WO2020237492A1 - Three-dimensional reconstruction method, device, apparatus, and storage medium - Google Patents

Three-dimensional reconstruction method, device, apparatus, and storage medium Download PDF

Info

Publication number
WO2020237492A1
WO2020237492A1 PCT/CN2019/088698 CN2019088698W WO2020237492A1 WO 2020237492 A1 WO2020237492 A1 WO 2020237492A1 CN 2019088698 W CN2019088698 W CN 2019088698W WO 2020237492 A1 WO2020237492 A1 WO 2020237492A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
structured light
map
measurement image
image
Prior art date
Application number
PCT/CN2019/088698
Other languages
French (fr)
Chinese (zh)
Inventor
毛一杰
吴勇辉
范文文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/088698 priority Critical patent/WO2020237492A1/en
Priority to CN201980000842.8A priority patent/CN110337674B/en
Publication of WO2020237492A1 publication Critical patent/WO2020237492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Definitions

  • the present invention relates to the field of computer vision technology, in particular to a three-dimensional reconstruction method, device, equipment and storage medium.
  • Three-dimensional reconstruction is an important research field of computer vision. It refers to the establishment of a mathematical model suitable for computer representation and processing of three-dimensional objects, which is used to restore the surface shape of the object or the distance between the camera and the object in the scene, and quickly restore the scene and the object.
  • the three-dimensional shape improves the efficiency of measurement and modeling. It is widely used in ancient architecture digitization, cultural relic digitization, robot positioning and navigation, reverse engineering and other scenes.
  • Three-dimensional reconstruction is also a key technology for establishing virtual reality expressing the objective world in a computer. On the one hand, compared with the traditional two-dimensional model, the three-dimensional model has a larger space for differentiation, and the acquisition of three-dimensional information is necessary for its development.
  • the structured light reconstruction method uses a structured light projector to actively project a controllable light spot, light strip or light surface with a known coding structure to the object or scene, and the camera captures
  • the image of the object or scene with the projected pattern is processed by computer vision technology, the coded pattern is analyzed, the three-dimensional information of the object or scene is obtained, and the three-dimensional model of the object or scene is constructed.
  • the key to structured light reconstruction technology is system calibration and stereo matching.
  • the present invention provides a three-dimensional reconstruction method, device, equipment and storage medium to realize the simplification of the three-dimensional reconstruction method and improve the efficiency of the three-dimensional reconstruction.
  • the method before performing the three-dimensional reconstruction of the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameter, the method further includes:
  • the third calibration map is an unstructured cursor calibration map calibrated on the first calibration surface
  • the fourth calibration map is an unstructured cursor calibration map calibrated on the second calibration surface
  • calculating the depth value of each first position coordinate according to the calibration interval of each structured light pattern of the measurement image includes:
  • each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine the homography matrix of any plane parallel to the camera plane in the preset space.
  • the calibration interval of each structured light pattern on the measurement image is determined.
  • the first determining module is specifically used for:
  • the depth value of each first position coordinate is calculated.
  • a processor ; a memory; and a computer program; wherein the computer program is stored in the memory and is configured to be executed by the processor, and the computer program includes a method for executing the three-dimensional reconstruction method as in the first aspect and an optional manner of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and the computer program causes the server to execute the three-dimensional reconstruction method provided in the first aspect and the optional methods of the first aspect.
  • an embodiment of the present invention provides a computer program product, including: executable instructions, which are used to implement the three-dimensional reconstruction method as in the first aspect or an optional manner in the first aspect.
  • FIG. 1 is a schematic flowchart of a three-dimensional reconstruction method provided by an embodiment of the present application
  • the structured light pattern at position F in the first calibration image, the structured light pattern at position C on the object plane, and the structured light pattern at position A on the second calibration image match each other.
  • Position F corresponds to F'in the measurement image
  • position C corresponds to C'in the measurement image
  • position A corresponds to A'in the measurement image.
  • the line segment formed by connecting F'and A' is the structured light pattern
  • the coordinate position of the structured light pattern is in its corresponding calibration interval.

Abstract

Provided are a three-dimensional reconstruction method, a device, an apparatus, and a storage medium. The method comprises: acquiring sets of first position coordinates corresponding to respective structured light patterns on an measurement image; determining, according to the measurement image, a first calibration pattern and a second calibration pattern, a calibration interval for the respective structured light patterns on the measurement image, wherein the first calibration pattern is a structured light calibration pattern calibrated on a first calibration plane, the second calibration pattern is a structured light calibration pattern calibrated on a second calibration plane, and the first calibration plane and the second calibration plane are parallel to a camera plane; performing calculation according to the calibration interval for the respective structured light patterns on the measurement image to obtain a depth value of each set of first position coordinates; and performing reconstruction of the measurement image according to the depth value of each set of first position coordinates and a calibrated reconstruction parameter. The invention enhances the efficiency of three-dimensional reconstruction.

Description

三维重建方法、装置、设备及存储介质Three-dimensional reconstruction method, device, equipment and storage medium 技术领域Technical field
本发明涉及计算机视觉技术领域,尤其涉及一种三维重建方法、装置、设备及存储介质。The present invention relates to the field of computer vision technology, in particular to a three-dimensional reconstruction method, device, equipment and storage medium.
背景技术Background technique
三维重建是计算机视觉的一个重要研究领域,是指对三维物体建立适合计算机表示和处理的数学模型,用于恢复物体表面形状或者恢复场景中相机和物体之间的距离,快速恢复场景和物体的三维形态,提高测量和建模的效率,广泛应用于古建筑数字化、文物数字化、机器人定位导航、逆向工程等场景,三维重建也是在计算机中建立表达客观世界的虚拟现实的关键技术,在生物识别方面,相比于传统的二维模型,三维模型具有更大的区别空间,三维信息的获取技术有其发展的必要性。Three-dimensional reconstruction is an important research field of computer vision. It refers to the establishment of a mathematical model suitable for computer representation and processing of three-dimensional objects, which is used to restore the surface shape of the object or the distance between the camera and the object in the scene, and quickly restore the scene and the object. The three-dimensional shape improves the efficiency of measurement and modeling. It is widely used in ancient architecture digitization, cultural relic digitization, robot positioning and navigation, reverse engineering and other scenes. Three-dimensional reconstruction is also a key technology for establishing virtual reality expressing the objective world in a computer. On the one hand, compared with the traditional two-dimensional model, the three-dimensional model has a larger space for differentiation, and the acquisition of three-dimensional information is necessary for its development.
现有技术中,三维重建的方法大致分为立体视觉方法(双目、三目和多目视觉)、结构光重建方法、从运动恢复结构(Structure from Motion,SFM)等。其中,结构光重建方法在应用上占据一定优势,结构光重建方法采用结构光投射器向物体或场景主动投射已知编码结构的可控制的光点、光条或光面,并由相机采集带有投射图案的物体或场景的图像,通过计算机视觉技术处理图像,解析编码图案,获取物体或场景的三维信息,构建物体或场景的三维模型。结构光重建技术的关键在于系统标定和立体匹配。In the prior art, three-dimensional reconstruction methods are roughly divided into stereo vision methods (binocular, trinocular, and multi-eye vision), structured light reconstruction methods, structure from motion (Structure from Motion, SFM), etc. Among them, the structured light reconstruction method occupies a certain advantage in application. The structured light reconstruction method uses a structured light projector to actively project a controllable light spot, light strip or light surface with a known coding structure to the object or scene, and the camera captures The image of the object or scene with the projected pattern is processed by computer vision technology, the coded pattern is analyzed, the three-dimensional information of the object or scene is obtained, and the three-dimensional model of the object or scene is constructed. The key to structured light reconstruction technology is system calibration and stereo matching.
然而现有技术中的结构光重建方法,重建流程复杂且立体矫正精度要求高,造成三维重建的效率较低。However, in the structured light reconstruction method in the prior art, the reconstruction process is complicated and the three-dimensional correction accuracy is high, resulting in low efficiency of the three-dimensional reconstruction.
发明内容Summary of the invention
本发明提供一种三维重建方法、装置、设备及存储介质,以实现对三维重建方法的简化,提高了三维重建的效率。The present invention provides a three-dimensional reconstruction method, device, equipment and storage medium to realize the simplification of the three-dimensional reconstruction method and improve the efficiency of the three-dimensional reconstruction.
第一方面,本发明实施例提供一种三维重建方法,包括:In the first aspect, an embodiment of the present invention provides a three-dimensional reconstruction method, including:
获取测量图像上每个结构光图形各自对应的第一位置坐标。Obtain the first position coordinates corresponding to each structured light pattern on the measurement image.
根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,第一标定图是在第一标定面上标定的结构光标定图,第二标定图是在第二标定面上标定的结构光标定图,第一标定面、第二标定面与相机平面平行。According to the measurement image, the first calibration diagram and the second calibration diagram, determine the calibration interval of each structured light pattern on the measurement image. The first calibration diagram is the structure cursor calibration diagram calibrated on the first calibration surface, and the second calibration diagram is The structure cursor is calibrated on the second calibration surface, and the first calibration surface and the second calibration surface are parallel to the camera plane.
根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值。According to the calibration interval of each structured light pattern on the measurement image, the depth value of each first position coordinate is calculated.
根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建。According to the depth value of each first position coordinate and the calibration reconstruction parameters, the measurement image is reconstructed in three dimensions.
本方案中,通过根据测量图像、第一标定图和第二标定图,确定测量图上每个结构光图形的标定区间,然后根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,最后根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建,不仅实现了对测量图像的三维重建,而且直接通过测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,避免了立体矫正的步骤,提高了三维重建的效率。In this solution, the calibration interval of each structured light pattern on the measurement graph is determined according to the measurement image, the first calibration graph and the second calibration graph, and then the calibration interval of each structured light pattern on the measurement image is calculated. The depth value of a position coordinate, and finally according to the depth value of each first position coordinate and the calibration reconstruction parameters, the measurement image is reconstructed in three dimensions, which not only realizes the three-dimensional reconstruction of the measurement image, but also directly passes through each structured light on the measurement image The calibration interval of the graph calculates the depth value of each first position coordinate, which avoids the step of stereo correction and improves the efficiency of three-dimensional reconstruction.
可选的,在根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建之前,还包括:Optionally, before performing the three-dimensional reconstruction of the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameter, the method further includes:
获取第三标定图和第四标定图,第三标定图是在第一标定面上标定的非结构光标定图,第四标定图是在第二标定面上标定的非结构光标定图;Acquire a third calibration map and a fourth calibration map, the third calibration map is an unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is an unstructured cursor calibration map calibrated on the second calibration surface;
根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数。According to the third calibration map, the fourth calibration map and the camera imaging model, the calibration reconstruction parameters are determined.
本方案中,通过第一标定图和第二标定图实现了对深度值的标定,然后第三标定图和第四标定图以及相机成像模型确定标定重建参数,实现了深度值标定与标定重建参数的分离,降低了标定的精度要求,进而降低了标定难度。In this solution, the calibration of the depth value is achieved through the first calibration map and the second calibration map, and then the third calibration map, the fourth calibration map and the camera imaging model determine the calibration reconstruction parameters, and the depth value calibration and calibration reconstruction parameters are realized The separation reduces the accuracy requirements of calibration, and thus reduces the difficulty of calibration.
可选的,根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数,包括:Optionally, the calibration reconstruction parameters are determined according to the third calibration map, the fourth calibration map and the camera imaging model, including:
在第三标定图和第四标定图中,获取多组像素坐标以及多组像素坐标对应的标定板上的坐标。In the third calibration map and the fourth calibration map, multiple sets of pixel coordinates and coordinates on the calibration board corresponding to the multiple sets of pixel coordinates are acquired.
针对多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵。For multiple sets of pixel coordinates, each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine the homography matrix of any plane parallel to the camera plane in the preset space.
相应的,根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建,包括:Correspondingly, according to the depth value of each first position coordinate and the calibrated reconstruction parameters, the measurement image is reconstructed in three dimensions, including:
根据每个第一位置坐标的深度值、预设空间内任意与相机平面平行的平面的单应矩阵和相机成像模型,对测量图像进行三维重建。According to the depth value of each first position coordinate, the homography matrix of any plane parallel to the camera plane in the preset space, and the camera imaging model, the measurement image is reconstructed in three dimensions.
本方案中,通过第三标定图和第四标定图中的像素坐标以及像素坐标对应的标定板上的坐标,确定预设空间内任意与相机平面平行的平面的单应矩阵,实现了对预设空间内任意与相机平面平行的平面的三维坐标的确定,进而实现了对测量图像的三维重建。In this solution, the homography matrix of any plane parallel to the camera plane in the preset space is determined through the pixel coordinates in the third calibration map and the fourth calibration map and the coordinates on the calibration board corresponding to the pixel coordinates. It is assumed that the three-dimensional coordinates of any plane parallel to the camera plane in the space are determined, and then the three-dimensional reconstruction of the measured image is realized.
可选的,根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,包括:Optionally, determining the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image, and the second calibration image includes:
匹配测量图像、第一标定图和第二标定图中的结构光图形。Match the structured light patterns in the measurement image, the first calibration map and the second calibration map.
确定每个结构光图形在测量图像中的第一位置坐标、在第一标定图中的第二位置坐标和在第二标定图中的第三位置坐标。Determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration map, and the third position coordinates in the second calibration map.
根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定测量图像上每个结构光图形的标定区间。According to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern, the calibration interval of each structured light pattern on the measurement image is determined.
可选的,根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,包括:Optionally, determining the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image, and the second calibration image includes:
匹配第一标定图和第二标定图的结构光图形,确定第一标定图与第二标定图中每个结构光图形的坐标对应关系。Matching the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate corresponding relationship of each structured light pattern of the first calibration map and the second calibration map.
匹配测量图像和第一标定图的结构光图形,确定每个结构光图形在测量图像中的第一位置坐标和在第一标定图中的第二位置坐标。Matching the structured light patterns of the measurement image and the first calibration map, and determine the first position coordinates of each structured light pattern in the measurement image and the second position coordinates in the first calibration map.
根据第一位置坐标、第二位置坐标以及第一标定图与第二标定图中每个结构光图形的坐标对应关系,确定测量图像上每个结构光图形的标定区间。According to the first position coordinates, the second position coordinates, and the coordinate correspondence between the first calibration map and each structured light pattern in the second calibration map, the calibration interval of each structured light pattern on the measurement image is determined.
本方案中,通过确定第一标定图与第二标定图中每个结构光图形的坐标对应关系,实现了对标定数据的压缩,节约了大量的存储空间。In this solution, by determining the coordinate corresponding relationship of each structured light pattern in the first calibration map and the second calibration map, the calibration data is compressed and a large amount of storage space is saved.
可选的,根据测量图像的每个结构光图形的标定区间,计算每个第一位置坐标的深度值,包括:Optionally, calculating the depth value of each first position coordinate according to the calibration interval of each structured light pattern of the measurement image includes:
确定每个结构光图形在测量图像与第一标定图的第一视差。Determine the first parallax between the measured image and the first calibration image for each structured light pattern.
在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,第二视差为该结构光图形在测量图像与第二标定图的视差。In the calibration interval of each structured light pattern, the interval except the first parallax is determined to be the second parallax, and the second parallax is the parallax between the measured image and the second calibration image of the structured light pattern.
根据第一视差和第二视差,计算每个第一位置坐标的深度值。According to the first disparity and the second disparity, the depth value of each first position coordinate is calculated.
下面介绍本申请实施例提供的装置、设备、存储介质以及计算机程序产品,其内容和效果可参考第一方面及第一方面可选方式提供的三维重建方法,不再赘述。The following describes the devices, equipment, storage media, and computer program products provided by the embodiments of the present application. For the content and effects, please refer to the first aspect and the three-dimensional reconstruction methods provided in the first aspect alternatively, and will not be repeated.
第二方面,本申请实施例提供一种三维重建装置,包括:In the second aspect, an embodiment of the present application provides a three-dimensional reconstruction device, including:
第一获取模块,用于获取测量图像上每个结构光图形各自对应的第一位置坐标。The first acquisition module is used to acquire the first position coordinates corresponding to each structured light pattern on the measurement image.
第一确定模块,用于根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,第一标定图是在第一标定面上标定的结构光标定图,第二标定图是在第二标定面上标定的结构光标定图,第一标定面、第二标定面与相机平面平行。The first determination module is used to determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration map and the second calibration map. The first calibration map is the structure cursor calibration on the first calibration surface. Figure, the second calibration diagram is a structural cursor calibration diagram calibrated on the second calibration surface, the first calibration surface and the second calibration surface are parallel to the camera plane.
第二确定模块,用于根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值。The second determining module is used to calculate the depth value of each first position coordinate according to the calibration interval of each structured light pattern on the measurement image.
重建模块,用于根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建。The reconstruction module is used for three-dimensional reconstruction of the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameters.
可选的,本申请实施例提供的三维重建装置,还包括:Optionally, the three-dimensional reconstruction device provided by the embodiment of the present application further includes:
第二获取模块,用于获取第三标定图和第四标定图,第三标定图是在第一标定面上标定的非结构光标定图,第四标定图是在第二标定面上标定的非结构光标定图。The second acquisition module is used to acquire the third calibration map and the fourth calibration map, the third calibration map is the unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is calibrated on the second calibration surface Unstructured cursor to set the map.
第三确定模块,用于根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数。The third determining module is used to determine the calibration reconstruction parameters according to the third calibration map, the fourth calibration map and the camera imaging model.
可选的,第三确定模块,具体用于:Optionally, the third determining module is specifically used for:
在第三标定图和第四标定图中,获取多组像素坐标以及多组像素坐标对应的标定板上的坐标。In the third calibration map and the fourth calibration map, multiple sets of pixel coordinates and coordinates on the calibration board corresponding to the multiple sets of pixel coordinates are acquired.
针对多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵。For multiple sets of pixel coordinates, each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine the homography matrix of any plane parallel to the camera plane in the preset space.
相应的,重建模块具体用于:Correspondingly, the reconstruction module is specifically used for:
根据每个第一位置坐标的深度值、预设空间内任意与相机平面平行的平面的单应矩阵和相机成像模型,对测量图像进行三维重建。According to the depth value of each first position coordinate, the homography matrix of any plane parallel to the camera plane in the preset space, and the camera imaging model, the measurement image is reconstructed in three dimensions.
可选的,第一确定模块,具体用于:Optionally, the first determining module is specifically used for:
匹配测量图像、第一标定图和第二标定图中的结构光图形。Match the structured light patterns in the measurement image, the first calibration map and the second calibration map.
确定每个结构光图形在测量图像中的第一位置坐标、在第一标定图中的第二位置坐标和在第二标定图中的第三位置坐标。Determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration map, and the third position coordinates in the second calibration map.
根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定测量图像上每个结构光图形的标定区间。According to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern, the calibration interval of each structured light pattern on the measurement image is determined.
可选的,第一确定模块,具体用于:Optionally, the first determining module is specifically used for:
匹配第一标定图和第二标定图的结构光图形,确定第一标定图与第二标定图中每个结构光图形的坐标对应关系。Matching the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate corresponding relationship of each structured light pattern of the first calibration map and the second calibration map.
匹配测量图像和第一标定图的结构光图形,确定每个结构光图形在测量图像中的第一位置坐标和在第一标定图中的第二位置坐标。Matching the structured light patterns of the measurement image and the first calibration map, and determine the first position coordinates of each structured light pattern in the measurement image and the second position coordinates in the first calibration map.
根据第一位置坐标、第二位置坐标以及第一标定图与第二标定图中每个结构光图形的坐标对应关系,确定测量图像上每个结构光图形的标定区间。According to the first position coordinates, the second position coordinates, and the coordinate correspondence between each structured light pattern in the first calibration map and the second calibration map, the calibration interval of each structured light pattern on the measurement image is determined.
可选的,第二确定模块,具体用于:Optionally, the second determining module is specifically used for:
确定每个结构光图形在测量图像与第一标定图的第一视差。Determine the first parallax between the measured image and the first calibration image for each structured light pattern.
在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,第二视差为该结构光图形在测量图像与第二标定图的视差。In the calibration interval of each structured light pattern, the interval except the first parallax is determined to be the second parallax, and the second parallax is the parallax between the measured image and the second calibration image of the structured light pattern.
根据第一视差和第二视差,计算每个第一位置坐标的深度值。According to the first disparity and the second disparity, the depth value of each first position coordinate is calculated.
第三方面,本申请实施例提供一种设备,包括:In a third aspect, an embodiment of the present application provides a device, including:
处理器;存储器;以及计算机程序;其中,计算机程序被存储在存储器中,并且被配置为由处理器执行,计算机程序包括用于执行如第一方面及第一方面可选方式的三维重建方法。A processor; a memory; and a computer program; wherein the computer program is stored in the memory and is configured to be executed by the processor, and the computer program includes a method for executing the three-dimensional reconstruction method as in the first aspect and an optional manner of the first aspect.
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序使得服务器执行如第一方面及第一方方面可选方式提供的三维重建方法。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and the computer program causes the server to execute the three-dimensional reconstruction method provided in the first aspect and the optional methods of the first aspect.
第五方面,本发明实施例提供一种计算机程序产品,包括:可执行指令,可执行指令用于实现如第一方面或第一方面可选方式的三维重建方法。In a fifth aspect, an embodiment of the present invention provides a computer program product, including: executable instructions, which are used to implement the three-dimensional reconstruction method as in the first aspect or an optional manner in the first aspect.
本发明提供的三维重建方法、装置、设备及存储介质,通过获取测量图像上每个结构光图形各自对应的第一位置坐标,然后根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,第一标定 图是在第一标定面上标定的结构光标定图,第二标定图是在第二标定面上标定的结构光标定图,第一标定面、第二标定面与相机平面平行,根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,最后根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建。不仅实现了对测量图像的三维重建,而且直接通过测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,避免了立体矫正的步骤,提高了三维重建的效率。The three-dimensional reconstruction method, device, equipment and storage medium provided by the present invention obtain the first position coordinates corresponding to each structured light pattern on the measurement image, and then determine the measurement according to the measurement image, the first calibration map and the second calibration map The calibration interval of each structured light pattern on the image. The first calibration diagram is the structure cursor calibration diagram calibrated on the first calibration surface, the second calibration diagram is the structure cursor calibration diagram calibrated on the second calibration surface, the first calibration The surface and the second calibration surface are parallel to the camera plane. According to the calibration interval of each structured light pattern on the measured image, the depth value of each first position coordinate is calculated, and finally the depth value of each first position coordinate and the calibration reconstruction parameter are calculated , Perform three-dimensional reconstruction of the measured image. It not only realizes the three-dimensional reconstruction of the measurement image, but also directly calculates the depth value of each first position coordinate through the calibration interval of each structured light pattern on the measurement image, avoids the step of stereo correction, and improves the efficiency of the three-dimensional reconstruction.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly describe the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative labor.
图1是本申请一实施例提供的三维重建方法的流程示意图;FIG. 1 is a schematic flowchart of a three-dimensional reconstruction method provided by an embodiment of the present application;
图2是本申请一实施例提供的深度值测量原理图;FIG. 2 is a schematic diagram of depth value measurement provided by an embodiment of the present application;
图3是本申请另一实施例提供的三维重建方法的流程示意图;3 is a schematic flowchart of a three-dimensional reconstruction method provided by another embodiment of the present application;
图4是本申请又一实施例提供的三维重建方法的流程示意图;4 is a schematic flowchart of a three-dimensional reconstruction method provided by another embodiment of the present application;
图5是本申请再一实施例提供的三维重建方法的流程示意图;FIG. 5 is a schematic flowchart of a three-dimensional reconstruction method provided by still another embodiment of the present application;
图6是本申请一实施例提供的三维重建装置的结构示意图;Fig. 6 is a schematic structural diagram of a three-dimensional reconstruction device provided by an embodiment of the present application;
图7是本申请另一实施例提供的三维重建装置的结构示意图;FIG. 7 is a schematic structural diagram of a three-dimensional reconstruction device provided by another embodiment of the present application;
图8是本申请一实施例提供的终端设备的结构示意图。FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the following will clearly and completely describe the technical solutions in the embodiments of the present application with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of this application.
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的 顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. (if any) in the specification and claims of this application and the above-mentioned drawings are used to distinguish similar objects, without having to use To describe a specific order or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application described herein, for example, can be implemented in a sequence other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations of them are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or device that includes a series of steps or units is not necessarily limited to the clearly listed Those steps or units may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
三维重建是计算机视觉的一个重要研究领域,也是在计算机中建立表达客观世界的虚拟现实的关键技术,在生物识别方面,相比于传统的二维模型,三维模型具有更大的区别空间,三维信息的获取技术有其发展的必要性。现有技术中,结构光重建方法在应用上占据一定优势,然而现有技术中的结构光重建方法,重建流程复杂且立体矫正精度要求高,造成三维重建的效率较低,为了解决上述问题,本申请实施例提供一种三维重建方法、装置、设备及存储介质。Three-dimensional reconstruction is an important research field of computer vision, and it is also a key technology for establishing virtual reality that expresses the objective world in a computer. In terms of biometrics, compared with traditional two-dimensional models, three-dimensional models have a larger space for differentiation. The information acquisition technology has its development necessity. In the prior art, the structured light reconstruction method occupies a certain advantage in application. However, the structured light reconstruction method in the prior art has a complicated reconstruction process and high requirements for three-dimensional correction accuracy, resulting in low efficiency of three-dimensional reconstruction. In order to solve the above problems, The embodiments of the present application provide a three-dimensional reconstruction method, device, equipment, and storage medium.
以下,对本申请实施例的示例性应用场景进行介绍。Hereinafter, an exemplary application scenario of the embodiment of the present application will be introduced.
三维图像相比与二维图像具有更大的区别空间,三维重建技术用于将摄像机拍摄的二维图像,重建为三维图像,随着计算机视觉技术的发展,三维重建技术广泛应用于军用、民用等方面,例如:侦查监视、军事态势显示、环境监测、地质地貌测绘、道路监测交通疏导控制等等,基于此,本申请实施例提供一种三维重建方法、装置、设备及存储介质。Compared with two-dimensional images, three-dimensional images have a larger difference space. Three-dimensional reconstruction technology is used to reconstruct two-dimensional images taken by cameras into three-dimensional images. With the development of computer vision technology, three-dimensional reconstruction technology is widely used in military and civilian applications. For example, investigation and monitoring, military situation display, environmental monitoring, geological and landform surveying and mapping, road monitoring, traffic guidance control, etc. Based on this, the embodiments of the present application provide a three-dimensional reconstruction method, device, equipment, and storage medium.
图1是本申请一实施例提供的三维重建方法的流程示意图,该方法可以由三维重建装置执行,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,下面以终端设备为执行主体对三维重建方法进行说明,如图1所示,本发明实施例中的方法可以包括:Figure 1 is a schematic flow chart of a three-dimensional reconstruction method provided by an embodiment of the present application. The method can be executed by a three-dimensional reconstruction device, which can be implemented by software and/or hardware. For example, the device can be part of a terminal device or All, the terminal device can be a personal computer, a smart phone, a user terminal, a tablet computer, etc. The following describes the three-dimensional reconstruction method with the terminal device as the execution subject. As shown in FIG. 1, the method in the embodiment of the present invention may include:
步骤S101:获取测量图像上每个结构光图形各自对应的第一位置坐标。Step S101: Acquire the first position coordinates corresponding to each structured light pattern on the measurement image.
测量图像为待三维重建的结构光图像,结构光为经过投射器投射到被测物体表面的主动结构信息,本申请实施例对结构光图形不做限制,例如,结构光图形可以是激光条纹、格雷码、正弦条纹、光斑等。投射器投射结构光到被测物体表面后,通过单个或多个相机拍摄被测表面得到结构光图像,即测量图像。The measurement image is a structured light image to be three-dimensionally reconstructed, and the structured light is the active structure information projected onto the surface of the object to be measured through the projector. The embodiment of the present application does not limit the structured light pattern. For example, the structured light pattern may be laser stripes, Gray code, sine fringe, light spot, etc. After the projector projects structured light onto the surface of the object to be measured, a single or multiple cameras are used to photograph the surface to be measured to obtain a structured light image, that is, a measurement image.
测量图像上存在多个结构光图形,获取测量图像上每个结构光图形各自对应的第一位置坐标,其中,每个结构光图形各自对应的第一位置坐标,可以是结构光图形的某一固定位置在测量图像的像素坐标,本申请实施例对该固定位置不做限制,例如可以是结构光图形的中心点等。结构光图形可以是结构光中单个光斑经过人脸反射后投射到传感器的一个或者多个像素点后,由这一个或几个像素点输出信号形成的测量图像中的局部图像。There are multiple structured light patterns on the measurement image, and the first position coordinates corresponding to each structured light pattern on the measurement image are obtained. Among them, the first position coordinates corresponding to each structured light pattern can be one of the structured light patterns. The fixed position is the pixel coordinates of the measurement image, and the embodiment of the present application does not limit the fixed position, for example, it may be the center point of the structured light pattern. The structured light pattern may be a partial image in the measurement image formed by the output signal of the one or more pixels after a single spot in the structured light is reflected by the face and projected onto one or more pixels of the sensor.
步骤S102:根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间。Step S102: Determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image and the second calibration image.
第一标定图是在第一标定面上标定的结构光标定图,第二标定图是在第二标定面上标定的结构光标定图,第一标定面、第二标定面与相机平面平行。第一标定面和第二标定面的位置,可以根据相机拍摄的图像的质量以及用户需求进行选取,本申请实施例对标定面的具体位置以及选取方式不做限制,例如:针对人脸识别系统,该系统的工作距离为20-100厘米,则第一标定面和第二标定面可以选择距离相机平面20-100厘米的任意平面,比如,第一标定面在距离相机平面40厘米处,即第一标定距离为40厘米,第二标定面在距离相机平面80厘米处,即第二标定距离为80厘米等,以上仅为对标定面选取的示例性介绍,本申请实施例的标定面选取不限于此。The first calibration diagram is a structural cursor calibration diagram calibrated on the first calibration surface, the second calibration diagram is a structural cursor calibration diagram calibrated on the second calibration surface, and the first calibration surface and the second calibration surface are parallel to the camera plane. The positions of the first calibration surface and the second calibration surface can be selected according to the quality of the image taken by the camera and user needs. The embodiment of this application does not limit the specific position and selection method of the calibration surface, for example: for a face recognition system , The working distance of the system is 20-100 cm, the first calibration surface and the second calibration surface can choose any plane 20-100 cm away from the camera plane, for example, the first calibration surface is 40 cm away from the camera plane, that is The first calibration distance is 40 cm, the second calibration surface is 80 cm from the camera plane, that is, the second calibration distance is 80 cm, etc. The above is only an exemplary introduction to the selection of the calibration surface, and the calibration surface of the embodiment of the application is selected Not limited to this.
在确定第一标定面和第二标定面之后,在第一标定面处放置一块标定板,本申请实施例对标定板的类型、尺寸等不做限制,例如,标定板图案为棋盘格图;然后拍摄一张带结构光的标定图,得到第一标定图,本申请实施例对第一标定图的获取方式不做限制,类似的,可以通过沿相机光轴移动标定板至第二标定面,再次拍摄一张带结构光的标定图,得到第二标定图,本申请实施例对此不做限制。其中,测量图像、第一标定图和第二标定图所采用的结构光为相同的结构光,例如可以是同一个点阵投射器投射出的同一个结构光。After determining the first calibration surface and the second calibration surface, a calibration board is placed on the first calibration surface. The embodiment of the present application does not limit the type and size of the calibration board, for example, the calibration board pattern is a checkerboard pattern; Then shoot a calibration map with structured light to obtain the first calibration map. The embodiment of this application does not limit the acquisition method of the first calibration map. Similarly, the calibration board can be moved to the second calibration surface along the optical axis of the camera. , Take another calibration map with structured light to obtain a second calibration map, which is not limited in the embodiment of the application. The structured light used in the measurement image, the first calibration map and the second calibration map are the same structured light, for example, the same structured light projected by the same lattice projector.
获取到第一标定图和第二标定图之后,根据测量图像、第一标定图和第二标定图确定测量图像上每个结构光图形的标定区间。本申请实施例对如何根据测量图像、第一标定图和第二标定图确定测量图像上每个结构光图形的标定区间的具体实施方式不做限制。After the first calibration map and the second calibration map are obtained, the calibration interval of each structured light pattern on the measurement image is determined according to the measurement image, the first calibration map and the second calibration map. The embodiment of the present application does not limit the specific implementation of how to determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image, and the second calibration image.
为了便于介绍每个结构光图像的标定区间,图2是本申请一实施例提供 的深度值测量原理图,如图2所示,投射器投射结构光至相机拍摄空间,其中,Z表示物平面至相机平面的距离,Z1表示第一标定距离,Z2表示第二标定距离,由于第一标定图、第二标定图以及物平面距离相机平面的距离不同,,因此,结构光图形的位置会存在视差。且针对同一个结构光图形在测量图像、第一标定图以及第二标定图中存在相对应的结构光图形以及结构光图形的位置坐标。例如,在第一标定图中的F位置上的结构光图形、在物平面C位置上的结构光图形以及在第二标定图上的A位置上的结构光图形相互匹配,在测量图像中,位置F对应于测量图像中的F’,位置C对应于测量图像中的C’,位置A对应于测量图像中的A’,其中,F’与A’连接而成的线段为该结构光图形的标定区间,且该结构光图形的坐标位置在其对应的标定区间上,通过计算测量图像上每个结构光图形的标定区间,可以在每个结构光图形对应的标定区间内搜索该结构光图形,避免了现有技术中的立体矫正步骤,可以提高三维重建的效率。In order to facilitate the introduction of the calibration interval of each structured light image, FIG. 2 is a schematic diagram of depth value measurement provided by an embodiment of the present application. As shown in FIG. 2, the projector projects the structured light to the camera shooting space, where Z represents the object plane The distance to the camera plane, Z1 represents the first calibration distance, Z2 represents the second calibration distance. Because the first calibration map, the second calibration map and the object plane are different from the camera plane, the position of the structured light pattern will exist Parallax. And for the same structured light pattern, there are corresponding structured light patterns and position coordinates of the structured light patterns in the measurement image, the first calibration map, and the second calibration map. For example, the structured light pattern at position F in the first calibration image, the structured light pattern at position C on the object plane, and the structured light pattern at position A on the second calibration image match each other. In the measurement image, Position F corresponds to F'in the measurement image, position C corresponds to C'in the measurement image, and position A corresponds to A'in the measurement image. The line segment formed by connecting F'and A'is the structured light pattern , And the coordinate position of the structured light pattern is in its corresponding calibration interval. By calculating the calibration interval of each structured light pattern on the measurement image, the structured light pattern can be searched for within the calibration interval corresponding to each structured light pattern. The graphics avoids the stereo correction steps in the prior art and can improve the efficiency of three-dimensional reconstruction.
步骤S103:根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值。Step S103: Calculate the depth value of each first position coordinate according to the calibration interval of each structured light pattern on the measurement image.
根据测量图像上每个结构光图形的标定区间,可以计算每个第一位置坐标的深度值,本申请实施例对如何根据测量图像上的标定区间,计算每个第一位置坐标的深度值的具体实施方式不做限制。According to the calibration interval of each structured light pattern on the measurement image, the depth value of each first position coordinate can be calculated. The embodiment of the present application is concerned with how to calculate the depth value of each first position coordinate according to the calibration interval on the measurement image. The specific implementation is not limited.
在一种可能的实施方式中,如图2所示,由于第一标定面、第二标定面与相机平面相互平行,为了计算每个位置坐标的深度值即物平面距离相机平面的距离Z,根据三角形相似原理,可知:In a possible implementation, as shown in FIG. 2, since the first calibration surface and the second calibration surface are parallel to the camera plane, in order to calculate the depth value of each position coordinate, that is, the distance Z between the object plane and the camera plane, According to the triangle similarity principle, we know:
Figure PCTCN2019088698-appb-000001
Figure PCTCN2019088698-appb-000001
因此,可以得到:Therefore, you can get:
(Z2-Z1)*(C′A′)*Z=Z1*(F′A′)*(Z2-Z)    (2)(Z2-Z1)*(C′A′)*Z=Z1*(F′A′)*(Z2-Z) (2)
最终得到深度值计算公式:Finally get the depth value calculation formula:
Figure PCTCN2019088698-appb-000002
Figure PCTCN2019088698-appb-000002
因此,可以通过上述计算公式(3),计算每个第一位置坐标的深度值。Therefore, the depth value of each first position coordinate can be calculated by the above calculation formula (3).
在一种可能的实施方式中,根据测量图像的每个结构光图形的标定区间,计算每个第一位置坐标的深度值,包括:In a possible implementation manner, calculating the depth value of each first position coordinate according to the calibration interval of each structured light pattern of the measurement image includes:
确定每个结构光图形在测量图像与第一标定图的第一视差。在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,第二视差为该结构光图形在测量图像与第二标定图的视差。根据第一视差和第二视差,计算每个第一位置坐标的深度值。Determine the first parallax between the measured image and the first calibration image for each structured light pattern. In the calibration interval of each structured light pattern, the interval except the first parallax is determined to be the second parallax, and the second parallax is the parallax between the measured image and the second calibration image of the structured light pattern. According to the first disparity and the second disparity, the depth value of each first position coordinate is calculated.
确定每个结构光图形在测量图像与第一标定图的第一视差,例如图2中的C’A’,由于已知结构光图像的标定区间F’A’,因此可以计算得到该结构光图形在测量图像与第二标定图的第二视差F’C’,由于第一标定距离Z1和第二标定距离Z2为已知,根据深度值计算公式,可以计算出结构光图形的第一位置坐标的深度值。Determine the first parallax between the measured image and the first calibration image for each structured light pattern, such as C'A' in Figure 2. Since the calibration interval F'A' of the structured light image is known, the structured light can be calculated The graph is measuring the second parallax F'C' between the image and the second calibration graph. Since the first calibration distance Z1 and the second calibration distance Z2 are known, the first position of the structured light graph can be calculated according to the depth value calculation formula The depth value of the coordinate.
类似的,也可以通过确定每个结构光图形在测量图像与第二标定图的第二视差,然后根据每个结构光的标定区间,得到每个结构光图形在测量图像与第一标定图的第一视差,进而根据深度值计算公式,得到该结构光图形的第一位置坐标的深度值。Similarly, by determining the second parallax between the measured image and the second calibration image for each structured light pattern, and then according to the calibration interval of each structured light, the difference between the measurement image and the first calibration image for each structured light pattern can be obtained. The first disparity, and then according to the depth value calculation formula, obtain the depth value of the first position coordinate of the structured light pattern.
步骤S104:根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建。Step S104: Perform three-dimensional reconstruction on the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameter.
在确定每个第一位置坐标的深度值之后,根据标定重建参数,计算第一位置坐标的三维坐标,实现对测量图像的三维重建,本申请实施例对三维重建的具体实现方式不做限制,同时,对具体标定重建参数都不做限制。After the depth value of each first position coordinate is determined, the three-dimensional coordinates of the first position coordinate are calculated according to the calibration reconstruction parameters to realize the three-dimensional reconstruction of the measurement image. The embodiment of the present application does not limit the specific implementation of the three-dimensional reconstruction. At the same time, there are no restrictions on specific calibration reconstruction parameters.
本申请实施例提供的三维重建方法,通过根据测量图像、第一标定图和第二标定图,确定测量图上每个结构光图形的标定区间,然后根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,最后根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建,不仅实现了对测量图像的三维重建,而且直接通过测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值,避免了立体矫正的步骤,提高了三维重建的效率。The three-dimensional reconstruction method provided by the embodiment of the application determines the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image and the second calibration image, and then determines the calibration interval of each structured light image on the measurement image. Interval, calculate the depth value of each first position coordinate, and finally perform three-dimensional reconstruction of the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameters, which not only realizes the three-dimensional reconstruction of the measured image, but also directly through the measurement For the calibration interval of each structured light pattern on the image, the depth value of each first position coordinate is calculated, which avoids the step of stereo correction and improves the efficiency of three-dimensional reconstruction.
可选的,图3是本申请另一实施例提供的三维重建方法的流程示意图,该方法可以由三维重建装置执行,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,下面以终端设备为执行主体对三维重建方法进行说明,如图3所示,在步骤S103之前,本申请实施例提供的三维重建 方法,还可以包括:Optionally, FIG. 3 is a schematic flowchart of a three-dimensional reconstruction method provided by another embodiment of the present application. The method may be executed by a three-dimensional reconstruction device, which may be implemented by software and/or hardware, for example: the device may be Part or all of the terminal device, the terminal device can be a personal computer, a smart phone, a user terminal, a tablet computer, etc. The following describes the 3D reconstruction method with the terminal device as the execution subject, as shown in Fig. 3, before step S103, this The three-dimensional reconstruction method provided by the application embodiment may further include:
步骤S201:获取第三标定图和第四标定图,第三标定图是在第一标定面上标定的非结构光标定图,第四标定图是在第二标定面上标定的非结构光标定图。Step S201: Obtain a third calibration map and a fourth calibration map. The third calibration map is an unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is an unstructured cursor calibration calibrated on the second calibration surface. Figure.
获取第三标定图,可以通过在第一标定面处放置标定板,本申请实施例对标定板的类型、尺寸等不做限制,例如,标定板图案为棋盘格图;然后拍摄一张标定图,得到第三标定图,本申请实施例对第三标定图的获取方式不做限制,类似的,可以通过沿相机光轴移动标定板至第二标定面,再次拍摄一张标定图,得到第四标定图,本申请实施例对此不做限制。The third calibration map can be obtained by placing a calibration board on the first calibration surface. The embodiment of the present application does not impose restrictions on the type and size of the calibration board. For example, the calibration board pattern is a checkerboard pattern; then a calibration map is taken. , The third calibration map is obtained. The embodiment of the present application does not limit the acquisition method of the third calibration map. Similarly, you can move the calibration plate along the optical axis of the camera to the second calibration surface and take another calibration map to obtain the first calibration map. Four calibration diagrams, which are not limited in the embodiment of this application.
步骤S202:根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数。Step S202: Determine calibration reconstruction parameters according to the third calibration map, the fourth calibration map and the camera imaging model.
本申请对如何根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数的具体实施方式不做限制。示例性的,下面对一种相机成像模型进行介绍,相机成像模型为:This application does not limit the specific implementation of how to determine the calibration reconstruction parameters according to the third calibration map, the fourth calibration map and the camera imaging model. Exemplarily, a camera imaging model is introduced below, and the camera imaging model is:
Figure PCTCN2019088698-appb-000003
Figure PCTCN2019088698-appb-000003
其中,u表示像素平面坐标系下的横坐标,v表示像素平面坐标系下的纵坐标,K表示相机内参矩阵,R表示旋转矩阵,T表示平移向量,x w表示在世界坐标系下的X轴坐标值,y w表示在世界坐标系下的Y轴坐标值,z w表示在世界坐标系下的Z轴坐标值。因此,在一种可能的实施方式中,可以通过计算K[R|T],确定标定重建参数。 Among them, u represents the abscissa in the pixel plane coordinate system, v represents the ordinate in the pixel plane coordinate system, K represents the camera internal parameter matrix, R represents the rotation matrix, T represents the translation vector, and x w represents X in the world coordinate system. The axis coordinate value, y w represents the Y axis coordinate value in the world coordinate system, and z w represents the Z axis coordinate value in the world coordinate system. Therefore, in a possible implementation manner, the calibration reconstruction parameters can be determined by calculating K[R|T].
在另一种可能的实施方式中,可以对上述公式进一步推导,其中,
Figure PCTCN2019088698-appb-000004
得到:
In another possible implementation manner, the above formula can be further derived, where,
Figure PCTCN2019088698-appb-000004
get:
Figure PCTCN2019088698-appb-000005
Figure PCTCN2019088698-appb-000005
Figure PCTCN2019088698-appb-000006
Figure PCTCN2019088698-appb-000006
其中,fx,fy是与相机焦距、像素的大小有关的参数,cx、cy是相机光心在像素平面上的坐标,r1~r9为旋转矩阵参数,Tx,Ty,Tz分别为X,Y,Z三个方向上的平移参数。单应矩阵H为Z=0平面的单应矩阵,ΔH为Z=z w时单应矩阵的增量矩阵,(H+z wΔH)表示Z=z w平面的单应矩阵。因此可以通过计算H和ΔH的值,确定标定重建参数。 Among them, fx, fy are parameters related to the focal length of the camera and the size of the pixel, cx, cy are the coordinates of the camera's optical center on the pixel plane, r1 to r9 are the rotation matrix parameters, Tx, Ty, and Tz are X, Y, respectively, The translation parameters in the three directions of Z. Homography matrix H to Z = 0 plane homography, ΔH increments by Z = z w homography matrix when the matrix, (H + z w ΔH) z w represent Z = single plane should matrix. Therefore, the calibration reconstruction parameters can be determined by calculating the values of H and ΔH.
在上述公式的基础上,在一种可能的实施方式中,为了实现确定标定重建参数,根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数,包括:Based on the above formula, in a possible implementation manner, in order to determine the calibration reconstruction parameters, the calibration reconstruction parameters are determined according to the third calibration map, the fourth calibration map and the camera imaging model, including:
在第三标定图和第四标定图中,获取多组像素坐标以及多组像素坐标对应的标定板上的坐标;针对多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵。In the third calibration map and the fourth calibration map, obtain multiple sets of pixel coordinates and the coordinates on the calibration board corresponding to multiple sets of pixel coordinates; for multiple sets of pixel coordinates, respectively calibrate each set of pixel coordinates and each set of pixel coordinates The coordinates on the board are input into the camera imaging model to determine the homography matrix of any plane parallel to the camera plane in the preset space.
在第三标定图和第四标定图中,分别获取多组像素坐标(u i,v i)以及多组像素坐标各自对应的标定板上的坐标(xi,yi),其中i为大于零的整数,(u i,v i)表示第i组像素坐标,本申请实施例对i的数值不做限制,在一种可能的实施方式中,i为大于等于8的整数。分别将像素坐标(u i,v i)与像素坐标各自对应的标定板上的坐标(xi,yi),带入公式(5)中,确定单应矩阵H和单应矩阵ΔH。 In the third calibration image and the fourth calibration image, obtain multiple sets of pixel coordinates (u i, v i ) and the coordinates (xi, yi) on the calibration board corresponding to each of the multiple sets of pixel coordinates, where i is greater than zero An integer, (u i, v i ) represents the coordinates of the i-th group of pixels. The embodiment of the present application does not limit the value of i. In a possible implementation, i is an integer greater than or equal to 8. The pixel coordinates (u i, v i ) and the coordinates (xi, yi) on the calibration board corresponding to the pixel coordinates are respectively brought into formula (5) to determine the homography matrix H and the homography matrix ΔH.
相应的,根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建,包括:Correspondingly, according to the depth value of each first position coordinate and the calibrated reconstruction parameters, the measurement image is reconstructed in three dimensions, including:
根据每个第一位置坐标的深度值、预设空间内任意与相机平面平行的平 面的单应矩阵和相机成像模型,对测量图像进行三维重建。According to the depth value of each first position coordinate, the homography matrix of any plane parallel to the camera plane in the preset space, and the camera imaging model, the measurement image is reconstructed in three dimensions.
根据第一位置坐标的深度值Z=z w、单应矩阵H、单应矩阵ΔH、第一位置坐标(u,v)以及公式(5),计算(x w,y w),最终确定每个第一位置坐标的(x w,y w,z w),实现对测量图像的三维重建。 According to the depth value Z = z w of the first position coordinate, the homography matrix H, the homography matrix ΔH, the first position coordinate (u, v) and formula (5), calculate (x w , y w ), and finally determine each (X w , y w , z w ) of the first position coordinates to realize the three-dimensional reconstruction of the measurement image.
由于通过第三标定图和第四标定图中的像素坐标以及像素坐标对应的标定板上的坐标,确定预设空间内任意与相机平面平行的平面的单应矩阵,实现了对预设空间内任意与相机平面平行的平面的三维坐标的确定,进而实现了对测量图像的三维重建。而且,通过第一标定图和第二标定图对深度值进行标定,然后通过第三标定图和第四标定图以及相机成像模型确定标定重建参数,实现了深度值标定与标定重建参数的分离,降低了标定的精度要求,进而降低了标定难度。Since the pixel coordinates in the third calibration map and the fourth calibration map and the coordinates on the calibration board corresponding to the pixel coordinates are used to determine the homography matrix of any plane parallel to the camera plane in the preset space, the The determination of the three-dimensional coordinates of any plane parallel to the camera plane realizes the three-dimensional reconstruction of the measured image. Moreover, the depth value is calibrated through the first calibration map and the second calibration map, and then the calibration reconstruction parameters are determined through the third calibration map, the fourth calibration map and the camera imaging model, which realizes the separation of the depth value calibration and the calibration reconstruction parameters. This reduces the accuracy requirements for calibration, thereby reducing the difficulty of calibration.
为了实现对测量图像上每个结构光图像的标定区间的确定,在一种可能的实施方式中,图4是本申请又一实施例提供的三维重建方法的流程示意图,该方法可以由三维重建装置执行,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,下面以终端设备为执行主体对三维重建方法进行说明,如图4所示,步骤S102可以包括:In order to realize the determination of the calibration interval of each structured light image on the measurement image, in a possible implementation manner, FIG. 4 is a schematic flowchart of a three-dimensional reconstruction method provided by another embodiment of the present application. The device can be implemented by software and/or hardware. For example, the device can be part or all of a terminal device. The terminal device can be a personal computer, a smart phone, a user terminal, a tablet computer, etc. To perform the subject's description of the three-dimensional reconstruction method, as shown in FIG. 4, step S102 may include:
步骤S301:匹配测量图像、第一标定图和第二标定图中的结构光图形。Step S301: Match the structured light patterns in the measurement image, the first calibration image and the second calibration image.
匹配测量图像、第一标定图和第二标定图中的结构光图形,确定测量图像、第一标定图和第二标定图中相应的结构光图形,本申请实施例对如何匹配测量图像、第一标定图和第二标定图中的结构光图形的具体实施方式不做限制。Match the structured light patterns in the measurement image, the first calibration image and the second calibration image, and determine the corresponding structured light images in the measurement image, the first calibration image, and the second calibration image. The specific implementation of the structured light pattern in the first calibration map and the second calibration map is not limited.
步骤S302:确定每个结构光图形在测量图像中的第一位置坐标、在第一标定图中的第二位置坐标和在第二标定图中的第三位置坐标。Step S302: Determine the first position coordinate in the measurement image, the second position coordinate in the first calibration map, and the third position coordinate in the second calibration map of each structured light pattern.
本申请对本步骤的具体实施方式不做限制,只要能够确定每个结构光图形在测量图像中的第一位置坐标、在第一标定图中的第二位置坐标和在第二标定图中的第三位置坐标即可。This application does not limit the specific implementation of this step, as long as it can determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration image, and the first position coordinates in the second calibration image. Three position coordinates are sufficient.
步骤S303:根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定测量图像上每个结构光图形的标定区间。Step S303: Determine the calibration interval of each structured light pattern on the measurement image according to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern.
如图2所示,根据每个结构光的第一位置坐标、第二位置坐标和第三位 置坐标,确定测量图像上每个结构光图形的标定区间,可以根据三角形相似原理,对F’A’进行计算,本申请实施例对此不做限制。As shown in Figure 2, according to the first position coordinates, second position coordinates and third position coordinates of each structured light, the calibration interval of each structured light pattern on the measurement image can be determined. According to the principle of triangle similarity, the F'A 'For calculation, the embodiment of this application does not limit this.
为了实现对测量图像上每个结构光图像的标定区间的确定,在另一种可能的实施方式中,图5是本申请再一实施例提供的三维重建方法的流程示意图,该方法可以由三维重建装置执行,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,下面以终端设备为执行主体对三维重建方法进行说明,如图5所示,步骤S102可以包括:In order to realize the determination of the calibration interval of each structured light image on the measurement image, in another possible implementation manner, FIG. 5 is a schematic flowchart of a three-dimensional reconstruction method provided by still another embodiment of the present application. The reconstruction device is executed. The device can be implemented by software and/or hardware. For example, the device can be part or all of a terminal device. The terminal device can be a personal computer, a smart phone, a user terminal, a tablet computer, etc. The device is the execution subject to explain the three-dimensional reconstruction method. As shown in FIG. 5, step S102 may include:
步骤S401:匹配第一标定图和第二标定图的结构光图形,确定第一标定图与第二标定图中每个结构光图形的坐标对应关系。Step S401: Match the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate correspondence between each structured light pattern of the first calibration map and the second calibration map.
匹配第一标定图和第二标定图的结构光图形,确定第一标定图与第二标定图中每个结构光图形的坐标对应关系,其中第一标定图与第二标定图中每个结构光图形的坐标对应关系可以采用单应矩阵的方式表示。Match the structured light patterns of the first calibration diagram and the second calibration diagram, and determine the coordinate corresponding relationship of each structured light diagram in the first calibration diagram and the second calibration diagram, where each structure in the first calibration diagram and the second calibration diagram The coordinate correspondence of the light pattern can be expressed in the form of a homography matrix.
步骤S402:匹配测量图像和第一标定图的结构光图形,确定每个结构光图形在测量图像中的第一位置坐标和在第一标定图中的第二位置坐标。Step S402: Match the structured light patterns of the measured image and the first calibration image, and determine the first position coordinates of each structured light pattern in the measured image and the second position coordinates of the first calibration image.
匹配测量图像和第一标定图的结构光图形,确定每个结构光图形在测量图像中的第一位置坐标和在第一标定图中的第二位置坐标,本申请实施例对本步骤的具体匹配方式不做限制。Match the structured light pattern of the measurement image and the first calibration image, and determine the first position coordinates of each structured light pattern in the measurement image and the second position coordinates in the first calibration image. The embodiment of this application specifically matches this step The way is not limited.
步骤S403:根据第一位置坐标、第二位置坐标以及第一标定图与第二标定图中每个结构光图形的坐标对应关系,确定测量图像上每个结构光图形的标定区间。Step S403: Determine the calibration interval of each structured light pattern on the measurement image according to the first position coordinates, the second position coordinates, and the coordinate correspondence between each structured light pattern in the first calibration map and the second calibration map.
本步骤中,可以根据第二位置坐标与第一标定图与第二标定图中每个结构光图形的坐标对应关系,确定第三位置坐标,然后根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定测量图像上每个结构光图形的标定区间,具体可参考步骤303,不再赘述。In this step, the third position coordinates can be determined according to the corresponding relationship between the second position coordinates and the coordinates of each structured light pattern in the first calibration map and the second calibration map, and then according to the first position coordinates, The second position coordinates and the third position coordinates are used to determine the calibration interval of each structured light pattern on the measurement image. For details, please refer to step 303, which will not be repeated.
需要说明的是,在本实施例中,对第一标定图和第二标定图所表示的标定图不做限制,步骤S402中的第一标定图也可以表示为第二标定图。由于通过确定第一标定图与第二标定图中每个结构光图形的坐标对应关系,只需要确定任一标定图中结构光图行的位置坐标,即可实现对另一标定图中对应结构光图形的位置坐标的确定,实现了对标定数据的压缩,节约了大量的存储 空间。It should be noted that in this embodiment, there is no limitation on the calibration diagrams represented by the first calibration diagram and the second calibration diagram, and the first calibration diagram in step S402 may also be represented as the second calibration diagram. Since by determining the coordinate corresponding relationship of each structured light pattern in the first calibration diagram and the second calibration diagram, it is only necessary to determine the position coordinates of the structured light diagram row in any calibration diagram to realize the corresponding structure in another calibration diagram. The determination of the position coordinates of the light pattern realizes the compression of the calibration data and saves a lot of storage space.
下述为本申请实施例提供的装置、设备、存储介质以及计算机程序产品实施例,可以用于执行本发明方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。The following embodiments of the apparatus, equipment, storage medium, and computer program product provided by the embodiments of the present application may be used to implement the method embodiments of the present invention. For details not disclosed in the device embodiment of this application, please refer to the method embodiment of this application.
图6是本申请一实施例提供的三维重建装置的结构示意图,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,如图6所示,本申请实施例提供的三维重建装置可以包括:FIG. 6 is a schematic structural diagram of a three-dimensional reconstruction device provided by an embodiment of the present application. The device can be implemented by software and/or hardware. For example, the device can be part or all of a terminal device, and the terminal device can be a personal computer, Smart phones, user terminals, tablet computers, etc., as shown in FIG. 6, the three-dimensional reconstruction apparatus provided by the embodiment of the present application may include:
第一获取模块61,用于获取测量图像上每个结构光图形各自对应的第一位置坐标。The first acquisition module 61 is configured to acquire the first position coordinates corresponding to each structured light pattern on the measurement image.
第一确定模块62,用于根据测量图像、第一标定图和第二标定图,确定测量图像上每个结构光图形的标定区间,第一标定图是在第一标定面上标定的结构光标定图,第二标定图是在第二标定面上标定的结构光标定图,第一标定面、第二标定面与相机平面平行。The first determination module 62 is configured to determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration map and the second calibration map, the first calibration map being a structure cursor calibrated on the first calibration surface Calibration diagram, the second calibration diagram is a structure cursor calibration diagram calibrated on the second calibration surface, the first calibration surface and the second calibration surface are parallel to the camera plane.
可选的,第一确定模块62,具体用于:Optionally, the first determining module 62 is specifically configured to:
匹配测量图像、第一标定图和第二标定图中的结构光图形。Match the structured light patterns in the measurement image, the first calibration map and the second calibration map.
确定每个结构光图形在测量图像中的第一位置坐标、在第一标定图中的第二位置坐标和在第二标定图中的第三位置坐标。Determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration map, and the third position coordinates in the second calibration map.
根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定测量图像上每个结构光图形的标定区间。According to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern, the calibration interval of each structured light pattern on the measurement image is determined.
可选的,第一确定模块62,具体用于:Optionally, the first determining module 62 is specifically configured to:
匹配第一标定图和第二标定图的结构光图形,确定第一标定图与第二标定图中每个结构光图形的坐标对应关系。Matching the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate corresponding relationship of each structured light pattern of the first calibration map and the second calibration map.
匹配测量图像和第一标定图的结构光图形,确定每个结构光图形在测量图像中的第一位置坐标和在第一标定图中的第二位置坐标。Matching the structured light patterns of the measurement image and the first calibration image, and determine the first position coordinates of each structured light image in the measurement image and the second position coordinates of the first calibration image.
根据第一位置坐标、第二位置坐标以及第一标定图与第二标定图中每个结构光图形的坐标对应关系,确定测量图像上每个结构光图形的标定区间。According to the first position coordinates, the second position coordinates, and the coordinate correspondence between each structured light pattern in the first calibration map and the second calibration map, the calibration interval of each structured light pattern on the measurement image is determined.
第二确定模块63,用于根据测量图像上每个结构光图形的标定区间,计算每个第一位置坐标的深度值。The second determining module 63 is configured to calculate the depth value of each first position coordinate according to the calibration interval of each structured light pattern on the measurement image.
可选的,第二确定模块63,具体用于:Optionally, the second determining module 63 is specifically used for:
确定每个结构光图形在测量图像与第一标定图的第一视差。Determine the first parallax between the measured image and the first calibration image for each structured light pattern.
在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,第二视差为该结构光图形在测量图像与第二标定图的视差。Within the calibration interval of each structured light pattern, the interval except the first parallax is determined to be the second parallax, and the second parallax is the parallax between the structured light pattern and the second calibration image.
根据第一视差和第二视差,计算每个第一位置坐标的深度值。According to the first disparity and the second disparity, the depth value of each first position coordinate is calculated.
重建模块64,用于根据每个第一位置坐标的深度值和标定重建参数,对测量图像进行三维重建。The reconstruction module 64 is configured to perform three-dimensional reconstruction of the measured image according to the depth value of each first position coordinate and the calibration reconstruction parameters.
可选的,图7是本申请另一实施例提供的三维重建装置的结构示意图,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是终端设备的部分或全部,终端设备可以是个人电脑、智能手机、用户终端、平板电脑等,如图7所示,本申请实施例提供的三维重建装置还可以包括:Optionally, FIG. 7 is a schematic structural diagram of a three-dimensional reconstruction device provided by another embodiment of the present application. The device can be implemented by software and/or hardware. For example, the device can be part or all of a terminal device. It may be a personal computer, a smart phone, a user terminal, a tablet computer, etc., as shown in FIG. 7, the three-dimensional reconstruction apparatus provided by the embodiment of the present application may further include:
第二获取模块71,用于获取第三标定图和第四标定图,第三标定图是在第一标定面上标定的非结构光标定图,第四标定图是在第二标定面上标定的非结构光标定图。The second acquisition module 71 is used to acquire the third calibration map and the fourth calibration map, the third calibration map is the unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is the calibration map on the second calibration surface The non-structural cursor fixed map.
第三确定模块72,用于根据第三标定图、第四标定图以及相机成像模型,确定标定重建参数。The third determining module 72 is configured to determine the calibration reconstruction parameters according to the third calibration map, the fourth calibration map and the camera imaging model.
可选的,第三确定模块72,具体用于:Optionally, the third determining module 72 is specifically configured to:
在第三标定图和第四标定图中,获取多组像素坐标以及多组像素坐标对应的标定板上的坐标。In the third calibration map and the fourth calibration map, multiple sets of pixel coordinates and coordinates on the calibration board corresponding to the multiple sets of pixel coordinates are acquired.
针对多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵。For multiple sets of pixel coordinates, each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine the homography matrix of any plane parallel to the camera plane in the preset space.
相应的,重建模块64具体用于:Correspondingly, the reconstruction module 64 is specifically used for:
根据每个第一位置坐标的深度值、预设空间内任意与相机平面平行的平面的单应矩阵和相机成像模型,对测量图像进行三维重建。According to the depth value of each first position coordinate, the homography matrix of any plane parallel to the camera plane in the preset space and the camera imaging model, the measurement image is reconstructed in three dimensions.
本申请实施例提供一种终端设备,图8是本申请一实施例提供的终端设备的结构示意图,如图8所示,该终端设备包括:An embodiment of the present application provides a terminal device. FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application. As shown in FIG. 8, the terminal device includes:
处理器81、存储器82、收发器83以及计算机程序;其中,收发器83实现车载收音机与其他设备之间的数据传输,计算机程序被存储在存储器82中,并且被配置为由处理器81执行,计算机程序包括用于执行上述三维重建方法方法的指令,其内容及效果请参考方法实施例。A processor 81, a memory 82, a transceiver 83, and a computer program; among them, the transceiver 83 implements data transmission between the car radio and other devices. The computer program is stored in the memory 82 and is configured to be executed by the processor 81, The computer program includes instructions for executing the above-mentioned three-dimensional reconstruction method. For the content and effect, please refer to the method embodiment.
此外,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当用户设备的至少一个处理器执行该计算机执行指令时,用户设备执行上述各种可能的方法。In addition, the embodiments of the present application also provide a computer-readable storage medium. The computer-readable storage medium stores computer-executable instructions. When at least one processor of the user equipment executes the computer-executable instructions, the user equipment executes the aforementioned various possibilities. Methods.
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。Among them, the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another. The storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer. An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium. Of course, the storage medium may also be an integral part of the processor. The processor and the storage medium may be located in the ASIC. In addition, the ASIC may be located in the user equipment. Of course, the processor and the storage medium may also exist as discrete components in the communication device.
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。A person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware. The aforementioned program can be stored in a computer readable storage medium. When the program is executed, the steps including the foregoing method embodiments are executed; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: It is still possible to modify the technical solutions described in the foregoing embodiments, or equivalently replace some or all of the technical features; these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention range.

Claims (16)

  1. 一种三维重建方法,其特征在于,包括:A three-dimensional reconstruction method, characterized in that it comprises:
    获取测量图像上每个结构光图形各自对应的第一位置坐标,所述测量图像为结构光图像,所述结构光图形为所述结构光图像中的任一结构光的光斑图形;Acquiring a first position coordinate corresponding to each structured light pattern on the measurement image, the measurement image is a structured light image, and the structured light pattern is a spot pattern of any structured light in the structured light image;
    根据所述测量图像、第一标定图和第二标定图,确定所述测量图像上每个结构光图形的标定区间,所述第一标定图是通过在第一标定面上放置标定板拍摄的结构光标定图,所述第二标定图是通过在第二标定面上放置所述标定板拍摄的结构光标定图,所述第一标定面、所述第二标定面与相机平面平行,所述相机平面为与相机光轴垂直的平面;Determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration image, and the second calibration image. The first calibration image is taken by placing a calibration board on the first calibration surface The structure cursor calibration diagram, the second calibration diagram is a structure cursor calibration diagram taken by placing the calibration board on the second calibration surface, the first calibration surface and the second calibration surface are parallel to the camera plane, so The camera plane is a plane perpendicular to the optical axis of the camera;
    根据所述测量图像上每个结构光图形的标定区间,计算每个所述第一位置坐标的深度值;Calculating the depth value of each first position coordinate according to the calibration interval of each structured light pattern on the measurement image;
    根据每个所述第一位置坐标的深度值和标定重建参数,对所述测量图像进行三维重建。According to the depth value of each of the first position coordinates and the calibration reconstruction parameters, the measurement image is reconstructed in three dimensions.
  2. 根据权利要求1所述的方法,其特征在于,在根据每个所述第一位置坐标的深度值和标定重建参数,对所述测量图像进行三维重建之前,还包括:The method according to claim 1, characterized in that, before performing the three-dimensional reconstruction of the measurement image according to the depth value of each of the first position coordinates and the calibration reconstruction parameter, the method further comprises:
    获取第三标定图和第四标定图,所述第三标定图是在所述第一标定面上标定的非结构光标定图,所述第四标定图是在所述第二标定面上标定的非结构光标定图;Acquire a third calibration map and a fourth calibration map, where the third calibration map is an unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is a calibration map on the second calibration surface The unstructured cursor positioning map;
    根据所述第三标定图、所述第四标定图以及相机成像模型,确定所述标定重建参数。The calibration reconstruction parameters are determined according to the third calibration map, the fourth calibration map and the camera imaging model.
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第三标定图、所述第四标定图以及相机成像模型,确定标定重建参数,包括:The method according to claim 2, wherein the determining calibration reconstruction parameters according to the third calibration map, the fourth calibration map, and the camera imaging model comprises:
    在所述第三标定图和所述第四标定图中,获取多组像素坐标以及所述多组像素坐标对应的标定板上的坐标;In the third calibration map and the fourth calibration map, acquiring multiple sets of pixel coordinates and coordinates on the calibration board corresponding to the multiple sets of pixel coordinates;
    针对所述多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入所述相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵;For the multiple sets of pixel coordinates, each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine a single plane parallel to the camera plane in the preset space. Should matrix
    相应的,根据每个所述第一位置坐标的深度值和标定重建参数,对所述测量图像进行三维重建,包括:Correspondingly, the three-dimensional reconstruction of the measurement image according to the depth value of each of the first position coordinates and the calibration reconstruction parameter includes:
    根据每个所述第一位置坐标的深度值、所述预设空间内任意与相机平面平行的平面的单应矩阵和所述相机成像模型,对所述测量图像进行三维重建。According to the depth value of each of the first position coordinates, the homography matrix of any plane parallel to the camera plane in the preset space, and the camera imaging model, perform three-dimensional reconstruction on the measurement image.
  4. 根据权利要求3所述的方法,其特征在于,根据所述测量图像、第一标定图和第二标定图,确定所述测量图像上每个结构光图形的标定区间,包括:The method according to claim 3, wherein determining the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration map, and the second calibration map comprises:
    匹配所述测量图像、所述第一标定图和所述第二标定图中的结构光图形;Matching the structured light patterns in the measurement image, the first calibration map and the second calibration map;
    确定每个结构光图形在所述测量图像中的第一位置坐标、在所述第一标定图中的第二位置坐标和在所述第二标定图中的第三位置坐标;Determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration map, and the third position coordinates in the second calibration map;
    根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定所述测量图像上每个结构光图形的标定区间。According to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern, the calibration interval of each structured light pattern on the measurement image is determined.
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述测量图像、第一标定图和第二标定图,确定所述测量图像上每个结构光图形的标定区间,包括:The method according to claim 3, wherein the determining the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration map and the second calibration map comprises:
    匹配所述第一标定图和所述第二标定图的结构光图形,确定所述第一标定图与所述第二标定图中每个结构光图形的坐标对应关系;Matching the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate correspondence between each structured light pattern of the first calibration map and the second calibration map;
    匹配所述测量图像和所述第一标定图的结构光图形,确定每个结构光图形在所述测量图像中的第一位置坐标和在所述第一标定图中的第二位置坐标;Matching the structured light patterns of the measurement image and the first calibration image, and determine the first position coordinates of each structured light image in the measurement image and the second position coordinates in the first calibration image;
    根据所述第一位置坐标、第二位置坐标以及所述第一标定图与所述第二标定图中每个结构光图形的坐标对应关系,确定所述测量图像上每个结构光图形的标定区间。Determine the calibration of each structured light pattern on the measurement image according to the first position coordinates, the second position coordinates, and the coordinate correspondence between the first calibration map and each structured light pattern in the second calibration map Interval.
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述测量图像的每个结构光图形的标定区间,计算每个所述第一位置坐标的深度值,包括:The method according to any one of claims 1 to 5, wherein the calculating the depth value of each of the first position coordinates according to the calibration interval of each structured light pattern of the measurement image comprises:
    确定每个结构光图形在所述测量图像与所述第一标定图的第一视差;Determining the first parallax of each structured light pattern between the measurement image and the first calibration image;
    在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,所述第二视差为该结构光图形在所述测量图像与所述第二标定图的视差;Within the calibration interval of each structured light pattern, determine that an interval other than the first parallax is a second parallax, where the second parallax is the parallax of the structured light pattern between the measurement image and the second calibration image;
    根据所述第一视差和所述第二视差,计算每个所述第一位置坐标的深度值。According to the first disparity and the second disparity, a depth value of each of the first position coordinates is calculated.
  7. 根据权利要求1-5任一项所述的方法,其特征在于,The method according to any one of claims 1-5, characterized in that,
    所述第一标定面和所述第二标定面分别位于物平面的两侧,或所述第一 标定面和所述第二标定面位于所述物平面的同一侧。The first calibration surface and the second calibration surface are respectively located on two sides of the object plane, or the first calibration surface and the second calibration surface are located on the same side of the object plane.
  8. 一种三维重建装置,其特征在于,包括:A three-dimensional reconstruction device is characterized in that it comprises:
    第一获取模块,用于获取测量图像上每个结构光图形各自对应的第一位置坐标,所述测量图像为结构光图像,所述结构光图形为所述结构光图像中的任一结构光的光斑图形;The first acquisition module is configured to acquire the first position coordinates corresponding to each structured light pattern on the measurement image, the measurement image is a structured light image, and the structured light pattern is any structured light in the structured light image. The spot pattern;
    第一确定模块,用于根据所述测量图像、第一标定图和第二标定图,确定所述测量图像上每个结构光图形的标定区间,所述第一标定图是通过在第一标定面上放置标定板拍摄的结构光标定图,所述第二标定图是通过在第二标定面上放置所述标定板拍摄的结构光标定图,所述第一标定面、所述第二标定面与相机平面平行,所述相机平面为与相机光轴垂直的平面;The first determination module is used to determine the calibration interval of each structured light pattern on the measurement image according to the measurement image, the first calibration map, and the second calibration map. A structure cursor calibration map shot by a calibration board is placed on the surface, the second calibration diagram is a structure cursor calibration map shot by placing the calibration board on a second calibration surface, the first calibration surface, the second calibration surface The surface is parallel to the camera plane, and the camera plane is a plane perpendicular to the optical axis of the camera;
    第二确定模块,用于根据所述测量图像上每个结构光图形的标定区间,计算每个所述第一位置坐标的深度值;The second determining module is configured to calculate the depth value of each first position coordinate according to the calibration interval of each structured light pattern on the measurement image;
    重建模块,用于根据每个所述第一位置坐标的深度值和标定重建参数,对所述测量图像进行三维重建。The reconstruction module is configured to perform three-dimensional reconstruction on the measurement image according to the depth value of each of the first position coordinates and the calibration reconstruction parameters.
  9. 根据权利要求8所述的装置,其特征在于,还包括:The device according to claim 8, further comprising:
    第二获取模块,用于获取第三标定图和第四标定图,所述第三标定图是在所述第一标定面上标定的非结构光标定图,所述第四标定图是在所述第二标定面上标定的非结构光标定图;The second acquisition module is used to acquire a third calibration map and a fourth calibration map, where the third calibration map is an unstructured cursor calibration map calibrated on the first calibration surface, and the fourth calibration map is Describe the unstructured cursor calibration map on the second calibration surface;
    第三确定模块,用于根据所述第三标定图、所述第四标定图以及相机成像模型,确定所述标定重建参数。The third determining module is configured to determine the calibration reconstruction parameters according to the third calibration map, the fourth calibration map, and the camera imaging model.
  10. 根据权利要求9所述的装置,其特征在于,所述第三确定模块,具体用于:The device according to claim 9, wherein the third determining module is specifically configured to:
    在所述第三标定图和所述第四标定图中,获取多组像素坐标以及所述多组像素坐标对应的标定板上的坐标;In the third calibration map and the fourth calibration map, acquiring multiple sets of pixel coordinates and coordinates on the calibration board corresponding to the multiple sets of pixel coordinates;
    针对所述多组像素坐标,分别将每组像素坐标以及每组像素坐标对应的标定板上的坐标,输入所述相机成像模型中,以确定预设空间内任意与相机平面平行的平面的单应矩阵;For the multiple sets of pixel coordinates, each set of pixel coordinates and the coordinates on the calibration board corresponding to each set of pixel coordinates are input into the camera imaging model to determine a single plane parallel to the camera plane in the preset space. Should matrix
    相应的,所述重建模块具体用于:Correspondingly, the reconstruction module is specifically used for:
    根据每个所述第一位置坐标的深度值、所述预设空间内任意与相机平面平行的平面的单应矩阵和所述相机成像模型,对所述测量图像进行三维重建。According to the depth value of each of the first position coordinates, the homography matrix of any plane parallel to the camera plane in the preset space, and the camera imaging model, perform three-dimensional reconstruction on the measurement image.
  11. 根据权利要求10所述的装置,其特征在于,所述第一确定模块,具体用于:The device according to claim 10, wherein the first determining module is specifically configured to:
    匹配所述测量图像、所述第一标定图和所述第二标定图中的结构光图形;Matching the structured light patterns in the measurement image, the first calibration map and the second calibration map;
    确定每个结构光图形在所述测量图像中的第一位置坐标、在所述第一标定图中的第二位置坐标和在所述第二标定图中的第三位置坐标;Determine the first position coordinates of each structured light pattern in the measurement image, the second position coordinates in the first calibration map, and the third position coordinates in the second calibration map;
    根据每个结构光图形的第一位置坐标、第二位置坐标和第三位置坐标,确定所述测量图像上每个结构光图形的标定区间。According to the first position coordinate, the second position coordinate and the third position coordinate of each structured light pattern, the calibration interval of each structured light pattern on the measurement image is determined.
  12. 根据权利要求10所述的装置,其特征在于,所述第一确定模块,具体用于:The device according to claim 10, wherein the first determining module is specifically configured to:
    匹配所述第一标定图和所述第二标定图的结构光图形,确定所述第一标定图与所述第二标定图中每个结构光图形的坐标对应关系;Matching the structured light patterns of the first calibration map and the second calibration map, and determine the coordinate correspondence between each structured light pattern of the first calibration map and the second calibration map;
    匹配所述测量图像和所述第一标定图的结构光图形,确定每个结构光图形在所述测量图像中的第一位置坐标和在所述第一标定图中的第二位置坐标;Matching the structured light patterns of the measurement image and the first calibration image, and determine the first position coordinates of each structured light image in the measurement image and the second position coordinates in the first calibration image;
    根据所述第一位置坐标、第二位置坐标以及所述第一标定图与所述第二标定图中每个结构光图形的坐标对应关系,确定所述测量图像上每个结构光图形的标定区间。Determine the calibration of each structured light pattern on the measurement image according to the first position coordinates, the second position coordinates, and the coordinate correspondence between the first calibration map and each structured light pattern in the second calibration map Interval.
  13. 根据权利要求8-12任一项所述的装置,其特征在于,所述第二确定模块,具体用于:The device according to any one of claims 8-12, wherein the second determining module is specifically configured to:
    确定每个结构光图形在所述测量图像与所述第一标定图的第一视差;Determining the first parallax of each structured light pattern between the measurement image and the first calibration image;
    在每个结构光图形的标定区间内,确定除第一视差之外的区间为第二视差,所述第二视差为该结构光图形在所述测量图像与所述第二标定图的视差;Within the calibration interval of each structured light pattern, determine that an interval other than the first parallax is a second parallax, where the second parallax is the parallax of the structured light pattern between the measurement image and the second calibration image;
    根据所述第一视差和所述第二视差,计算每个所述第一位置坐标的深度值。According to the first disparity and the second disparity, a depth value of each of the first position coordinates is calculated.
  14. 根据权利要求8-12任一项所述的装置,其特征在于,The device according to any one of claims 8-12, wherein:
    所述第一标定面和所述第二标定面位于物平面的两侧,或所述第一标定面和所述第二标定面位于所述物平面的一侧。The first calibration surface and the second calibration surface are located on both sides of the object plane, or the first calibration surface and the second calibration surface are located on one side of the object plane.
  15. 一种设备,其特征在于,包括:A device, characterized in that it comprises:
    处理器;processor;
    存储器;以及Memory; and
    计算机程序;Computer program;
    其中,所述计算机程序被存储在所述存储器中,并且被配置为由所述处理器执行,所述计算机程序包括用于执行如权利要求1-7任一项所述的方法的指令。Wherein, the computer program is stored in the memory and configured to be executed by the processor, and the computer program includes instructions for executing the method according to any one of claims 1-7.
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得服务器执行权利要求1-7任一项所述的方法。A computer-readable storage medium, wherein the computer-readable storage medium stores a computer program that enables a server to execute the method according to any one of claims 1-7.
PCT/CN2019/088698 2019-05-28 2019-05-28 Three-dimensional reconstruction method, device, apparatus, and storage medium WO2020237492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/088698 WO2020237492A1 (en) 2019-05-28 2019-05-28 Three-dimensional reconstruction method, device, apparatus, and storage medium
CN201980000842.8A CN110337674B (en) 2019-05-28 2019-05-28 Three-dimensional reconstruction method, device, equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088698 WO2020237492A1 (en) 2019-05-28 2019-05-28 Three-dimensional reconstruction method, device, apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020237492A1 true WO2020237492A1 (en) 2020-12-03

Family

ID=68150224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088698 WO2020237492A1 (en) 2019-05-28 2019-05-28 Three-dimensional reconstruction method, device, apparatus, and storage medium

Country Status (2)

Country Link
CN (1) CN110337674B (en)
WO (1) WO2020237492A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112581605A (en) * 2020-12-24 2021-03-30 西安中科光电精密工程有限公司 Structured light three-dimensional reconstruction correction method and device
CN114359894A (en) * 2022-01-13 2022-04-15 浙大城市学院 Buddhist image cultural relic three-dimensional model identification and classification method
CN115115788A (en) * 2022-08-12 2022-09-27 梅卡曼德(北京)机器人科技有限公司 Three-dimensional reconstruction method and device, electronic equipment and storage medium
CN114359894B (en) * 2022-01-13 2024-04-30 浙大城市学院 Buddhism image cultural relic three-dimensional model identification and classification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686961A (en) * 2020-12-31 2021-04-20 杭州海康机器人技术有限公司 Method and device for correcting calibration parameters of depth camera
CN113251951B (en) * 2021-04-26 2024-03-01 湖北汽车工业学院 Calibration method of line structured light vision measurement system based on single calibration surface mapping
CN113379849B (en) * 2021-06-10 2023-04-18 南开大学 Robot autonomous recognition intelligent grabbing method and system based on depth camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337071A (en) * 2013-06-19 2013-10-02 北京理工大学 Device and method for structure-reconstruction-based subcutaneous vein three-dimensional visualization
CN103971405A (en) * 2014-05-06 2014-08-06 重庆大学 Method for three-dimensional reconstruction of laser speckle structured light and depth information
CN103971408A (en) * 2014-05-21 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 Three-dimensional facial model generating system and method
CN107945268A (en) * 2017-12-15 2018-04-20 深圳大学 A kind of high-precision three-dimensional method for reconstructing and system based on binary area-structure light

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008864A1 (en) * 2007-07-12 2009-01-15 Thomson Licensing System and method for three-dimensional object reconstruction from two-dimensional images
CN101697233B (en) * 2009-10-16 2012-06-06 长春理工大学 Structured light-based three-dimensional object surface reconstruction method
US9222767B2 (en) * 2012-01-03 2015-12-29 Samsung Electronics Co., Ltd. Display apparatus and method for estimating depth
CN103424083B (en) * 2012-05-24 2016-02-10 北京数码视讯科技股份有限公司 The detection method of Object Depth, device and system
CN104346829A (en) * 2013-07-29 2015-02-11 中国农业机械化科学研究院 Three-dimensional color reconstruction system and method based on PMD (photonic mixer device) cameras and photographing head
JP6486083B2 (en) * 2014-11-28 2019-03-20 キヤノン株式会社 Information processing apparatus, information processing method, and program
CN104408732B (en) * 2014-12-10 2017-07-28 东北大学 A kind of big depth of field measuring system and method based on omnidirectional's structure light
CN105160680B (en) * 2015-09-08 2017-11-21 北京航空航天大学 A kind of design method of the noiseless depth camera based on structure light
CN105931240B (en) * 2016-04-21 2018-10-19 西安交通大学 Three dimensional depth sensing device and method
CN107607040B (en) * 2017-08-11 2020-01-14 天津大学 Three-dimensional scanning measurement device and method suitable for strong reflection surface
CN108088386B (en) * 2017-12-15 2019-11-29 深圳大学 A kind of the binary area-structure light detection method and system of micro-nano magnitude
CN108540717A (en) * 2018-03-31 2018-09-14 深圳奥比中光科技有限公司 Target image obtains System and method for
CN108709499A (en) * 2018-04-28 2018-10-26 天津大学 A kind of structured light vision sensor and its quick calibrating method
CN109087382A (en) * 2018-08-01 2018-12-25 宁波发睿泰科智能科技有限公司 A kind of three-dimensional reconstruction method and 3-D imaging system
CN109510948B (en) * 2018-09-30 2020-11-17 先临三维科技股份有限公司 Exposure adjusting method, exposure adjusting device, computer equipment and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337071A (en) * 2013-06-19 2013-10-02 北京理工大学 Device and method for structure-reconstruction-based subcutaneous vein three-dimensional visualization
CN103971405A (en) * 2014-05-06 2014-08-06 重庆大学 Method for three-dimensional reconstruction of laser speckle structured light and depth information
CN103971408A (en) * 2014-05-21 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 Three-dimensional facial model generating system and method
CN107945268A (en) * 2017-12-15 2018-04-20 深圳大学 A kind of high-precision three-dimensional method for reconstructing and system based on binary area-structure light

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112581605A (en) * 2020-12-24 2021-03-30 西安中科光电精密工程有限公司 Structured light three-dimensional reconstruction correction method and device
CN114359894A (en) * 2022-01-13 2022-04-15 浙大城市学院 Buddhist image cultural relic three-dimensional model identification and classification method
CN114359894B (en) * 2022-01-13 2024-04-30 浙大城市学院 Buddhism image cultural relic three-dimensional model identification and classification method
CN115115788A (en) * 2022-08-12 2022-09-27 梅卡曼德(北京)机器人科技有限公司 Three-dimensional reconstruction method and device, electronic equipment and storage medium
CN115115788B (en) * 2022-08-12 2023-11-03 梅卡曼德(北京)机器人科技有限公司 Three-dimensional reconstruction method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN110337674A (en) 2019-10-15
CN110337674B (en) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2020237492A1 (en) Three-dimensional reconstruction method, device, apparatus, and storage medium
US9652849B2 (en) Techniques for rapid stereo reconstruction from images
KR100755450B1 (en) 3d reconstruction apparatus and method using the planar homography
CN110070598B (en) Mobile terminal for 3D scanning reconstruction and 3D scanning reconstruction method thereof
CN111192235B (en) Image measurement method based on monocular vision model and perspective transformation
CN110189400B (en) Three-dimensional reconstruction method, three-dimensional reconstruction system, mobile terminal and storage device
JPWO2018235163A1 (en) Calibration apparatus, calibration chart, chart pattern generation apparatus, and calibration method
JP2020506487A (en) Apparatus and method for obtaining depth information from a scene
CN111127524A (en) Method, system and device for tracking trajectory and reconstructing three-dimensional image
CN107990846B (en) Active and passive combination depth information acquisition method based on single-frame structured light
CN113643414B (en) Three-dimensional image generation method and device, electronic equipment and storage medium
CN116129037B (en) Visual touch sensor, three-dimensional reconstruction method, system, equipment and storage medium thereof
CN113256718B (en) Positioning method and device, equipment and storage medium
CN112686877A (en) Binocular camera-based three-dimensional house damage model construction and measurement method and system
Liu et al. Epipolar rectification method for a stereovision system with telecentric cameras
WO2021104308A1 (en) Panoramic depth measurement method, four-eye fisheye camera, and binocular fisheye camera
CN115880344A (en) Binocular stereo matching data set parallax truth value acquisition method
CN116433843A (en) Three-dimensional model reconstruction method and device based on binocular vision reconstruction route
US8509522B2 (en) Camera translation using rotation from device
CN112929626A (en) Three-dimensional information extraction method based on smartphone image
CN116579962A (en) Panoramic sensing method, device, equipment and medium based on fisheye camera
CN110012236A (en) A kind of information processing method, device, equipment and computer storage medium
CN111429571B (en) Rapid stereo matching method based on spatio-temporal image information joint correlation
CN113361365A (en) Positioning method and device, equipment and storage medium
CN113822994B (en) Three-dimensional model construction method and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930614

Country of ref document: EP

Kind code of ref document: A1