WO2020237556A1 - Cross-layer messaging for congestion control - Google Patents

Cross-layer messaging for congestion control Download PDF

Info

Publication number
WO2020237556A1
WO2020237556A1 PCT/CN2019/089193 CN2019089193W WO2020237556A1 WO 2020237556 A1 WO2020237556 A1 WO 2020237556A1 CN 2019089193 W CN2019089193 W CN 2019089193W WO 2020237556 A1 WO2020237556 A1 WO 2020237556A1
Authority
WO
WIPO (PCT)
Prior art keywords
protocol layer
messages
layer
communication
communication parameters
Prior art date
Application number
PCT/CN2019/089193
Other languages
French (fr)
Inventor
Shuping Chen
Yan Li
Lu Gao
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/089193 priority Critical patent/WO2020237556A1/en
Publication of WO2020237556A1 publication Critical patent/WO2020237556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Wireless communication systems may include or support networks used for vehicle based communications, also referred to as vehicle-to-everything (V2X) networks, vehicle-to-vehicle (V2V) networks, cellular V2X (CV2X) networks, or other similar networks.
  • Vehicle based communication networks may provide always on telematics where UEs, e.g., vehicle UEs (v-UEs) , communicate directly to the network (V2N) , to pedestrian UEs (V2P) , to infrastructure devices (V2I) , and to other v-UEs (e.g., via the network and/or directly) .
  • the vehicle based communication networks may support a safe, always-connected driving experience by providing intelligent connectivity where traffic signal/timing, real-time traffic and routing, safety alerts to pedestrians/bicyclist, collision avoidance information, etc., are exchanged.
  • traffic signal/timing traffic signal/timing
  • real-time traffic and routing safety alerts to pedestrians/bicyclist
  • collision avoidance information etc.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support cross-layer messaging for congestion control.
  • the described techniques provide for determining, at a first protocol layer of a UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE.
  • the set of communication parameters may indicate communication conditions at the first protocol layer.
  • the first protocol layer may provide the at least one value of the set communication parameters to a second protocol layer of the UE.
  • the second protocol layer is a higher layer than the first protocol layer.
  • the first protocol layer may further obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters and transmit the one or more messages.
  • the first protocol layer may provide a transmission capability (which may be based at least in part on a congestion level in a communication environment) to the higher layer (e.g., an upper layer of the UE) .
  • the higher layer may utilize the received parameters to adjust message generation, for example by generating messages according to a reduced message generation rate, a reduced message size, or both. Accordingly, the higher layer reduces a congestion level in a communication environment and the access layer of the UE.
  • a method of wireless communication at a UE is described.
  • the method may include determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
  • the apparatus may include means for determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a communication evaluation trigger may be satisfied, where the at least one value of the set of communication parameters may be determined in response to determining that the communication evaluation trigger may be satisfied.
  • determining that the communication evaluation trigger may be satisfied may include operations, features, means, or instructions for determining, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels may have been transmitted by the UE.
  • determining that the communication evaluation trigger may be satisfied further may include operations, features, means, or instructions for determining, at the first protocol layer, that a periodic timer may have expired.
  • providing the at least one value of the set of communication parameters may include operations, features, means, or instructions for providing, to the second protocol layer, a report including the at least one value of the set of communication parameters.
  • the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • ID message identification
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the one or more messages according to the one or more proximity service priority levels.
  • the first protocol layer includes an access layer.
  • the second protocol layer includes a message layer and a network layer.
  • the UE includes a node of a vehicle-to-everything communication network.
  • a method of wireless communication at a UE is described.
  • the method may include obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generating, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the apparatus may include means for obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generating, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for comparing a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, where the one or more messages may be generated based on the comparing.
  • generating the one or more messages further may include operations, features, means, or instructions for identifying a first message generation rate used by the second protocol layer to generate messages, determining a second message generation rate less than the first message generation rate based on the at least one value of the set of communication parameters, and generating the one or more messages based on the determined second message generation rate.
  • generating the one or more messages further may include operations, features, means, or instructions for identifying a first message size used by the second protocol layer to generate messages, determining a second message size less than the first message size based on the at least one value of the set of communication parameters, and generating the one or more messages based on the determined second message size.
  • receiving the at least one value of the set of communication parameters may include operations, features, means, or instructions for obtaining, from the first protocol layer, a report including the at least one value of the set of communication parameters.
  • the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • ID message identification
  • the first protocol layer includes an access layer.
  • the second protocol layer includes a message layer and a network layer.
  • the UE includes a node of vehicle-to-everything communication network.
  • FIG. 1 illustrates an example of a system for wireless communications that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a CV2X protocol stack that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow diagram that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • FIGs. 9 through 12 show flowcharts illustrating methods that support cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the UE may support networks used for vehicle based communications, such as vehicle-to-everything (V2X) networks, vehicle-to-vehicle (V2V) networks, cellular V2X (CV2X) networks, or other similar networks.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • CV2X cellular V2X
  • the various UEs e.g., vehicles, road-side sensors, traffic lights, road-side unites, personal UEs, etc.
  • a UE may include various communication layers, such as an access layer and an upper layer.
  • the access layer may include a set of ProSe per-packet priority (PPPP) groups.
  • the upper layer may generate messages (e.g., packets) for transmission by the access layer. Implementations described herein, among other things, provide for cross-layer messaging between the access layer and the upper layer.
  • PPPP ProSe per-packet priority
  • the access layer may evaluate communication conditions within the access layer and generate values for communication parameters for the one or more proximity service priority levels (e.g., PPPP groups) .
  • the values may indicate the communication conditions. In one example, case, a value may indicate a number of packets dropped. Accordingly, the values indicate the communication conditions (e.g., congestion levels) .
  • the values may be obtained by the upper layer and used by the upper layer to determine whether to perform a congestion control procedure.
  • the congestion control procedure may include reducing a message generation rate and/or a message size.
  • Messages (e.g., packets) may be generated by the upper layer and obtained by the access layer for transmission. As such, various UEs may reduce the congestion level in a wireless communication environment based at least in part on cross-layer messaging.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are further described with reference to a wireless communications system, a UE, and a process flow diagram. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to cross-layer messaging for congestion control.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based at least in part on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based at least in part on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed and shared (e.g., shared licensed and/or unlicensed) radiofrequency (RF) spectrum bands, among others.
  • RF radiofrequency
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a UE 115 may implement cross-layer messaging for congestion control as described herein.
  • UE 115 may be an example of a UE configured for V2X or DSRC communication.
  • a UE 115 may conduct congestion control procedures to reduce congestion within an area proximal to the UE 115.
  • the UE 115 may consider the number of transmitting UEs 115 within a vicinity of the UE 115 to determine whether to perform congestion control to maintain communication reliability. Implementations described herein provide additional or alternative communication indicators for determining whether to conduct congestion control procedures based at least in part on cross-layer messaging (e.g., between a first protocol layer and a second protocol layer, such as an access layer and an upper layer) .
  • cross-layer messaging e.g., between a first protocol layer and a second protocol layer, such as an access layer and an upper layer
  • the UE 115 may include a first communication protocol layer (e.g., an access layer) and a second communication protocol layer (e.g., an upper layer) .
  • the second communication layer may include at least a message layer and a network layer.
  • the first communication protocol layer may conduct communication condition evaluations to determine at least one value for a set of communication parameters for one or more proximity service priority levels supported by the UE 115 (e.g., at the access layer) .
  • the values may indicate communication conditions at the access layer.
  • the set of communication parameter values may be communicated to or obtained by the upper layer using cross-layer messaging.
  • the cross-layer messaging is implemented using one or more application programming interfaces (APIs) supported by the access layer.
  • APIs application programming interfaces
  • the upper layer may generate one or more messages.
  • the messages may be generated according to a reduced message generation rate or a reduced message size, which may be determined according the values of the set of communication parameters.
  • one or more of the values may indicate that the communication system 100 (or a geographic portion thereof) is congested, and the upper layer may generate messages according to a reduced message generation rate to reduce congestion levels in the wireless communication system 100.
  • the values may indicate various aspects of the communication conditions in the access layer, such as a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • ID message identification
  • a number of messages dropped a number of messages in one or more buffers
  • a queuing time associated with one or more messages a modulation coding scheme
  • a transmission time associated with a message a proximity service priority level utilized to transmit a message
  • a channel occupancy ratio a transmission rate at the first protocol layer
  • a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • the access layer may obtain the message generated for the one or more proximity service priority levels and transmit the messages.
  • the UE 115 may utilize cross-layer messaging to reduce congestion levels in the communication system 100. Further, benefits may include a reduced buffer size, fewer dropped packets (e.g., locally at the UE 115) , etc.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure.
  • wireless communication system 200 may implement aspects of wireless communication system 100. Aspects of wireless communication system 200 may be implemented by a base station 205, vehicles 210, traffic lights 225, and/or a roadside sensor 230.
  • any of the vehicles 210, traffic lights 225, and/or roadside sensor 230 may be examples of a UE.
  • the traffic lights 225 and/or roadside sensor 230 may be examples of roadside units (RSUs) or roadside equipment (RSE)
  • the vehicles 210 may be examples of onboard units (OBUs) .
  • various other devices (not shown) in the context of the wireless communication system 200 may be examples of vulnerable road users (VRUs) .
  • Each of the UEs e.g., vehicles 210, traffic lights 225, roadside sensors 230, etc.
  • C-V2X vehicle-to-everything
  • RAT dedicated short range communication
  • RAT dedicated short range communication
  • the RATs implemented by the UEs may perform various processes for congestion control in the wireless communication system 200.
  • 3GPP defines the congestion control to limit the access to the resources of each transmission node (e.g., base station 205 and UEs) for each priority traffic in terms of ProSe per-packet priority (PPPP) .
  • vehicle 210-a may include a communications manager including an upper layer 245 and an access layer 250.
  • the upper layer may define congestion control processes to limit the communication traffic in the wireless communication system 200.
  • the processes may be defined by standards defining organizations (SDOs) to manage congestion control.
  • SDOs standards defining organizations
  • an upper layer 245 considers a count or number of transmitting nodes in wireless communication system 200 in determining whether to perform congestion control.
  • the access layer 250 may determine values for one or more communication parameters for proximity service priority levels supported by the UE (e.g., the vehicle 210-a) .
  • the values may be determined based at least in part on satisfaction of a communication evaluation trigger.
  • the communication evaluation trigger is based at least in part on expiration of a timer, such that the values are periodically determined (e.g., every 100 ms) .
  • satisfaction of the evaluation trigger is based at least in part on transmission of a packet.
  • the values of the communication parameters may indicate various communication conditions in the access layer 250, such as whether the system is congested based at least in part on the number or identity of packets being dropped, buffer length, queuing time of a packet, modulation coding scheme (MCS) , transmission times, transmission rates, channel occupancy ratio limit (CR limit) , and the like.
  • MCS modulation coding scheme
  • the determined values of the communication parameters may be transmitted at 260 to the upper layer 245, which may be an example of a second protocol layer, for congestion control consideration.
  • the cross-layer transmission 260 is in the form of a report.
  • the access layer 250 may include PPPP groups 255, which may also be other type or designation of priority groups and may correspond to one or more proximity service priority levels.
  • each PPPP group 255 may include a buffer for storing packets having various priorities for transmission on one or more channels associated with the PPPP groups 255.
  • the access layer 250 maintains a buffer per priority level that buffers that packets of the same priority level (e.g., PPPP group 255) .
  • the priorities may correspond to message types such as spat/map, speed limitation (RSI) , road safety conditions (RSM) , positioning assistant information (RTCM) , etc.
  • the access layer may determine a channel busy ratio (CBR) for the one or more PPPP groups 255, and each PPPP group 255 may have a different available resources in terms of channel occupancy ratio limits (CR limits) when the CBR is high.
  • CBR channel busy ratio
  • the access layer 250 utilizes a congestion control table to monitor available resources according to each PPPP group 255. Accordingly, the access layer 250 may report, to the upper layer 245, various communication information associated with the PPPP groups 255 in one or more communication parameters. In some cases, the CBR may be reported to the upper layer 245 as a value of a communication parameter.
  • the upper layer 245 may access, obtain, receive, etc. the one or more communication parameters based at least in part on an application programming interface (API) supported by the access layer 250.
  • API application programming interface
  • the access layer 250 may support an API at which the upper layer 245 may request for or receive the communication parameters.
  • the parameters may be communicated according to a communication parameter report.
  • the upper layer 245 may consider the obtained communication parameters for congestion control. For example, if the parameters indicate congestion (e.g., based at least in part on dropped packets) , then the upper layer 245 may perform a congestion level modification process. In some case, the process may include reducing the number of generated packets, decreasing a packet size, or both. Accordingly, the upper layer 245 may consider a number of nodes (e.g., UEs) transmitting within a wireless communication system 200 and/or communication parameters received from the access layer 250 when determining whether to perform congestion control processes. Accordingly, the congestion level in the wireless communication system 200 may be reduced based at least in part on the number of UEs transmitting and based at least in part on the communication conditions within the UEs.
  • the congestion level in the wireless communication system 200 may be reduced based at least in part on the number of UEs transmitting and based at least in part on the communication conditions within the UEs.
  • traffic light 225-d may also include an upper layer 265 and an access layer 275, which may perform cross-layer communications at 270 as described with respect to vehicle 210-a.
  • Other vehicles 210, traffic lights 225-b, roadside sensor 230, and other UEs within wireless communication system 200 may also perform the cross-layer communication to perform congestion level control.
  • the upper layer 245 may compare a value of the one or more communication parameters obtained from the access layer 250 to a threshold corresponding to the communication parameter in determining whether to conduct a congestion level modification process (e.g., reduce packet generation and/or size) . For example, if a received communication parameter indicates a transmission rate value, then the upper layer 245 may compare the transmission rate value to a transmission rate threshold to determine whether to reduce the packet generation rate or packet size.
  • a congestion level modification process e.g., reduce packet generation and/or size
  • the various thresholds may be adjusted based at least in part on circumstances such as the number of transmitting nodes in the vicinity of the UE.
  • the upper layer 245 may generate one or more packets (e.g., messages) based at least in part on the obtained communication parameters and for the one or more proximity service levels (e.g., PPPP groups 255) . In some cases, the upper layer 245 may generate the one or more messages based at least in part on a reduced message generation rate, a reduce message size, or both. The upper layer may provide the one or more messages to the access layer 250 in response to the communication parameters. The access layer 250 may transmit the messages according to the proximity service priority levels. Accordingly, the upper layer 245 is made aware of the situation (e.g., communication condition) of the access layer regarding the transmission capability of the access layer base don per packet priority flow. These techniques are applicable to OBUs, RSUs, VRUs, and may be applicable to PC5 transmission nodes/entities.
  • FIG. 3 illustrates an example of a CV2X protocol stack 300 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure.
  • the CV2X protocol stack 300 may implement aspects of wireless communication system 100 and 200.
  • the CV2X protocol stack 300 may implemented by a UE, which may be an example of a vehicle 210, traffic light 225, roadside sensor 230, or another type of UE.
  • the CV2X protocol stack 300 may include an upper layer 305 and an access layer 310.
  • CV2X protocol stack 300 may include an upper layer 305 and an access layer 310.
  • the upper layer 305 may be an example of a second protocol layer and the access layer 310 may be an example of a first protocol layer of the UE.
  • the upper layer 305 may include an application layer 315, a message layer 320, and a network layer 325.
  • the message layer 320 may consist of at least a portion of a security services layer 330 (e.g., an institute of electrical and electronics engineers (IEEE) , European telecommunications standards institute (ETSI) , International standards organization (ISO) security services) and a message/facilities layer 335.
  • the network layer 325 may consist of a at least a portion of the security services layer 330, a user datagram protocol (UDP) /transmission control protocol (TCP) layer 340, an IPv6 layer 345, and/or a transport/network layer 350 (e.g., an IEEE/ETSI/ISO transport/network function) .
  • a security services layer 330 e.g., an institute of electrical and electronics engineers (IEEE) , European telecommunications standards institute (ETSI) , International standards organization (ISO) security services
  • the network layer 325 may consist of a at least a portion of the security services layer 330, a user datagram protocol (UDP)
  • the access layer 310 may include a ProSe signaling layer 355, a non-IP layer 360, a packet data convergence protocol (PDCP) layer 365, a radio link control (RLC) layer 370, a medium access control (MAC) layer 375, and a physical layer 380.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • layers may refer to an operational layer, which may include one or more processes, functions, services, and the like, being performed by a device in hardware, software, or any combination thereof.
  • the application layer 315 may manage one or more aspects for safety and/or non-safety communication protocols and interface methods and process-2-process communications across and IP-based network.
  • the application layer 315 may generally be considered the top-level application suite the provides information, alerts, warnings, etc., to drivers. Within the context of a CV2X network, this may include one or more safety messages (e.g., BSM) , traffic information message (TIM) (s) , and the like.
  • the application layer 315 may be considered an abstraction layer the specifies the shared communications protocols and interface methods used within the communication network. Within an open systems interconnection (OSI) model, the application layer 315 may correspond to layer 7 of the protocol stack.
  • OSI open systems interconnection
  • the security services layer 330 may manage one or more aspects of security for vehicle-based traffic being communicated across the CV2X network. Security within a CV2X network may be particularly important given the ad hoc nature of a vehicle- based network and in view of the serious consequences of a failure to communicate important messages, e.g., the potential for vehicle accidents caused by a loss in communicating BSM, TIM, etc.
  • the security services layer 330 may monitor, control, or otherwise manage one or more aspects of threat vulnerability and risk analysis, mapping between confidentiality services, trust and privacy management, etc., for the messages being communicated across a CV2X network.
  • the security services layer 330 may manage one or more aspects of security services across other layers of the upper layer 305, e.g., in combination with the messages/facilities layer 335, the UDP/TCP layer 340, etc.
  • the message/facilities layer 335 may monitor, control, or otherwise manage one or more aspects of providing facility information to applications, e.g., vehicle position, vehicle state, message set dictionaries, vehicle-to-vehicle, message transmission and reception, threat detection, and the like.
  • the message/facilities layer 335 may receive inputs from various sensors located in different locations around the vehicle, global positioning system (GPS) input, and the like, which may be used in performing wireless communications within the CV2X network and/or for vehicle operation and safety management functions.
  • GPS global positioning system
  • the message/facilities layer 335 may provide input that can be used to determine a node density metric, a traffic pattern, a node type, and other information, for the nodes operating within the CV2X network.
  • the UDP/TCP layer 340 may generally monitor, control, or otherwise manage one or more aspects of IP-based communications on the transport layer for CV2X protocol stack 300.
  • the transport layer provides services such as connection-oriented communications, reliability, flow control, multiplexing, etc.
  • the IPv6 layer 345 may monitor, control, or otherwise manage one or more aspects of IPv6-based communications across a CV2X network.
  • the transport/network layer 350 may monitor, control, or otherwise manage one or aspects of packet forwarding, routing, etc., through and/or for one or more intermediate nodes within the CV2X network.
  • the ProSe signaling layer 355 may monitor, control, or otherwise manage one or aspects of a transmission/reception of V2X communications over a PC5 interface.
  • the proximity service signaling layer 355 may manage aspects of PC5 parameter provisioning, quality of service (QOS) management, synchronization, etc., over the PC5 interface and on a PPPP basis.
  • QOS quality of service
  • the non-IP layer 360 may monitor, control, or otherwise manage information being communicated using non-IP based protocols. For example, some types of safety messages in the vehicle-based network may be inapplicable or otherwise unsuited for conventional IP-based communication protocols due to the large overhead associated with IP based communications. Instead, the non-IP layer 360 may manage one or more aspects of communicating vehicle-based information over a CV2X network using a cooperative awareness message (CAM) , a decentralized environmental notification message (DENM) , and the like, V2V message format.
  • CAM cooperative awareness message
  • DENM decentralized environmental notification message
  • the PDCP layer 365 may provide multiplexing between different radio bearers and logical channels.
  • the PDCP layer 365 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between network devices or base stations.
  • the RLC layer 370 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the RLC layer 370 passes data to the MAC layer 375 as logical channels during transmit operations and/or manages aspects of maintaining the radio link for the UE.
  • a logical channel defines what type of information is being transmitted over the air interface (e.g., user traffic, control channels, broadcast information, etc. ) .
  • two or more logical channels may be combined into a logical channel group (LCG) .
  • the transport channel defines how information is being transmitted over the air interface (e.g., encoding, interleaving, etc. ) and the physical channel defines where information is being transmitted over the air interface (e.g., which symbols of the slot, subframe, fame, etc., are carrying the information) .
  • the MAC layer 375 may manage aspects of the mapping between a logical channel and a transport channel, multiplexing of MAC service data units (SDUs) from logical channel (s) onto the transport block (TB) to be delivered to L1 on transport channels, HARQ based error correction, and the like.
  • the MAC layer 375 may also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs (at the network side) .
  • the MAC layer 375 may also support aspects of HARQ operations.
  • the MAC layer 375 formats and sends the logical channel data to the physical layer 380 as transport channels in one or more TBs.
  • a physical layer 380 monitors, controls, or otherwise manages one or more aspects of transporting information over a wireless medium, e.g., may be responsible for encoding/decoding, modulation/demodulation, etc., for the packets being communicated within a CV2X network.
  • one or more of the functions performed within the security services layer 330, message/facilities layer 335, UDP/TCP layer 340, IPv6 layer 345, and/or the transport/network layer 350 may be performed in a combined operational or functional layer or sub layer of the upper layer 305.
  • one or more of the functions performed within the proximity service signaling layer 355, the non-IP layer 360, the PDCP layer 365, the RLC layer 370, the MAC layer 375, and/or the physical layer 380 may be performed in a combined operational or functional layer or sub layer of the access layer 310.
  • at least some of the functions described as being performed by a single layer above may be performed in combination with, or based on information from, other layers of the upper layer 305 and/or access layer 310.
  • the upper layer 305 may manage or otherwise control one or more aspects of traffic/messages being generated in accordance with aspects of the described techniques. For example, some aspects may include the upper layer 305 relying on communication parameters provided by (e.g., via cross-layer communication 385) the access layer 310 in terms of the communication conditions in the access layer 310 (e.g., the CBR, CR limit, message drop rate, buffer size, etc. ) and determining the message generation rate and/or message size for such traffic. In other aspects, the access layer 310 may manage one or more aspects of the message generation rate by managing or otherwise modifying a transmission periodicity of messages over the CV2X network.
  • communication parameters e.g., via cross-layer communication 385
  • the access layer 310 may manage one or more aspects of the message generation rate by managing or otherwise modifying a transmission periodicity of messages over the CV2X network.
  • one or more functions, layers, sub layers, etc., of the access layer 310 may transmit or otherwise provide (e.g., via cross-layer communication 385) values for a set of communication parameters for each of one or more proximity service priority levels to the upper layer 305.
  • the upper layer 305 e.g., one or more of the layers implemented in the upper layer 305 may then generate the one or more messages based on the obtained values of the set of communication parameters.
  • FIG. 4 illustrates an example of a process flow diagram 400 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure.
  • process flow diagram 400 may implement aspects of wireless communication system 100 and 200.
  • the process flow diagram 400 includes UEs 405, which may be examples of UE 300 as described with respect to FIG. 4.
  • Each of the UEs 405 may include respective upper layers 415, which may be examples of one or more aspects of upper layers 245, 265, or 305 and/or access layers described herein, and access layers 420-a, which may be examples of one or more aspects of access layers 250, 275, or 310 and/or access layers described herein.
  • the access layer may be an example of a first protocol layer.
  • the upper layer may be an example of a second protocol layer and may include at least a message layer and a network layer.
  • the access layer 420-a of the UE 405-a may determine satisfaction of an evaluation trigger.
  • satisfaction of the evaluation trigger is determined based at least in part on expiration of a timer such that communication parameter evaluation occurs periodically (e.g., every 100 ms) .
  • satisfaction of the evaluation trigger is determined based at least in part on transmission of a packet. In such cases, the trigger may be satisfied based at least in part on every nth packet transmission where n is an integer value greater than or equal to 1.
  • triggers to perform communication parameter evaluation may also be used based on the satisfaction of other criteria at UE 405-a, for example based on one or more of the parameter values described with reference to 435 or elsewhere herein satisfying or exceeding a threshold value configured or predetermined for the parameter value.
  • One or more of the above evaluation triggers may also be used in addition or as an alternative as a transmission trigger for values 440.
  • the access layer 420-a of the UE 405-a may determine one or more values corresponding to one or more communication parameters for one or more proximity service priority levels supported by the UE 405-a.
  • the parameters may indicate communication conditions at the access layer 420-a.
  • Such values may include a message identification (ID) (e.g., packet ID) , a number of messages dropped, a number of messages in one or more buffers (e.g., corresponding to the one or more proximity service priority levels) , a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination of these.
  • ID message identification
  • packet ID e.g., packet ID
  • buffers e.g., corresponding to the one or more proximity service priority levels
  • a queuing time associated with one or more messages e.g., a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for
  • the access layer 420-a of the UE 405-a may provide at least one value of the set of communication parameters to the upper layer 415-a, and as such, the upper layer 415-a may obtain the at least one value of the set of communication parameters for one or more proximity service levels supported by the UE.
  • the upper layer 415-a of the UE 405-a may compare a value of one of the set of communication parameters to a threshold corresponding to the communication parameter.
  • Such thresholds may be predetermined (e.g., UE 405-a may be preconfigured) , be configured at UE 405-a by the network (e.g., via RRC signaling by a base station) , or dynamically configured via downlink control information or a MAC control element (MAC CE) .
  • the upper layer 415-a generates one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value.
  • the messages are based at least in part on a reduced message generation rate or a reduce message size.
  • the upper layer 415-a may identify a first message generation rate, which may correspond to a first message generation rate (e.g., a normal operating message generation rate) .
  • the upper layer 415-a may then identify a second message generation rate less than the first generation rate (e.g., a reduced message generation rate) .
  • the one or more messages may be generated on the second message generation rate.
  • a second message size (e.g., a reduced message size) smaller or shorter than a first message size (e.g., a normal operating message size) may be similarly identified.
  • the messages are generated (e.g., a reduce rate or size) based at least in part on the value of the set of communication parameter being greater than (or less than) the corresponding threshold.
  • the upper layer 415-a may provide, to the access layer 420-a the one or more message generated for the one or more proximity service levels, and as such, the access layer 420-a may obtain the one or more messages for the one or more proximity service priority levels in responsive to the at least one value of the set of communication parameters.
  • upper layer 415-a (or another upper layer described herein) may provide the messages to the access layer 420-a (or another access layer described herein) by passing them from at least one layer of the upper layer 415-a (e.g., at least one layer as described with reference to upper layer 305) to at least one layer of the access layer 420-a (e.g., at least one layer as described with reference to upper layer 305) .
  • the one or more messages may be passed via an application programming interface (API) , which may be between two separate components of a single chip or integrated circuit, or between two distinct chips or integrated circuits.
  • API application programming interface
  • the access layer 420-a transmits the one or more messages to the UE 405-b according to the one or more proximity service priority levels.
  • the UE 405-b may implement the cross-layer messaging to conduct congestion control as described with respect to UE 405-a.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to cross-layer messaging for congestion control, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
  • the communications manager 515 may also obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • various sub-components of the communications manager 515 may be implemented in an upper layer 525 and an access layer 530.
  • the upper layer 525 and the access layer 530 may perform cross-layer communication to perform congestion level control.
  • One implementation is determining, at a first protocol layer (e.g., the access layer 530) of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer (e.g., the upper layer 525) the of the UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages.
  • a first protocol layer e.g., the access layer 530
  • the set of communication parameters indicating communication conditions at the first protocol layer
  • the UE may reduce a rate in which packages (e.g., messages) are dropped. Accordingly, the UE may conserve battery power because resources are not wasted by generating and processing packages that may be eventually dropped. Further, because the congestion level of a communication environment may be reduced, the UE may efficiently receive and transmit communications that may not be repeated, thereby conserving resources such as battery life.
  • packages e.g., messages
  • a processor of the UE may efficiently process messages such that messages are not dropped, or message dropping is reduced.
  • the processor may not waste processing resources generating and processing messages that are eventually dropped based at least in part on congestion levels.
  • memory e.g., buffer memory
  • memory associated with one or more processing components may be conserved based at least in part on a reduced message generation rate or message size.
  • the resources may be saved by generating values periodically or responsive to an event (e.g., packet transmission) .
  • the values may be generated and provided to the second layer using a report, which may efficiently store the values such that the values may be efficiently processed.
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 655.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to cross-layer messaging for congestion control, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include an access layer 660 including a communication condition evaluation component 620, a communication parameter transmitting interface 625, a message receiving interface 630, and a communication interface 635 and a upper layer 665 including a communication parameter receiving interface 640, a message generation component 645, and a message transmitting interface 650.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the communication condition evaluation component 620 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
  • the communication parameter transmitting interface 625 may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
  • the message receiving interface 630 may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters.
  • the communication interface 635 may transmit the one or more messages.
  • the communication parameter receiving interface 640 may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
  • the message generation component 645 may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters.
  • the message transmitting interface 650 may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the transmitter 655 may transmit signals generated by other components of the device 605.
  • the transmitter 655 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 655 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 655 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a communication condition evaluation component 710, a communication parameter transmitting interface 715, a message receiving interface 720, a communication interface 725, a trigger evaluation component 730, a communication parameter receiving interface 735, a message generation component 740, a message transmitting interface 745, and a value comparison component 750.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communication condition evaluation component 710 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
  • the communication parameter transmitting interface 715 may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
  • the communication parameter transmitting interface 715 may provide, to the second protocol layer, a report including the at least one value of the set of communication parameters.
  • the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • ID message identification
  • a number of messages dropped a number of messages in one or more buffers
  • a queuing time associated with one or more messages a modulation coding scheme
  • a transmission time associated with a message a proximity service priority level utilized to transmit a message
  • a channel occupancy ratio a transmission rate at the first protocol layer
  • a channel busy ratio for each of the one or more proximity service levels or a combination thereof.
  • the message receiving interface 720 may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters.
  • the communication interface 725 may transmit the one or more messages. In some examples, the communication interface 725 may transmit the one or more messages according to the one or more proximity service priority levels.
  • the communication parameter receiving interface 735 may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
  • the communication parameter receiving interface 735 may obtain, from the first protocol layer, a report including the at least one value of the set of communication parameters.
  • the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  • ID message identification
  • a number of messages dropped a number of messages in one or more buffers
  • a queuing time associated with one or more messages a modulation coding scheme
  • a transmission time associated with a message a proximity service priority level utilized to transmit a message
  • a channel occupancy ratio a transmission rate at the first protocol layer
  • a channel busy ratio for each of the one or more proximity service levels or a combination thereof.
  • the message generation component 740 may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters. In some examples, the message generation component 740 may identify a first message generation rate used by the second protocol layer to generate messages. In some examples, the message generation component 740 may determine a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters. In some examples, the message generation component 740 may generate the one or more messages based at least in part on the determined second message generation rate.
  • the message generation component 740 may identify a first message size used by the second protocol layer to generate messages. In some examples, the message generation component 740 may determine a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters. In some examples, the message generation component 740 may generate the one or more messages based at least in part on the determined second message size.
  • the message transmitting interface 745 may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the trigger evaluation component 730 may determine that a communication evaluation trigger is satisfied, where the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  • the trigger evaluation component 730 may determine, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE. In some examples, the trigger evaluation component 730 may determine, at the first protocol layer, that a periodic timer has expired.
  • the value comparison component 750 may compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, where the one or more messages are generated based at least in part on the comparing.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
  • the communications manager 810 may also obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • various sub-components of the communications manager 810 may be implemented in an upper layer 850 and an access layer 855.
  • the upper layer 850 and the access layer 855 may perform cross-layer communication to perform congestion level control.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as MS- MS- OS/ or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include RAM and ROM.
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting cross-layer messaging for congestion control) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a communication condition evaluation component as described with reference to FIGs. 5 through 8.
  • the UE may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
  • the UE may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a message receiving interface as described with reference to FIGs. 5 through 8.
  • the UE may transmit the one or more messages.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a communication interface as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may determine that a communication evaluation trigger is satisfied, where the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a trigger evaluation component as described with reference to FIGs. 5 through 8.
  • the UE may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a communication condition evaluation component as described with reference to FIGs. 5 through 8.
  • the UE may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
  • the UE may provide, to the second protocol layer, a report including the at least one value of the set of communication parameters.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
  • the UE may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a message receiving interface as described with reference to FIGs. 5 through 8.
  • the UE may transmit the one or more messages.
  • the operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a communication interface as described with reference to FIGs. 5 through 8.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
  • the UE may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a message generation component as described with reference to FIGs. 5 through 8.
  • the UE may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a message transmitting interface as described with reference to FIGs. 5 through 8.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
  • the UE may compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, where the one or more messages are generated based at least in part on the comparing.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a value comparison component as described with reference to FIGs. 5 through 8.
  • the UE may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a message generation component as described with reference to FIGs. 5 through 8.
  • the UE may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a message transmitting interface as described with reference to FIGs. 5 through 8.
  • the UE may obtain, from the first protocol layer, a report including the at least one value of the set of communication parameters.
  • the operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • an exemplary step that is described as “based at least in part on condition A” may be based at least in part on both a condition A and a condition B without departing from the scope of the present disclosure.
  • the phrase “based at least in part on” shall be construed in the same manner as the phrase “based at least in part on. ”

Abstract

Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for determining, at a first protocol layer of a user equipment (UE), at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer. The first protocol layer may provide the value of the set communication parameters to a second protocol layer of the UE. The first protocol layer may further obtain, from the second layer, one or more messages in response to the value of the set of communication parameters and transmit the one or more messages. The messages may be generated by the second protocol layer for the one or more proximity service priority levels and according to the value of the set of communication parameters.

Description

CROSS-LAYER MESSAGING FOR CONGESTION CONTROL BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Wireless communication systems may include or support networks used for vehicle based communications, also referred to as vehicle-to-everything (V2X) networks, vehicle-to-vehicle (V2V) networks, cellular V2X (CV2X) networks, or other similar networks. Vehicle based communication networks may provide always on telematics where UEs, e.g., vehicle UEs (v-UEs) , communicate directly to the network (V2N) , to pedestrian UEs (V2P) , to infrastructure devices (V2I) , and to other v-UEs (e.g., via the network and/or directly) . The vehicle based communication networks may support a safe, always-connected driving experience by providing intelligent connectivity where traffic signal/timing, real-time traffic and routing, safety alerts to pedestrians/bicyclist, collision avoidance information, etc., are exchanged. In some cases, it may be desirable for the various devices of the vehicle based communication networks to perform congestion level reduction procedures to maintain communication stability and reliability in the network.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support cross-layer messaging for congestion control. Generally, the described techniques provide for determining, at a first protocol layer of a UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE. The set of communication parameters may indicate communication conditions at the first protocol layer. The first protocol layer may provide the at least one value of the set communication parameters to a second protocol layer of the UE. The second protocol layer is a higher layer than the first protocol layer. The first protocol layer may further obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters and transmit the one or more messages. Accordingly, the first protocol layer (e.g., an access layer of the UE, including physical and media access control layers) may provide a transmission capability (which may be based at least in part on a congestion level in a communication environment) to the higher layer (e.g., an upper layer of the UE) . The higher layer may utilize the received parameters to adjust message generation, for example by generating messages according to a reduced message generation rate, a reduced message size, or both. Accordingly, the higher layer reduces a congestion level in a communication environment and the access layer of the UE.
A method of wireless communication at a UE is described. The method may include determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to  determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a communication evaluation trigger may be satisfied, where the at least one  value of the set of communication parameters may be determined in response to determining that the communication evaluation trigger may be satisfied.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining that the communication evaluation trigger may be satisfied may include operations, features, means, or instructions for determining, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels may have been transmitted by the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining that the communication evaluation trigger may be satisfied further may include operations, features, means, or instructions for determining, at the first protocol layer, that a periodic timer may have expired.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, providing the at least one value of the set of communication parameters may include operations, features, means, or instructions for providing, to the second protocol layer, a report including the at least one value of the set of communication parameters.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the one or more messages according to the one or more proximity service priority levels.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first protocol layer includes an access layer.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second protocol layer includes a message layer and a network layer.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE includes a node of a vehicle-to-everything communication network.
A method of wireless communication at a UE is described. The method may include obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generating, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second  protocol layer being a higher layer than the first protocol layer, generating, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for comparing a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, where the one or more messages may be generated based on the comparing.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, generating the one or more messages further may include operations, features, means, or instructions for identifying a first message generation rate used by the second protocol layer to generate messages, determining a second message generation rate less than the first message generation rate based on the at least one value of the set of communication parameters, and generating the one or more messages based on the determined second message generation rate.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, generating the one or more messages further may include operations, features, means, or instructions for identifying a first message size used by the second protocol layer to generate messages, determining a second message size less than the  first message size based on the at least one value of the set of communication parameters, and generating the one or more messages based on the determined second message size.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the at least one value of the set of communication parameters may include operations, features, means, or instructions for obtaining, from the first protocol layer, a report including the at least one value of the set of communication parameters.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first protocol layer includes an access layer.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second protocol layer includes a message layer and a network layer.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE includes a node of vehicle-to-everything communication network.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a CV2X protocol stack that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow diagram that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
FIGs. 9 through 12 show flowcharts illustrating methods that support cross-layer messaging for congestion control in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Techniques described herein may be utilized by UEs in a wireless communication environment to reduce congestion levels within the environment. In some cases, the UE may support networks used for vehicle based communications, such as vehicle-to-everything (V2X) networks, vehicle-to-vehicle (V2V) networks, cellular V2X (CV2X) networks, or other similar networks. In these networks, the various UEs (e.g., vehicles, road-side sensors, traffic lights, road-side unites, personal UEs, etc. ) may communicate directly with another, which may result in increased congestion levels within the environment. A UE may include various communication layers, such as an access layer and an upper layer. The access layer may include a set of ProSe per-packet priority (PPPP) groups. The upper layer may generate messages (e.g., packets) for transmission by the access layer. Implementations described herein, among other things, provide for cross-layer messaging between the access layer and the upper layer.
In some examples, the access layer may evaluate communication conditions within the access layer and generate values for communication parameters for the one or more proximity service priority levels (e.g., PPPP groups) . The values may indicate the communication conditions. In one example, case, a value may indicate a number of packets dropped. Accordingly, the values indicate the communication conditions (e.g., congestion levels) . The values may be obtained by the upper layer and used by the upper layer to determine whether to perform a congestion control procedure. The congestion control procedure may include reducing a message generation rate and/or a message size. Messages (e.g., packets) may be generated by the upper layer and obtained by the access layer for transmission. As such, various UEs may reduce the congestion level in a wireless communication environment based at least in part on cross-layer messaging.
Aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are further described with reference to a wireless communications system, a UE, and a process flow diagram. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to cross-layer messaging for congestion control.
FIG. 1 illustrates an example of a wireless communications system 100 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations  105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of  devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a  power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the  network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However,  the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based at least in part on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based at least in part on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different  spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined  based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a  UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol  periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as  well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and  the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol  periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed and shared (e.g., shared licensed and/or unlicensed) radiofrequency (RF) spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
In some cases, a UE 115 may implement cross-layer messaging for congestion control as described herein. For example, UE 115 may be an example of a UE configured for V2X or DSRC communication. In such cases, a UE 115 may conduct congestion control procedures to reduce congestion within an area proximal to the UE 115. In some cases, the UE 115 may consider the number of transmitting UEs 115 within a vicinity of the UE 115 to determine whether to perform congestion control to maintain communication reliability. Implementations described herein provide additional or alternative communication indicators for determining whether to conduct congestion control procedures based at least in part on cross-layer messaging (e.g., between a first protocol layer and a second protocol layer, such as an access layer and an upper layer) .
The UE 115 may include a first communication protocol layer (e.g., an access layer) and a second communication protocol layer (e.g., an upper layer) . The second communication layer may include at least a message layer and a network layer. The first communication protocol layer may conduct communication condition evaluations to determine at least one value for a set of communication parameters for one or more proximity service priority levels supported by the UE 115 (e.g., at the access layer) . The values may indicate communication conditions at the access layer. The set of communication parameter values may be communicated to or obtained by the upper layer using cross-layer messaging. In some cases, the cross-layer messaging is implemented using one or more application programming interfaces (APIs) supported by the access layer.
Based at least in part on the values of the set of communication parameters obtained from the access layer, the upper layer may generate one or more messages. The  messages may be generated according to a reduced message generation rate or a reduced message size, which may be determined according the values of the set of communication parameters. For example, one or more of the values may indicate that the communication system 100 (or a geographic portion thereof) is congested, and the upper layer may generate messages according to a reduced message generation rate to reduce congestion levels in the wireless communication system 100. The values may indicate various aspects of the communication conditions in the access layer, such as a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
The access layer may obtain the message generated for the one or more proximity service priority levels and transmit the messages. As such, the UE 115 may utilize cross-layer messaging to reduce congestion levels in the communication system 100. Further, benefits may include a reduced buffer size, fewer dropped packets (e.g., locally at the UE 115) , etc.
FIG. 2 illustrates an example of a wireless communications system 200 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure. In some examples, wireless communication system 200 may implement aspects of wireless communication system 100. Aspects of wireless communication system 200 may be implemented by a base station 205, vehicles 210, traffic lights 225, and/or a roadside sensor 230.
Within the context of a wireless communication system 200, any of the vehicles 210, traffic lights 225, and/or roadside sensor 230 may be examples of a UE. In some cases, the traffic lights 225 and/or roadside sensor 230 may be examples of roadside units (RSUs) or roadside equipment (RSE) , and the vehicles 210 may be examples of onboard units (OBUs) . Further, various other devices (not shown) in the context of the wireless communication system 200 may be examples of vulnerable road users (VRUs) . Each of the UEs (e.g., vehicles 210, traffic lights 225, roadside sensors 230, etc. ) may implement cellular vehicle-to-everything (C-V2X) wireless radio access technology (RAT) , dedicated short range  communication (DSRC) RAT, or the like to communicate with various other devices within the wireless communication system 200.
In some cases, the RATs implemented by the UEs may perform various processes for congestion control in the wireless communication system 200. For example, 3GPP defines the congestion control to limit the access to the resources of each transmission node (e.g., base station 205 and UEs) for each priority traffic in terms of ProSe per-packet priority (PPPP) . For example, vehicle 210-a may include a communications manager including an upper layer 245 and an access layer 250. The upper layer may define congestion control processes to limit the communication traffic in the wireless communication system 200. In some cases, the processes may be defined by standards defining organizations (SDOs) to manage congestion control. In one example, of a congestion control process, an upper layer 245 considers a count or number of transmitting nodes in wireless communication system 200 in determining whether to perform congestion control.
Aspects illustrated and described herein provide for access layer support for congestion control. For example, the access layer 250, which may be an example of a first protocol layer, may determine values for one or more communication parameters for proximity service priority levels supported by the UE (e.g., the vehicle 210-a) . The values may be determined based at least in part on satisfaction of a communication evaluation trigger. In some cases, the communication evaluation trigger is based at least in part on expiration of a timer, such that the values are periodically determined (e.g., every 100 ms) . In other cases, satisfaction of the evaluation trigger is based at least in part on transmission of a packet. The values of the communication parameters may indicate various communication conditions in the access layer 250, such as whether the system is congested based at least in part on the number or identity of packets being dropped, buffer length, queuing time of a packet, modulation coding scheme (MCS) , transmission times, transmission rates, channel occupancy ratio limit (CR limit) , and the like. The determined values of the communication parameters may be transmitted at 260 to the upper layer 245, which may be an example of a second protocol layer, for congestion control consideration. In some cases, the cross-layer transmission 260 is in the form of a report.
The access layer 250 may include PPPP groups 255, which may also be other type or designation of priority groups and may correspond to one or more proximity service  priority levels. For example, each PPPP group 255 may include a buffer for storing packets having various priorities for transmission on one or more channels associated with the PPPP groups 255. For example, the access layer 250 maintains a buffer per priority level that buffers that packets of the same priority level (e.g., PPPP group 255) . The priorities may correspond to message types such as spat/map, speed limitation (RSI) , road safety conditions (RSM) , positioning assistant information (RTCM) , etc. When a packet is in a buffer for an extended time period (e.g., a time-out) , the packet may be dropped (e.g., not transmitted) as the information may no longer be useful. The access layer may determine a channel busy ratio (CBR) for the one or more PPPP groups 255, and each PPPP group 255 may have a different available resources in terms of channel occupancy ratio limits (CR limits) when the CBR is high. In some cases, the access layer 250 utilizes a congestion control table to monitor available resources according to each PPPP group 255. Accordingly, the access layer 250 may report, to the upper layer 245, various communication information associated with the PPPP groups 255 in one or more communication parameters. In some cases, the CBR may be reported to the upper layer 245 as a value of a communication parameter.
The upper layer 245 may access, obtain, receive, etc. the one or more communication parameters based at least in part on an application programming interface (API) supported by the access layer 250. For example, the access layer 250 may support an API at which the upper layer 245 may request for or receive the communication parameters. As noted, the parameters may be communicated according to a communication parameter report.
The upper layer 245 may consider the obtained communication parameters for congestion control. For example, if the parameters indicate congestion (e.g., based at least in part on dropped packets) , then the upper layer 245 may perform a congestion level modification process. In some case, the process may include reducing the number of generated packets, decreasing a packet size, or both. Accordingly, the upper layer 245 may consider a number of nodes (e.g., UEs) transmitting within a wireless communication system 200 and/or communication parameters received from the access layer 250 when determining whether to perform congestion control processes. Accordingly, the congestion level in the wireless communication system 200 may be reduced based at least in part on the number of UEs transmitting and based at least in part on the communication conditions within the UEs. As illustrated, traffic light 225-d may also include an upper layer 265 and an access layer 275,  which may perform cross-layer communications at 270 as described with respect to vehicle 210-a. Other vehicles 210, traffic lights 225-b, roadside sensor 230, and other UEs within wireless communication system 200 may also perform the cross-layer communication to perform congestion level control.
In some cases, the upper layer 245 may compare a value of the one or more communication parameters obtained from the access layer 250 to a threshold corresponding to the communication parameter in determining whether to conduct a congestion level modification process (e.g., reduce packet generation and/or size) . For example, if a received communication parameter indicates a transmission rate value, then the upper layer 245 may compare the transmission rate value to a transmission rate threshold to determine whether to reduce the packet generation rate or packet size. In some cases, the various thresholds may be adjusted based at least in part on circumstances such as the number of transmitting nodes in the vicinity of the UE.
The upper layer 245 may generate one or more packets (e.g., messages) based at least in part on the obtained communication parameters and for the one or more proximity service levels (e.g., PPPP groups 255) . In some cases, the upper layer 245 may generate the one or more messages based at least in part on a reduced message generation rate, a reduce message size, or both. The upper layer may provide the one or more messages to the access layer 250 in response to the communication parameters. The access layer 250 may transmit the messages according to the proximity service priority levels. Accordingly, the upper layer 245 is made aware of the situation (e.g., communication condition) of the access layer regarding the transmission capability of the access layer base don per packet priority flow. These techniques are applicable to OBUs, RSUs, VRUs, and may be applicable to PC5 transmission nodes/entities.
FIG. 3 illustrates an example of a CV2X protocol stack 300 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure. In some examples, the CV2X protocol stack 300 may implement aspects of  wireless communication system  100 and 200. For example, the CV2X protocol stack 300 may implemented by a UE, which may be an example of a vehicle 210, traffic light 225, roadside sensor 230, or another type of UE. The CV2X protocol stack 300 may include an upper layer 305 and an access layer 310.
Generally, the UE may implement CV2X protocol stack 300 when performing wireless communications within a CV2X network. CV2X protocol stack 300 may include an upper layer 305 and an access layer 310. In some examples, the upper layer 305 may be an example of a second protocol layer and the access layer 310 may be an example of a first protocol layer of the UE. In some aspects, the upper layer 305 may include an application layer 315, a message layer 320, and a network layer 325. Generally, the message layer 320 may consist of at least a portion of a security services layer 330 (e.g., an institute of electrical and electronics engineers (IEEE) , European telecommunications standards institute (ETSI) , International standards organization (ISO) security services) and a message/facilities layer 335. The network layer 325 may consist of a at least a portion of the security services layer 330, a user datagram protocol (UDP) /transmission control protocol (TCP) layer 340, an IPv6 layer 345, and/or a transport/network layer 350 (e.g., an IEEE/ETSI/ISO transport/network function) . In some aspects, the access layer 310 may include a ProSe signaling layer 355, a non-IP layer 360, a packet data convergence protocol (PDCP) layer 365, a radio link control (RLC) layer 370, a medium access control (MAC) layer 375, and a physical layer 380. It is to be understood that more or fewer layers may be implemented for wireless communications in CV2X protocol stack 300. Moreover, it is also to be understood that the term layers may refer to an operational layer, which may include one or more processes, functions, services, and the like, being performed by a device in hardware, software, or any combination thereof.
In some aspects, the application layer 315 may manage one or more aspects for safety and/or non-safety communication protocols and interface methods and process-2-process communications across and IP-based network. Broadly, the application layer 315 may generally be considered the top-level application suite the provides information, alerts, warnings, etc., to drivers. Within the context of a CV2X network, this may include one or more safety messages (e.g., BSM) , traffic information message (TIM) (s) , and the like. In some aspects, the application layer 315 may be considered an abstraction layer the specifies the shared communications protocols and interface methods used within the communication network. Within an open systems interconnection (OSI) model, the application layer 315 may correspond to layer 7 of the protocol stack.
In some aspects, the security services layer 330 may manage one or more aspects of security for vehicle-based traffic being communicated across the CV2X network. Security within a CV2X network may be particularly important given the ad hoc nature of a vehicle- based network and in view of the serious consequences of a failure to communicate important messages, e.g., the potential for vehicle accidents caused by a loss in communicating BSM, TIM, etc. In some aspects, the security services layer 330 may monitor, control, or otherwise manage one or more aspects of threat vulnerability and risk analysis, mapping between confidentiality services, trust and privacy management, etc., for the messages being communicated across a CV2X network. In some aspects, the security services layer 330 may manage one or more aspects of security services across other layers of the upper layer 305, e.g., in combination with the messages/facilities layer 335, the UDP/TCP layer 340, etc.
In some aspects, the message/facilities layer 335 may monitor, control, or otherwise manage one or more aspects of providing facility information to applications, e.g., vehicle position, vehicle state, message set dictionaries, vehicle-to-vehicle, message transmission and reception, threat detection, and the like. For example, the message/facilities layer 335 may receive inputs from various sensors located in different locations around the vehicle, global positioning system (GPS) input, and the like, which may be used in performing wireless communications within the CV2X network and/or for vehicle operation and safety management functions. As one example, the message/facilities layer 335 may provide input that can be used to determine a node density metric, a traffic pattern, a node type, and other information, for the nodes operating within the CV2X network.
In some aspects, the UDP/TCP layer 340 may generally monitor, control, or otherwise manage one or more aspects of IP-based communications on the transport layer for CV2X protocol stack 300. Broadly, the transport layer provides services such as connection-oriented communications, reliability, flow control, multiplexing, etc. Similarly, the IPv6 layer 345 may monitor, control, or otherwise manage one or more aspects of IPv6-based communications across a CV2X network. In some aspects, the transport/network layer 350 may monitor, control, or otherwise manage one or aspects of packet forwarding, routing, etc., through and/or for one or more intermediate nodes within the CV2X network.
In some aspects, the ProSe signaling layer 355 may monitor, control, or otherwise manage one or aspects of a transmission/reception of V2X communications over a PC5 interface. For example, the proximity service signaling layer 355 may manage aspects of PC5 parameter provisioning, quality of service (QOS) management, synchronization, etc., over the PC5 interface and on a PPPP basis.
In some aspects, the non-IP layer 360 may monitor, control, or otherwise manage information being communicated using non-IP based protocols. For example, some types of safety messages in the vehicle-based network may be inapplicable or otherwise unsuited for conventional IP-based communication protocols due to the large overhead associated with IP based communications. Instead, the non-IP layer 360 may manage one or more aspects of communicating vehicle-based information over a CV2X network using a cooperative awareness message (CAM) , a decentralized environmental notification message (DENM) , and the like, V2V message format.
In some aspects, the PDCP layer 365 may provide multiplexing between different radio bearers and logical channels. The PDCP layer 365 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between network devices or base stations. The RLC layer 370 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ. The RLC layer 370 passes data to the MAC layer 375 as logical channels during transmit operations and/or manages aspects of maintaining the radio link for the UE.
A logical channel defines what type of information is being transmitted over the air interface (e.g., user traffic, control channels, broadcast information, etc. ) . In some aspects, two or more logical channels may be combined into a logical channel group (LCG) . By comparison, the transport channel defines how information is being transmitted over the air interface (e.g., encoding, interleaving, etc. ) and the physical channel defines where information is being transmitted over the air interface (e.g., which symbols of the slot, subframe, fame, etc., are carrying the information) .
The MAC layer 375 may manage aspects of the mapping between a logical channel and a transport channel, multiplexing of MAC service data units (SDUs) from logical channel (s) onto the transport block (TB) to be delivered to L1 on transport channels, HARQ based error correction, and the like. The MAC layer 375 may also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs (at the network side) . The MAC layer 375 may also support aspects of HARQ operations. The MAC layer 375 formats and sends the logical channel data to the physical layer 380 as transport channels in one or more TBs. Generally, a physical layer 380 monitors, controls, or otherwise manages  one or more aspects of transporting information over a wireless medium, e.g., may be responsible for encoding/decoding, modulation/demodulation, etc., for the packets being communicated within a CV2X network.
Although shown as separate functions, it is to be understood that one or more of the functions performed within the security services layer 330, message/facilities layer 335, UDP/TCP layer 340, IPv6 layer 345, and/or the transport/network layer 350 may be performed in a combined operational or functional layer or sub layer of the upper layer 305. Similarly, one or more of the functions performed within the proximity service signaling layer 355, the non-IP layer 360, the PDCP layer 365, the RLC layer 370, the MAC layer 375, and/or the physical layer 380 may be performed in a combined operational or functional layer or sub layer of the access layer 310. For example, at least some of the functions described as being performed by a single layer above may be performed in combination with, or based on information from, other layers of the upper layer 305 and/or access layer 310.
In some aspects, the upper layer 305 may manage or otherwise control one or more aspects of traffic/messages being generated in accordance with aspects of the described techniques. For example, some aspects may include the upper layer 305 relying on communication parameters provided by (e.g., via cross-layer communication 385) the access layer 310 in terms of the communication conditions in the access layer 310 (e.g., the CBR, CR limit, message drop rate, buffer size, etc. ) and determining the message generation rate and/or message size for such traffic. In other aspects, the access layer 310 may manage one or more aspects of the message generation rate by managing or otherwise modifying a transmission periodicity of messages over the CV2X network.
For example, one or more functions, layers, sub layers, etc., of the access layer 310 may transmit or otherwise provide (e.g., via cross-layer communication 385) values for a set of communication parameters for each of one or more proximity service priority levels to the upper layer 305. The upper layer 305 (e.g., one or more of the layers implemented in the upper layer 305) may then generate the one or more messages based on the obtained values of the set of communication parameters.
FIG. 4 illustrates an example of a process flow diagram 400 that supports cross-layer messaging for congestion control in accordance with various aspects of the present disclosure. In some examples, process flow diagram 400 may implement aspects of  wireless  communication system  100 and 200. The process flow diagram 400 includes UEs 405, which may be examples of UE 300 as described with respect to FIG. 4. Each of the UEs 405 may include respective upper layers 415, which may be examples of one or more aspects of  upper layers  245, 265, or 305 and/or access layers described herein, and access layers 420-a, which may be examples of one or more aspects of  access layers  250, 275, or 310 and/or access layers described herein. The access layer may be an example of a first protocol layer. The upper layer may be an example of a second protocol layer and may include at least a message layer and a network layer.
At 430, the access layer 420-a of the UE 405-a may determine satisfaction of an evaluation trigger. In some cases, satisfaction of the evaluation trigger is determined based at least in part on expiration of a timer such that communication parameter evaluation occurs periodically (e.g., every 100 ms) . In some cases, satisfaction of the evaluation trigger is determined based at least in part on transmission of a packet. In such cases, the trigger may be satisfied based at least in part on every nth packet transmission where n is an integer value greater than or equal to 1. Other triggers to perform communication parameter evaluation may also be used based on the satisfaction of other criteria at UE 405-a, for example based on one or more of the parameter values described with reference to 435 or elsewhere herein satisfying or exceeding a threshold value configured or predetermined for the parameter value. One or more of the above evaluation triggers may also be used in addition or as an alternative as a transmission trigger for values 440.
At 435, responsive to satisfaction of the evaluation trigger at 430, the access layer 420-a of the UE 405-a may determine one or more values corresponding to one or more communication parameters for one or more proximity service priority levels supported by the UE 405-a. The parameters may indicate communication conditions at the access layer 420-a. Such values may include a message identification (ID) (e.g., packet ID) , a number of messages dropped, a number of messages in one or more buffers (e.g., corresponding to the one or more proximity service priority levels) , a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination of these.
At 440, the access layer 420-a of the UE 405-a may provide at least one value of the set of communication parameters to the upper layer 415-a, and as such, the upper layer 415-a may obtain the at least one value of the set of communication parameters for one or more proximity service levels supported by the UE.
At 445, the upper layer 415-a of the UE 405-a may compare a value of one of the set of communication parameters to a threshold corresponding to the communication parameter. Such thresholds may be predetermined (e.g., UE 405-a may be preconfigured) , be configured at UE 405-a by the network (e.g., via RRC signaling by a base station) , or dynamically configured via downlink control information or a MAC control element (MAC CE) .
At 450, the upper layer 415-a generates one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value. In some cases, the messages are based at least in part on a reduced message generation rate or a reduce message size. For example, the upper layer 415-a may identify a first message generation rate, which may correspond to a first message generation rate (e.g., a normal operating message generation rate) . The upper layer 415-a may then identify a second message generation rate less than the first generation rate (e.g., a reduced message generation rate) . The one or more messages may be generated on the second message generation rate. A second message size (e.g., a reduced message size) smaller or shorter than a first message size (e.g., a normal operating message size) may be similarly identified. In some cases, the messages are generated (e.g., a reduce rate or size) based at least in part on the value of the set of communication parameter being greater than (or less than) the corresponding threshold.
At 455, the upper layer 415-a may provide, to the access layer 420-a the one or more message generated for the one or more proximity service levels, and as such, the access layer 420-a may obtain the one or more messages for the one or more proximity service priority levels in responsive to the at least one value of the set of communication parameters. In some examples upper layer 415-a (or another upper layer described herein) may provide the messages to the access layer 420-a (or another access layer described herein) by passing them from at least one layer of the upper layer 415-a (e.g., at least one layer as described with reference to upper layer 305) to at least one layer of the access layer 420-a (e.g., at least one layer as described with reference to upper layer 305) . In some example, the one or more  messages may be passed via an application programming interface (API) , which may be between two separate components of a single chip or integrated circuit, or between two distinct chips or integrated circuits.
At 460, the access layer 420-a transmits the one or more messages to the UE 405-b according to the one or more proximity service priority levels. The UE 405-b may implement the cross-layer messaging to conduct congestion control as described with respect to UE 405-a.
FIG. 5 shows a block diagram 500 of a device 505 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to cross-layer messaging for congestion control, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages. The communications manager 515 may also obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer,  and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
In some cases, various sub-components of the communications manager 515 may be implemented in an upper layer 525 and an access layer 530. The upper layer 525 and the access layer 530 may perform cross-layer communication to perform congestion level control. One implementation is determining, at a first protocol layer (e.g., the access layer 530) of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, providing the at least one value of the set communication parameters to a second protocol layer (e.g., the upper layer 525) the of the  UE, the second protocol layer being a higher layer than the first protocol layer, obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmitting the one or more messages. One example advantage for the UE is that the UE may reduce a rate in which packages (e.g., messages) are dropped. Accordingly, the UE may conserve battery power because resources are not wasted by generating and processing packages that may be eventually dropped. Further, because the congestion level of a communication environment may be reduced, the UE may efficiently receive and transmit communications that may not be repeated, thereby conserving resources such as battery life.
As another advantage, based at least in part on the cross-message indication of communication parameters, a processor of the UE may efficiently process messages such that messages are not dropped, or message dropping is reduced. In other words, the processor may not waste processing resources generating and processing messages that are eventually dropped based at least in part on congestion levels. Further, memory (e.g., buffer memory) associated with one or more processing components may be conserved based at least in part on a reduced message generation rate or message size. These advantages are further realized based at least in part on determining that a communication evaluation trigger is satisfied, where the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied. Thus, rather than continuously generating parameter values, the resources may be saved by generating values periodically or responsive to an event (e.g., packet transmission) . Further, the values may be generated and provided to the second layer using a report, which may efficiently store the values such that the values may be efficiently processed.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.  The device 605 may include a receiver 610, a communications manager 615, and a transmitter 655. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to cross-layer messaging for congestion control, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include an access layer 660 including a communication condition evaluation component 620, a communication parameter transmitting interface 625, a message receiving interface 630, and a communication interface 635 and a upper layer 665 including a communication parameter receiving interface 640, a message generation component 645, and a message transmitting interface 650. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The communication condition evaluation component 620 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
The communication parameter transmitting interface 625 may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
The message receiving interface 630 may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters. The communication interface 635 may transmit the one or more messages.
The communication parameter receiving interface 640 may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set  of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
The message generation component 645 may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters.
The message transmitting interface 650 may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
The transmitter 655 may transmit signals generated by other components of the device 605. In some examples, the transmitter 655 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 655 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 655 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a communication condition evaluation component 710, a communication parameter transmitting interface 715, a message receiving interface 720, a communication interface 725, a trigger evaluation component 730, a communication parameter receiving interface 735, a message generation component 740, a message transmitting interface 745, and a value comparison component 750. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communication condition evaluation component 710 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer.
The communication parameter transmitting interface 715 may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer.
In some examples, the communication parameter transmitting interface 715 may provide, to the second protocol layer, a report including the at least one value of the set of communication parameters.
In some cases, the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
The message receiving interface 720 may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters. The communication interface 725 may transmit the one or more messages. In some examples, the communication interface 725 may transmit the one or more messages according to the one or more proximity service priority levels.
The communication parameter receiving interface 735 may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer.
In some examples, the communication parameter receiving interface 735 may obtain, from the first protocol layer, a report including the at least one value of the set of communication parameters.
In some cases, the set of communication parameters for the one or more proximity service priority levels supported by the UE include a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated  with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
The message generation component 740 may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters. In some examples, the message generation component 740 may identify a first message generation rate used by the second protocol layer to generate messages. In some examples, the message generation component 740 may determine a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters. In some examples, the message generation component 740 may generate the one or more messages based at least in part on the determined second message generation rate.
In some examples, the message generation component 740 may identify a first message size used by the second protocol layer to generate messages. In some examples, the message generation component 740 may determine a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters. In some examples, the message generation component 740 may generate the one or more messages based at least in part on the determined second message size.
The message transmitting interface 745 may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels. The trigger evaluation component 730 may determine that a communication evaluation trigger is satisfied, where the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
In some examples, the trigger evaluation component 730 may determine, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE. In some examples, the trigger evaluation component 730 may determine, at the first protocol layer, that a periodic timer has expired.
The value comparison component 750 may compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a  communication parameter of the set of communication parameters, where the one or more messages are generated based at least in part on the comparing.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer, obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters, and transmit the one or more messages. The communications manager 810 may also obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer, generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters, and provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
In some cases, various sub-components of the communications manager 810 may be implemented in an upper layer 850 and an access layer 855. The upper layer 850 and the access layer 855 may perform cross-layer communication to perform congestion level control.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2019089193-appb-000001
MS-
Figure PCTCN2019089193-appb-000002
MS-
Figure PCTCN2019089193-appb-000003
OS/
Figure PCTCN2019089193-appb-000004
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include RAM and ROM. The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The  processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting cross-layer messaging for congestion control) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a flowchart illustrating a method 900 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 905, the UE may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a communication condition evaluation component as described with reference to FIGs. 5 through 8.
At 910, the UE may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
At 915, the UE may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a message receiving interface as described with reference to FIGs. 5 through 8.
At 920, the UE may transmit the one or more messages. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a communication interface as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1005, the UE may determine that a communication evaluation trigger is satisfied, where the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a trigger evaluation component as described with reference to FIGs. 5 through 8.
At 1010, the UE may determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a communication condition evaluation component as described with reference to FIGs. 5 through 8.
At 1015, the UE may provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
At 1020, the UE may provide, to the second protocol layer, a report including the at least one value of the set of communication parameters. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a communication parameter transmitting interface as described with reference to FIGs. 5 through 8.
At 1025, the UE may obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a message receiving interface as described with reference to FIGs. 5 through 8.
At 1030, the UE may transmit the one or more messages. The operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a communication interface as described with reference to FIGs. 5 through 8.
FIG. 11 shows a flowchart illustrating a method 1100 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1105, the UE may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or  more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
At 1110, the UE may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a message generation component as described with reference to FIGs. 5 through 8.
At 1115, the UE may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a message transmitting interface as described with reference to FIGs. 5 through 8.
FIG. 12 shows a flowchart illustrating a method 1200 that supports cross-layer messaging for congestion control in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1205, the UE may obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of  1205 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
At 1210, the UE may compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, where the one or more messages are generated based at least in part on the comparing. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a value comparison component as described with reference to FIGs. 5 through 8.
At 1215, the UE may generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a message generation component as described with reference to FIGs. 5 through 8.
At 1220, the UE may provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a message transmitting interface as described with reference to FIGs. 5 through 8.
At 1225, the UE may obtain, from the first protocol layer, a report including the at least one value of the set of communication parameters. The operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a communication parameter receiving interface as described with reference to FIGs. 5 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service  subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations  are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based at least in part on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based at least in part on condition A” may be based at least in part on both a condition A and a condition B without departing from the  scope of the present disclosure. In other words, as used herein, the phrase “based at least in part on” shall be construed in the same manner as the phrase “based at least in part on. ” 
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (76)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer;
    providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer;
    obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters; and
    transmitting the one or more messages.
  2. The method of claim 1, further comprising:
    determining that a communication evaluation trigger is satisfied, wherein the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  3. The method of claim 2, wherein determining that the communication evaluation trigger is satisfied comprises:
    determining, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE.
  4. The method of claim 2, wherein determining that the communication evaluation trigger is satisfied further comprises:
    determining, at the first protocol layer, that a periodic timer has expired.
  5. The method of claim 1, wherein providing the at least one value of the set of communication parameters comprises:
    providing, to the second protocol layer, a report comprising the at least one value of the set of communication parameters.
  6. The method of claim 1, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  7. The method of claim 1, further comprising:
    transmitting the one or more messages according to the one or more proximity service priority levels.
  8. The method of claim 1, wherein the first protocol layer comprises an access layer.
  9. The method of claim 1, wherein the second protocol layer comprises a message layer and a network layer.
  10. The method of claim 1, wherein the UE comprises a node of a vehicle-to-everything communication network.
  11. A method for wireless communication at a user equipment (UE) , comprising:
    obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer;
    generating, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters; and
    providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  12. The method of claim 11, further comprising:
    comparing a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, wherein the one or more messages are generated based at least in part on the comparing.
  13. The method of claim 11, wherein generating the one or more messages further comprises:
    identifying a first message generation rate used by the second protocol layer to generate messages;
    determining a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters; and
    generating the one or more messages based at least in part on the determined second message generation rate.
  14. The method of claim 11, wherein generating the one or more messages further comprises:
    identifying a first message size used by the second protocol layer to generate messages;
    determining a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters; and
    generating the one or more messages based at least in part on the determined second message size.
  15. The method of claim 11, wherein receiving the at least one value of the set of communication parameters comprises:
    obtaining, from the first protocol layer, a report comprising the at least one value of the set of communication parameters.
  16. The method of claim 11, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message  identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  17. The method of claim 11, wherein the first protocol layer comprises an access layer.
  18. The method of claim 11, wherein the second protocol layer comprises a message layer and a network layer.
  19. The method of claim 11, wherein the UE comprises a node of vehicle-to-everything communication network.
  20. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer;
    provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer;
    obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters; and
    transmit the one or more messages.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a communication evaluation trigger is satisfied, wherein the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  22. The apparatus of claim 21, wherein the instructions to determine that the communication evaluation trigger is satisfied are executable by the processor to cause the apparatus to:
    determine, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE.
  23. The apparatus of claim 21, wherein the instructions to determine that the communication evaluation trigger is satisfied further are executable by the processor to cause the apparatus to:
    determine, at the first protocol layer, that a periodic timer has expired.
  24. The apparatus of claim 20, wherein the instructions to provide the at least one value of the set of communication parameters are executable by the processor to cause the apparatus to:
    provide, to the second protocol layer, a report comprising the at least one value of the set of communication parameters.
  25. The apparatus of claim 20, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  26. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the one or more messages according to the one or more proximity service priority levels.
  27. The apparatus of claim 20, wherein the first protocol layer comprises an access layer.
  28. The apparatus of claim 20, wherein the second protocol layer comprises a message layer and a network layer.
  29. The apparatus of claim 20, wherein the UE comprises a node of a vehicle-to-everything communication network.
  30. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer;
    generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters; and
    provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  31. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, wherein the one or more messages are generated based at least in part on the comparing.
  32. The apparatus of claim 30, wherein the instructions to generate the one or more messages further are executable by the processor to cause the apparatus to:
    identify a first message generation rate used by the second protocol layer to generate messages;
    determine a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters; and
    generate the one or more messages based at least in part on the determined second message generation rate.
  33. The apparatus of claim 30, wherein the instructions to generate the one or more messages further are executable by the processor to cause the apparatus to:
    identify a first message size used by the second protocol layer to generate messages;
    determine a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters; and
    generate the one or more messages based at least in part on the determined second message size.
  34. The apparatus of claim 30, wherein the instructions to receive the at least one value of the set of communication parameters are executable by the processor to cause the apparatus to:
    obtain, from the first protocol layer, a report comprising the at least one value of the set of communication parameters.
  35. The apparatus of claim 30, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  36. The apparatus of claim 30, wherein the first protocol layer comprises an access layer.
  37. The apparatus of claim 30, wherein the second protocol layer comprises a message layer and a network layer.
  38. The apparatus of claim 30, wherein the UE comprises a node of vehicle-to-everything communication network.
  39. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for determining, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer;
    means for providing the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer;
    means for obtaining, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters; and
    means for transmitting the one or more messages.
  40. The apparatus of claim 39, further comprising:
    means for determining that a communication evaluation trigger is satisfied, wherein the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  41. The apparatus of claim 40, wherein the means for determining that the communication evaluation trigger is satisfied comprises:
    means for determining, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE.
  42. The apparatus of claim 40, wherein the means for determining that the communication evaluation trigger is satisfied further comprises:
    means for determining, at the first protocol layer, that a periodic timer has expired.
  43. The apparatus of claim 39, wherein the means for providing the at least one value of the set of communication parameters comprises:
    means for providing, to the second protocol layer, a report comprising the at least one value of the set of communication parameters.
  44. The apparatus of claim 39, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  45. The apparatus of claim 39, further comprising:
    means for transmitting the one or more messages according to the one or more proximity service priority levels.
  46. The apparatus of claim 39, wherein the first protocol layer comprises an access layer.
  47. The apparatus of claim 39, wherein the second protocol layer comprises a message layer and a network layer.
  48. The apparatus of claim 39, wherein the UE comprises a node of a vehicle-to-everything communication network.
  49. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for obtaining, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters  indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer;
    means for generating, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters; and
    means for providing, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  50. The apparatus of claim 49, further comprising:
    means for comparing a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of communication parameters, wherein the one or more messages are generated based at least in part on the comparing.
  51. The apparatus of claim 49, wherein the means for generating the one or more messages further comprises:
    means for identifying a first message generation rate used by the second protocol layer to generate messages;
    means for determining a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters; and
    means for generating the one or more messages based at least in part on the determined second message generation rate.
  52. The apparatus of claim 49, wherein the means for generating the one or more messages further comprises:
    means for identifying a first message size used by the second protocol layer to generate messages;
    means for determining a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters; and
    means for generating the one or more messages based at least in part on the determined second message size.
  53. The apparatus of claim 49, wherein the means for receiving the at least one value of the set of communication parameters comprises:
    means for obtaining, from the first protocol layer, a report comprising the at least one value of the set of communication parameters.
  54. The apparatus of claim 49, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  55. The apparatus of claim 49, wherein the first protocol layer comprises an access layer.
  56. The apparatus of claim 49, wherein the second protocol layer comprises a message layer and a network layer.
  57. The apparatus of claim 49, wherein the UE comprises a node of vehicle-to-everything communication network.
  58. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    determine, at a first protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service priority levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer;
    provide the at least one value of the set communication parameters to a second protocol layer of the UE, the second protocol layer being a higher layer than the first protocol layer;
    obtain, from the second protocol layer, one or more messages for the one or more proximity service priority levels in response to the at least one value of the set of communication parameters; and
    transmit the one or more messages.
  59. The non-transitory computer-readable medium of claim 58, wherein the instructions are further executable to:
    determine that a communication evaluation trigger is satisfied, wherein the at least one value of the set of communication parameters are determined in response to determining that the communication evaluation trigger is satisfied.
  60. The non-transitory computer-readable medium of claim 59, wherein the instructions to determine that the communication evaluation trigger is satisfied are executable to:
    determine, at the first protocol layer, that a message for at least one of the one or more proximity service priority levels has been transmitted by the UE.
  61. The non-transitory computer-readable medium of claim 59, wherein the instructions to determine that the communication evaluation trigger is satisfied further are executable to:
    determine, at the first protocol layer, that a periodic timer has expired.
  62. The non-transitory computer-readable medium of claim 58, wherein the instructions to provide the at least one value of the set of communication parameters are executable to:
    provide, to the second protocol layer, a report comprising the at least one value of the set of communication parameters.
  63. The non-transitory computer-readable medium of claim 58, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a  transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  64. The non-transitory computer-readable medium of claim 58, wherein the instructions are further executable to:
    transmit the one or more messages according to the one or more proximity service priority levels.
  65. The non-transitory computer-readable medium of claim 58, wherein the first protocol layer comprises an access layer.
  66. The non-transitory computer-readable medium of claim 58, wherein the second protocol layer comprises a message layer and a network layer.
  67. The non-transitory computer-readable medium of claim 58, wherein the UE comprises a node of a vehicle-to-everything communication network.
  68. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    obtain, from a first protocol layer of the UE and at a second protocol layer of the UE, at least one value of a set of communication parameters for one or more proximity service levels supported by the UE, the set of communication parameters indicating communication conditions at the first protocol layer, and the second protocol layer being a higher layer than the first protocol layer;
    generate, by the second protocol layer, one or more messages for the one or more proximity service levels based at least in part on the obtained at least one value of the set of communication parameters; and
    provide, to the first protocol layer, the one or more messages generated for the one or more proximity service levels.
  69. The non-transitory computer-readable medium of claim 68, wherein the instructions are further executable to:
    compare a value of the at least one value of the set of communication parameters to a threshold corresponding to a communication parameter of the set of  communication parameters, wherein the one or more messages are generated based at least in part on the comparing.
  70. The non-transitory computer-readable medium of claim 68, wherein the instructions to generate the one or more messages further are executable to:
    identify a first message generation rate used by the second protocol layer to generate messages;
    determine a second message generation rate less than the first message generation rate based at least in part on the at least one value of the set of communication parameters; and
    generate the one or more messages based at least in part on the determined second message generation rate.
  71. The non-transitory computer-readable medium of claim 68, wherein the instructions to generate the one or more messages further are executable to:
    identify a first message size used by the second protocol layer to generate messages;
    determine a second message size less than the first message size based at least in part on the at least one value of the set of communication parameters; and
    generate the one or more messages based at least in part on the determined second message size.
  72. The non-transitory computer-readable medium of claim 68, wherein the instructions to receive the at least one value of the set of communication parameters are executable to:
    obtain, from the first protocol layer, a report comprising the at least one value of the set of communication parameters.
  73. The non-transitory computer-readable medium of claim 68, wherein the set of communication parameters for the one or more proximity service priority levels supported by the UE comprise a message identification (ID) , a number of messages dropped, a number of messages in one or more buffers, a queuing time associated with one or more messages, a modulation coding scheme, a transmission time associated with a message, a proximity service priority level utilized to transmit a message, a channel occupancy ratio, a  transmission rate at the first protocol layer, a channel busy ratio for each of the one or more proximity service levels, or a combination thereof.
  74. The non-transitory computer-readable medium of claim 68, wherein the first protocol layer comprises an access layer.
  75. The non-transitory computer-readable medium of claim 68, wherein the second protocol layer comprises a message layer and a network layer.
  76. The non-transitory computer-readable medium of claim 68, wherein the UE comprises a node of vehicle-to-everything communication network.
PCT/CN2019/089193 2019-05-30 2019-05-30 Cross-layer messaging for congestion control WO2020237556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089193 WO2020237556A1 (en) 2019-05-30 2019-05-30 Cross-layer messaging for congestion control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089193 WO2020237556A1 (en) 2019-05-30 2019-05-30 Cross-layer messaging for congestion control

Publications (1)

Publication Number Publication Date
WO2020237556A1 true WO2020237556A1 (en) 2020-12-03

Family

ID=73553557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089193 WO2020237556A1 (en) 2019-05-30 2019-05-30 Cross-layer messaging for congestion control

Country Status (1)

Country Link
WO (1) WO2020237556A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026973A1 (en) * 2015-08-12 2017-02-16 Intel Corporation Resource access in device to device communication
WO2017123500A1 (en) * 2016-01-12 2017-07-20 Qualcomm Incorporated Lte based v2x communication qos and congestion mitigation
CN108353264A (en) * 2015-11-19 2018-07-31 Lg电子株式会社 Device in wireless communication system is to device direct communication method and its device
CN109314841A (en) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 Improved support to the service quality of V2X transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026973A1 (en) * 2015-08-12 2017-02-16 Intel Corporation Resource access in device to device communication
CN108353264A (en) * 2015-11-19 2018-07-31 Lg电子株式会社 Device in wireless communication system is to device direct communication method and its device
WO2017123500A1 (en) * 2016-01-12 2017-07-20 Qualcomm Incorporated Lte based v2x communication qos and congestion mitigation
CN109314841A (en) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 Improved support to the service quality of V2X transmission

Similar Documents

Publication Publication Date Title
US11825543B2 (en) Unicast sidelink establishment
US11012915B2 (en) Backpressure signaling for wireless communications
US10887897B2 (en) Mechanisms for sidelink resource scheduling
US10939463B2 (en) Network-assisted scheduling for packet duplication in vehicle-based sidelink communication
US11252777B2 (en) Coordinating radio resource control signaling with upper layer direct link establishment procedures
US10945153B2 (en) Network-assisted scheduling for packet duplication in vehicle-based sidelink communication
US10687278B2 (en) Enhanced random access and wake-up mechanism
EP3665831A1 (en) Configuration of sounding reference signal resources in an uplink transmission time interval
US20210100046A1 (en) Feedback for sidelink transmission
US20240121839A1 (en) Sidelink groupcast configuration to support feedback control
US11510207B2 (en) Distance based resource exclusion
WO2019136653A1 (en) Impact of packet duplication on medium access control
US11832249B2 (en) Dynamic duty cycle
WO2020237556A1 (en) Cross-layer messaging for congestion control
WO2020239000A1 (en) Vehicle-to-everything traffic load control
US11540166B2 (en) Procedures for managing quality of service flows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931453

Country of ref document: EP

Kind code of ref document: A1