WO2020235893A1 - Cathode active material having 5v-grade spinel structure, and preparation method therefor - Google Patents

Cathode active material having 5v-grade spinel structure, and preparation method therefor Download PDF

Info

Publication number
WO2020235893A1
WO2020235893A1 PCT/KR2020/006465 KR2020006465W WO2020235893A1 WO 2020235893 A1 WO2020235893 A1 WO 2020235893A1 KR 2020006465 W KR2020006465 W KR 2020006465W WO 2020235893 A1 WO2020235893 A1 WO 2020235893A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
oxidation number
positive electrode
electrode active
spinel structure
Prior art date
Application number
PCT/KR2020/006465
Other languages
French (fr)
Korean (ko)
Inventor
선양국
유태연
김운혁
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200050315A external-priority patent/KR102433878B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2020235893A1 publication Critical patent/WO2020235893A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Korean Patent Laid-Open Publication No. 10-2014-0119621 (application number 10-2013-0150315) uses a precursor for manufacturing an excess lithium cathode active material, controls the type and composition of the metal substituted in the precursor, and the type of metal added. And by controlling the amount of addition, a secondary battery having a high voltage capacity and long life characteristics is disclosed.
  • One technical problem to be solved by the present application is to provide a high-capacity positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a cathode active material having a long life, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a positive electrode active material having high stability, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Another technical problem to be solved by the present application is to provide a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same, in which life-deterioration characteristics according to the number of charge/discharge are minimized.
  • the present application provides a positive electrode active material having a 5V class spinel structure.
  • the oxidation number of Mn includes +3 and +4, x>0, y>0, 0 ⁇ 4 , 0 ⁇ 0.03, M1 is a transition metal with an oxidation number of +5 or +6, M2 is an element with an oxidation number of -1, and the average oxidation number of Mn is less than 3.5 to 4, but the average oxidation of Mn
  • 0 ⁇ 2, 0 ⁇ 2, and Mn is an oxidation number of +3 and +4, relative to the total amount of the oxidation number of +3 Mn is 0.3% to 3.38 It can be %.
  • the average oxidation number A of Mn is calculated by the following ⁇ Equation 1>, and in ⁇ Equation 1>, B may include the oxidation number of M.
  • the ⁇ value may include a greater influence on the amount of change in the average oxidation number of Mn than the ⁇ value.
  • 0 ⁇ 0.01 and 0 ⁇ 0.01 may be included.
  • M1 may include at least one of Nb, Mo, Ta, and W, and M2 may be F or Cl.
  • embodiments of the present invention include preparing a transition metal aqueous solution containing nickel and manganese, and a doped metal aqueous solution containing M1; Supplying the transition metal aqueous solution, the doping metal aqueous solution, and an ammonia solution to a reactor to prepare a cathode active material precursor doped with the M1 in transition metal hydroxides containing nickel and manganese; And a doping source containing the positive electrode active material precursor, lithium salt, and M2 in a dry manner using a ball mill and firing to prepare a positive electrode active material having a spinel structure doped with the M1 and M2 in nickel, manganese, and lithium oxides.
  • Including the step of, and the step of preparing the doping metal aqueous solution comprises: preparing a sodium hydroxide solution; And dissolving the powder containing M1 in the sodium hydroxide solution, wherein M1 is a transition metal having an oxidation number of +5 or +6, and M2 is an element having an oxidation number of -1. It includes a method of manufacturing a structured positive electrode active material.
  • Mn ions having an oxidation number of +4 than Mn ions having an oxidation number of +3 may be included.
  • the average oxidation number A of Mn is calculated by the following ⁇ Equation 1>, and in ⁇ Equation 1>, B may include the oxidation number of M1.
  • x may be 0.5 and y may include 1.5.
  • M may include at least one of Nb, Mo, Ta, and W.
  • the present application provides a method of manufacturing a positive electrode active material having a spinel structure.
  • the method of preparing a positive electrode active material having a spinel structure includes preparing a transition metal aqueous solution containing nickel and manganese, and a doping metal aqueous solution containing a doping metal, the transition metal aqueous solution, and the doping metal aqueous solution , And supplying an ammonia solution to a reactor to prepare a positive electrode active material precursor doped with the doping metal in a transition metal hydroxide including nickel and manganese, and a doping source including the positive electrode active material precursor, a lithium salt, and fluorine
  • nickel, manganese, and lithium oxide may include the step of preparing a spinel-structured positive electrode active material doped with the doped metal and fluorine.
  • preparing the doping metal aqueous solution may include preparing a sodium hydroxide solution, and dissolving the powder containing the doped metal in the sodium hydroxide solution.
  • the cathode active material may include those represented by ⁇ Chemical Formula 2> below.
  • the concentration of the doped metal and the concentration of fluorine are controlled in the positive electrode active material according to the concentration to which the doping metal aqueous solution is supplied and the mixed concentration of the doping source including fluorine, and In may include controlling the average oxidation number of manganese in the positive electrode active material according to the concentration of the doped metal and the concentration of fluorine.
  • a positive electrode active material having a spinel structure with improved charge/discharge characteristics, life characteristics, and thermal stability may be provided.
  • Example 1 is a graph measuring the discharge capacity of a secondary battery including a positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
  • FIG 3 is a graph in which discharge capacity is normalized according to the number of charging and discharging times of a secondary battery including the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • first component in one embodiment may be referred to as a second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • 'and/or' is used to mean including at least one of the elements listed before and after.
  • a positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention will be described.
  • the positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention may be represented by the following ⁇ Chemical Formula 1>.
  • 0 ⁇ 2, 0 ⁇ 2, and more specifically, 0 ⁇ 0.01, and 0 ⁇ 0.01 may be included.
  • the Mn may include 0.3% to 3.38% of Mn having the oxidation number of +3 relative to the total amount of the oxidation number of +3 and +4.
  • M1 is a transition metal having an oxidation number of +6, the ⁇ value may have a greater influence on a change in the average oxidation number of Mn than the ⁇ value.
  • the oxidation numbers +3 and +4 of Mn ions can be controlled within a predetermined range, and the Mn ions consist only of Mn3+ and Mn4+, which are oxidation numbers +3 and +4, for all Mn ions. Since the Mn ion having an oxidation number of +3 is included in the range of 0.3% to 3.38%, the positive electrode active material of the 5V class spinel structure according to the present embodiment has high structural stability, and thus charging and discharging at a high voltage of 5V is performed. Even so, it is possible to prevent a decrease in initial capacity and a decrease in cycle characteristics.
  • the structure of the positive electrode active material may collapse during a 5V charge/discharge cycle, resulting in deterioration of life characteristics. It can cause deterioration.
  • M1 may be a doped metal different from Ni or Mn of ⁇ Formula 1>.
  • M1 may be Mo.
  • the M1 may include at least one of Nb, Ta, and W.
  • the M2 may be F or Cl. More specifically, M1 may be Mo, and M2 may be F.
  • Li ions are in the tetrahedron (8a) site, and Mn ions (Mn 3+ /Mn 4+ ) are in the octahedral (16d) site, and O 2- ions are located in the octahedral (16c) site.
  • Mn ions Mn 3+ /Mn 4+
  • O 2- ions are located in the octahedral (16c) site.
  • These ions form a cubic closed-packing arrangement.
  • the tetrahedral site of 8a shares a face with the octahedral site of 16c, which has an empty site around it, to form a three-dimensional channel to provide a passage through which Li + ions can easily move.
  • LiMn 2 O 4 has a smaller discharge capacity than other active materials such as LiCoO 2 and LiNiO 2, and the discharge capacity rapidly decreases during high-rate charging and discharging, and due to the elution of manganese during continuous charging and discharging at high voltage, the battery life is rapidly reduced. There is a problem of deterioration.
  • the positive electrode active material having a 5V class spinel structure contains nickel (Ni) and manganese (Mn) together as shown in ⁇ Formula 1>, but controls the composition of nickel (Ni) and manganese (Mn), and M1
  • M1 By further doping M2 and M2, high capacity and cycle characteristics can be exhibited even at a high voltage of 5V.
  • the M1 is doped by a wet method
  • the M2 is doped by a dry method to further stabilize the structure of the positive electrode active material having a 5V class spinel structure, whereby the oxidation number is +3 Mn ion and +4 valency.
  • the content of M1 and M2 can be controlled so that the average oxidation number of Mn ions is less than 3.5 to 4.
  • the positive electrode active material having a 5V class spinel structure according to the present embodiment is prepared by adding M1, a transition metal having an oxidation number of 5 or +6, in a wet method in the process of preparing a precursor containing nickel, manganese and oxygen of the positive electrode active material.
  • M1 a transition metal having an oxidation number of 5 or +6
  • the content range (Mn+3/Mn+4) of manganese ions, which is +3 and +4 of the oxidation number of manganese can be primarily controlled.
  • the precursor containing M1 along with nickel, manganese and oxygen is dry-mixed with a lithium compound and a doping source containing M2 using a ball mill, and then calcined, thereby manganese which is +3 or +4 of the oxidation number of manganese.
  • the content range of ions (Mn+3/Mn+4) can be secondarily controlled.
  • Mn having the oxidation number of +3 may be 0.3% to 3.38%.
  • the ⁇ value in the ⁇ Formula 1> may have a greater influence on the amount of change in the average oxidation number of Mn than the ⁇ value.
  • the M1 uses Mo with an oxidation number of +6, but by adding it in the step of making a precursor in the form of a solution, the Mo is substituted at the Mn site, and manganese oxidation
  • the overall structural stability of the positive electrode active material can be secured.
  • the M2 includes F, and may be provided in the form of NH 4 F or NH 4 HF 2 .
  • the M2 may be mixed with the precursor and the lithium compound in the form of a powder by a ball mill. For example, it may be mixed at room temperature for 6 to 24 hours and fired at high temperature to prepare a positive electrode active material having a 5V class spinel structure. In the process of mixing and sintering, some of the M2 diffuses into the inside of the positive electrode active material and is substituted for an oxygen site, and some may remain on the surface.
  • the M2 is substituted in the oxygen site, thereby controlling the oxidation number of manganese +3 and +4 with a reflective effect, and controlling the oxidation number of manganese more precisely than M1, thereby improving structural stability on the surface of the positive electrode active material. Accordingly, the positive electrode active material having a 5V class spinel structure according to the present exemplary embodiment does not deteriorate in capacity even during initial charging and discharging, and can secure stable cycle characteristics.
  • the oxidation number of Li is +1
  • the oxidation number of Ni is +2
  • the oxidation number of O is -2.
  • the average oxidation number A of Mn can be calculated as in the following ⁇ Equation 1>
  • B may be the oxidation number of M.
  • the average oxidation number of Mn may be 3.9866.
  • the average oxidation number of Mn may be 3.9799.
  • Mn ions having an oxidation number of +4 are more than Mn ions having an oxidation number of +3, but Mn ions having an oxidation number of +4 may decrease, and Mn having an oxidation number of +3 may increase. That is, A decreases due to the addition of molybdenum, so that Mn ions having an oxidation number of +3 may increase.
  • the positive electrode active material having a 5V-class spinel structure may include Mn ions in which oxidation numbers of +4 and +3 are mixed by the doping metal, including fluorine, and Mn The oxidation number of ions can be controlled more precisely.
  • the surface of the positive electrode active material particles may be prevented from being deteriorated by HF by fluorine.
  • the positive electrode active material may be doped with 1 mol% or less of each of fluorine and molybdenum in oxides containing lithium, nickel, and manganese.
  • A may be 3.9662 or more or less than 4.
  • the fluorine and molybdenum may be 0.5 mol% to 1 mol%, respectively, and A may be 3.9662 or more or 3.9967 or less. More specifically, each of the fluorine and molybdenum is 1 mol%, and the A may be 3.9799.
  • the capacity may be reduced, or the capacity may be decreased depending on the number of charge and discharge times.
  • the oxide containing lithium, nickel, and manganese is doped with fluorine and molybdenum at the same time, and the doping amounts of fluorine and molybdenum may be controlled to be 1 mol% or less. Accordingly, a positive electrode active material having a spinel structure having improved capacity and lifetime characteristics may be provided.
  • a method of manufacturing a positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention is described.
  • a transition metal aqueous solution containing nickel and manganese, and a doped metal aqueous solution containing a doped metal may be prepared.
  • the transition metal aqueous solution may include nickel sulfate and manganese sulfate.
  • Preparing the doped metal aqueous solution may include preparing a sodium hydroxide solution, and dissolving the powder containing the doped metal in the sodium hydroxide solution.
  • a cathode active material precursor doped with the doped metal may be prepared in a transition metal hydroxide including nickel and manganese.
  • the doped metal aqueous solution may be prepared using sodium hydroxide solution, and thus, the introduction of a pH adjuster into the reactor may be omitted.
  • the doped metal aqueous solution by introducing the doped metal aqueous solution into the reactor, the doped metal is doped and the pH of the reactor may be controlled.
  • a pH adjusting agent eg, sodium hydroxide solution
  • a pH adjusting agent eg, sodium hydroxide solution
  • the positive electrode active material precursor, a lithium salt, and a doping source containing fluorine are dry-mixed and fired using a ball mill to prepare a positive electrode active material having a spinel structure doped with the doped metal and fluorine in nickel, manganese, and lithium oxide. I can.
  • N 2 gas is supplied to the reactor at a rate of 8 liters/minute and stirred at 450 rpm while maintaining the temperature of the reactor at 45°C. I did.
  • a metal aqueous solution with a concentration of 2 M with a molar ratio of nickel sulfate and manganese sulfate of 25:75 was 0.187 liters/hour, an ammonia solution having a concentration of 10.5 M was 0.043 liters/hour, and a sodium hydroxide solution having a concentration of 4 M was 0.196 liters/hour [Ni 0.25 Mn 0.75 ](OH) 2 [Ni 0.25 Mn 0.75 ] (OH) 2 Metal composite hydroxide was prepared by continuously adding it to the reactor for 20 to 25 hours.
  • the prepared [Ni 0.25 Mn 0.75 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours.
  • Li 2 CO 3 lithium carbonate
  • NH 4 F ammonium fluoride
  • Na2MoO4 powder was dissolved in 0.47M in 0.1L of 4M sodium hydroxide solution.
  • the prepared solution was dissolved in 4.9 L of a 4M sodium hydroxide solution to prepare an aqueous doped metal solution in which Mo was dissolved.
  • N2 gas was supplied to the reactor at a rate of 8 liters/minute, and the reactor was stirred at 450 rpm while maintaining the temperature at 45°C. .
  • the prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours.
  • the metal complex hydroxide alc lithium carbonate (Li 2 CO 3 ) was mixed at a molar ratio of 2:1, heated at a heating rate of 2°C/min, and then calcined at 500°C for 5 hours and 900°C for 15 hours to obtain LiNi 0.5 Mn 1.49 Mo 0.01 O 4
  • a cathode active material powder was prepared.
  • the prepared [Ni 0.25 Mn 0.74 Mo 0.01 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. After mixing the metal complex hydroxide and lithium carbonate (Li 2 CO 3 ) at a molar ratio of 2:1, heating at a heating rate of 2° C./min, firing at 500° C. for 5 hours and 900° C. for 15 hours, LiNi 0.5 Mn 1.48 Mo 0.02 O 4 positive electrode active material powder was prepared.
  • the prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours.
  • the metal complex hydroxide, lithium carbonate (Li 2 CO 3 ), and ammonium fluoride (NH 4 F) were mixed in a molar ratio of 2:1:0.1 at room temperature using a ball mill for 12 hours, and then the temperature was raised by 2°C/min. After heating at a rate, it was calcined at 500° C. for 5 hours and at 900° C. for 15 hours to prepare LiNi 0.5 Mn 1.49 Mo 0.1 O 3.99 F 0.01 positive electrode active material powder.
  • the prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours.
  • the metal complex hydroxide, lithium carbonate (Li 2 CO 3 ), and ammonium fluoride (NH 4 F) were mixed in a molar ratio of 2:1:0.2 using a ball mill at room temperature for 12 hours, and then the temperature was raised by 2°C/min. After heating at a speed, it was calcined at 500° C. for 5 hours and at 900° C. for 15 hours to prepare LiNi 0.5 Mn 1.49 Mo 0.1 O 3.98 F 0.02 positive electrode active material powder.
  • the prepared [Ni 0.25 Mn 0.75 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours.
  • the metal complex hydroxide and lithium carbonate (Li 2 CO 3 ) were mixed at a molar ratio of 2:1, heated at a heating rate of 2°C/min, and fired at 500°C for 5 hours and 900°C for 15 hours to LiNi 0.5 Mn 1.5 O 4 positive electrode active material powder was prepared.
  • FIG. 1 is a graph measuring the discharge capacity of a secondary battery including a positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention
  • FIG. 2 is an Experimental Example 1 to Experimental Example of the present invention of the present invention
  • 6, is a graph measuring the discharge capacity according to the number of times of charging and discharging of a secondary battery including the positive electrode active material according to Comparative Example 1
  • FIG. 3 is a graph showing the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention. This is a graph obtained by normalizing the discharge capacity according to the number of charge/discharge times of the included secondary battery.
  • a lithium secondary battery including the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 was prepared, and the discharge capacity was measured at 0.1C condition, and at 0.5C condition. The change in discharge capacity according to the number of charging and discharging was measured at.
  • the prepared Experimental Examples 1 to 6 and Comparative Example 1 were charged to 5V at 0.1C (14mA/g) and then the discharge capacity was checked.
  • the initial capacity is only 120mAhg -1 , and while the cycle proceeds It was confirmed that the capacity gradually decreased.
  • doping 1 mol% of Mo and F to a positive electrode active material having a spinel structure containing oxides of lithium, nickel, and manganese, respectively, is an efficient method of improving the life characteristics as well as improving the capacity of the lithium secondary battery. have.
  • XPS was measured for the positive electrode active materials according to Experimental Examples 1 to 6, and Comparative Example 1. As can be seen from Figure 4, it can be seen that the oxidation number of Mn contained in the positive electrode active material is +3 and +4.
  • the positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same according to an embodiment of the present invention can be applied to electric vehicles, ESSs, and portable electronic devices.

Abstract

The present invention relates to a cathode active material having a 5V-grade spinel structure, the material being represented by <chemical formula 1> below, wherein, in <chemical formula 1>, the oxidation number of Mn includes +3 and +4; x>0, y>0, 0<β<4, and 0<α<0.03, M1 is a transition metal of which the oxidation number is +5 or +6, M2 is an element of which the oxidation number is -1, the average oxidation number of Mn is from 3.5 to less than 4, the average oxidation number of Mn decreases according to an increase in an α value or a β value, and x+y=2. <Chemical formula 1> LiNixMny-αM1αO4-βM2β

Description

5V급 스피넬 구조의 양극활물질, 및 그 제조 방법5V class spinel structure cathode active material, and its manufacturing method
본 출원은 양극활물질 및 그 제조 방법에 관련된 것으로, 보다 상세하게는, 산화가수가 혼재된 금속 이온을 갖는 5V급 스피넬 구조의 양극활물질, 및 그 제조 방법에 관련된 것이다. The present application relates to a positive electrode active material and a method of manufacturing the same, and more particularly, to a positive electrode active material having a 5V class spinel structure having a metal ion mixed with an oxidizing number, and a method of manufacturing the same.
스마트폰, MP3 플레이어, 태블릿 PC와 같은 휴대용 모바일 전자 기기의 발전으로, 전기 에너지를 저장할 수 있는 이차 전지에 대한 수요가 폭발적으로 증가하고 있다. 특히, 전기 자동차, 중대형 에너지 저장 시스템, 및 고 에너지 밀도가 요구되는 휴대 기기의 등장으로, 리튬 이차 전지에 대한 수요가 증가하고 있는 실정이다. With the development of portable mobile electronic devices such as smartphones, MP3 players, and tablet PCs, the demand for secondary batteries capable of storing electrical energy is exploding. In particular, with the advent of electric vehicles, medium and large-sized energy storage systems, and portable devices requiring high energy density, demand for lithium secondary batteries is increasing.
이러한, 리튬 이차 전지에 대한 수요의 증가로, 리튬 이차 전지에 사용되는 양극활물질에 대한 연구 개발이 진행되고 있다. 예를 들어, 대한민국 특허공개공보 10-2014-0119621(출원번호 10-2013-0150315)에는 리튬 과량 양극활물질 제조용 전구체를 이용하여, 전구체에서 치환되는 금속의 종류 및 조성을 조절하고, 첨가되는 금속의 종류 및 첨가량을 조절하여, 고전압 용량 및 장수명 특성을 갖는 이차전지가 개시되어 있다.As the demand for lithium secondary batteries increases, research and development on positive electrode active materials used in lithium secondary batteries are in progress. For example, Korean Patent Laid-Open Publication No. 10-2014-0119621 (application number 10-2013-0150315) uses a precursor for manufacturing an excess lithium cathode active material, controls the type and composition of the metal substituted in the precursor, and the type of metal added. And by controlling the amount of addition, a secondary battery having a high voltage capacity and long life characteristics is disclosed.
본 출원이 해결하고자 하는 일 기술적 과제는 고용량의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지를 제공하는 데 있다. One technical problem to be solved by the present application is to provide a high-capacity positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
본 출원이 해결하고자 하는 다른 기술적 과제는 장수명의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지를 제공하는 데 있다.Another technical problem to be solved by the present application is to provide a cathode active material having a long life, a method of manufacturing the same, and a lithium secondary battery including the same.
본 출원이 해결하고자 하는 또 다른 기술적 과제는 고안정성의 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지를 제공하는 데 있다.Another technical problem to be solved by the present application is to provide a positive electrode active material having high stability, a method of manufacturing the same, and a lithium secondary battery including the same.
본 출원이 해결하고자 하는 또 다른 기술적 과제는 충방전 횟수에 따른 수명 저하 특성이 최소화된 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지를 제공하는 데 있다.Another technical problem to be solved by the present application is to provide a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same, in which life-deterioration characteristics according to the number of charge/discharge are minimized.
본 출원이 해결하고자 하는 기술적 과제는, 상술된 것에 제한되지 않는다.The technical problem to be solved by the present application is not limited to the above.
상기 기술적 과제를 해결하기 위해, 본 출원은 5V급 스피넬 구조의 양극활물질을 제공한다. In order to solve the above technical problem, the present application provides a positive electrode active material having a 5V class spinel structure.
일 실시예에 있어서, 아래의 <화학식 1>로 표시되고, 상기 <화학식 1>에서, Mn의 산화가수는 +3 및 +4를 포함하고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소이며, Mn의 평균 산화가수는 3.5 내지 4미만이되 상기 Mn의 평균 산화가수는 α 값 또는 β 값이 증가함에 따라 감소하고, x+y=2인 것을 포함하는 것인, 5V급 스피넬 구조의 양극활물질을 포함한다.In one embodiment, represented by the following <Formula 1>, in the <Formula 1>, the oxidation number of Mn includes +3 and +4, x>0, y>0, 0<β<4 , 0<α<0.03, M1 is a transition metal with an oxidation number of +5 or +6, M2 is an element with an oxidation number of -1, and the average oxidation number of Mn is less than 3.5 to 4, but the average oxidation of Mn The valence decreases as the value of α or β increases, and includes a positive electrode active material having a 5V class spinel structure, which includes x+y=2.
<화학식 1><Formula 1>
LiNixMny-αM1αO4-βM2β LiNi x Mn y-α M1 α O 4-β M2 β
일 실시예에 있어서, 0<α<2이고, 0<β<2이고, 상기 Mn은 산화가수가 +3과 +4인 것의 총량에 대해서, 상기 산화가수가 +3인 Mn은 0.3% 내지 3.38%일 수 있다. In one embodiment, 0<α<2, 0<β<2, and Mn is an oxidation number of +3 and +4, relative to the total amount of the oxidation number of +3 Mn is 0.3% to 3.38 It can be %.
일 실시예에 있어서, Mn의 평균산화가수 A는 아래의 <수학식 1>가 같이 계산되고, <수학식 1>에서 B는 M의 산화가수인 것을 포함할 수 있다.In one embodiment, the average oxidation number A of Mn is calculated by the following <Equation 1>, and in <Equation 1>, B may include the oxidation number of M.
<수학식 1><Equation 1>
Figure PCTKR2020006465-appb-I000001
Figure PCTKR2020006465-appb-I000001
일 실시예에 있어서, 상기 M1은 산화가수가 +6인 전이금속인 경우, 상기 α 값은 상기 β 값에 비하여 상기 Mn의 평균 산화가수의 변화량에 더 크게 영향을 미치는 것을 포함할 수 있다.In an exemplary embodiment, when M1 is a transition metal having an oxidation number of +6, the α value may include a greater influence on the amount of change in the average oxidation number of Mn than the β value.
일 실시예에 있어서, <화학식 1>에서, 0<α≤0.01이고, 0<β≤0.01인 것을 포함할 수 있다. In an embodiment, in <Formula 1>, 0<α≤0.01 and 0<β≤0.01 may be included.
일 실시예에 있어서, <화학식 1>에서, M1은 Nb, Mo, Ta, 및 W에서 적어도 어느 하나를 포함하고, 상기 M2는 F 또는 Cl일 수 있다.In an embodiment, in <Formula 1>, M1 may include at least one of Nb, Mo, Ta, and W, and M2 may be F or Cl.
본 발명의 다른 측면에 있어서, 본발명의 실시예들은 니켈 및 망간을 포함하는 전이금속 수용액, 및 M1을 포함하는 도핑금속 수용액을 준비하는 단계; 상기 전이금속 수용액, 상기 도핑금속 수용액, 및 암모니아 용액을 반응기에 공급하여, 니켈 및 망간을 포함하는 전이금속 수산화물에 상기 M1이 도핑된 양극활물질 전구체를 제조하는 단계; 및 상기 양극활물질 전구체, 리튬염, 및 M2를 포함하는 도핑소스를 볼밀을 이용하여 건식으로 혼합하고 소성하여, 니켈, 망간, 및 리튬 산화물에 상기 M1 및 M2가 도핑된 스피넬 구조의 양극활물질을 제조하는 단계를 포함하고, 상기 도핑금속 수용액을 준비하는 단계는, 수산화나트륨 용액을 준비하는 단계; 및 상기 수산화나트륨 용액에 M1을 포함하는 분말을 용해시키는 단계를 포함하고, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소인 것을 포함하는 5V급 스피넬 구조의 양극활물질의 제조 방법을 포함한다.In another aspect of the present invention, embodiments of the present invention include preparing a transition metal aqueous solution containing nickel and manganese, and a doped metal aqueous solution containing M1; Supplying the transition metal aqueous solution, the doping metal aqueous solution, and an ammonia solution to a reactor to prepare a cathode active material precursor doped with the M1 in transition metal hydroxides containing nickel and manganese; And a doping source containing the positive electrode active material precursor, lithium salt, and M2 in a dry manner using a ball mill and firing to prepare a positive electrode active material having a spinel structure doped with the M1 and M2 in nickel, manganese, and lithium oxides. Including the step of, and the step of preparing the doping metal aqueous solution comprises: preparing a sodium hydroxide solution; And dissolving the powder containing M1 in the sodium hydroxide solution, wherein M1 is a transition metal having an oxidation number of +5 or +6, and M2 is an element having an oxidation number of -1. It includes a method of manufacturing a structured positive electrode active material.
일 실시 예에 따르면, 아래의 <화학식 1>로 표시되는 양극활물질을 포함하되, 아래의 <화학식 1>에서, Mn의 산화가수는 +3 또는 +4이고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 Ni 및 Mn과 다른 종류의 도핑금속이고, Mn의 평균 산화가수는 β 값 및 M1의 산화가수가 증가함에 따라 감소하고, x+y=2인 것을 포함할 수 있다. According to an embodiment, a cathode active material represented by the following <Chemical Formula 1> is included, but in the following <Chemical Formula 1>, the oxidation number of Mn is +3 or +4, and x>0, y>0, 0 <β<4, 0<α<0.03, M1 is a doped metal different from Ni and Mn, and the average oxidation number of Mn decreases as the β value and the oxidation number of M1 increase, and x+y=2. May include.
<화학식 1><Formula 1>
LiNixMny-αM1αO4-βM2β LiNi x Mn y-α M1 α O 4-β M2 β
일 실시 예에 따르면, 산화가수가 +3인 Mn이온보다, 산화가수가 +4인 Mn 이온이 더 많은 것을 포함할 수 있다. According to an embodiment, more Mn ions having an oxidation number of +4 than Mn ions having an oxidation number of +3 may be included.
일 실시 예에 따르면, Mn의 평균산화가수 A는 아래의 <수학식 1>가 같이 계산되고, <수학식 1>에서 B는 M1의 산화가수인 것을 포함할 수 있다. According to an embodiment, the average oxidation number A of Mn is calculated by the following <Equation 1>, and in <Equation 1>, B may include the oxidation number of M1.
<수학식 1><Equation 1>
Figure PCTKR2020006465-appb-I000002
Figure PCTKR2020006465-appb-I000002
일 실시 예에 따르면, <화학식 1>에서, x는 0.5이고, y는 1.5인 것을 포함할 수 있다. According to an embodiment, in <Formula 1>, x may be 0.5 and y may include 1.5.
일 실시 예에 따르면, <화학식 1>에서, M은 Mo이고, 0<α≤0.01이고, 0<β≤ 0.01인 것을 포함할 수 있다. According to an embodiment, in <Formula 1>, M is Mo, 0<α≤0.01, and 0<β≤0.01 may be included.
일 실시 예에 따르면, <화학식 1>에서, M은 Nb, Mo, Ta, W 중에서 적어도 어느 하나를 포함할 수 있다. According to an embodiment, in <Formula 1>, M may include at least one of Nb, Mo, Ta, and W.
상기 기술적 과제를 해결하기 위해, 본 출원은 스피넬 구조의 양극활물질의 제조 방법을 제공한다. In order to solve the above technical problem, the present application provides a method of manufacturing a positive electrode active material having a spinel structure.
일 실시 예에 따르면, 상기 스피넬 구조의 양극활물질의 제조 방법은, 니켈 및 망간을 포함하는 전이금속 수용액, 및 도핑금속을 포함하는 도핑금속 수용액을 준비하는 단계, 상기 전이금속 수용액, 상기 도핑금속 수용액, 및 암모니아 용액을 반응기에 공급하여, 니켈 및 망간을 포함하는 전이금속 수산화물에 상기 도핑금속이 도핑된 양극활물질 전구체를 제조하는 단계, 및 상기 양극활물질 전구체, 리튬염, 및 불소를 포함하는 도핑소스를 혼합하고 소성하여, 니켈, 망간, 및 리튬 산화물에 상기 도핑금속 및 불소가 도핑된 스피넬 구조의 양극활물질을 제조하는 단계를 포함할 수 있다. According to an embodiment, the method of preparing a positive electrode active material having a spinel structure includes preparing a transition metal aqueous solution containing nickel and manganese, and a doping metal aqueous solution containing a doping metal, the transition metal aqueous solution, and the doping metal aqueous solution , And supplying an ammonia solution to a reactor to prepare a positive electrode active material precursor doped with the doping metal in a transition metal hydroxide including nickel and manganese, and a doping source including the positive electrode active material precursor, a lithium salt, and fluorine By mixing and sintering, nickel, manganese, and lithium oxide may include the step of preparing a spinel-structured positive electrode active material doped with the doped metal and fluorine.
일 실시 예에 따르면, 상기 도핑금속 수용액을 준비하는 단계는, 수산화나트륨 용액을 준비하는 단계, 및 상기 수산화나트륨 용액에 상기 도핑금속을 포함하는 분말을 용해시키는 단계를 포함할 수 있다. According to an embodiment, preparing the doping metal aqueous solution may include preparing a sodium hydroxide solution, and dissolving the powder containing the doped metal in the sodium hydroxide solution.
일 실시 예에 따르면, 상기 양극활물질은, 아래의 <화학식 2>로 표시되는 것을 포함할 수 있다. According to an embodiment, the cathode active material may include those represented by <Chemical Formula 2> below.
<화학식 2><Formula 2>
LiNi0.5Mn1.49Mo0.01O3.99F0.01 LiNi 0.5 Mn 1.49 Mo 0.01 O 3.99 F 0.01
일 실시 예에 따르면, 상기 도핑 금속 수용액이 공급되는 농도 및 불소를 포함하는 상기 도핑소스의 혼합 농도에 따라서, 상기 양극활물질 내에서 상기 도핑 금속의 농도 및 불소의 농도가 제어되고, 상기 양극활물질 내에서 상기 도핑 금속의 농도 및 불소의 농도에 따라서, 상기 양극활물질에서 망간의 평균 산화가수가 제어되는 것을 포함할 수 있다. According to an embodiment, the concentration of the doped metal and the concentration of fluorine are controlled in the positive electrode active material according to the concentration to which the doping metal aqueous solution is supplied and the mixed concentration of the doping source including fluorine, and In may include controlling the average oxidation number of manganese in the positive electrode active material according to the concentration of the doped metal and the concentration of fluorine.
본 출원의 실시 예에 따른 5V급 스피넬 구조의 양극활물질은, 아래의 <화학식 1>로 표시되고, <화학식 1>에서, Mn의 산화가수는 +3 및 +4를 포함하고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소이며, Mn의 평균 산화가수는 3.5 내지 4미만이되 상기 Mn의 평균 산화가수는 α 값 또는 β 값이 증가함에 따라 감소하고, x+y=2인 것을 포함할 수 있다. The positive electrode active material having a 5V class spinel structure according to an embodiment of the present application is represented by the following <Chemical Formula 1>, and in <Chemical Formula 1>, the oxidation number of Mn includes +3 and +4, and x>0, y>0, 0<β<4, 0<α<0.03, M1 is a transition metal with an oxidation number of +5 or +6, M2 is an element with an oxidation number of -1, and the average oxidation number of Mn is from 3.5 to Although less than 4, the average oxidation number of Mn decreases as the α value or β value increases, and may include x+y=2.
이에 따라, 충방전 특성, 수명 특성 및 열적 안정성이 개선된 스피넬 구조의 양극활물질이 제공될 수 있다. Accordingly, a positive electrode active material having a spinel structure with improved charge/discharge characteristics, life characteristics, and thermal stability may be provided.
<화학식 1><Formula 1>
LiNixMny-αM1αO4-βM2β LiN ix Mn y-α M1 α O 4-β M2 β
도 1은 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 방전 용량을 측정한 그래프이다. 1 is a graph measuring the discharge capacity of a secondary battery including a positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
도 2는 본 발명의 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 충방전 횟수에 따른 방전 용량을 측정한 그래프이다. 2 is a graph measuring the discharge capacity according to the number of times of charging and discharging of the secondary battery including the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
도 3은 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 충방전 횟수에 따른 방전 용량을 정규화시킨 그래프이다.3 is a graph in which discharge capacity is normalized according to the number of charging and discharging times of a secondary battery including the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
도 4는 본 발명의 실험 예 1 내지 실험 예 6, 및 비교 예 1에 따른 양극활물질의 XPS 결과 그래프이다.4 is a graph showing XPS results of positive electrode active materials according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical idea of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on the other component or that a third component may be interposed between them. In addition, in the drawings, thicknesses of films and regions are exaggerated for effective description of technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in the present specification,'and/or' is used to mean including at least one of the elements listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. In the specification, expressions in the singular include plural expressions unless the context clearly indicates otherwise. In addition, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, elements, or a combination of the features described in the specification, and one or more other features, numbers, steps, and configurations It is not to be understood as excluding the possibility of the presence or addition of elements or combinations thereof.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. Further, in the following description of the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.
본 발명의 실시 예에 따른 5V급 스피넬 구조의 양극활물질이 설명된다. A positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention will be described.
본 발명의 실시 예에 따른 5V급 스피넬 구조의 양극활물질은 아래의 <화학식 1>로 표시될 수 있다. The positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention may be represented by the following <Chemical Formula 1>.
<화학식 1><Formula 1>
LiNixMny-αM1αO4-βM2β LiN ix Mn y-α M1 α O 4-β M2 β
상기 <화학식 1>에서, Mn의 산화가수는 +3 및 +4를 포함하고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소이며, Mn의 평균 산화가수는 3.5 내지 4미만이되 상기 Mn의 평균 산화가수는 α 값 또는 β 값이 증가함에 따라 감소하고, x+y=2인 것을 포함할 수 있다.In the <Formula 1>, the oxidation number of Mn includes +3 and +4, and x>0, y>0, 0<β<4, 0<α<0.03, M1 is +5 or + 6 is a transition metal, M2 is an element with an oxidation number of -1, and the average oxidation number of Mn is less than 3.5 to less than 4, but the average oxidation number of Mn decreases as the value of α or β increases, and x+ It may include y=2.
구체적으로, <화학식 1>에서, 0<α<2이고, 0<β<2이고, 보다 구체적으로, 0<α≤0.01이고, 0<β≤0.01인 것을 포함할 수 있다. 또한, 상기 Mn은 산화가수가 +3과 +4인 것의 총량에 대해서, 상기 산화가수가 +3인 Mn은 0.3% 내지 3.38%인 것을 포함할 수 있다. 상기 M1은 산화가수가 +6인 전이금속인 경우, 상기 α 값은 상기 β 값에 비하여 상기 Mn의 평균 산화가수의 변화량에 더 크게 영향을 미칠 수 있다. Specifically, in <Formula 1>, 0<α<2, 0<β<2, and more specifically, 0<α≤0.01, and 0<β≤0.01 may be included. In addition, the Mn may include 0.3% to 3.38% of Mn having the oxidation number of +3 relative to the total amount of the oxidation number of +3 and +4. When M1 is a transition metal having an oxidation number of +6, the α value may have a greater influence on a change in the average oxidation number of Mn than the β value.
<화학식 1>에서, Mn이온의 산화가수 +3과 +4은 소정의 범위 내로 제어될 수 있는데, Mn이온은 산화가수 +3과 +4인 Mn3+ 및 Mn4+으로만 이루어지고, 전체 Mn이온에 대해서 상기 산화가수 +3인 Mn이온은 0.3% 내지 3.38%의 범위로 포함됨으로써, 본 실시예에 따른 5V급 스피넬 구조의 양극활물질은 높은 구조적인 안정성을 가지므로, 5V의 높은 전압으로 충방전을 수행하여도 초기 용량 저하 및 사이클 특성이 저하를 방지할 수 있다. 구체적으로, 상기 산화가수 +3인 Mn이온은 0.3% 미만으로 포함되면, 5V 충방전 사이클 시에 양극활물질의 구조가 붕괴되어 수명특성이 저하될 수 있고, 3.38% 초과하여 포함되면 이차전지의 용량저하의 원인이 될 수 있다.In <Formula 1>, the oxidation numbers +3 and +4 of Mn ions can be controlled within a predetermined range, and the Mn ions consist only of Mn3+ and Mn4+, which are oxidation numbers +3 and +4, for all Mn ions. Since the Mn ion having an oxidation number of +3 is included in the range of 0.3% to 3.38%, the positive electrode active material of the 5V class spinel structure according to the present embodiment has high structural stability, and thus charging and discharging at a high voltage of 5V is performed. Even so, it is possible to prevent a decrease in initial capacity and a decrease in cycle characteristics. Specifically, if the Mn ion having the oxidation number of +3 is less than 0.3%, the structure of the positive electrode active material may collapse during a 5V charge/discharge cycle, resulting in deterioration of life characteristics. It can cause deterioration.
예컨대, 상기 M1은 <화학식 1>의 Ni 또는 Mn과는 다른 종류의 도핑 금속일 수 있다. 구체적으로, <화학식 1>에서, 상기 M1은 Mo일 수 있다. 또는, 다른 예를 들어, 상기 M1은 Nb, Ta, 또는 W 중에서 적어도 어느 하나를 포함할 수 있다. 상기 M2는 F 또는 Cl일 수 있다. 보다 구체적으로, 상기 M1은 Mo이고, 상기 M2는 F일 수 있다.For example, M1 may be a doped metal different from Ni or Mn of <Formula 1>. Specifically, in <Formula 1>, M1 may be Mo. Or, for another example, the M1 may include at least one of Nb, Ta, and W. The M2 may be F or Cl. More specifically, M1 may be Mo, and M2 may be F.
통상, 양극활물질로 사용되는 망간을 포함하는 LiMn2O4의 구조를 보면, Li이온들이 사면체(8a) 자리에 있고 Mn이온(Mn3+/Mn4+)들이 팔면체(16d) 자리에, 그리고 O2-이온들이 팔면체(16c) 자리에 위치한다. 이들 이온들은 입방조밀쌓임(cubic closed-packing) 배열을 형성한다. 8a의 사면체 자리는 주위에 빈자리를 갖는 16c의 팔면체 자리와 면을 공유하여 3차원적인 채널을 형성하여 Li+이온들이 쉽게 이동할 수 있는 통로를 제공한다.In general, looking at the structure of LiMn 2 O 4 containing manganese used as a positive electrode active material, Li ions are in the tetrahedron (8a) site, and Mn ions (Mn 3+ /Mn 4+ ) are in the octahedral (16d) site, and O 2- ions are located in the octahedral (16c) site. These ions form a cubic closed-packing arrangement. The tetrahedral site of 8a shares a face with the octahedral site of 16c, which has an empty site around it, to form a three-dimensional channel to provide a passage through which Li + ions can easily move.
스피넬 LiMn2O4는 전기화학적으로 Li의 양이 0≤x≤1일 때 4V 영역에서 리튬의 인터칼레이션/디인터칼레이션(intercalation/deintercalation)이 일어나고, 1≤x≤2일 때 3V 영역에서 리튬의 인터칼레이션/디인터칼레이션이 일어난다. 리튬의 양에 따른 구조변화를 살펴보면, x≤1인 조성에서는 공간군이 Fd3m 인 입방 스피넬 구조를 보이고 1≤x≤2인 조성에서는 입방정계(cubic symmetry)가 정방정계(tetragonal)로 변화한다. 이러한 구조 변화의 증거는 LiMn2O4의 충방전 곡선에서 전압이 평탄한 곳들을(voltage plateaus) 통해서 확인할 수 있다. 그러나, LiMn2O4는 LiCoO2, LiNiO2 등의 다른 활물질에 비해 방전 용량이 작고, 고율 충방전시 방전 용량이 급격히 감소하며, 고전압으로 연속적인 충방전시 망간의 용출로 인해 전지 수명이 급격히 열화되는 문제점이 있다.Spinel LiMn 2 O 4 electrochemically, when the amount of Li is 0≤x≤1, intercalation/deintercalation of lithium occurs in the 4V region, and when 1≤x≤2, the 3V region Intercalation/deintercalation of lithium occurs in Looking at the structural change according to the amount of lithium, a composition with x≤1 shows a cubic spinel structure with a space group of Fd3m, and a composition with 1≤x≤2 changes a cubic symmetry to a tetragonal system. Evidence of this structural change can be confirmed through voltage plateaus in the charge/discharge curve of LiMn 2 O 4 . However, LiMn 2 O 4 has a smaller discharge capacity than other active materials such as LiCoO 2 and LiNiO 2, and the discharge capacity rapidly decreases during high-rate charging and discharging, and due to the elution of manganese during continuous charging and discharging at high voltage, the battery life is rapidly reduced. There is a problem of deterioration.
반면, 본 실시예에 따른 5V급 스피넬 구조의 양극활물질은, <화학식 1>과 같이 니켈(Ni)과 망간(Mn)을 함께 포함하되 니켈(Ni)과 망간(Mn)의 조성을 제어하고, M1과 M2를 더 도핑시킴으로써 5V의 고전압에서도 높은 용량과 사이클 특성을 나타낼 수 있다. 구체적으로, 상기 M1은 습식방법에 의하여 도핑하되, 상기 M2는 건식방법에 의하여 도핑함으로써 5V급 스피넬 구조의 양극활물질의 구조를 보다 안정화할 수 있으며 이에 의하여 산화수가 +3가의 Mn이온과 +4가인 Mn이온이 평균 산화수가 3.5 내지 4미만이 되도록 상기 M1과 M2의 함량을 제어할 수 있다. On the other hand, the positive electrode active material having a 5V class spinel structure according to the present embodiment contains nickel (Ni) and manganese (Mn) together as shown in <Formula 1>, but controls the composition of nickel (Ni) and manganese (Mn), and M1 By further doping M2 and M2, high capacity and cycle characteristics can be exhibited even at a high voltage of 5V. Specifically, the M1 is doped by a wet method, and the M2 is doped by a dry method to further stabilize the structure of the positive electrode active material having a 5V class spinel structure, whereby the oxidation number is +3 Mn ion and +4 valency. The content of M1 and M2 can be controlled so that the average oxidation number of Mn ions is less than 3.5 to 4.
본 실시예에 따른 5V급 스피넬 구조의 양극활물질은, 상기 양극활물질의 니켈, 망간 및 산소를 포함하는 전구체를 제조하는 과정에서 습식방식으로 산화가수가 5 또는 +6인 전이금속인 M1를 첨가하여 도핑하여 제조함으로써, 상기 망간의 산화가수의 +3, +4인 망간이온의 함량범위(Mn+3/Mn+4)를 1차적으로 제어할 수 있다. 이어서, 상기 니켈, 망간 및 산소와 함께 M1이 포함된 전구체를 리튬화합물과 함께 M2를 포함하는 도핑소스를 볼밀을 이용하여 건식혼합하고, 소성함으로써 상기 망간의 산화가수의 +3, +4인 망간이온의 함량범위(Mn+3/Mn+4)를 2차적으로 제어할 수 있다. 여기서, 산화가수가 +3과 +4인 것의 총량의 망간이온에 대해서, 상기 산화가수가 +3인 Mn은 0.3% 내지 3.38%일 수 있다. The positive electrode active material having a 5V class spinel structure according to the present embodiment is prepared by adding M1, a transition metal having an oxidation number of 5 or +6, in a wet method in the process of preparing a precursor containing nickel, manganese and oxygen of the positive electrode active material. By preparing by doping, the content range (Mn+3/Mn+4) of manganese ions, which is +3 and +4 of the oxidation number of manganese, can be primarily controlled. Subsequently, the precursor containing M1 along with nickel, manganese and oxygen is dry-mixed with a lithium compound and a doping source containing M2 using a ball mill, and then calcined, thereby manganese which is +3 or +4 of the oxidation number of manganese. The content range of ions (Mn+3/Mn+4) can be secondarily controlled. Here, with respect to the total amount of manganese ions in which the oxidation number is +3 and +4, Mn having the oxidation number of +3 may be 0.3% to 3.38%.
상기 M1은 산화가수가 +6인 전이금속인 경우, 상기 <화학식 1>에서 α 값은 상기 β 값에 비하여 상기 Mn의 평균 산화가수의 변화량에 더 크게 영향을 미칠 수 있다. 구체적으로는, 5V급 스피넬 구조의 양극활물질에서 상기 M1은 산화가수가 +6인 Mo를 사용하되, 용액의 형태로 전구체를 만드는 단계에서 첨가함으로써 상기 Mo는 상기 Mn 자리에 치환되어, 망간의 산화가수 +3, +4를 상대적으로 큰 범위 내로 1차적으로 제어함으로써 양극활물질의 전체적인 구조적인 안정성을 확보할 수 있다. When M1 is a transition metal having an oxidation number of +6, the α value in the <Formula 1> may have a greater influence on the amount of change in the average oxidation number of Mn than the β value. Specifically, in the positive electrode active material of the 5V class spinel structure, the M1 uses Mo with an oxidation number of +6, but by adding it in the step of making a precursor in the form of a solution, the Mo is substituted at the Mn site, and manganese oxidation By primarily controlling the valences +3 and +4 within a relatively large range, the overall structural stability of the positive electrode active material can be secured.
상기 M2를 F를 포함하고, NH4F 또는 NH4HF2의 형태로 제공될 수 있다. 상기 M2는 파우더의 형태로 상기 전구체, 리튬화합물과 볼밀로 혼합될 수 있으며, 예컨대 상온에서 6시간 내지 24시간 동안 혼합하고 고온에서 소성하여 5V급 스피넬 구조의 양극활물질로 제조할 수 있다. 혼합 및 소성하는 과정에서, 상기 M2는 일부는 상기 양극활물질의 내부로 확산되어 산소 자리에 치환되고, 일부는 표면에 잔류할 수 있다. 상기 M2는 산소 자리에 치환됨으로써 반사적인 효과로 망간의 산화가수 +3, +4를 제어하고, 상기 M1보다는 보다 정밀하게 2차적으로 제어함으로써 양극활물질의 표면에서 구조적인 안정성을 향상시킬 수 있다. 이에, 본 실시예에 따른 5V급 스피넬 구조의 양극활물질은 초기 충방전에서도 용량이 저하되지 않고, 안정적인 사이클 특성을 확보할 수 있다.The M2 includes F, and may be provided in the form of NH 4 F or NH 4 HF 2 . The M2 may be mixed with the precursor and the lithium compound in the form of a powder by a ball mill. For example, it may be mixed at room temperature for 6 to 24 hours and fired at high temperature to prepare a positive electrode active material having a 5V class spinel structure. In the process of mixing and sintering, some of the M2 diffuses into the inside of the positive electrode active material and is substituted for an oxygen site, and some may remain on the surface. The M2 is substituted in the oxygen site, thereby controlling the oxidation number of manganese +3 and +4 with a reflective effect, and controlling the oxidation number of manganese more precisely than M1, thereby improving structural stability on the surface of the positive electrode active material. Accordingly, the positive electrode active material having a 5V class spinel structure according to the present exemplary embodiment does not deteriorate in capacity even during initial charging and discharging, and can secure stable cycle characteristics.
상기 <화학식 1>로 표시되는 본 발명의 실시 예에 따른 5V급 스피넬 구조의 양극활물질에서, Li의 산화가수는 +1이고, Ni의 산화가수는 +2이고, O의 산화가수는 -2이고, F의 산화가수는 -1이므로, Mn의 평균 산화가수 A는 아래의 <수학식 1>과 같이 계산될 수 있고, <수학식 1>에서 B는 M의 산화가수일 수 있다.In the positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention represented by the above <Formula 1>, the oxidation number of Li is +1, the oxidation number of Ni is +2, and the oxidation number of O is -2. , Since the oxidation number of F is -1, the average oxidation number A of Mn can be calculated as in the following <Equation 1>, and in <Equation 1>, B may be the oxidation number of M.
<수학식 1><Equation 1>
Figure PCTKR2020006465-appb-I000003
Figure PCTKR2020006465-appb-I000003
예를 들어, M이 산화가수 +6인 몰리브덴(Mo) 1 mol%이고, F가 0 mol%인 경우, α=0.01이고, x=0.5이고, y=1.5이고, β=0인 경우, 본 발명의 실시 예에 따른 스피넬 구조의 양극활물질에서 Mn의 평균 산화가수는 3.9866일 수 있다. For example, when M is 1 mol% of molybdenum (Mo) having an oxidation number of +6, and F is 0 mol%, when α=0.01, x=0.5, y=1.5, and β=0, In the positive electrode active material having a spinel structure according to an embodiment of the present invention, the average oxidation number of Mn may be 3.9866.
또한, M이 산화가수 +6인 몰리브덴(Mo) 1 mol%이고, F가 1 mol%인 경우, α=0.01이고, x=0.5이고, y=1.5이고, β=0.01인 경우, 본 발명의 실시 예에 따른 스피넬 구조의 양극활물질에서 Mn의 평균 산화가수는 3.9799일 수 있다.In addition, when M is 1 mol% of molybdenum (Mo) having an oxidation number of +6, and F is 1 mol%, α=0.01, x=0.5, y=1.5, and β=0.01, In the positive electrode active material having a spinel structure according to an embodiment, the average oxidation number of Mn may be 3.9799.
다시 말하면, 산화가수가 +3인 Mn이온보다, 산화가수가 +4인 Mn 이온이 더 많되, 산화가수 +4인 Mn이온이 감소하고, 산화가수 +3인 Mn인 증가할 수 있다. 즉, 몰리브덴의 첨가에 의하여 A는 감소하게 되어 산화가수가 +3인 Mn 이온이 증가할 수 있다.In other words, Mn ions having an oxidation number of +4 are more than Mn ions having an oxidation number of +3, but Mn ions having an oxidation number of +4 may decrease, and Mn having an oxidation number of +3 may increase. That is, A decreases due to the addition of molybdenum, so that Mn ions having an oxidation number of +3 may increase.
상술된 바와 같이, 본 발명의 실시 예에 따른 5V급 스피넬 구조의 양극활물질은 상기 도핑금속에 의해, +4 및 +3의 산화수가 혼재된 Mn이온을 포함할 수 있고, 불소를 포함하여, Mn 이온의 산화수가 더 정밀하게 제어될 수 있다. 또한, 불소에 의해 양극활물질 입자의 표면이 HF에 의해 열화되는 것이 방지될 수 있다.As described above, the positive electrode active material having a 5V-class spinel structure according to an embodiment of the present invention may include Mn ions in which oxidation numbers of +4 and +3 are mixed by the doping metal, including fluorine, and Mn The oxidation number of ions can be controlled more precisely. In addition, the surface of the positive electrode active material particles may be prevented from being deteriorated by HF by fluorine.
일 실시 예에 따르면, <화학식 1>에서 M은 산화가수 +6인 몰리브덴(Mo)이고, x=0.5이고, y가 1.5이고, 0<α≤0.01이고, 0<β≤0.01일 수 있다. 다시 말하면, 상기 양극활물질은 리튬, 니켈, 및 망간을 포함하는 산화물에, 불소 및 몰리브덴이 각각 1mol% 이하로 도핑될 수 있다. 이에, 상기 A는 3.9662 이상이거나 4미만일 수 있다. 구체적으로는, 상기 불소 및 몰리브덴은 각각 0.5mol% 내지 1mol%일 수 있으며, 상기 A는 3.9662 이상이거나 3.9967이하일 수 있다. 보다 구체적으로는, 상기 불소 및 몰리브덴은 각각 1mol%이고, 상기 A는 3.9799일 수 있다.According to an embodiment, in <Formula 1>, M is molybdenum (Mo) having an oxidation number of +6, x=0.5, y is 1.5, 0<α≤0.01, and 0<β≤0.01. In other words, the positive electrode active material may be doped with 1 mol% or less of each of fluorine and molybdenum in oxides containing lithium, nickel, and manganese. Accordingly, A may be 3.9662 or more or less than 4. Specifically, the fluorine and molybdenum may be 0.5 mol% to 1 mol%, respectively, and A may be 3.9662 or more or 3.9967 or less. More specifically, each of the fluorine and molybdenum is 1 mol%, and the A may be 3.9799.
이와 달리, 불소 및 몰리브덴 중에서 어느 하나가 도핑되지 않거나, 몰리브덴의 도핑량이 2mol% 이상이거나, 불소의 도핑량이 2mol% 이상인 경우, 용량이 감소하거나, 또는 충방전 횟수에 따른 용량이 감소될 수 있다. 하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 리튬, 니켈, 및 망간을 포함하는 산화물이 불소 및 몰리브덴이 동시에 도핑되되, 불소 및 몰리브덴의 도핑량이 각각 1mol% 이하로 제어될 수 있다. 이에 따라, 용량 및 수명 특성이 향상된 스피넬 구조의 양극활물질이 제공될 수 있다. On the contrary, when any one of fluorine and molybdenum is not doped, or the doping amount of molybdenum is 2 mol% or more, or the doping amount of fluorine is 2 mol% or more, the capacity may be reduced, or the capacity may be decreased depending on the number of charge and discharge times. However, as described above, according to the exemplary embodiment of the present invention, the oxide containing lithium, nickel, and manganese is doped with fluorine and molybdenum at the same time, and the doping amounts of fluorine and molybdenum may be controlled to be 1 mol% or less. Accordingly, a positive electrode active material having a spinel structure having improved capacity and lifetime characteristics may be provided.
본 발명의 실시 예에 따른 5V급 스피넬 구조의 양극활물질의 제조 방법이 설명된다. A method of manufacturing a positive electrode active material having a 5V class spinel structure according to an embodiment of the present invention is described.
니켈 및 망간을 포함하는 전이금속 수용액, 및 도핑금속을 포함하는 도핑금속 수용액이 준비될 수 있다. 일 실시 예에 따르면, 상기 전이금속 수용액은 황산 니켈 및 황산 망간을 포함할 수 있다. A transition metal aqueous solution containing nickel and manganese, and a doped metal aqueous solution containing a doped metal may be prepared. According to an embodiment, the transition metal aqueous solution may include nickel sulfate and manganese sulfate.
상기 도핑금속 수용액을 준비하는 단계는, 수산화나트륨 용액을 준비하는 단계, 및 상기 수산화나트륨 용액에 상기 도핑금속을 포함하는 분말을 용해시키는 단계를 포함할 수 있다. Preparing the doped metal aqueous solution may include preparing a sodium hydroxide solution, and dissolving the powder containing the doped metal in the sodium hydroxide solution.
상기 전이금속 수용액, 상기 도핑금속 수용액, 및 암모니아 용액을 반응기에 공급하여, 니켈 및 망간을 포함하는 전이금속 수산화물에 상기 도핑금속이 도핑된 양극활물질 전구체가 제조될 수 있다. By supplying the transition metal aqueous solution, the doping metal aqueous solution, and an ammonia solution to a reactor, a cathode active material precursor doped with the doped metal may be prepared in a transition metal hydroxide including nickel and manganese.
일 실시 예에 따르면, 상술된 바와 같이, 상기 도핑금속 수용액은, 수산화나트륨 용액을 이용하여 제조될 수 있고, 이에 따라, 상기 반응기로 pH 조절제가 투입되는 것이 생략될 수 있다. 다시 말하면, 상기 도핑금속 수용액을 상기 반응기로 투입하여, 상기 도핑금속을 도핑하는 동시에, 상기 반응기의 pH가 제어될 수 있다. According to an embodiment, as described above, the doped metal aqueous solution may be prepared using sodium hydroxide solution, and thus, the introduction of a pH adjuster into the reactor may be omitted. In other words, by introducing the doped metal aqueous solution into the reactor, the doped metal is doped and the pH of the reactor may be controlled.
다른 실시 예에 따르면, 상기 도핑금속 수용액으로 pH 조절이 용이하지 않은 경우, pH 조절제(예를 들어, 수산화나트륨 용액)이 추가적으로 투입될 수 있다. According to another embodiment, when it is not easy to adjust the pH with the doped metal aqueous solution, a pH adjusting agent (eg, sodium hydroxide solution) may be additionally added.
상기 양극활물질 전구체, 리튬염, 및 불소를 포함하는 도핑 소스를 볼밀을 이용하여 건식혼합하고 소성하여, 니켈, 망간, 및 리튬 산화물에 상기 도핑금속 및 불소가 도핑된 스피넬 구조의 양극활물질이 제조될 수 있다.The positive electrode active material precursor, a lithium salt, and a doping source containing fluorine are dry-mixed and fired using a ball mill to prepare a positive electrode active material having a spinel structure doped with the doped metal and fluorine in nickel, manganese, and lithium oxide. I can.
이하, 본 발명의 구체적인 실험 예에 따른 양극활물질 및 그 제조 방법이 설명된다. Hereinafter, a positive electrode active material and a method of manufacturing the same according to a specific experimental example of the present invention will be described.
실험 예 1에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 1
공침 반응기(용량 30 리터, 회전모터의 출력 750 W 이상)에 증류수 4.5 리터를 넣은 뒤 N2 가스를 반응기에 8 리터/분의 속도로 공급하고 반응기의 온도를 45℃로 유지시키면서 450 rpm으로 교반하였다. 황산니켈과 황산망간의 몰비가 25:75인 2 M 농도의 금속 수용액을 0.187 리터/시간으로, 10.5 M 농도의 암모니아 용액을 0.043 리터/시간으로, 4 M 농도의 수산화나트륨 용액을 0.196 리터/시간으로 반응기에 20~25 시간 동안 연속적으로 투입하여 [Ni0.25Mn0.75](OH)2 금속 복합 수산화물을 제조하였다.After adding 4.5 liters of distilled water to the co-precipitation reactor (capacity of 30 liters, output of a rotary motor of 750 W or more), N 2 gas is supplied to the reactor at a rate of 8 liters/minute and stirred at 450 rpm while maintaining the temperature of the reactor at 45°C. I did. A metal aqueous solution with a concentration of 2 M with a molar ratio of nickel sulfate and manganese sulfate of 25:75 was 0.187 liters/hour, an ammonia solution having a concentration of 10.5 M was 0.043 liters/hour, and a sodium hydroxide solution having a concentration of 4 M was 0.196 liters/hour [Ni 0.25 Mn 0.75 ](OH) 2 [Ni 0.25 Mn 0.75 ] (OH) 2 Metal composite hydroxide was prepared by continuously adding it to the reactor for 20 to 25 hours.
제조된 [Ni0.25Mn0.75](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물, 탄산리튬(Li2CO3), 및 플루오린화 암모늄(NH4F)을 2:1:0.1의 몰비로 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.5O3.99F0.01 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.75 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. After mixing the metal complex hydroxide, lithium carbonate (Li 2 CO 3 ), and ammonium fluoride (NH 4 F) at a molar ratio of 2:1:0.1, heating at a temperature increase rate of 2°C/min, at 500°C By firing for 5 hours and 15 hours at 900°C, LiNi 0.5 Mn 1.5 O 3.99 F 0.01 positive electrode active material powder was prepared.
실험 예 2에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 2
상술된 실험 예 1과 동일한 방법을 수행하되, 상기 금속 복합수산화물, 탄산리튬(Li2CO3), 및 플루오린화 암모늄(NH4F)을 2:1:0.2의 몰비로 상온에서 볼밀을 이용하여 12시간 동안 혼합하여, LiNi0.5Mn1.5O3.98F0.02 양극활물질 분말을 제조하였다.Perform the same method as in Experimental Example 1 described above, but the metal complex hydroxide, lithium carbonate (Li2CO3), and ammonium fluoride (NH4F) were mixed for 12 hours using a ball mill at room temperature in a molar ratio of 2:1:0.2. , LiNi 0.5 Mn 1.5 O 3.98 F 0.02 A cathode active material powder was prepared.
실험 예 3에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 3
4M 농도의 수산화나트륨 용액 0.1L에 Na2MoO4 분말을 0.47M 농도로 용해하였다. 제조된 용액을 4M 농도의 수산화나트륨 용액 4.9L에 용해시켜 Mo이 용해된 도핑 금속 수용액을 제조하였다. Na2MoO4 powder was dissolved in 0.47M in 0.1L of 4M sodium hydroxide solution. The prepared solution was dissolved in 4.9 L of a 4M sodium hydroxide solution to prepare an aqueous doped metal solution in which Mo was dissolved.
공침 반응기(용량 30 리터, 회전모터의 출력 750 W 이상)에 증류수 4.5 리터를 넣은 뒤 N2 가스를 반응기에 8 리터/분의 속도로 공급하고 반응기의 온도를 45℃로 유지시키면서 450 rpm으로 교반하였다. 황산니켈과 황산망간의 몰비가 25:75인 2 M 농도의 금속 수용액을 0.187 리터/시간으로, 10.5 M 농도의 암모니아 용액을 0.043 리터/시간으로 반응기에 20~25시간 동안 연속적으로 투입하되, pH 조정과 Mo 첨가를 위해 상기 도핑 금속 수용액을 0.206 리터/시간으로 공급하여, [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 제조하였다. After adding 4.5 liters of distilled water to the co-precipitation reactor (capacity of 30 liters, output of a rotary motor of 750 W or more), N2 gas was supplied to the reactor at a rate of 8 liters/minute, and the reactor was stirred at 450 rpm while maintaining the temperature at 45°C. . A metal aqueous solution with a concentration of 2 M with a molar ratio of nickel sulfate and manganese sulfate of 25:75 at 0.187 liters/hour, and a 10.5 M ammonia solution at 0.043 liters/hour was continuously added to the reactor for 20 to 25 hours, pH For the adjustment and Mo addition, the doped metal aqueous solution was supplied at 0.206 liters/hour to prepare [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide.
제조된 [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물 alc 탄산리튬(Li2CO3)을 2:1의 몰비로 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.49Mo0.01O4 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. The metal complex hydroxide alc lithium carbonate (Li 2 CO 3 ) was mixed at a molar ratio of 2:1, heated at a heating rate of 2°C/min, and then calcined at 500°C for 5 hours and 900°C for 15 hours to obtain LiNi 0.5 Mn 1.49 Mo 0.01 O 4 A cathode active material powder was prepared.
실험 예 4에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 4
상술된 실험 예 3과 동일한 방법을 수행하되, Mo이 용해된 도핑 금속 수용액은 4M 농도의 수산화나트륨 용액 0.1L에 Na2MoO4 분말을 0.94M 농도로 용해하였다. 제조된 용액을 4M 농도의 수산화나트륨 용액 4.9L에 용해시켜 제조하여 이용하였다.The same method as in Experimental Example 3 described above was carried out, but in the aqueous doped metal solution in which Mo was dissolved, Na 2 MoO 4 powder was dissolved in 0.1 L of sodium hydroxide solution having a concentration of 4 M at a concentration of 0.94 M. The prepared solution was prepared and used by dissolving it in 4.9 L of a 4M sodium hydroxide solution.
제조된 [Ni0.25Mn0.74Mo0.01](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물 및 탄산리튬(Li2CO3)을 2:1의 몰비로 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.48Mo0.02O4 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.74 Mo 0.01 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. After mixing the metal complex hydroxide and lithium carbonate (Li 2 CO 3 ) at a molar ratio of 2:1, heating at a heating rate of 2° C./min, firing at 500° C. for 5 hours and 900° C. for 15 hours, LiNi 0.5 Mn 1.48 Mo 0.02 O 4 positive electrode active material powder was prepared.
실험 예 5에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 5
상술된 실험 예 3과 동일한 방법을 수행하여, [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 제조하였다.By performing the same method as in Experimental Example 3 described above, [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal composite hydroxide was prepared.
제조된 [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물, 탄산리튬(Li2CO3), 및 플루오린화 암모늄(NH4F)을 2:1:0.1의 몰비로 상온에서 볼밀을 이용하여 12시간 동안 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.49Mo0.1O3.99F0.01 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. The metal complex hydroxide, lithium carbonate (Li 2 CO 3 ), and ammonium fluoride (NH 4 F) were mixed in a molar ratio of 2:1:0.1 at room temperature using a ball mill for 12 hours, and then the temperature was raised by 2°C/min. After heating at a rate, it was calcined at 500° C. for 5 hours and at 900° C. for 15 hours to prepare LiNi 0.5 Mn 1.49 Mo 0.1 O 3.99 F 0.01 positive electrode active material powder.
실험 예 6에 따른 양극활물질 제조Preparation of cathode active material according to Experimental Example 6
상술된 실험 예 3과 동일한 방법을 수행하여, [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 제조하였다.By performing the same method as in Experimental Example 3 described above, [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal composite hydroxide was prepared.
제조된 [Ni0.25Mn0.745Mo0.005](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물, 탄산리튬(Li2CO3), 및 플루오린화 암모늄(NH4F)을 2:1:0.2의 몰비로 상온에서 볼밀을 이용하여 12시간 동안 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.49Mo0.1O3.98F0.02 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.745 Mo 0.005 ](OH) 2 metal complex hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. The metal complex hydroxide, lithium carbonate (Li 2 CO 3 ), and ammonium fluoride (NH 4 F) were mixed in a molar ratio of 2:1:0.2 using a ball mill at room temperature for 12 hours, and then the temperature was raised by 2°C/min. After heating at a speed, it was calcined at 500° C. for 5 hours and at 900° C. for 15 hours to prepare LiNi 0.5 Mn 1.49 Mo 0.1 O 3.98 F 0.02 positive electrode active material powder.
비교 예 1에 따른 양극활물질 제조Preparation of cathode active material according to Comparative Example 1
상술된 실험 예 1과 동일한 방법을 수행하여, [Ni0.25Mn0.75](OH)2 금속 복합 수산화물을 제조하였다.By performing the same method as in Experimental Example 1 described above, [Ni 0.25 Mn 0.75 ](OH) 2 metal composite hydroxide was prepared.
제조된 [Ni0.25Mn0.75](OH)2 금속 복합 수산화물을 물 세척하고, 여과한 후에 110℃ 진공건조기에서 12시간 건조시켰다. 상기 금속 복합수산화물, 및 탄산리튬(Li2CO3)을 2:1의 몰비로 혼합한 후에 2 ℃/분의 승온 속도로 가열한 후, 500℃에서 5시간, 900℃에서 15시간 소성시켜 LiNi0.5Mn1.5O4 양극활물질 분말을 제조하였다.The prepared [Ni 0.25 Mn 0.75 ](OH) 2 metal composite hydroxide was washed with water, filtered, and then dried in a vacuum dryer at 110° C. for 12 hours. The metal complex hydroxide and lithium carbonate (Li 2 CO 3 ) were mixed at a molar ratio of 2:1, heated at a heating rate of 2°C/min, and fired at 500°C for 5 hours and 900°C for 15 hours to LiNi 0.5 Mn 1.5 O 4 positive electrode active material powder was prepared.
실험 예 1~6 및 비교 예 1에 따른 양극활물질은 아래의 <표 1>과 같이 정리된다. The positive electrode active materials according to Experimental Examples 1 to 6 and Comparative Example 1 are organized as shown in Table 1 below.
MoMo FF AA
실험 예 1Experiment Example 1 -- 1mol%1 mol% 3.99333.9933
실험 예 2Experiment Example 2 -- 2mol%2mol% 3.98673.9867
실험 예 3Experiment Example 3 1mol%1 mol% -- 3.98663.9866
실험 예 4Experiment Example 4 2mol%2mol% -- 3.97303.9730
실험 예 5Experimental Example 5 1mol%1 mol% 1mol%1 mol% 3.97993.9799
실험 예 6Experimental Example 6 1mol%1 mol% 2mol%2mol% 3.96623.9662
비교 예 1Comparative Example 1 -- -- 44
표 1에서는 전술한 <수학식 1>을 이용하여 각 실험 예 1 내지 실험 예 6과, 비교예 1에 대한 A값을 기재하였다. In Table 1, A values for each of Experimental Examples 1 to 6 and Comparative Example 1 are described using <Equation 1> described above.
도 1은 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 방전 용량을 측정한 그래프이고, 도 2는 본 발명의 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 충방전 횟수에 따른 방전 용량을 측정한 그래프이고, 도 3은 본 발명의 실험 예 1 내지 실험 예 6, 비교 예 1에 따른 양극활물질을 포함하는 이차 전지의 충방전 횟수에 따른 방전 용량을 정규화시킨 그래프이다. 1 is a graph measuring the discharge capacity of a secondary battery including a positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention, and FIG. 2 is an Experimental Example 1 to Experimental Example of the present invention of the present invention. 6, is a graph measuring the discharge capacity according to the number of times of charging and discharging of a secondary battery including the positive electrode active material according to Comparative Example 1, and FIG. 3 is a graph showing the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 of the present invention. This is a graph obtained by normalizing the discharge capacity according to the number of charge/discharge times of the included secondary battery.
도 1 내지 도 3을 참조하면, 상술된 실험 예 1 내지 실험 예 6, 및 비교 예 1에 따른 양극활물질을 포함하는 리튬 이차 전지를 제조하고, 0.1C 조건에서 방전 용량을 측정하고, 0.5C 조건에서 충방전 횟수에 따른 방전 용량 변화를 측정하였다. 1 to 3, a lithium secondary battery including the positive electrode active material according to Experimental Examples 1 to 6 and Comparative Example 1 was prepared, and the discharge capacity was measured at 0.1C condition, and at 0.5C condition. The change in discharge capacity according to the number of charging and discharging was measured at.
도 1에 나타낸 바와 같이, 제조된 실험 예 1 내지 실험 예 6과 비교 예 1에 대해서 0.1C(14mA/g)으로 5V까지 충전 후 방전용량을 확인하였다. 도 1 내지 도 2에서 알 수 있듯이, 비교 예 1(pristine)에 따라서 Mo 및 F가 도핑되지 않은 5V 스피넬 구조의 양극활물질을 포함하는 경우, 초기 용량이 120mAhg-1에 불과하고, 사이클을 진행하면서 용량이 점점 저하되는 것을 확인할 수 있었다. 반면, 실험 예 3(Mo 1mol%), 실험 예 4(Mo 2mol%), 실험 예 5(Mo 1mol% + F 1mol%) 및 실험 예 6(Mo 1mol% + F 2mol%)에 따라 Mo 및/또는 F가 도핑된 스피넬 구조의 양극활물질을 포함하는 경우, 초기 용량이 130mAhg-1 이상으로 상기 비교 예 1(pristine)보다 우수함을 확인할 수 있으며, 사이클이 진행하는 과정에서도 용량 저하 정도가 비교 예 1(pristine)보다 낮음을 확인할 수 있다. 하지만, 실험 예 1에 따라 1mol%의 F만이 도핑된 양극활물질의 경우 초기 용량 증가가 실질적으로 크지 않았으며, 실험 예 2에 따라 2mol%의 F만이 도핑된 양극활물질의 경우 Mo 및 F가 도핑되지 않은 비교 예 1에 따른 양극활물질과 비교하여, 오히려 초기 용량이 낮은 것을 확인할 수 있다. As shown in FIG. 1, the prepared Experimental Examples 1 to 6 and Comparative Example 1 were charged to 5V at 0.1C (14mA/g) and then the discharge capacity was checked. As can be seen from FIGS. 1 to 2, according to Comparative Example 1 (pristine), when a positive electrode active material having a 5V spinel structure in which Mo and F are not doped is included, the initial capacity is only 120mAhg -1 , and while the cycle proceeds It was confirmed that the capacity gradually decreased. On the other hand, according to Experimental Example 3 (Mo 1mol%), Experimental Example 4 (Mo 2mol%), Experimental Example 5 (Mo 1mol% + F 1mol%) and Experimental Example 6 (Mo 1mol% + F 2mol%), Mo and/ Alternatively, when the F-doped spinel-structured positive electrode active material is included, it can be confirmed that the initial capacity is 130mAhg -1 or more, which is superior to that of Comparative Example 1 (pristine), and the degree of capacity reduction is also in the course of the cycle. It can be seen that it is lower than (pristine). However, in the case of the positive electrode active material doped with only 1 mol% of F according to Experimental Example 1, the initial capacity increase was not substantially large, and in the case of the positive electrode active material doped with only 2 mol% of F according to Experimental Example 2, Mo and F were not doped. Compared with the positive electrode active material according to Comparative Example 1, it can be seen that the initial capacity is rather low.
또한, 도 2 및 도 3에서 알 수 있듯이, 실험 예 5에 따라서 Mo 및 F가 각각 1mol%씩 도핑된 양극활물질의 경우, 초기 용량이 가장 높은 것은 물론, 충방전 횟수에 따라서 용량 감소가, 비교 예 1, 실험 예 1 내지 실험 예 4, 및 실험 예 6과 비교하여, 현저하게 작은 것을 확인할 수 있다. In addition, as can be seen in FIGS. 2 and 3, in the case of the positive electrode active material doped with 1 mol% of Mo and F, respectively, according to Experimental Example 5, the initial capacity is the highest, as well as the decrease in capacity depending on the number of charge and discharge, compared Compared with Example 1, Experimental Examples 1 to 4, and Experimental Example 6, it can be seen that it is significantly smaller.
즉, 리튬, 니켈, 및 망간의 산화물을 포함하는 스피넬 구조의 양극활물질에 Mo 및 F를 각각 1mol% 도핑하는 것이, 리튬 이차 전지의 용량 향상은 물론, 수명 특성을 향상시키는 효율적인 방법인 것을 확인할 수 있다. That is, it can be seen that doping 1 mol% of Mo and F to a positive electrode active material having a spinel structure containing oxides of lithium, nickel, and manganese, respectively, is an efficient method of improving the life characteristics as well as improving the capacity of the lithium secondary battery. have.
도 4는 본 발명의 실험 예 1 내지 실험 예 6, 및 비교 예 1(pristine)에 따른 양극활물질의 XPS 결과 그래프이다. 4 is a graph showing XPS results of positive electrode active materials according to Experimental Examples 1 to 6 and Comparative Example 1 (pristine) of the present invention.
도 4를 참조하면, 실험 예 1 내지 실험 예 6, 및 비교 예 1에 따른 양극활물질에 대해서 XPS를 측정하였다. 도 4에서 알 수 있듯이, 양극활물질 내에 포함된 Mn의 산화수는 +3 및 +4인 것을 확인할 수 있다. Referring to FIG. 4, XPS was measured for the positive electrode active materials according to Experimental Examples 1 to 6, and Comparative Example 1. As can be seen from Figure 4, it can be seen that the oxidation number of Mn contained in the positive electrode active material is +3 and +4.
또한, 양극활물질에 도핑되는 Mo의 mol% 및 F의 mol% 농도에 따라서, 산화수 +3인 Mn 및 산화수 +4인 Mn의 비율이 변화되는 것을 확인할 수 있다. In addition, it can be seen that the ratio of Mn having an oxidation number of +3 and Mn having an oxidation number of +4 is changed according to the mol% of Mo and the mol% concentration of F doped in the positive electrode active material.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.In the above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those who have acquired ordinary knowledge in this technical field should understand that many modifications and variations can be made without departing from the scope of the present invention.
본 발명의 실시예에 따른 양극활물질, 그 제조방법, 및 이를 포함하는 리튬이차전지는 전기자동차, ESS, 휴대용 전자기기에 적용될 수 있다.The positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same according to an embodiment of the present invention can be applied to electric vehicles, ESSs, and portable electronic devices.

Claims (9)

  1. 아래의 <화학식 1>로 표시되고,It is represented by the following <Chemical Formula 1>,
    상기 <화학식 1>에서, Mn의 산화가수는 +3 및 +4를 포함하고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소이며, In the <Formula 1>, the oxidation number of Mn includes +3 and +4, and x>0, y>0, 0<β<4, 0<α<0.03, M1 is +5 or + 6 is a transition metal, M2 is an element with an oxidation number of -1,
    Mn의 평균 산화가수는 3.5 내지 4미만이되 상기 Mn의 평균 산화가수는 α 값 또는 β 값이 증가함에 따라 감소하고, The average oxidation number of Mn is less than 3.5 to 4, but the average oxidation number of Mn decreases as the α value or β value increases,
    x+y=2인 것을 포함하는 5V급 스피넬 구조의 양극활물질:5V class spinel structure positive electrode active material including x+y=2:
    <화학식 1><Formula 1>
    LiNixMny-αM1αO4-βM2β LiNi x Mn y-α M1 α O 4-β M2 β
  2. 제1항에 있어서,The method of claim 1,
    0<α<2이고, 0<β<2이고,0<α<2, 0<β<2,
    상기 Mn은 산화가수가 +3과 +4인 것의 총량에 대해서, 상기 산화가수가 +3인 Mn은 0.3% 내지 3.38%인 것을 포함하는 5V급 스피넬 구조의 양극활물질. The positive electrode active material having a 5V class spinel structure, wherein Mn is 0.3% to 3.38% of Mn having the oxidation number of +3 and the total amount of the oxidation number of +3 and +4.
  3. 제1항에 있어서, The method of claim 1,
    Mn의 평균산화가수 A는 아래의 <수학식 1>가 같이 계산되고, The average oxidation number A of Mn is calculated by the following <Equation 1>,
    <수학식 1><Equation 1>
    Figure PCTKR2020006465-appb-I000004
    Figure PCTKR2020006465-appb-I000004
    <수학식 1>에서 B는 M의 산화가수인 것을 포함하는 5V급 스피넬 구조의 양극활물질. In <Equation 1>, B is a positive electrode active material having a 5V class spinel structure, including the oxidation number of M.
  4. 제1항에 있어서,The method of claim 1,
    상기 M1은 산화가수가 +6인 전이금속인 경우, 상기 α 값은 상기 β 값에 비하여 상기 Mn의 평균 산화가수의 변화량에 더 크게 영향을 미치는 것을 포함하는 5V급 스피넬 구조의 양극활물질. When M1 is a transition metal having an oxidation number of +6, the α value has a greater influence on a change in the average oxidation number of Mn than the β value. 5V class spinel structure positive electrode active material.
  5. 제1항에 있어서, The method of claim 1,
    <화학식 1>에서, In <Formula 1>,
    0<α≤0.01이고, 0<β≤0.01인 것을 포함하는 5V급 스피넬 구조의 양극활물질. A positive electrode active material having a 5V class spinel structure including 0<α≤0.01 and 0<β≤0.01.
  6. 제1항에 있어서, The method of claim 1,
    <화학식 1>에서, M1은 Nb, Mo, Ta, 및 W에서 적어도 어느 하나를 포함하고,In <Formula 1>, M1 includes at least one of Nb, Mo, Ta, and W,
    상기 M2는 F 또는 Cl인 5V급 스피넬 구조의 양극활물질. The M2 is F or Cl 5V class spinel structure cathode active material.
  7. 니켈 및 망간을 포함하는 전이금속 수용액, 및 M1을 포함하는 도핑금속 수용액을 준비하는 단계;Preparing a transition metal aqueous solution containing nickel and manganese, and a doped metal aqueous solution containing M1;
    상기 전이금속 수용액, 상기 도핑금속 수용액, 및 암모니아 용액을 반응기에 공급하여, 니켈 및 망간을 포함하는 전이금속 수산화물에 상기 M1이 도핑된 양극활물질 전구체를 제조하는 단계; 및Supplying the transition metal aqueous solution, the doping metal aqueous solution, and an ammonia solution to a reactor to prepare a cathode active material precursor doped with the M1 in transition metal hydroxides containing nickel and manganese; And
    상기 양극활물질 전구체, 리튬염, 및 M2를 포함하는 도핑소스를 볼밀을 이용하여 건식으로 혼합하고 소성하여, 니켈, 망간, 및 리튬 산화물에 상기 M1 및 M2가 도핑된 스피넬 구조의 양극활물질을 제조하는 단계를 포함하고,The cathode active material precursor, lithium salt, and a doping source containing M2 are dryly mixed and fired using a ball mill to prepare a spinel structure cathode active material doped with the M1 and M2 in nickel, manganese, and lithium oxide Including steps,
    상기 도핑금속 수용액을 준비하는 단계는, The step of preparing the doped metal aqueous solution,
    수산화나트륨 용액을 준비하는 단계; 및Preparing a sodium hydroxide solution; And
    상기 수산화나트륨 용액에 M1을 포함하는 분말을 용해시키는 단계를 포함하고, Including the step of dissolving the powder containing M1 in the sodium hydroxide solution,
    M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소인 것을 포함하는 5V급 스피넬 구조의 양극활물질의 제조방법. M1 is a transition metal having an oxidation number of +5 or +6, and M2 is an element having an oxidation number of -1. A method of manufacturing a positive electrode active material having a 5V class spinel structure.
  8. 제7항에 있어서, The method of claim 7,
    상기 양극활물질은, 아래의 <화학식 1>로 표시되는 것을 포함하고,The positive electrode active material includes those represented by the following <Chemical Formula 1>,
    상기 <화학식 1>에서, Mn의 산화가수는 +3 및 +4를 포함하고, x>0, y>0, 0<β<4, 0<α<0.03, M1은 산화가수가 +5 또는 +6인 전이금속이고, M2는 산화가수가 -1인 원소이며, In the <Formula 1>, the oxidation number of Mn includes +3 and +4, and x>0, y>0, 0<β<4, 0<α<0.03, M1 is +5 or + 6 is a transition metal, M2 is an element with an oxidation number of -1,
    Mn의 평균 산화가수는 3.5 내지 4미만이되, α 값 또는 β 값이 증가함에 따라 감소하고, The average oxidation number of Mn is less than 3.5 to 4, but decreases as the α value or β value increases,
    x+y=2인 것을 포함하는 5V급 스피넬 구조의 양극활물질의 제조방법:Method for producing a positive electrode active material having a 5V class spinel structure including x+y=2:
    <화학식 1><Formula 1>
    LiNixMny-αM1αO4-βM2β LiNi x Mn y-α M1 α O 4-β M2 β
  9. 제7 항에 있어서, The method of claim 7,
    상기 도핑금속 수용액 중의 M1의 농도 및 M2를 포함하는 상기 도핑소스의 혼합 농도에 따라서, 상기 양극활물질 내에서 상기 M1의 농도 및 M2의 농도가 제어되고, Depending on the concentration of M1 in the doping metal aqueous solution and the mixed concentration of the doping source including M2, the concentration of M1 and the concentration of M2 in the positive electrode active material are controlled,
    상기 양극활물질 내에서 상기 M1의 농도 및 M2의 농도에 따라서, 상기 양극활물질에서 망간의 평균 산화가수가 제어되는 것을 포함하는 5V급 양극활물질의 제조방법.A method for manufacturing a 5V class positive electrode active material comprising controlling an average oxidation number of manganese in the positive electrode active material according to the concentration of M1 and M2 in the positive electrode active material.
PCT/KR2020/006465 2019-05-17 2020-05-15 Cathode active material having 5v-grade spinel structure, and preparation method therefor WO2020235893A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0058233 2019-05-17
KR20190058233 2019-05-17
KR10-2020-0050315 2020-04-24
KR1020200050315A KR102433878B1 (en) 2019-05-17 2020-04-24 Cathode active material of 5V spinel structure, and method of fabricating of the same

Publications (1)

Publication Number Publication Date
WO2020235893A1 true WO2020235893A1 (en) 2020-11-26

Family

ID=73458694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006465 WO2020235893A1 (en) 2019-05-17 2020-05-15 Cathode active material having 5v-grade spinel structure, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2020235893A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613313B2 (en) * 1980-05-02 1986-01-31 Ngk Insulators Ltd
KR20060130964A (en) * 2005-06-14 2006-12-20 에스케이 주식회사 Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
KR20130117392A (en) * 2012-04-17 2013-10-28 주식회사 엘지화학 Cathode active material having higher performance and lithium secondary battery comprising the same
KR20140129807A (en) * 2013-04-30 2014-11-07 한국과학기술연구원 Method for preparing spinel lithium manganese oxide with fluorine-doped outer layer and the material for rechargeable lithium batteries
JP6177554B2 (en) * 2013-03-19 2017-08-09 日揮触媒化成株式会社 Method for producing lithium manganate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613313B2 (en) * 1980-05-02 1986-01-31 Ngk Insulators Ltd
KR20060130964A (en) * 2005-06-14 2006-12-20 에스케이 주식회사 Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
KR20130117392A (en) * 2012-04-17 2013-10-28 주식회사 엘지화학 Cathode active material having higher performance and lithium secondary battery comprising the same
JP6177554B2 (en) * 2013-03-19 2017-08-09 日揮触媒化成株式会社 Method for producing lithium manganate
KR20140129807A (en) * 2013-04-30 2014-11-07 한국과학기술연구원 Method for preparing spinel lithium manganese oxide with fluorine-doped outer layer and the material for rechargeable lithium batteries

Similar Documents

Publication Publication Date Title
WO2019112279A2 (en) Cathode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising cathode comprising same
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2012093797A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2020111580A1 (en) Cathode additive for lithium secondary battery, preparation method therefor, cathode for lithium secondary battery, comprising same, and lithium secondary battery comprising same
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2014193203A1 (en) Anode active material for lithium cell and method for manufacturing same
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2021025479A1 (en) Secondary battery active material
WO2018056650A1 (en) Lithium-rich antiperovskite-coated lco-based lithium composite, method for preparing same, and positive electrode active material and lithium secondary battery comprising same
WO2012064053A2 (en) Lithium manganese composite oxide and method for preparing same
WO2019103522A2 (en) Method for preparing cathode active material
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018093059A1 (en) High ion conductive solid electrolyte for all-solid state battery and method for preparing same
WO2017213462A1 (en) Positive electrode active material for sodium secondary battery, and method for preparing same
WO2015060686A1 (en) Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
WO2016175426A1 (en) Surface treatment method for lithium cobalt oxide, and lithium secondary battery comprising same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2021215670A1 (en) Positive electrode active material containing spinel composite solid solution oxide, method for manufacturing same, and lithium secondary battery including same
WO2019198944A1 (en) Method for producing positive electrode active material
WO2019203432A1 (en) Metal composite for cathode active material, cathode active material comprising same and manufacturing method therefor
WO2019216646A1 (en) Recycling method for cathode material
WO2019013587A1 (en) Method for producing cathode active material
WO2020111318A1 (en) Cathode active material for lithium secondary battery
WO2019017736A9 (en) Metal-doped cathode active material for sodium secondary battery, preparation method therefor, and sodium secondary battery comprising same
WO2016068682A1 (en) Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809835

Country of ref document: EP

Kind code of ref document: A1