WO2020235754A1 - Jig for testing rotating body, and method for designing jig for testing rotating body - Google Patents

Jig for testing rotating body, and method for designing jig for testing rotating body Download PDF

Info

Publication number
WO2020235754A1
WO2020235754A1 PCT/KR2019/013794 KR2019013794W WO2020235754A1 WO 2020235754 A1 WO2020235754 A1 WO 2020235754A1 KR 2019013794 W KR2019013794 W KR 2019013794W WO 2020235754 A1 WO2020235754 A1 WO 2020235754A1
Authority
WO
WIPO (PCT)
Prior art keywords
jig
rotating body
testing
rotor
analysis step
Prior art date
Application number
PCT/KR2019/013794
Other languages
French (fr)
Korean (ko)
Inventor
양성진
Original Assignee
한화에어로스페이스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화에어로스페이스 주식회사 filed Critical 한화에어로스페이스 주식회사
Publication of WO2020235754A1 publication Critical patent/WO2020235754A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a jig for testing a rotating body and a method for designing a jig for testing a rotating body. Specifically, the present invention relates to a jig for connecting a rotating body mounted on a gas turbine and a test equipment for testing the strength of the rotating body, and a method of designing the same.
  • a turbine is a mechanical device that obtains rotational force by impulsive force or reaction force by using a flow of a compressible fluid such as steam or gas, and includes a steam turbine using steam and a gas turbine using high temperature combustion gas.
  • the gas turbine is largely composed of a compressor, a combustor and a turbine.
  • the compressor is provided with an air inlet for introducing air, and a plurality of compressor vanes and compressor blades are alternately arranged in a compressor casing.
  • the combustor supplies fuel to the compressed air compressed by the compressor and ignites it with a burner, thereby generating high-temperature and high-pressure combustion gas.
  • a plurality of turbine vanes and turbine blades are alternately arranged in a turbine casing.
  • a rotor is disposed so as to pass through the center of the compressor, combustor, turbine and exhaust chamber.
  • Both ends of the rotor are rotatably supported by bearings. Further, a plurality of disks are fixed to the rotor, each blade is connected, and a drive shaft such as a generator is connected to an end of the exhaust chamber side.
  • the compressed air in the compressor is mixed with fuel and combusted to produce a high-temperature combustion gas, and the resulting combustion gas is injected into the turbine side.
  • the injected combustion gas passes through the turbine vane and the turbine blade to generate a rotational force, thereby rotating the rotor.
  • the Spin (or over speed) test is a test that tests the centrifugal strength of a material by rotating at least 120% of the rated speed. It must be performed and checked before mass production. Dedicated equipment is required for the spin test, but even if a dedicated equipment is equipped, the design of a jig for high speed rotation, that is, an arbor and rotor, must be reviewed in advance and a test must be performed.
  • An object of the present invention is to design a jig by applying a rotor dynamic analysis to the design process of a jig to prevent excessive vibration of a rotating body that may occur during a spin test of a gas turbine rotating body.
  • the specification of the test equipment A specification analysis step of analyzing the data; An initial jig design step of designing an initial shape of the jig in consideration of the specifications of the test equipment analyzed in the specification analysis step; A rotor dynamic analysis step of analyzing the jig designed through the initial jig design step by applying a rotor dynamic analysis; And a change step of changing a shape of the jig or changing a design value of the rotor dynamic analysis when the jig is not satisfied with the reference value through the analysis result in the rotor dynamic analysis step, wherein the rotor dynamic analysis step It includes a static analysis step, a natural frequency analysis step, and a balancing analysis step.
  • the static analysis step it may be determined whether the twist angle of the jig satisfies a reference angle value.
  • the step of analyzing the natural frequency it may be determined whether a difference between the natural frequency of the jig and the rated speed of the rotating body satisfies a reference margin ratio.
  • the balancing analysis step it may be determined whether a vibration tolerance value of the jig satisfies a reference vibration value.
  • the changing step may change the shape of the jig when the jig is not satisfied with the reference value through the analysis result of the static analysis step or the natural frequency analysis step.
  • the design value of the rotor dynamic analysis may be changed.
  • a jig for testing a rotating body according to an embodiment of the present invention is a jig for testing a rotating body, wherein the jig is designed by the method of designing a jig for testing a rotating body.
  • the jig may be inserted into a through hole formed in the rotating body.
  • a fastening groove into which a fastening member can be inserted may be formed at one side of the jig.
  • the jig may be formed to be elastically deformed when the fastening member is inserted into the fastening groove.
  • a jig for testing a rotation body in a jig for testing a rotation body including an arbor and a rotor, the jig is designed by the method of designing a jig for testing a rotation body.
  • the arbor may have an insertion hole into which the rotor is inserted, and the insertion hole may be formed to have a predetermined diameter with respect to a central axis of the arbor.
  • a fixing groove for fixing the arbor and the rotor may be formed on an outer circumferential surface of the arbor.
  • a plurality of fasteners for fixing the rotor may be formed on the inner circumferential surface of the arbor.
  • the present invention is effective in blocking excessive vibration of a rotating body that may occur during a spin test of a gas turbine rotating body by designing a jig by applying a rotor dynamic analysis to the design process of a jig.
  • the present invention has the effect of blocking time, productive, and economic losses due to the redesign of the jig.
  • FIG. 1 is a block diagram of a jig designing equipment for a rotating body test for designing a jig for testing a rotating body.
  • FIG. 2 is a flowchart sequentially showing a method of designing a jig for testing a rotating body according to an embodiment of the present invention.
  • 3 and 4 are views exemplarily showing a process of applying a rotor dynamic analysis in a method of designing a jig for testing a rotor according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body.
  • FIG. 6 is a view showing a jig for testing a rotating body according to the first embodiment of the present invention.
  • FIG. 7 is a view showing a jig for testing a rotating body according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a jig for testing a rotating body according to a third embodiment of the present invention.
  • FIG. 1 is a block diagram of a jig designing equipment for a rotating body test for designing a jig for testing a rotating body.
  • the jig design equipment 100 includes an input unit 101, a control unit 103 and a design unit 105.
  • the input unit 101 receives parameter values for designing the jigs 10 and 40 from the user.
  • the input unit 101 may receive a value for the diameter of the rotor 13 of the jigs 10 and 40 from the user.
  • the parameter value input by the input unit 101 from the user includes all parameters necessary for designing the jig 10 and 40.
  • the input unit 101 transfers parameter values for designing the jigs 10 and 40 received from the user to the control unit 103.
  • the control unit 103 controls the design unit 105 to design the shape of the jig 10 and 40 according to the parameter values for designing the jig 10 and 40 received from the input unit 101.
  • control unit 103 is a design unit to design the diameter of the rotor 13 of the jig 10 and 40 according to the value for the diameter of the rotor 13 of the jig 10 and 40 received from the input unit 101. 105) can be controlled.
  • the design unit 105 designs the jigs 10 and 40 according to the control command of the control unit 103. Specifically, the design unit 105 designs the shapes of the jigs 10 and 40 according to the control command of the control unit 103.
  • FIG. 2 is a flowchart sequentially showing a method of designing a jig for testing a rotating body according to an embodiment of the present invention.
  • the control unit 103 analyzes the specifications of the test equipment (20, 50) (S101). Specifically, the control unit 103 analyzes the specifications of the test equipment 20 and 50 by grasping the characteristics of the spindle 21, which is a component included in the test equipment 20 and 50, the bearing position, and the like.
  • the design unit 105 designs the shape of the jig 10 and 40 in consideration of the specifications of the test equipment 20 and 50 analyzed in step S101 (S103). Specifically, the design unit 105 designs the shape of the jig 10 and 40 by receiving a control command from the control unit 103. Meanwhile, the jigs 10 and 40 designed in step S103 refer to the jigs 10 and 40 designed without a rotor dynamics analysis.
  • test equipment (20, 50) applies the rotor dynamic analysis to the jig (10, 40) designed in step S103 (S105, S107, S109, S111, S115, S117, S119). That is, the test equipment (20, 50) sequentially applies static analysis, natural frequency analysis, and balancing analysis to the jig (10, 40).
  • test equipment (20, 50) applies a static analysis of the rotor dynamic analysis to the jig (10, 40) (S107, S109).
  • the static analysis refers to an analysis that analyzes the deflection, inclination, and twist angle of the jig 10 and 40.
  • the test equipment (20, 50) applies a static analysis to the jig (10, 40) to determine whether the twist angle (sag angle or inclination) of the jig (10, 40) satisfies the reference angle value.
  • the reference angle value refers to an angle value used as a reference for determining whether the degree of twisting of the jigs 10 and 40 is within a normal range.
  • the test equipment 20 and 50 applies the natural frequency analysis to the jig 10 and 40 (S111, S115).
  • the natural frequency analysis means an analysis comparing the natural frequencies of the jigs 10 and 40 with the rated speeds of the rotating bodies 30 and 60.
  • the test equipment (20, 50) applies the natural frequency analysis to the jig (10, 40) so that the difference between the natural frequency of the jig (10, 40) and the rated speed of the rotating body (30, 60) is the reference margin ratio. Determine whether you are satisfied.
  • the reference margin rate refers to a margin rate that is a reference for determining whether the difference between the natural frequency of the jig 10 and 40 and the rated speed of the rotating bodies 30 and 60 is within a normal range.
  • test equipment (20, 50) is the natural frequency of the jig (10, 40) and the rotating body (30) as a result of applying the Campbell Diagram analysis when the rated speed of the rotating bodies (30, 60) is 90000 (rpm). , It can be determined whether the difference between the rated speeds of 60) has a resonance margin ratio of 20% or more.
  • the test equipment (20, 50) applied a relatively low stiffness value of 1x10 7 N/m to the ball bearing included in the test equipment (20, 50) and applied a damping of 10%. Premise.
  • the test equipment (20, 50) in the case of the bushing (bush) bearing included in the test equipment (20, 50), the spindle 21 and the radial clearance is set to 0.5 mm or more, rather than the bearing role of the spindle (21). It is intended to play only the role of limiting excessive vibration of Therefore, it is assumed that 5x10 3 N/m and 1.5x10 3 Ns/m are applied to the stiffness and damping for the bushing bearing, respectively.
  • test equipment (20, 50) applies Critical Speed Map analysis or Mode analysis to determine whether the difference between the natural frequency of the jig (10, 40) and the rated speed of the rotating body (30, 60) satisfies the standard margin rate. You can judge. However, it goes without saying that the test equipments 20 and 50 can perform natural frequency analysis on the jigs 10 and 40 even through methods other than the illustrated analysis method.
  • step S109 when the twist angle of the jig 10 and 40 is not satisfied with the reference angle value, the design unit 105 changes the shape of the jig 10 and 40 (S113).
  • the design unit 105 may change the shape of the jig 10 and 40 by increasing or decreasing the diameter of the rotor 13 so that the twist angle of the jig 10 and 40 satisfies the reference angle value.
  • the design unit 105 may change the shape of the jig 10 and 40 by increasing or decreasing the length of the rotor 13.
  • the design unit 105 may change the shape of the jig 10 and 40 so that the length of the jig 10 and 40 does not exceed the 2R range.
  • the design unit 105 may change the shapes of the jigs 10 and 40 so that the diameters of the jigs 10 and 40 are within the range of 0.25R to 0.5R. This is because the length of the jig (10, 40) is as short as possible, and the weight of the jig (10, 40) should be designed to be as light as possible, which is advantageous for rotor dynamic analysis.
  • the test equipment 20 and 50 is ) To apply the balancing analysis (S117, S119).
  • the balancing analysis means performing the analysis by setting the left and right masses of the jigs 10 and 40 differently according to the reference mass imbalance.
  • the reference mass imbalance refers to a value indicating how unbalanced the left and right masses are to be set based on the central plane of the jig (10, 40), and in the present invention, the reference mass imbalance amount is ISO 1940-1. It is premised to apply within the range of G2.5 ⁇ 5 (2 times).
  • the test equipment (20, 50) selects a reference mass imbalance, sets the left and right masses of the jig (10, 40) differently according to the reference mass imbalance, applies a balancing analysis, and applies the analysis result jig (10). , It is determined whether the vibration of 40) satisfies the reference vibration value.
  • the reference vibration value means a value that is a reference for determining whether the vibration of the jig 10 and 40 is within a normal range.
  • the test equipment 20 and 50 reselects the reference mass imbalance amount to the reselected reference mass imbalance amount. Set the left and right masses of the jig (10, 40) differently accordingly, and apply the balancing analysis again. At this time, the test equipment 20 and 50 selects the reselected reference mass imbalance as a value that is relaxed compared to the previous reference mass imbalance.
  • test equipment (20, 50) applies the balancing analysis to the jig (10, 40) until the vibration of the jig (10, 40) satisfies the reference vibration value.
  • the design unit 105 determines the shape of the jig 10 and 40 To change (S113).
  • FIG. 5 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body.
  • the jig 10 and the rotating body 30 are integrally formed.
  • the jig 10 is disposed between the test equipment 20 and the rotating body 30 to connect the test equipment 20 and the rotating body 30.
  • the jig 10 is composed of an arbor 11 and a rotor 13.
  • the arbor 11 is connected to the flange 23 of the test equipment 20, and the rotor 13 is connected to the rotating body 30.
  • a specific structure of the jig 10 will be described later with reference to FIGS. 6 and 7.
  • the test equipment 20 is an equipment that tests the strength of the rotating body 30, and tests the centrifugal strength of the material of the rotating body 30 by rotating the rotating body 30 at a speed of 120% or more of the rated speed.
  • the test equipment 20 is composed of a spindle 21 and a flange 23 to briefly display only the configuration connected to the jig 10, but the test equipment 20 is shown in FIG. It is composed of other components besides the one that has been set.
  • the rotating body 30 is connected to the jig 10 and means a test target product whose strength is measured through the test equipment 20.
  • the rotor 30 may mean a specimen that simulates a compressor and a turbine.
  • the rotating body 30 may mean a compressor and a turbine that are actually mounted on a gas turbine.
  • FIG. 6 is a view showing a jig for testing a rotating body according to the first embodiment of the present invention.
  • FIG. 6 (a) is a view showing a state before the arbor 111 and the rotor 131 are coupled
  • FIG. 6 (b) is a view showing a state in which the arbor 111 and the rotor 131 are coupled. .
  • the jig for testing a rotating body according to the first embodiment of the present invention includes an arbor 111 and a rotor 131.
  • the arbor 111 has an insertion hole 1111 into which the rotor 131 can be inserted.
  • the insertion hole 1111 is formed to have a predetermined diameter based on the central axis of the arbor 111.
  • the predetermined diameter corresponds to the diameter of the rotor 131.
  • fixing grooves 1113 and 1115 for fixing the arbor 111 and the rotor 131 are formed on the outer peripheral surface of the arbor 111.
  • the fixing grooves 1113 and 1115 may be formed at symmetrical positions on the outer peripheral surface of the arbor 111, respectively.
  • fixing grooves 1113 and 1115 are formed on the outer circumferential surface of the arbor 111, so that the arbor 111 and the rotor 131 can be fixed using a spanner or a general tool without the need for a separate jig. There is an effect to be able to. Accordingly, there is an effect of preventing damage or shape change due to the fixing of the arbor 111 and the rotor 131.
  • Figure 7 is a view showing a jig for testing a rotating body according to a second embodiment of the present invention.
  • Figure 7 (a) is a cross-sectional view showing a state before the arbor 112 and the rotor 132 are coupled
  • Figure 7 (b) is a cross-sectional view showing the state in which the arbor 112 and the rotor 132 are coupled. .
  • a jig for testing a rotating body includes an arbor 112 and a rotor 132.
  • the arbor 112 has an insertion hole 1121 into which the rotor 132 can be inserted.
  • the insertion hole 1121 is formed to have a predetermined diameter with respect to the central axis of the arbor 112.
  • the predetermined diameter corresponds to the diameter of the rotor 132.
  • a plurality of fasteners 1123 for fixing the rotor 132 are formed on the inner circumferential surface of the arbor 112, and a fixing groove is coupled to the plurality of fasteners 1123 formed on the arbor 112 on the outer circumferential surface of the rotor 132 (1321) is formed.
  • a plurality of fasteners 1123 are arranged at regular intervals along the diameter of the inner circumferential surface of the arbor 112 as shown in FIG. 7 (a), and the rotor 132
  • the fixing groove 1321 is formed along the diameter of the outer circumferential surface of the rotor 132 as shown in FIG. 7 (a). Accordingly, as shown in FIG. 7 (b), when the rotor 132 is inserted into the arbor 112, it can be seen that the plurality of fasteners 1123 are coupled to the fixing groove 1321.
  • the second fastening members 80 and 90 are coupled to the second fastening grooves 1125 and 1127 of the arbor 112, respectively, so that the coupling force between the arbor 112 and the rotor 132 may be improved.
  • FIG. 8 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body according to a third embodiment of the present invention.
  • FIG. 8 it is assumed that the jig 40 and the rotating body 60 pass through.
  • the jig 40 shown in FIG. 8 will be described on the premise that it is an integral type without distinction between an arbor and a rotor.
  • the jig 40 is inserted into a through hole formed in the rotating body 60.
  • the through hole is formed to have a size corresponding to the diameter of the jig 40 with respect to the central axis of the rotating body 60.
  • the jig 40 has a first fastening groove 41 into which the first fastening member 70 can be inserted. A process of inserting the first fastening member 70 into the first fastening groove 41 of the jig 40 will be described later with reference to FIG. 9.
  • the test equipment 50 is an equipment for testing the strength of the rotating body 60, and tests the centrifugal strength of the material of the rotating body 60 by rotating the rotating body 60 at a speed of 120% or more of the rated speed.
  • the test equipment 50 is composed of a spindle 51 and a flange 53 to briefly display only the configuration connected to the jig 40, but the test equipment 20 is shown in FIG. It is composed of other components besides the one that has been set.
  • the rotating body 60 is connected to the jig 40 and means a test target product whose strength is measured through the test equipment 50.
  • the rotor 60 may mean a specimen that simulates a compressor and a turbine.
  • the rotating body 60 may mean a compressor and a turbine that are actually mounted on a gas turbine.
  • Figure 9 is a cross-sectional view of a jig for testing a rotating body according to a third embodiment of the present invention.
  • Figure 9 (a) is a cross-sectional view of a state before the fastening member is coupled to the jig for testing a rotating body according to the third embodiment of the present invention
  • Figure 9 (b) is a circuit according to the third embodiment of the present invention. It is a cross-sectional view of a state in which the fastening member is coupled to the entire test jig.
  • a first fastening groove 41 into which the first fastening member 70 can be inserted is formed in the jig 40 as described above. At this time, the diameter of the first fastening groove 41 is formed smaller than the diameter of the first fastening member (70).
  • the first fastening member 70 is inserted into the first fastening groove 41.
  • the jig 40 is composed of an elastic material, even if the diameter of the first fastening groove 41 is smaller than the diameter of the first fastening member 70, the first fastening member 70 is in the first fastening groove 41. It can be inserted in a force-fitting state. That is, the jig 40 is elastically deformed when the first fastening member 70 is inserted into the first fastening groove 41.
  • the jig 40 for testing a rotation body according to the third embodiment of the present invention is fastened through the first fastening member 70 without fastening the jig 40 to the rotation body 60 by shrink fit, so that strength There is an effect that it is easy to disassemble the jig 40 and the rotating body 60 after testing such as.

Abstract

The present invention relates to a method for designing a jig for testing a rotating body. A method for designing a jig for testing a rotating body according to one embodiment of the present invention, which is a method for designing a jig that connects a rotating body mounted on a gas turbine and test equipment for testing the strength of the rotating body, comprises: a specification analysis step of analyzing specifications of the test equipment; an initial jig design step of designing an initial form of the jig in consideration of the specifications of the test equipment analyzed in the specification analysis step; a rotor dynamic analysis step of analyzing the jig, designed through the initial jig design step, by applying a rotor dynamic analysis; and a change step of changing the form of the jig or changing a design value of the rotor dynamic analysis if the jig does not satisfy a reference value through the analysis result in the rotor dynamic analysis step, wherein the rotor dynamic analysis step comprises a static analysis step, a natural frequency analysis step, and a balancing analysis step.

Description

회전체 테스트용 지그 및 회전체 테스트용 지그 설계 방법Jig for rotating body test and design method of jig for rotating body test
본 발명은 회전체 테스트용 지그 및 회전체 테스트용 지그 설계 방법에 관한 것이다. 구체적으로, 본 발명은 가스 터빈에 장착되는 회전체와 상기 회전체의 강도를 테스트하는 테스트 장비를 연결하는 지그 및 이를 설계하는 방법에 대한 것이다.The present invention relates to a jig for testing a rotating body and a method for designing a jig for testing a rotating body. Specifically, the present invention relates to a jig for connecting a rotating body mounted on a gas turbine and a test equipment for testing the strength of the rotating body, and a method of designing the same.
일반적으로 터빈이란 증기, 가스와 같은 압축성 유체의 흐름을 이용하여 충동력 또는 반동력으로 회전력을 얻는 기계장치로, 증기를 이용하는 증기터빈 및 고온의 연소가스를 이용하는 가스터빈 등이 있다.In general, a turbine is a mechanical device that obtains rotational force by impulsive force or reaction force by using a flow of a compressible fluid such as steam or gas, and includes a steam turbine using steam and a gas turbine using high temperature combustion gas.
이 중, 가스터빈은 크게 압축기와 연소기와 터빈으로 구성된다. 상기 압축기는 공기를 도입하는 공기 도입구가 구비되고, 압축기 케이싱 내에 다수개의 압축기 베인과, 압축기 블레이드가 교대로 배치되어 있다. Among them, the gas turbine is largely composed of a compressor, a combustor and a turbine. The compressor is provided with an air inlet for introducing air, and a plurality of compressor vanes and compressor blades are alternately arranged in a compressor casing.
연소기는 상기 압축기에서 압축된 압축 공기에 대하여 연료를 공급하고 버너로 점화함으로써 고온고압의 연소 가스가 생성된다.The combustor supplies fuel to the compressed air compressed by the compressor and ignites it with a burner, thereby generating high-temperature and high-pressure combustion gas.
터빈은 터빈 케이싱 내에 복수의 터빈 베인과, 터빈 블레이드가 교대로 배치되어 있다. 또한, 압축기와 연소기와 터빈 및 배기실의 중심부를 관통하도록 로터가 배치되어 있다.In the turbine, a plurality of turbine vanes and turbine blades are alternately arranged in a turbine casing. In addition, a rotor is disposed so as to pass through the center of the compressor, combustor, turbine and exhaust chamber.
상기 로터는 양단부가 베어링에 의해 회전 가능하게 지지된다. 그리고, 상기 로터에 복수의 디스크가 고정되어, 각각의 블레이드가 연결되는 동시에 배기실측의 단부에 발전기 등의 구동축이 연결된다.Both ends of the rotor are rotatably supported by bearings. Further, a plurality of disks are fixed to the rotor, each blade is connected, and a drive shaft such as a generator is connected to an end of the exhaust chamber side.
이러한 가스터빈은 4행정 기관의 피스톤과 같은 왕복운동 기구가 없기 때문에 피스톤-실린더와 같은 상호 마찰부분이 없어 윤활유의 소비가 극히 적으며 왕복운동기계의 특징인 진폭이 대폭 감소되고, 고속운동이 가능한 장점이 있다.Since these gas turbines do not have a reciprocating mechanism such as a piston of a four-stroke engine, there is no mutual friction part such as a piston-cylinder, so the consumption of lubricating oil is extremely small, and the amplitude, characteristic of a reciprocating machine, is greatly reduced, and high-speed motion is possible. There is an advantage.
가스터빈의 작동에 대해서 간략하게 설명하면, 압축기에서 압축된 공기가 연료와 혼합되어 연소됨으로써 고온의 연소 가스가 만들어지고, 이렇게 만들어진 연소 가스는 터빈측으로 분사된다. 분사된 연소 가스가 상기 터빈 베인 및 터빈 블레이드를 통과하면서 회전력을 생성시키고, 이에 상기 로터가 회전하게 된다.Briefly explaining the operation of the gas turbine, the compressed air in the compressor is mixed with fuel and combusted to produce a high-temperature combustion gas, and the resulting combustion gas is injected into the turbine side. The injected combustion gas passes through the turbine vane and the turbine blade to generate a rotational force, thereby rotating the rotor.
이와 같이 사용되는 터빈은 블레이드가 회전되면서 반경 방향에서 발생되는 진동으로 인해 특정 위치에 응력이 집중되고, 이로 인해 균열 및 피로 파괴의 원인을 유발하는 문제점이 발생되었다.In the turbine used as described above, stress is concentrated in a specific position due to vibrations generated in the radial direction as the blades rotate, which causes a problem of causing cracks and fatigue failure.
따라서, 회전체(압축기/터빈)가 운전 중 파손되면 가스터빈 전체 시스템에 치명적인 영향을 끼치기 떄문에 반드시 사전에 회전체 강도를 점검하는것이 필요 하다. Therefore, if the rotor (compressor/turbine) is damaged during operation, it has a fatal effect on the entire gas turbine system, so it is necessary to check the strength of the rotor in advance.
Spin(or over speed) Test는 정격 속도의 120% 이상 회전시켜 재료의 원심강도를 테스트하는 시험으로써 양산 전에 반드시 수행하여 점검해야만 한다. Spin Test를 위해선 전용장비가 요구되나, 전용장비를 갖추더라도 고속회전을 위한 지그(jig) 즉 아버(arbor) 및 로터(rotor) 설계를 사전에 검토하고 Test를 수행하여야 한다. The Spin (or over speed) test is a test that tests the centrifugal strength of a material by rotating at least 120% of the rated speed. It must be performed and checked before mass production. Dedicated equipment is required for the spin test, but even if a dedicated equipment is equipped, the design of a jig for high speed rotation, that is, an arbor and rotor, must be reviewed in advance and a test must be performed.
이때, 상기 지그는 경험에 의존하여 설계하므로, 과도한 회전체 진동이 발생하여 목표 회전속도에 도달하지 못하고 Test 진행이 불가한 경우가 발생하는 문제점이 있다.At this time, since the jig is designed based on experience, there is a problem in that excessive vibration of the rotating body occurs, so that the target rotational speed is not reached and the test cannot be performed.
이 경우, 상기 지그에 대해 재설계가 반드시 이루어져야만 하므로, 시간적, 생산적 및 경제적 손실이 발생하는 문제점이 있다.In this case, since the jig must be redesigned, there is a problem in that time, productive and economic losses occur.
본 발명은 로터다이나믹 해석을 지그의 설계 과정에 적용하여 지그를 설계하여 가스터빈 회전체의 spin test 중 발생할 수 있는 회전체의 과도한 진동을 사전에 차단하는 데 목적이 있다.An object of the present invention is to design a jig by applying a rotor dynamic analysis to the design process of a jig to prevent excessive vibration of a rotating body that may occur during a spin test of a gas turbine rotating body.
본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법은 가스 터빈에 장착되는 회전체와 상기 회전체의 강도를 테스트하는 테스트 장비를 연결하는 지그를 설계하는 방법에 있어서, 상기 테스트 장비의 제원을 분석하는 제원 분석 단계; 상기 제원 분석 단계에서 분석한 상기 테스트 장비의 제원을 고려하여 상기 지그의 초기 형상을 설계하는 초기 지그 설계 단계; 상기 초기 지그 설계 단계를 통해 설계한 지그를 로터다이나믹 해석을 적용하여 해석하는 로터다이나믹 해석 단계; 및 상기 로터다이나믹 해석 단계에서 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 지그의 형상을 변경하거나 또는 상기 로터다이나믹 해석의 설계값을 변경하는 변경 단계를 포함하고, 상기 로터다이나믹 해석 단계는 정적 해석 단계, 고유 진동수 해석 단계 및 밸런싱 해석 단계를 포함한다.In the method of designing a jig for testing a rotating body according to an embodiment of the present invention, in the method of designing a jig connecting a rotating body mounted on a gas turbine and a test equipment for testing the strength of the rotating body, the specification of the test equipment A specification analysis step of analyzing the data; An initial jig design step of designing an initial shape of the jig in consideration of the specifications of the test equipment analyzed in the specification analysis step; A rotor dynamic analysis step of analyzing the jig designed through the initial jig design step by applying a rotor dynamic analysis; And a change step of changing a shape of the jig or changing a design value of the rotor dynamic analysis when the jig is not satisfied with the reference value through the analysis result in the rotor dynamic analysis step, wherein the rotor dynamic analysis step It includes a static analysis step, a natural frequency analysis step, and a balancing analysis step.
일 실시예에 있어서, 상기 정적 해석 단계는 상기 지그의 비틀림 각도가 기준 각도값을 만족하는지 여부를 판단할 수 있다.In an embodiment, in the static analysis step, it may be determined whether the twist angle of the jig satisfies a reference angle value.
일 실시예에 있어서, 상기 고유 진동수 해석 단계는 상기 지그의 고유 진동수와 상기 회전체의 정격 속도간의 차이가 기준 마진율을 만족하는지 여부를 판단할 수 있다.In an embodiment, in the step of analyzing the natural frequency, it may be determined whether a difference between the natural frequency of the jig and the rated speed of the rotating body satisfies a reference margin ratio.
일 실시예에 있어서, 상기 밸런싱 해석 단계는 상기 지그의 진동 허용치가 기준 진동값을 만족하는지 여부를 판단할 수 있다.In an embodiment, in the balancing analysis step, it may be determined whether a vibration tolerance value of the jig satisfies a reference vibration value.
일 실시예에 있어서, 상기 변경 단계는 정적 해석 단계 또는 고유 진동수 해석 단계의 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 지그의 형상을 변경할 수 있다.In one embodiment, the changing step may change the shape of the jig when the jig is not satisfied with the reference value through the analysis result of the static analysis step or the natural frequency analysis step.
일 실시예에 있어서, 상기 변경 단계는 밸런싱 해석 단계의 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 로터다이나믹 해석의 설계값을 변경할 수 있다.In an embodiment, in the changing step, when the jig is not satisfied with the reference value through the analysis result of the balancing analysis step, the design value of the rotor dynamic analysis may be changed.
본 발명의 일 실시예에 따른 회전체 테스트용 지그는 회전체 테스트용 지그에 있어서, 상기 지그는 상기 회전체 테스트용 지그 설계 방법에 의해 설계된다.A jig for testing a rotating body according to an embodiment of the present invention is a jig for testing a rotating body, wherein the jig is designed by the method of designing a jig for testing a rotating body.
일 실시예에 있어서, 상기 지그는 상기 회전체에 형성된 관통홀에 삽입될 수 있다.In one embodiment, the jig may be inserted into a through hole formed in the rotating body.
일 실시예에 있어서, 상기 지그는 일측에 체결부재가 삽입될 수 있는 체결홈이 형성될 수 있다.In one embodiment, a fastening groove into which a fastening member can be inserted may be formed at one side of the jig.
일 실시예에 있어서, 상기 지그는 상기 체결홈에 상기 체결부재가 삽입되는 경우에 탄성 변형되도록 형성될 수 있다.In one embodiment, the jig may be formed to be elastically deformed when the fastening member is inserted into the fastening groove.
본 발명의 다른 일 실시예에 따른 회전체 테스트용 지그는 아버 및 로터를 포함하는 회전체 테스트용 지그에 있어서, 상기 지그는 상기 회전체 테스트용 지그 설계 방법에 의해 설계된다.In a jig for testing a rotation body according to another embodiment of the present invention, in a jig for testing a rotation body including an arbor and a rotor, the jig is designed by the method of designing a jig for testing a rotation body.
일 실시예에 있어서, 상기 아버는 상기 로터가 삽입될 수 있는 삽입홀이 형성되되, 상기 삽입홀은 상기 아버의 중심축을 기준으로 소정 직경을 갖도록 형성될 수 있다.In one embodiment, the arbor may have an insertion hole into which the rotor is inserted, and the insertion hole may be formed to have a predetermined diameter with respect to a central axis of the arbor.
일 실시예에 있어서, 상기 아버의 외주면에는 상기 아버와 상기 로터를 고정하기 위한 고정홈이 형성될 수 있다.In one embodiment, a fixing groove for fixing the arbor and the rotor may be formed on an outer circumferential surface of the arbor.
일 실시예에 있어서, 상기 아버의 내주면에는 상기 로터를 고정하는 복수의 고정구가 형성될 수 있다.In one embodiment, a plurality of fasteners for fixing the rotor may be formed on the inner circumferential surface of the arbor.
본 발명은 로터다이나믹 해석을 지그의 설계 과정에 적용하여 지그를 설계하여 가스터빈 회전체의 spin test 중 발생할 수 있는 회전체의 과도한 진동을 사전에 차단하는 효과가 있다.The present invention is effective in blocking excessive vibration of a rotating body that may occur during a spin test of a gas turbine rotating body by designing a jig by applying a rotor dynamic analysis to the design process of a jig.
따라서, 본 발명은 지그 재설계에 따른 시간적, 생산적 및 경제적 손실을 차단하는 효과가 있다.Therefore, the present invention has the effect of blocking time, productive, and economic losses due to the redesign of the jig.
도 1은 회전체 테스트용 지그를 설계하는 회전체 테스트용 지그 설계 장비의 블록도이다.1 is a block diagram of a jig designing equipment for a rotating body test for designing a jig for testing a rotating body.
도 2는 본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법을 순차적으로 도시한 흐름도이다.2 is a flowchart sequentially showing a method of designing a jig for testing a rotating body according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법에서 로터다이나믹 해석을 적용하는 과정을 예시적으로 나타낸 도면이다.3 and 4 are views exemplarily showing a process of applying a rotor dynamic analysis in a method of designing a jig for testing a rotor according to an embodiment of the present invention.
도 5는 회전체, 테스트 장비 및 회전체 테스트용 지그의 연결관계를 도시한 도면이다.5 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body.
도 6은 본 발명의 제1 실시예에 따른 회전체 테스트용 지그를 도시한 도면이다.6 is a view showing a jig for testing a rotating body according to the first embodiment of the present invention.
도 7은 본 발명의 제2 실시예에 따른 회전체 테스트용 지그를 도시한 도면이다.7 is a view showing a jig for testing a rotating body according to a second embodiment of the present invention.
도 8은 회전체, 테스트 장비 및 본 발명의 제3 실시예에 따른 회전체 테스트용 지그의 연결관계를 도시한 도면이다.8 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body according to a third embodiment of the present invention.
도 9는 본 발명의 제3 실시예에 따른 회전체 테스트용 지그의 단면도이다.9 is a cross-sectional view of a jig for testing a rotating body according to a third embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in a variety of different forms, and only these embodiments make the disclosure of the present invention complete, and are common knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to those who have, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same components throughout the specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terms used in the present specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used in the specification, “comprises” and/or “comprising” do not exclude the presence or addition of one or more other elements other than the mentioned elements.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법에 대해 설명한다.Hereinafter, a method of designing a jig for testing a rotating body according to an embodiment of the present invention will be described with reference to the drawings.
한편, 지그(10, 40)는 경험에만 의존하여 설계되므로 회전체(30, 60)를 테스트 장비(20, 50)를 이용하여 강도 테스트시 지그(10, 40)에 과도한 회전체 진동이 발생하는 경우에는 회전체(30, 60)의 강도 테스트 자체를 수행할 수 없는 문제점이 있다. 따라서, 지그(10, 40)의 설계를 경험적이 아닌 체계화된 방법을 통해 설계할 필요성이 대두된다.On the other hand, since the jig (10, 40) is designed based only on experience, excessive vibration of the rotating body is generated in the jig (10, 40) during the strength test of the rotating body (30, 60) using the test equipment (20, 50). In this case, there is a problem that the strength test of the rotating bodies 30 and 60 cannot be performed. Accordingly, there is a need to design the jig 10 and 40 through a systematic method rather than an empirical design.
도 1은 회전체 테스트용 지그를 설계하는 회전체 테스트용 지그 설계 장비의 블록도이다.1 is a block diagram of a jig designing equipment for a rotating body test for designing a jig for testing a rotating body.
도 1을 참조하면, 지그 설계 장비(100)는 입력부(101), 제어부(103) 및 설계부(105)를 포함한다.Referring to FIG. 1, the jig design equipment 100 includes an input unit 101, a control unit 103 and a design unit 105.
입력부(101)는 사용자로부터 지그(10, 40)를 설계하기 위한 파라미터 값을 입력받는다. 예를 들어, 입력부(101)는 사용자로부터 지그(10, 40)의 로터(13) 직경에 대한 값을 입력받을 수 있다. 다만, 이는 일 예시에 불과하고, 입력부(101)가 사용자로부터 입력받는 파라미터 값은 지그(10, 40)를 설계하기 위해 필요한 모든 파라미터를 포함한다.The input unit 101 receives parameter values for designing the jigs 10 and 40 from the user. For example, the input unit 101 may receive a value for the diameter of the rotor 13 of the jigs 10 and 40 from the user. However, this is only an example, and the parameter value input by the input unit 101 from the user includes all parameters necessary for designing the jig 10 and 40.
입력부(101)는 사용자로부터 입력받은 지그(10, 40)를 설계하기 위한 파라미터 값을 제어부(103)로 전달한다.The input unit 101 transfers parameter values for designing the jigs 10 and 40 received from the user to the control unit 103.
제어부(103)는 입력부(101)로부터 전달받은 지그(10, 40)를 설계하기 위한 파라미터 값에 따라 지그(10, 40)의 형상이 설계되도록 설계부(105)를 제어한다.The control unit 103 controls the design unit 105 to design the shape of the jig 10 and 40 according to the parameter values for designing the jig 10 and 40 received from the input unit 101.
예를 들어, 제어부(103)는 입력부(101)로부터 전달받은 지그(10, 40)의 로터(13) 직경에 대한 값에 따라 지그(10, 40)의 로터(13) 직경이 설계되도록 설계부(105)를 제어할 수 있다.For example, the control unit 103 is a design unit to design the diameter of the rotor 13 of the jig 10 and 40 according to the value for the diameter of the rotor 13 of the jig 10 and 40 received from the input unit 101. 105) can be controlled.
설계부(105)는 제어부(103)의 제어 명령에 따라 지그(10, 40)를 설계한다. 구체적으로, 설계부(105)는 제어부(103)의 제어 명령에 따라 지그(10, 40)의 형상을 설계한다.The design unit 105 designs the jigs 10 and 40 according to the control command of the control unit 103. Specifically, the design unit 105 designs the shapes of the jigs 10 and 40 according to the control command of the control unit 103.
도 2은 본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법을 순차적으로 도시한 흐름도이다.2 is a flowchart sequentially showing a method of designing a jig for testing a rotating body according to an embodiment of the present invention.
도 2을 참조하면, 먼저, 제어부(103)는 테스트 장비(20, 50)의 제원을 분석한다(S101). 구체적으로, 제어부(103)는 테스트 장비(20, 50)에 포함된 구성인 스핀들(21)의 특성, 베어링 위치 등을 파악하여 테스트 장비(20, 50)의 제원을 분석한다.2, first, the control unit 103 analyzes the specifications of the test equipment (20, 50) (S101). Specifically, the control unit 103 analyzes the specifications of the test equipment 20 and 50 by grasping the characteristics of the spindle 21, which is a component included in the test equipment 20 and 50, the bearing position, and the like.
이후, 설계부(105)는 S101 단계에서 분석한 테스트 장비(20, 50)의 제원을 고려하여 지그(10, 40)의 형상을 설계한다(S103). 구체적으로, 설계부(105)는 제어부(103)에서 제어 명령을 전달 받아 지그(10, 40)의 형상을 설계한다. 한편, S103 단계에서 설계한 지그(10, 40)는 로터다이나믹(Rotordynamics) 해석을 거치지 않고 설계한 지그(10, 40)를 의미한다.Thereafter, the design unit 105 designs the shape of the jig 10 and 40 in consideration of the specifications of the test equipment 20 and 50 analyzed in step S101 (S103). Specifically, the design unit 105 designs the shape of the jig 10 and 40 by receiving a control command from the control unit 103. Meanwhile, the jigs 10 and 40 designed in step S103 refer to the jigs 10 and 40 designed without a rotor dynamics analysis.
이후, 테스트 장비(20, 50)는 S103 단계에서 설계한 지그(10, 40)에 로터다이나믹 해석을 적용한다(S105, S107, S109, S111, S115, S117, S119). 즉, 테스트 장비(20, 50)는 지그(10, 40)에 정적 해석, 고유 진동수 해석 및 밸런싱 해석을 순차적으로 적용한다.Thereafter, the test equipment (20, 50) applies the rotor dynamic analysis to the jig (10, 40) designed in step S103 (S105, S107, S109, S111, S115, S117, S119). That is, the test equipment (20, 50) sequentially applies static analysis, natural frequency analysis, and balancing analysis to the jig (10, 40).
먼저, 테스트 장비(20, 50)는 지그(10, 40)에 로터다이나믹 해석 중 정적 해석을 적용한다(S107, S109). 상기 정적 해석은 지그(10, 40)의 처짐, 기울기, 비틀림각 등을 분석하는 해석을 의미한다.First, the test equipment (20, 50) applies a static analysis of the rotor dynamic analysis to the jig (10, 40) (S107, S109). The static analysis refers to an analysis that analyzes the deflection, inclination, and twist angle of the jig 10 and 40.
구체적으로, 테스트 장비(20, 50)는 지그(10, 40)에 정적 해석을 적용하여 지그(10, 40)의 비틀림 각도(처짐 각도 또는 기울기)가 기준 각도값을 만족하는지 여부를 판단한다. 상기 기준 각도값은 지그(10, 40)의 비틀림 정도가 정상 범위 내인지 여부를 판단하는 데 기준이 되는 각도값을 의미한다.Specifically, the test equipment (20, 50) applies a static analysis to the jig (10, 40) to determine whether the twist angle (sag angle or inclination) of the jig (10, 40) satisfies the reference angle value. The reference angle value refers to an angle value used as a reference for determining whether the degree of twisting of the jigs 10 and 40 is within a normal range.
이후, S109 단계에서 판단 결과 지그(10, 40)의 비틀림 각도가 기준 각도값을 만족하는 경우, 테스트 장비(20, 50)는 지그(10, 40)에 고유 진동수 해석을 적용한다.(S111, S115). 상기 고유 진동수 해석은 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도를 비교하는 해석을 의미한다.Thereafter, as a result of determination in step S109, when the twist angle of the jig 10 and 40 satisfies the reference angle value, the test equipment 20 and 50 applies the natural frequency analysis to the jig 10 and 40 (S111, S115). The natural frequency analysis means an analysis comparing the natural frequencies of the jigs 10 and 40 with the rated speeds of the rotating bodies 30 and 60.
구체적으로, 테스트 장비(20, 50)는 지그(10, 40)에 고유 진동수 해석을 적용하여 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 기준 마진율을 만족하는지 여부를 판단한다. 상기 기준 마진율은 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 정상 범위 내인지 여부를 판단하는 데 기준이 되는 마진율을 의미한다.Specifically, the test equipment (20, 50) applies the natural frequency analysis to the jig (10, 40) so that the difference between the natural frequency of the jig (10, 40) and the rated speed of the rotating body (30, 60) is the reference margin ratio. Determine whether you are satisfied. The reference margin rate refers to a margin rate that is a reference for determining whether the difference between the natural frequency of the jig 10 and 40 and the rated speed of the rotating bodies 30 and 60 is within a normal range.
예를 들어, 테스트 장비(20, 50)는 회전체(30, 60)의 정격 속도가 90000(rpm)인 경우에 Campbell Diagram 해석을 적용한 결과 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 20% 이상의 공진 마진율을 보유하는지 여부를 판단할 수 있다.For example, the test equipment (20, 50) is the natural frequency of the jig (10, 40) and the rotating body (30) as a result of applying the Campbell Diagram analysis when the rated speed of the rotating bodies (30, 60) is 90000 (rpm). , It can be determined whether the difference between the rated speeds of 60) has a resonance margin ratio of 20% or more.
도 3를 참조하면, 테스트 장비(20, 50)가 Campbell Diagram 해석을 적용하여 테스트시 지그(10, 40)의 진동수(a)와 회전체(30, 60)의 회전 속도(b)가 만나는 주파수, 즉, 고유 진동수가 92361(rpm)인 것을 확인할 수 있다. 회전체(30, 60)의 정격 속도가 90000(rpm)이므로, 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 약 5% 정도로 20% 미만의 마진율을 나타내는 것을 확인할 수 있다. 따라서, 도 3의 경우에는 지그(10, 40)의 형상을 변경할 필요성이 있다. 이는, 상술한 바와 같이 테스트 장비(20, 50)가 회전체(30, 60)를 정격 속도의 120% 이상의 속도로 회전시켜 회전체(30, 60) 재료의 원심 강도를 테스트하는 장비이기 때문이다.3, the frequency at which the frequency (a) of the jig (10, 40) and the rotational speed (b) of the rotating bodies (30, 60) meet when the test equipment (20, 50) applies Campbell Diagram analysis to test That is, it can be confirmed that the natural frequency is 92361 (rpm). Since the rated speed of the rotors 30 and 60 is 90000 (rpm), the difference between the natural frequency of the jig 10 and 40 and the rated speed of the rotors 30 and 60 is about 5%, making the margin less than 20%. You can see what it represents. Accordingly, in the case of FIG. 3, it is necessary to change the shape of the jig 10 and 40. This is because, as described above, the test equipment 20 and 50 rotates the rotating bodies 30 and 60 at a speed of 120% or more of the rated speed to test the centrifugal strength of the materials of the rotating bodies 30 and 60. .
도 4를 참조하면, 테스트 장비(20, 50)가 Campbell Diagram 해석을 적용하여 테스트시 지그(10, 40)의 진동수(a)와 회전체(30, 60)의 회전 속도(b)가 만나는 주파수, 즉, 고유 진동수가 108660(rpm)인 것을 확인할 수 있다. 회전체(30, 60)의 정격 속도가 90000(rpm)이므로, 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 20% 이상의 마진율을 나타내는 것을 확인할 수 있다. 따라서, 도 4의 경우에는 지그(10, 40)의 형상을 변경하지 않고도 테스트를 계속 진행할 수 있다.4, the frequency at which the frequency (a) of the jig (10, 40) and the rotational speed (b) of the rotating bodies (30, 60) meet when the test equipment (20, 50) applies Campbell Diagram analysis to test. That is, it can be seen that the natural frequency is 108660 (rpm). Since the rated speed of the rotors 30 and 60 is 90000 (rpm), it can be seen that the difference between the natural frequency of the jig 10 and 40 and the rated speed of the rotors 30 and 60 represents a margin rate of 20% or more. . Accordingly, in the case of FIG. 4, the test can be continued without changing the shape of the jigs 10 and 40.
이때, 테스트 장비(20, 50)는 Campbell Diagram 해석을 적용시 테스트 장비(20, 50)에 포함된 볼베어링에 대해서는 비교적 낮은 강성값인 1x10 7N/m 적용하고, 감쇠는 10%로 적용하였음을 전제한다. 또한, 테스트 장비(20, 50)는 테스트 장비(20, 50)에 포함된 부싱(bush) 베어링의 경우에는 스핀들(21)과 반경방향 틈새가 0.5mm 이상으로 설정하여 베어링 역할보다는 스핀들(21)의 과도한 진동 제한 역할만 수행하도록 하였다. 따러서, 상기 부싱 베어링에 대한 강성과 감쇠는 각각 5x10 3N/m과 1.5x10 3Ns/m를 적용하였음을 전제한다.At this time, when applying the Campbell Diagram analysis, the test equipment (20, 50) applied a relatively low stiffness value of 1x10 7 N/m to the ball bearing included in the test equipment (20, 50) and applied a damping of 10%. Premise. In addition, the test equipment (20, 50) in the case of the bushing (bush) bearing included in the test equipment (20, 50), the spindle 21 and the radial clearance is set to 0.5 mm or more, rather than the bearing role of the spindle (21). It is intended to play only the role of limiting excessive vibration of Therefore, it is assumed that 5x10 3 N/m and 1.5x10 3 Ns/m are applied to the stiffness and damping for the bushing bearing, respectively.
또한, 테스트 장비(20, 50)는 Critical Speed Map 해석 또는 Mode 해석을 적용하여 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 기준 마진율을 만족하는지 여부를 판단할 수도 있다. 다만, 테스트 장비(20, 50)는 예시한 해석 방법이외의 방법을 통하여서도 지그(10, 40)에 고유 진동수 해석을 수행할 수 있음은 물론이다.In addition, the test equipment (20, 50) applies Critical Speed Map analysis or Mode analysis to determine whether the difference between the natural frequency of the jig (10, 40) and the rated speed of the rotating body (30, 60) satisfies the standard margin rate. You can judge. However, it goes without saying that the test equipments 20 and 50 can perform natural frequency analysis on the jigs 10 and 40 even through methods other than the illustrated analysis method.
한편, S109 단계에서 판단 결과 지그(10, 40)의 비틀림 각도가 기준 각도값을 불만족하는 경우, 설계부(105)는 지그(10, 40)의 형상을 변경한다(S113).On the other hand, as a result of the determination in step S109, when the twist angle of the jig 10 and 40 is not satisfied with the reference angle value, the design unit 105 changes the shape of the jig 10 and 40 (S113).
예를 들어, 설계부(105)는 지그(10, 40)의 비틀림 각도가 상기 기준 각도값을 만족하도록 로터(13) 직경을 증가 또는 감소시켜 지그(10, 40)의 형상을 변경할 수 있다. 또는, 설계부(105)는 로터(13)의 길이를 증가 또는 감소시켜 지그(10, 40)의 형상을 변경할 수 있다.For example, the design unit 105 may change the shape of the jig 10 and 40 by increasing or decreasing the diameter of the rotor 13 so that the twist angle of the jig 10 and 40 satisfies the reference angle value. Alternatively, the design unit 105 may change the shape of the jig 10 and 40 by increasing or decreasing the length of the rotor 13.
다만, 설계부(105)는 회전체(30, 60)의 직경이 R이라고 할때, 지그(10, 40)의 길이가 2R 범위를 넘지 않도록 지그(10, 40)의 형상을 변경할 수 있다. 또한, 설계부(105)는 지그(10, 40)의 직경이 0.25R 내지 0.5R 범위내에 존재하도록 지그(10, 40)의 형상을 변경할 수 있다. 이는, 지그(10, 40)의 길이는 최대한 짧고, 지그(10, 40)의 중량은 최대한 가볍도록 설계해야 로터다이나믹 해석에 유리하기 때문이다.However, when the diameter of the rotating bodies 30 and 60 is R, the design unit 105 may change the shape of the jig 10 and 40 so that the length of the jig 10 and 40 does not exceed the 2R range. In addition, the design unit 105 may change the shapes of the jigs 10 and 40 so that the diameters of the jigs 10 and 40 are within the range of 0.25R to 0.5R. This is because the length of the jig (10, 40) is as short as possible, and the weight of the jig (10, 40) should be designed to be as light as possible, which is advantageous for rotor dynamic analysis.
이후, S115 단계에서 판단 결과 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 정격 속도간의 차이가 기준 마진율을 만족하는 경우, 테스트 장비(20, 50)는 지그(10, 40)에 밸런싱 해석을 적용한다.(S117, S119). 상기 밸런싱 해석은 기준 질량불균형량에 따라 지그(10, 40)의 좌우 질량을 다르게 설정하여 해석을 수행하는 것을 의미한다. 이때, 상기 기준 질량불균형량은 지그(10, 40)의 중심면을 기준으로 좌우 질량을 어느 정도 불균형하게 설정할 것인지를 나타내는 값을 의미하며, 본 발명에서는 상기 기준 질량불균형량은 ISO 1940-1의 G2.5~5(2배) 범위내에서 적용하는 것을 전제한다.Thereafter, as a result of determination in step S115, if the difference between the natural frequency of the jig 10 and 40 and the rated speed of the rotating bodies 30 and 60 satisfies the reference margin rate, the test equipment 20 and 50 is ) To apply the balancing analysis (S117, S119). The balancing analysis means performing the analysis by setting the left and right masses of the jigs 10 and 40 differently according to the reference mass imbalance. At this time, the reference mass imbalance refers to a value indicating how unbalanced the left and right masses are to be set based on the central plane of the jig (10, 40), and in the present invention, the reference mass imbalance amount is ISO 1940-1. It is premised to apply within the range of G2.5~5 (2 times).
구체적으로, 테스트 장비(20, 50)는 기준 질량불균형량을 선정하고, 상기 기준 질량불균형량에 맞춰 지그(10, 40)의 좌우 질량을 다르게 설정하여 밸런싱 해석을 적용하고, 해석 결과 지그(10, 40)의 진동이 기준 진동값을 만족하는지 여부를 판단한다. 이때, 상기 기준 진동값은 지그(10, 40)의 진동이 정상 범위 내인지 여부를 판단하는 데 기준이 되는 값을 의미한다.Specifically, the test equipment (20, 50) selects a reference mass imbalance, sets the left and right masses of the jig (10, 40) differently according to the reference mass imbalance, applies a balancing analysis, and applies the analysis result jig (10). , It is determined whether the vibration of 40) satisfies the reference vibration value. In this case, the reference vibration value means a value that is a reference for determining whether the vibration of the jig 10 and 40 is within a normal range.
이후, S119 단계에서 판단 결과 지그(10, 40)의 진동이 상기 기준 진동값을 불만족하는 경우, 테스트 장비(20, 50)는 상기 기준 질량불균형량을 재선정하여 상기 재선정된 기준 질량불균형량에 맞춰 지그(10, 40)의 좌우 질량을 다르게 설정하여 밸런싱 해석을 다시 적용한다. 이때, 테스트 장비(20, 50)는 상기 재선정된 기준 질량불균형량은 직전 기준 질량불균형량에 비해 완화된 값으로 선정한다.Thereafter, when the vibration of the jig 10 and 40 is not satisfied with the reference vibration value as a result of the determination in step S119, the test equipment 20 and 50 reselects the reference mass imbalance amount to the reselected reference mass imbalance amount. Set the left and right masses of the jig (10, 40) differently accordingly, and apply the balancing analysis again. At this time, the test equipment 20 and 50 selects the reselected reference mass imbalance as a value that is relaxed compared to the previous reference mass imbalance.
즉, 테스트 장비(20, 50)는 지그(10, 40)의 진동이 상기 기준 진동값을 만족할 때까지 지그(10, 40)에 상기 밸런싱 해석을 적용한다.That is, the test equipment (20, 50) applies the balancing analysis to the jig (10, 40) until the vibration of the jig (10, 40) satisfies the reference vibration value.
한편, S115 단계에서 판단 결과 지그(10, 40)의 고유 진동수와 회전체(30, 60)의 회전 속도간의 차이가 기준 마진율을 불만족하는 경우, 설계부(105)는 지그(10, 40)의 형상을 변경한다(S113).On the other hand, if the difference between the natural frequency of the jig 10 and 40 and the rotational speed of the rotating bodies 30 and 60 is unsatisfied with the reference margin rate as a result of the determination in step S115, the design unit 105 determines the shape of the jig 10 and 40 To change (S113).
이하, 도 5 내지 도 9를 참조하여, 본 발명의 일 실시예에 따른 회전체 테스트용 지그 설계 방법에 따라 설계된 회전체 테스트용 지그에 대해 설명한다.Hereinafter, with reference to FIGS. 5 to 9, a jig for testing a rotating body designed according to a method of designing a jig for testing a rotating body according to an embodiment of the present invention will be described.
도 5는 회전체, 테스트 장비 및 회전체 테스트용 지그의 연결관계를 도시한 도면이다. 이때, 도 5에서는 지그(10)와 회전체(30)가 일체형인 것을 전제하여 설명한다.5 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body. In this case, in FIG. 5, it is assumed that the jig 10 and the rotating body 30 are integrally formed.
도 5를 참조하면, 지그(10)는 테스트 장비(20)와 회전체(30) 사이에 배치되어, 테스트 장비(20)와 회전체(30)를 연결하는 것을 확인 할 수 있다. Referring to FIG. 5, it can be seen that the jig 10 is disposed between the test equipment 20 and the rotating body 30 to connect the test equipment 20 and the rotating body 30.
지그(10)는 아버(11) 및 로터(13)로 구성된다. 아버(11)는 테스트 장비(20)의 플랜지(23)와 연결되고, 로터(13)는 회전체(30)와 연결된다. 이때, 지그(10)의 구체적인 구조에 대해서는 도 6 및 도 7을 참조하여 후술한다.The jig 10 is composed of an arbor 11 and a rotor 13. The arbor 11 is connected to the flange 23 of the test equipment 20, and the rotor 13 is connected to the rotating body 30. At this time, a specific structure of the jig 10 will be described later with reference to FIGS. 6 and 7.
테스트 장비(20)는 회전체(30)의 강도를 테스트하는 장비로, 회전체(30)를 정격 속도의 120% 이상의 속도로 회전시켜 회전체(30) 재료의 원심 강도를 테스트한다. 이때, 도 5에서는 테스트 장비(20)를 지그(10)와 연결되는 구성만 간략하게 표시하기 위해 스핀들(21) 및 플랜지(23)로 구성된 것으로 도시하였으나, 테스트 장비(20)는 도 5에 도시된 것 외에 다른 구성들을 포함하여 구성된다.The test equipment 20 is an equipment that tests the strength of the rotating body 30, and tests the centrifugal strength of the material of the rotating body 30 by rotating the rotating body 30 at a speed of 120% or more of the rated speed. At this time, in FIG. 5, it is shown that the test equipment 20 is composed of a spindle 21 and a flange 23 to briefly display only the configuration connected to the jig 10, but the test equipment 20 is shown in FIG. It is composed of other components besides the one that has been set.
회전체(30)는 지그(10)와 연결되어 테스트 장비(20)를 통해 강도가 측정되는 시험 대상품을 의미한다. 예를 들어, 회전체(30)는 압축기와 터빈을 모사한 시편을 의미할 수 있다. 또는, 회전체(30)는 실제 가스 터빈에 장착되는 압축기와 터빈을 의미할 수도 있다.The rotating body 30 is connected to the jig 10 and means a test target product whose strength is measured through the test equipment 20. For example, the rotor 30 may mean a specimen that simulates a compressor and a turbine. Alternatively, the rotating body 30 may mean a compressor and a turbine that are actually mounted on a gas turbine.
도 6은 본 발명의 제1 실시예에 따른 회전체 테스트용 지그를 도시한 도면이다. 이때, 도 6 (a)는 아버(111)와 로터(131)가 결합되기 전 상태를 나타낸 도면이고, 도 6 (b)는 아버(111)와 로터(131)가 결합된 상태를 나타낸 도면이다.6 is a view showing a jig for testing a rotating body according to the first embodiment of the present invention. In this case, FIG. 6 (a) is a view showing a state before the arbor 111 and the rotor 131 are coupled, and FIG. 6 (b) is a view showing a state in which the arbor 111 and the rotor 131 are coupled. .
도 6을 참조하면, 본 발명의 제1 실시예에 따른 회전체 테스트용 지그는 아버(111) 및 로터(131)를 포함한다.Referring to FIG. 6, the jig for testing a rotating body according to the first embodiment of the present invention includes an arbor 111 and a rotor 131.
아버(111)는 로터(131)가 삽입될 수 있는 삽입홀(1111)이 형성된다. 이때, 삽입홀(1111)은 아버(111)의 중심축을 기준으로 소정 직경을 갖도록 형성된다. 상기 소정 직경은 로터(131)의 직경에 대응된다.The arbor 111 has an insertion hole 1111 into which the rotor 131 can be inserted. In this case, the insertion hole 1111 is formed to have a predetermined diameter based on the central axis of the arbor 111. The predetermined diameter corresponds to the diameter of the rotor 131.
또한, 아버(111)의 외주면에는 아버(111)와 로터(131)를 고정하기 위한 고정홈(1113, 1115)이 형성된다. 이때, 고정홈(1113, 1115)은 아버(111)의 외주면 상에 대칭적인 위치에 각각 형성될 수 있다. 도 6에 도시된 바와 같이 아버(111)의 외주면에 고정홈(1113, 1115)이 형성됨으로써 별도 치구의 제작 등이 필요없이 스패너 또는 일반 도구를 이용해 아버(111)와 로터(131)를 고정할 수 있게 되는 효과가 있다. 따라서, 아버(111)와 로터(131)의 고정에 따른 손상 내지 형상 변경을 방지할 수 있는 효과가 있다.In addition, fixing grooves 1113 and 1115 for fixing the arbor 111 and the rotor 131 are formed on the outer peripheral surface of the arbor 111. In this case, the fixing grooves 1113 and 1115 may be formed at symmetrical positions on the outer peripheral surface of the arbor 111, respectively. As shown in FIG. 6, fixing grooves 1113 and 1115 are formed on the outer circumferential surface of the arbor 111, so that the arbor 111 and the rotor 131 can be fixed using a spanner or a general tool without the need for a separate jig. There is an effect to be able to. Accordingly, there is an effect of preventing damage or shape change due to the fixing of the arbor 111 and the rotor 131.
도 7은 본 발명의 제2 실시예에 따른 회전체 테스트용 지그를 도시한 도면이다. 이때, 도 7 (a)는 아버(112)와 로터(132)가 결합되기 전 상태를 나타낸 단면도이고, 도 7 (b)는 아버(112)와 로터(132)가 결합된 상태를 나타낸 단면도이다.7 is a view showing a jig for testing a rotating body according to a second embodiment of the present invention. At this time, Figure 7 (a) is a cross-sectional view showing a state before the arbor 112 and the rotor 132 are coupled, Figure 7 (b) is a cross-sectional view showing the state in which the arbor 112 and the rotor 132 are coupled. .
도 7을 참조하면, 본 발명의 제2 실시예에 따른 회전체 테스트용 지그는 아버(112) 및 로터(132)를 포함한다.Referring to FIG. 7, a jig for testing a rotating body according to a second embodiment of the present invention includes an arbor 112 and a rotor 132.
아버(112)는 로터(132)가 삽입될 수 있는 삽입홀(1121)이 형성된다. 이때, 삽입홀(1121)은 아버(112)의 중심축을 기준으로 소정 직경을 갖도록 형성된다. 상기 소정 직경은 로터(132)의 직경에 대응된다.The arbor 112 has an insertion hole 1121 into which the rotor 132 can be inserted. At this time, the insertion hole 1121 is formed to have a predetermined diameter with respect to the central axis of the arbor 112. The predetermined diameter corresponds to the diameter of the rotor 132.
또한, 아버(112)의 내주면에는 로터(132)를 고정하는 복수의 고정구(1123)가 형성되고, 로터(132)의 외주면에는 아버(112)에 형성된 복수의 고정구(1123)에 결합되도록 고정홈(1321)이 형성된다.In addition, a plurality of fasteners 1123 for fixing the rotor 132 are formed on the inner circumferential surface of the arbor 112, and a fixing groove is coupled to the plurality of fasteners 1123 formed on the arbor 112 on the outer circumferential surface of the rotor 132 (1321) is formed.
구체적으로, 아버(112)의 내주면에는 도 7 (a)에 도시된 바와 같이 복수의 고정구(1123)가 아버(112)의 내주면의 직경을 따라 일정 간격으로 배열되어 형성되고, 로터(132)의 외주면에는 도 7 (a)에 도시된 바와 같이 고정홈(1321)이 로터(132)의 외주면의 직경을 따라 형성되는 것을 확인할 수 있다. 따라서, 도 7 (b)에 도시된 바와 같이 아버(112)에 로터(132)가 삽입되면 복수의 고정구(1123)가 고정홈(1321)에 결합되는 것을 확인할 수 있다.Specifically, on the inner circumferential surface of the arbor 112, a plurality of fasteners 1123 are arranged at regular intervals along the diameter of the inner circumferential surface of the arbor 112 as shown in FIG. 7 (a), and the rotor 132 On the outer circumferential surface, it can be seen that the fixing groove 1321 is formed along the diameter of the outer circumferential surface of the rotor 132 as shown in FIG. 7 (a). Accordingly, as shown in FIG. 7 (b), when the rotor 132 is inserted into the arbor 112, it can be seen that the plurality of fasteners 1123 are coupled to the fixing groove 1321.
또한, 아버(112)의 제2 체결홈(1125, 1127)에는 각각 제2 체결부재(80, 90)가 결합되어 아버(112)와 로터(132)간의 결합력을 향상시킬 수 있다.In addition, the second fastening members 80 and 90 are coupled to the second fastening grooves 1125 and 1127 of the arbor 112, respectively, so that the coupling force between the arbor 112 and the rotor 132 may be improved.
도 8은 회전체, 테스트 장비 및 본 발명의 제3 실시예에 따른 회전체 테스트용 지그의 연결관계를 도시한 도면이다. 이때, 도 8에서는 지그(40)와 회전체(60)를 관통하는 형태인 것을 전제하여 설명한다. 또한, 도 8에 도시된 지그(40)는 도 5 내지 도 7에 도시된 지그(10)와 달리 아버와 로터의 구분이 없는 일체형인 것을 전제하여 설명한다.8 is a diagram showing a connection relationship between a rotating body, a test equipment, and a jig for testing a rotating body according to a third embodiment of the present invention. In this case, in FIG. 8, it is assumed that the jig 40 and the rotating body 60 pass through. In addition, unlike the jig 10 shown in FIGS. 5 to 7, the jig 40 shown in FIG. 8 will be described on the premise that it is an integral type without distinction between an arbor and a rotor.
도 8을 참조하면, 지그(40)는 회전체(60)에 형성된 관통홀에 삽입된다. 이때, 상기 관통홀은 회전체(60)의 중심축을 기준으로 지그(40)의 직경에 대응되는 크기를 갖도록 형성된다. 또한, 지그(40)는 일측에 제1 체결부재(70)가 삽입될 수 있는 제1 체결홈(41)이 형성된다. 지그(40)의 제1 체결홈(41)에 제1 체결부재(70)가 삽입되는 과정은 도 9를 참조하여 후술한다.Referring to FIG. 8, the jig 40 is inserted into a through hole formed in the rotating body 60. In this case, the through hole is formed to have a size corresponding to the diameter of the jig 40 with respect to the central axis of the rotating body 60. In addition, the jig 40 has a first fastening groove 41 into which the first fastening member 70 can be inserted. A process of inserting the first fastening member 70 into the first fastening groove 41 of the jig 40 will be described later with reference to FIG. 9.
테스트 장비(50)는 회전체(60)의 강도를 테스트하는 장비로, 회전체(60)를 정격 속도의 120% 이상의 속도로 회전시켜 회전체(60) 재료의 원심 강도를 테스트한다. 이때, 도 8에서는 테스트 장비(50)를 지그(40)와 연결되는 구성만 간략하게 표시하기 위해 스핀들(51) 및 플랜지(53)로 구성된 것으로 도시하였으나, 테스트 장비(20)는 도 8에 도시된 것 외에 다른 구성들을 포함하여 구성된다.The test equipment 50 is an equipment for testing the strength of the rotating body 60, and tests the centrifugal strength of the material of the rotating body 60 by rotating the rotating body 60 at a speed of 120% or more of the rated speed. At this time, in FIG. 8, it is illustrated that the test equipment 50 is composed of a spindle 51 and a flange 53 to briefly display only the configuration connected to the jig 40, but the test equipment 20 is shown in FIG. It is composed of other components besides the one that has been set.
회전체(60)는 지그(40)와 연결되어 테스트 장비(50)를 통해 강도가 측정되는 시험 대상품을 의미한다. 예를 들어, 회전체(60)는 압축기와 터빈을 모사한 시편을 의미할 수 있다. 또는, 회전체(60)는 실제 가스 터빈에 장착되는 압축기와 터빈을 의미할 수도 있다.The rotating body 60 is connected to the jig 40 and means a test target product whose strength is measured through the test equipment 50. For example, the rotor 60 may mean a specimen that simulates a compressor and a turbine. Alternatively, the rotating body 60 may mean a compressor and a turbine that are actually mounted on a gas turbine.
도 9는 본 발명의 제3 실시예에 따른 회전체 테스트용 지그의 단면도이다. 이때, 도 9 (a)는 본 발명의 제3 실시예에 따른 회전체 테스트용 지그에 체결부재가 결합되기 전 상태의 단면도이고, 도 9 (b)는 본 발명의 제3 실시예에 따른 회전체 테스트용 지그에 체결부재가 결합된 상태의 단면도이다.9 is a cross-sectional view of a jig for testing a rotating body according to a third embodiment of the present invention. At this time, Figure 9 (a) is a cross-sectional view of a state before the fastening member is coupled to the jig for testing a rotating body according to the third embodiment of the present invention, and Figure 9 (b) is a circuit according to the third embodiment of the present invention. It is a cross-sectional view of a state in which the fastening member is coupled to the entire test jig.
도 9 (a)를 참조하면, 상술한 바와 같이 지그(40)에는 일측에 제1 체결부재(70)가 삽입될 수 있는 제1 체결홈(41)이 형성된 것을 확인할 수 있다. 이때, 제1 체결홈(41)의 직경은 제1 체결부재(70)의 직경보다 작게 형성된다.Referring to FIG. 9 (a), it can be seen that a first fastening groove 41 into which the first fastening member 70 can be inserted is formed in the jig 40 as described above. At this time, the diameter of the first fastening groove 41 is formed smaller than the diameter of the first fastening member (70).
도 9 (b)를 참조하면, 제1 체결홈(41)에 제1 체결부재(70)가 삽입된 것을 확인할 수 있다. 이때, 지그(40)는 탄성 물질로 구성되므로 제1 체결홈(41)의 직경이 제1 체결부재(70)이 직경보다 작더라도 제1 체결부재(70)가 제1 체결홈(41)에 억지끼움 상태로 삽입될 수 있게 된다. 즉, 지그(40)는 제1 체결홈(41)에 제1 체결부재(70)가 삽입되는 경우에 탄성 변형된다. 따라서, 본 발명의 제3 실시예에 따른 회전체 테스트용 지그(40)는 지그(40)를 회전체(60)에 열박음으로 체결하지 않고 제1 체결부재(70)를 통해 체결함으로써, 강도 등의 테스트 후 지그(40)와 회전체(60)의 분해가 용이한 효과가 있다.Referring to FIG. 9B, it can be seen that the first fastening member 70 is inserted into the first fastening groove 41. At this time, since the jig 40 is composed of an elastic material, even if the diameter of the first fastening groove 41 is smaller than the diameter of the first fastening member 70, the first fastening member 70 is in the first fastening groove 41. It can be inserted in a force-fitting state. That is, the jig 40 is elastically deformed when the first fastening member 70 is inserted into the first fastening groove 41. Therefore, the jig 40 for testing a rotation body according to the third embodiment of the present invention is fastened through the first fastening member 70 without fastening the jig 40 to the rotation body 60 by shrink fit, so that strength There is an effect that it is easy to disassemble the jig 40 and the rotating body 60 after testing such as.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those of ordinary skill in the art to which the present invention pertains will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features thereof. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention. do.

Claims (14)

  1. 가스 터빈에 장착되는 회전체와 상기 회전체의 강도를 테스트하는 테스트 장비를 연결하는 지그를 설계하는 방법에 있어서,In the method of designing a jig connecting a rotating body mounted on a gas turbine and a test equipment for testing the strength of the rotating body,
    상기 테스트 장비의 제원을 분석하는 제원 분석 단계;A specification analysis step of analyzing specifications of the test equipment;
    상기 제원 분석 단계에서 분석한 상기 테스트 장비의 제원을 고려하여 상기 지그의 초기 형상을 설계하는 초기 지그 설계 단계;An initial jig design step of designing an initial shape of the jig in consideration of the specifications of the test equipment analyzed in the specification analysis step;
    상기 초기 지그 설계 단계를 통해 설계한 지그를 로터다이나믹 해석을 적용하여 해석하는 로터다이나믹 해석 단계; 및A rotor dynamic analysis step of analyzing the jig designed through the initial jig design step by applying a rotor dynamic analysis; And
    상기 로터다이나믹 해석 단계에서 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 지그의 형상을 변경하거나 또는 상기 로터다이나믹 해석의 설계값을 변경하는 변경 단계를 포함하고,In the rotor dynamic analysis step, if the jig is not satisfied with the reference value through the analysis result, a change step of changing the shape of the jig or changing the design value of the rotor dynamic analysis,
    상기 로터다이나믹 해석 단계는 정적 해석 단계, 고유 진동수 해석 단계 및 밸런싱 해석 단계를 포함하는 회전체 테스트용 지그 설계 방법.The rotor dynamics analysis step includes a static analysis step, a natural frequency analysis step, and a balancing analysis step.
  2. 제1항에 있어서,The method of claim 1,
    상기 정적 해석 단계는 상기 지그의 비틀림 각도가 기준 각도값을 만족하는지 여부를 판단하는 회전체 테스트용 지그 설계 방법.The static analysis step is a method for designing a jig for testing a rotating body to determine whether the twist angle of the jig satisfies a reference angle value.
  3. 제1항에 있어서,The method of claim 1,
    상기 고유 진동수 해석 단계는 상기 지그의 고유 진동수와 상기 회전체의 정격 속도간의 차이가 기준 마진율을 만족하는지 여부를 판단하는 회전체 테스트용 지그 설계 방법.The natural frequency analysis step is a method for designing a jig for testing a rotating body to determine whether a difference between the natural frequency of the jig and the rated speed of the rotating body satisfies a reference margin ratio.
  4. 제1항에 있어서,The method of claim 1,
    상기 밸런싱 해석 단계는 상기 지그의 진동 허용치가 기준 진동값을 만족하는지 여부를 판단하는 회전체 테스트용 지그 설계 방법.The balancing analysis step is a method for designing a jig for testing a rotating body to determine whether or not a vibration tolerance of the jig satisfies a reference vibration value.
  5. 제1항에 있어서,The method of claim 1,
    상기 변경 단계는 정적 해석 단계 또는 고유 진동수 해석 단계의 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 지그의 형상을 변경하는 회전체 테스트용 지그 설계 방법.In the changing step, if the jig is not satisfied with the reference value through the analysis result of the static analysis step or the natural frequency analysis step, the jig design method for a rotating body test is changed.
  6. 제1항에 있어서,The method of claim 1,
    상기 변경 단계는 밸런싱 해석 단계의 해석 결과를 통해 상기 지그가 기준값을 불만족하는 경우에는 상기 로터다이나믹 해석의 설계값을 변경하는 회전체 테스트용 지그 설계 방법.In the changing step, if the jig is not satisfied with the reference value through the analysis result of the balancing analysis step, the design value of the rotor dynamic analysis is changed.
  7. 회전체 테스트용 지그에 있어서,In the jig for testing the rotating body,
    상기 지그는 제1항에 따른 회전체 테스트용 지그 설계 방법에 의해 설계되는 회전체 테스트용 지그.The jig is a jig for testing a rotation body designed by the jig design method for testing a rotation body according to claim 1.
  8. 제7항에 있어서,The method of claim 7,
    상기 지그는 상기 회전체에 형성된 관통홀에 삽입되는 회전체 테스트용 지그.The jig is a jig for testing a rotating body inserted into a through hole formed in the rotating body.
  9. 제8항에 있어서,The method of claim 8,
    상기 지그는 일측에 체결부재가 삽입될 수 있는 체결홈이 형성되는 회전체 테스트용 지그.The jig is a jig for testing a rotating body in which a fastening groove into which a fastening member can be inserted is formed on one side.
  10. 제9항에 있어서,The method of claim 9,
    상기 지그는 상기 체결홈에 상기 체결부재가 삽입되는 경우에 탄성 변형되도록 형성되는 회전체 테스트용 지그.The jig is a jig for testing a rotating body that is formed to be elastically deformed when the fastening member is inserted into the fastening groove.
  11. 아버 및 로터를 포함하는 회전체 테스트용 지그에 있어서,In the jig for testing a rotating body including an arbor and a rotor,
    상기 지그는 제1항에 따른 회전체 테스트용 지그 설계 방법에 의해 설계되는 회전체 테스트용 지그.The jig is a jig for testing a rotation body designed by the jig design method for testing a rotation body according to claim 1.
  12. 제11항에 있어서,The method of claim 11,
    상기 아버는 상기 로터가 삽입될 수 있는 삽입홀이 형성되되,The arbor has an insertion hole into which the rotor can be inserted,
    상기 삽입홀은 상기 아버의 중심축을 기준으로 소정 직경을 갖도록 형성되는 회전체 테스트용 지그.The insertion hole is a jig for testing a rotating body formed to have a predetermined diameter with respect to the central axis of the arbor.
  13. 제12항에 있어서,The method of claim 12,
    상기 아버의 외주면에는 상기 아버와 상기 로터를 고정하기 위한 고정홈이 형성되는 회전체 테스트용 지그.A jig for testing a rotating body having a fixing groove for fixing the arbor and the rotor formed on the outer circumferential surface of the arbor.
  14. 제12항에 있어서,The method of claim 12,
    상기 아버의 내주면에는 상기 로터를 고정하는 복수의 고정구가 형성되는 회전체 테스트용 지그.A jig for testing a rotating body having a plurality of fasteners for fixing the rotor formed on the inner circumferential surface of the arbor.
PCT/KR2019/013794 2019-05-17 2019-10-21 Jig for testing rotating body, and method for designing jig for testing rotating body WO2020235754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0057797 2019-05-17
KR1020190057797A KR20200132379A (en) 2019-05-17 2019-05-17 Jig for rotating test and method of jig design for rotating test

Publications (1)

Publication Number Publication Date
WO2020235754A1 true WO2020235754A1 (en) 2020-11-26

Family

ID=73458986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013794 WO2020235754A1 (en) 2019-05-17 2019-10-21 Jig for testing rotating body, and method for designing jig for testing rotating body

Country Status (2)

Country Link
KR (1) KR20200132379A (en)
WO (1) WO2020235754A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020213990A1 (en) * 2020-11-06 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Electrical energy store, device and method for operating an electrical energy store

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716761A (en) * 1984-10-03 1988-01-05 Ngk Insulators, Ltd. Method and jig for dynamically balancing an assembly of the jig and rotor
US5610332A (en) * 1995-08-14 1997-03-11 Alliedsignal Inc. Self piloting balance arbor
JP2008129726A (en) * 2006-11-17 2008-06-05 Toyota Central R&D Labs Inc Design device and design method for rotational structure
KR20150077566A (en) * 2013-12-27 2015-07-08 주식회사 효성 Method and apparatus for designing rotor system to avoid resonance
KR20160123606A (en) * 2015-04-16 2016-10-26 한양대학교 산학협력단 System and method for analysing vibration characteristic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896537A (en) 1988-06-02 1990-01-30 Westinghouse Electric Corp. Shrouded turbine blade vibration monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716761A (en) * 1984-10-03 1988-01-05 Ngk Insulators, Ltd. Method and jig for dynamically balancing an assembly of the jig and rotor
US5610332A (en) * 1995-08-14 1997-03-11 Alliedsignal Inc. Self piloting balance arbor
JP2008129726A (en) * 2006-11-17 2008-06-05 Toyota Central R&D Labs Inc Design device and design method for rotational structure
KR20150077566A (en) * 2013-12-27 2015-07-08 주식회사 효성 Method and apparatus for designing rotor system to avoid resonance
KR20160123606A (en) * 2015-04-16 2016-10-26 한양대학교 산학협력단 System and method for analysing vibration characteristic

Also Published As

Publication number Publication date
KR20200132379A (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US4694689A (en) Method and device for spin-testing of turbocharger rotor
CA2715271C (en) Gas turbine engine balancing
US10871402B2 (en) Device for measuring the characteristics of an air flow
US9200977B2 (en) Coupling for rotor balancing
WO2020235754A1 (en) Jig for testing rotating body, and method for designing jig for testing rotating body
US11111816B2 (en) Rotor blade arrangement
WO2017095063A1 (en) Disc assembly and turbine including same
CN110261036A (en) A kind of small aero multistage axis joint rotor dynamic balance method
CN112105799B (en) Rotor balancing method and apparatus
EP2803867A2 (en) Balancing method
US6053697A (en) Trilobe mounting with anti-rotation apparatus for an air duct in a gas turbine rotor
JP2013253599A (en) Method and system for determining creep capability of turbine components prior to operation
US11053798B2 (en) Gas turbine engine having a trim balance
CN112119203A (en) Rotor balancing method and device
CN114216678A (en) High-speed bearing tester of aviation power
RU2103783C1 (en) Method for high-speed balancing of flexible rotor
CN116929765A (en) Method and device for preventing bearing from sliding under light load
Alderson Instability of an intershaft squeeze film damper in a two-spool rotor dynamics simulator
CN215338899U (en) Rotor dynamic balance device for gas compressor test and gas compressor test platform
Wang et al. Numerical and experimental investigation on the controlling for rotor-to-stationary part rubbing in rotating machinery
US20240110483A1 (en) Balancing simulation mass, apparatus and associated methods
US20190264567A1 (en) Modular rotor balancing
RU2035713C1 (en) Bench for testing working capacity and durability of rolling-contact inter-shaft bearings
CN115638969A (en) Aligning tool
Wang et al. Balancing three-bearing rotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929406

Country of ref document: EP

Kind code of ref document: A1