WO2020235669A1 - Novel cellulose nanofibers, and production method of dried product thereof - Google Patents

Novel cellulose nanofibers, and production method of dried product thereof Download PDF

Info

Publication number
WO2020235669A1
WO2020235669A1 PCT/JP2020/020240 JP2020020240W WO2020235669A1 WO 2020235669 A1 WO2020235669 A1 WO 2020235669A1 JP 2020020240 W JP2020020240 W JP 2020020240W WO 2020235669 A1 WO2020235669 A1 WO 2020235669A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose nanofiber
dispersion
organic solvent
ion
Prior art date
Application number
PCT/JP2020/020240
Other languages
French (fr)
Japanese (ja)
Inventor
継之 齋藤
秀次 藤澤
雄樹 廣松
渉 佐久間
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2021520871A priority Critical patent/JPWO2020235669A1/ja
Publication of WO2020235669A1 publication Critical patent/WO2020235669A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines

Definitions

  • the present invention relates to a method for producing cellulose nanofibers and a dried product thereof.
  • Cellulose which accounts for about half of the production of biomass materials, is expected to be effectively used due to its large production.
  • Cellulose has high strength, high elastic modulus, and extremely low coefficient of thermal expansion, and when described in terms of heat resistance, it is known that it does not have a glass transition point and exhibits a high thermal decomposition temperature of 230 degrees.
  • cellulose is often used as a material for its large production volume.
  • D-glucopyranose which is a 6-membered ring of glucose
  • ⁇ - (1 ⁇ 4) glucoside-bonded is a homopolysaccharide in which D-glucopyranose, which is a 6-membered ring of glucose, is ⁇ - (1 ⁇ 4) glucoside-bonded, and has hydroxyl groups at the C2, C3, and C6 positions. Therefore, strong hydrogen bonds are formed in the molecule and between the molecules, and they are insoluble in water and general solvents.
  • carboxymethylation One of the most common uses of cellulose is carboxymethylation.
  • Carboxylic groups are randomly introduced into the hydroxyl groups at the C2, C3, and C6 positions, and depending on the degree of substitution, the carboxymethylated cellulose fibers are water-soluble at the degree of substitution and can be used as a thickener, and are insoluble at the degree of substitution. And various materials can be obtained.
  • organic solvent since a large amount of organic solvent is used in the carboxymethylation reaction of cellulose and toxic monochloroacetic acid is used, there are problems such as environmental pollution and waste liquid treatment.
  • the introduced carboxyl group has no distinction in the position of the hydroxyl group, the product has a non-uniform chemical structure.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy radical
  • the mechanism by which the oxidized cellulose obtained by the TEMPO oxidation reaction is dispersed to the nano level by a light mechanical treatment is known as follows.
  • the oxidation reaction By the oxidation reaction, the hydroxyl group at the C6 position on the surface of the microfibrils of cellulose is selectively oxidized, and the carboxyl group is introduced via the aldehyde group. Since this carboxyl group is ionized and exhibits an osmotic effect in the dispersion medium, nano-order microfibrils are easily isolated, and a homogeneous cellulose nanofiber dispersion can be obtained.
  • cellulose nanofibers can be used as nanodispersions, liquid states, and modifiers, have a low environmental load, and have high physical properties. Therefore, the treatment and oxides by the TEMPO oxidation reaction are cellulose nanofibers. It is expected as a new form of use of fiber.
  • One example of active development for industrial use is compounding with resin.
  • the purpose is to improve the functionality of the resin by utilizing the light weight, high strength, high elastic modulus, low coefficient of linear thermal expansion, and high heat resistance of cellulose.
  • Dispersibility of cellulose nanofibers in the resin is mentioned as an important factor for improving the functionality at this time. It is known that when cellulose nanofibers are unevenly distributed or aggregated, the effect of mixing cellulose nanofibers is significantly reduced.
  • Patent Document 1 after the cellulose oxide obtained by the TEMPO oxidation reaction is dispersed to form cellulose nanofibers, an acid is added to aggregate the cellulose oxide and take it out as a gel. This is added to an organic solvent to replace the water in the gel with a solvent, then an alkali dissolved in the organic solvent is allowed to act, and further solvent substitution is repeated and then dispersion treatment is performed to carry out hydrophobic cellulose containing the organic solvent. A method for obtaining a nanofiber dispersion is shown.
  • Patent Document 2 discloses a method in which cellulose oxide obtained by a TEMPO oxidation reaction is pH-adjusted with an organic alkali and dispersed in water or an organic solvent.
  • the dispersion medium is basically captured as water, and it is possible to use an organic solvent containing water.
  • the drying efficiency is low, and it may be difficult to improve the productivity.
  • the organic solvent is first evaporated and removed, and as a result, the cellulose nanofibers maintain their original hydrophilicity as the same characteristics as the aqueous dispersion, and organic alkali is used as the alkali. It may be difficult to fully exert the reforming effect.
  • Patent Document 3 some of the present inventors have introduced organic onium as a counterion in a dispersion containing cellulose nanofibers into which a carboxyl group obtained by a TEMPO oxidation reaction has been introduced and a dispersion medium.
  • a cellulose nanofiber dispersion containing ions and further containing no water in the dispersion medium is disclosed, and tetrabutylammonium ions and the like are described as organic onium ions used as counterions.
  • the conventional cellulose nanofiber dispersion obtained by hydrophobizing the cellulose into which the carboxyl group introduced by the TEMPO oxidation reaction is introduced has dispersibility in a wide range of organic solvents. Although it is shown, it also disperses in water, so that the water resistance of the dried product obtained from the cellulose nanofiber dispersion becomes low, which may make it difficult to manufacture and handle.
  • the obtained cellulose nanofiber dispersion does not disperse in water and contains alcohol or the like. It may be dispersed in an organic solvent having a relatively high dielectric constant.
  • the cellulose nanofiber dispersion modified with a primary amine such as dodecylamine is subjected to a multi-step process in which the carboxyl group is once converted into a sodium salt, acid-washed, and then modified again with the primary amine. It has been clarified by the present inventors that it may be difficult to disperse it in an organic solvent and further to make it into a dried product.
  • the present inventors have made a combination of a specific organic onium ion and cellulose having a carboxyl group introduced by a TEMPO oxidation reaction, which is excellent for an organic solvent. It has been found that cellulose nanofibers having a high dispersibility can be obtained.
  • the present inventors efficiently dry a composition containing organic onium ions, cellulose having a carboxyl group introduced by a TEMPO oxidation reaction, and an organic solvent under specific conditions.
  • nanofibers can be dried.
  • the present invention is based on such findings.
  • one object of the present invention is to obtain cellulose nanofibers having excellent dispersibility in an organic solvent.
  • Another object of the present invention is to provide a method capable of efficiently drying cellulose nanofibers.
  • the melting point of the salt measured according to JIS-K7121 is 100 ° C. or lower.
  • the dispersion yield of the cellulose nanofiber dispersion measured by the following test method is higher when the dispersion medium is an organic solvent than when the dispersion medium is water.
  • cellulose nanofibers having a solid content concentration of 0.1% by weight in a dispersion medium were centrifuged at 12,000 g for 10 minutes to separate the precipitate from the supernatant, and the obtained precipitate was obtained. Based on the weight of the product and the supernatant, the dispersion yield is calculated according to the following formula. [2] The cellulose nanofiber according to [1], wherein the quaternary organic onium ion is at least one selected from a quaternary ammonium ion and a quaternary phosphonium ion.
  • M excluding quaternary organic onium ion and R 1 is phosphorus atom, R 2, R 3 and R 4 are the same, the cellulose nanofiber according to any one of [3] to [5].
  • the organic solvents are methanol, ethanol, isopropyl alcohol, t-butyl alcohol, acetone, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and
  • the cellulose nanofiber dispersion is A method comprising a cellulose nanofiber in which an organic onium ion is introduced as a counterion of a carborvoxyl group and the carboxyl group, and an organic solvent as a dispersion medium.
  • the method according to [15] wherein the drying is carried out by a supercritical drying method, a freeze drying method or an evaporation drying method.
  • the method according to any one of [15] to [17], wherein the dried product of the cellulose nanofibers is airgel, cryogel or xerogel.
  • the first aspect of the present invention it is possible to provide cellulose nanofibers having excellent dispersibility in an organic solvent.
  • the cellulose nanofibers since the cellulose nanofibers have high dispersibility in organic solvents as compared with dispersibility in water, they can be advantageously used in avoiding adsorption of water and the like.
  • the dried body of cellulose nanofibers can be efficiently dried.
  • the drying treatment can be carried out in a substantially anhydrous state without solvent substitution in the step of obtaining the dried product from the cellulose nanofiber dispersion, water adsorption or the like can be performed. It is possible to easily provide a dried product of cellulose nanofibers while avoiding the above.
  • FIG. 1A it is a photograph of a cellulose nanofiber dispersion dispersed in each organic solvent (methanol, ethanol, isopropyl alcohol, acetone, t-butyl alcohol).
  • FIG. 1B is a photograph showing the birefringence of the cellulose nanofiber dispersion dispersed in each organic solvent (methanol, ethanol, isopropyl alcohol, acetone, t-butyl alcohol). It is a photograph of a dried product (airgel) of cellulose nanofibers.
  • the first embodiment of the present invention is a cellulose nanofiber containing cellulose obtained by introducing a carboxyl group and a quaternary organic onium ion as a counterion of the carboxyl group.
  • the melting point of the salt measured according to JIS-K7121 is 100 ° C. or lower.
  • the dispersion yield of the cellulose nanofibers measured by the following test method is higher when the dispersion medium is an organic solvent than when the dispersion medium is water.
  • Test method At 25 ° C., cellulose nanofibers having a solid content concentration of 0.1% by weight in a dispersion medium were centrifuged at 12,000 g for 10 minutes to separate the precipitate and the supernatant, and the obtained precipitate was obtained. Based on the weight of the product and the supernatant, the dispersion yield is calculated according to the following formula. Further details of the above test method can be carried out according to Example 1 described later. In the above test method, the dispersion treatment is carried out under the same conditions when the organic solvent is used and when water is used.
  • the relative permittivity of the organic solvent is, for example, 75 or less, preferably 10 to 75, more preferably 10 to 40, still more preferably 10 to 35. is there.
  • the organic solvent is preferably a water-soluble organic solvent. More specifically, the organic solvent is preferably methanol (Methanol), ethanol (EtOH), isopropyl alcohol (i-PrOH), t-butyl alcohol (t-BuOH), acetone, ethyl acetate, N, N-dimethyl. At least one selected from the group consisting of formamide, N, N-dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and N-methylacetamide, more preferably methanol, ethanol, isopropyl alcohol, t-. It is butyl alcohol or acetone, and even more preferably ethanol.
  • the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is usually 25% or more, preferably 25 to 100%, and more preferably 40. It is ⁇ 100%, more preferably 50-100% or more, and even more preferably 90-100%.
  • the dispersion yield of the cellulose nanofibers when water is used as the dispersion medium is usually 20% or less, preferably 0 to 10%, and more preferably 0 to 5. %, More preferably 0 to 1%, and even more preferably 0 to 0.1%.
  • the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 25 to 100%, and the cellulose nanofibers when water is used as the dispersion medium.
  • the dispersion yield of the above is 0 to 10%.
  • the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 40 to 100%, and the cellulose nanofibers when water is used as the dispersion medium.
  • the dispersion yield of the fiber is 0 to 5%.
  • the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 90 to 100%, and the cellulose when water is used as the dispersion medium.
  • the dispersion yield of the nanofibers is 0 to 0.1%.
  • the organic solvent is preferably methanol, ethanol, isopropyl alcohol, t-butyl alcohol or acetone, more preferably ethanol.
  • the quaternary organic onium ion forms a room temperature molten salt together with the bromide ion.
  • the melting point of the salt measured according to JIS-K7121 is usually 100 ° C. or lower, preferably 1 to 100. ° C., more preferably 10 to 100 ° C., even more preferably 15 to 99 ° C.
  • the salt when the quaternary onium ion forms a salt together with the bromide ion or the hydroxide ion, the salt is preferably water-insoluble at 20 ° C. and is water-insoluble. Is more preferable.
  • water-insoluble means a substance that is hygroscopic at 20 ° C. and is water-insoluble.
  • the water-insoluble substance means a substance that belongs to "almost insoluble (the amount of solvent required to dissolve 1 g of solute is 10,000 mL or more)" according to the general rules of the 17th revised Japanese Pharmacopoeia.
  • the salt when the quaternary organic onium ion forms a salt together with the bromide ion or the hydroxide ion, the salt is preferably ethanol-soluble.
  • ethanol solubility means an ethanol-soluble component measured according to JIS K3362-2008.
  • suitable quaternary organic onium ions include quaternary ammonium ions, quaternary phosphonium ions, or combinations thereof.
  • the lower limit of the number of carbon atoms in the side chain of the quaternary organic onium ion is usually 4 or more, preferably 6 or more, and even more preferably 8 or more.
  • the number of carbon atoms in the side chain of the organic onium ion is not particularly limited, but is usually 20 or less, preferably 15 or less.
  • the quaternary organic onium ion is represented by the following formula (1).
  • M represents a nitrogen atom or a phosphorus atom
  • R 1, R 2, R 3 and R 4 represents a hydrocarbon group
  • R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms.
  • the number of carbon atoms in all of the hydrocarbon groups represented by R 1, R 2, R 3 and R 4 are usually 6 or more, preferably from 6 to 30, even more preferably 6 It is ⁇ 20, and even more preferably 6 ⁇ 15.
  • At least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has preferably 8 or more carbon atoms, more preferably 8 to 30 carbon atoms. , Even more preferably 8 to 20, and even more preferably 8 to 15.
  • the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, preferably 25 or more, and more preferably 30 or more. According to another embodiment, the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 to 60, preferably 20 to 50, and more preferably 20. ⁇ 40.
  • three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Further, according to a preferred embodiment, four of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • one or less of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is an aralkyl group or an aromatic group. is there.
  • Examples of the aliphatic hydrocarbon group preferably an aliphatic hydrocarbon group having 6 to 30 carbon atoms
  • examples of case R 1, R 2, R 3 and R 4 is an aliphatic hydrocarbon group, an alkyl, alkenyl, Alkinyl, cycloalkyl, cycloalkenyl, cycloalkynyl and the like can be mentioned, but more preferably alkyl groups (eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, etc.).
  • alkyl groups eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, an o-toluylmethyl group, an m-toluylmethyl group, a p-toluylmethyl group, a 2-phenylethyl group and a 1-naphthylmethyl group. Examples include a group and a 2-naphthylmethyl group.
  • the aromatic group an aromatic group having 6 to 20 carbon atoms is preferable, and phenyl group, biphenyl group, benzyl group, tosyl group and the like can be exemplified.
  • R 1 , R 2 , R 3 and R 4 may have substituents such as methyl, ethyl, fluorine, chlorine and the like that do not affect their thermal stability.
  • M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same.
  • cellulose nanofiber into which a quaternary organic onium ion is introduced.
  • cellulose nanofibers represented by the following formula (1) are provided.
  • M represents a nitrogen atom or a phosphorus atom
  • R 1 , R 2 , R 3 and R 4 represent a hydrocarbon group. All hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 have 6 or more carbon atoms, and at least among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4.
  • One carbon number is 8 or more
  • the total number of carbon atoms in the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, and 3 or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4
  • the group is an aliphatic hydrocarbon group, However, those in which M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same are excluded.
  • the quaternary organic onium ion is preferably water-insoluble at 20 ° C., more preferably water-insoluble, as a property of the bromide salt.
  • the quaternary organic onium ion is tetraoctylammonium ion, tetradodecylammonium ion, tributyldodecylphosphonium ion or trihexyltetradecylphosphonium ion.
  • the cellulose nanofibers of the present invention can be produced by combining cellulose into which a carborvoxyl group has been introduced and a quaternary organic onium ion as a counterion of a carboxyl group.
  • the production method includes at least an oxidation step and a counterion substitution step. Further, a solvent replacement step and a dispersion step may be included.
  • natural cellulose or chemically modified cellulose can be used as a material using cellulose as a starting material.
  • wood-based pulp such as bleached and unbleached kraft wood pulp, pre-hydrogenated kraft wood pulp, sulfite wood pulp, non-wood pulp such as cotton and bacterial cellulose, and mixtures thereof shall be used. Any of these physically and chemically treated substances may be used.
  • natural cellulose having a crystalline form I is preferable.
  • the method for oxidizing cellulose is not particularly limited as long as it is a method for introducing a carboxyl group into cellulose as a raw material, and is appropriately selected depending on the intended purpose.
  • it can be appropriately selected from a generally known method of oxidizing a hydroxyl group to a carboxylic acid via an aldehyde.
  • a method in which an N-oxyl compound is used as a catalyst and a hypohalite or a hypohalogenate is used as an copolymer is preferable.
  • 2,2,6,6-tetramethyl-1-pipedinyloxy radical is used as a catalyst, and an oxidizing agent such as sodium hypochlorite and a bromide such as sodium bromide are used while adjusting the pH.
  • TEMPO oxidation method treated with the above is suitable from the viewpoints that the reaction is completely in water without using an organic solvent as a reaction medium, the availability of reagents, the cost, and the stability of the reaction.
  • the product In the TEMPO oxidation method, only the surface of crystalline cellulose microfibrils is oxidized, and oxidation does not occur inside the crystal, so that the crystal structure can be maintained. Therefore, the product has the characteristics of high strength, high elastic modulus, low coefficient of linear thermal expansion, and high heat resistance inherent in cellulose.
  • the oxidation treatment by the above-mentioned TEMPO oxidation method is usually performed by the following procedure.
  • An N-oxyl compound and an oxidizing agent or a copolymer are added to the cellulose dispersed in water to oxidize the cellulose.
  • Sodium hydroxide is added during the oxidation reaction to control the pH in the reaction system from 9 to 11.
  • the reaction temperature is preferably 0 ° C. or higher and 40 ° C. or lower.
  • the hydroxyl group at the C6 position on the surface of the cellulose fiber is oxidized to a carboxyl group. After completion of the reaction, it can be thoroughly washed with water and recovered, and used as a constituent material in the present invention.
  • hypochlorous acid or a salt thereof hypochlorous acid or a salt thereof
  • hypochlorous acid or a salt thereof sodium hypochlorite is preferable.
  • bromide include lithium bromide, potassium bromide, sodium bromide and the like, and sodium bromide is preferable from the viewpoint of ease of handling.
  • the content of the carboxyl group introduced into the cellulose can be adjusted by appropriately setting the reaction conditions. Since the cellulose into which the carboxyl group has been introduced is dispersed in the dispersion medium by the charge repulsion of the carboxyl group through the dispersion step described later, it is preferable to control the content of the carboxyl group within an appropriate range.
  • the content of the carboxyl group introduced into the cellulose is preferably 0.1 mmoL or more and 3 mmoL or less, and more preferably 0.6 mmoL or more and 2.5 mmoL or less per dry weight. It is advantageous to set the content of the carboxyl group to 0.1 mmoL or more per dry weight in order to stably disperse the cellulose in the dispersion medium. Further, setting the content of the carboxyl group to 3 mmoL or less per dry weight is advantageous in avoiding a decrease in water resistance due to an excessive increase in affinity for the dispersion medium.
  • the amount of carboxyl groups contained in cellulose can be calculated by the following method. Take 0.2 g of the oxidized cellulose in terms of dry weight in a beaker and add 80 mL of ion-exchanged water. 5 mL of a 0.01 M sodium chloride aqueous solution is added thereto, and 0.1 M hydrochloric acid is added while stirring to adjust the pH to 2.0 as a whole. Using an automatic titrator (AUT-701 manufactured by DKK-TOA CORPORATION), a 0.1 M sodium hydroxide aqueous solution was injected at 0.05 mL / 30 seconds, and the conductivity and pH value were measured every 30 seconds to measure pH 11 The measurement was continued until. The titration amount of sodium hydroxide can be obtained from the obtained conductivity curve, and the carboxyl group content can be calculated.
  • AUT-701 automatic titrator
  • the product is recovered from the reaction solution by filtration.
  • the carboxyl group introduced into the cellulose forms a salt having a metal ion derived from a cation present in the reaction medium as a counter ion.
  • a method for recovering cellulose after the oxidation treatment (a) a method of filtering while the carboxyl group forms a salt, and (b) an acid is added to the reaction solution to adjust the inside of the system under acidic conditions to obtain a carboxylic acid. Examples thereof include a method of filtering and (c) a method of adding an organic solvent to aggregate and then filtering.
  • the method of recovering as a carboxylic acid is preferable from the viewpoint of handleability, recovery efficiency, and waste liquid treatment. Further, in the counterion substitution step described later, the method of recovering as a carboxylic acid is preferable because the formation of by-products can be suppressed and the substitution efficiency is excellent when the counterion does not contain a metal ion.
  • the metal ion content in cellulose after the oxidation reaction can usually be easily examined by elemental analysis by fluorescent X-ray analysis.
  • the content of metal ions is usually 5 wt% or more, whereas when recovered by a method of filtering as a carboxylic acid, it is usually 1 wt% or less.
  • the recovered cellulose can be purified by repeating washing, and the catalyst and by-products can be removed. At this time, the amount of residual metal ions and salts can be reduced by repeating the washing with a washing liquid prepared under acidic conditions of pH 3 or less using hydrochloric acid or the like and then repeating the washing with pure water.
  • the counterion substitution step can be carried out by adding an alkali to the suspension of cellulose having a carboxyl group introduced therein.
  • the pH of the cellulose suspension may be adjusted to a range of pH 4 or more and pH 12 or less using an alkali.
  • the pH may be set to be alkaline with a pH of 7 or more and a pH of 12 or less, and a carboxylate may be formed with the added alkali.
  • the osmotic repulsive force associated with the ionization of the carboxyl group is likely to occur, so that the dispersibility is improved and the cellulose nanofiber dispersion is easily obtained.
  • a quaternary organic onium compound can be used as the alkali for adjusting the pH of the suspension.
  • the counter ion of the quaternary organic onium forming the quaternary organic onium compound include halide ion (bromid ion, fluoride ion, iodo ion) or hydroxide ion, but when the mixing of metal ion has an adverse effect. Hydroxide ions are preferable in view of dispersibility in the dispersion medium and dispersion medium.
  • the cellulose-modified product (cellulose obtained by introducing a carboxyl group and an organic onium ion as a counterion of the carboxyl group) obtained by using a quaternary organic onium compound as an alkali is paired with a metal ion.
  • the dispersion treatment can be performed with lower energy and in a shorter time than when an inorganic alkali as an ion is used, and the homogeneity of the dispersion finally reached is also high. It is considered that this is because the ionic radius of the counterion is larger when the organic onium compound is used, and therefore the effect of separating the fine cellulose fibers from each other in the dispersion medium is greater.
  • the viscosity characteristics of the dispersion can be adjusted by the combination of the quaternary organic onium compound and the organic solvent, which can increase the industrial application range. it can. Therefore, the ion exchange treatment is preferably carried out in an organic solvent.
  • ⁇ Solvent replacement step> When cellulose having a carboxyl group introduced in the oxidation treatment is used as a dispersion, the cellulose can be dispersed to a homogeneous dispersion by mixing the cellulose and the dispersion medium and performing the dispersion treatment using the method described later. It will be possible. As a pretreatment for mixing with the dispersion medium, the oxidized cellulose can be replaced with a solvent.
  • the reaction medium is water in the cellulose oxidation step and the cleaning agent used for cleaning after the reaction is mainly water, the cellulose after the oxidation treatment is recovered as a wet state containing water.
  • the purpose is to remove water as an impurity in the dispersion medium, to make cellulose and the dispersion medium compatible in advance to improve dispersibility, or to use an insoluble component of the dispersion medium. It is preferable to perform solvent substitution for the purpose of removal.
  • ion exchange treatment using a water-insoluble quaternary onium salt in an organic solvent.
  • ion exchange is carried out using a water-insoluble quaternary onium salt, charge repulsion due to the carboxyl group can be maintained even after solvent substitution, so that aggregation of cellulose fibers can be suppressed.
  • the affinity with the organic solvent is remarkably improved, water can be easily discharged, and the solvent can be replaced efficiently.
  • the organic solvent used for solvent substitution can be appropriately selected according to the purpose as long as the cellulose fibers do not aggregate or denature. Further, it may be the same as the dispersion medium used when preparing the cellulose nanofiber dispersion.
  • cellulose having a carboxyl group introduced or a cellulose-modified product can be prepared into a cellulose nanofiber dispersion.
  • a carboxyl group-introduced cellulose or a cellulose-modified product is described as a form of cellulose before the stage of preparation into the cellulose nanofiber dispersion of the present invention.
  • dispersion processing in the dispersion process various already known dispersion treatments are possible.
  • a mixer treatment with a rotary blade, a high-pressure homogenizer treatment, an ultra-high pressure homogenizer treatment, and an ultrasonic homogenizer treatment are preferable from the viewpoint of miniaturization efficiency.
  • the above-mentioned organic solvent can be used as the organic solvent used as the dispersion medium in the dispersion treatment.
  • cellulose which is originally highly hydrophilic, is dispersed as nanofibers in an organic solvent that does not contain water and maintains dispersibility by this method is considered as follows.
  • the dissociability of organic onium ions used in the counterion exchange step is extremely high.
  • the hydrocarbon group of the organic onium compound has a hydrophobic interaction with the organic solvent. It is considered that these effects dissociate the ions even in the organic solvent, and the osmotic effect associated with the ionization of the carboxyl group of the oxidized cellulose acts to enable dispersion in the organic solvent.
  • the light transmittance of the cellulose nanofiber dispersion obtained by the dispersion step at an optical path length of 10 mm at 660 nm is the solid content concentration of the cellulose nanofibers contained in the cellulose nanofiber dispersion. At 0.2%, it is preferably 85% or more with the dispersion medium as a reference. Within the above range, it is shown that the dispersion has excellent homogeneity. That is, when the light transmittance is low in the visible light region of 660 nm, it is suggested that there are many aggregates of cellulose fibers that hinder the transmission of test light. By measuring the light transmittance, it can be easily used as an index showing the dispersibility of cellulose.
  • the light transmittance of the cellulose nanofiber dispersion is obtained by adjusting the solid content concentration of the cellulose nanofibers, filling the cellulose cells, and measuring the transmittance at a specified wavelength using a spectrophotometer.
  • the fiber width of cellulose as a cellulose nanofiber dispersion is preferably 2 nm or more and 200 nm or less. That is, in order to maintain the fiber shape, it is preferably 2 nm or more, and if it is 200 nm or less, it has optical transparency and thus the degree of freedom in product design is improved.
  • the fiber shape of cellulose can be confirmed by developing a cellulose nanofiber dispersion prepared to 0.0001 to 0.001 wt% on mica or the like having a smooth surface, drying it, and observing it by SEM.
  • the solid content concentration of the cellulose fibers with respect to the dispersion medium in the dispersion step can be appropriately adjusted within a range that does not hinder the dispersion treatment, and the concentration treatment may be performed after the dispersion treatment.
  • the concentration method is not particularly limited, but a method such as centrifugation, decompression, or vacuum evaporation can be appropriately selected as long as the aggregation due to drying of the cellulose fibers and the deterioration of the characteristics due to the decomposition reaction do not become a problem.
  • water is added to the cellulose nanofiber dispersion after the dispersion step according to the function to be added for the purpose of adjusting the viscosity, adjusting the drying rate, improving the affinity with different materials, etc. within the range where aggregation and precipitation do not occur.
  • Various organic solvents can be mixed.
  • the addition rate, pH adjustment, stirring method, temperature and the like can be appropriately selected.
  • the obtained cellulose modified product or cellulose nanofiber dispersion may contain a metal or the like.
  • Metals include platinum group elements such as gold, silver, platinum, palladium, ruthenium, iridium, rhodium, and osmium, as well as metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum.
  • platinum group elements such as gold, silver, platinum, palladium, ruthenium, iridium, rhodium, and osmium
  • metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum.
  • these alloys, oxides, compound oxides, carbides and the like can be used.
  • a cellulose nanofiber dispersion having a carboxyl group forms a complex of metal or metal oxide, and metal particles are added by adding a reducing agent. Can be precipitated as.
  • the fine metal particles are uniformly immobilized on the surface of the cellulose fiber, so that the effect can be efficiently exerted by a small amount of metal.
  • various additives including water-soluble polysaccharides and various resins may be contained for the purpose of further increasing the charge repulsion between fibers and controlling the viscosity of the dispersion liquid as long as aggregation and precipitation are not generated.
  • chemically modified cellulose, carrageenan, xanthan gum, guar gum, gum arabic, sodium alginate, agar, solubilized starch, glycerin, sorbitol, antifoaming agent, water-soluble polymer, synthetic polymer and the like can be used.
  • various solvents may be contained in order to impart functionality such as coatability and wettability. Alcohols, cellsolves, glycols, etc. can be used.
  • various dyes, pigments, organic fillers, and inorganic fillers may be contained for the purpose of imparting design.
  • cross-linking agents may be contained in order to improve water resistance and electrolyte resistance.
  • oxazoline, divinyl sulfone, carbodiimide, dihydrazine, dihydrazide, epichlorohydrin, glioxal, organic titanium compound, organic zirconium compound and the like can be used.
  • the pH can be adjusted by adding an acid or an alkali for the purpose of improving the reactivity.
  • the cellulose nanofiber dispersion thus obtained can maintain the dispersed state in the state where water is excluded as described above. Furthermore, it has excellent affinity with organic solvents and can exist as homogeneous cellulose nanofibers in organic solvents.
  • a resin composite for the purpose of improving strength and weight reduction is formed by mixing with a resin, or a functional layer containing cellulose nanofibers is applied by coating on a base material or the like. It is possible to use it as a constituent material of a molded product, such as forming.
  • the cellulose nanofibers can be provided as a dispersion together with an organic solvent as a dispersion medium.
  • the shape of the cellulose nanofiber dispersion is preferably liquid or gel.
  • the cellulose nanofiber dispersion can be in the form of a dried product.
  • the dried product include airgel, xerogel and the like.
  • a high level of specific surface area and void ratio can be imparted to the dried body of the cellulose nanofiber dispersion, and it can be advantageously used as a heat insulating material, a catalyst carrier, a catalyst carrier, a sound absorbing material, and an adsorbent.
  • the dried product is obtained by drying a cellulose nanofiber dispersion together with an organic solvent.
  • the method for drying the cellulose nanofiber dispersion can be carried out by the method described in the second aspect described later.
  • the second embodiment of the present invention there is a method for producing a dried product of cellulose nanofibers, wherein the cellulose nanofiber dispersion is brought into contact with an acid to obtain a gel-like composition.
  • the cellulose nanofiber dispersion comprises a step of drying the gel-like composition to obtain a dried product of cellulose nanofibers, and the cellulose nanofiber dispersion is obtained by introducing a carboxyl group and a quaternary organic onium ion as a counter ion of the carboxyl group.
  • a method comprising a fiber and an organic solvent is provided. According to the above method, since the drying treatment can be carried out in a substantially anhydrous state, it is particularly advantageous in easily obtaining a dried body of the cellulose nanofiber dispersion while avoiding adsorption of water and the like.
  • a cellulose nanofiber dispersion is brought into contact with an acid to obtain a gel-like composition.
  • the cellulose nanofiber dispersion is in a substantially anhydrous state.
  • the substantially anhydrous state means that the water content is usually 1% or less, preferably 0.1% or less, more preferably 0.001% or less, still more preferably 0.0001% or less. Means.
  • the cellulose nanofiber dispersion can be prepared according to the description in the first aspect.
  • the quaternary organic onium ion in the cellulose nanofiber dispersion can be the same as that described in the first aspect.
  • the quaternary organic onium ion is represented by the following formula (1).
  • M represents a nitrogen atom or a phosphorus atom
  • R 1, R 2, R 3 and R 4 represents a hydrocarbon group
  • R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms.
  • the number of carbon atoms in all of the hydrocarbon groups represented by R 1, R 2, R 3 and R 4 are usually 6 or more, preferably from 6 to 30, even more preferably 6 It is ⁇ 20, and even more preferably 6 ⁇ 15.
  • At least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has preferably 8 or more carbon atoms, more preferably 8 to 30 carbon atoms. , Even more preferably 8 to 20, and even more preferably 8 to 15.
  • the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, preferably 25 or more, and more preferably 30 or more. Further, according to another embodiment, the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 to 60, preferably 20 to 50, and more preferably 20. ⁇ 40.
  • three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Further, according to a preferred embodiment, four of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  • one or less of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is an aralkyl group or an aromatic group. is there.
  • Examples of the aliphatic hydrocarbon group preferably an aliphatic hydrocarbon group having 6 to 30 carbon atoms
  • examples of case R 1, R 2, R 3 and R 4 is an aliphatic hydrocarbon group, an alkyl, alkenyl, Alkinyl, cycloalkyl, cycloalkenyl, cycloalkynyl and the like can be mentioned, but more preferably alkyl groups (eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, etc.).
  • alkyl groups eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, an o-toluylmethyl group, an m-toluylmethyl group, a p-toluylmethyl group, a 2-phenylethyl group and a 1-naphthylmethyl group. Examples include a group and a 2-naphthylmethyl group.
  • the aromatic group an aromatic group having 6 to 20 carbon atoms is preferable, and phenyl group, biphenyl group, benzyl group, tosyl group and the like can be exemplified.
  • R 1 , R 2 , R 3 and R 4 may have substituents such as methyl, ethyl, fluorine, chlorine and the like that do not affect their thermal stability.
  • M represents a nitrogen atom or a phosphorus atom
  • R 1, R 2, R 3 and R 4 represents a hydrocarbon group
  • the carbon of all hydrocarbon groups represented by R 1, R 2, R 3 and R 4 The number is 6 or more
  • at least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has 8 or more carbon atoms.
  • the total number of carbon atoms in the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, and 3 or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4
  • the group is an aliphatic hydrocarbon group, However, those in which M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same are excluded.
  • the quaternary organic onium ion is preferably water-insoluble at 20 ° C., and more preferably water-insoluble, as a property of the bromide salt.
  • the quaternary organic onium ion is tetraoctylammonium ion, tetradodecylammonium ion, tributyldodecylphosphonium ion or trihexyltetradecylphosphonium ion.
  • the organic solvent in the cellulose nanofiber dispersion can be the same as that described in the first aspect.
  • the organic solvent in the cellulose nanofiber dispersion is a solvent that can be mixed with a supercritical fluid (CO 2, etc.) in consideration of the drying step described later.
  • a solvent include ethanol, methanol, acetone and the like.
  • the acid to be brought into contact with the cellulose nanofiber dispersion is preferably in a substantially anhydrous state from the viewpoint of avoiding adsorption of water.
  • the acid include glacial acetic acid, hydrochloric acid, acetic anhydride or a hydrochloric acid-containing organic solvent (hydrochloric acid-methanol solution, etc.).
  • the amount of the acid used may be appropriately determined according to the content of the carboxyl group in the dispersion of the cellulose nanofibers, etc., but for example, it is usually compared to the carboxyl group in the dispersion of the cellulose nanofibers. It can be 0.5 to 1.5 equivalents, preferably 0.9 to 1.1 equivalents.
  • the method of contacting the acid with the cellulose nanofiber dispersion is not particularly limited, but it is preferable to directly add the acid or the acid-containing liquid to the cellulose nanofiber dispersion.
  • the temperature at which the acid is brought into contact is not particularly limited, but is, for example, 5 to 40 ° C, preferably room temperature (about 25 ° C).
  • the contact period of the acid is, for example, 0.5 to 3 hours, preferably 1 to 2 hours. During the above contact period, the contact material between the cellulose nanofiber dispersion and the acid may be allowed to stand until a gel-like composition is formed.
  • the gel-like composition is dried to obtain a dried product of cellulose nanofibers.
  • a known drying method can be used, but from the viewpoint of avoiding functional deterioration of the dried body due to mixing of water, it is preferably carried out by a supercritical drying method or an evaporation drying method.
  • the drying temperature is usually 35 to 45 ° C, preferably 38 to 42 ° C.
  • supercritical drying is preferably carried out using liquid carbon dioxide under a pressure of usually 5 to 15 MPa, preferably 8 to 12 MPa.
  • the time required for the gel-like composition to be solvent-substituted with liquid carbon dioxide under pressure and to reach drying through a supercritical state by heating is not particularly limited, but is usually 1 to 15 hours, preferably 1 to 8 hours. is there.
  • a dried product of cellulose nanofibers can be provided as an airgel.
  • the gel-like composition is generally frozen using liquid nitrogen or the like.
  • the gel-like composition is preferably quick-frozen.
  • freeze-drying method it is preferable to carry out under reduced pressure conditions, preferably at a temperature of usually room temperature or lower.
  • the time for freeze-drying is not particularly limited, but is, for example, 24 to 48 hours.
  • the dried product of cellulose nanofibers can be provided as a cryogel.
  • the drying temperature is usually 30 to 110 ° C, preferably 30 to 90 ° C.
  • the drying time is not particularly limited, but is usually 1 to 48 hours, preferably 1 to 12 hours.
  • the dried product of cellulose nanofibers can be provided as xerogel.
  • Example 1 A cellulose modified product and a cellulose nanofiber dispersion were prepared by the following procedure.
  • the reaction was carried out for 2 hours, and 10 g of ethanol was added to stop the reaction to obtain oxidized cellulose in which a carboxyl group was introduced into cellulose.
  • the carboxyl group introduced at this time forms a salt having a sodium ion derived from the reaction reagent remaining in the reaction medium as a counter ion.
  • 0.5 N hydrochloric acid was added dropwise to lower the pH to 2.
  • Cellulose was filtered off using a glass filter, washed 3 times with 0.05 N hydrochloric acid to make the carboxyl group a carboxylic acid, and then washed 5 times with pure water to obtain wet cellulose oxide with a solid content concentration of 20%.
  • Got The obtained oxidized cellulose was calculated to have a carboxyl group amount of 1.6 mmoL per dry weight of cellulose by neutralization titration with sodium hydroxide.
  • test samples obtained in (1) to (3) above and their properties are as shown in Table 1 below.
  • Table 1 the test sample of Test Group 1 was obtained by (2) oxidation step without performing (3) counterion substitution step.
  • the test samples in Test Groups 2 to 10 were obtained by using the bromide salt of each counterion in the (3) counterion substitution step as an organic onium compound.
  • the physical properties shown in Table 1 mean the properties of the bromide salt of each counterion.
  • the antiionically substituted cellulose oxide is added to a solution in which water and the substitution solvent are mixed so that the volume fraction is 2: 1 and the mixture is stirred for 30 minutes and then oxidized using a glass filter. Cellulose was filtered and recovered. Subsequently, in the same manner, cellulose oxide was added to a solution in which water and a substitution solvent were 1: 1 and stirred for 30 minutes for filtration and recovery, and then washed and recovered with the substitution solvent three times to replace the solvent. The treated cellulose oxide was obtained.
  • the substitution solvent is an organic solvent
  • Dispersion Step The solvent-placed cellulose oxide was added to a substitution solvent (dispersion medium) to prepare a mixed solution having a solid content concentration of 0.1%. Then, 25 mL of the mixed solution is defibrated by treating it at 20 ° C. for 16 minutes using an ultrasonic homogenizer, placed in a centrifuge tube having a volume of 50 mL, centrifuged (12000 g, 10 minutes), and a residue (precipitate). ) And the dispersion (supernatant) were separated by decantation, and the weight of each was measured.
  • a substitution solvent dispersion medium
  • FIG. 1 is a photograph of the cellulose nanofiber dispersion (dispersion liquid) described in Test Group 10 dispersed in each organic solvent.
  • the dispersion of this example was a transparent dispersion.
  • FIG. 1 (b) it is confirmed that it exhibits birefringence, and it can be seen that it is completely nano-dispersed in each organic solvent.
  • the birefringence was completely nano-dispersed in each organic solvent.
  • Example 2 Ethanol dispersion of cellulose oxide nanofibers is carried out in the same manner as in Test Group 5, except that the defibration treatment (150 Pa, 5 times) is performed using a high-pressure homogenizer (Star Burst, Sugino Machine) in the dispersion step (5) of Example 1. The liquid was prepared.
  • cellulose nanofiber arcogel a gel (also referred to as “cellulose nanofiber arcogel”).
  • the obtained cellulose nanofiber arcogel was placed in a supercritical drying device, subjected to solvent substitution with liquefied CO2 for 8 hours, dried in a supercritical state (40 ° C., 10 MPa) for 1 hour, and the cellulose nanofiber airgel (aerogel of cellulose nanofibers). 0.05 g) was obtained.
  • the morphology of the cellulose nanofiber airgel was as shown in FIG.
  • the cellulose nanofiber arcogel can be evaporated and dried by heating to obtain a cellulose nanofiber xerogel.
  • Example 3 An aqueous dispersion of cellulose oxide nanofibers was prepared in the same manner as in Test Group 1 of Example 1 without performing a counterion exchange step.
  • the obtained aqueous dispersion was concentrated under reduced pressure to a concentration of cellulose nanofibers of 0.5%.
  • 5 mL of hydrochloric acid was added to 10 g of the water spray to gel.
  • the obtained gel was allowed to stand in 100 mL of ethanol for solvent substitution to obtain a cellulose nanofiber alcohol gel, it was necessary to leave the gel in ethanol for 8 hours 6 times. there were. It was confirmed that the raw material cellulose nanofiber arcogel for obtaining the cellulose nanofiber airgel by supercritical drying can be obtained more efficiently by performing the counterion substitution step as described in Example 2.
  • the first aspect of the present invention it is possible to provide cellulose nanofibers having excellent dispersibility in an organic solvent. Further, according to the second aspect of the present invention, the cellulose nanofibers can be efficiently dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention provides novel cellulose nanofibers which have excellent dispersibility in an organic solvent. More specifically, the present invention is of novel cellulose nanofibers obtained by introducing a carboxyl group and a quaternary organic onium ion as the counterion of said carboxyl group wherein, if the quaternary organic onium ion together with a bromide ion forms a salt, the melting point of said salt, measured in accordance with JIS-K7121, is less than or equal to 100°C, and the dispersion yield of the cellulose nanofibers is higher in the case that the dispersion medium is an organic solvent than in the case that the dispersion medium is water.

Description

新規なセルロースナノファイバーおよびその乾燥体の製造方法New method for producing cellulose nanofibers and their dried products 関連出願の参照Reference of related application
 本特許出願は、2019年5月22日に出願された日本国特許出願2019-96276号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 This patent application is accompanied by a priority claim based on Japanese Patent Application No. 2019-96276 filed on May 22, 2019, and all the disclosures in the previous patent application are by citation. As part of this specification.
 本発明は、セルロースナノファイバーおよびその乾燥体の製造方法に関する。 The present invention relates to a method for producing cellulose nanofibers and a dried product thereof.
 近年、資源の枯渇や大気の二酸化炭素濃度の増加による温暖化や環境汚染、廃棄物問題などを背景に、製造時の化石資源の使用量が少なく、廃棄時において低エネルギーで処理でき二酸化炭素の排出が少ない、環境に配慮された材料の利用が注目されている。こうした中、化石資源を原料とせず、一部または全部を天然の植物などを原料とするバイオマス資源由来の材料や、環境中で分解されて水と二酸化炭素になるポリ乳酸に代表される生分解性材料の積極利用が期待されている。 In recent years, due to the depletion of resources and the increase in carbon dioxide concentration in the atmosphere, warming, environmental pollution, waste problems, etc., the amount of fossil resources used during production is small, and carbon dioxide can be processed with low energy at the time of disposal. Attention is being paid to the use of environmentally friendly materials that emit less. Under these circumstances, biodegradation represented by biomass resource-derived materials that do not use fossil resources as raw materials but part or all of them as raw materials such as natural plants, and polylactic acid that is decomposed in the environment into water and carbon dioxide. Active use of sex materials is expected.
 バイオマス材料の中でもその生産量の約半分を占めるセルロースは、その生産量の多さから有効利用が期待されている。セルロースは、高強度、高弾性率、極めて低い熱膨張係数を有しており、耐熱性に関して記述すると、ガラス転移点を持たず、230度と高い熱分解温度を示すことが知られている。 Cellulose, which accounts for about half of the production of biomass materials, is expected to be effectively used due to its large production. Cellulose has high strength, high elastic modulus, and extremely low coefficient of thermal expansion, and when described in terms of heat resistance, it is known that it does not have a glass transition point and exhibits a high thermal decomposition temperature of 230 degrees.
 ところが、セルロースはその多量な生産量に対して材料としての利用が多いとは言えない。その理由の一つに水系や非水系溶媒への溶解性・分散性の低さがある。セルロースはブドウ糖の6員環であるD-グルコピラノースがβ-(1→4)グルコシド結合したホモ多糖であり、C2位、C3位、C6位に水酸基を持つ。そのため、分子内、分子間に強固な水素結合を形成しており、水や一般的な溶媒に対して溶解しない。 However, it cannot be said that cellulose is often used as a material for its large production volume. One of the reasons is low solubility and dispersibility in aqueous and non-aqueous solvents. Cellulose is a homopolysaccharide in which D-glucopyranose, which is a 6-membered ring of glucose, is β- (1 → 4) glucoside-bonded, and has hydroxyl groups at the C2, C3, and C6 positions. Therefore, strong hydrogen bonds are formed in the molecule and between the molecules, and they are insoluble in water and general solvents.
 最も一般的なセルロースの利用法の一つにカルボキシメチル化がある。カルボキシル基がC2位、C3位、C6位の水酸基にランダムに導入され、その置換度により多置換度では水溶性で増粘剤として利用できるものから、低置換度では不溶性のカルボキシメチル化セルロース繊維と多様な材料が得られる。しかし、セルロースのカルボキシメチル化反応では多量の有機溶媒を使用し、毒性のあるモノクロロ酢酸を用いているため、環境汚染や廃液処理などへの問題がある。また、導入されるカルボキシル基は水酸基の位置に区別がないため、生成物は不均一な化学構造となる。 One of the most common uses of cellulose is carboxymethylation. Carboxylic groups are randomly introduced into the hydroxyl groups at the C2, C3, and C6 positions, and depending on the degree of substitution, the carboxymethylated cellulose fibers are water-soluble at the degree of substitution and can be used as a thickener, and are insoluble at the degree of substitution. And various materials can be obtained. However, since a large amount of organic solvent is used in the carboxymethylation reaction of cellulose and toxic monochloroacetic acid is used, there are problems such as environmental pollution and waste liquid treatment. Moreover, since the introduced carboxyl group has no distinction in the position of the hydroxyl group, the product has a non-uniform chemical structure.
 一方、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル(TEMPO)をはじめとするN-オキシル化合物を触媒とした酸化反応を用いてセルロースを処理し、処理度を調整すると水中での軽度な分散処理により均質なセルロースナノファイバー分散体が得られることが知られている。この際、セルロースナノファイバーはミクロフィブリルレベルまで解繊され、分散媒中で幅数nm~数百nmのセルロース由来繊維として存在する。さらに、このTEMPO酸化反応では有機溶媒は使用せず水のみを反応媒として用い、常温・常圧の温和な条件下、短時間で反応が完了するなど反応プロセスの環境適応性が極めて高い。 On the other hand, when cellulose is treated using an oxidation reaction catalyzed by an N-oxyl compound such as 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) to adjust the degree of treatment. It is known that a homogeneous cellulose nanofiber dispersion can be obtained by a light dispersion treatment in water. At this time, the cellulose nanofibers are defibrated to the microfibril level and exist as cellulose-derived fibers having a width of several nm to several hundred nm in the dispersion medium. Further, in this TEMPO oxidation reaction, only water is used as a reaction medium without using an organic solvent, and the reaction is completed in a short time under mild conditions of normal temperature and pressure, and the environmental adaptability of the reaction process is extremely high.
 TEMPO酸化反応により得られた酸化セルロースが軽度な機械的な処理によりナノレベルまで分散するメカニズムとしては、以下のように知られている。酸化反応によりセルロースのミクロフィブリル表面のC6位の水酸基が選択的に酸化され、アルデヒド基を経由してカルボキシル基が導入される。このカルボキシル基が電離し、分散媒中で浸透圧効果を示すため、ナノオーダーのミクロフィブリルが孤立しやすくなり、均質なセルロースナノファイバー分散体として得られる。さらに、セルロースナノファイバーに導入したカルボキシル基の静電的な作用を利用して、対イオンとしてカチオン性を有する様々な塩を形成することにより、特性の異なるセルロース修飾体を得ることができる。本処理では原料セルロースの結晶性を壊すことなく保持できるため、高い物理特性を有する。 The mechanism by which the oxidized cellulose obtained by the TEMPO oxidation reaction is dispersed to the nano level by a light mechanical treatment is known as follows. By the oxidation reaction, the hydroxyl group at the C6 position on the surface of the microfibrils of cellulose is selectively oxidized, and the carboxyl group is introduced via the aldehyde group. Since this carboxyl group is ionized and exhibits an osmotic effect in the dispersion medium, nano-order microfibrils are easily isolated, and a homogeneous cellulose nanofiber dispersion can be obtained. Furthermore, by utilizing the electrostatic action of the carboxyl group introduced into the cellulose nanofibers to form various salts having a cationic property as counterions, cellulose modified products having different characteristics can be obtained. Since this treatment can retain the crystallinity of the raw material cellulose without destroying it, it has high physical properties.
 このように、セルロースナノファイバーをナノ分散体や液体状態、修飾体として用いることができ、また環境への負荷が低く、さらに高い物理特性を有するため、TEMPO酸化反応による処理及び酸化物はセルロースナノファイバーの新たな利用形態として期待されている。 In this way, cellulose nanofibers can be used as nanodispersions, liquid states, and modifiers, have a low environmental load, and have high physical properties. Therefore, the treatment and oxides by the TEMPO oxidation reaction are cellulose nanofibers. It is expected as a new form of use of fiber.
 工業的利用として盛んに開発が進められている一例として、樹脂との複合化がある。樹脂中にセルロースナノファイバー分散体の乾燥体を混合することにより、セルロースの軽量、高強度、高弾性率、低線熱膨張係数、高耐熱性を利用した樹脂の高機能化を目的とするものである。この際の機能性向上の重要な要素として、樹脂中でのセルロースナノファイバーの分散性が挙げられている。セルロースナノファイバーが偏在または凝集していると、セルロースナノファイバーの混合の効果が顕著に低下することが知られている。 One example of active development for industrial use is compounding with resin. By mixing a dried product of cellulose nanofiber dispersion in the resin, the purpose is to improve the functionality of the resin by utilizing the light weight, high strength, high elastic modulus, low coefficient of linear thermal expansion, and high heat resistance of cellulose. Is. Dispersibility of cellulose nanofibers in the resin is mentioned as an important factor for improving the functionality at this time. It is known that when cellulose nanofibers are unevenly distributed or aggregated, the effect of mixing cellulose nanofibers is significantly reduced.
 そこで、疎水性を有する樹脂との親和性を高め分散性を向上させるため、親水性であるセルロースナノファイバーを疎水化処理する方法が開発されてきた。 Therefore, in order to increase the affinity with the hydrophobic resin and improve the dispersibility, a method for hydrophobizing the hydrophilic cellulose nanofibers has been developed.
 例えば、特許文献1では、TEMPO酸化反応により得られた酸化セルロースを分散させセルロースナノファイバーとした後に、酸を添加して凝集させゲルとして取り出す。これを有機溶媒に添加してゲル中の水を溶媒置換した後、有機溶媒に溶解させたアルカリを作用させ、さらなる溶媒置換を繰り返した後に分散処理することで有機溶媒を包含した疎水性のセルロースナノファイバー分散体を得る方法が示されている。 For example, in Patent Document 1, after the cellulose oxide obtained by the TEMPO oxidation reaction is dispersed to form cellulose nanofibers, an acid is added to aggregate the cellulose oxide and take it out as a gel. This is added to an organic solvent to replace the water in the gel with a solvent, then an alkali dissolved in the organic solvent is allowed to act, and further solvent substitution is repeated and then dispersion treatment is performed to carry out hydrophobic cellulose containing the organic solvent. A method for obtaining a nanofiber dispersion is shown.
 特許文献2では、TEMPO酸化反応により得られた酸化セルロースを有機アルカリでpH調整したものを水または有機溶媒中で分散させる方法が開示されている。本方法では分散媒を基本的に水として捕らえ、水を含む有機溶媒を用いることを可能としている。しかしながら、水を包含したセルロースナノファイバー分散液では、乾燥効率が低く、生産性を向上することが困難な場合がある。さらに、乾燥過程においては有機溶媒分が先に蒸発して除去され、結果的に水分散体と同様の特性としてセルロースナノファイバーが本来の親水性を維持したままとなり、アルカリとして有機アルカリを用いて改質する効果を十分に発揮させることが難しいことがある。 Patent Document 2 discloses a method in which cellulose oxide obtained by a TEMPO oxidation reaction is pH-adjusted with an organic alkali and dispersed in water or an organic solvent. In this method, the dispersion medium is basically captured as water, and it is possible to use an organic solvent containing water. However, in the cellulose nanofiber dispersion liquid containing water, the drying efficiency is low, and it may be difficult to improve the productivity. Furthermore, in the drying process, the organic solvent is first evaporated and removed, and as a result, the cellulose nanofibers maintain their original hydrophilicity as the same characteristics as the aqueous dispersion, and organic alkali is used as the alkali. It may be difficult to fully exert the reforming effect.
 特許文献3では、本発明者らの一部により、TEMPO酸化反応により得られたカルボキシル基が導入されたセルロースナノファイバーと、分散媒とを含む分散体において、該カルボキシル基が対イオンとして有機オニウムイオンを含み、さらに該分散媒に水を含まないことを特徴とするセルロースナノファイバー分散体が開示され、対イオンとしての使用される有機オニウムイオンとしてテトラブチルアンモニウムイオン等が記載されている。 In Patent Document 3, some of the present inventors have introduced organic onium as a counterion in a dispersion containing cellulose nanofibers into which a carboxyl group obtained by a TEMPO oxidation reaction has been introduced and a dispersion medium. A cellulose nanofiber dispersion containing ions and further containing no water in the dispersion medium is disclosed, and tetrabutylammonium ions and the like are described as organic onium ions used as counterions.
国際公開第2013/077354号International Publication No. 2013/077354 国際公開第2011/111612号International Publication No. 2011/1116112 特願2013-244787号Japanese Patent Application No. 2013-2448787
 しかしながら、本発明者らの検討の結果、TEMPO酸化反応により得られたカルボキシル基が導入されたセルロースを疎水化処理して得られる従前のセルロースナノファイバー分散体は、広範な有機溶媒に分散性を示すものの水にも分散してしまうため、セルロースナノファイバー分散体から得られる乾燥体の耐水性は低くなり、製造や取り扱いが困難となる場合がある。 However, as a result of the studies by the present inventors, the conventional cellulose nanofiber dispersion obtained by hydrophobizing the cellulose into which the carboxyl group introduced by the TEMPO oxidation reaction is introduced has dispersibility in a wide range of organic solvents. Although it is shown, it also disperses in water, so that the water resistance of the dried product obtained from the cellulose nanofiber dispersion becomes low, which may make it difficult to manufacture and handle.
 一方で、ドデシルアミン等の1級アミンをTEMPO酸化反応により得られたカルボキシル基が導入されたセルロースの疎水化に用いると、得られるセルロースナノファイバー分散体は、水に分散せず、アルコールなどの誘電率の比較的高い有機溶媒に対しては分散することがある。しかしながら、ドデシルアミン等の1級アミンで改質したセルロースナノファイバー分散体は、一度カルボキシル基をナトリウム塩の形態とし、酸洗浄を行い、さらに1級アミンで再度改質するという多段階の工程を経なければ有機溶媒中に分散させ、さらには乾燥体にすることは困難な場合があることが本発明者らにより明らかとなった。 On the other hand, when a primary amine such as dodecylamine is used for hydrophobization of cellulose having a carboxyl group introduced by a TEMPO oxidation reaction, the obtained cellulose nanofiber dispersion does not disperse in water and contains alcohol or the like. It may be dispersed in an organic solvent having a relatively high dielectric constant. However, the cellulose nanofiber dispersion modified with a primary amine such as dodecylamine is subjected to a multi-step process in which the carboxyl group is once converted into a sodium salt, acid-washed, and then modified again with the primary amine. It has been clarified by the present inventors that it may be difficult to disperse it in an organic solvent and further to make it into a dried product.
 このような技術状況下、本発明者らは、さらに検討した結果、特定の有機オニウムイオンと、TEMPO酸化反応により得られたカルボキシル基が導入されたセルロースとを組み合わせると、有機溶媒に対して優れた分散性を有するセルロースナノファイバーを取得しうることを見出した。 Under such technical circumstances, as a result of further studies, the present inventors have made a combination of a specific organic onium ion and cellulose having a carboxyl group introduced by a TEMPO oxidation reaction, which is excellent for an organic solvent. It has been found that cellulose nanofibers having a high dispersibility can be obtained.
 また、本発明者らは、有機オニウムイオンと、TEMPO酸化反応により得られたカルボキシル基が導入されたセルロースと有機溶媒とを含んでなる組成物を特定の条件下で乾燥すると、効率的にセルロースナノファイバーを乾燥しうることを見出した。本発明はかかる知見に基づくものである。 In addition, the present inventors efficiently dry a composition containing organic onium ions, cellulose having a carboxyl group introduced by a TEMPO oxidation reaction, and an organic solvent under specific conditions. We have found that nanofibers can be dried. The present invention is based on such findings.
 したがって、本発明の1つの目的は、有機溶媒に対して優れた分散性を有するセルロースナノファイバーを取得することにある。 Therefore, one object of the present invention is to obtain cellulose nanofibers having excellent dispersibility in an organic solvent.
 また、本発明の別の目的は、セルロースナノファイバーを効率的に乾燥しうる方法を提供することにある。 Another object of the present invention is to provide a method capable of efficiently drying cellulose nanofibers.
[1]カルボキシル基と、該カルボキシル基の対イオンとしての4級有機オニウムイオンとが導入されてなるセルロースを含んでなる、セルロースナノファイバーであって、
 上記4級有機オニウムイオンがブロミドイオンと共に塩を形成する場合、JIS-K7121に従って測定される前記塩の融点は100℃以下であり、
 以下の試験方法により測定される上記セルロースナノファイバー分散体の分散収率は、分散媒が有機溶媒である場合の方が分散媒が水である場合よりも高い、セルロースナノファイバー。
 試験方法:25℃において、分散媒中固形分濃度0.1重量%のセルロースナノファイバーを10分間12,000gにて遠心分離処理し、沈殿物と、上澄み液とを分離し、得られた沈殿物および上澄み液の重量に基づき、以下の式に従って分散収率を算出する。
Figure JPOXMLDOC01-appb-M000003
[2]上記4級有機オニウムイオンが4級アンモニウムイオンおよび4級ホスホニウムイオンから選択される少なくとも1つのものである、[1]に記載のセルロースナノファイバー。
[3]上記4級有機オニウムイオンが、下記式(1)で表される、[1]または[2]のいずれかに記載のセルロースナノファイバー。
Figure JPOXMLDOC01-appb-C000004
[上記式中、Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数6以上である。]
[4]R、R、RおよびRで表される全ての炭化水素基の炭素数が6以上であり、
 R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数が8以上であり、
 R、R、RおよびR表される全ての炭化水素基の炭素数の合計が30以上である、[3]に記載のセルロースナノファイバー。
[5]R、R、RおよびRで表される炭化水素基のうち3つ以上の基が、脂肪族炭化水素基である、[3]または[4]に記載のセルロースナノファイバー。
[6]Mがリン原子でありかつR、R、RおよびRが同一である4級有機オニウムイオンを除く、[3]~[5]のいずれかに記載のセルロースナノファイバー。
[7]分散媒として有機溶媒を含んでなる、[1]~[6]のいずれかに記載のセルロースナノファイバー。
[8]上記有機溶媒の比誘電率が75以下である、[1]~[7]のいずれかに記載のセルロースナノファイバー。
[9]上記有機溶媒が水溶性有機溶媒である、[1]~[8]のいずれかに記載のセルロースナノファイバー。
[10]上記有機溶媒が、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、アセトン、酢酸エチル、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドンおよびN-メチルアセトアミドからなる群から選択される少なくとも1つのものである、[1]~[9]のいずれかに記載のセルロースナノファイバー。
[11]上記分散媒が有機溶媒である場合の上記分散収率が25%以上である、[1]~[10]のいずれかに記載のセルロースナノファイバー。
[12]上記分散媒が水である場合の上記分散収率が20%以下である、[1]~[11]のいずれかに記載のセルロースナノファイバー。
[13]上記カルボキシル基の含有量がセルロースナノファイバーの乾燥重量当たり0.1mmoL以上3.0mmoL以下である、[1]~[12]のいずれかに記載のセルロースナノファイバー。
[14]、[1]~[13]のいずれかに記載のセルロースナノファイバーの乾燥体。
[15]セルロースナノファイバーの乾燥体の製造方法であって、
 セルロースナノファイバー分散体と、酸とを接触させてゲル状組成物を得る工程および 上記ゲル状組成物を乾燥してセルロースナノファイバーの乾燥体を得る工程
を含み、
 上記セルロースナノファイバー分散体が、
 カルボルボキシル基と該カルボキシル基の対イオンとして有機オニウムイオンとが導入されてなるセルロースナノファイバーと、分散媒としての有機溶媒とを含んでなる、方法。
[16]上記乾燥が、超臨界乾燥法、凍結乾燥法または蒸発乾燥法により実施される、[15]に記載の方法。
[17]上記酸を実質的に無水の状態でセルロースナノファイバー分散体と接触させる、[15]または[16]のいずれかに記載の方法。
[18]上記セルロースナノファイバーの乾燥体が、エアロゲル、クライオゲルまたはキセロゲルである、[15]~[17]のいずれかに記載の方法。
[1] Cellulose nanofibers containing cellulose formed by introducing a carboxyl group and a quaternary organic onium ion as a counterion of the carboxyl group.
When the quaternary organic onium ion forms a salt together with the bromide ion, the melting point of the salt measured according to JIS-K7121 is 100 ° C. or lower.
The dispersion yield of the cellulose nanofiber dispersion measured by the following test method is higher when the dispersion medium is an organic solvent than when the dispersion medium is water.
Test method: At 25 ° C., cellulose nanofibers having a solid content concentration of 0.1% by weight in a dispersion medium were centrifuged at 12,000 g for 10 minutes to separate the precipitate from the supernatant, and the obtained precipitate was obtained. Based on the weight of the product and the supernatant, the dispersion yield is calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000003
[2] The cellulose nanofiber according to [1], wherein the quaternary organic onium ion is at least one selected from a quaternary ammonium ion and a quaternary phosphonium ion.
[3] The cellulose nanofiber according to any one of [1] and [2], wherein the quaternary organic onium ion is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
[In the formula, M represents a nitrogen atom or a phosphorus atom, R 1, R 2, R 3 and R 4 represents a hydrocarbon group, R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms. ]
[4] All the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 have 6 or more carbon atoms.
At least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has 8 or more carbon atoms.
The cellulose nanofiber according to [3], wherein the total number of carbon atoms of all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is 30 or more.
[5] The cellulose nano according to [3] or [4], wherein three or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Fiber.
[6] M excluding quaternary organic onium ion and R 1 is phosphorus atom, R 2, R 3 and R 4 are the same, the cellulose nanofiber according to any one of [3] to [5].
[7] The cellulose nanofiber according to any one of [1] to [6], which comprises an organic solvent as a dispersion medium.
[8] The cellulose nanofiber according to any one of [1] to [7], wherein the relative permittivity of the organic solvent is 75 or less.
[9] The cellulose nanofiber according to any one of [1] to [8], wherein the organic solvent is a water-soluble organic solvent.
[10] The organic solvents are methanol, ethanol, isopropyl alcohol, t-butyl alcohol, acetone, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and The cellulose nanofiber according to any one of [1] to [9], which is at least one selected from the group consisting of N-methylacetamide.
[11] The cellulose nanofiber according to any one of [1] to [10], wherein the dispersion yield is 25% or more when the dispersion medium is an organic solvent.
[12] The cellulose nanofiber according to any one of [1] to [11], wherein the dispersion yield is 20% or less when the dispersion medium is water.
[13] The cellulose nanofiber according to any one of [1] to [12], wherein the content of the carboxyl group is 0.1 mm or more and 3.0 mm or less per dry weight of the cellulose nanofiber.
[14], The dried product of cellulose nanofibers according to any one of [1] to [13].
[15] A method for producing a dried product of cellulose nanofibers.
Including a step of contacting the cellulose nanofiber dispersion with an acid to obtain a gel-like composition and a step of drying the gel-like composition to obtain a dried cellulose nanofiber.
The cellulose nanofiber dispersion is
A method comprising a cellulose nanofiber in which an organic onium ion is introduced as a counterion of a carborvoxyl group and the carboxyl group, and an organic solvent as a dispersion medium.
[16] The method according to [15], wherein the drying is carried out by a supercritical drying method, a freeze drying method or an evaporation drying method.
[17] The method according to either [15] or [16], wherein the acid is brought into contact with the cellulose nanofiber dispersion in a substantially anhydrous state.
[18] The method according to any one of [15] to [17], wherein the dried product of the cellulose nanofibers is airgel, cryogel or xerogel.
 本発明の第一の態様によれば、有機溶媒に対して優れた分散性を有するセルロースナノファイバーを提供することができる。上記第一の実施形態において、セルロースナノファイバーは、水に対する分散性と比較して有機溶媒に対する分散性が高いことから、水の吸着等を回避する上で有利に利用することができる。 According to the first aspect of the present invention, it is possible to provide cellulose nanofibers having excellent dispersibility in an organic solvent. In the first embodiment, since the cellulose nanofibers have high dispersibility in organic solvents as compared with dispersibility in water, they can be advantageously used in avoiding adsorption of water and the like.
 また、本発明の第二の態様によれば、セルロースナノファイバーの乾燥体を効率的に乾燥させることができる。上記第二の実施形態においては、セルロースナノファイバー分散体から乾燥体を取得するまでの工程において溶媒置換を行わずに実質的に無水の状態で乾燥処理を実施しうることから、水の吸着等を回避しつつ簡便にセルロースナノファイバーの乾燥体を提供することができる。 Further, according to the second aspect of the present invention, the dried body of cellulose nanofibers can be efficiently dried. In the second embodiment, since the drying treatment can be carried out in a substantially anhydrous state without solvent substitution in the step of obtaining the dried product from the cellulose nanofiber dispersion, water adsorption or the like can be performed. It is possible to easily provide a dried product of cellulose nanofibers while avoiding the above.
図1Aに示すように、各有機溶媒(メタノール、エタノール、イソプロピルアルコール、アセトン、t-ブチルアルコール)に分散させたセルロースナノファイバー分散体の写真である。図1Bは、各有機溶媒(メタノール、エタノール、イソプロピルアルコール、アセトン、t-ブチルアルコール)に分散させたセルロースナノファイバー分散体の複屈折性を示す写真である。As shown in FIG. 1A, it is a photograph of a cellulose nanofiber dispersion dispersed in each organic solvent (methanol, ethanol, isopropyl alcohol, acetone, t-butyl alcohol). FIG. 1B is a photograph showing the birefringence of the cellulose nanofiber dispersion dispersed in each organic solvent (methanol, ethanol, isopropyl alcohol, acetone, t-butyl alcohol). セルロースナノファイバーの乾燥体(エアロゲル)の写真である。It is a photograph of a dried product (airgel) of cellulose nanofibers.
 第一の態様
 本発明の第一の実施形態によれば、カルボキシル基と、該カルボキシル基の対イオンとしての4級有機オニウムイオンとが導入されてなるセルロースを含んでなる、セルロースナノファイバーであって、
 4級有機オニウムイオンがブロミドイオンと共に塩を形成する場合、JIS-K7121に従って測定される上記塩の融点は100℃以下であり、
 以下の試験方法により測定される上記セルロースナノファイバーの分散収率は、分散媒が有機溶媒である場合の方が分散媒が水である場合よりも高いセルロースナノファイバーが提供される。
First Aspect According to the first embodiment of the present invention, it is a cellulose nanofiber containing cellulose obtained by introducing a carboxyl group and a quaternary organic onium ion as a counterion of the carboxyl group. hand,
When the quaternary organic onium ion forms a salt together with the bromide ion, the melting point of the salt measured according to JIS-K7121 is 100 ° C. or lower.
The dispersion yield of the cellulose nanofibers measured by the following test method is higher when the dispersion medium is an organic solvent than when the dispersion medium is water.
 試験方法:25℃において、分散媒中固形分濃度0.1重量%のセルロースナノファイバーを10分間12,000gにて遠心分離処理し、沈殿物と、上澄み液とを分離し、得られた沈殿物および上澄み液の重量に基づき、以下の式に従って分散収率を算出する。上記試験方法のさらなる詳細には、後述する例1に準じて実施することができる。上記試験方法において、有機溶媒を使用する場合と水を使用する場合とは、同一条件下で分散処理を実施する。
Figure JPOXMLDOC01-appb-M000005
Test method: At 25 ° C., cellulose nanofibers having a solid content concentration of 0.1% by weight in a dispersion medium were centrifuged at 12,000 g for 10 minutes to separate the precipitate and the supernatant, and the obtained precipitate was obtained. Based on the weight of the product and the supernatant, the dispersion yield is calculated according to the following formula. Further details of the above test method can be carried out according to Example 1 described later. In the above test method, the dispersion treatment is carried out under the same conditions when the organic solvent is used and when water is used.
Figure JPOXMLDOC01-appb-M000005
 本発明の一実施形態によれば、上記有機溶媒の比誘電率は、例えば、75以下であり、好ましくは10~75であり、より好ましくは10~40であり、さらに好ましくは10~35である。 According to one embodiment of the present invention, the relative permittivity of the organic solvent is, for example, 75 or less, preferably 10 to 75, more preferably 10 to 40, still more preferably 10 to 35. is there.
 また、上記有機溶媒は、好ましくは水溶性有機溶媒である。より具体的には、有機溶媒は、好ましくはメタノール(MeOH)、エタノール(EtOH)、イソプロピルアルコール(i-PrOH)、t-ブチルアルコール(t-BuOH)、アセトン、酢酸エチル、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドンおよびN-メチルアセトアミドからなる群から選択される少なくとも1種以上であり、より好ましくはメタノール、エタノール、イソプロピルアルコール、t-ブチルアルコールまたはアセトンであり、より一層好ましくはエタノールである。 The organic solvent is preferably a water-soluble organic solvent. More specifically, the organic solvent is preferably methanol (Methanol), ethanol (EtOH), isopropyl alcohol (i-PrOH), t-butyl alcohol (t-BuOH), acetone, ethyl acetate, N, N-dimethyl. At least one selected from the group consisting of formamide, N, N-dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and N-methylacetamide, more preferably methanol, ethanol, isopropyl alcohol, t-. It is butyl alcohol or acetone, and even more preferably ethanol.
 本発明の好ましい実施形態によれば、上記有機溶媒を分散媒とする場合のセルロースナノファイバーの上記分散収率は、通常25%以上であり、好ましくは25~100%であり、より好ましくは40~100%であり、より一層好ましくは50~100%以上であり、さらに一層好ましくは90~100%である。 According to a preferred embodiment of the present invention, the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is usually 25% or more, preferably 25 to 100%, and more preferably 40. It is ~ 100%, more preferably 50-100% or more, and even more preferably 90-100%.
 本発明の一実施形態によれば、水を分散媒とする場合のセルロースナノファイバーの上記分散収率は、通常20%以下であり、好ましくは0~10%であり、より好ましくは0~5%であり、より一層好ましくは0~1%であり、さらに一層好ましくは0~0.1%である。 According to one embodiment of the present invention, the dispersion yield of the cellulose nanofibers when water is used as the dispersion medium is usually 20% or less, preferably 0 to 10%, and more preferably 0 to 5. %, More preferably 0 to 1%, and even more preferably 0 to 0.1%.
 本発明の好ましい実施形態によれば、上記有機溶媒を分散媒とする場合のセルロースナノファイバーの上記分散収率は、好ましくは25~100%であり、水を分散媒とする場合のセルロースナノファイバーの上記分散収率は0~10%である。本発明のより好ましい実施形態によれば、上記有機溶媒を分散媒とする場合のセルロースナノファイバーの上記分散収率は、好ましくは40~100%であり、水を分散媒とする場合のセルロースナノファイバーの上記分散収率は0~5%である。本発明のより一層好ましい実施形態によれば、上記有機溶媒を分散媒とする場合のセルロースナノファイバーの上記分散収率は、好ましくは90~100%であり、水を分散媒とする場合のセルロースナノファイバーの上記分散収率は0~0.1%である。上記いずれかの好ましい実施形態において、有機溶媒は、好ましくはメタノール、エタノール、イソプロピルアルコール、t-ブチルアルコールまたはアセトンであり、より好ましくはエタノールである。 According to a preferred embodiment of the present invention, the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 25 to 100%, and the cellulose nanofibers when water is used as the dispersion medium. The dispersion yield of the above is 0 to 10%. According to a more preferable embodiment of the present invention, the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 40 to 100%, and the cellulose nanofibers when water is used as the dispersion medium. The dispersion yield of the fiber is 0 to 5%. According to a more preferable embodiment of the present invention, the dispersion yield of the cellulose nanofibers when the organic solvent is used as the dispersion medium is preferably 90 to 100%, and the cellulose when water is used as the dispersion medium. The dispersion yield of the nanofibers is 0 to 0.1%. In any of the above preferred embodiments, the organic solvent is preferably methanol, ethanol, isopropyl alcohol, t-butyl alcohol or acetone, more preferably ethanol.
 本発明の一実施形態によれば、4級有機オニウムイオンはブロミドイオンと共に常温融解塩を形成することが好ましい。本発明の好ましい実施形態によれば、4級有機オニウムイオンがブロミドイオンと共に塩を形成する場合、JIS-K7121に従って測定される上記塩の融点は、通常100℃以下であり、好ましくは1~100℃であり、より好ましくは10~100℃であり、より一層好ましくは15~99℃である。 According to one embodiment of the present invention, it is preferable that the quaternary organic onium ion forms a room temperature molten salt together with the bromide ion. According to a preferred embodiment of the present invention, when the quaternary organic onium ion forms a salt together with the bromide ion, the melting point of the salt measured according to JIS-K7121 is usually 100 ° C. or lower, preferably 1 to 100. ° C., more preferably 10 to 100 ° C., even more preferably 15 to 99 ° C.
 本発明の好ましい実施形態によれば、4級機オニウムイオンがブロミドイオンまたは水酸化物イオンと共に塩を形成する場合、該塩は、好ましくは20℃において非水溶性であることが好ましく、水不溶性であることがより好ましい。ここで、非水溶性とは、20℃において吸湿性がある状態、および水不溶性である物質を意味する。ここで、水不溶性である物質とは、第17改正日本薬局方の通則による「ほとんど溶けない(溶質1gを溶かすのに要する溶媒量が10000mL以上)」に属する物質を意味する。 According to a preferred embodiment of the present invention, when the quaternary onium ion forms a salt together with the bromide ion or the hydroxide ion, the salt is preferably water-insoluble at 20 ° C. and is water-insoluble. Is more preferable. Here, the term "water-insoluble" means a substance that is hygroscopic at 20 ° C. and is water-insoluble. Here, the water-insoluble substance means a substance that belongs to "almost insoluble (the amount of solvent required to dissolve 1 g of solute is 10,000 mL or more)" according to the general rules of the 17th revised Japanese Pharmacopoeia.
 また、本発明の好ましい実施形態によれば、4級有機オニウムイオンがブロミドイオンまたは水酸化物イオンと共に塩を形成する場合、該塩は、好ましくはエタノール溶解性である。ここで、エタノール溶解性とは、JIS K3362-2008に従って測定されるエタノール可溶分であることを意味する。 Further, according to a preferred embodiment of the present invention, when the quaternary organic onium ion forms a salt together with the bromide ion or the hydroxide ion, the salt is preferably ethanol-soluble. Here, ethanol solubility means an ethanol-soluble component measured according to JIS K3362-2008.
 また、好適な4級有機オニウムイオンとしては、4級アンモニウムイオン、4級ホスホニウムイオンまたはそれらの組み合わせが挙げられる。 Further, suitable quaternary organic onium ions include quaternary ammonium ions, quaternary phosphonium ions, or combinations thereof.
 本発明の一実施形態によれば、4級有機オニウムイオンの有する側鎖の炭素数の下限は、通常4以上であり、好ましくは6以上であり、より一層好ましくは8以上である。 According to one embodiment of the present invention, the lower limit of the number of carbon atoms in the side chain of the quaternary organic onium ion is usually 4 or more, preferably 6 or more, and even more preferably 8 or more.
 また、本発明の一実施形態によれば、有機オニウムイオンの有する側鎖の炭素数は、特に限定されないが、通常20以下であり、好ましくは15以下である。 Further, according to one embodiment of the present invention, the number of carbon atoms in the side chain of the organic onium ion is not particularly limited, but is usually 20 or less, preferably 15 or less.
 また、本発明の一実施形態によれば、4級有機オニウムイオンは、下記式(1)で表される、ものである。
Figure JPOXMLDOC01-appb-C000006
[上記式中、Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数6以上である。]
Further, according to one embodiment of the present invention, the quaternary organic onium ion is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
[In the formula, M represents a nitrogen atom or a phosphorus atom, R 1, R 2, R 3 and R 4 represents a hydrocarbon group, R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms. ]
 式(1)において、R、R、RおよびRで表される全ての炭化水素基の炭素数は、通常6以上であり、好ましくは6~30であり、より一層好ましくは6~20であり、さらに一層好ましくは6~15である。 In the formula (1), the number of carbon atoms in all of the hydrocarbon groups represented by R 1, R 2, R 3 and R 4 are usually 6 or more, preferably from 6 to 30, even more preferably 6 It is ~ 20, and even more preferably 6 ~ 15.
 また、式(1)において、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数は、好ましくは8以上であり、より好ましくは8~30であり、より一層好ましくは8~20であり、さらに一層好ましくは8~15である。 Further, in the formula (1), at least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has preferably 8 or more carbon atoms, more preferably 8 to 30 carbon atoms. , Even more preferably 8 to 20, and even more preferably 8 to 15.
 また、式(1)において、R、R、RおよびRの炭化水素の炭素数の合計は通常20以上であり、好ましくは25以上であり、より好ましくは30以上である。また、別の実施形態によれば、R、R、RおよびRの炭化水素の炭素数の合計は、通常20~60であり、好ましくは20~50であり、より好ましくは20~40である。 Further, in the formula (1), the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, preferably 25 or more, and more preferably 30 or more. According to another embodiment, the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 to 60, preferably 20 to 50, and more preferably 20. ~ 40.
 また、一実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基である。また、好ましい実施形態によれば、R、R、RおよびRで表される炭化水素基のうち4つの基は、脂肪族炭化水素基である。 Further, according to one embodiment, in the formula (1), three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Further, according to a preferred embodiment, four of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
 また、一実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基である。また、別の実施形態によれば、R、R、RおよびRで表される全ての炭化水素基は、脂肪族炭化水素基である。上記いずれかの実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち1つ以下の基は、アラルキル基または芳香族基である。 Further, according to one embodiment, in the formula (1), three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Moreover, according to another embodiment, all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. According to any of the above embodiments, in formula (1), one or less of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is an aralkyl group or an aromatic group. is there.
 脂肪族炭化水素基としては、炭素数6~30の脂肪族炭化水素基が好ましく、R、R、RおよびRが脂肪族炭化水素基である場合の例として、アルキル、アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル等が挙げられるが、より好ましくはアルキル基(例えば、メチル、エチル、n-プロピル、n-ブチル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル等)である。 Examples of the aliphatic hydrocarbon group, preferably an aliphatic hydrocarbon group having 6 to 30 carbon atoms, examples of case R 1, R 2, R 3 and R 4 is an aliphatic hydrocarbon group, an alkyl, alkenyl, Alkinyl, cycloalkyl, cycloalkenyl, cycloalkynyl and the like can be mentioned, but more preferably alkyl groups (eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, etc.).
 アラルキル基としては、炭素数7~20のアラルキル基が好ましく、例としてはベンジル基、o-トルイルメチル基、m-トルイルメチル基、p-トルイルメチル基、2-フェニルエチル基、1-ナフチルメチル基、2-ナフチルメチル基などが挙げられる。また、芳香族基としては、炭素数6-20の芳香族基が好ましく、フェニル基、ビフェニル基、ベンジル基、トシル基などを例示することができる。R、R、RおよびRは、それらの熱安定性に影響を及ぼさないメチル、エチル、弗素、塩素などのような置換基を有してもよい。 As the aralkyl group, an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, an o-toluylmethyl group, an m-toluylmethyl group, a p-toluylmethyl group, a 2-phenylethyl group and a 1-naphthylmethyl group. Examples include a group and a 2-naphthylmethyl group. Further, as the aromatic group, an aromatic group having 6 to 20 carbon atoms is preferable, and phenyl group, biphenyl group, benzyl group, tosyl group and the like can be exemplified. R 1 , R 2 , R 3 and R 4 may have substituents such as methyl, ethyl, fluorine, chlorine and the like that do not affect their thermal stability.
 また、一実施形態によれば、式(1)において、Mがリン原子でありかつR、R、RおよびRが同一であるものを除く。 Further, according to one embodiment, in the formula (1), M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same.
 本発明の好ましい実施形態によれば、4級有機オニウムイオンが導入されてなるセルロースナノファイバーであって、
4級有機オニウムイオンは下記式(1)で表される、セルロースナノファイバーが提供される。
Figure JPOXMLDOC01-appb-C000007
[上記式中、Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、
 R、R、RおよびRで表される全ての炭化水素基の炭素数は6以上であり、 R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数は、8以上であり、
 R、R、RおよびRの炭化水素の炭素数の合計は通常20以上であり、 R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基であり、
 ただし、Mがリン原子でありかつR、R、RおよびRが同一であるものを除く。]
According to a preferred embodiment of the present invention, it is a cellulose nanofiber into which a quaternary organic onium ion is introduced.
As the quaternary organic onium ion, cellulose nanofibers represented by the following formula (1) are provided.
Figure JPOXMLDOC01-appb-C000007
[In the above formula, M represents a nitrogen atom or a phosphorus atom, and R 1 , R 2 , R 3 and R 4 represent a hydrocarbon group.
All hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 have 6 or more carbon atoms, and at least among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4. One carbon number is 8 or more,
The total number of carbon atoms in the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, and 3 or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 The group is an aliphatic hydrocarbon group,
However, those in which M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same are excluded. ]
 本発明のいずれかの実施形態において、4級有機オニウムイオンはブロミド塩の性質として、20℃において非水溶性であることが好ましく、水不溶性であることがより好ましい。本発明の特に好ましい実施形態によれば、4級有機オニウムイオンは、テトラオクチルアンモニウムイオン、テトラドデシルアンモニウムイオン、トリブチルドデシルホスホニウムイオンまたはトリヘキシルテトラデシルホスホニウムイオンである。 In any of the embodiments of the present invention, the quaternary organic onium ion is preferably water-insoluble at 20 ° C., more preferably water-insoluble, as a property of the bromide salt. According to a particularly preferred embodiment of the present invention, the quaternary organic onium ion is tetraoctylammonium ion, tetradodecylammonium ion, tributyldodecylphosphonium ion or trihexyltetradecylphosphonium ion.
 一実施形態によれば、本発明のセルロースナノファイバーは、カルボルボキシル基が導入されたセルロースと、カルボキシル基の対イオンとしての4級有機オニウムイオンとを組み合わせることにより製造することができる。
 以下、本発明のセルロースナノファイバーおよびカルボキシル基が導入されたセルロースとの製造方法の一実施形態を説明する。本発明の一実施形態によれば、上記製造方法は、少なくとも酸化工程と、対イオン置換工程とを含む。さらに、溶媒置換工程、分散工程を含んでも構わない。
According to one embodiment, the cellulose nanofibers of the present invention can be produced by combining cellulose into which a carborvoxyl group has been introduced and a quaternary organic onium ion as a counterion of a carboxyl group.
Hereinafter, an embodiment of the method for producing cellulose nanofibers and cellulose into which a carboxyl group has been introduced will be described. According to one embodiment of the present invention, the production method includes at least an oxidation step and a counterion substitution step. Further, a solvent replacement step and a dispersion step may be included.
 セルロースを出発原料とした材料としては、天然セルロースまたは化学変成したセルロースを用いることができる。具体的には、漂白及び未漂白クラフト木材パルプ、前加水分解済みクラフト木材パルプ、亜硫酸木材パルプ等の木材を原料としたパルプ、あるいは綿やバクテリアセルロース等非木材パルプ、並びにこれらの混合物を用いることができ、これらを物理的、化学的処理した物質の何れを用いてもよい。好適には、結晶形I型を有する天然セルロースが好ましい。 As a material using cellulose as a starting material, natural cellulose or chemically modified cellulose can be used. Specifically, wood-based pulp such as bleached and unbleached kraft wood pulp, pre-hydrogenated kraft wood pulp, sulfite wood pulp, non-wood pulp such as cotton and bacterial cellulose, and mixtures thereof shall be used. Any of these physically and chemically treated substances may be used. Preferably, natural cellulose having a crystalline form I is preferable.
<酸化工程>
 セルロースの酸化方法としては、原料となるセルロースにカルボキシル基を導入する方法であれば特に制限はなく、目的に応じて適宜選択される。たとえば、一般的に知られている水酸基からアルデヒドを経てカルボン酸に酸化させる方法から適宜選択することができる。その中でも、N-オキシル化合物を触媒として次亜ハロゲン酸塩や亜ハロゲン酸塩等を共酸化剤として用いる方法が好ましい。特に、触媒として2,2,6,6-テトラメチル-1-ピペジニルオキシラジカル(TEMPO)を使用し、pHを調整しながら次亜塩素酸ナトリウム等の酸化剤、臭化ナトリウム等の臭化物を用いて処理するTEMPO酸化法では、反応媒体として有機溶媒を用いることなく完全に水中での反応であること、試薬の入手しやすさ、コスト、反応の安定性の点から好適である。
<Oxidation process>
The method for oxidizing cellulose is not particularly limited as long as it is a method for introducing a carboxyl group into cellulose as a raw material, and is appropriately selected depending on the intended purpose. For example, it can be appropriately selected from a generally known method of oxidizing a hydroxyl group to a carboxylic acid via an aldehyde. Among them, a method in which an N-oxyl compound is used as a catalyst and a hypohalite or a hypohalogenate is used as an copolymer is preferable. In particular, 2,2,6,6-tetramethyl-1-pipedinyloxy radical (TEMPO) is used as a catalyst, and an oxidizing agent such as sodium hypochlorite and a bromide such as sodium bromide are used while adjusting the pH. The TEMPO oxidation method treated with the above is suitable from the viewpoints that the reaction is completely in water without using an organic solvent as a reaction medium, the availability of reagents, the cost, and the stability of the reaction.
 TEMPO酸化法においては、結晶性のセルロースミクロフィブリルの表面のみを酸化し、結晶内部には酸化が起こらないため、結晶構造を維持できる。そのため、生成物はセルロース本来の高強度、高弾性率、低線熱膨張係数、高耐熱性の特性を有する。 In the TEMPO oxidation method, only the surface of crystalline cellulose microfibrils is oxidized, and oxidation does not occur inside the crystal, so that the crystal structure can be maintained. Therefore, the product has the characteristics of high strength, high elastic modulus, low coefficient of linear thermal expansion, and high heat resistance inherent in cellulose.
 上述のTEMPO酸化法による酸化処理は通常次の手順で行われる。
 水中で分散させたセルロースにN-オキシル化合物と酸化剤や共酸化剤を添加してセルロースの酸化を行う。酸化反応中に水酸化ナトリウムを添加し、反応系内のpHを9から11に制御する。反応温度は0℃以上40℃以下が好適である。この時、セルロース繊維表面のC6位の水酸基がカルボキシル基に酸化される。反応終了後、十分水洗して回収し、本発明における構成材料として用いることができる。
The oxidation treatment by the above-mentioned TEMPO oxidation method is usually performed by the following procedure.
An N-oxyl compound and an oxidizing agent or a copolymer are added to the cellulose dispersed in water to oxidize the cellulose. Sodium hydroxide is added during the oxidation reaction to control the pH in the reaction system from 9 to 11. The reaction temperature is preferably 0 ° C. or higher and 40 ° C. or lower. At this time, the hydroxyl group at the C6 position on the surface of the cellulose fiber is oxidized to a carboxyl group. After completion of the reaction, it can be thoroughly washed with water and recovered, and used as a constituent material in the present invention.
 なお、酸化剤としては、次亜ハロゲン酸又はその塩、亜ハロゲン酸又はその塩が使用でき、次亜塩素酸ナトリウムが好ましい。臭化物としては、臭化リチウム、臭化カリウム、臭化ナトリウム等が挙げられ、取り扱いの簡便さから臭化ナトリウムが好ましい。 As the oxidizing agent, hypochlorous acid or a salt thereof, hypochlorous acid or a salt thereof can be used, and sodium hypochlorite is preferable. Examples of the bromide include lithium bromide, potassium bromide, sodium bromide and the like, and sodium bromide is preferable from the viewpoint of ease of handling.
 セルロースに導入されるカルボキシル基の含有量は、反応条件を適宜設定することにより調整可能である。カルボキシル基が導入されたセルロースは、後述する分散工程を経てカルボキシル基の荷電反発により分散媒中に分散することから、カルボキシル基の含有量を適切な範囲に制御しておくことが好ましい。セルロースに導入されるカルボキシル基の含有量は、好ましくは乾燥重量当たり0.1mmoL以上3mmoL以下、さらに0.6mmoL以上2.5mmoL以下がより好ましい。カルボキシル基の含有量を乾燥重量当たり0.1mmoL以上にすることは、セルロースを安定的に分散媒中に分散させる上で有利である。また、カルボキシル基の含有量を乾燥重量当たり3mmoL以下にすることは、分散媒への親和性の過度な増大による耐水性が低下を回避する上で有利である。 The content of the carboxyl group introduced into the cellulose can be adjusted by appropriately setting the reaction conditions. Since the cellulose into which the carboxyl group has been introduced is dispersed in the dispersion medium by the charge repulsion of the carboxyl group through the dispersion step described later, it is preferable to control the content of the carboxyl group within an appropriate range. The content of the carboxyl group introduced into the cellulose is preferably 0.1 mmoL or more and 3 mmoL or less, and more preferably 0.6 mmoL or more and 2.5 mmoL or less per dry weight. It is advantageous to set the content of the carboxyl group to 0.1 mmoL or more per dry weight in order to stably disperse the cellulose in the dispersion medium. Further, setting the content of the carboxyl group to 3 mmoL or less per dry weight is advantageous in avoiding a decrease in water resistance due to an excessive increase in affinity for the dispersion medium.
 なお、セルロースに含有されるカルボキシル基量は以下の方法にて算出することができる。酸化処理したセルロースの乾燥重量換算0.2gをビーカーにとり、イオン交換水80mLを添加する。そこに0.01M塩化ナトリウム水溶液5mLを加え、攪拌させながら0.1M塩酸を加えて全体がpH2.0となるように調整することができる。ここに自動滴定装置(東亜ディーケーケー社製、AUT-701)を用いて0.1M水酸化ナトリウム水溶液を0.05mL/30秒で注入し、30秒毎の電導度とpH値を測定し、pH11まで測定を続けた。得られた電導度曲線から水酸化ナトリウムの滴定量を求め、カルボキシル基含有量を算出することができる。 The amount of carboxyl groups contained in cellulose can be calculated by the following method. Take 0.2 g of the oxidized cellulose in terms of dry weight in a beaker and add 80 mL of ion-exchanged water. 5 mL of a 0.01 M sodium chloride aqueous solution is added thereto, and 0.1 M hydrochloric acid is added while stirring to adjust the pH to 2.0 as a whole. Using an automatic titrator (AUT-701 manufactured by DKK-TOA CORPORATION), a 0.1 M sodium hydroxide aqueous solution was injected at 0.05 mL / 30 seconds, and the conductivity and pH value were measured every 30 seconds to measure pH 11 The measurement was continued until. The titration amount of sodium hydroxide can be obtained from the obtained conductivity curve, and the carboxyl group content can be calculated.
 酸化反応の停止により酸化工程を終了した後、生成物をろ過により反応液中から回収する。反応終了後はセルロースに導入されたカルボキシル基は、反応媒中に存在するカチオンに由来する金属イオンを対イオンとした塩を形成する。
 酸化処理後のセルロースの回収方法としては、(a)カルボキシル基が塩を形成したままろ別する方法、(b)反応液に酸を添加して系内を酸性下に調整し、カルボン酸としてろ別する方法、(c)有機溶媒を添加して凝集させた後にろ別する方法が挙げられる。その中でも、ハンドリング性や回収効率、廃液処理の観点から、(b)カルボン酸として回収する方法が好適である。また、後述する対イオン置換工程において、対イオンとして金属イオンを含有しないほうが副生成物の生成を抑制でき、置換効率に優れるため、カルボン酸として回収する方法が好ましい。
After the oxidation step is completed by stopping the oxidation reaction, the product is recovered from the reaction solution by filtration. After completion of the reaction, the carboxyl group introduced into the cellulose forms a salt having a metal ion derived from a cation present in the reaction medium as a counter ion.
As a method for recovering cellulose after the oxidation treatment, (a) a method of filtering while the carboxyl group forms a salt, and (b) an acid is added to the reaction solution to adjust the inside of the system under acidic conditions to obtain a carboxylic acid. Examples thereof include a method of filtering and (c) a method of adding an organic solvent to aggregate and then filtering. Among them, (b) the method of recovering as a carboxylic acid is preferable from the viewpoint of handleability, recovery efficiency, and waste liquid treatment. Further, in the counterion substitution step described later, the method of recovering as a carboxylic acid is preferable because the formation of by-products can be suppressed and the substitution efficiency is excellent when the counterion does not contain a metal ion.
 なお、酸化反応後のセルロース中の金属イオン含有量は、通常、蛍光X線分析法の元素分析によって簡易的に調べることができる。塩を形成したままろ別する方法を用いて回収した場合、金属イオンの含有率が通常5wt%以上であるのに対し、カルボン酸としてからろ別する方法により回収した場合、通常1wt%以下となる。さらに回収したセルロースは洗浄を繰り返すことにより精製でき、触媒や副生成物を除去することができる。このとき、塩酸等を用いてpH3以下の酸性条件に調製した洗浄液で洗浄を繰り返した後に、純水で洗浄を繰り返すことにより、残存する金属イオン及び塩類の量を低減することができる。 The metal ion content in cellulose after the oxidation reaction can usually be easily examined by elemental analysis by fluorescent X-ray analysis. When recovered by a method of filtering while forming a salt, the content of metal ions is usually 5 wt% or more, whereas when recovered by a method of filtering as a carboxylic acid, it is usually 1 wt% or less. Become. Further, the recovered cellulose can be purified by repeating washing, and the catalyst and by-products can be removed. At this time, the amount of residual metal ions and salts can be reduced by repeating the washing with a washing liquid prepared under acidic conditions of pH 3 or less using hydrochloric acid or the like and then repeating the washing with pure water.
<対イオン置換工程>
 次に、対イオン置換工程としては、カルボキシル基を導入したセルロースの懸濁液にアルカリを添加することにより実施することができる。
<Counterion replacement process>
Next, the counterion substitution step can be carried out by adding an alkali to the suspension of cellulose having a carboxyl group introduced therein.
 このとき、セルロースの懸濁液のpHをアルカリを用いてpH4以上pH12以下の範囲に調整することが好ましい。特に、pHをpH7以上pH12以下のアルカリ性とし、添加したアルカリとカルボン酸塩を形成してもよい。これにより、カルボキシル基の電離に伴う浸透圧斥力が起こりやすくなるため、分散性が向上しセルロースナノファイバー分散体が得やすくなる。 At this time, it is preferable to adjust the pH of the cellulose suspension to a range of pH 4 or more and pH 12 or less using an alkali. In particular, the pH may be set to be alkaline with a pH of 7 or more and a pH of 12 or less, and a carboxylate may be formed with the added alkali. As a result, the osmotic repulsive force associated with the ionization of the carboxyl group is likely to occur, so that the dispersibility is improved and the cellulose nanofiber dispersion is easily obtained.
 懸濁液のpHを調整するアルカリは、4級有機オニウム化合物を用いることができる。 4級有機オニウム化合物を形成する4級有機オニウムの対イオンとしては、ハロゲン化物イオン(ブロミドイオン、フルオライドイオン、ヨードイオン)または水酸化物イオンが挙げられるが、金属イオンの混入が悪影響する場合や分散媒への分散性などを鑑み、水酸化物イオンが好適である。 A quaternary organic onium compound can be used as the alkali for adjusting the pH of the suspension. Examples of the counter ion of the quaternary organic onium forming the quaternary organic onium compound include halide ion (bromid ion, fluoride ion, iodo ion) or hydroxide ion, but when the mixing of metal ion has an adverse effect. Hydroxide ions are preferable in view of dispersibility in the dispersion medium and dispersion medium.
 上述のようにアルカリとして4級有機オニウム化合物を用いて得られたセルロース修飾体(カルボキシル基と、該カルボキシル基の対イオンとしての有機オニウムイオンとが導入されてなるセルロース)は、金属イオンを対イオンとする無機アルカリを用いた場合よりも低エネルギー、短時間で分散処理を行うことができ、かつ最終的に到達する分散体の均質性も高い。これは、有機オニウム化合物を用いた方が対イオンのイオン径が大きいため、分散媒中で微細セルロース繊維同士をより引き離す効果が大きいためと考えられる。さらに、水不溶性の4級有機オニウム化合物を含むと、4級有機オニウム化合物と有機溶媒の組み合わせにより、分散液の粘度特性を調整することが可能であり、産業上の適用範囲を増大させることができる。したがって、イオン交換処理は、好ましくは有機溶媒中で行われる。 As described above, the cellulose-modified product (cellulose obtained by introducing a carboxyl group and an organic onium ion as a counterion of the carboxyl group) obtained by using a quaternary organic onium compound as an alkali is paired with a metal ion. The dispersion treatment can be performed with lower energy and in a shorter time than when an inorganic alkali as an ion is used, and the homogeneity of the dispersion finally reached is also high. It is considered that this is because the ionic radius of the counterion is larger when the organic onium compound is used, and therefore the effect of separating the fine cellulose fibers from each other in the dispersion medium is greater. Furthermore, if a water-insoluble quaternary organic onium compound is contained, the viscosity characteristics of the dispersion can be adjusted by the combination of the quaternary organic onium compound and the organic solvent, which can increase the industrial application range. it can. Therefore, the ion exchange treatment is preferably carried out in an organic solvent.
<溶媒置換工程>
 酸化処理にてカルボキシル基を導入したセルロースを分散体とする場合には、セルロースと分散媒を混合させて後述の方法を用いて分散処理することにより、セルロースを均質な分散体まで分散させることが可能となる。分散媒と混合させる前処理として、酸化処理したセルロースを溶媒置換することができる。ここで、セルロースの酸化工程において反応媒体が水であること、反応後の洗浄に用いる洗浄剤が主に水であることから、酸化処理後のセルロースは水を包含した湿潤状態として回収される。そのため、分散媒として水以外の有機溶媒を含む場合において、分散媒中に不純物となる水を除去する目的や、セルロースと分散媒を予め親和させ分散性を向上させる目的、あるいは分散媒不溶成分を除去する目的により溶媒置換を行うことが好ましい。
<Solvent replacement step>
When cellulose having a carboxyl group introduced in the oxidation treatment is used as a dispersion, the cellulose can be dispersed to a homogeneous dispersion by mixing the cellulose and the dispersion medium and performing the dispersion treatment using the method described later. It will be possible. As a pretreatment for mixing with the dispersion medium, the oxidized cellulose can be replaced with a solvent. Here, since the reaction medium is water in the cellulose oxidation step and the cleaning agent used for cleaning after the reaction is mainly water, the cellulose after the oxidation treatment is recovered as a wet state containing water. Therefore, when an organic solvent other than water is contained as the dispersion medium, the purpose is to remove water as an impurity in the dispersion medium, to make cellulose and the dispersion medium compatible in advance to improve dispersibility, or to use an insoluble component of the dispersion medium. It is preferable to perform solvent substitution for the purpose of removal.
 本発明においては、上述の通り、水不溶性の4級有機オニウム塩を有機溶媒中で使用してイオン交換処理を行うことが好ましい。水不溶性の4級有機オニウム塩を用いてイオン交換を行うと、溶媒置換後においてもカルボキシル基による荷電反発を維持できるため、セルロースの繊維の凝集を抑制することができる。さらに、水不溶性の4級有機オニウムイオンを配位することにより有機溶媒との親和性が顕著に向上し、水を排出しやすく溶媒置換を効率的に行うことができる。 In the present invention, as described above, it is preferable to perform ion exchange treatment using a water-insoluble quaternary onium salt in an organic solvent. When ion exchange is carried out using a water-insoluble quaternary onium salt, charge repulsion due to the carboxyl group can be maintained even after solvent substitution, so that aggregation of cellulose fibers can be suppressed. Further, by coordinating the water-insoluble quaternary organic onium ion, the affinity with the organic solvent is remarkably improved, water can be easily discharged, and the solvent can be replaced efficiently.
 溶媒置換に用いる有機溶媒としては、セルロース繊維の凝集や変性を生じない範囲において、目的に応じて適宜選択することができる。また、セルロースナノファイバー分散体を調製する際に使用される分散媒と同一であっても構わない。 The organic solvent used for solvent substitution can be appropriately selected according to the purpose as long as the cellulose fibers do not aggregate or denature. Further, it may be the same as the dispersion medium used when preparing the cellulose nanofiber dispersion.
<分散工程>
 分散工程により、カルボキシル基を導入したセルロースやセルロース修飾体をセルロースナノファイバー分散体へと調製することができる。言い換えると、本発明の一実施形態においては、カルボキシル基を導入したセルロースやセルロース修飾体は本発明のセルロースナノファイバー分散体に調製される段階より以前のセルロースの一形態として記載している。
<Dispersion process>
By the dispersion step, cellulose having a carboxyl group introduced or a cellulose-modified product can be prepared into a cellulose nanofiber dispersion. In other words, in one embodiment of the present invention, a carboxyl group-introduced cellulose or a cellulose-modified product is described as a form of cellulose before the stage of preparation into the cellulose nanofiber dispersion of the present invention.
 分散工程における分散処理の方法としては、既に知られている各種分散処理が可能である。例えば、ホモミキサー処理、回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理、ナノジナイザー処理、ディスク型レファイナー処理、コニカル型レファイナー処理、ダブルディスク型レファイナー処理、グラインダー処理、ボールミル処理、ニ軸混練機による混練処理、水中対向処理等がある。この中でも、微細化効率の面から回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理が好適である。なお、これらの処理のうち、二つ以上の処理方法を組み合わせて分散を行うことも可能である。 As a method of dispersion processing in the dispersion process, various already known dispersion treatments are possible. For example, homomixer processing, mixer processing with rotary blade, high pressure homogenizer processing, ultrahigh pressure homogenizer processing, ultrasonic homogenizer processing, nanogenizer processing, disc type refiner processing, conical type refiner processing, double disc type refiner processing, grinder processing, ball mill processing. , Kneading process by biaxial kneader, underwater facing process, etc. Among these, a mixer treatment with a rotary blade, a high-pressure homogenizer treatment, an ultra-high pressure homogenizer treatment, and an ultrasonic homogenizer treatment are preferable from the viewpoint of miniaturization efficiency. Of these processes, it is also possible to perform dispersion by combining two or more processing methods.
 分散処理においてセルロースに導入されたカルボキシル基の有機オニウムイオンとして対イオン置換したセルロース修飾体を用いると、有機溶媒に対する親和性が高いため、分散媒としてアルコール等の有機溶媒を用いた際にも、セルロースナノファイバー分散体を調製することができる。 When a cellulose-modified product obtained by substituting a counterion as the organic onium ion of the carboxyl group introduced into cellulose in the dispersion treatment is used, it has a high affinity for an organic solvent. Therefore, even when an organic solvent such as alcohol is used as the dispersion medium, Cellulose nanofiber dispersions can be prepared.
 本発明の一実施形態によれば、分散処理において分散媒として用いる有機溶媒は、上述した有機溶媒を使用することができる。 According to one embodiment of the present invention, the above-mentioned organic solvent can be used as the organic solvent used as the dispersion medium in the dispersion treatment.
 本方法によって本来親水性の高いセルロースが水を含まない有機溶媒中でナノファイバー状として分散し分散性を維持する原理としては、以下のように考えられる。まず、対イオン交換工程において用いる有機オニウムイオンの解離性が極めて高いことが挙げられる。さらに、有機オニウム化合物が有する炭化水素基が有機溶媒と疎水的な相互作用を有する。これらの効果により、有機溶媒中でもイオンが解離し、酸化セルロースのカルボキシル基の電離に伴う浸透圧効果が働き、有機溶媒中での分散を可能としていると考えられる。 The principle that cellulose, which is originally highly hydrophilic, is dispersed as nanofibers in an organic solvent that does not contain water and maintains dispersibility by this method is considered as follows. First, the dissociability of organic onium ions used in the counterion exchange step is extremely high. Furthermore, the hydrocarbon group of the organic onium compound has a hydrophobic interaction with the organic solvent. It is considered that these effects dissociate the ions even in the organic solvent, and the osmotic effect associated with the ionization of the carboxyl group of the oxidized cellulose acts to enable dispersion in the organic solvent.
 本発明の一実施形態によれば、分散工程により得られたセルロースナノファイバー分散体の光路長10mmにおける660nmでの光線透過率は、セルロースナノファイバー分散体に含有されるセルロースナノファイバーの固形分濃度0.2%において分散媒をリファレンスとして85%以上であることが好ましい。上記の範囲内であれば、分散体が均質性に優れているということが示される。即ち、可視光領域である660nmにおいて光透過率が低い場合、試験光の透過を妨げるセルロースの繊維の凝集体が多数存在することを示唆する。光透過率の測定により、簡易的にセルロースの分散性を表す指標とすることができる。 According to one embodiment of the present invention, the light transmittance of the cellulose nanofiber dispersion obtained by the dispersion step at an optical path length of 10 mm at 660 nm is the solid content concentration of the cellulose nanofibers contained in the cellulose nanofiber dispersion. At 0.2%, it is preferably 85% or more with the dispersion medium as a reference. Within the above range, it is shown that the dispersion has excellent homogeneity. That is, when the light transmittance is low in the visible light region of 660 nm, it is suggested that there are many aggregates of cellulose fibers that hinder the transmission of test light. By measuring the light transmittance, it can be easily used as an index showing the dispersibility of cellulose.
 なお、セルロースナノファイバー分散体の光線透過率は、セルロースナノファイバーの固形分濃度を調整した後に石英セルに充填し、分光光度計を用いて指定の波長における透過率を測定することにより求められる。また、本発明の一実施形態によれば、セルロースナノファイバー分散体としてのセルロースの繊維幅は2nm以上200nm以下であることが好ましい。すなわち、繊維形状を維持するためには2nm以上が好ましく、200nm以下であれば光学透明性を有するために製品設計における自由度が向上する。なお、セルロースの繊維形状は、0.0001~0.001wt%に調製したセルロースナノファイバー分散体を表面が平滑なマイカ等に展開して乾燥させ、SEM観察により確認することができる。 The light transmittance of the cellulose nanofiber dispersion is obtained by adjusting the solid content concentration of the cellulose nanofibers, filling the cellulose cells, and measuring the transmittance at a specified wavelength using a spectrophotometer. Further, according to one embodiment of the present invention, the fiber width of cellulose as a cellulose nanofiber dispersion is preferably 2 nm or more and 200 nm or less. That is, in order to maintain the fiber shape, it is preferably 2 nm or more, and if it is 200 nm or less, it has optical transparency and thus the degree of freedom in product design is improved. The fiber shape of cellulose can be confirmed by developing a cellulose nanofiber dispersion prepared to 0.0001 to 0.001 wt% on mica or the like having a smooth surface, drying it, and observing it by SEM.
 分散工程における分散媒に対するセルロースの繊維の固形分濃度は、分散処理において支障がない範囲において適宜調整することができ、分散処理後に濃縮処理を行っても構わない。濃縮方法については特に限定はないが、セルロース繊維の乾燥による凝集や分解反応による特性低下が問題にならない範囲において、遠心分離や減圧、真空蒸発等の方法を適宜選択することができる。 The solid content concentration of the cellulose fibers with respect to the dispersion medium in the dispersion step can be appropriately adjusted within a range that does not hinder the dispersion treatment, and the concentration treatment may be performed after the dispersion treatment. The concentration method is not particularly limited, but a method such as centrifugation, decompression, or vacuum evaporation can be appropriately selected as long as the aggregation due to drying of the cellulose fibers and the deterioration of the characteristics due to the decomposition reaction do not become a problem.
 また、分散工程後のセルロースナノファイバー分散体に、凝集や沈殿を生じない範囲において、粘度調整や乾燥速度の調整、異種材料との親和性向上等を目的として、付加したい機能に応じて、水をはじめ、様々な有機溶媒を混合させることができる。このとき異種溶媒を混合することにより生じるショックを緩和するため、添加速度やpHの調整、攪拌方法、温度等を適宜選択することができる。 In addition, water is added to the cellulose nanofiber dispersion after the dispersion step according to the function to be added for the purpose of adjusting the viscosity, adjusting the drying rate, improving the affinity with different materials, etc. within the range where aggregation and precipitation do not occur. Various organic solvents can be mixed. At this time, in order to alleviate the shock caused by mixing different solvents, the addition rate, pH adjustment, stirring method, temperature and the like can be appropriately selected.
 また、得られたセルロース修飾体、或いはセルロースナノファイバー分散体は、金属等を含んでもよい。金属としては、金、銀、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属またはこれらの合金、または酸化物、複酸化物、炭化物などを用いることができる。金属の担持方法としては、金属または金属酸化物等の微粒子を混合する他、カルボキシル基を有するセルロースナノファイバー分散体が金属または金属酸化物の錯体を形成し、還元剤を添加することで金属粒子として析出させることができる。この方法を用いると、微小な金属粒子がセルロース繊維表面に均一に固定化されるため、微量な金属量によって効率的に効果を発揮させることができる。 Further, the obtained cellulose modified product or cellulose nanofiber dispersion may contain a metal or the like. Metals include platinum group elements such as gold, silver, platinum, palladium, ruthenium, iridium, rhodium, and osmium, as well as metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. Alternatively, these alloys, oxides, compound oxides, carbides and the like can be used. As a method for supporting a metal, in addition to mixing fine particles such as metal or metal oxide, a cellulose nanofiber dispersion having a carboxyl group forms a complex of metal or metal oxide, and metal particles are added by adding a reducing agent. Can be precipitated as. When this method is used, the fine metal particles are uniformly immobilized on the surface of the cellulose fiber, so that the effect can be efficiently exerted by a small amount of metal.
 なお、凝集や沈殿が生成しない範囲においては、より繊維同士の荷電反発を増大させる目的や分散液の粘度を制御する目的で、水溶性多糖類を含む各種添加物、各種樹脂を含んでもよい。例えば、化学修飾したセルロース、カラギーナン、キサンタンガム、グアーガム、アラビアゴム、アルギン酸ナトリウム、寒天、可溶化澱粉、グリセリン、ソルビトール、消泡剤、水溶性高分子、合成高分子等を用いることができる。あるいは塗工性やぬれ性など機能性付与などの為に、各種溶剤を含んでもよい。アルコール類、セルソルブ類、グリコール類、などを用いることができる。さらには意匠性を付与する目的で、各種染料や顔料、有機フィラー、無機フィラーを含んでも構わない。 In addition, various additives including water-soluble polysaccharides and various resins may be contained for the purpose of further increasing the charge repulsion between fibers and controlling the viscosity of the dispersion liquid as long as aggregation and precipitation are not generated. For example, chemically modified cellulose, carrageenan, xanthan gum, guar gum, gum arabic, sodium alginate, agar, solubilized starch, glycerin, sorbitol, antifoaming agent, water-soluble polymer, synthetic polymer and the like can be used. Alternatively, various solvents may be contained in order to impart functionality such as coatability and wettability. Alcohols, cellsolves, glycols, etc. can be used. Furthermore, various dyes, pigments, organic fillers, and inorganic fillers may be contained for the purpose of imparting design.
 また、耐水性、電解液耐性を向上させるために各種架橋剤を含んでもよい。例えば、オキサゾリン、ジビニルスルホン、カルボジイミド、ジヒドラジン、ジヒドラジド、エピクロルヒドリン、グリオキザール、有機チタン化合物、有機ジルコニウム化合物などを用いることができる。また、反応性を向上させるなどの目的で、酸やアルカリを添加することによってpHを調整することができる。 Further, various cross-linking agents may be contained in order to improve water resistance and electrolyte resistance. For example, oxazoline, divinyl sulfone, carbodiimide, dihydrazine, dihydrazide, epichlorohydrin, glioxal, organic titanium compound, organic zirconium compound and the like can be used. Further, the pH can be adjusted by adding an acid or an alkali for the purpose of improving the reactivity.
 このようにして得られたセルロースナノファイバー分散体は、前述のように水を排除した状態で分散状態を維持することができる。さらに、有機溶媒との親和性に優れ、有機溶媒中で均質なセルロースナノファイバーとして存在することができる。 The cellulose nanofiber dispersion thus obtained can maintain the dispersed state in the state where water is excluded as described above. Furthermore, it has excellent affinity with organic solvents and can exist as homogeneous cellulose nanofibers in organic solvents.
 また、セルロースナノファイバー分散体を用いて、樹脂と混合させることにより強度向上や軽量化を目的とした樹脂複合体を形成したり、基材等へ塗工することによりセルロースナノファイバーを含む機能層を形成するなど、成形体の構成材料とすることが可能である。 Further, using a cellulose nanofiber dispersion, a resin composite for the purpose of improving strength and weight reduction is formed by mixing with a resin, or a functional layer containing cellulose nanofibers is applied by coating on a base material or the like. It is possible to use it as a constituent material of a molded product, such as forming.
 これにより、樹脂のような疎水性の高い物質とのより均質な複合化が可能となり、セルロースの工業的利用範囲が格段に広がる。 This enables more homogeneous compounding with highly hydrophobic substances such as resins, greatly expanding the range of industrial use of cellulose.
 したがって、本発明の一実施形態によれば、セルロースナノファイバーは、分散媒としての有機溶媒とともに分散体として提供することができる。かかるセルロースナノファイバー分散体の形状は、好ましくは液状またはゲル状である。 Therefore, according to one embodiment of the present invention, the cellulose nanofibers can be provided as a dispersion together with an organic solvent as a dispersion medium. The shape of the cellulose nanofiber dispersion is preferably liquid or gel.
 本発明の一実施形態によれば、セルロースナノファイバー分散体は乾燥体の形態とすることができる。乾燥体の好適な例としては、エアロゲル、キセロゲル等が挙げられる。セルロースナノファイバー分散体の乾燥体には、比表面積や空隙率を高レベルで付与することができ、断熱材、触媒担体、触媒担体、吸音材、吸着材として有利に使用することができる。 According to one embodiment of the present invention, the cellulose nanofiber dispersion can be in the form of a dried product. Preferable examples of the dried product include airgel, xerogel and the like. A high level of specific surface area and void ratio can be imparted to the dried body of the cellulose nanofiber dispersion, and it can be advantageously used as a heat insulating material, a catalyst carrier, a catalyst carrier, a sound absorbing material, and an adsorbent.
 本発明の一実施形態によれば、上記乾燥体は、セルロースナノファイバー分散体を有機溶媒と共に乾燥することにより得られるものである。セルロースナノファイバー分散体の乾燥方法は、後述する第二の態様に記載の方法により実施することができる。 According to one embodiment of the present invention, the dried product is obtained by drying a cellulose nanofiber dispersion together with an organic solvent. The method for drying the cellulose nanofiber dispersion can be carried out by the method described in the second aspect described later.
 第二の態様
 本発明の第二の実施形態によれば、セルロースナノファイバーの乾燥体の製造方法であって、セルロースナノファイバー分散体と、酸とを接触させてゲル状組成物を得る工程およびゲル状組成物を乾燥してセルロースナノファイバーの乾燥体を得る工程
を含み、セルロースナノファイバー分散体が、カルボキシル基と該カルボキシル基の対イオンとして4級有機オニウムイオンとが導入されてなるセルロースナノファイバーと、有機溶媒とを含んでなる方法が提供される。
 上記方法によれば、実質的に無水の状態で乾燥処理を実施しうることから、水の吸着等を回避しつつ簡便にセルロースナノファイバー分散体の乾燥体を取得する上で特に有利である。
Second Embodiment According to the second embodiment of the present invention, there is a method for producing a dried product of cellulose nanofibers, wherein the cellulose nanofiber dispersion is brought into contact with an acid to obtain a gel-like composition. The cellulose nanofiber dispersion comprises a step of drying the gel-like composition to obtain a dried product of cellulose nanofibers, and the cellulose nanofiber dispersion is obtained by introducing a carboxyl group and a quaternary organic onium ion as a counter ion of the carboxyl group. A method comprising a fiber and an organic solvent is provided.
According to the above method, since the drying treatment can be carried out in a substantially anhydrous state, it is particularly advantageous in easily obtaining a dried body of the cellulose nanofiber dispersion while avoiding adsorption of water and the like.
 本発明の一実施形態によれば、セルロースナノファイバー分散体と、酸とを接触させてゲル状組成物を得る。 According to one embodiment of the present invention, a cellulose nanofiber dispersion is brought into contact with an acid to obtain a gel-like composition.
 本発明の一実施形態によれば、上記セルロースナノファイバー分散体は、実質的に無水の状態であることが好ましい。ここで、実質的に無水の状態とは、水含有量が通常1%以下、好ましくは0.1%以下、より好ましくは0.001%以下、より一層好ましくは0.0001%以下であることを意味する。 According to one embodiment of the present invention, it is preferable that the cellulose nanofiber dispersion is in a substantially anhydrous state. Here, the substantially anhydrous state means that the water content is usually 1% or less, preferably 0.1% or less, more preferably 0.001% or less, still more preferably 0.0001% or less. Means.
 上記セルロースナノファイバー分散体は、上記第一の態様における記載に従い準備することができる。 The cellulose nanofiber dispersion can be prepared according to the description in the first aspect.
 本発明の一実施形態によれば、上記セルロースナノファイバー分散体における4級有機オニウムイオンは、第一の態様に記載されたものと同様とすることができる。 According to one embodiment of the present invention, the quaternary organic onium ion in the cellulose nanofiber dispersion can be the same as that described in the first aspect.
 したがって、本発明の一実施形態によれば、4級有機オニウムイオンは、下記式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000008
[上記式中、Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数6以上である。]
Therefore, according to one embodiment of the present invention, the quaternary organic onium ion is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000008
[In the formula, M represents a nitrogen atom or a phosphorus atom, R 1, R 2, R 3 and R 4 represents a hydrocarbon group, R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms. ]
 式(1)において、R、R、RおよびRで表される全ての炭化水素基の炭素数は、通常6以上であり、好ましくは6~30であり、より一層好ましくは6~20であり、さらに一層好ましくは6~15である。 In the formula (1), the number of carbon atoms in all of the hydrocarbon groups represented by R 1, R 2, R 3 and R 4 are usually 6 or more, preferably from 6 to 30, even more preferably 6 It is ~ 20, and even more preferably 6 ~ 15.
 また、式(1)において、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数は、好ましくは8以上であり、より好ましくは8~30であり、より一層好ましくは8~20であり、さらに一層好ましくは8~15である。 Further, in the formula (1), at least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has preferably 8 or more carbon atoms, more preferably 8 to 30 carbon atoms. , Even more preferably 8 to 20, and even more preferably 8 to 15.
 また、式(1)において、R、R、RおよびRの炭化水素の炭素数の合計は通常20以上であり、好ましくは25以上であり、より好ましくは30以上である。また、別の実施形態によれば、R、R、RおよびRの炭化水素の炭素数の合計は、通常20~60であり、好ましくは20~50であり、より好ましくは20~40である。 Further, in the formula (1), the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, preferably 25 or more, and more preferably 30 or more. Further, according to another embodiment, the total number of carbon atoms of the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 to 60, preferably 20 to 50, and more preferably 20. ~ 40.
 また、一実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基である。また、好ましい実施形態によれば、R、R、RおよびRで表される炭化水素基のうち4つの基は、脂肪族炭化水素基である。 Further, according to one embodiment, in the formula (1), three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Further, according to a preferred embodiment, four of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
 また、一実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基である。また、別の実施形態によれば、R、R、RおよびRで表される全ての炭化水素基は、脂肪族炭化水素基である。上記いずれかの実施形態によれば、式(1)において、R、R、RおよびRで表される炭化水素基のうち1つ以下の基は、アラルキル基または芳香族基である。  Further, according to one embodiment, in the formula (1), three or more groups among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. Moreover, according to another embodiment, all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups. According to any of the above embodiments, in the formula (1), one or less of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is an aralkyl group or an aromatic group. is there.
 脂肪族炭化水素基としては、炭素数6~30の脂肪族炭化水素基が好ましく、R、R、RおよびRが脂肪族炭化水素基である場合の例として、アルキル、アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル等が挙げられるが、より好ましくはアルキル基(例えば、メチル、エチル、n-プロピル、n-ブチル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル等)である。 Examples of the aliphatic hydrocarbon group, preferably an aliphatic hydrocarbon group having 6 to 30 carbon atoms, examples of case R 1, R 2, R 3 and R 4 is an aliphatic hydrocarbon group, an alkyl, alkenyl, Alkinyl, cycloalkyl, cycloalkenyl, cycloalkynyl and the like can be mentioned, but more preferably alkyl groups (eg, methyl, ethyl, n-propyl, n-butyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, etc.).
 アラルキル基としては、炭素数7~20のアラルキル基が好ましく、例としてはベンジル基、o-トルイルメチル基、m-トルイルメチル基、p-トルイルメチル基、2-フェニルエチル基、1-ナフチルメチル基、2-ナフチルメチル基などが挙げられる。また、芳香族基としては、炭素数6~20の芳香族基が好ましく、フェニル基、ビフェニル基、ベンジル基、トシル基などを例示することができる。R、R、RおよびRは、それらの熱安定性に影響を及ぼさないメチル、エチル、弗素、塩素などのような置換基を有してもよい。 As the aralkyl group, an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, an o-toluylmethyl group, an m-toluylmethyl group, a p-toluylmethyl group, a 2-phenylethyl group and a 1-naphthylmethyl group. Examples include a group and a 2-naphthylmethyl group. Further, as the aromatic group, an aromatic group having 6 to 20 carbon atoms is preferable, and phenyl group, biphenyl group, benzyl group, tosyl group and the like can be exemplified. R 1 , R 2 , R 3 and R 4 may have substituents such as methyl, ethyl, fluorine, chlorine and the like that do not affect their thermal stability.
 また、一実施形態によれば、式(1)において、Mがリン原子である場合、4級有機オニウムイオンは、R、R、RおよびRが同一であるものを除く。  Further, according to one embodiment, in Formula (1), when M is phosphorus atom, the quaternary organic onium ion, excluding R 1, R 2, R 3 and R 4 are the same.
 また、本発明の好ましい実施形態によれば、上記式(1)において、
Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、 R、R、RおよびRで表される全ての炭化水素基の炭素数は6以上であり、 R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数は、8以上であり、
 R、R、RおよびRの炭化水素の炭素数の合計は通常20以上であり、 R、R、RおよびRで表される炭化水素基のうち3つ以上の基は、脂肪族炭化水素基であり、
 ただし、Mがリン原子でありかつR、R、RおよびRが同一であるものを除く。
Further, according to a preferred embodiment of the present invention, in the above formula (1),
M represents a nitrogen atom or a phosphorus atom, R 1, R 2, R 3 and R 4 represents a hydrocarbon group, the carbon of all hydrocarbon groups represented by R 1, R 2, R 3 and R 4 The number is 6 or more, and at least one of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 has 8 or more carbon atoms.
The total number of carbon atoms in the hydrocarbons of R 1 , R 2 , R 3 and R 4 is usually 20 or more, and 3 or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 The group is an aliphatic hydrocarbon group,
However, those in which M is a phosphorus atom and R 1 , R 2 , R 3 and R 4 are the same are excluded.
 本発明の実施形態において、4級有機オニウムイオンはブロミド塩の性質として、20℃において非水溶性であることが好ましく、水不溶性であることがより好ましい。本発明の特に好ましい実施形態によれば、4級有機オニウムイオンは、テトラオクチルアンモニウムイオン、テトラドデシルアンモニウムイオン、トリブチルドデシルホスホニウムイオンまたはトリヘキシルテトラデシルホスホニウムイオンである。 In the embodiment of the present invention, the quaternary organic onium ion is preferably water-insoluble at 20 ° C., and more preferably water-insoluble, as a property of the bromide salt. According to a particularly preferred embodiment of the present invention, the quaternary organic onium ion is tetraoctylammonium ion, tetradodecylammonium ion, tributyldodecylphosphonium ion or trihexyltetradecylphosphonium ion.
 また、本発明の一実施形態によれば、上記セルロースナノファイバー分散体における有機溶媒は、第一の態様に記載されたものと同様とすることができる。 Further, according to one embodiment of the present invention, the organic solvent in the cellulose nanofiber dispersion can be the same as that described in the first aspect.
 また、本発明の別の実施形態によれば、上記セルロースナノファイバー分散体における有機溶媒は、後述の乾燥工程を勘案すれば、超臨界流体(CO等)と混合しうる溶媒であることが好ましい。かかる溶媒の好適な例としては、エタノール、メタノール、アセトン等が挙げられる。 Further, according to another embodiment of the present invention, the organic solvent in the cellulose nanofiber dispersion is a solvent that can be mixed with a supercritical fluid (CO 2, etc.) in consideration of the drying step described later. preferable. Preferable examples of such a solvent include ethanol, methanol, acetone and the like.
 本発明の一実施形態によれば、上記セルロースナノファイバー分散体と接触させる酸は、水の吸着を回避する観点から、実質的に無水の状態であることが好ましい。酸の好適な例としては、氷酢酸、塩酸、無水酢酸又は塩酸含有有機溶媒(塩酸メタノール溶液等)が挙げられる。 According to one embodiment of the present invention, the acid to be brought into contact with the cellulose nanofiber dispersion is preferably in a substantially anhydrous state from the viewpoint of avoiding adsorption of water. Preferable examples of the acid include glacial acetic acid, hydrochloric acid, acetic anhydride or a hydrochloric acid-containing organic solvent (hydrochloric acid-methanol solution, etc.).
 酸の使用量は、上記セルロースナノファイバーの分分散体中のカルボキシル基の含有量等に応じて適宜決定してよいが、例えば、上記セルロースナノファイバーの分分散体中のカルボキシル基に対して通常0.5~1.5当量、好ましくは0.9~1.1当量とすることができる。 The amount of the acid used may be appropriately determined according to the content of the carboxyl group in the dispersion of the cellulose nanofibers, etc., but for example, it is usually compared to the carboxyl group in the dispersion of the cellulose nanofibers. It can be 0.5 to 1.5 equivalents, preferably 0.9 to 1.1 equivalents.
 酸と上記セルロースナノファイバー分散体との接触方法は、特に限定されないが、記セルロースナノファイバー分散体に酸または酸含有液を直接的に添加することが好ましい。酸を接触させる際の温度は、特に限定されないが、例えば、5~40℃、好ましくは室温(約25℃)である。また、酸の接触期間は、例えば、0.5~3時間、好ましくは1~2時間である。上記接触期間中、セルロースナノファイバー分散体と酸との接触物はゲル状組成物が生成するまで静置していてもよい。 The method of contacting the acid with the cellulose nanofiber dispersion is not particularly limited, but it is preferable to directly add the acid or the acid-containing liquid to the cellulose nanofiber dispersion. The temperature at which the acid is brought into contact is not particularly limited, but is, for example, 5 to 40 ° C, preferably room temperature (about 25 ° C). The contact period of the acid is, for example, 0.5 to 3 hours, preferably 1 to 2 hours. During the above contact period, the contact material between the cellulose nanofiber dispersion and the acid may be allowed to stand until a gel-like composition is formed.
 本発明の一実施形態においては、上記ゲル状組成物を乾燥してセルロースナノファイバーの乾燥体を得る。上記乾燥としては、公知の乾燥方法を用いることができるが、水の混入による乾燥体の機能低下を回避する観点からは、超臨界乾燥処法または蒸発乾燥法により実施することが好ましい。 In one embodiment of the present invention, the gel-like composition is dried to obtain a dried product of cellulose nanofibers. As the drying, a known drying method can be used, but from the viewpoint of avoiding functional deterioration of the dried body due to mixing of water, it is preferably carried out by a supercritical drying method or an evaporation drying method.
 上記乾燥方法が超臨界乾燥法である場合、乾燥温度は通常35~45℃であり、好ましくは38~42℃である。また、超臨界乾燥は好ましくは、通常5~15MPa、好ましくは8~12MPaの加圧下で液体二酸化炭素を用いて実施される。また、上記ゲル状組成物を加圧下で液体二酸化炭素に溶媒置換し、加熱により超臨界状態を経て乾燥に至る時間は、特に限定されないが、通常1~15時間、好ましくは1~8時間である。 When the above drying method is a supercritical drying method, the drying temperature is usually 35 to 45 ° C, preferably 38 to 42 ° C. Further, supercritical drying is preferably carried out using liquid carbon dioxide under a pressure of usually 5 to 15 MPa, preferably 8 to 12 MPa. The time required for the gel-like composition to be solvent-substituted with liquid carbon dioxide under pressure and to reach drying through a supercritical state by heating is not particularly limited, but is usually 1 to 15 hours, preferably 1 to 8 hours. is there.
 乾燥方法が超臨界乾燥法とする場合、セルロースナノファイバーの乾燥体はエアロゲルとして提供することができる。 When the drying method is a supercritical drying method, a dried product of cellulose nanofibers can be provided as an airgel.
 上記乾燥方法が凍結乾燥法である場合、ゲル状組成物は一般的に液体窒素等を用いて凍結する。ゲル状組成物は急速凍結処理することが好ましい。 When the above drying method is a freeze-drying method, the gel-like composition is generally frozen using liquid nitrogen or the like. The gel-like composition is preferably quick-frozen.
 凍結乾燥法では減圧条件下で、好ましくは温度は、通常常温以下で行うことが好ましい。時間は、凍結乾燥の時間は、特に限定されないが、例えば、24~48時間である。 In the freeze-drying method, it is preferable to carry out under reduced pressure conditions, preferably at a temperature of usually room temperature or lower. The time for freeze-drying is not particularly limited, but is, for example, 24 to 48 hours.
 乾燥方法が凍結乾燥法とする場合、セルロースナノファイバーの乾燥体はクライオゲルとして提供することができる。 When the drying method is the freeze-drying method, the dried product of cellulose nanofibers can be provided as a cryogel.
 上記乾燥方法が蒸発乾燥法である場合、乾燥温度は通常30~110℃であり、好ましくは30~90℃である。また、乾燥時間は、特に限定されないが、通常1~48時間、好ましくは1~12時間である。 When the above drying method is an evaporation drying method, the drying temperature is usually 30 to 110 ° C, preferably 30 to 90 ° C. The drying time is not particularly limited, but is usually 1 to 48 hours, preferably 1 to 12 hours.
 乾燥方法が蒸発乾燥法とする場合、セルロースナノファイバーの乾燥体はキセロゲルとして提供することができる。 When the drying method is the evaporation drying method, the dried product of cellulose nanofibers can be provided as xerogel.
 以下に、本発明の実施例を説明する。なお、以下の実施例は本発明の一例であり、本発明はこれらの実施例には限定されない。 An embodiment of the present invention will be described below. The following examples are examples of the present invention, and the present invention is not limited to these examples.
 例1
 以下の手順により、セルロース修飾体及びセルロースナノファイバー分散体の調製を行った。
Example 1
A cellulose modified product and a cellulose nanofiber dispersion were prepared by the following procedure.
(1)試薬・材料
セルロース:漂白クラフトパルプ(フレッチャー チャレンジ カナダ「Machenzie」)
TEMPO:市販品(東京化成工業社製、98%)
次亜塩素酸ナトリウム:市販品(和光純薬社製、Cl:5%)
臭化ナトリウム:市販品(和光純薬社製)
(1) Reagents / Materials Cellulose: Bleached Kraft Pulp (Fletcher Challenge Canada "Mackenzie")
TEMPO: Commercial product (manufactured by Tokyo Chemical Industry, 98%)
Sodium hypochlorite: Commercial product (manufactured by Wako Junyakusha, Cl: 5%)
Sodium bromide: Commercial product (manufactured by Wako Junyakusha)
(2)酸化工程
 乾燥重量10gの漂白クラフトパルプを2Lのガラスビーカー中イオン交換水500mL中で一晩静置し、パルプを膨潤させた。ここにTEMPO0.1gと臭化ナトリウム1gを添加して攪拌し、パルプ懸濁液とした。さらに攪拌しながらセルロース重量当たり5mmoL/gの次亜塩素酸ナトリウムを添加した。この際、約1Nの水酸化ナトリウム水溶液を添加してパルプ懸濁液のpHを約10.5に保持した。その後、2時間反応させ、エタノール10gを添加して反応を停止し、セルロースにカルボキシル基が導入された酸化セルロースを得た。なお、この際導入されたカルボキシル基は反応媒中に残存する反応試薬に由来するナトリウムイオンを対イオンとした塩を形成する。
(2) Oxidation Step Bleached kraft pulp having a dry weight of 10 g was allowed to stand overnight in 500 mL of ion-exchanged water in a 2 L glass beaker to swell the pulp. To this, 0.1 g of TEMPO and 1 g of sodium bromide were added and stirred to prepare a pulp suspension. Further, 5 mmoL / g of sodium hypochlorite was added per weight of cellulose with stirring. At this time, about 1N of sodium hydroxide aqueous solution was added to maintain the pH of the pulp suspension at about 10.5. Then, the reaction was carried out for 2 hours, and 10 g of ethanol was added to stop the reaction to obtain oxidized cellulose in which a carboxyl group was introduced into cellulose. The carboxyl group introduced at this time forms a salt having a sodium ion derived from the reaction reagent remaining in the reaction medium as a counter ion.
 続いて0.5Nの塩酸を滴下してpHを2まで低下させた。ガラスフィルターを用いてセルロースをろ別し、さらに0.05Nの塩酸で3回洗浄してカルボキシル基をカルボン酸とした後に純水で5回洗浄し、固形分濃度20%の湿潤状態の酸化セルロースを得た。得られた酸化セルロースは、水酸化ナトリウムによる中和滴定からセルロースの乾燥重量当たりカルボキシル基量は1.6mmoLと算出された。 Subsequently, 0.5 N hydrochloric acid was added dropwise to lower the pH to 2. Cellulose was filtered off using a glass filter, washed 3 times with 0.05 N hydrochloric acid to make the carboxyl group a carboxylic acid, and then washed 5 times with pure water to obtain wet cellulose oxide with a solid content concentration of 20%. Got The obtained oxidized cellulose was calculated to have a carboxyl group amount of 1.6 mmoL per dry weight of cellulose by neutralization titration with sodium hydroxide.
(3)対イオン置換工程
 上記により調製した酸化セルロースを固形分濃度5%となるよう水を加えて懸濁液とし、ここにアルカリ種として有機オニウム化合物を酸化セルロースのカルボキシル基量に対して1.0当量加えた。2時間攪拌した後ガラスフィルターを用いて酸化セルロースをろ別し、対イオン置換酸化セルロースを得た。ここで、対イオン置換工程では、水に代えてエタノールを使用した場合でも対イオン置換した酸化セルロースが得られることを確認した。
(3) Counterion Substitution Step The cellulose oxide prepared above is added with water so as to have a solid content concentration of 5% to form a suspension, and an organic onium compound as an alkaline species is added thereto with respect to the amount of carboxyl groups of the cellulose oxide. 0.0 equivalent was added. After stirring for 2 hours, the cellulose oxide was filtered off using a glass filter to obtain counterion-substituted cellulose oxide. Here, in the counterion substitution step, it was confirmed that the counterion-substituted oxidized cellulose can be obtained even when ethanol is used instead of water.
 対イオン置換が生じたことは、FTIR解析により、対イオン置換工程後において、対イオン置換工程前の試験サンプルが有していた1720cm-1付近の酸型カルボキシル基の吸収が低減し、1610cm-1付近の塩型の吸収にシフトしていることによっても確認した。 Be counterion substitution occurs, by FTIR analysis, pair after ion exchange step to reduce the absorption of acid type carboxyl groups near 1720 cm -1 wherein the counterion replacement step before testing samples had the, 1610 cm - It was also confirmed by the shift to salt-type absorption near 1 .
 上記(1)~(3)において得られた試験サンプルの対カチオンおよびその性質は、以下の表1に記載の通りである。表1において、試験区1の試験サンプルは、(3)対イオン置換工程を実施せずに(2)酸化工程により取得した。試験区2~10の試験サンプルは(3)対イオン置換工程の各対イオンのブロミド塩を有機オニウム化合物として用いることにより取得した。なお、表1で示される各物性は、各対イオンのブロミド塩の性質を意味する。 The countercations of the test samples obtained in (1) to (3) above and their properties are as shown in Table 1 below. In Table 1, the test sample of Test Group 1 was obtained by (2) oxidation step without performing (3) counterion substitution step. The test samples in Test Groups 2 to 10 were obtained by using the bromide salt of each counterion in the (3) counterion substitution step as an organic onium compound. The physical properties shown in Table 1 mean the properties of the bromide salt of each counterion.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(4)溶媒置換工程
 上記により対イオン置換した酸化セルロースを、各置換溶媒を用いて溶媒置換した。各置換溶媒としては、有機溶媒(メタノール、エタノール、イソプロピルアルコール、アセトンまたはt-ブチルアルコール)または水を使用した。
(4) Solvent Substitution Step The oxidized cellulose counterion-substituted as described above was solvent-substituted using each of the substituted solvents. As each substitution solvent, an organic solvent (methanol, ethanol, isopropyl alcohol, acetone or t-butyl alcohol) or water was used.
 置換溶媒が有機溶媒である場合、体積分率において水と置換溶媒が2対1となるように混合した溶液に対イオン置換した酸化セルロースを投入し、30分間攪拌した後にガラスフィルターを用いて酸化セルロースをろ別し回収した。続いて、同様にして水と置換溶媒が1対1とした溶液に酸化セルロースを投入して30分間攪拌してろ別し回収した後、置換溶媒にて3回洗浄・回収を繰り返して、溶媒置換処理した酸化セルロースを得た。 When the substitution solvent is an organic solvent, the antiionically substituted cellulose oxide is added to a solution in which water and the substitution solvent are mixed so that the volume fraction is 2: 1 and the mixture is stirred for 30 minutes and then oxidized using a glass filter. Cellulose was filtered and recovered. Subsequently, in the same manner, cellulose oxide was added to a solution in which water and a substitution solvent were 1: 1 and stirred for 30 minutes for filtration and recovery, and then washed and recovered with the substitution solvent three times to replace the solvent. The treated cellulose oxide was obtained.
 置換溶媒が水である場合、水に対イオン置換した酸化セルロースを投入し、30分間攪拌した後にガラスフィルターを用いて酸化セルロースをろ別し回収した。続いて、同様にして水に酸化セルロースを投入して30分間攪拌してろ別し回収した後、さらに水で3回洗浄・回収を繰り返して、溶媒置換処理した酸化セルロースを得た。 When the replacement solvent was water, counterion-substituted cellulose oxide was added to water, and after stirring for 30 minutes, the cellulose oxide was filtered and recovered using a glass filter. Subsequently, in the same manner, cellulose oxide was added to water, stirred for 30 minutes, separated and recovered, and then washed and recovered with water three times to obtain solvent-substituted cellulose oxide.
(5)分散工程
 溶媒置処理した酸化セルロースを置換溶媒(分散媒)に加え、固形分濃度0.1%の混合液を調製した。そして、混合液25mLを、超音波ホモジナイザーを用いて20℃で16分間処理することにより解繊処理し、容積50mLの遠心管に入れて遠心分離処理(12000g、10分間)し、残渣(沈殿物)と、分散液(上澄み)とをデカンテーションにより分離し、各重量を測定した。
(5) Dispersion Step The solvent-placed cellulose oxide was added to a substitution solvent (dispersion medium) to prepare a mixed solution having a solid content concentration of 0.1%. Then, 25 mL of the mixed solution is defibrated by treating it at 20 ° C. for 16 minutes using an ultrasonic homogenizer, placed in a centrifuge tube having a volume of 50 mL, centrifuged (12000 g, 10 minutes), and a residue (precipitate). ) And the dispersion (supernatant) were separated by decantation, and the weight of each was measured.
(6)分散収率評価
 次に、以下の式に従い、分散収率を算出した。
Figure JPOXMLDOC01-appb-M000010
(6) Evaluation of dispersion yield Next, the dispersion yield was calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、図1は、各有機溶媒に分散させた試験区10に記載のセルロースナノファイバー分散体(分散液)の写真である。図1(a)に示すように、本実施例の分散体は透明な分散液であった。また図1(b)に示すように、複屈折性を示すものであることが確かめられ、各有機溶媒中で完全にナノ分散することが判る。また、試験区7~9においても、複屈折性の確認することにより、各有機溶媒中で完全にナノ分散していることを確認した。  Note that FIG. 1 is a photograph of the cellulose nanofiber dispersion (dispersion liquid) described in Test Group 10 dispersed in each organic solvent. As shown in FIG. 1A, the dispersion of this example was a transparent dispersion. Further, as shown in FIG. 1 (b), it is confirmed that it exhibits birefringence, and it can be seen that it is completely nano-dispersed in each organic solvent. In addition, in the test groups 7 to 9, it was confirmed that the birefringence was completely nano-dispersed in each organic solvent.
 例2
 例1の(5)分散工程において高圧ホモジナイザー(Star Burst、スギノマシン)を使用して解繊処理(150Pa、5回)を行う以外、試験区5と同様にして、酸化セルロースナノファイバーのエタノール分散液を調製した。
Example 2
Ethanol dispersion of cellulose oxide nanofibers is carried out in the same manner as in Test Group 5, except that the defibration treatment (150 Pa, 5 times) is performed using a high-pressure homogenizer (Star Burst, Sugino Machine) in the dispersion step (5) of Example 1. The liquid was prepared.
 次に、得られたエタノール分散液を減圧濃縮してセルロースナノファイバーの濃度0.5%をとした。次に、エタノール分散液10gに、氷酢酸5mLを添加して、ゲル(「セルロースナノファイバーアルコゲル」ともいう)を得た。 Next, the obtained ethanol dispersion was concentrated under reduced pressure to a concentration of cellulose nanofibers of 0.5%. Next, 5 mL of glacial acetic acid was added to 10 g of the ethanol dispersion to obtain a gel (also referred to as “cellulose nanofiber arcogel”).
 得られたセルロースナノファイバーアルコゲルを超臨界乾燥装置内に配置し、液化CO2にて溶媒置換を8時間行い、超臨界状態(40℃、10MPa)で1時間乾燥し、セルロースナノファイバーのエアロゲル(0.05g)を得た。セルロースナノファイバーのエアロゲルの形態は、図2に示される通りであった。 The obtained cellulose nanofiber arcogel was placed in a supercritical drying device, subjected to solvent substitution with liquefied CO2 for 8 hours, dried in a supercritical state (40 ° C., 10 MPa) for 1 hour, and the cellulose nanofiber airgel (aerogel of cellulose nanofibers). 0.05 g) was obtained. The morphology of the cellulose nanofiber airgel was as shown in FIG.
 また、セルロースナノファイバーアルコゲルを加熱により蒸発乾燥させ、セルロースナノファイバーのキセロゲルを取得できることを確認した。 It was also confirmed that the cellulose nanofiber arcogel can be evaporated and dried by heating to obtain a cellulose nanofiber xerogel.
 例3
 例1の試験区1と同様にして、対イオン交換工程を行わないで、酸化セルロースナノファイバーの水分散液を調製した。
Example 3
An aqueous dispersion of cellulose oxide nanofibers was prepared in the same manner as in Test Group 1 of Example 1 without performing a counterion exchange step.
 次に、得られた水分散液を減圧濃縮してセルロースナノファイバーの濃度0.5%をとした。次に、水散液10gに、塩酸5mLを添加して、ゲル化した。得られたゲルをエタノール100mL中に静置することにより溶媒置換を行い、セルロースナノファイバーアルコゲルを取得することを試みたところ、エタノールへ中での静置8時間を6回行うことが必要であった。超臨界乾燥によりセルロースナノファイバーエアロゲルを取得するための原料セルロースナノファイバーアルコゲルは、例2に記載のように対イオン置換工程を行う方が効率的に取得しうることが確認された。 Next, the obtained aqueous dispersion was concentrated under reduced pressure to a concentration of cellulose nanofibers of 0.5%. Next, 5 mL of hydrochloric acid was added to 10 g of the water spray to gel. When the obtained gel was allowed to stand in 100 mL of ethanol for solvent substitution to obtain a cellulose nanofiber alcohol gel, it was necessary to leave the gel in ethanol for 8 hours 6 times. there were. It was confirmed that the raw material cellulose nanofiber arcogel for obtaining the cellulose nanofiber airgel by supercritical drying can be obtained more efficiently by performing the counterion substitution step as described in Example 2.
 本発明の第一の態様によれば、有機溶媒に対して優れた分散性を有するセルロースナノファイバーを提供することができる。
 また、本発明の第二の態様によれば、セルロースナノファイバーを効率的に乾燥させることができる。
According to the first aspect of the present invention, it is possible to provide cellulose nanofibers having excellent dispersibility in an organic solvent.
Further, according to the second aspect of the present invention, the cellulose nanofibers can be efficiently dried.

Claims (18)

  1.  カルボキシル基と、該カルボキシル基の対イオンとしての4級有機オニウムイオンとが導入されてなる、セルロースナノファイバーであって、
     前記4級有機オニウムイオンがブロミドイオンと共に塩を形成する場合、JIS-K7121に従って測定される前記塩の融点は100℃以下であり、
     以下の試験方法により測定される前記セルロースナノファイバーの分散収率は、分散媒が有機溶媒である場合の方が、分散媒が水である場合よりも高い、セルロースナノファイバー。
     試験方法:25℃において、分散媒中固形分濃度0.1重量%のセルロースナノファイバーを10分間12,000gにて遠心分離処理し、沈殿物と、上澄み液とを分離し、得られた沈殿物および上澄み液の重量に基づき、以下の式に従って分散収率を算出する。
    Figure JPOXMLDOC01-appb-M000001
    A cellulose nanofiber in which a carboxyl group and a quaternary organic onium ion as a counter ion of the carboxyl group are introduced.
    When the quaternary organic onium ion forms a salt together with the bromide ion, the melting point of the salt measured according to JIS-K7121 is 100 ° C. or lower.
    The dispersion yield of the cellulose nanofibers measured by the following test method is higher when the dispersion medium is an organic solvent than when the dispersion medium is water.
    Test method: At 25 ° C., cellulose nanofibers having a solid content concentration of 0.1% by weight in a dispersion medium were centrifuged at 12,000 g for 10 minutes to separate the precipitate from the supernatant, and the obtained precipitate was obtained. Based on the weight of the product and the supernatant, the dispersion yield is calculated according to the following formula.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記4級有機オニウムイオンが4級アンモニウムイオンおよび4級ホスホニウムイオンから選択される少なくとも1つのものである、請求項1に記載セルロースナノファイバー。 The cellulose nanofiber according to claim 1, wherein the quaternary organic onium ion is at least one selected from a quaternary ammonium ion and a quaternary phosphonium ion.
  3.  前記4級有機オニウムイオンが、下記式(1)で表される、請求項1または2に記載のセルロースナノファイバー。
    Figure JPOXMLDOC01-appb-C000002
    [上記式中、Mは窒素原子またはリン原子を表し、R、R、RおよびRは炭化水素基を表し、R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数が6以上である。]
    The cellulose nanofiber according to claim 1 or 2, wherein the quaternary organic onium ion is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, M represents a nitrogen atom or a phosphorus atom, R 1, R 2, R 3 and R 4 represents a hydrocarbon group, R 1, R 2, hydrocarbon represented by R 3 and R 4 At least one of the groups has 6 or more carbon atoms. ]
  4.  R、R、RおよびRで表される全ての炭化水素基の炭素数が6以上であり、 R、R、RおよびRで表される炭化水素基のうち少なくとも1つの炭素数が8以上であり、
     R、R、RおよびR表される全ての炭化水素基の炭素数の合計が30以上である、請求項3に記載のセルロースナノファイバー。
    All hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 have 6 or more carbon atoms, and at least among the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4. One carbon number is 8 or more,
    The cellulose nanofiber according to claim 3, wherein the total number of carbon atoms of all the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 is 30 or more.
  5.  R、R、RおよびRで表される炭化水素基のうち3つ以上の基が、脂肪族炭化水素基である、請求項3または4に記載のセルロースナノファイバー。 The cellulose nanofiber according to claim 3 or 4, wherein three or more of the hydrocarbon groups represented by R 1 , R 2 , R 3 and R 4 are aliphatic hydrocarbon groups.
  6.  Mがリン原子でありかつR、R、RおよびRが同一である4級有機オニウムイオンを除く、請求項3~5のいずれか一項に記載のセルロースナノファイバー。 M excluding quaternary organic onium ion is and R 1 a phosphorus atom, R 2, R 3 and R 4 are the same, the cellulose nanofiber according to any one of claims 3-5.
  7.  分散媒として有機溶媒を含んでなる、請求項1~6のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 6, which contains an organic solvent as a dispersion medium.
  8.  前記有機溶媒の比誘電率が75以下である、請求項1~7のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 7, wherein the relative permittivity of the organic solvent is 75 or less.
  9.  前記有機溶媒が水溶性有機溶媒である、請求項1~8のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 8, wherein the organic solvent is a water-soluble organic solvent.
  10.  前記有機溶媒が、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、アセトン、酢酸エチル、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドンおよびN-メチルアセトアミドからなる群から選択される少なくとも1つのものである、請求項1~9のいずれか一項に記載のセルロースナノファイバー。 The organic solvent is methanol, ethanol, isopropyl alcohol, t-butyl alcohol, acetone, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and N-methyl. The cellulose nanofiber according to any one of claims 1 to 9, which is at least one selected from the group consisting of acetamide.
  11.  前記分散媒が有機溶媒である場合の前記分散収率が25%以上である、請求項1~10のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 10, wherein the dispersion yield is 25% or more when the dispersion medium is an organic solvent.
  12.  前記分散媒が水である場合の前記分散収率が20%以下である、請求項1~11のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 11, wherein the dispersion yield when the dispersion medium is water is 20% or less.
  13.  前記カルボキシル基の含有量がセルロースナノファイバーの乾燥重量当たり0.1mmoL以上3.0mmoL以下である、請求項1~12のいずれか一項に記載のセルロースナノファイバー。 The cellulose nanofiber according to any one of claims 1 to 12, wherein the content of the carboxyl group is 0.1 mm or more and 3.0 mm or less per dry weight of the cellulose nanofiber.
  14.  請求項1~13のいずれか一項に記載のセルロースナノファイバーの乾燥体。 The dried cellulose nanofiber according to any one of claims 1 to 13.
  15.  セルロースナノファイバーの乾燥体の製造方法であって、
     セルロースナノファイバー分散体と、酸とを接触させてゲル状組成物を得る工程および
     前記ゲル状組成物を乾燥してセルロースナノファイバーの乾燥体を得る工程
    を含み、
     前記セルロースナノファイバー分散体が、カルボキシル基と該カルボキシル基の対イオンとして4級有機オニウムイオンとが導入されてなるセルロースナノファイバーと、分散媒としての有機溶媒とを含んでなる、方法。
    A method for producing a dried product of cellulose nanofibers.
    Including a step of contacting a cellulose nanofiber dispersion with an acid to obtain a gel-like composition and a step of drying the gel-like composition to obtain a dried cellulose nanofiber.
    A method, wherein the cellulose nanofiber dispersion contains a cellulose nanofiber in which a carboxyl group and a quaternary organic onium ion as a counterion of the carboxyl group are introduced, and an organic solvent as a dispersion medium.
  16.  前記乾燥が、超臨界乾燥法、凍結乾燥法または蒸発乾燥法により実施される、請求項15に記載の方法。 The method according to claim 15, wherein the drying is carried out by a supercritical drying method, a freeze drying method or an evaporation drying method.
  17.  前記酸を実質的に無水の状態でセルロースナノファイバー分散体と接触させる、請求項15または16に記載の方法。 The method according to claim 15 or 16, wherein the acid is brought into contact with the cellulose nanofiber dispersion in a substantially anhydrous state.
  18.  前記セルロースナノファイバーの乾燥体が、エアロゲル、クライオゲルまたはキセロゲルである、請求項15~17のいずれか一項に記載の方法。 The method according to any one of claims 15 to 17, wherein the dried body of the cellulose nanofiber is airgel, cryogel or xerogel.
PCT/JP2020/020240 2019-05-22 2020-05-22 Novel cellulose nanofibers, and production method of dried product thereof WO2020235669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520871A JPWO2020235669A1 (en) 2019-05-22 2020-05-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096276 2019-05-22
JP2019096276 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235669A1 true WO2020235669A1 (en) 2020-11-26

Family

ID=73458900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020240 WO2020235669A1 (en) 2019-05-22 2020-05-22 Novel cellulose nanofibers, and production method of dried product thereof

Country Status (2)

Country Link
JP (1) JPWO2020235669A1 (en)
WO (1) WO2020235669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044677A (en) * 2021-09-17 2023-03-30 中越パルプ工業株式会社 Method for producing cnf-dispersed composition, and method for producing cnf-dispersed resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059304A (en) * 2008-09-03 2010-03-18 Teijin Ltd Epoxy resin composite
WO2013077354A1 (en) * 2011-11-22 2013-05-30 国立大学法人東京大学 Cellulose nano-fiber dispersion, method for producing same, modified form of cellulose fiber, and cellulose nano-fiber composite body
JP2016183329A (en) * 2015-03-26 2016-10-20 花王株式会社 Viscous aqueous composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059304A (en) * 2008-09-03 2010-03-18 Teijin Ltd Epoxy resin composite
WO2013077354A1 (en) * 2011-11-22 2013-05-30 国立大学法人東京大学 Cellulose nano-fiber dispersion, method for producing same, modified form of cellulose fiber, and cellulose nano-fiber composite body
JP2016183329A (en) * 2015-03-26 2016-10-20 花王株式会社 Viscous aqueous composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENITEZ, ALEJANDRO J. ET AL.: "Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers", BIOMACROMOLECULES, vol. 18, no. 5, 8 May 2017 (2017-05-08), pages 1642 - 1653, XP055762890, ISSN: 1526-4602 *
JUN, DANIEL ET AL.: "TLC Identification of Benzalkonium Bromide Homologs", JOURNAL OF PLANAR CHROMATOGRAPHY--MODERN TLC, vol. 20, no. 4, September 2007 (2007-09-01), pages 283 - 285, ISSN: 0933-4173 *
KUCA, KAMIL ET AL.: "A general method for the quaternization of N, N-dimethyl benzylamines with long chain n-alkylbromides", JOURNAL OF APPLIED BIOMEDICINE, vol. 2, 2004, pages 195 - 198, XP055762897, ISSN: 1214- 0287 *
SHIMIZU, KOKI ET AL.: "The invention of nanocomposite materials using cellulose aerogel", RESEARCH PRESENTATION PROCEEDINGS AND LECTURE ABSTRACTS OF ANNUAL MEETING OF THE TEXTILE MACHINERY SOCIETY OF JAPAN, 2016, pages 194 - 195 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044677A (en) * 2021-09-17 2023-03-30 中越パルプ工業株式会社 Method for producing cnf-dispersed composition, and method for producing cnf-dispersed resin composition
JP7470162B2 (en) 2021-09-17 2024-04-17 中越パルプ工業株式会社 Method for producing CNF-dispersed composition, and method for producing CNF-dispersed resin composition

Also Published As

Publication number Publication date
JPWO2020235669A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6402442B2 (en) Method for producing cellulose nanofiber dispersion and membrane using the method
CN110799548B (en) Cellulose derivatives
Johnson et al. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses
FI127918B (en) Method of dewatering water soluble polymers
EP3395837B1 (en) Cellulose xanthate nanofibers
CA3005140C (en) Production of carboxylated nanocelluloses
JP6189659B2 (en) Antifogging agent and antifogging film
JP2011184475A (en) Manufacturing method for oxidized cellulose, manufacturing method for oxidized cellulose dispersion liquid, and oxidized cellulose dispersion liquid
JP2018199753A (en) Hydrogel and production method thereof
Cheng et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films
Baron et al. Preparation of water-soluble cellulose derivatives using TEMPO radical-mediated oxidation at extended reaction time
JP2017141394A (en) Resin composition, resin molded article and production method of the same
EP2688915A1 (en) Process for preparing micro- and nanocrystalline cellulose
WO2020235669A1 (en) Novel cellulose nanofibers, and production method of dried product thereof
JP2021050358A (en) Method for dehydrating dispersion of chemically modified pulp
JP2013185284A (en) Method for producing cellulose nanofiber
Chen et al. Nanocellulose with unique character converted directly from plants without intensive mechanical disintegration
Huntington et al. Nanoengineering the redispersibility of cellulose nanocrystals
JP2014114332A (en) Method for producing cellulose nanofiber
Muthami et al. Hairy cellulose nanocrystals: from synthesis to advanced applications in the water–energy–health–food nexus
JP6607295B2 (en) Membrane using cellulose nanofiber dispersion and method for producing dispersion
EP3848398A1 (en) Oxidized cellulose nanofibers and dispersion of oxidized cellulose nanofibers
JP2015183095A (en) Functional cellulose, manufacturing method thereof and functional cellulose dispersion and molding
JP2011195659A (en) Method for producing oxidized cellulose
JP7103327B2 (en) Cellulose nanofiber dispersion, manufacturing method and cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810056

Country of ref document: EP

Kind code of ref document: A1