielectric constant measurement device, dielectric constant measurement system, plasma parameter measurement device, and plasma parameter measurement system
JP6849100B2 (en) Object detection device, object detection method and program
CN111521988A (en) Radar angle measurement method and device based on beam forming, radar and vehicle
JP6987307B2 (en) Signal processing equipment, radar system and signal processing program
KR101494390B1 (en) Near-Field Measurement Data Compensation Method and Radar and Sensor Using thereof
CN104049243B (en) A kind of method and system of diameter radar image emulation
KR101241926B1 (en) Conformity evaluation method of radome for 3 dimensional interferometric array by phase difference error estimation
Xiao et al. Parametric scattering center modeling for a conducting deep cavity
Qu et al. Scattering centers induced by creeping waves on cone-shaped targets in bistatic mode
Qu et al. Sparse recovery method for estimation of wall parameters in through-the-wall radar
Wang et al. Method of 2-D Range-Doppler Imaging for Plasma Wake Based on Range Walk Correction
JPH09211115A (en) Radar receiver
Güvenç et al. Anechoic Chamber Clean Zone Analysis with Angle Dependent Reflection Coefficients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP