WO2020239003A1 - 智能头盔 - Google Patents

智能头盔 Download PDF

Info

Publication number
WO2020239003A1
WO2020239003A1 PCT/CN2020/092843 CN2020092843W WO2020239003A1 WO 2020239003 A1 WO2020239003 A1 WO 2020239003A1 CN 2020092843 W CN2020092843 W CN 2020092843W WO 2020239003 A1 WO2020239003 A1 WO 2020239003A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
goggles
smart helmet
display module
sleeve
Prior art date
Application number
PCT/CN2020/092843
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
季春霖
黄河
王建德
刘宏伟
Original Assignee
深圳光启超材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920831677.8U external-priority patent/CN209911660U/zh
Priority claimed from CN201922307245.XU external-priority patent/CN211882456U/zh
Priority claimed from CN202020340687.4U external-priority patent/CN211047651U/zh
Application filed by 深圳光启超材料技术有限公司 filed Critical 深圳光启超材料技术有限公司
Publication of WO2020239003A1 publication Critical patent/WO2020239003A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the invention relates to the technical field of helmets, in particular to a smart helmet.
  • helmets are becoming more and more intelligent, often equipped with optical waveguide display modules to realize the visualization and interaction of related information.
  • Helmets are often equipped with goggles to protect the eyes. Both the optical waveguide display module and the goggles require a set of corresponding movement mechanisms for storage and opening.
  • Goggles and AR glasses have different storage and opening methods.
  • the structure is complex, the structure is many, and the space is large, which makes the whole machine heavier, has a strong sense of protrusion, and the center of gravity is shifted forward, and the wearing is unstable.
  • the technical problem to be solved by the present invention is to provide a smart helmet that enables the optical waveguide display module to be attached to the goggles and relies on the storage and opening and lowering movement mechanism of the goggles, thereby realizing the storage and storage of the optical waveguide display module.
  • the opening function simplifies the structure, reduces the weight of the whole machine, and improves the wearing comfort of smart wearable products.
  • an embodiment of the present invention provides a smart helmet, including: a housing and an optical waveguide goggles assembly arranged on the housing, the optical waveguide goggles assembly includes a goggles, an optical waveguide A display module, a connecting rod, the light guide display module is arranged on the right side of the goggles, a base is provided on the goggles, one end of the connecting rod fixes the base, and the other end fixes the light guide display Module.
  • the above technical solution has the following advantages: adopting the integrated structural design of the goggles and the light guide display module, so that the light guide display module is attached to the goggles, and depends on the storage and opening and lowering movements of the goggles
  • the mechanism realizes the storage and opening functions of the optical waveguide display module, simplifies the structure, reduces the weight of the whole machine, and improves the wearing comfort of smart wearable products.
  • Figure 1 is a schematic diagram of the structure of a smart helmet of the present invention.
  • FIG. 2 is a schematic diagram of the assembly structure of the optical waveguide display module and the goggles in FIG. 1.
  • Figure 3 is an exploded view of the optical waveguide goggles assembly in Figure 1.
  • Fig. 4 is a schematic diagram of the adjustment structure of the optical waveguide goggles assembly in Fig. 1.
  • FIG. 5 is a structural diagram of another embodiment of the adjustment structure of the optical waveguide display module of the present invention.
  • FIG. 6 is an exploded view of the embodiment of FIG. 5 of the adjusting structure of the optical waveguide display module of the present invention.
  • FIG. 7 is a structural diagram of the sliding component and the rotating component in the adjusting structure of the optical waveguide display module of the present invention when the ball hinge sleeve is not installed.
  • FIG. 8 is a structural diagram of the sliding component and the rotating component in the adjusting structure of the optical waveguide display module of the present invention after being installed.
  • FIG. 9 is a structural diagram of another angle of the sliding component and the rotating component in the adjusting structure of the optical waveguide display module of the present invention after installation.
  • FIG. 10 shows a schematic diagram of an exploded structure of a circuit assembly according to an embodiment of the present invention.
  • FIG. 11 shows a schematic diagram of the structure of the FPC in the circuit assembly shown in FIG. 10.
  • FIG. 12 shows a schematic structural view of the shielding film on the surface of the FPC bending area in the circuit assembly shown in FIG. 11.
  • FIG. 13 shows a schematic structural view of the FPC bending area in the circuit assembly shown in FIG. 10 after pre-bending processing.
  • Fig. 14 is a schematic cross-sectional view of Fig. 13.
  • FIG. 15 shows a schematic diagram of an assembly structure of a circuit assembly provided according to an embodiment of the present invention.
  • Figure 1 is a schematic diagram of the structure of a smart helmet of the present invention.
  • 2 is a schematic diagram of the assembly structure of the optical waveguide display module and the goggles in FIG. 1.
  • Figure 3 is an exploded view of the optical waveguide goggles assembly in Figure 1.
  • a smart helmet includes at least a housing 15 and an optical waveguide goggles assembly arranged on the housing.
  • the optical waveguide goggles assembly is arranged at the front of the smart helmet.
  • the light guide goggles assembly includes goggles 1, a light guide display module 13, and a connecting rod 18.
  • the light guide display module 13 is arranged on the right side of the goggles 1, and the light guide lens is in front of the wearer's eyes.
  • the goggles 1 is provided with a base 19, one end of the connecting rod 18 fixes the base 19, and the other end fixes the optical waveguide display module 13.
  • the base 19 and the goggles 1 can be independent of each other and are two parts; they can also be integrally injection molded, the purpose of which is to simplify the two parts into one part, which is convenient for production and maintenance.
  • Four M1.6*3 copper nuts are heat-melted on the base 19.
  • the goggles 1 are made of any one of polycarbonate PC, cellulose acetate, and Plexiglas, with a thickness of 1.5 mm to 3.5 mm. In this embodiment, the goggles select polycarbonate PC which has good toughness and is mostly used in the industry and has a long history of use. The thickness of the goggles 1 is selected as 2mm.
  • the connecting rod 18 may be made of materials such as PVC or soft aluminum that can withstand a certain high temperature, have a certain degree of flexibility, and do not rebound.
  • the connecting rod 18 of this embodiment is preferably made of soft aluminum, which has suitable hardness and sufficient strength.
  • the optical waveguide display module 13 includes an array type display lens, an optical machine, and an FPC line 16 that are electrically connected.
  • the FPC line 16 is attached to the connecting rod 18, and the outside is wrapped with silicone rubber, so that the FPC line 16 is smooth.
  • the FPC line 16 is externally wrapped with black silicone rubber that matches the color of the helmet, maintaining a consistent and beautiful appearance. Due to the use of high-strength and light-weight materials and no redundant structure, the weight of the connecting rod 18 is very light.
  • a fixing screw 17 is provided on the optical waveguide goggles assembly.
  • the fixing screw 17 is used in conjunction with the copper nut on the base 19.
  • the space at the goggles 1 is very limited.
  • the optical waveguide display module 13 itself has basically occupied the space; weight reduction is required, and the connecting rod 18 needs to have a position adjustment function.
  • the connection line of the optical waveguide display module 13 uses a flat FPC cable 16 .
  • the width of the FPC line 16 generally ranges from 4 mm to 8 mm. In this embodiment, the width of the FPC line 16 is preferably set to 6 mm.
  • Fig. 4 is a schematic diagram of the adjustment structure of the optical waveguide goggles assembly in Fig. 1.
  • the optical waveguide display module 13 is integrated with the goggles 1, and the storage and opening control mechanism of the goggles 1 is adopted to complete the integrated motion control of the two and reduce the structural parts.
  • the reduced weight of the whole machine improves the wearing comfort of smart wearable products.
  • the goggles 1 adopts the light discoloration effect, which changes its own color due to changes in external light.
  • the goggles 1 as the background, the contrast between the imaging back and the image of the light guide is enhanced, so that the image can be clear under strong light.
  • the presentation improves the use scene and the user experience.
  • the optical waveguide display module 13 can work with lower power consumption and improve battery life.
  • the optical waveguide display module 13 in the goggles 1 cannot be seen from the outside, which is more beautiful and natural, and reduces ordinary people's prying or fear of the wearer.
  • the connecting rod 18 is made of soft aluminum material with suitable hardness and sufficient strength.
  • the connecting rod 18 can also be deformed by breaking it by hand. The wearer can break the connecting rod appropriately according to the needs, adjust the front and back position and micro-adjust the up and down height, and finally the optical waveguide display module and the wearer's eye pupil position is the best.
  • the use of the smart helmet according to the present invention adopts the integrated structural design of the goggles and the light guide display module, so that the light guide display module is attached to the goggles, which depends on the storage and opening and lowering movement mechanism of the goggles Therefore, the storage and opening functions of the optical waveguide display module are realized, the structure is simplified, the weight of the whole machine is reduced, and the wearing comfort of smart wearable products is improved.
  • the optical waveguide display module moves relative to the goggles by means of connecting rods.
  • it can also be achieved through the cooperation of the slider and the guide rail.
  • an optical waveguide display module adjustment structure provided by the present invention is applied to the goggles 1 for adjusting the optical waveguide display module 13 on the goggles 1.
  • the optical waveguide display module The group adjustment structure includes: a guide rail 2, a sliding component, a rotating component; the guide rail 2 is arranged on the goggles 1, the rotating component is arranged on the optical waveguide display module 13, the sliding component connects the guide rail 2 and the rotating component, and the optical waveguide display module 13 groups After the sliding of the sliding component is pushed in the vertical direction by the external force, and/or the position is changed by the external force through the rotation of the rotating component, it is fixed relative to the goggles 1 to realize the position adjustment of the optical waveguide display module 13.
  • the vertical direction in this application refers to the direction in which the slider 7 moves along the up and down arrows in Fig. 6 of the specification;
  • the rotation direction of the rotating assembly refers to the direction indicated by the arc arrow in Fig. 6 of the specification.
  • the guide rail 2 can be fixed to the goggles 1 by pasting or bolting. Obviously, the guide rail 2 should be set on the side of the goggles 1 close to the human eye.
  • the guide rail 2 and the goggles 1 are kept relatively static; the sliding component can be relative to the guide rail 2. Sliding in the vertical direction, the sliding assembly and the guide rail 2 can be connected in the prior art such as sliding rails.
  • a magnetic component can also be used to achieve position fixation between the two; that is, a second guide rail 2 can be provided A magnet, a second magnet is arranged on the sliding assembly. The first magnet and the second magnet attract each other. Under no external force, the guide rail 2 and the sliding assembly remain relatively static.
  • the optical waveguide display module 13 is applied vertically
  • the sliding assembly overcomes the magnetic force and moves relative to the guide rail 2.
  • the thrust disappears, the sliding assembly and the guide rail 2 are maintained at the current position by the magnetic force.
  • other limiting structures can also be used between the sliding assembly and the guide rail 2 to ensure that they are stationary at a desired position.
  • the rotating component and the sliding component are connected, and the rotating component is connected to the optical waveguide display module 13.
  • the rotating component and the optical waveguide display module 13 can be fixedly connected by means such as pasting or bolting.
  • the rotating component can be more freely relative to the sliding component Degree rotation, that is, when the sliding component slides in the vertical direction relative to the guide rail 2 and the goggles 1, both the rotating component and the optical waveguide display module 13 slide synchronously with the sliding component, and the rotating component and the optical waveguide display module 13 Both can also rotate relative to the sliding assembly, so that the position of the optical waveguide display module 13 can be fully adjusted.
  • the rotating assembly can use the universal joint shaft and other components in the prior art to realize multi-degree-of-freedom rotation, that is, the universal joint shaft and other components are provided on the sliding assembly, and the sliding assembly can drive both the rotating assembly and the optical waveguide display module 13 relative to the guard.
  • the eyepiece 1 slides, and both the rotating assembly and the optical waveguide display module 13 can also be rotated in multiple degrees of freedom relative to the sliding assembly; of course, for the specific arrangement of the rotating assembly, a link with multiple degrees of freedom in the prior art can also be used
  • the structure ensures the multi-degree-of-freedom rotation of the rotating assembly and the optical waveguide display module 13. In addition, specific implementations of the rotating assembly will be given later.
  • the optical waveguide display module 13 and the goggles 1 move synchronously, when the goggles 1 is opened, the optical waveguide display module 13 needs to match the position of the wearer’s pupils.
  • the optical waveguide display module 13 and the wearer The distance and angle between the eyes of the user should be adjusted accordingly to ensure that the image is clearly seen by the user.
  • the above-mentioned setting method can realize the adjustment of the optical waveguide display module 13 and avoid the optical waveguide in the prior art.
  • the defect that the adjustment process of the display module 13 and the goggles 1 is relatively independent, the structure is simplified, the weight is reduced, the wearing comfort is improved, and the adjustment is convenient.
  • the sliding assembly may include a ball hinge 9, and the rotating assembly includes a rubber pad 10, and the rubber pad 10 has a recessed groove matched with the ball hinge 9, as shown in FIGS. 6 and 7 of the specification.
  • the material of the rubber pad 10 can be specifically TPU material, that is, the material named Thermoplastic polyurethane elastomer rubber; the ball hinge 9 is pressed into the recessed groove, and the two are closely matched and rub against each other; at the same time, due to friction , When the rubber pad 10 rotates relative to the ball hinge 9 it can stay at the current position; that is, the ball hinge 9 can only slide relative to the guide rail 2, and the rubber pad 10 can rotate with multiple degrees of freedom relative to the ball hinge 9.
  • the optical waveguide display module 13 rotates relative to the goggles 1 to complete position adjustment.
  • the sliding assembly and the rotating assembly thus arranged have simple structure, convenient use, and low installation and maintenance costs, which help reduce costs and facilitate operation.
  • the implementation of the rotation of the rotating assembly relative to the sliding assembly is not limited to the arrangement of the ball hinge 9 and the recessed groove, and the prior art methods such as universal joint shaft adjustment can also be used, which will not be repeated here.
  • the sliding assembly further includes a slider 7, which is slidably mounted on the guide rail 2, and a ball hinge 9 is provided on the slider 7, as shown in Figures 6 and 7 of the specification .
  • the ball hinge 9 can include a ball 91 and a leg 92.
  • the leg 92 is located at one end close to the guide rail 2; the slider 7 can be There is a mounting hole, which is a through hole. The through hole penetrates the slider 7 along the thickness direction of the slider 7.
  • the leg 92 is close to the end surface of the guide rail 2.
  • the size of the leg 92 is larger than the size of the mounting hole, and the second screw 5 can be used
  • a mounting hole is pierced from the side away from the ball 91 to realize the connection between the slider 7 and the leg 92.
  • the head of the second screw 5 should abut the end surface of the mounting hole close to the guide rail 2.
  • the ball 91 of the ball hinge 9 is located at an end away from the guide rail 2, and the ball 91 and the concave groove of the rubber pad 10 are matched in the manner described above.
  • the spherical hinge 9 and the slider 7 can also be arranged in an integrated manner to ensure that the spherical hinge 9 and the slider 7 slide synchronously with respect to the guide rail 2.
  • the end surface of the slider 7 away from the guide rail 2 can also be provided with a first sleeve 71 for fixing the legs 92 of the ball hinge 9.
  • the first sleeve 71 extends in the direction of the sphere 91 , Forming a structure similar to a sleeve, and the axis of the mounting hole and the axis of the first sleeve body 71 can be arranged collinearly; during installation, the legs 92 of the ball hinge 9 are installed in the first sleeve body 71 to support The leg 92 is pre-restricted, and then the leg 92 and the slider 7 are fixed by the second screw 5 through the mounting hole, thereby improving the reliability of the connection between the slider 7 and the spherical hinge 9.
  • the guide rail 2 can be set as a dovetail groove
  • the dovetail groove is provided with a plurality of limit pits distributed along the vertical direction
  • the slider 7 is provided with elastic limiters that cooperate with different limit pits.
  • Position 6 is shown in Figures 6 to 8 of the specification.
  • the dovetail groove can be arranged in a vertical manner, and the two side edges of the sliding block 7 respectively engage different side edges of the dovetail groove to ensure that the sliding block 7 can only move in a vertical manner under the guidance of the dovetail groove.
  • a plurality of limit pits are arranged on the dovetail groove along the vertical direction, the slider 7 is provided with an elastic limit portion 6, and the elastic limit portion 6 is used to cooperate with each limit pit; when the slider 7 is relative to the guide rail 2 When at rest, the elastic limit part 6 cooperates with the limit pit. At this time, the elastic limit part 6 is in a pop-up state. Ensure that the two sides of the slider 7 are against the different side edges of the dovetail groove to prevent the slider 7 from facing each other.
  • the elastic limit part 6 it can be set as a spring or other component with elastic potential energy. Obviously, both ends of the elastic limit part 6 should be pressed against the slider 7 and the guide rail 2 respectively to achieve the above technical effect; of course, This article will give another specific embodiment of the elastic limit part 6, as shown in Figures 7 and 8 of the specification.
  • the elastic limit part 6 includes a sleeve, an elastic part, and a limit body; the elastic part is arranged in the sleeve; one end of the elastic part resists the limit body, the other end resists the inner wall of the sleeve, and the limit body passes through the elastic part.
  • the elastic force and different limit pits are inserted, that is, the elastic limit part 6 is similar to the spring thimble in the prior art.
  • the slider 7 can be provided with a structure for the sleeve to be inserted.
  • the sleeve is cylindrical
  • the slider 7 is provided with a counterbore, and the sleeve can be fixed in the counterbore; of course, it can also Connect in other ways.
  • the sleeve is semi-closed, the end far away from the guide rail 2 is closed, the end close to the guide rail 2 has an opening, and has a necking structure; the elastic part and the limiting body are both restricted in the sleeve, and the elastic part is close to the side of the guide rail 2
  • the side of the elastic part that is far away from the guide rail 2 is against the inner wall of the sleeve. Under the action of the elastic part, the side of the restricting body close to the guide rail 2 is exposed outside the sleeve.
  • the limit body and the elastic part The opposite side is located in the sleeve, and based on the necking structure of the sleeve, the limiting body cannot be separated from the sleeve; as can be seen above, when the slider 7 is stationary relative to the guide rail 2, the limiting body and the limiting concave When the position of the sliding block 7 needs to be adjusted, the vertical force is applied to the sliding block 7 and the sliding block 7 is relative to the guiding rail 2 when the position of the sliding block 7 needs to be adjusted. When sliding, the limiting body slides out of the currently matched limiting pit. At this time, the elastic part is compressed.
  • the number of elastic limit parts 6 can be set to two, and the two elastic limit parts 6 are arranged in a vertical manner, respectively located at the two ends of the vertical direction.
  • the legs of the spherical hinge 9 92 can be located between the two elastic limit parts 6, that is, when the slider 7 is stationary relative to the guide rail 2, the two elastic limit parts 6 are respectively matched with different limit pits to further ensure that the slider 7 and The guide rail 2 is relatively stationary; in this case, the first distance between any two adjacent limit pits should be the same, and the second distance between the two elastic limit parts 6 should be the first distance Only in this way can the two elastic limit parts 6 cooperate with different limit pits respectively; of course, the number of elastic limit parts 6 can also be other, and the number of limit pits The number can also be determined according to actual needs and will not be repeated in this article.
  • the end surface of the slider 7 away from the guide rail 2 can also be provided with a second sleeve body 72 for fixing the elastic limit part 6.
  • the second sleeve body 72 is similar to the first sleeve body 71 described above. Ground, the second sleeve body 72 extends in the direction of the sphere 91 to form a sleeve-like structure; during installation, the elastic limit part 6 is installed in the second sleeve body 72 to fix the elastic limit part 6,
  • an interference fit can be adopted between the elastic limiting portion 6 and the second sleeve body 72 to ensure that the elastic limiting portion 6 is reliably fixed relative to the slider 7.
  • the limiting body can be further set as a metal ball, and accordingly, the limiting pit is set as a spherical groove to realize the limiting The cooperation of the body and the spherical groove ensures that the position of the slider 7 relative to the guide rail 2 is fixed.
  • the metal ball can be rotated under the limit of the sleeve, and when the slider 7 slides relative to the dovetail groove, the metal ball rolls in the dovetail groove, and there is rolling friction between the two, thereby significantly reducing the metal ball
  • the wear and tear of the dovetail groove improves the service life of the adjustment structure of the optical waveguide display module.
  • the vertical ends of the guide rail 2 are provided with stoppers 3 that limit the displacement range of the slider 7, as shown in FIG. 6 of the specification.
  • the first screw 4 can be used to fix the connection between the stopper 3 and the guide rail 2 to ensure a reliable limit.
  • the rotating assembly further includes a ball hinge sleeve 8, the ball hinge sleeve 8 has a cavity, and the rubber pad 10 is installed in the cavity, as shown in FIGS. 6 to 9 of the specification.
  • the ball hinge sleeve 8 can be arranged in a box structure with a cavity.
  • the ball hinge sleeve 8 has a through hole on the side close to the slider 7.
  • the ball hinge 9 passes through the through hole and is connected to the slider 7, the ball hinge 9 is located in the ball In the hinge sleeve 8, the side of the ball hinge sleeve 8 away from the slider 7 is open, for the rubber pad 10 to be installed in the cavity from the side away from the slider 7, thus enhancing the structure of the rotating assembly
  • the strength also protects the ball hinge 9 and the rubber pad 10.
  • the rotating assembly further includes a compression block 11, and the fastening part 12 of the compression block 11, the rubber pad 10 and the ball joint sleeve 8 is passed through in turn to connect the compression block 11 and the ball joint sleeve. 8 connection, the optical waveguide display module 13 is installed on the pressing block 11, as shown in Figures 6 to 9 of the specification.
  • a compression block 11 can also be provided.
  • the compression block 11 is located at the end away from the guide rail 2.
  • the compression block 11 can be regarded as the ball hinge sleeve 8 away from
  • the end cover on the side of the guide rail 2 further strengthens the structure of the rotating assembly and enhances the strength of the rotating assembly; the fastening part 12 successively penetrates the compression block 11, the rubber pad 10 and the ball hinge sleeve 8, thereby connecting the compression block 11 and the ball
  • the hinge sleeve 8 is connected; wherein, the fastening portion 12 can be specifically bolts or screws, etc., correspondingly, threads are provided on the compression block 11, the rubber pad 10, and the spherical hinge sleeve 8 to ensure the compression block 11, the rubber pad
  • the positions of 10 and the spherical hinge sleeve 8 are fixed, thereby strengthening the structure of the rotating assembly.
  • the four fastening parts 12 can be used to fasten the
  • the optical waveguide display module 13 is installed at the end of the pressing block 11 away from the guide rail 2.
  • the optical waveguide display module 13 and the pressing block 11 can be connected by a third screw 14; wherein, the third screw 14 may be arranged on the optical waveguide
  • the third screw 14 is preferably located in the middle of the pressing block 11.
  • the outer side wall of the rubber pad 10 and the inner side wall of the ball joint sleeve 8 closely fit.
  • the rubber pad 10 is installed on the ball joint sleeve 8
  • the ball joint 9 is embedded in the concave groove of the rubber pad 10.
  • the present invention also provides a goggles 1.
  • the goggles 1 include an optical waveguide display module 13, and the protective goggles 1 further include an optical waveguide display module adjustment structure for adjusting the position of the optical waveguide display module 13.
  • the optical waveguide display module The adjustment structure is the above-mentioned optical waveguide display module adjustment structure; other parts of the goggles 1 can refer to the prior art, which will not be expanded in this article.
  • the goggles 1 can also adopt the technology of light discoloration, and the color of itself changes due to the change of external light, which enhances the contrast between the imaging back and the image of the optical waveguide display module 13, so that the image can be clear even under strong light. Presenting, improving the use scene and improving the use experience.
  • the present invention also provides a helmet.
  • the helmet includes a goggles 1 and a goggles adjustment structure.
  • the goggles adjustment structure adjusts the position of the goggles 1.
  • the specific setting method of the goggles 1 is as above.
  • Other parts of the helmet can refer to the prior art , This article is no longer expanded.
  • a circuit assembly 310 provided by an embodiment of the present invention includes: a flexible circuit board (FPC line 16), a printed circuit board 312, and a housing 313, wherein the printed circuit board 312 is fixed inside the housing 313,
  • the flexible circuit board (FPC line 16) includes at least a non-bending area 112 and a bending area 113.
  • One end of the flexible circuit board (FPC line 16) is connected to the printed circuit board 312, and the other end extends from the opening of the housing 313, wherein
  • the inside of the housing 313 has at least one wire storage groove 131 that can accommodate the bending area 113 of the flexible circuit board (FPC wire 16). Further, the surface of the bending area 113 of the flexible circuit board (FPC line 16) is covered with a shielding film 200.
  • the bending area 113 of the flexible circuit board (FPC line 16) is pre-bent before assembly, so that the flexible circuit board (FPC line 16) is perpendicular to the length in the bending area 113 A bending structure is formed in the direction, and the printed circuit board 312 has a connection port 121, and is connected to the flexible circuit board (FPC line 16) through the connection port 121.
  • FIG. 12 shows a schematic structural view of the shielding film on the surface of the FPC bending area in the circuit assembly shown in FIG. 11.
  • the shielding film 200 covering the surface of the bending area 113 of the flexible circuit board (FPC line 16) includes at least a carrier film 210, an insulating layer 220, and a conductive adhesive layer 240 that are sequentially stacked.
  • the shielding film 200 is conductive
  • the glue layer 240 is attached to the surface of the bending area 113.
  • the shielding film 200 further includes a shielding layer 230 located between the conductive adhesive layer 240 and the insulating layer 220, and a protective film 250 located on the conductive adhesive layer 240.
  • the shielding layer 220 includes metal particles, which have regular shapes and are arranged in an orderly manner.
  • the shielding film 200 is used to soften the bending area 113, the outermost protective film 250 is torn off, and the conductive adhesive layer 240 is attached to the surface of the bending area 113.
  • the shielding layer 230 is a metal film or a plurality of evenly distributed metal particles.
  • the material of the metal film or the metal particles is silver, for example, with a thickness of 1 to 15 microns, and at least one of the protective film 250 and the carrier film 210
  • One of the materials is selected from epoxy resin, acrylic resin, urethane resin, silicone rubber resin, parylene resin, bismaleimide resin or polyimide resin
  • One of the thicknesses of at least one of the protective film 250 and the carrier film 210 is 1-20 microns, preferably 15 microns.
  • the insulating layer 220 is a polyimide film with a thickness of 2 to 15 microns, preferably 12.5 microns.
  • the conductive adhesive layer 240 is preferably a medium-temperature curing conductive adhesive.
  • the metal particles are arranged in an orderly manner and there are gaps between them.
  • the conductive adhesive can completely contact the surface of the shielding layer 230. , Reduce the conduction value of the shielding film, thereby improving the shielding ability of the shielding film.
  • the electromagnetic shielding effect of the bending area 113 can be ensured, and the thickness of the bending area 113 can be ensured to be thinner. Better bending performance.
  • the printed circuit board 312 also includes a plurality of positioning holes 122
  • the housing 313 includes a plurality of positioning studs 132 corresponding to the positions of the positioning holes 122, and a certain length reserved for storage
  • the flexible circuit board (FPC line 16) of the wire storage groove 131 further, in this embodiment, when assembling, the printed circuit board 312 through the positioning hole 122 corresponding to the positioning stud 132, the printed circuit board is pressed and fixed by the nut 312 is in the housing 313, the rear printed circuit board 312 is connected to the first connection end 111 of the flexible circuit board (FPC line 16) through the connection port 121, and the bending area 113 of the flexible circuit board (FPC line 16) is bent and stored in the storage In the wire groove 131, the portion of the non-bending area 112 close to the second connecting end 114 is extended through the groove or hole on the edge of the housing.
  • the flexible circuit board (FPC line 16) further includes a first connection end 111 and a second connection end 114, wherein the non-bending area 112 and the bending area 113 are located at the first connection of the flexible circuit board (FPC line 16). Between the end 111 and the second connection end 114.
  • the circuit assembly 310 provided in the embodiment of the present application further includes a connector (not shown).
  • the flexible circuit board FPC line 16
  • the second connecting end 114 is connected to the connector.
  • at least one side of the first connecting end 111 and/or the second connecting end 114 is pasted with a reinforcing plate.
  • the reinforcing plate is selected from the group consisting of stainless steel reinforcing plates, aluminum foil reinforcing plates, polyester reinforcing plates, polyimide reinforcing plates, glass fiber reinforcing plates, polyethylene terephthalate reinforcing plates One of the plate, PTFE reinforcing plate or polycarbonate reinforcing plate.
  • it is preferably a polyimide (PI) reinforcing plate.
  • polyimide (PI) is not the only material used as a reinforcing plate.
  • materials that constitute the above-mentioned various reinforcing plates are also materials that constitute the above-mentioned various reinforcing plates. However, because the soft plate is affected by the expansion and contraction of the material during production, most of them are It is suitable for PI as an insulating material.
  • connection end of the flexible circuit board is a golden finger or a connector plug.
  • Polyimide (PI) has the characteristics of good insulation, high temperature resistance and abrasion resistance.
  • PI reinforcement plates are used in FPC
  • the area on the back of the gold finger, and the area on the back of the FPC connector plug is preferably a polyethylene terephthalate (PET) reinforcing plate.
  • PET polyethylene terephthalate
  • the function of the reinforcing plate is to enhance the mechanical strength of the connection end and avoid the connection end from breaking during the insertion and unplugging process.
  • the thickness of the reinforcing plate is mainly based on the design drawings and the environment of use.
  • the portion of the non-bending area 112 close to the second connecting end 114 is formed with a fixing area 1121.
  • the fixing area 1121 is attached to the surface of the printed circuit board 312 and has a back glue.
  • the back glue is used to connect the fixing area 1121 with the printed circuit board 312.
  • the circuit board 312 is fixedly connected to avoid shaking, falling off, and bending of the first connection end 111 connected to the printed circuit board 312, which may cause problems such as poor contact or disconnection.
  • the preferred adhesive model is 3M9495, and its thickness is 0.1 mm.
  • the bending area 113 of the flexible circuit board (FPC line 16) Before softening the shielding film 200 on the bending area 113 of the flexible circuit board (FPC line 16), determine the approximate length of the flexible circuit board (FPC line 16) corresponding to the wire storage groove through the pre-assembly process as to be processed Further, after the shielding film 200 is attached to the bending area 113 of the flexible circuit board (FPC line 16) to be softened, the bending area 113 is pre-bended to make the bending The surface has a smooth transition to prevent creases or even tears in the bending area, which causes dysfunction of the circuit. Further, the flexible circuit board (FPC line 16) is provided with an arc-shaped chamfer structure along the bends on both sides of the bending area 113, also to prevent creases or tears. The structure of the bending area 113 of the flexible circuit board (FPC line 16) after pre-bending processing is shown in FIG. 13.
  • the pre-bending treatment can be realized by a pre-bending device (not shown) or other methods that do not damage the surface of the flexible circuit board (FPC), specifically, for example, a device with an arc-shaped curved surface with adsorption effect ,
  • a pre-bending device (not shown) or other methods that do not damage the surface of the flexible circuit board (FPC), specifically, for example, a device with an arc-shaped curved surface with adsorption effect .
  • adsorbing and fixing the bending area 113 of the flexible circuit board (FPC line 16) its surface shape has a bending structure that matches the curved surface of the device in contact, to achieve pre-bending treatment, or by having a variable radius
  • the curved surface of the device, the outer surface of the bending area 113 of the flexible circuit board (FPC line 16) is covered by the curved surface, and fixed (for example, by another curved surface matching the shape of the aforementioned curved surface to fit the flexible
  • FIG. 14 shows a schematic cross-sectional structure diagram of the FPC bending area in the wire storage groove in the circuit assembly.
  • the wire storage groove 131 has a certain width and a height corresponding to the thickness of the shell.
  • the bending area 113 of the flexible circuit board (FPC line 16) has a depth of the lowest point less than half of its length before bending.
  • the depth h of the lowest point of the bending region 113 after bending is less than or equal to the depth H of the wire storage groove 131, as shown in FIG. 14.
  • FIG. 15 shows a schematic diagram of an assembly structure of a circuit assembly provided according to an embodiment of the present invention.
  • the assembly process is started, and the printed circuit board 312 is first passed through the positioning holes 122 to correspond to the positioning studs 132.
  • the printed circuit board 312 is pressed and fixed in the housing 313 by a nut or a press button.
  • the rear printed circuit board 312 is connected to the first connection end 111 of the flexible circuit board (FPC line 16) through the connection port 121, and the flexible circuit board ( The bending area 113 of the FPC line 16) is bent and stored in the storage groove 131, and the part of the non-bending area close to the second connecting end 114 is extended through the opening part (such as a groove or hole) on the edge of the housing.
  • the resulting structure is shown in Figure 15, and then the other components are assembled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明提供了一种智能头盔,包括:壳体和设于所述壳体上的光波导护目镜组件,所述光波导护目镜组件包括护目镜、光波导显示模组、连杆,所述光波导显示模组设于所述护目镜右侧,所述护目镜上设有底座,所述连杆一端固定所述底座,另一端固定所述光波导显示模组。采用护目镜与光波导显示模组一体化结构设计,使光波导显示模组依附在护目镜上,依赖于护目镜的收纳和打开放下运动机构,从而实现了光波导显示模组的收纳和打开功能,简化了结构,减轻了整机重量,改善了智能穿戴产品的佩戴舒适性。

Description

智能头盔 技术领域
本发明涉及头盔技术领域,尤其涉及一种智能头盔。
背景技术
随着智能头盔的迅猛发展,头盔越来越来智能化,往往配备光波导显示模组以实现相关信息的可视和交互。头盔往往配备护目镜以保护眼睛。光波导显示模组和护目镜,均需要一套相应的收纳和打开放下的运动机构。
技术问题
现有设计中,也有采用护目镜与AR眼镜分离的方式。护目镜与AR眼镜各自有不同的收纳和打开方式,结构复杂,结构件繁多,占用空间大,使整机加重,前凸感强,重心前偏,佩戴不稳。
技术解决方案
本发明所要解决的技术问题是提供一种智能头盔,能够使光波导显示模组依附在护目镜上,依赖于护目镜的收纳和打开放下运动机构,从而实现了光波导显示模组的收纳和打开功能,简化了结构,减轻了整机重量,改善了智能穿戴产品的佩戴舒适性。
为解决上述技术问题,本发明一实施例提供了一种智能头盔,包括:壳体和设于所述壳体上的光波导护目镜组件,所述光波导护目镜组件包括护目镜、光波导显示模组、连杆,所述光波导显示模组设于所述护目镜右侧,所述护目镜上设有底座,所述连杆一端固定所述底座,另一端固定所述光波导显示模组。
有益效果
与现有技术相比,上述技术方案具有以下优点:采用护目镜与光波导显示模组一体化结构设计,使光波导显示模组依附在护目镜上,依赖于护目镜的收纳和打开放下运动机构,从而实现了光波导显示模组的收纳和打开功能,简化了结构,减轻了整机重量,改善了智能穿戴产品的佩戴舒适性。
附图说明
图1是本发明一种智能头盔结构示意图。
图2是图1中光波导显示模组与护目镜装配结构示意图。
图3是图1中光波导护目镜组件爆炸图。
图4是图1中光波导护目镜组件调节结构示意图。
图5是本发明光波导显示模组调节结构另一实施例的结构图。
图6是本发明光波导显示模组调节结构的图5实施例的爆炸图。
图7是本发明光波导显示模组调节结构中的滑动组件和转动组件在未安装球铰套时的结构图。
图8是本发明光波导显示模组调节结构中的滑动组件和转动组件在安装后的一种角度的结构图。
图9是本发明光波导显示模组调节结构中的滑动组件和转动组件在安装后的另一种角度的结构图。
图10示出根据本发明实施例提供的电路组件的分解结构示意图。
图11示出图10所示电路组件中FPC的结构示意图。
图12示出图11所示电路组件中FPC弯折区域表面的屏蔽膜的结构示意图。
图13示出图10所示电路组件中FPC弯折区域预弯折处理后的结构示意图。
图14为图13的截面示意图。
图15示出根据本发明实施例提供的电路组件的装配结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1是本发明一种智能头盔结构示意图。图2是图1中光波导显示模组与护目镜装配结构示意图。图3是图1中光波导护目镜组件爆炸图。如图1~图3所示,一种智能头盔,至少包括:壳体15和设于壳体上的光波导护目镜组件,具体实施时,光波导护目镜组件设置在智能头盔的前部。光波导护目镜组件包括护目镜1、光波导显示模组13、连杆18,光波导显示模组13设于护目镜1右侧,光波导镜片处在穿戴者眼部的前方。护目镜1上设有底座19,连杆18一端固定底座19,另一端固定光波导显示模组13。底座19与护目镜1可以彼此独立,为两个零件;也可以一体注塑成型,目的是将两个零件简化成一个零件,方便生产和打理。底座19上热熔4个M1.6*3的铜螺母。护目镜1采用聚碳酸酯PC、纤维素乙酸酯、树脂玻璃中的任何一种材质,厚度为1.5mm~3.5mm。此实施例护目镜选择韧性很好,且行业中大多用的且使用历史也较长的聚碳酸酯PC。护目镜1厚度选为2mm。连杆18可以采用PVC或者软铝等能承受一定高温、具有一定柔软度且不回弹的材质。该实施例连杆18优选采用软铝材质,硬度适宜,强度足够。光波导显示模组13包括通过电连接的阵列式显示镜片、光机、FPC线16。FPC线16与连杆18贴合,外部包裹硅橡胶,使得FPC线16顺畅。该实施例FPC线16外部包裹与头盔颜色相匹配的如黑色硅橡胶,保持一致外观美观。由于采用高强轻质的材料,没有多余结构,连杆18这部分重量非常轻。光波导护目镜组件上设有固定螺钉17。固定螺钉17与底座19上的铜螺母配套使用。护目镜1处的空间非常有限,光波导显示模组13本身基本已经占据了空间;需要减重、连杆18需要有位置调节功能,光波导显示模组13的连接线采用扁平的FPC线16。FPC线16的宽度一般有4mm~8mm,此实施例FPC线16的宽度优选设为6mm。
图4是图1中光波导护目镜组件调节结构示意图。如图4所示,通过本结构型式,将光波导显示模组13与护目镜1一体化设计,采用护目镜1的收纳和打开控制机构,完成两者一体化的运动控制,减少了结构件,减轻的整机重量,改善了智能穿戴产品的佩戴舒适性。
同时,护目镜1采用光照变色效果,因外界光线的变化而发生自身的颜色变化,以护目镜1为背景,增强了光波导的成像背影与图像的对比度,使图像在强光下也能清晰呈现,改善了使用场景,改善了用户使用感受。光波导显示模组13可以以较低的功耗进行工作,提高续航时间。
当护目镜1放下时,从外界不能看到护目镜1里面的光波导显示模组13,更加美观自然,减少普通人对穿戴者的窥探或者对穿戴者的畏惧感。
连杆18采用软铝材质,硬度适宜,强度足够,也可用手掰使得连杆18变形。穿戴者可根据需要适当手掰连杆,进行前后位置调节和上下高度的微量调节,最终光波导显示模组与佩戴者人眼瞳孔位置最佳。
由上述说明可知,使用根据本发明的智能头盔,采用护目镜与光波导显示模组一体化结构设计,使光波导显示模组依附在护目镜上,依赖于护目镜的收纳和打开放下运动机构,从而实现了光波导显示模组的收纳和打开功能,简化了结构,减轻了整机重量,改善了智能穿戴产品的佩戴舒适性。
在上述的实施例中,光波导显示模组通过连杆的方式相对护目镜进行相对移动。在其他可实现的例子中,还可以通过滑块与导轨的配合来实现。
如附图5和6所示,本发明提供的一种光波导显示模组调节结构,应用在护目镜1上用于对护目镜1上的光波导显示模组13进行调节,光波导显示模组调节结构包括:导轨2、滑动组件、转动组件;导轨2设置在护目镜1上,转动组件设置在光波导显示模组13上,滑动组件连接导轨2和转动组件,光波导显示模13组通过滑动组件的滑动被外力沿竖直方向推动后、和/或通过转动组件的旋转被外力改变位置后相对于护目镜1固定,以实现光波导显示模组13的位置调节。
其中,本申请中的竖直方向是指说明书附图6中,滑块7沿上下箭头移动的方向;转动组件的旋转方向参考指说明书附图6中,标有弧形箭头所指的方向。
导轨2可采用粘贴或者螺栓连接等方式固定于护目镜1,显然导轨2应设置在护目镜1靠近人眼的一侧,导轨2和护目镜1保持相对静止;滑动组件可相对于导轨2沿竖直方向滑动,滑动组件和导轨2之间可采用现有技术中诸如滑轨等方式实现滑动连接。
为了确保滑动组件可相对于导轨2静止于当前位置,除了本申请后续给出的具体实施方式之外,还可以采用磁力部件实现两者之间的位置固定;也即可在导轨2上设置第一磁铁,在滑动组件上设置第二磁铁,第一磁铁和第二磁铁相互吸引,在不受外力的作用下,导轨2和滑动组件保持相对静止,当对光波导显示模13施加沿竖直方向推力时,则滑动组件克服磁力并相对于导轨2运动,当推力消失时,依靠磁力使得滑动组件和导轨2保持于当前位置。当然,滑动组件和导轨2之间还可以其他限位结构确保两者静止于所需位置。
转动组件和滑动组件相连,且转动组件连接光波导显示模组13,转动组件和光波导显示模组13两者可采用诸如粘贴或者螺栓连接等方式实现固定连接,转动组件可相对于滑动组件多自由度旋转,也即当滑动组件相对于导轨2和护目镜1两者在竖直方向滑动时,则转动组件和光波导显示模组13两者同步于滑动组件滑动,并且转动组件和光波导显示模组13两者还能够相对于滑动组件旋转,这样即可充分调节光波导显示模组13的位置。
转动组件可采用现有技术中的万向轴等部件实现多自由度旋转,也即在滑动组件上设置万向轴等部件,滑动组件可带动转动组件和光波导显示模组13两者相对于护目镜1滑动,且转动组件和光波导显示模组13两者还可相对于滑动组件进行多自由度旋转;当然,针对转动组件的具体设置方式,还可以采用现有技术中多自由度的连杆结构,以确保转动组件和光波导显示模组13的多自由度旋转,此外,后文也将再给出转动组件的具体实施方式。
可以看出,由于光波导显示模组13和护目镜1两者同步运动,当护目镜1打开时,光波导显示模组13需要配合佩戴者人眼瞳孔位置,光波导显示模组13和佩戴者人眼之间的距离和角度应做出相应的调整,从而保证图像被使用者清晰看见,采用上述设置方式即可实现光波导显示模组13完成调节动作,进而避免现有技术中光波导显示模组13和护目镜1的调节过程相对独立的缺陷,简化了结构,降低了重量,有助于提升佩戴舒适性,且调节方便。
本申请可选地,滑动组件可包括球铰9,转动组件包括胶垫10,胶垫10具有与球铰9配合的凹陷槽,如说明书附图6和7所示。其中,胶垫10的材质可具体为TPU材质,也即Thermoplastic polyurethanes名称为热塑性聚氨酯弹性体橡胶的材质;球铰9压合于凹陷槽中,两者紧密配合,相互摩擦;同时,由于摩擦作用,当胶垫10相对于球铰9转动后能够停留在当前位置上;也即球铰9仅可相对于导轨2滑动,胶垫10可相对于球铰9多自由度旋转,当胶垫10相对于球铰9旋转时,光波导显示模组13相对于护目镜1旋转,以便完成位置调节。如此设置的滑动组件和转动组件,结构简单,使用方便,且安装和维护的成本较低,有助于减少成本,方便操作。当然,针对转动组件相对于滑动组件转动的实现方式,并不限于球铰9和凹陷槽的设置方式,还可以采用现有技术中诸如万向轴调节等方式,本文将不再赘述。
在上述实施例的基础之上,滑动组件还包括滑块7,滑块7可滑动地安装在导轨2上,球铰9设置在滑块7上,如说明书附图6和附图7所示。针对滑块7和导轨2的具体设置方式,可采用现有技术中诸多方式实现滑动连接,球铰9可包括球体91和支腿92,支腿92位于靠近导轨2的一端;滑块7可设有安装孔,安装孔为通孔,通孔沿滑块7的厚度方向贯穿滑块7,支腿92靠近导轨2端面,支腿92的尺寸大于安装孔的尺寸,可以利用第二螺钉5从远离球体91的一侧穿设安装孔,实现滑块7和支腿92的连接,第二螺钉5的头部应抵于安装孔靠近导轨2的端面上。球铰9的球体91位于远离导轨2的一端,球体91和胶垫10的凹陷槽采用上文所述的方式配合。当然,球铰9和滑块7之间还可以采用一体成型的方式设置,以确保球铰9和滑块7两者相对于导轨2同步滑动。
进一步地,如说明书附图7所示,滑块7远离导轨2的端面还可以设置第一套体71,用于固定球铰9的支腿92,第一套体71朝向球体91的方向延伸,形成类似于套筒的结构,且安装孔的轴线和第一套体71的轴线可共线设置;在安装时,将球铰9的支腿92安装于第一套体71中,对支腿92进行预限位,然后通过第二螺钉5通过安装孔将支腿92和滑块7固定,进而提升了滑块7和球铰9的连接可靠性。
在上述实施例的基础之上,导轨2可设置为燕尾槽,燕尾槽设置有沿竖直方向分布的多个限位凹坑,滑块7设置有与不同的限位凹坑配合的弹性限位部6,如说明书附图6至8所示。
燕尾槽可沿竖直方式设置,滑块7的两侧边缘分别和燕尾槽的不同侧边沿相互咬合,以确保滑块7仅能够在燕尾槽的导向作用下沿竖直方式运动。多个限位凹坑沿竖直方向设置在燕尾槽上,滑块7设置有弹性限位部6,弹性限位部6用于和每个限位凹坑配合;当滑块7相对于导轨2静止时,弹性限位部6和限位凹坑配合,此时弹性限位部6处于弹出状态,确保滑块7的两侧边缘分别和燕尾槽的不同侧边沿相抵,避免滑块7相对于导轨2滑动;当需要调节滑块7的位置时,可向滑块7施加竖直方向的作用力,滑块7相对于导轨2滑动时,弹性限位部6从当前配合的限位凹坑中滑出,此时弹性限位部6被压缩,当滑块7和弹性限位部6同步被移动至所需位置时,将弹性限位部6和当前的限位凹坑对准,此时弹性限位部6释放弹性势能,使得弹性限位部6和当前的限位凹坑配合,实现滑块7保持于当前位置。
针对弹性限位部6的具体设置方式,可设置为弹簧等具有弹性势能的部件,显然弹性限位部6的两端应分别抵于滑块7和导轨2,以实现上述技术效果;当然,本文将再给出一种弹性限位部6的具体实施例,如说明书附图7和8所示。
弹性限位部6包括套筒、弹性部、限位体;弹性部设置在套筒中;弹性部的一端和限位体相抵,另一端和套筒的内壁相抵,限位体通过弹性部的弹力和不同限位凹坑卡嵌,也即弹性限位部6类似于现有技术中的弹簧顶针。
滑块7可以设置有用以供套筒卡嵌的结构,例如套筒呈圆柱状,则滑块7设置沉孔,套筒能够固定于沉孔中;当然滑块7和套筒之间还可以采用其他方式连接。
套筒呈半封闭状,远离导轨2的一端封闭,靠近导轨2的一端具有开口,且呈缩口结构;弹性部和限位体均被限制在套筒中,弹性部靠近导轨2的一侧和限位体相抵,弹性部远离导轨2的一侧和套筒的内壁相抵,在弹性部的作用下,限位体靠近导轨2的一侧露在套筒的外侧,限位体和弹性部相抵的一侧位于套筒中,且基于套筒的缩口结构,限位体始终无法脱离套筒的;如上文可知,当滑块7相对于导轨2静止时,限位体和限位凹坑配合,此时限位体处于弹出状态,避免滑块7相对于导轨2滑动;当需要调节滑块7的位置时,向滑块7施加竖直方向的作用力,滑块7相对于导轨2滑动时,限位体从当前配合的限位凹坑中滑出,此时弹性部被压缩,当滑块7和弹性限位部6同步被移动至所需位置时,将限位体和当前的限位凹坑对准,此时弹性部释放弹性势能,使得限位体和当前的限位凹坑配合,实现滑块7保持于当前位置。
如说明书附图7所示,弹性限位部6的个数可设置为两个,两个弹性限位部6沿竖直方式设置,分别位于竖直方向的两端,球铰9的支腿92可位于两个弹性限位部6之间,也即当滑块7相对于导轨2静止时,两个弹性限位部6均分别和不同的限位凹坑配合,进一步确保滑块7和导轨2的相对静止;在这一情形下,任意相邻的两个限位凹坑之间的第一间距应相同,且两个弹性限位部6之间的第二间距应是第一间距的正整数倍,只有这样,两个弹性限位部6才能够均分别和不同的限位凹坑配合;当然,弹性限位部6的个数还可以为其他,且限位凹坑的个数也可根据实际需要而定,本文将不再赘述。
进一步地,如说明书附图7所示,滑块7远离导轨2的端面还可以设置第二套体72,用于固定弹性限位部6,第二套体72和上述第一套体71类似地,第二套体72朝向球体91的方向延伸,形成类似于套筒的结构;在安装时,将弹性限位部6安装于第二套体72中,用以固定弹性限位部6,且弹性限位部6和第二套体72之间可采用过盈配合的方式,确保弹性限位部6相对于滑块7固定可靠。
为了避免在调节滑块7位置的过程中限位体和燕尾槽的磨损过大,进一步可以将限位体设置为金属球,相应地,限位凹坑设置为球形凹槽,进行实现限位体和球形凹槽的配合,确保滑块7相对于导轨2的位置固定。
金属球可以在套筒的限位作用下进行旋转,且在滑块7相对于燕尾槽滑动的过程中,金属球在燕尾槽中滚动,两者之间为滚动摩擦力,进而显著降低金属球和燕尾槽的磨损,提升光波导显示模组调节结构的使用寿命。
在上述实施例的基础之上,为了避免滑块7脱离导轨2,导轨2的竖直两端设置有限制滑块7的位移范围的挡块3,如说明书附图6所示。在安装过程中,可以首先从导轨2的竖直两端将滑块7安装在导轨2上,然后再利用挡块3固定在导轨2的竖直两端,形成阻挡结构,避免滑块7脱离导轨2;其中,挡块3和导轨2之间可以采用第一螺钉4固定连接,确保限位可靠。
在上述实施例的基础之上,转动组件还包括球铰套8,球铰套8具有空腔,胶垫10安装于空腔中,如说明书附图6至9所示。
球铰套8可设置呈箱体结构,具有空腔,球铰套8靠近滑块7的一侧具有通孔,当球铰9穿设通孔后和滑块7相连,球铰9位于球铰套8中,球铰套8远离滑块7的一侧呈开口状,用以供胶垫10从远离滑块7的一侧安装于空腔中,这样一来,增强了转动组件的结构强度,同时也对球铰9和胶垫10起到保护作用。
在上述实施例的基础之上,转动组件还包括压紧块11,依次穿设压紧块11、胶垫10和球铰套8三者的紧固部12将压紧块11和球铰套8连接,光波导显示模组13安装在压紧块11上,如说明书附图6至9所示。
当球铰套8、球铰9和胶垫10安装完毕后,还可以设置压紧块11,压紧块11位于远离导轨2的一端,压紧块11可看作是球铰套8在远离导轨2一侧的端盖,进一步加固转动组件的结构,提升转动组件的强度;紧固部12依次穿设压紧块11、胶垫10和球铰套8,从而将压紧块11和球铰套8相连;其中,紧固部12可具体为螺栓或者螺钉等部件,相应地在压紧块11、胶垫10和球铰套8上设置螺纹等,以确保压紧块11、胶垫10和球铰套8三者的位置固定,进而加强转动组件的结构。其中,可以利用四个紧固部12分别紧固压紧块11的四个角,确保连接后的压紧块11、胶垫10和球铰套8三者受力均匀。
光波导显示模组13安装在压紧块11远离导轨2的一端,光波导显示模组13和压紧块11之间可采用第三螺钉14相连;其中,第三螺钉14可设置在光波导显示模组13的顶部,第三螺钉14最好位于压紧块11的中间。如此设置,光波导显示模组13和转动组件之间的位置合理,使用及更换维修方便。
为进一步确保球铰套8和胶垫10之间的位置固定,胶垫10的外侧壁和球铰套8的内侧壁紧密贴合,当胶垫10安装于球铰套8时,则球铰9嵌于胶垫10的凹陷槽中,此时球铰套8、球铰9和胶垫10三者的位置即可固定,显著提升了转动组件的可靠性,有助于延长光波导显示模组调节结构的使用寿命。
本发明还提供一种护目镜1,护目镜1包括光波导显示模组13,护目镜1还包括对光波导显示模组13进行位置调节的光波导显示模组调节结构,光波导显示模组调节结构为上述的光波导显示模组调节结构;护目镜1的其他部分可以参照现有技术,本文不再展开。
进一步地,护目镜1还可以采用光照变色的技术,自身的颜色因外界光线的变化而变化,增强了光波导显示模组13的成像背影与图像的对比度,使图像在强光下也能清晰呈现,改善了使用场景,提高使用感受。
本发明还提供一种头盔,头盔包括护目镜1和护目镜调节结构,护目镜调节结构对护目镜1进行位置调节,护目镜1的具体设置方式如上文,头盔的其他部分可以参照现有技术,本文不再展开。
图10和图11分别示出根据本发明实施例提供的电路组件的分解结构示意图和FPC的结构示意图。如图所示,本发明实施例提供的一种电路组件310,包括:柔性电路板(FPC线16)和印刷电路板312,以及外壳313,其中,印刷电路板312固定在外壳313的内部,柔性电路板(FPC线16)至少包括非弯折区域112和弯折区域113,柔性电路板(FPC线16)的一端与印刷电路板312连接,另一端从外壳313的开口部分伸出,其中,外壳313的内部具有至少一个可容置柔性电路板(FPC线16)中弯曲区域113的储线槽131。进一步的,柔性电路板(FPC线16)的弯折区域113表面覆盖有屏蔽膜200。进一步的,该电路组件310中,在装配前对柔性电路板(FPC线16)的弯折区域113进行预弯折处理,使柔性电路板(FPC线16)在弯折区域113在垂直于长度方向上形成有弯折结构,印刷电路板312则具有连接端口121,通过连接端口121与柔性电路板(FPC线16)相连接。
图12示出图11所示电路组件中FPC弯折区域表面的屏蔽膜的结构示意图。如图12所示,柔性电路板(FPC线16)的弯折区域113表面覆盖的屏蔽膜200至少包括依次叠合的载体膜210、绝缘层220和导电胶层240,该屏蔽膜200以导电胶层240贴附于该弯折区域113的表面。进一步的,屏蔽膜200还包括位于导电胶层240和绝缘层之间220的屏蔽层230,以及位于导电胶层240上的保护膜250。进一步的,该屏蔽层220包括金属粒子,其形状规则且有序排列。使用屏蔽膜200对所述弯折区域113做柔化处理时,撕掉最外层的保护膜250,将导电胶层240贴附于该弯折区域113的表面。
进一步的,屏蔽层230为金属薄膜或者均匀分布的多个金属粒子,具体的,金属薄膜或金属粒子的材料例如为银,其厚度为1至15微米,而保护膜250和载体膜210中至少一个的的材料为选自环氧树脂、丙烯酸系树脂、胺基甲酸酯系树脂、硅橡胶系树脂、聚对环二甲苯系树脂、双马来酰亚胺系树脂或聚酰亚胺树脂中的一种,该保护膜250和载体膜210中至少一个的厚度为1至20微米,优选为15微米。绝缘层220为聚酰亚胺薄膜,其厚度为2至15微米,优选为12.5微米。进一步的,导电胶层240优选为中温固化导电胶,涂布导电胶时由于金属粒子有序排列且之间存在缝隙,当导电胶进入到缝隙中时可使导电胶与屏蔽层230表面完全接触,降低屏蔽膜的导通值,从而提高了屏蔽膜的屏蔽能力。在本实施例中,通过在弯折区域113上覆盖上述屏蔽膜200实现柔化处理,既能保证弯折区域113的电磁屏蔽效果,又能保证弯折区域113的厚度较薄,使其具有较好的弯折性能。
进一步的,如图10所示,印刷电路板312还包括有多个定位孔122,外壳313内包括有多个与定位孔122位置相对应的定位螺柱132,以及用于存储预留一定长度的柔性电路板(FPC线16)的储线槽131,进一步的,在本实施例中装配时,将印刷电路板312经定位孔122对应定位螺柱132,由螺母压覆固定固定印刷电路板312在外壳313中,后印刷电路板312通过连接端口121连接柔性电路板(FPC线16)的第一连接端111,将柔性电路板(FPC线16)的弯折区域113弯折存储于储线槽131内,再将非弯折区域112靠近第二连接端114的部分通过外壳边缘的凹槽或孔延伸出来。
进一步的,柔性电路板(FPC线16)还包括第一连接端111和第二连接端114,其中,非弯折区域112和弯折区域113位于柔性电路板(FPC线16)的第一连接端111和第二连接端114之间。
进一步的,本申请实施例提供的电路组件310还包括连接器(未示出),装配时,柔性电路板(FPC线16)通过第一连接端111连接印刷电路板312的连接端口121,通过第二连接端114连接该连接器。进一步的,第一连接端111和/或第二连接端114的至少一侧粘贴有补强板。进一步的,补强板为选自不锈钢补强板、铝箔补强板、聚脂补强板、聚酰亚胺补强板、玻璃纤维补强板、聚对苯二甲酸乙二醇酯补强板、聚四氟乙烯补强板或聚碳酸酯补强板中的一种。在本实施例中,优选为聚酰亚胺(polyimide,简称PI)补强板。在此聚酰亚胺(PI)并不是唯一作为补强板的材料,还有像构成上述多种补强板的材料,但是由于软板在生产的时候受到材料涨缩性的影响,多数是以PI作为绝缘材料适用的。
一般的,柔性电路板(FPC线16)的连接端为金手指或连接器插头,聚酰亚胺(PI)具有绝缘性好,耐高温,耐磨损的特点,PI补强板用在FPC金手指背部的区域,而FPC连接器插头背部的区域优选为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET)补强板。补强板的作用是用来增强连接端的机械强度,避免插拔过程中连接端折断,而补强板的厚度主要是根据设计图纸及使用环境,选择不同厚度的补强板进行压合。
进一步的,非弯折区域112靠近第二连接端114的部分形成有固定区域1121,该固定区域1121贴合于印刷电路板312的表面具有背胶,该背胶用于将固定区域1121与印刷电路板312固定连接,避免连接印刷电路板312的第一连接端111发生晃动、脱落和折弯等情况,造成接触不良或断开连接等问题。在本实施例中,优选背胶型号为3M9495,其厚度为0.1mm。
在对柔性电路板(FPC线16)的弯折区域113贴装屏蔽膜200进行柔化处理前,通过预装配过程确定柔性电路板(FPC线16)对应储线槽的大致长度作为待处理的弯折区域113,进一步的,在对柔性电路板(FPC线16)的弯折区域113贴装屏蔽膜200进行柔化处理后,对此弯折区域113进行预弯折处理,使弯折表面呈圆滑过渡,防止弯折区域出现折痕甚至撕裂,造成线路的功能障碍问题。进一步的,柔性电路板(FPC线16)在弯折区域113两侧沿折弯处设置有弧形倒角结构,同样是为了防止出现折痕或撕裂的情况。柔性电路板(FPC线16)的弯折区域113预弯折处理后的结构如图13所示。
进一步的,进行预弯折处理可通过预弯折装置(未示出)或其他不损坏柔性电路板(FPC)表面的方式来实现,具体的例如可通过带有吸附作用的弧形曲面的装置,通过吸附固定柔性电路板(FPC线16)的弯折区域113,使其表面形状具有与接触的装置弧形曲面相匹配形状的弯折结构,实现预弯折处理,或者通过具有半径可变的弧形曲面的装置,通过弧形表面包覆柔性电路板(FPC线16)弯折区域113的外表面,并予以固定(如通过另一与前述弧形曲面形状相匹配的曲面贴合柔性电路板(FPC线16)弯折区域113的内表面,与之形成对柔性电路板(FPC线16)呈夹持结构的固定),使柔性电路板(FPC线16)的弯折区域113的弯折度随该弧形曲面的半径变化而变化,让FPC有一个弯曲的趋势,以达到与上述外壳313的储线槽132空间尺寸相匹配的要求,同时避免弯折区域出现折痕甚至撕裂的情况。当然,实现预弯折处理的方法包括但不限于使用上述原理的治具,还可以有其他本领域技术人员能轻易想到的其他实现形式。
图14示出电路组件中FPC弯折区域在储线槽中的截面结构示意图。进一步的,该储线槽131具有一定宽度和与外壳厚度相适应的高度,柔性电路板(FPC线16)的弯折区域113,弯折后最低点的深度小于其弯折前长度的一半,而该弯折区域113弯折后最低点的深度h小于或等于该储线槽131的深度H,如图14所示。
图15示出根据本发明实施例提供的电路组件的装配结构示意图。在本实施例中,对柔性电路板(FPC线16)在弯折区域113进行柔化处理和预弯折处理后,开始进行装配过程,先将印刷电路板312经定位孔122对应定位螺柱132,由螺母或压扣将印刷电路板312压覆固定在外壳313中,后印刷电路板312通过连接端口121连接柔性电路板(FPC线16)的第一连接端111,将柔性电路板(FPC线16)的弯折区域113弯折存储于储线槽131内,再将非弯折区域靠近第二连接端114的部分通过外壳边缘的开口部分(如凹槽或孔)延伸出来,其形成结构如图15所示,而后进行其他组件的装配。
工业实用性
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (29)

  1. 一种智能头盔,其特征在于,包括:壳体和设于所述壳体上的光波导护目镜组件,所述光波导护目镜组件包括护目镜、光波导显示模组、连杆,所述光波导显示模组设于所述护目镜右侧,所述护目镜上设有底座,所述连杆一端固定所述底座,另一端固定所述光波导显示模组。
  2. 根据权利要求1所述的智能头盔,其特征在于,所述底座与所述护目镜一体注塑成型。
  3. 根据权利要求1所述的智能头盔,其特征在于,所述护目镜采用聚碳酸酯PC、纤维素乙酸酯、树脂玻璃中的任何一种。
  4. 根据权利要求1所述的智能头盔,其特征在于,所述连杆采用软铝材质。
  5. 根据权利要求1所述的智能头盔,其特征在于,所述光波导显示模组包括通过电连接的阵列式显示镜片、光机、FPC线。
  6. 根据权利要求1所述的智能头盔,其特征在于,所述底座设有螺母,所述螺母固定所述底座。
  7. 根据权利要求1所述的智能头盔,其特征在于,所述光波导护目镜组件上设有固定螺钉,所述固定螺钉用于固定所述连杆。
  8. 根据权利要求5所述的智能头盔,其特征在于,所述FPC线与所述连杆贴合。
  9. 根据权利要求5所述的智能头盔,其特征在于,所述FPC线的外部包裹硅橡胶。
  10. 根据权利要求1所述的智能头盔,其特征在于,所述光波导显示模组调节结构应用在护目镜上用于对所述护目镜上的光波导显示模组进行调节,所述光波导显示模组调节结构包括:导轨、滑动组件、转动组件;所述导轨设置在所述护目镜上,所述转动组件设置在所述光波导显示模组上,所述滑动组件连接所述导轨和所述转动组件,所述光波导显示模组通过所述滑动组件的滑动、和/或通过所述转动组件的旋转实现所述光波导显示模组相对于所述护目镜的位置调节。
  11. 根据权利要求10所述的智能头盔,其特征在于,所述滑动组件包括球铰,所述转动组件包括胶垫,所述胶垫具有用以与所述球铰配合的凹陷槽。
  12. 根据权利要求11所述的智能头盔,其特征在于,所述滑动组件还包括滑块,所述滑块可滑动地安装在所述导轨上,所述球铰包括用以与所述凹陷槽配合的球体,还包括和所述球体相连、用以与所述滑块相连的支腿。
  13. 根据权利要求12所述的智能头盔,其特征在于,所述导轨为燕尾槽,所述燕尾槽设置有沿竖直方向分布的多个限位凹坑,所述滑块设置有用以与所述限位凹坑配合的弹性限位部。
  14. 根据权利要求13所述的智能头盔,其特征在于,其特征在于,所述弹性限位部包括套筒、弹性部、限位体;所述弹性部设置在所述套筒中;所述弹性部的一端和所述限位体相抵,另一端和所述套筒的内壁相抵,所述限位体通过所述弹性部的弹力和不同所述限位凹坑卡嵌。
  15. 根据权利要求14所述的智能头盔,其特征在于,所述滑块设有用以套接所述支腿的第一套体,所述第一套体沿远离所述滑块的方向延伸,和/或;
    所述滑块设有用以套接所述套筒的第二套体,所述第二套体和所述第一套体的延伸方向相同。
  16. 根据权利要求14所述的智能头盔,其特征在于,所述弹性限位部的个数为两个,两个所述弹性限位部沿竖直方向分布在所述支腿的两侧。
  17. 根据权利要求14所述的智能头盔,其特征在于,所述燕尾槽的竖直两端设置有限制所述滑块的位移范围的挡块。
  18. 根据权利要求11-17任一项所述的智能头盔,其特征在于,所述转动组件还包括球铰套,所述球铰套具有空腔,所述胶垫安装于所述空腔中。
  19. 根据权利要求18所述的智能头盔,其特征在于,所述转动组件还包括压紧块,所述压紧块位于所述球铰套远离所述导轨的一端,所述压紧块和所述球铰套相连。
  20. 根据权利要求19所述的智能头盔,其特征在于,所述转动组件还包括紧固部,所述紧固部依次穿设所述压紧块、所述胶垫和所述球铰套,所述光波导显示模组安装在所述压紧块上。
  21. 根据权利要求19所述的智能头盔,其特征在于,所述胶垫的外侧壁和所述空腔的内侧壁紧密贴合。
  22. 根据权利要求1所述的智能头盔,其特征在于,所述光波导显示模组包括外壳;
    印刷电路板,固定在所述外壳内部;以及
    柔性电路板,至少包括非弯折区域和弯折区域,所述柔性电路板的一端与所述印刷电路板连接,另一端从所述外壳的开口部分伸出,
    其中,所述外壳的内部具有至少一个可容置所述柔性电路板中所述弯曲区域的储线空间。
  23. 根据权利要求22所述的智能头盔,其特征在于,所述柔性电路板的弯折区域表面覆盖有屏蔽膜。
  24. 根据权利要求22所述的智能头盔,其特征在于,所述柔性电路板的弯折区域在垂直于其长度方向上形成有弯折结构。
  25. 根据权利要求23所述的智能头盔,其特征在于,所述屏蔽膜至少包括依次叠合的载体膜、绝缘层、导电胶层,所述屏蔽膜以所述导电胶层贴附于所述弯折区域表面。
  26. 根据权利要求25所述的智能头盔,其特征在于,所述屏蔽膜还包括:
    屏蔽层,所述屏蔽层位于所述导电胶层和所述绝缘层之间;
    保护膜,位于所述导电胶层上。
  27. 根据权利要求22所述的智能头盔,其特征在于,所述柔性电路板还包括第一连接端和第二连接端,其中,所述非弯折区域和所述弯折区域位于所述第一连接端和第二连接端之间。
  28. 根据权利要求27所述的智能头盔,其特征在于,所述第一连接端和/或所述第二连接端至少一侧具有补强板。
  29. 根据权利要求22所述的智能头盔,其特征在于,所述柔性电路板在所述弯折区域两侧沿折弯处设置有弧形倒角结构。
PCT/CN2020/092843 2019-05-31 2020-05-28 智能头盔 WO2020239003A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201920831677.8U CN209911660U (zh) 2019-05-31 2019-05-31 一种光波导显示模组调节结构、护目镜和头盔
CN201920831677.8 2019-05-31
CN201922307245.XU CN211882456U (zh) 2019-12-20 2019-12-20 一种智能头盔
CN201922307245.X 2019-12-20
CN202020340687.4 2020-03-18
CN202020340687.4U CN211047651U (zh) 2020-03-18 2020-03-18 电路组件

Publications (1)

Publication Number Publication Date
WO2020239003A1 true WO2020239003A1 (zh) 2020-12-03

Family

ID=73553491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092843 WO2020239003A1 (zh) 2019-05-31 2020-05-28 智能头盔

Country Status (1)

Country Link
WO (1) WO2020239003A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8745058B1 (en) * 2012-02-21 2014-06-03 Google Inc. Dynamic data item searching
CN207220273U (zh) * 2017-09-14 2018-04-13 长沙市英迈瑞孚智能技术有限公司 可视化海警巡防头盔
CN208141469U (zh) * 2018-04-26 2018-11-23 中国安全生产科学研究院 用于冶金厂房的多功能ar巡检设备
CN208403375U (zh) * 2018-04-02 2019-01-22 太平洋未来科技(深圳)有限公司 一种ar智能巡检头盔
CN208902978U (zh) * 2018-08-07 2019-05-24 佛山市尚林文化传播有限公司 一种多功能且低能耗的ar智能眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8745058B1 (en) * 2012-02-21 2014-06-03 Google Inc. Dynamic data item searching
CN207220273U (zh) * 2017-09-14 2018-04-13 长沙市英迈瑞孚智能技术有限公司 可视化海警巡防头盔
CN208403375U (zh) * 2018-04-02 2019-01-22 太平洋未来科技(深圳)有限公司 一种ar智能巡检头盔
CN208141469U (zh) * 2018-04-26 2018-11-23 中国安全生产科学研究院 用于冶金厂房的多功能ar巡检设备
CN208902978U (zh) * 2018-08-07 2019-05-24 佛山市尚林文化传播有限公司 一种多功能且低能耗的ar智能眼镜

Similar Documents

Publication Publication Date Title
EP3264732B1 (en) Mobile terminal
WO2020164446A1 (zh) 可穿戴设备
US11216039B2 (en) Flexible display
CN113841288B (zh) 电池模组、柔性显示装置及移动终端
US7786954B2 (en) Adjustable head-mount type display device
US11533808B2 (en) Display device coupled to circuit board with coupling film
JP7377968B2 (ja) 表示モジュールとその制御方法と装置、電子機器
CN111968501B (zh) 可挠式电子装置
CN109124869A (zh) 一种颠覆传统视觉习惯并进行脑眼协调运动影像训练系统
CN110134184A (zh) 非共轴转动的智能穿戴设备
WO2020239003A1 (zh) 智能头盔
CN110908112A (zh) 用于可调节显示设备的动态密封件
CN109358436B (zh) 利于散热的智能眼镜
CN112333362B (zh) 摄像头组件及电子设备
CN106210475B (zh) 万向旋转摄像头
CN207602143U (zh) 一种用于显示装置的模组结构
CN216412557U (zh) 用于显示屏的支撑件、显示模组及电子设备
CN206585632U (zh) 摄像机构及终端
CN115111261A (zh) 一种可穿戴铰链,多面立体结构和链条结构
CN209911660U (zh) 一种光波导显示模组调节结构、护目镜和头盔
CN219266932U (zh) 一种柔性触控显示屏
CN117148595B (zh) 可翻转式头戴显示设备
CN207096582U (zh) 一种调节焦距的智能vr一体机
CN220872800U (zh) 铰链模组和智能眼镜
CN221008517U (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814551

Country of ref document: EP

Kind code of ref document: A1