WO2020237642A1 - Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle - Google Patents

Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle Download PDF

Info

Publication number
WO2020237642A1
WO2020237642A1 PCT/CN2019/089579 CN2019089579W WO2020237642A1 WO 2020237642 A1 WO2020237642 A1 WO 2020237642A1 CN 2019089579 W CN2019089579 W CN 2019089579W WO 2020237642 A1 WO2020237642 A1 WO 2020237642A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charging port
camera
end executor
image
Prior art date
Application number
PCT/CN2019/089579
Other languages
French (fr)
Inventor
Jinsong Li
Jihuan TIAN
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2019/089579 priority Critical patent/WO2020237642A1/en
Priority to CN201980096871.9A priority patent/CN114364569B/en
Publication of WO2020237642A1 publication Critical patent/WO2020237642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Embodiments of present disclosure generally relate to charging of an electric vehicle, and more particularly, to an apparatus and a method for charging an electric vehicle, and a method for calibrating an apparatus for charging an electric vehicle.
  • the EV typically includes a battery and a charging port arranged on a body surface of the vehicle.
  • a charging head In case the battery needs to be charged by an external power supply, an operator may catch a charging head and insert it into the charging port.
  • the battery typically has a limited capacity and needs a long time to be charged, the EV is typically not suitable for a long distance travel.
  • High capacity battery and high power fast charging are some solutions to these issues.
  • the charging power e.g., 350KW
  • the charging head and its corresponding cable are getting much heavier and are difficult for the operator to handle their plugging/unplugging comfortably.
  • An automatic electromechanical device e.g., a robot
  • a robot may be used to facilitate the plugging of the charging head into the charging port.
  • the position of the charging port may be detected by means of various sensors. Then, the robot holds the charging head and inserts it into the charging port according to the detected position of the charging port.
  • the charging head and the charging port are designed with a very tight tolerance and a long mating distance.
  • a typical challenge is that contact forces and torques are generated due to physical dimension irregularity and misalignment between the charging head and the charging port.
  • the contact forces/torques cannot be predicted and responded fast and accurately. Thus, there is a risk that the plugging process may fail and the charging head and the charging port may be damaged during the plugging process.
  • Embodiments of the present disclosure provide an apparatus and a method for charging an electric vehicle, and a method for calibrating an apparatus for charging an electric vehicle.
  • an apparatus for charging an electric vehicle comprises a charging head arranged on an end executor of a robot and configured to match with a charging port on the electric vehicle; a camera arranged on the end executor and configured to capture an image of the charging port; a force sensor arranged on the end executor and configured to detect a force condition of the charging head; and a controller configured to: determine a position of the charging port based on the image of the charging port; determine a starting position for plugging the charging head into the charging port based on the position of the charging port; cause the end executor to move the charging head towards the starting position; and in response to the charging head reaching the starting position, cause the end executor to move the charging head based on the force condition of the charging head until the plugging of the charging head is completed.
  • the movement of the charging head can be controlled based on its force condition during the plugging process, thereby avoiding the plugging failure and reducing the physical damage to the charging apparatus.
  • the controller is configured to cause the end executor to move the charging head based on the force condition of the charging head by: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction of the charging head exceeds a first threshold, causing the end executor to move the charging head to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction exceeds a second threshold, causing the end executor to stop moving.
  • the apparatus further comprises a range sensor arranged on the end executor and configured to detect a distance between the charging port and the range sensor, wherein the controller is further configured to determine the position of the charging port based on the image of the charging port and the detected distance.
  • the range sensor comprises an ultrasonic sensor or a laser sensor.
  • the controller is configured to determine the position of the charging port based on the image of the charging port by: causing the camera to capture an initial image of the charging port; determining a center point of the charging port in the initial image; causing the camera to capture a plurality of intermediate images of the charging port from different angles around the center point; determining a pose of the charging port based on the plurality of intermediate images; causing the end executor to move based on the pose of the charging port such that an image plane of the camera is parallel to a surface of the charging port; causing the camera to capture a final image of the charging port; and determining the position of the charging port based on the final image.
  • a method for charging an electric vehicle comprises determining a position of a charging port on the electric vehicle based on an image of the charging port captured by a camera arranged on an end executor of a robot; determining, based on the position of the charging port, a starting position for plugging a charging head arranged on the end executor and configured to match with the charging port into the charging port; causing the end executor to move the charging head towards the starting position; and in response to the charging head reaching the starting position, causing the end executor to move the charging head based on the force condition of the charging head until the plugging of the charging head is completed.
  • causing the end executor to move the charging head based on the force condition of the charging head comprises: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction of the charging head exceeds a first threshold, causing the end executor to move the charging head to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction exceeds a second threshold, causing the end executor to stop moving.
  • the method further comprises: causing a range sensor arranged on the end executor to detect a distance between the charging port and the range sensor; and determining the position of the charging port based on the image of the charging port and the detected distance.
  • the range sensor comprises an ultrasonic sensor or a laser sensor.
  • determining the position of the charging port based on the image of the charging port comprises: causing the camera to capture an initial image of the charging port; determining a center point of the charging port in the initial image; causing the camera to capture a plurality of intermediate images of the charging port from different angles around the center point; determining a pose of the charging port based on the plurality of intermediate images; causing the end executor to move based on the pose of the charging port such that an image plane of the camera is parallel to a surface of the charging port; causing the camera to capture a final image of the charging port; and determining the position of the charging port based on the final image.
  • a method for calibrating an apparatus for charging an electric vehicle comprises a charging head arranged on an end executor of a robot and configured to match with a charging port on the electric vehicle, a camera arranged on the end executor and configured to capture an image of the charging port, and a range sensor arranged on the end executor and configured to detect a distance between the charging port and the range sensor.
  • the method comprises: causing the camera to capture a reflection image of the apparatus reflected in a mirror arranged in front of the apparatus, wherein an image plane of the camera is set to be parallel to the mirror; determining a first position relationship between the camera and the charging head based on the captured reflection image; causing the range sensor to detect a distance between the mirror and the range sensor; and determining a second position relationship between the camera and the range sensor based on the captured reflection image and the distance between the mirror and the range sensor.
  • a mirror is arranged in front of the apparatus to directly determine geometric relations among the camera, the range sensor and the charging head. In this way, the geometric relations among these components can be obtained precisely.
  • the method further comprises: determining a position of the charging head in a coordinate system of the robot based on the first position relationship and a predetermined position relationship between the camera and the end executor; and determining a position of the range sensor in the coordinate system of the robot based on the second position relationship and the predetermined position relationship between the camera and the end executor.
  • the predetermined position relationship between the camera and the end executor is obtained through hand-eye calibration.
  • FIG. 1 illustrates a schematic diagram of an electric vehicle and an apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure
  • FIG. 2 illustrates a schematic diagram of a charging port arranged on the electric vehicle, in accordance with embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram of an apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure
  • FIG. 4 illustrates an initial image of the charging port captured by a camera, in accordance with embodiments of the present disclosure
  • FIGS. 5-7 illustrate intermediate images of the charging port captured by the camera, in accordance with embodiments of the present disclosure
  • FIG. 8 illustrates an final image of the charging port captured by the camera, in accordance with embodiments of the present disclosure
  • FIG. 9 illustrates a flowchart of a method for charging the electric vehicle, in accordance with an embodiment of the present disclosure
  • FIG. 10 illustrates a schematic diagram of a mirror for use in calibrating the apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure
  • FIG. 11 illustrates a schematic diagram of a calibration pattern for use in a hand-eye calibration process, in accordance with embodiments of the present disclosure
  • FIG. 12 illustrates a reflection image of the apparatus for charging the electric vehicle reflected in the mirror captured by the camera, in accordance with embodiments of the present disclosure.
  • FIG. 13 illustrates a flowchart of a method for calibrating the apparatus for charging the electric vehicle, in accordance with an embodiment of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • the contact forces/torques generated during the plugging process of the charging head into the charging port cannot be predicted and responded fast and accurately; thus, there is a risk that the plugging process may fail and the charging head and the charging port may be damaged during the plugging process.
  • the movement of the charging head is controlled based on the force condition of the charging head during the plugging process, so as to avoid the plugging failure and reduce the physical damage to the charging apparatus.
  • FIG. 1 illustrates a schematic diagram of an electric vehicle 200 and an apparatus 100 for charging the electric vehicle 200
  • FIG. 2 illustrates a schematic diagram of a charging port 21 arranged on the electric vehicle 200
  • the electric vehicle 200 may be of various types, e.g., a battery electric vehicle or a hybrid electric vehicle.
  • the electric vehicle 200 includes a battery (not shown) for providing electrical power. When the battery is running low, it can be charged by the apparatus 100 via the charging port 21.
  • the charging port 21 is provided with a plurality of first connector pins 217. It is to be understood that the number and arrangement of the first connector pins 217 illustrated in Fig. 2 are only used as example for explaining the principles of the present disclosure, rather than to limit the scope of the present disclosure.
  • FIG. 3 illustrates a schematic diagram of the apparatus 100 for charging the electric vehicle 200.
  • the apparatus 100 for charging the electric vehicle 200 generally includes a charging head 11, a camera 12, a force sensor 13, and a controller 14.
  • the charging head 11, the camera 12, the force sensor 13 are arranged on an end executor 300 of a robot.
  • the charging head 11 matches with the charging port 21 on the electric vehicle 200. Specifically, the charging head 11 are provided with a plurality of second connector pins 110 to be electrically connected to the first connector pins 217. The number and arrangement of the second connector pins 110 correspond to those of the first connector pins 217. When the electric vehicle 200 is to be charged by the apparatus 100, the charging head 11 may be plugged into the charging port 21, such that each of the second connector pins 110 is electrically connected to the corresponding first connector pin 217.
  • the camera 12 is used to capture an image of the charging port 21 so as to be used as a basis for determining the position of the charging port 21 in a coordinate system of the robot.
  • the force sensor 13 is used to detect a force condition of the charging head 11, e.g., contact forces and/or torques. Based on the captured image of the charging port 21 and the detected force condition of the charging head 11, the controller 14 may implement control procedures on the charging head 11 during the plugging process.
  • the controller 14 first determines the position of the charging port 21 based on the image of the charging port 21.
  • the determination of the position of the charging port 21 may be implemented in various manners. Hereafter, an example manner for determining the position of the charging port 21 will be described with reference to FIGS. 4-8.
  • the camera 12 first captures an initial image 210 of the charging port 21 so as to coarsely localize the charging port 21. Since an image plane of the camera 12 may not be parallel to a surface of the charging port 21, the controller 14 generally cannot precisely determine the position of the charging port 21 based on the initial image 210. From the initial image 210, the controller 14 may determine an approximate center point 2101 of the charging port 21. For example, a middle point of a connection line between the centers of two connector pins 217 may be determined as the center point 2101 of the charging port 21.
  • FIGS. 5-7 illustrate three intermediate images 211 of the charging port 21 from different angles. It is to be understood that these intermediate images 211 are only used as example for explaining the principles of the present disclosure, rather than to limit the scope of the present disclosure. In other embodiments, the camera 12 may capture more (for example, four, five, or even more) or less (for example, two) intermediate images 211. Since the intermediate images 211 are captured from different angles, the controller 14 may then determine a pose of the charging port 21 based on these intermediate images 211.
  • the controller 14 may then cause the end executor 300 to move such that the image plane of the camera 12 is parallel to the surface of the charging port 21. As shown in FIG. 8, the camera 12 then captures a final image 212 of the charging port 21. Since the image plane of the camera 12 is parallel to the surface of the charging port 21 currently, the controller 14 may determine the position of the charging port 21 based on the final image 212 in a relatively accurate manner.
  • the controller 14 may determine a starting position for plugging the charging head 11 into the charging port 21. Then, the controller 14 causes the end executor 300 to move the charging head 11 towards the starting position. In response to the charging head 11 reaching the starting position, the controller 14 causes the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 until the plugging of the charging head 11 is completed.
  • the movement of the charging head 11 can be controlled based on its force condition during the plugging process, thereby avoiding the plugging failure and reducing the physical damage to the charging apparatus 100.
  • the controller 14 may be a controller of the robot or a separate controller different from the controller of the robot.
  • the controller 14 in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction X of the charging head 11 exceeds a first threshold, the controller 14 causes the end executor 300 to move the charging head 11 to reduce the lateral force.
  • the first threshold may be set to be a relatively small value such that the controller 14 may respond to a small change of the force condition of the charging head 11. In this way, the charging head 11 may be precisely plugged into the charging port 21 and protected from being damaged.
  • the controller 14 in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction X exceeds a second threshold, the controller 14 causes the end executor 300 to stop moving. At this point, the charging head 11 has been fully plugged into the charging port 21.
  • the second threshold may be set to be a relatively large value such that the end of the plugging process can be determined reliably.
  • the controller 14 may control the stopping point of the end executor 300 further based on other factors, e.g., an insertion distance of the charging head 11 into the charging port 21 or a control signal indicating that the charging head 11 and the charging port 21 form a good connection.
  • the controller 14 may cause the end executor 300 to stop moving, in response to the force condition indicating that the vertical force exceeds the second threshold, the insertion distance exceeding a pre-set minimum insertion distance, and the control signal indicating that the charging head 11 and the charging port 21 form a good connection. In this way, the stopping point of the end executor 300 can be determined more precisely and reliably.
  • the controller 14 enters a force control mode in which the movement of the charging head 11 depends on its force condition and the path positional accuracy is no longer guarantied. If the travel distance of the charging head 11 before contacting the charging port 21 is too long, a path position deviation under the force control mode may be too much to form a good initial engagement between the charging head 11 and the charging port 21. Thus, an accurate distance between the charging head 11 and the charging port 21 at the starting position is important for the charging apparatus 100.
  • the camera 12 may not be sufficient to accurately determine the distance between the charging head 11 and the charging port 21, because the distance is normal to the image plane of the camera 12.
  • a range sensor 15 can be arranged on the end executor 300 to detect the distance between the charging port 21 and the range sensor 15. Then, the controller 14 may determine the position of the charging port 21 based on the image of the charging port 21 and the detected distance.
  • the range sensor 15 may comprise an ultrasonic sensor or a laser sensor. In other embodiments, the range sensor 15 may be of other types.
  • FIG. 9 illustrates a flowchart of a method 900 for charging the electric vehicle 200.
  • the method 900 may be implemented by the apparatus 100 as described above.
  • the apparatus 100 may determine the position of the charging port 21 based on an image of the charging port 21 captured by the camera 12 arranged on the end executor 300 of the robot. As discussed above, the determination of the position of the charging port 21 may be implemented in various manners. An example manner for determining the position of the charging port 21 is described with reference to FIGS. 4-8.
  • the apparatus 100 may determine the starting position for plugging the charging head 11 into the charging port 21 based on the position of the charging port 21.
  • the apparatus 100 may cause the end executor 300 to move the charging head 11 towards the starting position.
  • the apparatus 100 may cause the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 until the plugging of the charging head 11 is completed.
  • causing the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 includes: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction X of the charging head 11 exceeds a first threshold, causing the end executor 300 to move the charging head 11 to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction X exceeds a second threshold, causing the end executor 300 to stop moving.
  • the method 900 further includes: causing a range sensor 15 arranged on the end executor 300 to detect a distance between the charging port 21 and the range sensor 15; and determining the position of the charging port 21 based on the image of the charging port 21 and the detected distance.
  • determining the position of the charging port 21 based on the image of the charging port 21 includes: causing the camera 12 to capture an initial image 210 of the charging port 21; determining a center point 2101 of the charging port 21 in the initial image 210; causing the camera 12 to capture a plurality of intermediate images 211 of the charging port 21 from different angles around the center point 2101; determining a pose of the charging port 21 based on the plurality of intermediate images 211; causing the end executor 300 to move based on the pose of the charging port 21 such that an image plane of the camera 12 is parallel to a surface of the charging port 21; causing the camera 12 to capture a final image 212 of the charging port 21; and determining the position of the charging port 21 based on the final image 212.
  • the apparatus 100 for charging the electric vehicle 200 Before the apparatus 100 for charging the electric vehicle 200 can be used normally, it needs to be calibrated so as to determine relative position relationships among the charging head 11, the camera 12 and the range sensor 15.
  • the principles of calibrating the apparatus 100 for charging the electric vehicle 200 in the present disclosure will be described in detail with reference to FIGS. 10-13.
  • FIG. 10 illustrates a schematic diagram of a mirror 40 for use in calibrating the apparatus 100 for charging the electric vehicle 200
  • FIG. 11 illustrates a schematic diagram of a calibration pattern 800 for use in a hand-eye calibration process
  • FIG. 12 illustrates a reflection image 1200 of the apparatus 100 reflected in the mirror 40 captured by the camera 12
  • FIG. 13 illustrates a flowchart of a method 1300 for calibrating the apparatus 100 for charging the electric vehicle 200.
  • a mirror 40 is arranged in front of the apparatus 100 at a desired focus distance.
  • the image plane of the camera 12 is set to be parallel to the mirror 40. With such an arrangement, the vision distortion of the camera 12 is minimized.
  • a calibration pattern 800 with a neglectable thickness may be attached to the mirror 40.
  • This calibration pattern 800 is used for hand-eye calibration and removed afterwards.
  • the hand-eye calibration is a conventional approach for determining a predetermined position relationship between the camera 12 and the end executor 300. Thus, the specific process of the hand-eye calibration would not be described any more herein.
  • the camera 12 is caused to capture a reflection image 1200 (see FIG. 12) of the apparatus 100 reflected in the mirror 40.
  • a first position relationship between the camera 12 and the charging head 11 is determined based on the captured reflection image 1200.
  • the range sensor 15 is caused to detect a distance between the mirror 40 and the range sensor 15.
  • a second position relationship between the camera 12 and the range sensor 15 is determined based on the captured reflection image 1200 and the distance between the mirror 40 and the range sensor 15.
  • the method 1300 further includes determining a position of the charging head 11 in a coordinate system of the robot based on the first position relationship and a predetermined position relationship between the camera 12 and the end executor 300; and determining a position of the range sensor 15 in the coordinate system of the robot based on the second position relationship and the predetermined position relationship between the camera 12 and the end executor 300.
  • the predetermined position relationship is determined through the hand-eye calibration as described above.
  • the geometric relations among the camera, the range sensor and the charging head may be determined precisely in a direct calibration manner. In this way, the alignment accuracy of the apparatus 100 can be improved.
  • inventive embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed.
  • inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.

Abstract

An apparatus (100) and a method for charging an electric vehicle (200), and a method for calibrating an apparatus (100) for charging an electric vehicle (200),the apparatus (100) comprises a charging head (11) arranged on an end executor (300) of a robot and configured to match with a charging port (21) on the electric vehicle (200); a camera (12) arranged on the end executo r(300) and configured to capture an image of the charging port (21); a force sensor (13) arranged on the end executor (300) and configured to detect a force condition of the charging head (11); and a controller (14) configured to: determine a position of the charging port (21) based on the image of the charging port (21); determine a starting position for plugging the charging head (11) into the charging por t(21) based on the position of the charging port (21); cause the end executor(300) to move the charging head (11) towards the starting position; and in response to the charging head (11) reaching the starting position, cause the end executor (300) to move the charging head (11) based on the force condition of the charging head (11) until the plugging of the charging head (11) is completed.

Description

APPARATUS AND METHOD FOR CHARGING ELECTRIC VEHICLE, AND METHOD FOR CALIBRATING APPARATUS FOR CHARGING ELECTRIC VEHICLE FIELD
Embodiments of present disclosure generally relate to charging of an electric vehicle, and more particularly, to an apparatus and a method for charging an electric vehicle, and a method for calibrating an apparatus for charging an electric vehicle.
BACKGROUND
Nowadays, electric vehicles (EVs) are more and more widely used due to their excellent power saving and environmental performance. The EV typically includes a battery and a charging port arranged on a body surface of the vehicle. In case the battery needs to be charged by an external power supply, an operator may catch a charging head and insert it into the charging port.
Since the battery typically has a limited capacity and needs a long time to be charged, the EV is typically not suitable for a long distance travel. High capacity battery and high power fast charging are some solutions to these issues. However, with increasing of the charging power (e.g., 350KW) , the charging head and its corresponding cable are getting much heavier and are difficult for the operator to handle their plugging/unplugging comfortably.
An automatic electromechanical device, e.g., a robot, may be used to facilitate the plugging of the charging head into the charging port. In a typical robot assisted EV charging system, the position of the charging port may be detected by means of various sensors. Then, the robot holds the charging head and inserts it into the charging port according to the detected position of the charging port. However, there are many challenges in this process.
In the conventional EV charging system, the charging head and the charging port are designed with a very tight tolerance and a long mating distance. With such an arrangement, during the plugging process, a typical challenge is that contact forces and torques are generated due to physical dimension irregularity and  misalignment between the charging head and the charging port. In the conventional EV charging system, the contact forces/torques cannot be predicted and responded fast and accurately. Thus, there is a risk that the plugging process may fail and the charging head and the charging port may be damaged during the plugging process.
SUMMARY
Embodiments of the present disclosure provide an apparatus and a method for charging an electric vehicle, and a method for calibrating an apparatus for charging an electric vehicle.
In a first aspect, an apparatus for charging an electric vehicle is provided. The apparatus comprises a charging head arranged on an end executor of a robot and configured to match with a charging port on the electric vehicle; a camera arranged on the end executor and configured to capture an image of the charging port; a force sensor arranged on the end executor and configured to detect a force condition of the charging head; and a controller configured to: determine a position of the charging port based on the image of the charging port; determine a starting position for plugging the charging head into the charging port based on the position of the charging port; cause the end executor to move the charging head towards the starting position; and in response to the charging head reaching the starting position, cause the end executor to move the charging head based on the force condition of the charging head until the plugging of the charging head is completed.
In embodiments of the present disclosure, the movement of the charging head can be controlled based on its force condition during the plugging process, thereby avoiding the plugging failure and reducing the physical damage to the charging apparatus.
In some embodiments, the controller is configured to cause the end executor to move the charging head based on the force condition of the charging head by: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction of the charging head exceeds a first threshold, causing the end executor to move the charging head to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite  to the plugging direction exceeds a second threshold, causing the end executor to stop moving.
In some embodiments, the apparatus further comprises a range sensor arranged on the end executor and configured to detect a distance between the charging port and the range sensor, wherein the controller is further configured to determine the position of the charging port based on the image of the charging port and the detected distance.
In some embodiments, the range sensor comprises an ultrasonic sensor or a laser sensor.
In some embodiments, the controller is configured to determine the position of the charging port based on the image of the charging port by: causing the camera to capture an initial image of the charging port; determining a center point of the charging port in the initial image; causing the camera to capture a plurality of intermediate images of the charging port from different angles around the center point; determining a pose of the charging port based on the plurality of intermediate images; causing the end executor to move based on the pose of the charging port such that an image plane of the camera is parallel to a surface of the charging port; causing the camera to capture a final image of the charging port; and determining the position of the charging port based on the final image.
In a second aspect, a method for charging an electric vehicle is provided. The method comprises determining a position of a charging port on the electric vehicle based on an image of the charging port captured by a camera arranged on an end executor of a robot; determining, based on the position of the charging port, a starting position for plugging a charging head arranged on the end executor and configured to match with the charging port into the charging port; causing the end executor to move the charging head towards the starting position; and in response to the charging head reaching the starting position, causing the end executor to move the charging head based on the force condition of the charging head until the plugging of the charging head is completed.
In some embodiments, causing the end executor to move the charging head based on the force condition of the charging head comprises: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging  direction of the charging head exceeds a first threshold, causing the end executor to move the charging head to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction exceeds a second threshold, causing the end executor to stop moving.
In some embodiments, the method further comprises: causing a range sensor arranged on the end executor to detect a distance between the charging port and the range sensor; and determining the position of the charging port based on the image of the charging port and the detected distance.
In some embodiments, the range sensor comprises an ultrasonic sensor or a laser sensor.
In some embodiments, determining the position of the charging port based on the image of the charging port comprises: causing the camera to capture an initial image of the charging port; determining a center point of the charging port in the initial image; causing the camera to capture a plurality of intermediate images of the charging port from different angles around the center point; determining a pose of the charging port based on the plurality of intermediate images; causing the end executor to move based on the pose of the charging port such that an image plane of the camera is parallel to a surface of the charging port; causing the camera to capture a final image of the charging port; and determining the position of the charging port based on the final image.
In a third aspect, a method for calibrating an apparatus for charging an electric vehicle is provided. The apparatus comprises a charging head arranged on an end executor of a robot and configured to match with a charging port on the electric vehicle, a camera arranged on the end executor and configured to capture an image of the charging port, and a range sensor arranged on the end executor and configured to detect a distance between the charging port and the range sensor. The method comprises: causing the camera to capture a reflection image of the apparatus reflected in a mirror arranged in front of the apparatus, wherein an image plane of the camera is set to be parallel to the mirror; determining a first position relationship between the camera and the charging head based on the captured reflection image; causing the range sensor to detect a distance between the mirror and the range sensor; and determining a second position relationship between the camera and the range  sensor based on the captured reflection image and the distance between the mirror and the range sensor.
In embodiments of the present disclosure, a mirror is arranged in front of the apparatus to directly determine geometric relations among the camera, the range sensor and the charging head. In this way, the geometric relations among these components can be obtained precisely.
In some embodiments, the method further comprises: determining a position of the charging head in a coordinate system of the robot based on the first position relationship and a predetermined position relationship between the camera and the end executor; and determining a position of the range sensor in the coordinate system of the robot based on the second position relationship and the predetermined position relationship between the camera and the end executor.
In some embodiments, the predetermined position relationship between the camera and the end executor is obtained through hand-eye calibration.
DESCRIPTION OF DRAWINGS
Drawings described herein are provided to further explain the present disclosure and constitute a part of the present disclosure. The example embodiments of the disclosure and the explanation thereof are used to explain the present disclosure, rather than to limit the present disclosure improperly.
FIG. 1 illustrates a schematic diagram of an electric vehicle and an apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure;
FIG. 2 illustrates a schematic diagram of a charging port arranged on the electric vehicle, in accordance with embodiments of the present disclosure;
FIG. 3 illustrates a schematic diagram of an apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure;
FIG. 4 illustrates an initial image of the charging port captured by a camera, in accordance with embodiments of the present disclosure;
FIGS. 5-7 illustrate intermediate images of the charging port captured by the camera, in accordance with embodiments of the present disclosure;
FIG. 8 illustrates an final image of the charging port captured by the camera, in accordance with embodiments of the present disclosure;
FIG. 9 illustrates a flowchart of a method for charging the electric vehicle, in accordance with an embodiment of the present disclosure;
FIG. 10 illustrates a schematic diagram of a mirror for use in calibrating the apparatus for charging the electric vehicle, in accordance with embodiments of the present disclosure;
FIG. 11 illustrates a schematic diagram of a calibration pattern for use in a hand-eye calibration process, in accordance with embodiments of the present disclosure;
FIG. 12 illustrates a reflection image of the apparatus for charging the electric vehicle reflected in the mirror captured by the camera, in accordance with embodiments of the present disclosure; and
FIG. 13 illustrates a flowchart of a method for calibrating the apparatus for charging the electric vehicle, in accordance with an embodiment of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIEMTNS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art in better understanding and thereby achieving the present disclosure, rather than to limit the scope of the disclosure in any manner.
The term “comprises” or “includes” and its variants are to be read as open  terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
Unless specified or limited otherwise, the terms “mounted, ” “connected, ” “supported, ” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Furthermore, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. In the description below, like reference numerals and labels are used to describe the same, similar or corresponding parts in the figures. Other definitions, explicit and implicit, may be included below.
As discussed above, in the conventional EV charging system, the contact forces/torques generated during the plugging process of the charging head into the charging port cannot be predicted and responded fast and accurately; thus, there is a risk that the plugging process may fail and the charging head and the charging port may be damaged during the plugging process. According to embodiments of the present disclosure, the movement of the charging head is controlled based on the force condition of the charging head during the plugging process, so as to avoid the plugging failure and reduce the physical damage to the charging apparatus. The above idea may be implemented in various manners, as will be described in detail in the following paragraphs. Hereinafter, the principles of charging the electric vehicle in the present disclosure will be described in detail with reference to FIGS. 1-9.
FIG. 1 illustrates a schematic diagram of an electric vehicle 200 and an apparatus 100 for charging the electric vehicle 200, and FIG. 2 illustrates a schematic diagram of a charging port 21 arranged on the electric vehicle 200. The electric vehicle 200 may be of various types, e.g., a battery electric vehicle or a hybrid electric  vehicle. The electric vehicle 200 includes a battery (not shown) for providing electrical power. When the battery is running low, it can be charged by the apparatus 100 via the charging port 21.
In an embodiment, as shown in Fig. 2, the charging port 21 is provided with a plurality of first connector pins 217. It is to be understood that the number and arrangement of the first connector pins 217 illustrated in Fig. 2 are only used as example for explaining the principles of the present disclosure, rather than to limit the scope of the present disclosure.
Hereafter, example constitution and operation of the apparatus 100 for charging the electric vehicle 200 will be described with respect to FIGS. 3-9.
FIG. 3 illustrates a schematic diagram of the apparatus 100 for charging the electric vehicle 200. As shown, the apparatus 100 for charging the electric vehicle 200 generally includes a charging head 11, a camera 12, a force sensor 13, and a controller 14. The charging head 11, the camera 12, the force sensor 13 are arranged on an end executor 300 of a robot.
The charging head 11 matches with the charging port 21 on the electric vehicle 200. Specifically, the charging head 11 are provided with a plurality of second connector pins 110 to be electrically connected to the first connector pins 217. The number and arrangement of the second connector pins 110 correspond to those of the first connector pins 217. When the electric vehicle 200 is to be charged by the apparatus 100, the charging head 11 may be plugged into the charging port 21, such that each of the second connector pins 110 is electrically connected to the corresponding first connector pin 217.
The camera 12 is used to capture an image of the charging port 21 so as to be used as a basis for determining the position of the charging port 21 in a coordinate system of the robot. The force sensor 13 is used to detect a force condition of the charging head 11, e.g., contact forces and/or torques. Based on the captured image of the charging port 21 and the detected force condition of the charging head 11, the controller 14 may implement control procedures on the charging head 11 during the plugging process.
Specifically, the controller 14 first determines the position of the charging  port 21 based on the image of the charging port 21. The determination of the position of the charging port 21 may be implemented in various manners. Hereafter, an example manner for determining the position of the charging port 21 will be described with reference to FIGS. 4-8.
As shown in FIG. 4, the camera 12 first captures an initial image 210 of the charging port 21 so as to coarsely localize the charging port 21. Since an image plane of the camera 12 may not be parallel to a surface of the charging port 21, the controller 14 generally cannot precisely determine the position of the charging port 21 based on the initial image 210. From the initial image 210, the controller 14 may determine an approximate center point 2101 of the charging port 21. For example, a middle point of a connection line between the centers of two connector pins 217 may be determined as the center point 2101 of the charging port 21.
The camera 12 then captures a plurality of intermediate images of the charging port 21 from different angles around the center point 2101. FIGS. 5-7 illustrate three intermediate images 211 of the charging port 21 from different angles. It is to be understood that these intermediate images 211 are only used as example for explaining the principles of the present disclosure, rather than to limit the scope of the present disclosure. In other embodiments, the camera 12 may capture more (for example, four, five, or even more) or less (for example, two) intermediate images 211. Since the intermediate images 211 are captured from different angles, the controller 14 may then determine a pose of the charging port 21 based on these intermediate images 211.
Based on the determined pose of the charging port 21, the controller 14 may then cause the end executor 300 to move such that the image plane of the camera 12 is parallel to the surface of the charging port 21. As shown in FIG. 8, the camera 12 then captures a final image 212 of the charging port 21. Since the image plane of the camera 12 is parallel to the surface of the charging port 21 currently, the controller 14 may determine the position of the charging port 21 based on the final image 212 in a relatively accurate manner.
Upon obtaining the position of the charging port 21, the controller 14 may determine a starting position for plugging the charging head 11 into the charging port 21. Then, the controller 14 causes the end executor 300 to move the charging head  11 towards the starting position. In response to the charging head 11 reaching the starting position, the controller 14 causes the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 until the plugging of the charging head 11 is completed.
In embodiments of the present disclosure, the movement of the charging head 11 can be controlled based on its force condition during the plugging process, thereby avoiding the plugging failure and reducing the physical damage to the charging apparatus 100.
It is to be understood that, in embodiments of the present disclosure, the controller 14 may be a controller of the robot or a separate controller different from the controller of the robot.
In some embodiments, in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction X of the charging head 11 exceeds a first threshold, the controller 14 causes the end executor 300 to move the charging head 11 to reduce the lateral force. The first threshold may be set to be a relatively small value such that the controller 14 may respond to a small change of the force condition of the charging head 11. In this way, the charging head 11 may be precisely plugged into the charging port 21 and protected from being damaged.
In some embodiments, in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction X exceeds a second threshold, the controller 14 causes the end executor 300 to stop moving. At this point, the charging head 11 has been fully plugged into the charging port 21. The second threshold may be set to be a relatively large value such that the end of the plugging process can be determined reliably. In other embodiments, the controller 14 may control the stopping point of the end executor 300 further based on other factors, e.g., an insertion distance of the charging head 11 into the charging port 21 or a control signal indicating that the charging head 11 and the charging port 21 form a good connection. As an example, the controller 14 may cause the end executor 300 to stop moving, in response to the force condition indicating that the vertical force exceeds the second threshold, the insertion distance exceeding a pre-set minimum insertion distance, and the control signal indicating that the charging head 11 and the  charging port 21 form a good connection. In this way, the stopping point of the end executor 300 can be determined more precisely and reliably.
As discussed above, after the starting position, the controller 14 enters a force control mode in which the movement of the charging head 11 depends on its force condition and the path positional accuracy is no longer guarantied. If the travel distance of the charging head 11 before contacting the charging port 21 is too long, a path position deviation under the force control mode may be too much to form a good initial engagement between the charging head 11 and the charging port 21. Thus, an accurate distance between the charging head 11 and the charging port 21 at the starting position is important for the charging apparatus 100.
The camera 12 may not be sufficient to accurately determine the distance between the charging head 11 and the charging port 21, because the distance is normal to the image plane of the camera 12.
To improve the accuracy of determining the distance between the charging head 11 and the charging port 21, a range sensor 15 can be arranged on the end executor 300 to detect the distance between the charging port 21 and the range sensor 15. Then, the controller 14 may determine the position of the charging port 21 based on the image of the charging port 21 and the detected distance. In some embodiments, the range sensor 15 may comprise an ultrasonic sensor or a laser sensor. In other embodiments, the range sensor 15 may be of other types.
FIG. 9 illustrates a flowchart of a method 900 for charging the electric vehicle 200. The method 900 may be implemented by the apparatus 100 as described above.
At 910, the apparatus 100 may determine the position of the charging port 21 based on an image of the charging port 21 captured by the camera 12 arranged on the end executor 300 of the robot. As discussed above, the determination of the position of the charging port 21 may be implemented in various manners. An example manner for determining the position of the charging port 21 is described with reference to FIGS. 4-8.
At 920, the apparatus 100 may determine the starting position for plugging the charging head 11 into the charging port 21 based on the position of the charging  port 21.
At 930, the apparatus 100 may cause the end executor 300 to move the charging head 11 towards the starting position.
At 940, in response to the charging head 11 reaching the starting position, the apparatus 100 may cause the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 until the plugging of the charging head 11 is completed.
In some embodiments, causing the end executor 300 to move the charging head 11 based on the force condition of the charging head 11 includes: in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction X of the charging head 11 exceeds a first threshold, causing the end executor 300 to move the charging head 11 to reduce the lateral force; and in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction X exceeds a second threshold, causing the end executor 300 to stop moving.
In some embodiments, the method 900 further includes: causing a range sensor 15 arranged on the end executor 300 to detect a distance between the charging port 21 and the range sensor 15; and determining the position of the charging port 21 based on the image of the charging port 21 and the detected distance.
In some embodiments, determining the position of the charging port 21 based on the image of the charging port 21 includes: causing the camera 12 to capture an initial image 210 of the charging port 21; determining a center point 2101 of the charging port 21 in the initial image 210; causing the camera 12 to capture a plurality of intermediate images 211 of the charging port 21 from different angles around the center point 2101; determining a pose of the charging port 21 based on the plurality of intermediate images 211; causing the end executor 300 to move based on the pose of the charging port 21 such that an image plane of the camera 12 is parallel to a surface of the charging port 21; causing the camera 12 to capture a final image 212 of the charging port 21; and determining the position of the charging port 21 based on the final image 212.
Before the apparatus 100 for charging the electric vehicle 200 can be used  normally, it needs to be calibrated so as to determine relative position relationships among the charging head 11, the camera 12 and the range sensor 15. Hereinafter, the principles of calibrating the apparatus 100 for charging the electric vehicle 200 in the present disclosure will be described in detail with reference to FIGS. 10-13.
FIG. 10 illustrates a schematic diagram of a mirror 40 for use in calibrating the apparatus 100 for charging the electric vehicle 200, FIG. 11 illustrates a schematic diagram of a calibration pattern 800 for use in a hand-eye calibration process, FIG. 12 illustrates a reflection image 1200 of the apparatus 100 reflected in the mirror 40 captured by the camera 12, and FIG. 13 illustrates a flowchart of a method 1300 for calibrating the apparatus 100 for charging the electric vehicle 200.
As shown in FIG. 10, a mirror 40 is arranged in front of the apparatus 100 at a desired focus distance. The image plane of the camera 12 is set to be parallel to the mirror 40. With such an arrangement, the vision distortion of the camera 12 is minimized.
As shown in FIG. 11, a calibration pattern 800 with a neglectable thickness may be attached to the mirror 40. This calibration pattern 800 is used for hand-eye calibration and removed afterwards. The hand-eye calibration is a conventional approach for determining a predetermined position relationship between the camera 12 and the end executor 300. Thus, the specific process of the hand-eye calibration would not be described any more herein.
As shown in Fig. 13, at 1310, the camera 12 is caused to capture a reflection image 1200 (see FIG. 12) of the apparatus 100 reflected in the mirror 40. At 1320, a first position relationship between the camera 12 and the charging head 11 is determined based on the captured reflection image 1200. At 1330, the range sensor 15 is caused to detect a distance between the mirror 40 and the range sensor 15. At 1340, a second position relationship between the camera 12 and the range sensor 15 is determined based on the captured reflection image 1200 and the distance between the mirror 40 and the range sensor 15.
In some embodiments, the method 1300 further includes determining a position of the charging head 11 in a coordinate system of the robot based on the first position relationship and a predetermined position relationship between the camera 12 and the end executor 300; and determining a position of the range sensor 15 in the  coordinate system of the robot based on the second position relationship and the predetermined position relationship between the camera 12 and the end executor 300. The predetermined position relationship is determined through the hand-eye calibration as described above.
In embodiments of the present disclosure, the geometric relations among the camera, the range sensor and the charging head may be determined precisely in a direct calibration manner. In this way, the alignment accuracy of the apparatus 100 can be improved.
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.

Claims (13)

  1. An apparatus (100) for charging an electric vehicle (200) , comprising:
    a charging head (11) arranged on an end executor (300) of a robot and configured to match with a charging port (21) on the electric vehicle (200) ;
    a camera (12) arranged on the end executor (300) and configured to capture an image of the charging port (21) ;
    a force sensor (13) arranged on the end executor (300) and configured to detect a force condition of the charging head (11) ; and
    a controller (14) configured to:
    determine a position of the charging port (21) based on the image of the charging port (21) ;
    determine a starting position for plugging the charging head (11) into the charging port (21) based on the position of the charging port (21) ;
    cause the end executor (300) to move the charging head (11) towards the starting position; and
    in response to the charging head (11) reaching the starting position, cause the end executor (300) to move the charging head (11) based on the force condition of the charging head (11) until the plugging of the charging head (11) is completed.
  2. The apparatus (100) according to claim 1, wherein the controller is configured to cause the end executor (300) to move the charging head (11) based on the force condition of the charging head (11) by:
    in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction (X) of the charging head (11) exceeds a first threshold, causing the end executor (300) to move the charging head (11) to reduce the lateral force; and
    in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction (X) exceeds a second threshold, causing the end executor (300) to stop moving.
  3. The apparatus (100) according to claim 1, further comprising:
    a range sensor (15) arranged on the end executor (300) and configured to detect a distance between the charging port (21) and the range sensor (15) ,
    wherein the controller (14) is further configured to determine the position of the charging port (21) based on the image of the charging port (21) and the detected distance.
  4. The apparatus (100) according to claim 3, wherein the range sensor (15) comprises an ultrasonic sensor or a laser sensor.
  5. The apparatus (100) according to claim 1, wherein the controller (14) is configured to determine the position of the charging port (21) based on the image of the charging port (21) by:
    causing the camera (12) to capture an initial image (210) of the charging port (21) ;
    determining a center point (2101) of the charging port (21) in the initial image (210) ;
    causing the camera (12) to capture a plurality of intermediate images (211) of the charging port (21) from different angles around the center point (2101) ;
    determining a pose of the charging port (21) based on the plurality of intermediate images (211) ;
    causing the end executor (300) to move based on the pose of the charging port (21) such that an image plane of the camera (12) is parallel to a surface of the charging port (21) ;
    causing the camera (12) to capture a final image (212) of the charging port (21) ; and
    determining the position of the charging port (21) based on the final image (212) .
  6. A method for charging an electric vehicle (200) , comprising:
    determining a position of a charging port (21) on the electric vehicle (200) based on an image of the charging port (21) captured by a camera (12) arranged on an end executor (300) of a robot;
    determining, based on the position of the charging port (21) , a starting position for plugging a charging head (11) arranged on the end executor (300) and configured to match with the charging port (21) into the charging port (21) ;
    causing the end executor (300) to move the charging head (11) towards the starting position; and
    in response to the charging head (11) reaching the starting position, causing the end executor (300) to move the charging head (11) based on the force condition of the charging head (11) until the plugging of the charging head (11) is completed.
  7. The method according to claim 6, wherein causing the end executor (300) to move the charging head (11) based on the force condition of the charging head (11) comprises:
    in response to the force condition indicating that a lateral force in a direction intersecting with a plugging direction (X) of the charging head (11) exceeds a first threshold, causing the end executor (300) to move the charging head (11) to reduce the lateral force; and
    in response to the force condition indicating that a vertical force in a direction opposite to the plugging direction (X) exceeds a second threshold, causing the end executor (300) to stop moving.
  8. The method according to claim 6, further comprising:
    causing a range sensor (15) arranged on the end executor (300) to detect a distance between the charging port (21) and the range sensor (15) ; and
    determining the position of the charging port (21) based on the image of the charging port (21) and the detected distance.
  9. The method according to claim 8, wherein the range sensor (15) comprises an ultrasonic sensor or a laser sensor.
  10. The method according to claim 6, wherein determining the position of the charging port (21) based on the image of the charging port (21) comprises:
    causing the camera (12) to capture an initial image (210) of the charging port (21) ;
    determining a center point (2101) of the charging port (21) in the initial image (210) ;
    causing the camera (12) to capture a plurality of intermediate images (211) of the charging port (21) from different angles around the center point (2101) ;
    determining a pose of the charging port (21) based on the plurality of intermediate images (211) ;
    causing the end executor (300) to move based on the pose of the charging port (21) such that an image plane of the camera (12) is parallel to a surface of the charging port (21) ;
    causing the camera (12) to capture a final image (212) of the charging port (21) ; and
    determining the position of the charging port (21) based on the final image (212) .
  11. A method for calibrating an apparatus (100) for charging an electric vehicle (200) , the apparatus (100) comprising a charging head (11) arranged on an end executor (300) of a robot and configured to match with a charging port (21) on the electric vehicle (200) , a camera (12) arranged on the end executor (300) and configured to capture an image of the charging port (21) , and a range sensor (15) arranged on the end executor (300) and configured to detect a distance between the charging port (21) and the range sensor (15) , the method comprising:
    causing the camera (12) to capture a reflection image (1200) of the apparatus (100) reflected in a mirror (40) arranged in front of the apparatus (100) , wherein an image plane of the camera (12) is set to be parallel to the mirror (40) ;
    determining a first position relationship between the camera (12) and the charging head (11) based on the captured reflection image (1200) ;
    causing the range sensor (15) to detect a distance between the mirror (40) and the range sensor (15) ; and
    determining a second position relationship between the camera (12) and the range sensor (15) based on the captured reflection image (1200) and the distance between the mirror (40) and the range sensor (15) .
  12. The method according to claim 11, further comprising:
    determining a position of the charging head (11) in a coordinate system of the robot based on the first position relationship and a predetermined position relationship between the camera (12) and the end executor (300) ; and
    determining a position of the range sensor (15) in the coordinate system of the robot based on the second position relationship and the predetermined position relationship between the camera (12) and the end executor (300) .
  13. The method according to claim 12, wherein the predetermined position relationship between the camera (12) and the end executor (300) is obtained through  hand-eye calibration.
PCT/CN2019/089579 2019-05-31 2019-05-31 Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle WO2020237642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/089579 WO2020237642A1 (en) 2019-05-31 2019-05-31 Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle
CN201980096871.9A CN114364569B (en) 2019-05-31 2019-05-31 Device and method for charging an electric vehicle, and method for calibrating a device for charging an electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089579 WO2020237642A1 (en) 2019-05-31 2019-05-31 Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle

Publications (1)

Publication Number Publication Date
WO2020237642A1 true WO2020237642A1 (en) 2020-12-03

Family

ID=73552679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089579 WO2020237642A1 (en) 2019-05-31 2019-05-31 Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle

Country Status (2)

Country Link
CN (1) CN114364569B (en)
WO (1) WO2020237642A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116667A1 (en) * 2021-12-20 2023-06-29 华为技术有限公司 Charging device, and method for controlling mechanical arm to charge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889879A (en) * 2011-07-21 2013-01-23 安讯士有限公司 Method for determining the tilt of an image sensor
CN104520134A (en) * 2012-07-27 2015-04-15 库卡罗伯特有限公司 Charging system and method for electrically charging a motor vehicle
DE102015213161A1 (en) * 2015-07-14 2017-01-19 Volkswagen Aktiengesellschaft Automated plugging of a charging plug by a robot for unknown electric vehicles ...
CN108556664A (en) * 2018-04-25 2018-09-21 广州市君望机器人自动化有限公司 Method for controlling robot and device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035093A (en) * 2010-11-15 2011-04-27 西安福安创意咨询有限责任公司 Automatic recognition charging plug mechanism of electric automobile
US9770993B2 (en) * 2013-05-31 2017-09-26 GM Global Technology Operations LLC Electric vehicle charging station
WO2015109555A1 (en) * 2014-01-26 2015-07-30 Abb Technology Ltd Method, apparatus and robot system for moving objects to target position
KR101887738B1 (en) * 2016-03-11 2018-08-10 현대자동차주식회사 Alignment method for wireless power transfer coil and apparatus using the same
KR102550114B1 (en) * 2016-06-16 2023-06-29 현대자동차주식회사 Coil alignment method and wireless power transfer apparatus using the same for electric vehicles
US10576833B2 (en) * 2016-09-26 2020-03-03 Ford Global Technologies, Llc Vehicle charger positioning method and charger assembly
CN106696747B (en) * 2017-01-22 2019-11-08 厦门大学 A kind of automatic charging system for electric vehicle and its control method
JP7036501B2 (en) * 2017-02-24 2022-03-15 株式会社デンソーテン Charging support device and charging support method
CN107392962A (en) * 2017-08-14 2017-11-24 深圳市思维树科技有限公司 A kind of robot charging docking system and method based on pattern identification
US10453282B2 (en) * 2017-08-22 2019-10-22 Ford Global Technologies, Llc EV charging connector unlock via biometric input
CN207157334U (en) * 2017-09-18 2018-03-30 孝感卓尔网络科技有限公司 A kind of mobile charging machine people and charging system
CN107618396B (en) * 2017-10-19 2023-11-07 环球车享汽车租赁有限公司 Automatic charging system and method
CN109066861A (en) * 2018-08-20 2018-12-21 四川超影科技有限公司 Intelligent inspection robot charging controller method based on machine vision

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889879A (en) * 2011-07-21 2013-01-23 安讯士有限公司 Method for determining the tilt of an image sensor
CN104520134A (en) * 2012-07-27 2015-04-15 库卡罗伯特有限公司 Charging system and method for electrically charging a motor vehicle
DE102015213161A1 (en) * 2015-07-14 2017-01-19 Volkswagen Aktiengesellschaft Automated plugging of a charging plug by a robot for unknown electric vehicles ...
CN108556664A (en) * 2018-04-25 2018-09-21 广州市君望机器人自动化有限公司 Method for controlling robot and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116667A1 (en) * 2021-12-20 2023-06-29 华为技术有限公司 Charging device, and method for controlling mechanical arm to charge

Also Published As

Publication number Publication date
CN114364569B (en) 2024-03-15
CN114364569A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
US10696167B2 (en) Adjustable charging robot
US7800387B2 (en) Method for detecting tips of probes, alignment method and storage medium storing the methods, and probe apparatus
US11707999B2 (en) Camera based auto drive auto charge
US11874482B2 (en) Camera module and method for assembling same
WO2020237642A1 (en) Apparatus and method for charging electric vehicle, and method for calibrating apparatus for charging electric vehicle
US11442341B2 (en) Camera module
US7710135B2 (en) Method for registering probe card and a storage medium storing program thereof
TWI718773B (en) Method of operating a probing apparatus
WO2022086320A1 (en) Device and method for moving a connector of an electric vehicle charger
WO2022234059A1 (en) Method and device for determining a position and orientation of a socket of an electric vehicle
CN109980736B (en) Pile alignment confirmation method for robot charging pile
US20220363151A1 (en) Method for automatically establishing a plug-in connection in order to charge electric vehicles
US10023060B2 (en) Automatic power supply system, automatic power supply device, and autonomous moving system
US11922616B2 (en) Alignment device
CN106493731A (en) A kind of use robot 3D visions realize that brake disc tears the method that stamps open
CN115556629A (en) Battery replacement equipment, battery replacement station and battery replacement control method
CN220853449U (en) Engineering machinery auxiliary parking system and engineering machinery quality inspection system
JPH08213436A (en) Optical height detector and prober
CN108645367B (en) Parallelism calibration method based on three-axis coordinate system
US20240025425A1 (en) Calibration device for calibrating a driver assistance system
KR102582166B1 (en) Pick Up System of Autonomous Charging Robot for Electric Vehicle
US20210031372A1 (en) Robot control system of fitting of a plurality of points
KR20240000408A (en) Probe block automatic exchanging probe system
CN114167305A (en) Compressor turn-to-turn short circuit automatic detection device and detection system comprising same
CN111559267A (en) Vehicle charging system and guiding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930381

Country of ref document: EP

Kind code of ref document: A1