WO2020235587A1 - Tandospirone derivative - Google Patents

Tandospirone derivative Download PDF

Info

Publication number
WO2020235587A1
WO2020235587A1 PCT/JP2020/019911 JP2020019911W WO2020235587A1 WO 2020235587 A1 WO2020235587 A1 WO 2020235587A1 JP 2020019911 W JP2020019911 W JP 2020019911W WO 2020235587 A1 WO2020235587 A1 WO 2020235587A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
administration
clozapine
Prior art date
Application number
PCT/JP2020/019911
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 隆
阿部 仁
正佳 倉知
鈴木 道雄
上原 隆
Original Assignee
国立大学法人富山大学
学校法人金沢医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人富山大学, 学校法人金沢医科大学 filed Critical 国立大学法人富山大学
Priority to JP2021520813A priority Critical patent/JPWO2020235587A1/ja
Publication of WO2020235587A1 publication Critical patent/WO2020235587A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/724,7-Endo-alkylene-iso-indoles
    • C07D209/764,7-Endo-alkylene-iso-indoles with oxygen atoms in positions 1 and 3

Definitions

  • the present invention relates to tandospirone derivatives.
  • Central nervous system diseases are known as psychiatric and neurological diseases. Schizophrenia, bipolar disorder, depression, autism spectrum disorder, anxiety disorder, adjustment disorder, Alzheimer's disease, dementia, epilepsy, and Parkinson's disease are typical central nervous system diseases.
  • Schizophrenia is a mental dysfunction in which the ability to organize (integrate) mental functions such as thoughts, behaviors, and emotions declines over a long period of time, and hallucinations, delusions, abnormal behaviors, decreased motivation, and cognition during the course of the disorder. Various symptoms such as dysfunction appear.
  • the prevalence of schizophrenia is about 1%, and it is a disease with a high incidence. It develops mainly in adolescence and progresses chronically.
  • Positive symptoms include hallucinations, delusions, impaired self-consciousness that feels controlled by someone, impaired thinking that causes disorganized conversations and behaviors, and abnormal behaviors that are extremely agitated or behave strangely.
  • Negative symptoms include flattening of emotions that cause poor expression of emotions, decreased motivation, decreased thinking ability, decreased relationships with people, and impaired interpersonal communication that leads to autism.
  • cognitive dysfunction intellectual abilities such as memory, thinking, understanding, calculation, learning, language, and judgment appear.
  • Negative symptoms of schizophrenia and the cause of cognitive dysfunction are associated with volume loss in the patient's frontal cortex, and one of the major causes of volume loss in the frontal cortex is thought to be a decrease in parvalbumin-positive GABA neurons.
  • Parvalbumin-positive GABA neurons are cells that are present in the cerebral neocortex and express parvalbumin among inhibitory neurons (cerebral neocortical interneurons) that release GABA ( ⁇ -aminobutyric acid).
  • Non-Patent Document 1 suggests that the decrease in parvalbumin-positive GABA neurons in an animal model of schizophrenia is mediated by oxidative stress.
  • NMDA N-methyl-D-aspartate
  • the pillars of treatment for central nervous system diseases such as schizophrenia are treatment by medication and psychiatric rehabilitation.
  • Some central nervous system diseases, such as schizophrenia mentioned above, are caused by a decrease in nerve cells or damage to nerve cells, and for such diseases, , Neuroprotective drugs are effective.
  • an object of the present invention is to provide a candidate compound for an active ingredient of a drug for central nervous system diseases or a novel compound that can be a precursor thereof.
  • a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof is as follows.
  • R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and an alkoxy group having 1 to 6 carbon atoms, and are R 1 , R. at least one of the 2 and R 3 one is a hydroxy group.
  • R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, respectively, and among R 1 , R 2 and R 3 .
  • [5] The compound according to [1] or [2] or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 are hydroxy groups and R 3 is a hydrogen atom, respectively, in the formula (1).
  • the pharmaceutical composition according to [6] which is a neuroprotective agent.
  • the pharmaceutical composition according to [6] or [7] which is a therapeutic agent for a central nervous system disease.
  • a method for protecting nerves wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
  • a method for treating a central nervous system disease wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
  • a method for treating schizophrenia wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
  • the compound of the present invention is a novel compound that can be a candidate compound for an active ingredient of a drug for central nervous system diseases or a precursor thereof.
  • the 1 H-NMR spectrum of compound A is shown.
  • the spectrum of 13 C-NMR of compound A is shown.
  • the 1 H-NMR spectrum of compound B is shown.
  • the spectrum of 13 C-NMR of compound B is shown.
  • the 1 H-NMR spectrum of Compound C is shown.
  • the spectrum of 13 C-NMR of compound C is shown.
  • the 1 H-NMR spectrum of compound D is shown.
  • the spectrum of 13 C-NMR of compound D is shown.
  • 6 is a graph showing the results of measuring the antioxidant activity of compounds I, A, B, C, clozapine and olanzapine by the APF method. It is a graph which shows the antioxidant activity measurement result by the HPF method of compounds I, A, B, C, clozapine and olanzapine.
  • 6 is a graph showing the results of measuring the antioxidant activity of compounds I, A, B, C, clozapine and olanzapine by the DCFH method. It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement for compound A. It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement for compound B. It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement about clozapine. It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex for compound A. It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex for compound B.
  • R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and an alkoxy group having 1 to 6 carbon atoms, and are R 1 , R. at least one of the 2 and R 3 one is a hydroxy group.
  • R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, respectively, and among R 1 , R 2 and R 3 . It is preferable that at least one is a hydroxy group.
  • Compounds in which at least one of R 1 , R 2 and R 3 is a hydroxy group and the remaining group is a hydrogen atom, a hydroxy group, or a methoxy group and a pharmaceutically acceptable salt thereof have antioxidant activity. It is expensive and can be easily manufactured by the manufacturing method described later.
  • R 1 is a methoxy group
  • R 2 is a hydroxy group
  • R 3 is a hydrogen atom.
  • Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (4-hydroxy-3-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H- 4,7-Metanoisoindole-1,3 (2H) -dione.
  • the compound and its pharmaceutically acceptable salt have high antioxidant activity.
  • the compound is a compound represented by the following formula (2).
  • R 1 is a hydroxy group
  • R 2 is a methoxy group
  • R 3 is a hydrogen atom.
  • Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3-hydroxy-4-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H- 4,7-Metanoisoindole-1,3 (2H) -dione.
  • the compound and its pharmaceutically acceptable salt also have high antioxidant activity.
  • the compound is a compound represented by the following formula (3).
  • R 1 and R 2 are hydroxy groups and R 3 is a hydrogen atom in the formula (1), respectively.
  • Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3,4-dihydroxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4, 7-Metanoisoindole-1,3 (2H) -dione.
  • the compound and its pharmaceutically acceptable salt also have high antioxidant activity.
  • the compound is a compound represented by the following formula (4).
  • pharmaceutically acceptable salt is not particularly limited as long as it forms a salt with the compound represented by the formula (1) and is pharmaceutically acceptable, and is, for example, inorganic. Examples thereof include acid salts, organic acid salts, inorganic base salts, organic base salts, acidic or basic amino acid salts and the like.
  • inorganic acid salts include hydrochlorides, hydrobromates, sulfates, nitrates, phosphates and the like
  • organic acid salts include acetates, succinates, fumarates and maleines.
  • Carboates such as acid salts, tartrates, citrates, lactates, stearate, benzoates, mandelates, methanesulfonates, ethanesulfonates, p-toluenesulfonates, benzenesulfonic acids
  • examples include sulfonates such as salts.
  • inorganic base salts include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salts, ammonium salts and the like.
  • organic base salts include organic base salts. Examples thereof include diethylamine salt, diethanolamine salt, meglumin salt, N, N'-dibenzylethylenediamine salt and the like.
  • acidic amino acid salts include aspartate, glutamic acid and the like
  • basic amino acid salts include arginine salt, lysine salt, ornithine salt and the like.
  • compound according to the present invention means a compound represented by the formula (1) or a pharmaceutically acceptable salt thereof.
  • Tandospirone is a 5- HT1A receptor partial agonist and is used as a drug for improving anxiety / depressive symptoms of psychosomatic disorder and neurosis.
  • tandospirone can prevent cognitive impairment in schizophrenia model animals (rats) (Horiguchi et al., Neuropathic psychiatry, 2012, Vol. 37, No. 10, p. 2175-2183), and schizophrenia. It has been reported to have neuroprotective effects such as improving the memory function of patients (Sumiyoshi et al., American Journal of Psychiatry, 2001, Vol. 158, p.1722-1725).
  • the compound of the following formula (6) is apocynin.
  • Apocynin was isolated from Picrorhizakurroa, a plant of the genus Koouren from the Western Himalayas, which was used as a folk medicine for liver / heart disease, jaundice, and asthma.
  • Apocynin inhibits NADPH oxidase activity and inhibits the production of reactive oxygen species. Therefore, it has antioxidant activity and exhibits a wide range of anti-inflammatory effects.
  • the compound according to the present invention having a part of each structure of tandospirone and apocynin has an antioxidant effect and a neuroprotective effect at the same time. Furthermore, since tandospirone and apocynin are compounds that have been used as pharmaceuticals for a long time or have been contained in folk medicine, it is considered that the compound according to the present invention is highly safe for the human body.
  • the compound according to the present invention Since the compound according to the present invention has high antioxidant activity, it may be used as an active ingredient of a pharmaceutical composition for preventing and treating various diseases.
  • Reactive oxygen species that are overproduced in the body cause protein oxidation, lipid oxidation, nucleic acid decomposition, etc., damage cells, cause dysfunction, and affect the progression of pathological conditions.
  • the target disease of the pharmaceutical composition containing the compound according to the present invention as an active ingredient is a disease induced or promoted by overproduction of active oxygen in the body.
  • the antioxidant activity of the compounds according to the present invention may improve the symptoms of diseases caused by such oxidative stress.
  • the compound according to the present invention is considered to have a neuroprotective effect, and may be used as an active ingredient of a neuroprotective drug.
  • neuroprotective drug refers to a drug that reduces the degree of disease caused by impaired nerve cell function.
  • the compound according to the present invention exerts a particularly effective effect on central nervous system diseases due to its antioxidant activity and neuroprotective action, and may be used as an active ingredient of a therapeutic agent for central nervous system diseases.
  • Diseases targeted by the therapeutic agent for central nervous system diseases containing the compound according to the present invention include schizophrenia and other neuropsychiatric diseases in which oxidative stress has been reported to be involved in the pathological condition, for example, Alzheimer's disease. , Parkinson's disease, bipolar disorder, depression, anxiety disorder, schizophrenia, epilepsy and the like.
  • tandospirone which is the parent substance of the present invention, is approved for insurance coverage for psychosomatic disorders.
  • psychosomatic disorder is a condition in which psychosocial factors are closely involved in the onset and course of physical illness, and organic or functional disorders are recognized.
  • physical symptoms associated with other psychosomatic disorders such as neuropathy and depression are excluded.
  • digestive ulcers, bronchial asthma, migraine, and irritable bowel syndrome are mentioned. Therefore, the compound according to the present invention may be effective for these psychosomatic disorders as well as the parent substance.
  • Non-Patent Document 1 suggests that the decrease in parvalbumin-positive GABA neurons in an animal model of schizophrenia is mediated by oxidative stress.
  • the main hypothesis of schizophrenia is that decreased function of NMDA receptors on GABAergic neurons causes oxidative stress, resulting in a decrease in parvalbumin-positive GABA neurons, resulting in a decrease in parvalbumin-positive GABA neurons. Synchronous firing on a large number of controlled pyramidal neurons is impaired, resulting in cognitive dysfunction and numerous psychological symptoms.
  • the antioxidant action of the compound according to the present invention may reduce oxidative stress in the frontal cortex and improve negative symptoms of schizophrenia and cognitive dysfunction. That is, the compound according to the present invention may be suitably used as an active ingredient of a therapeutic agent for schizophrenia.
  • clozapine which is used as a therapeutic agent for schizophrenia, has a serious side effect of agranulocytosis, but clozapine-induced agranulocytosis causes oxidative stress and apoptosis of granulocytes. (Fehsel et al., Journal of Clinical Psychopahrmacology, 2005, Vol. 25, p. 419-426) and clozapine-induced agranulocytosis of glutathione precursor N-acetylcysteine, which has antioxidant activity. Suppression of schizophrenia (Williams et al., Molecular Therapy, 2000, Vol. 58, p. 207-216) has been reported. On the other hand, since the compound according to the present invention has an antioxidant effect contrary to clozapine, it may be used as a therapeutic agent for schizophrenia without the side effect of agranulocytosis instead of clozapine.
  • the target patient of the pharmaceutical composition containing the compound according to the present invention as an active ingredient is preferably a human or a non-human mammal.
  • a form of the pharmaceutical composition for example, oral administration with tablets, capsules, granules, powders, syrups, etc., or parenteral administration with injections, suppositories, inhalants, transdermal absorbents, external preparations, etc. Administration is mentioned.
  • the compound according to the present invention may be used alone or as another pharmaceutically acceptable excipient, binder, bulking agent, disintegrant, surfactant. Agents, lubricants, dispersants, buffers, preservatives, flavoring agents, odorants, fragrances, coatings, carriers, diluents, colorants and the like can be used in appropriate combinations.
  • the compound according to the present invention may function as the active ingredient of the pharmaceutical composition itself, or may be a precursor of the active ingredient of the pharmaceutical composition. That is, the compound according to the present invention may be used as a precursor, and the final compound obtained by chemically changing the compound according to the present invention may function as an active ingredient of the pharmaceutical composition. Such chemical changes may be made in vitro or in vivo.
  • the compound of the formula (1) can be produced, for example, by dehydrating and condensing the compound of the following formula (7) and the compound of the following formula (8).
  • R 1, R 2 and R 3 are the same as R 1, R 2 and R 3 in the formula (1). However, as described later, it may be protected by R 1, R 2 and / or R 3 is protected if necessary group.
  • the compound of the formula (7) is N- (4-piperazinylbutyl) bicyclo [2.2.1] heptane-2,3-dicarboxyimide, and is, for example, Japanese Patent Application Laid-Open No. 62-1323179. (Or, it can be prepared by the method described in European Patent Application Publication No. 0196096 (A2)).
  • the compound of the formula (1) can be produced by dissolving the compound of the formula (7) and the formula (8) in a solvent and adding a dehydration condensing agent.
  • R 1 , R 2 and / or R 3 of formula (1) are highly active groups, these groups may be protected with protecting groups, if necessary.
  • a protecting group a known protecting group can be used.
  • R 1 , R 2 and / or R 3 are hydroxy groups, a benzyl group or the like can be used as the protecting group.
  • the target compound can be obtained by removing the protecting group after the reaction, if necessary.
  • the introduction and removal of these protecting groups can be carried out by known methods such as Peter G. et al. M. Wuts, "Greene's Protective Groups in Organic Synthesis, 5th Edition", 2014, may be carried out according to the method described in Wiley.
  • the dehydration condensing agent examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N, N'-dicyclohexylcarbodiimide (DCC), 1-hydroxybenzotriazole (HOBT), and diphenylphosphoryl.
  • Acid azide (DPPA) 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride n hydrate (DMT-MM), 2-methyl-6 -Known dehydration condensing agents such as nitrobenzoic acid anhydride (MNBA) can be used, and these can be used alone or in combination of two or more.
  • the dehydration condensing agent is EDC.
  • the solvent used for dehydration condensation examples include dichloromethane, tert-butanol, tetrahydrofuran, chloroform, diethyl ether, benzene, cyclohexane, n-hexane, acetonitrile, dimethylformamide, tert-butylmethyl ether and dimethylacetamide.
  • the solvent is a mixed solvent of dichloromethane and tert-butanol or tetrahydrofuran.
  • the generated compound of formula (1) can be appropriately purified, washed and dried. Further, when the compound of the formula (1) is used, it can be appropriately dissolved in a solvent before use.
  • the solvent used for the dehydration condensation described above can also be suitably used when the compound of the formula (1) is used.
  • Compound A [Composite synthesis] (Synthesis of Compound A) (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (4-hydroxy-3-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4 by the following method , 7-Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound A”) was synthesized.
  • Compound A is a compound having the structure of the above formula (2), and in the formula (1), R 1 is a methoxy group, R 2 is a hydroxy group, and R 3 is a hydrogen atom. Is.
  • N- (4-piperazinylbutyl) bicyclo [2.2.1] heptane-2,3-dicarboxyimide (compound of formula (7), hereinafter referred to as "compound I") 504 mg, 4-hydroxy- 358 mg of 3-methoxybenzoic acid and 701 mg of EDC were dissolved in a mixture of 12.5 mL of dichloromethane and 0.35 mL of tert-butanol. After stirring at room temperature for 1 hour, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution and further with saturated brine. The obtained residue was purified by silica gel column chromatography to obtain white amorphous compound A (455 mg).
  • Compound B (Synthesis of compound B) (3aR * , 4S * , 7R * , 7aS * )-2- (4- (4- (3-hydroxy-4-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4 by the following method , 7-Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound B”) was synthesized.
  • Compound B is a compound having the structure of the above formula (3), and in the formula (1), R 1 is a hydroxy group, R 2 is a methoxy group, and R 3 is a hydrogen atom. Is.
  • Compound C (Synthesis of compound C) (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3,4-dihydroxybenzoyl) piperazine-1-yl) butyl) hexahydro-1H-4,7 by the following method -Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound C”) was synthesized.
  • Compound C is a compound having the structure of the above formula (4), and in the formula (1), both R 1 and R 2 are hydroxy groups, and R 3 is a hydrogen atom.
  • Compound D is a compound in which R 1 and R 2 are benzyloxy groups (-OBn) and R 3 is a hydrogen atom in the formula (1).
  • R 1 and R 2 are benzyloxy groups (-OBn) and R 3 is a hydrogen atom in the formula (1).
  • R 1 and R 2 are benzyloxy groups (-OBn) and R 3 is a hydrogen atom in the formula (1).
  • THF tetrahydrofuran
  • the solid was filtered off using a filter paper, and the residue obtained by concentration was purified by silica gel column chromatography to obtain a pale red amorphous compound C (687 mg).
  • FIG. 1 1 H-NMR of compound A
  • FIG. 2 13 C-NMR of compound A
  • FIG. 3 1 H-NMR of compound B
  • FIG. 4 13 C-NMR of compound B
  • FIG. 5 of compound C. 1 1 H-NMR
  • FIG. 6 13 C-NMR of compound C
  • 7 1 1 H-NMR of compound D
  • FIG. 8 13 C-NMR of compound D.
  • fluorescent reagent As a fluorescent reagent, one of three types, aminophenylfluorescein (APF method), hydroxyphenylfluorescein (HPF method), 2', 7'-dichlorodihydrofluorescein (DCFH method), has a fluorescent reagent concentration of 2.5 ⁇ M. It was added so as to become. In the DCFH method, the antioxidant activity of clozapine was measured by changing the concentration of clozapine to 25 ⁇ M and 50 ⁇ M in addition to the concentration of 100 ⁇ M.
  • APF method aminophenylfluorescein
  • HPF method hydroxyphenylfluorescein
  • DCFH method 2', 7'-dichlorodihydrofluorescein
  • hydroxyl radicals as active oxygen species ( ⁇ OH) and hypochlorite ion (OCl -) can be measured scavenging activity
  • the HPF process scavenging activity of hydroxyl radicals as active oxygen species ( ⁇ OH)
  • the scavenging activity of hydrogen peroxide (H 2 O 2 ) as an active oxygen species can be measured.
  • the cells were further cultured for 15 minutes and then irradiated with X-rays (dose 10 Gy). Immediately after irradiation, the fluorescence intensity of each cell was measured by the flow cytometry method.
  • (result) 9 to 11 show the results of antioxidant activity measurement by the APF method, the HPF method, and the DCFH method, respectively.
  • the vertical axis represents the fluorescence intensity of each cell suspension when the fluorescence intensity when the control cell suspension is not irradiated with X-rays is 1, and "*" in the figure represents the fluorescence intensity of each cell suspension.
  • the t-test with the significance level set to 5% shows that there is a significant difference.
  • 9 and 10 are graphs of control, compounds I, A, B, C, clozapine, and olanzapine from the left. The left figure of FIG.
  • FIG. 11 is a graph of control, compounds I, A, B, C and clozapine from the left, and the right figure of FIG. 11 is a graph of control, 25 ⁇ M clozapine, 50 ⁇ M clozapine, 100 ⁇ M clozapine and 100 ⁇ M olanzapine from the left. Is.
  • Neonatal MK-801 Group MK-801 (Sigma-Aldrich, St. Louis, Missouri, USA) 0.2 mg / kg body weight, an N-methyl-D-aspartate glutamate receptor (NMDA receptor) antagonist It was subcutaneously administered once a day.
  • Neonatal saline group Saline 0.2 mg / kg body weight was subcutaneously administered once a day. Weaned on the 21st day after birth, and then bred every 4 to 6 animals. According to Reference 1 above, rats administered with MK-801 at an early age exhibit schizophrenia-like symptoms at an early stage of maturity.
  • methamphetamine-induced transfer momentum was measured as follows.
  • a transfer motion measuring device (AMB-2020, Ohara Medical Industry Co., Ltd., Tokyo, Japan) was used to measure the transfer momentum.
  • the measurement of the transfer momentum is described in 2. above.
  • Rats administered with Compounds A to C, clozapine or olanzapine were subjected to 57 days after birth (24 hours after the final administration of compounds A, B, C, clozapine or olanzapine). Each rat was weighed prior to the transfer momentum measurement.
  • methamphetamine 1.0 mg / kg (Dainippon Sumitomo Pharmaceutical Co., Ltd., Tokyo, Japan) was subcutaneously administered, and methamphetamine-induced transfer momentum was measured for 90 minutes.
  • the increase in methamphetamine-induced transfer momentum can be used as a model for positive symptoms of schizophrenia.
  • FIGS. 12 to 14 are graphs showing the results of methamphetamine-induced transfer momentum measurement for compound A, compound B, and clozapine, respectively.
  • the vertical axis indicates the amount of transfer momentum per 90 minutes, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%.
  • FIGS. 15-19 are graphs showing the results of glutathione concentration measurements in the medial prefrontal cortex for compounds A, B, C, clozapine, and olanzapine, respectively.
  • the vertical axis indicates the total glutathione concentration per tissue weight, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%.
  • FIGS. 20 and 21 are graphs showing the oxidized glutathione / reduced glutathione ratio in the medial prefrontal cortex for compounds A and C, respectively. From the left, the neonatal saline group to which physiological saline was administered 57 days after birth, the neonatal saline group to which the drug (compound A or C) was administered 57 days after birth, and neoplasia. The graph of the group to which the physiological saline was administered 57 days after birth in the childhood MK-801 group, and the group to which the drug (compound A or C) was administered 57 days after birth in the neonatal MK-801 group is shown.
  • Administration of olanzapine and clozapine did not show any significant changes.
  • FIGS. 22-26 are graphs showing the results of cell density of parvalbumin-positive GABA nerves in the medial prefrontal cortex for compounds A, B, C, clozapine, and olanzapine, respectively. Is. In each figure, the vertical axis indicates the cell density of parvalbumin-positive GABA nerve, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%.
  • compound A administration, compound B administration, and compound C administration all improved the parvalbumin-positive GABA nerve count decreased by neonatal MK-801 treatment.

Abstract

A compound represented by formula (1) or a pharmaceutically acceptable salt thereof can be used as an active ingredient of a drug for central nervous system diseases or as a candidate compound for a precursor of said active ingredient. In formula (1), R1, R2, and R3 each independently represent a substance selected from the group consisting of a hydrogen atom, a hydroxy group, and an alkoxy group having 1-6 carbon atoms, and at least one of R1, R2, and R3 is a hydroxy group.

Description

タンドスピロン誘導体Tandospirone derivative
 本発明は、タンドスピロン誘導体に関する。 The present invention relates to tandospirone derivatives.
 中枢神経系疾患は、精神・神経疾患として知られている。統合失調症、双極性障害、うつ病、自閉スペクトラム症、不安障害、適応障害、アルツハイマー病、認知症、てんかん、パーキンソン病が代表的な中枢神経系疾患である。 Central nervous system diseases are known as psychiatric and neurological diseases. Schizophrenia, bipolar disorder, depression, autism spectrum disorder, anxiety disorder, adjustment disorder, Alzheimer's disease, dementia, epilepsy, and Parkinson's disease are typical central nervous system diseases.
 統合失調症は、思考、行動、感情等の精神機能をまとめていく(統合する)能力が長期にわたって低下する精神機能障害であり、その経過中に幻覚、妄想、異常行動、意欲の低下、認知機能障害等の様々な症状が現れる。統合失調症の有病率は約1%であり、発症率の高い疾患である。主として青年期に発症し、慢性に経過する。 Schizophrenia is a mental dysfunction in which the ability to organize (integrate) mental functions such as thoughts, behaviors, and emotions declines over a long period of time, and hallucinations, delusions, abnormal behaviors, decreased motivation, and cognition during the course of the disorder. Various symptoms such as dysfunction appear. The prevalence of schizophrenia is about 1%, and it is a disease with a high incidence. It develops mainly in adolescence and progresses chronically.
 統合失調症の症状は大きく、陽性症状と、陰性症状と、認知機能障害とに分けられる。陽性症状としては、幻覚、妄想、誰かに支配されていると感じる自我意識の障害、まとまりのない会話や行動をする思考の障害、極度に興奮したり、奇妙な行動をしたりする異常行動等の症状がある。陰性症状としては、喜怒哀楽の表現が乏しくなる感情の平板化、意欲の減退、思考力の低下、人との関わりが減り、自閉的になる対人コミュニケーションの支障等の症状がある。認知機能障害としては、記憶、思考、理解、計算、学習、言語、判断等の知的能力に障害が現れる。 The symptoms of schizophrenia are large and can be divided into positive symptoms, negative symptoms, and cognitive impairment. Positive symptoms include hallucinations, delusions, impaired self-consciousness that feels controlled by someone, impaired thinking that causes disorganized conversations and behaviors, and abnormal behaviors that are extremely agitated or behave strangely. I have symptoms of. Negative symptoms include flattening of emotions that cause poor expression of emotions, decreased motivation, decreased thinking ability, decreased relationships with people, and impaired interpersonal communication that leads to autism. As cognitive dysfunction, intellectual abilities such as memory, thinking, understanding, calculation, learning, language, and judgment appear.
 統合失調症の陰性症状及び認知機能障害の成因は、患者の前頭皮質の体積減少と関連し、前頭皮質の体積減少の主な要因の1つが、パルブアルブミン陽性GABAニューロンの減少であると考えられている。パルブアルブミン陽性GABAニューロンとは、大脳新皮質に存在し、GABA(γ-アミノ酪酸)を放出する抑制性神経細胞(大脳新皮質介在ニューロン)の中で、パルブアルブミンを発現する細胞である。非特許文献1には、統合失調症動物モデルにおけるパルブアルブミン陽性GABAニューロンの減少が、酸化ストレスを介していることが示唆されている。 Negative symptoms of schizophrenia and the cause of cognitive dysfunction are associated with volume loss in the patient's frontal cortex, and one of the major causes of volume loss in the frontal cortex is thought to be a decrease in parvalbumin-positive GABA neurons. ing. Parvalbumin-positive GABA neurons are cells that are present in the cerebral neocortex and express parvalbumin among inhibitory neurons (cerebral neocortical interneurons) that release GABA (γ-aminobutyric acid). Non-Patent Document 1 suggests that the decrease in parvalbumin-positive GABA neurons in an animal model of schizophrenia is mediated by oxidative stress.
 また、統合失調症の主要仮説である、N-メチル-D-アスパラギン酸(NMDA)受容体機能低下仮説、及び、酸化ストレス/GABA作動性起源仮説によれば、GABA作動性ニューロン上のNMDA受容体の機能低下が酸化ストレスを引き起こすことにより、パルブアルブミン陽性GABAニューロンの減少が生じ、その結果、パルブアルブミン陽性GABAニューロンの神経支配を受ける多数の錐体ニューロン上の同期性発火が障害され、認知機能障害及び多数の精神症状が生じる(非特許文献2及び3)。 In addition, according to the main hypothesis of schizophrenia, the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis and the oxidative stress / GABAergic origin hypothesis, NMDA acceptance on GABAergic neurons Decreased body function causes oxidative stress, resulting in a decrease in parvalbumin-positive GABA neurons, resulting in impaired synchronous firing on a number of pyramidal neurons that are innervated by parvalbumin-positive GABA neurons and cognitive Dysfunction and numerous psychological symptoms occur (Non-Patent Documents 2 and 3).
 統合失調症を初めとする中枢神経系疾患の治療の柱は、投薬による治療と、精神科リハビリテーションである。中枢神経系疾患の中には、上述の統合失調症のように、神経細胞が減少したり、神経細胞が障害を受けたりすることが成因となる疾患もあり、そのような疾患に対しては、神経保護薬が有効である。 The pillars of treatment for central nervous system diseases such as schizophrenia are treatment by medication and psychiatric rehabilitation. Some central nervous system diseases, such as schizophrenia mentioned above, are caused by a decrease in nerve cells or damage to nerve cells, and for such diseases, , Neuroprotective drugs are effective.
 一方で、統合失調症を初めとする中枢神経系疾患は、疾患の原因や根本的な治療が未だ解決されていない疾患が多いため、新しい薬剤を創出することは困難である。 On the other hand, it is difficult to create new drugs for central nervous system diseases such as schizophrenia because there are many diseases for which the cause of the disease and the underlying treatment have not yet been solved.
 このような状況下、本発明は、中枢神経系疾患に対する薬剤の有効成分の候補化合物又はその前駆体となり得る新規化合物を提供することを目的とする。 Under such circumstances, an object of the present invention is to provide a candidate compound for an active ingredient of a drug for central nervous system diseases or a novel compound that can be a precursor thereof.
 すなわち、本発明は、以下のとおりである。
[1]
 下記式(1)で示される化合物又はその薬剤学的に許容できる塩。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R、R及びRは、それぞれ独立に、水素原子、ヒドロキシ基及び炭素数1~6のアルコキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基である。)
[2]
 式(1)中、R、R及びRが、それぞれ独立に、水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基である、[1]に記載の化合物又はその薬剤学的に許容できる塩。
[3]
 式(1)中、Rがメトキシ基であり、Rがヒドロキシ基であり、Rが水素原子である、[1]又は[2]に記載の化合物又はその薬剤学的に許容できる塩。
[4]
 式(1)中、Rがヒドロキシ基であり、Rがメトキシ基であり、Rが水素原子である、[1]又は[2]に記載の化合物又はその薬剤学的に許容できる塩。
[5]
 式(1)中、R及びRがそれぞれヒドロキシ基であり、Rが水素原子である、[1]又は[2]に記載の化合物又はその薬剤学的に許容できる塩。
[6]
 [1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩を有効成分として含有する医薬組成物。
[7]
 神経保護薬である、[6]に記載の医薬組成物。
[8]
 中枢神経系疾患治療薬である、[6]又は[7]に記載の医薬組成物。
[9]
 統合失調症治療薬である、[6]~[8]のいずれかに記載の医薬組成物。
[10]
 [1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩を患者に投与する、神経の保護方法。
[11]
 [1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩を患者に投与する、中枢神経系疾患の治療方法。
[12]
 [1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩を患者に投与する、統合失調症の治療方法。
[13]
 神経の保護に使用される、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩。
[14]
 中枢神経系疾患の治療に使用される、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩。
[15]
 統合失調症の治療に使用される、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩。
[16]
 神経保護薬を製造するための、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩の使用。
[17]
 中枢神経系疾患治療薬を製造するための、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩の使用。
[18]
 統合失調症治療薬を製造するための、[1]~[5]のいずれかに記載の化合物又はその薬剤学的に許容できる塩の使用。
That is, the present invention is as follows.
[1]
A compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and an alkoxy group having 1 to 6 carbon atoms, and are R 1 , R. at least one of the 2 and R 3 one is a hydroxy group.)
[2]
In formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, respectively, and among R 1 , R 2 and R 3 . The compound according to [1] or a pharmaceutically acceptable salt thereof, wherein at least one is a hydroxy group.
[3]
The compound according to [1] or [2] or a pharmaceutically acceptable salt thereof, wherein R 1 is a methoxy group, R 2 is a hydroxy group, and R 3 is a hydrogen atom in the formula (1). ..
[4]
In the formula (1), the compound according to [1] or [2], wherein R 1 is a hydroxy group, R 2 is a methoxy group, and R 3 is a hydrogen atom, or a pharmaceutically acceptable salt thereof. ..
[5]
The compound according to [1] or [2] or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 are hydroxy groups and R 3 is a hydrogen atom, respectively, in the formula (1).
[6]
A pharmaceutical composition containing the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof as an active ingredient.
[7]
The pharmaceutical composition according to [6], which is a neuroprotective agent.
[8]
The pharmaceutical composition according to [6] or [7], which is a therapeutic agent for a central nervous system disease.
[9]
The pharmaceutical composition according to any one of [6] to [8], which is a therapeutic agent for schizophrenia.
[10]
A method for protecting nerves, wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
[11]
A method for treating a central nervous system disease, wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
[12]
A method for treating schizophrenia, wherein the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof is administered to a patient.
[13]
The compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof, which is used for nerve protection.
[14]
The compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof, which is used for the treatment of central nervous system diseases.
[15]
The compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof, which is used for the treatment of schizophrenia.
[16]
Use of the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof for producing a neuroprotective drug.
[17]
Use of the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof for producing a therapeutic agent for a central nervous system disease.
[18]
Use of the compound according to any one of [1] to [5] or a pharmaceutically acceptable salt thereof for producing a therapeutic agent for schizophrenia.
 本発明の化合物は、中枢神経系疾患に対する薬剤の有効成分の候補化合物又はその前駆体となり得る新規化合物である。 The compound of the present invention is a novel compound that can be a candidate compound for an active ingredient of a drug for central nervous system diseases or a precursor thereof.
化合物AのH-NMRのスペクトルを示す。The 1 H-NMR spectrum of compound A is shown. 化合物Aの13C-NMRのスペクトルを示す。The spectrum of 13 C-NMR of compound A is shown. 化合物BのH-NMRのスペクトルを示す。The 1 H-NMR spectrum of compound B is shown. 化合物Bの13C-NMRのスペクトルを示す。The spectrum of 13 C-NMR of compound B is shown. 化合物CのH-NMRのスペクトルを示す。The 1 H-NMR spectrum of Compound C is shown. 化合物Cの13C-NMRのスペクトルを示す。The spectrum of 13 C-NMR of compound C is shown. 化合物DのH-NMRのスペクトルを示す。The 1 H-NMR spectrum of compound D is shown. 化合物Dの13C-NMRのスペクトルを示す。The spectrum of 13 C-NMR of compound D is shown. 化合物I、A、B、C、クロザピン及びオランザピンの、APF法による抗酸化活性測定結果を示すグラフである。6 is a graph showing the results of measuring the antioxidant activity of compounds I, A, B, C, clozapine and olanzapine by the APF method. 化合物I、A、B、C、クロザピン及びオランザピンの、HPF法による抗酸化活性測定結果を示すグラフである。It is a graph which shows the antioxidant activity measurement result by the HPF method of compounds I, A, B, C, clozapine and olanzapine. 化合物I、A、B、C、クロザピン及びオランザピンの、DCFH法による抗酸化活性測定結果を示すグラフである。6 is a graph showing the results of measuring the antioxidant activity of compounds I, A, B, C, clozapine and olanzapine by the DCFH method. 化合物Aについてのメタンフェタミン誘発移所運動量測定の結果を示すグラフである。It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement for compound A. 化合物Bについてのメタンフェタミン誘発移所運動量測定の結果を示すグラフである。It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement for compound B. クロザピンについてのメタンフェタミン誘発移所運動量測定の結果を示すグラフである。It is a graph which shows the result of the methamphetamine-induced transfer momentum measurement about clozapine. 化合物Aについての内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex for compound A. 化合物Bについての内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex for compound B. 化合物Cについての内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex for compound C. クロザピンについての内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex about clozapine. オランザピンについての内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。It is a graph which shows the result of the glutathione concentration measurement in the medial prefrontal cortex about olanzapine. 化合物Aについての内側前頭前皮質における酸化型グルタチオン/還元型グルタチオン比を示すグラフである。It is a graph which shows the oxidized glutathione / reduced glutathione ratio in the medial prefrontal cortex for compound A. 化合物Cについての内側前頭前皮質における酸化型グルタチオン/還元型グルタチオン比を示すグラフである。It is a graph which shows the oxidized glutathione / reduced glutathione ratio in the medial prefrontal cortex for compound C. 化合物Aについての内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定結果を示すグラフである。It is a graph which shows the measurement result of the parvalbumin positive GABA nerve number in the medial prefrontal cortex for compound A. 化合物Bについての内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定結果を示すグラフである。It is a graph which shows the measurement result of the parvalbumin positive GABA nerve number in the medial prefrontal cortex for compound B. 化合物Cについての内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定結果を示すグラフである。It is a graph which shows the measurement result of the parvalbumin-positive GABA nerve number in the medial prefrontal cortex for compound C. クロザピンについての内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定結果を示すグラフである。It is a graph which shows the measurement result of the parvalbumin positive GABA nerve count in the medial prefrontal cortex about clozapine. オランザピンについての内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定結果を示すグラフである。It is a graph which shows the measurement result of the parvalbumin-positive GABA nerve count in the medial prefrontal cortex about olanzapine.
〔式(1)の化合物〕
 本発明は、下記式(1)で示される化合物又はその薬剤学的に許容できる塩を提供する。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R、R及びRは、それぞれ独立に、水素原子、ヒドロキシ基及び炭素数1~6のアルコキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基である。)
[Compound of formula (1)]
The present invention provides a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and an alkoxy group having 1 to 6 carbon atoms, and are R 1 , R. at least one of the 2 and R 3 one is a hydroxy group.)
 式(1)中、R、R及びRが、それぞれ独立に、水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基であることが好ましい。R、R及びRのうち、少なくとも1つがヒドロキシ基であり、残りの基が水素原子、ヒドロキシ基、又はメトキシ基である化合物及びその薬剤学的に許容できる塩は、抗酸化活性が高く、後述する製法により、簡便に製造することができる。 In formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, respectively, and among R 1 , R 2 and R 3 . It is preferable that at least one is a hydroxy group. Compounds in which at least one of R 1 , R 2 and R 3 is a hydroxy group and the remaining group is a hydrogen atom, a hydroxy group, or a methoxy group and a pharmaceutically acceptable salt thereof have antioxidant activity. It is expensive and can be easily manufactured by the manufacturing method described later.
 式(1)中、Rがメトキシ基であり、Rがヒドロキシ基であり、Rが水素原子であることがより好ましい。そのような化合物は、(3aR,4S,7R,7aS)-2-(4-(4-(4-ヒドロキシ-3-メトキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオンである。該化合物及びその薬剤学的に許容できる塩は、抗酸化活性が高い。該化合物は、下記式(2)で表される化合物である。 In the formula (1), it is more preferable that R 1 is a methoxy group, R 2 is a hydroxy group, and R 3 is a hydrogen atom. Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (4-hydroxy-3-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H- 4,7-Metanoisoindole-1,3 (2H) -dione. The compound and its pharmaceutically acceptable salt have high antioxidant activity. The compound is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Rがヒドロキシ基であり、Rがメトキシ基であり、Rが水素原子であることもより好ましい。そのような化合物は、(3aR,4S,7R,7aS)-2-(4-(4-(3-ヒドロキシ-4-メトキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオンである。該化合物及びその薬剤学的に許容できる塩も、抗酸化活性が高い。該化合物は、下記式(3)で表される化合物である。 In the formula (1), it is more preferable that R 1 is a hydroxy group, R 2 is a methoxy group, and R 3 is a hydrogen atom. Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3-hydroxy-4-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H- 4,7-Metanoisoindole-1,3 (2H) -dione. The compound and its pharmaceutically acceptable salt also have high antioxidant activity. The compound is a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R及びRがそれぞれヒドロキシ基であり、Rが水素原子であることもより好ましい。そのような化合物は、(3aR,4S,7R,7aS)-2-(4-(4-(3,4-ジヒドロキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオンである。該化合物及びその薬剤学的に許容できる塩も、抗酸化活性が高い。該化合物は、下記式(4)で表される化合物である。 It is more preferable that R 1 and R 2 are hydroxy groups and R 3 is a hydrogen atom in the formula (1), respectively. Such compounds are (3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3,4-dihydroxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4, 7-Metanoisoindole-1,3 (2H) -dione. The compound and its pharmaceutically acceptable salt also have high antioxidant activity. The compound is a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本明細書における「薬剤学的に許容できる塩」とは、式(1)で表される化合物と塩を形成し、かつ薬剤学的に許容できるものであれば特に限定されず、例えば、無機酸塩、有機酸塩、無機塩基塩、有機塩基塩、酸性または塩基性アミノ酸塩等が挙げられる。 The term "pharmaceutically acceptable salt" as used herein is not particularly limited as long as it forms a salt with the compound represented by the formula (1) and is pharmaceutically acceptable, and is, for example, inorganic. Examples thereof include acid salts, organic acid salts, inorganic base salts, organic base salts, acidic or basic amino acid salts and the like.
 無機酸塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等が挙げられ、有機酸塩の例としては、酢酸塩、コハク酸塩、フマル酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、乳酸塩、ステアリン酸塩、安息香酸塩、マンデル酸塩等のカルボン酸塩、メタンスルホン酸塩、エタンスルホン酸塩、p-トルエンスルホン酸塩、ベンゼンスルホン酸塩等のスルホン酸塩が挙げられる。 Examples of inorganic acid salts include hydrochlorides, hydrobromates, sulfates, nitrates, phosphates and the like, and examples of organic acid salts include acetates, succinates, fumarates and maleines. Carboates such as acid salts, tartrates, citrates, lactates, stearate, benzoates, mandelates, methanesulfonates, ethanesulfonates, p-toluenesulfonates, benzenesulfonic acids Examples include sulfonates such as salts.
 無機塩基塩の例としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アルミニウム塩、アンモニウム塩等が挙げられ、有機塩基塩の例としては、ジエチルアミン塩、ジエタノールアミン塩、メグルミン塩、N,N’-ジベンジルエチレンジアミン塩等が挙げられる。 Examples of inorganic base salts include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salts, ammonium salts and the like. Examples of organic base salts include organic base salts. Examples thereof include diethylamine salt, diethanolamine salt, meglumin salt, N, N'-dibenzylethylenediamine salt and the like.
 酸性アミノ酸塩の例としては、アスパラギン酸塩、グルタミン酸塩等が挙げられ、塩基性アミノ酸塩の例としては、アルギニン塩、リジン塩、オルニチン塩等が挙げられる。 Examples of acidic amino acid salts include aspartate, glutamic acid and the like, and examples of basic amino acid salts include arginine salt, lysine salt, ornithine salt and the like.
 以下、本明細書中、「本発明にかかる化合物」との用語は、式(1)で表される化合物又はその薬剤学的に許容できる塩を意味する。 Hereinafter, in the present specification, the term "compound according to the present invention" means a compound represented by the formula (1) or a pharmaceutically acceptable salt thereof.
 なお、下記式(5)の化合物は、タンドスピロンである。タンドスピロンは、5-HT1A受容体部分作動薬であり、心身症や神経症の不安・抑うつ症状を改善する薬剤として使用されている。また、タンドスピロンには、統合失調症モデル動物(ラット)において、その認知障害を予防したり(Horiguchiら、Neuropasychopharmacology、2012年、第37巻、第10号、p.2175-2183)、統合失調症患者の記憶機能を改善したり(Sumiyoshiら、American Journal of Psychiatry、2001年、第158巻、p.1722-1725)する等、神経保護作用があることが報告されている。 The compound of the following formula (5) is tandospirone. Tandospirone is a 5- HT1A receptor partial agonist and is used as a drug for improving anxiety / depressive symptoms of psychosomatic disorder and neurosis. In addition, tandospirone can prevent cognitive impairment in schizophrenia model animals (rats) (Horiguchi et al., Neuropathic psychiatry, 2012, Vol. 37, No. 10, p. 2175-2183), and schizophrenia. It has been reported to have neuroprotective effects such as improving the memory function of patients (Sumiyoshi et al., American Journal of Psychiatry, 2001, Vol. 158, p.1722-1725).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、下記式(6)の化合物は、アポシニンである。アポシニンは、民間薬として肝・心疾患、黄疸、喘息に用いられていた西ヒマラヤ産コオウレン属の植物、Picrorhizakurroaから単離された。アポシニンはNADPHオキシダーゼ活性を阻害し、活性酸素の生産を阻害する。このため、抗酸化活性を有し、広範囲な抗炎症作用を示す。 The compound of the following formula (6) is apocynin. Apocynin was isolated from Picrorhizakurroa, a plant of the genus Koouren from the Western Himalayas, which was used as a folk medicine for liver / heart disease, jaundice, and asthma. Apocynin inhibits NADPH oxidase activity and inhibits the production of reactive oxygen species. Therefore, it has antioxidant activity and exhibits a wide range of anti-inflammatory effects.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 したがって、タンドスピロン及びアポシニンそれぞれの構造の一部を有する本発明にかかる化合物は、抗酸化作用を有すると同時に、神経保護作用を有すると考えられる。さらに、タンドスピロン及びアポシニンは、以前から医薬として使用されてきた、あるいは民間薬に含まれてきた化合物であるため、本発明にかかる化合物の人体に対する安全性も高いと考えられる。 Therefore, it is considered that the compound according to the present invention having a part of each structure of tandospirone and apocynin has an antioxidant effect and a neuroprotective effect at the same time. Furthermore, since tandospirone and apocynin are compounds that have been used as pharmaceuticals for a long time or have been contained in folk medicine, it is considered that the compound according to the present invention is highly safe for the human body.
〔化合物の用途〕
 本発明にかかる化合物は、高い抗酸化活性を有するために、種々の疾患を予防、治療するための医薬組成物の有効成分として使用できる可能性がある。体内で過剰に産生されるようになった活性酸素は、タンパク質酸化、脂質酸化、核酸分解等の原因となり、細胞にダメージを与え、機能不全を引き起こし、病態の進行に影響する。本発明にかかる化合物を有効成分として含有する医薬組成物の対象となる疾患としては、体内での活性酸素の過剰生産によって誘発又は助長される疾患である。本発明にかかる化合物が有する抗酸化作用により、そのような酸化ストレスが原因による疾患の症状を改善できる可能性がある。そのような疾患としては、例えば、中枢神経系疾患、循環器疾患、消化器系疾患、腎疾患、呼吸器系疾患、代謝・内分泌疾患、アレルギー疾患、眼疾患、老化・老人性疾患等が挙げられる。また、上述のとおり、本発明にかかる化合物は、神経保護作用を有すると考えられ、神経保護薬の有効成分として使用できる可能性がある。本明細書において、「神経保護薬」とは、神経細胞の機能の障害により引き起こされる疾患の程度を軽減する薬剤のことをいう。
[Use of compounds]
Since the compound according to the present invention has high antioxidant activity, it may be used as an active ingredient of a pharmaceutical composition for preventing and treating various diseases. Reactive oxygen species that are overproduced in the body cause protein oxidation, lipid oxidation, nucleic acid decomposition, etc., damage cells, cause dysfunction, and affect the progression of pathological conditions. The target disease of the pharmaceutical composition containing the compound according to the present invention as an active ingredient is a disease induced or promoted by overproduction of active oxygen in the body. The antioxidant activity of the compounds according to the present invention may improve the symptoms of diseases caused by such oxidative stress. Examples of such diseases include central nervous system diseases, cardiovascular diseases, digestive system diseases, renal diseases, respiratory diseases, metabolic / endocrine diseases, allergic diseases, eye diseases, aging / senile diseases, and the like. Be done. Further, as described above, the compound according to the present invention is considered to have a neuroprotective effect, and may be used as an active ingredient of a neuroprotective drug. As used herein, the term "neuroprotective drug" refers to a drug that reduces the degree of disease caused by impaired nerve cell function.
 したがって、本発明にかかる化合物は、抗酸化活性と神経保護作用により、中枢神経系疾患に対して特に有効に効果を発揮し、中枢神経系疾患治療薬の有効成分として使用できる可能性がある。本発明にかかる化合物を含有する中枢神経系疾患治療薬が対象とする疾患は、統合失調症をはじめ、病態に酸化ストレスが関与していることが報告されている神経精神疾患、例えば、アルツハイマー病、パーキンソン病、双極性障害、うつ病、不安障害、自閉スペクトラム症、てんかん等を挙げることができる。また、本発明の親物質であるタンドスピロンには、心身症の保険適応が承認されている。心身症とは、南山堂医学大辞典(2015)によれば、「身体疾患の中で、その発症や経過にも心理社会的因子が密接に関与し、器質的ないし機能的障害の認められる病態をいう。ただし、神経症やうつ病など他の精神障害に伴う身体症状は除外する。」と定義され、消化性潰瘍、気管支喘息、片頭痛、過敏性腸症候群などがあげられている。したがって、本発明にかかる化合物は、親物質と同様にこれらの心身症にも効果がある可能性がある。 Therefore, the compound according to the present invention exerts a particularly effective effect on central nervous system diseases due to its antioxidant activity and neuroprotective action, and may be used as an active ingredient of a therapeutic agent for central nervous system diseases. Diseases targeted by the therapeutic agent for central nervous system diseases containing the compound according to the present invention include schizophrenia and other neuropsychiatric diseases in which oxidative stress has been reported to be involved in the pathological condition, for example, Alzheimer's disease. , Parkinson's disease, bipolar disorder, depression, anxiety disorder, schizophrenia, epilepsy and the like. In addition, tandospirone, which is the parent substance of the present invention, is approved for insurance coverage for psychosomatic disorders. According to the Nanzando Medical Dictionary (2015), psychosomatic disorder is a condition in which psychosocial factors are closely involved in the onset and course of physical illness, and organic or functional disorders are recognized. However, physical symptoms associated with other psychosomatic disorders such as neuropathy and depression are excluded. ”, And digestive ulcers, bronchial asthma, migraine, and irritable bowel syndrome are mentioned. Therefore, the compound according to the present invention may be effective for these psychosomatic disorders as well as the parent substance.
 例えば、統合失調症に関して言えば、上述のように、統合失調症の陰性症状及び認知機能障害の成因は、患者の前頭皮質の体積減少と関連し、前頭皮質の体積減少の主な要因の1つが、パルブアルブミン陽性GABAニューロンの減少であると考えられており、非特許文献1には、統合失調症動物モデルにおけるパルブアルブミン陽性GABAニューロンの減少が、酸化ストレスを介していることが示唆されている。また、統合失調症の主要仮説は、GABA作動性ニューロン上のNMDA受容体の機能低下が酸化ストレスを引き起こすことにより、パルブアルブミン陽性GABAニューロンの減少が生じ、その結果、パルブアルブミン陽性GABAニューロンの神経支配を受ける多数の錐体ニューロン上の同期性発火が障害され、認知機能障害及び多数の精神症状が生じるというものである。 For example, with respect to schizophrenia, as mentioned above, the causes of negative symptoms of schizophrenia and cognitive dysfunction are associated with volume loss in the patient's frontal cortex and are one of the major causes of volume loss in the frontal cortex. One is considered to be a decrease in parvalbumin-positive GABA neurons, and Non-Patent Document 1 suggests that the decrease in parvalbumin-positive GABA neurons in an animal model of schizophrenia is mediated by oxidative stress. There is. The main hypothesis of schizophrenia is that decreased function of NMDA receptors on GABAergic neurons causes oxidative stress, resulting in a decrease in parvalbumin-positive GABA neurons, resulting in a decrease in parvalbumin-positive GABA neurons. Synchronous firing on a large number of controlled pyramidal neurons is impaired, resulting in cognitive dysfunction and numerous psychological symptoms.
 したがって、本発明にかかる化合物の抗酸化作用により、前頭皮質での酸化ストレスが軽減され、統合失調症の陰性症状及び認知機能障害を改善できる可能性がある。すなわち、本発明にかかる化合物は、統合失調症治療薬の有効成分として好適に使用できる可能性がある。 Therefore, the antioxidant action of the compound according to the present invention may reduce oxidative stress in the frontal cortex and improve negative symptoms of schizophrenia and cognitive dysfunction. That is, the compound according to the present invention may be suitably used as an active ingredient of a therapeutic agent for schizophrenia.
 また、統合失調症治療薬として用いられているクロザピンは、無顆粒球症という重篤な副作用を有しているが、クロザピンに誘発される無顆粒球症は、顆粒球への酸化ストレスとアポトーシスが原因であること(Fehselら、Journal of Clinical Psychopahrmacology、2005年、第25巻、p.419-426)や、抗酸化作用を有するグルタチオンの前駆物質N-アセチルシステインがクロザピンに誘発される無顆粒球症を抑制すること(Williamsら、Molecular Pharmacology、2000年、第58巻、p.207-216)が報告されている。一方、本発明にかかる化合物はクロザピンとは逆に抗酸化作用を有するため、クロザピンに代わって、無顆粒球症の副作用を有さない統合失調症治療薬として使用できる可能性がある。 In addition, clozapine, which is used as a therapeutic agent for schizophrenia, has a serious side effect of agranulocytosis, but clozapine-induced agranulocytosis causes oxidative stress and apoptosis of granulocytes. (Fehsel et al., Journal of Clinical Psychopahrmacology, 2005, Vol. 25, p. 419-426) and clozapine-induced agranulocytosis of glutathione precursor N-acetylcysteine, which has antioxidant activity. Suppression of schizophrenia (Williams et al., Molecular Therapy, 2000, Vol. 58, p. 207-216) has been reported. On the other hand, since the compound according to the present invention has an antioxidant effect contrary to clozapine, it may be used as a therapeutic agent for schizophrenia without the side effect of agranulocytosis instead of clozapine.
 本発明にかかる化合物を有効成分として含有する医薬組成物が対象とする患者は、ヒト又はヒト以外の哺乳類であることが好ましい。また、医薬組成物の形態として、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等による経口投与、又は、注射剤、座剤、吸入剤、経皮吸収剤、外用剤等による非経口投与が挙げられる。またこのような種々の剤形の各製剤を調製するには、本発明にかかる化合物を単独で、又は他の薬学的に許容される賦形剤、結合剤、増量剤、崩壊剤、界面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、矯味剤、矯臭剤、香料、被覆剤、担体、希釈剤、着色剤等を適宜組み合わせて用いることができる。 The target patient of the pharmaceutical composition containing the compound according to the present invention as an active ingredient is preferably a human or a non-human mammal. In addition, as a form of the pharmaceutical composition, for example, oral administration with tablets, capsules, granules, powders, syrups, etc., or parenteral administration with injections, suppositories, inhalants, transdermal absorbents, external preparations, etc. Administration is mentioned. In addition, in order to prepare each preparation of such various dosage forms, the compound according to the present invention may be used alone or as another pharmaceutically acceptable excipient, binder, bulking agent, disintegrant, surfactant. Agents, lubricants, dispersants, buffers, preservatives, flavoring agents, odorants, fragrances, coatings, carriers, diluents, colorants and the like can be used in appropriate combinations.
 また、本発明にかかる化合物は、化合物自身が医薬組成物の有効成分として機能してもよいが、医薬組成物の有効成分の前駆体であってもよい。すなわち、本発明にかかる化合物を前駆体として、本発明にかかる化合物を化学的に変化させた最終化合物が医薬組成物の有効成分として機能してもよい。そのような化学変化は、生体外で行われてもよいし、生体内で行われてもよい。 Further, the compound according to the present invention may function as the active ingredient of the pharmaceutical composition itself, or may be a precursor of the active ingredient of the pharmaceutical composition. That is, the compound according to the present invention may be used as a precursor, and the final compound obtained by chemically changing the compound according to the present invention may function as an active ingredient of the pharmaceutical composition. Such chemical changes may be made in vitro or in vivo.
〔式(1)の化合物の製造方法〕
 式(1)の化合物は、例えば、下記式(7)の化合物と下記式(8)の化合物とを脱水縮合することにより製造することができる。
[Method for producing the compound of formula (1)]
The compound of the formula (1) can be produced, for example, by dehydrating and condensing the compound of the following formula (7) and the compound of the following formula (8).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(8)中、R、R及びRは式(1)中のR、R及びRと同一である。ただし、後述するように、R、R及び/又はRが必要に応じて保護基で保護されていてもよい。 In the formula (8), R 1, R 2 and R 3 are the same as R 1, R 2 and R 3 in the formula (1). However, as described later, it may be protected by R 1, R 2 and / or R 3 is protected if necessary group.
 なお、式(7)の化合物は、N-(4-ピペラジニルブチル)ビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシイミドであり、例えば、特開昭62-123179号公報(又は、欧州特許出願公開第0196096(A2)号明細書)に記載の方法により、調製することができる。 The compound of the formula (7) is N- (4-piperazinylbutyl) bicyclo [2.2.1] heptane-2,3-dicarboxyimide, and is, for example, Japanese Patent Application Laid-Open No. 62-1323179. (Or, it can be prepared by the method described in European Patent Application Publication No. 0196096 (A2)).
 式(7)及び式(8)の化合物を、溶媒に溶解し、脱水縮合剤を加えることにより、式(1)の化合物を生成することができる。式(1)のR、R及び/又はRが活性の高い基である場合、これらの基は必要に応じて保護基で保護されていてもよい。そのような保護基は、公知の保護基を用いることができ、例えば、R、R及び/又はRがヒドロキシ基である場合、保護基としてベンジル基等を使用することができる。この場合、反応後に、必要に応じて、保護基を除去することにより目的化合物を得ることができる。これらの保護基の導入及び除去は、公知の方法、例えば、Peter G. M. Wuts、「Greene’s Protective Groups in Organic Synthesis,5th Edition」、2014年、Wiley社に記載の方法等に準じて行えばよい。 The compound of the formula (1) can be produced by dissolving the compound of the formula (7) and the formula (8) in a solvent and adding a dehydration condensing agent. When R 1 , R 2 and / or R 3 of formula (1) are highly active groups, these groups may be protected with protecting groups, if necessary. As such a protecting group, a known protecting group can be used. For example, when R 1 , R 2 and / or R 3 are hydroxy groups, a benzyl group or the like can be used as the protecting group. In this case, the target compound can be obtained by removing the protecting group after the reaction, if necessary. The introduction and removal of these protecting groups can be carried out by known methods such as Peter G. et al. M. Wuts, "Greene's Protective Groups in Organic Synthesis, 5th Edition", 2014, may be carried out according to the method described in Wiley.
 脱水縮合剤としては、例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、1-ヒドロキシベンゾトリアゾール(HOBT)、ジフェニルリン酸アジド(DPPA)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物(DMT-MM)、2-メチル-6-ニトロ安息香酸無水物(MNBA)等、公知の脱水縮合剤を使用することができ、これらは一種又は二種以上を組み合わせて使用することができる。好ましくは、脱水縮合剤としては、EDCである。 Examples of the dehydration condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N, N'-dicyclohexylcarbodiimide (DCC), 1-hydroxybenzotriazole (HOBT), and diphenylphosphoryl. Acid azide (DPPA), 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride n hydrate (DMT-MM), 2-methyl-6 -Known dehydration condensing agents such as nitrobenzoic acid anhydride (MNBA) can be used, and these can be used alone or in combination of two or more. Preferably, the dehydration condensing agent is EDC.
 脱水縮合に使用する溶媒としては、ジクロロメタン、tert-ブタノール、テトラヒドロフラン、クロロホルム、ジエチルエーテル、ベンゼン、シクロヘキサン、n-ヘキサン、アセトニトリル、ジメチルホルムアミド、tert-ブチルメチルエーテル、ジメチルアセトアミドを挙げることができ、これらは一種又は二種以上を組み合わせて使用することができる。好ましくは、溶媒としては、ジクロロメタンとtert-ブタノールの混合溶媒又はテトラヒドロフランである。 Examples of the solvent used for dehydration condensation include dichloromethane, tert-butanol, tetrahydrofuran, chloroform, diethyl ether, benzene, cyclohexane, n-hexane, acetonitrile, dimethylformamide, tert-butylmethyl ether and dimethylacetamide. Can be used alone or in combination of two or more. Preferably, the solvent is a mixed solvent of dichloromethane and tert-butanol or tetrahydrofuran.
 生成された式(1)の化合物は、適宜精製、洗浄、乾燥することができる。また、式(1)の化合物を使用する際には、適宜溶媒に溶かして使用することができる。上述した脱水縮合に使用する溶媒を、式(1)の化合物を使用する際にも好適に使用することができる。 The generated compound of formula (1) can be appropriately purified, washed and dried. Further, when the compound of the formula (1) is used, it can be appropriately dissolved in a solvent before use. The solvent used for the dehydration condensation described above can also be suitably used when the compound of the formula (1) is used.
 以下、本発明を実施例に基づいて説明する。本発明は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples.
〔化合物の合成〕
(化合物Aの合成)
 下記の方法により、(3aR,4S,7R,7aS)-2-(4-(4-(4-ヒドロキシ-3-メトキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオン(以下、「化合物A」と称する)を合成した。なお、化合物Aは、上述の式(2)の構造を有する化合物であり、式(1)中、Rがメトキシ基であり、Rがヒドロキシ基であり、Rが水素原子である化合物である。
[Composite synthesis]
(Synthesis of Compound A)
(3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (4-hydroxy-3-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4 by the following method , 7-Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound A") was synthesized. Compound A is a compound having the structure of the above formula (2), and in the formula (1), R 1 is a methoxy group, R 2 is a hydroxy group, and R 3 is a hydrogen atom. Is.
 N-(4-ピペラジニルブチル)ビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシイミド(式(7)の化合物、以下、「化合物I」と称する)504mg、4-ヒドロキシ-3-メトキシ安息香酸358mg、EDC701mgを、ジクロロメタン12.5mLとtert-ブタノール0.35mLの混合液に溶解させた。室温で1時間攪拌後、飽和炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色アモルファス状の化合物A(455mg)を得た。 N- (4-piperazinylbutyl) bicyclo [2.2.1] heptane-2,3-dicarboxyimide (compound of formula (7), hereinafter referred to as "compound I") 504 mg, 4-hydroxy- 358 mg of 3-methoxybenzoic acid and 701 mg of EDC were dissolved in a mixture of 12.5 mL of dichloromethane and 0.35 mL of tert-butanol. After stirring at room temperature for 1 hour, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution and further with saturated brine. The obtained residue was purified by silica gel column chromatography to obtain white amorphous compound A (455 mg).
(化合物Bの合成)
 下記の方法により、(3aR,4S,7R,7aS)-2-(4-(4-(3-ヒドロキシ-4-メトキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオン(以下、「化合物B」と称する)を合成した。なお、化合物Bは、上述の式(3)の構造を有する化合物であり、式(1)中、Rがヒドロキシ基であり、Rがメトキシ基であり、Rが水素原子である化合物である。
(Synthesis of compound B)
(3aR * , 4S * , 7R * , 7aS * )-2- (4- (4- (3-hydroxy-4-methoxybenzoyl) piperazin-1-yl) butyl) hexahydro-1H-4 by the following method , 7-Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound B") was synthesized. Compound B is a compound having the structure of the above formula (3), and in the formula (1), R 1 is a hydroxy group, R 2 is a methoxy group, and R 3 is a hydrogen atom. Is.
 化合物Iを508mg、3-ヒドロキシ-4-メトキシ安息香酸358mg、EDC697mgを、ジクロロメタン12.5mLとtert-ブタノール0.35mLの混合液に溶解させた。室温で1時間攪拌後、飽和炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色アモルファス状の化合物B(555mg)を得た。 Compound I was dissolved in a mixture of 508 mg, 3-hydroxy-4-methoxybenzoic acid (358 mg) and EDC (679 mg) in a mixture of 12.5 mL of dichloromethane and 0.35 mL of tert-butanol. After stirring at room temperature for 1 hour, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution and further with saturated brine. The obtained residue was purified by silica gel column chromatography to obtain white amorphous compound B (555 mg).
(化合物Cの合成)
 下記の方法により、(3aR,4S,7R,7aS)-2-(4-(4-(3,4-ジヒドロキシベンゾイル)ピペラジン-1-イル)ブチル)ヘキサヒドロ-1H-4,7-メタノイソインドール-1,3(2H)-ジオン(以下、「化合物C」と称する)を合成した。なお、化合物Cは、上述の式(4)の構造を有する化合物であり、式(1)中、R及びRが共にヒドロキシ基であり、Rが水素原子である化合物である。
(Synthesis of compound C)
(3aR * , 4S * , 7R * , 7aS * ) -2- (4- (4- (3,4-dihydroxybenzoyl) piperazine-1-yl) butyl) hexahydro-1H-4,7 by the following method -Metanoisoindole-1,3 (2H) -dione (hereinafter referred to as "Compound C") was synthesized. Compound C is a compound having the structure of the above formula (4), and in the formula (1), both R 1 and R 2 are hydroxy groups, and R 3 is a hydrogen atom.
 化合物Iを1.00g、3,4-ジベンジルオキシ安息香酸1.43g、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)1.40gを、ジクロロメタン(25mL)とtert-ブタノール(0.7mL)の混合液に溶解させた。室温で35分間攪拌後、飽和炭酸水素ナトリウム水溶液で洗浄し、さらに飽和食塩水で洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色アモルファス状の化合物Dを1.55g得た。化合物Dは、式(1)においてR及びRが、ベンジルオキシ基(-OBn)であり、Rが水素原子である化合物である。水素雰囲気下で、化合物D 1.26gと10%パラジウム-炭素620mgとをテトラヒドロフラン(THF)65mLに懸濁させ、二日間激しく攪拌した。ろ紙を用いて固体をろ別し、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡赤色アモルファス状の化合物C(687mg)を得た。 1.00 g of Compound I, 1.43 g of 3,4-dibenzyloxybenzoic acid, 1.40 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), dichloromethane (25 mL) and tert. -Dissolved in a mixture of butanol (0.7 mL). After stirring at room temperature for 35 minutes, the mixture was washed with saturated aqueous sodium hydrogen carbonate solution and further with saturated brine. The obtained residue was purified by silica gel column chromatography to obtain 1.55 g of white amorphous compound D. Compound D is a compound in which R 1 and R 2 are benzyloxy groups (-OBn) and R 3 is a hydrogen atom in the formula (1). Under a hydrogen atmosphere, 1.26 g of compound D and 620 mg of 10% palladium-carbon were suspended in 65 mL of tetrahydrofuran (THF) and stirred vigorously for two days. The solid was filtered off using a filter paper, and the residue obtained by concentration was purified by silica gel column chromatography to obtain a pale red amorphous compound C (687 mg).
 得られた化合物A、B、C及びDの構造確認を、H-NMR及び13C-NMRにより行った。図1~図8に、化合物A~DのH-NMR及び13C-NMRのスペクトルを示す。図1:化合物AのH-NMR、図2:化合物Aの13C-NMR、図3:化合物BのH-NMR、図4:化合物Bの13C-NMR、図5:化合物CのH-NMR、図6:化合物Cの13C-NMR、図7:化合物DのH-NMR、図8:化合物Dの13C-NMRのスペクトルである。 The structures of the obtained compounds A, B, C and D were confirmed by 1 H-NMR and 13 C-NMR. 1 to 8 show the spectra of 1 H-NMR and 13 C-NMR of compounds A to D. FIG. 1: 1 H-NMR of compound A, FIG. 2: 13 C-NMR of compound A, FIG. 3: 1 H-NMR of compound B, FIG. 4: 13 C-NMR of compound B, FIG. 5: of compound C. 1 1 H-NMR, FIG. 6: 13 C-NMR of compound C, 7: 1 1 H-NMR of compound D, FIG. 8: 13 C-NMR of compound D.
〔化合物の抗酸化活性測定(インビトロ)〕
 以下の方法により、化合物I、A、B、C、クロザピン、オランザピンのインビトロでの抗酸化活性を測定した。なお、クロザピン及びオランザピンは従来の統合失調症治療薬である。
[Measurement of antioxidant activity of compounds (in vitro)]
The in vitro antioxidant activity of compounds I, A, B, C, clozapine and olanzapine was measured by the following methods. Clozapine and olanzapine are conventional therapeutic agents for schizophrenia.
(材料及び方法)
 ヒトリンパ腫細胞U937を使用した。細胞浮遊液に、薬剤として化合物I、A、B、C、クロザピン及びオランザピンのうち一種を濃度が100μMとなるように添加し、それぞれ異なる薬剤が添加された細胞浮遊液を調製した。コントロールとして、薬剤を添加しない細胞浮遊液を用いた。それぞれの細胞浮遊液を37℃で30分間培養後、蛍光試薬を添加した。蛍光試薬として、アミノフェニルフルオレセイン(APF法)、ヒドロキシフェニルフルオレセイン(HPF法)、2’,7’-ジクロロジヒドロフルオレセイン(DCFH法)の3種類のうち1種類を、蛍光試薬濃度が2.5μMとなるように添加した。DCFH法では、クロザピンについては、濃度100μMの他にも、クロザピンの濃度を25μM、50μMと変えて抗酸化活性を測定した。なお、APF法では、活性酸素種としてヒドロキシラジカル(・OH)及び次亜塩素酸イオン(OCl)の消去活性を測定でき、HPF法では、活性酸素種としてヒドロキシラジカル(・OH)の消去活性を測定でき、DCFH法では、活性酸素種として過酸化水素(H)の消去活性を測定できる。それぞれの蛍光試薬を添加してから、さらに15分間培養後、X線(線量10Gy)を照射した。照射後速やかに、フローサイトメトリー法にて、各細胞の蛍光強度を測定した。
(Materials and methods)
Human lymphoma cells U937 were used. One of compounds I, A, B, C, clozapine and olanzapine was added to the cell suspension as a drug so as to have a concentration of 100 μM, and a cell suspension to which different drugs were added was prepared. As a control, a cell suspension to which no drug was added was used. After culturing each cell suspension at 37 ° C. for 30 minutes, a fluorescent reagent was added. As a fluorescent reagent, one of three types, aminophenylfluorescein (APF method), hydroxyphenylfluorescein (HPF method), 2', 7'-dichlorodihydrofluorescein (DCFH method), has a fluorescent reagent concentration of 2.5 μM. It was added so as to become. In the DCFH method, the antioxidant activity of clozapine was measured by changing the concentration of clozapine to 25 μM and 50 μM in addition to the concentration of 100 μM. In the APF process, hydroxyl radicals as active oxygen species (· OH) and hypochlorite ion (OCl -) can be measured scavenging activity, the HPF process, scavenging activity of hydroxyl radicals as active oxygen species (· OH) In the DCFH method, the scavenging activity of hydrogen peroxide (H 2 O 2 ) as an active oxygen species can be measured. After adding each fluorescent reagent, the cells were further cultured for 15 minutes and then irradiated with X-rays (dose 10 Gy). Immediately after irradiation, the fluorescence intensity of each cell was measured by the flow cytometry method.
(結果)
 図9~図11に、それぞれAPF法、HPF法、DCFH法による、抗酸化活性測定結果を示す。各図において、縦軸は、コントロールの細胞浮遊液に、X線を照射しなかった場合の蛍光強度を1としたときの、各細胞浮遊液の蛍光強度を表し、図中、「*」は、有意水準を5%としたt検定で有意差があることを示す。図9及び図10において、左からコントロール、化合物I、A、B、C、クロザピン、オランザピンのグラフである。図11の左図は、左からコントロール、化合物I、A、B、C、クロザピンのグラフであり、図11の右図は、左からコントロール、25μMクロザピン、50μMクロザピン、100μMクロザピン、100μMオランザピンのグラフである。
(result)
9 to 11 show the results of antioxidant activity measurement by the APF method, the HPF method, and the DCFH method, respectively. In each figure, the vertical axis represents the fluorescence intensity of each cell suspension when the fluorescence intensity when the control cell suspension is not irradiated with X-rays is 1, and "*" in the figure represents the fluorescence intensity of each cell suspension. , The t-test with the significance level set to 5% shows that there is a significant difference. 9 and 10 are graphs of control, compounds I, A, B, C, clozapine, and olanzapine from the left. The left figure of FIG. 11 is a graph of control, compounds I, A, B, C and clozapine from the left, and the right figure of FIG. 11 is a graph of control, 25 μM clozapine, 50 μM clozapine, 100 μM clozapine and 100 μM olanzapine from the left. Is.
 図9(APF法)より、化合物A、B、C、クロザピン及びオランザピンには、細胞内ヒドロキシラジカル(・OH)又は次亜塩素酸イオン(OCl)の消去活性があることが示された。化合物A~Cの前駆物質である化合物Iには、消去活性は認められなかった。 From FIG. 9 (APF method), Compound A, B, C, the clozapine and olanzapine, intracellular hydroxyl radicals (· OH) or hypochlorite (OCl -) that there are scavenging activity was shown. No scavenging activity was observed in Compound I, which is a precursor of Compounds A to C.
 図10(HPF法)より、化合物A、B、C及びオランザピンには、細胞内ヒドロキシラジカル(・OH)の消去活性があることが示された。化合物I及びクロザピンには、消去活性は認められなかった。 From FIG. 10 (HPF method), it was shown that compounds A, B, C and olanzapine have intracellular hydroxyl radical (.OH) scavenging activity. No scavenging activity was observed in Compound I and clozapine.
 図11(DCFH法)より、化合物C及びオランザピンには、細胞内過酸化水素(H)の消去活性があることが示された。逆に、クロザピンには、細胞内過酸化水素の増強効果があることが示された。 From FIG. 11 (DCFH method), it was shown that compound C and olanzapine have the scavenging activity of intracellular hydrogen peroxide (H 2 O 2 ). On the contrary, clozapine was shown to have an effect of enhancing intracellular hydrogen peroxide.
〔動物モデルを用いた化合物の効果測定(インビボ)〕
 以下の方法により、化合物A、B、C、クロザピン及びオランザピンを、統合失調症のモデル動物に投与し、体重測定、移所運動量測定、内側前頭前皮質におけるグルタチオンの測定を行った。
[Measurement of effect of compounds using animal models (in vivo)]
Compounds A, B, C, clozapine and olanzapine were administered to model animals of schizophrenia by the following methods, and weight measurement, transfer exercise measurement, and glutathione measurement in the medial prefrontal cortex were performed.
(材料と方法)
1.統合失調症モデル動物の作成
 Ueharaら、Psychopharmacology、2009年、第206巻、p.623-630(以下、「参考文献1」)、Ueharaら、Brain Research、2010年9月17日発行、第1352巻、p.223-230(以下、「参考文献2」)、及び、Ueharaら、Journal of Psychiatric Research、2012年5月発行、第46巻、第5号、p.622-629(以下、「参考文献3」)に記載の方法に従って、以下のように統合失調症モデル動物を作成した。実験にはWistarラットを用いた。妊娠14日齢の雌ラット(日本セスレルシー株式会社、浜松、日本)を購入した。雌ラットの出産によって得られた雄性仔ラットを無作為に2群に分け、それぞれ以下の処置を生後7~10日の4日間行った。新生仔期MK-801群:N-メチル-D-アスパラギン酸型グルタミン酸受容体(NMDA受容体)拮抗薬であるMK-801(シグマ・アルドリッチ、ミズーリ州セントルイス、米国)0.2mg/kg体重を1日1回皮下投与した。新生仔期生理食塩水群:生理食塩水0.2mg/kg体重を1日1回皮下投与した。生後21日に離乳し、その後4~6匹ごとに飼育した。なお、上記参考文献1によれば、幼若期にMK-801を投与されたラットは成熟期早期に統合失調症様症状を呈する。
(Materials and methods)
1. 1. Creation of schizophrenia model animals Uehara et al., Psychopharmacology, 2009, Vol. 206, p. 623-630 (“Reference 1”), Uehara et al., Brain Research, September 17, 2010, Vol. 1352, p. 223-230 (hereinafter, "Reference 2"), and Uehara et al., Journal of Psychiatry Research, May 2012, Vol. 46, No. 5, p. A schizophrenia model animal was prepared as follows according to the method described in 622-629 (hereinafter, “Reference 3”). Wistar rats were used in the experiment. A 14-day-old female rat (Japan Cesslercy Co., Ltd., Hamamatsu, Japan) was purchased. Male pups obtained by giving birth to female rats were randomly divided into two groups, and the following treatments were performed for 4 days 7 to 10 days after birth. Neonatal MK-801 Group: MK-801 (Sigma-Aldrich, St. Louis, Missouri, USA) 0.2 mg / kg body weight, an N-methyl-D-aspartate glutamate receptor (NMDA receptor) antagonist It was subcutaneously administered once a day. Neonatal saline group: Saline 0.2 mg / kg body weight was subcutaneously administered once a day. Weaned on the 21st day after birth, and then bred every 4 to 6 animals. According to Reference 1 above, rats administered with MK-801 at an early age exhibit schizophrenia-like symptoms at an early stage of maturity.
2.化合物A、B、C、クロザピン及びオランザピンの投与
 上記1.で得られた新生仔期MK-801群と新生仔期生理食塩水群を、それぞれ6群に分け薬物投与を行った。薬物として上述のとおり調製した化合物A、B、C並びにクロザピン(シグマ・アルドリッチ、ミズーリ州セントルイス、米国)及びオランザピン(富士フイルム和光純薬株式会社、大阪、日本)を用い、コントロールとして同量の生理食塩水を用いた。上記薬物のうち一種又は生理食塩水を、生後43~56日の14日間、1日1回皮下投与した。投与量は化合物A、B、Cが2.5mg/kg/日、クロザピンが5mg/kg/日、オランザピンが0.2mg/kg/日とした。
2. 2. Administration of compounds A, B, C, clozapine and olanzapine 1. The neonatal MK-801 group and the neonatal saline group obtained in the above were divided into 6 groups, respectively, and drug administration was performed. Compounds A, B, C prepared as described above, clozapine (Sigma Aldrich, St. Louis, Missouri, USA) and olanzapine (Fujifilm Wako Pure Chemical Industries, Ltd., Osaka, Japan) were used as drugs, and the same amount of physiology was used as a control. Saline was used. One of the above drugs or physiological saline was subcutaneously administered once a day for 14 days 43 to 56 days after birth. The doses were 2.5 mg / kg / day for compounds A, B and C, 5 mg / kg / day for clozapine and 0.2 mg / kg / day for olanzapine.
3.体重測定及びメタンフェタミン誘発移所運動量の測定
 参考文献2に記載の方法に従って、以下のように、メタンフェタミン誘発移所運動量の測定を行った。移所運動量の測定には移所運動測定装置(AMB-2020、小原医科産業株式会社、東京、日本)を用いた。移所運動量の測定は、上記2.で化合物A~C、クロザピン又はオランザピンを投与したラットに対し、生後57日(化合物A、B、C、クロザピン又はオランザピンの最終投与から24時間後)に行った。移所運動量の測定の前に、各ラットの体重を測定した。ラットを装置に移動した30分後、メタンフェタミン1.0mg/kg(大日本住友製薬株式会社、東京、日本)を皮下投与し、メタンフェタミン誘発移所運動量を90分間測定した。なお、メタンフェタミン誘発移所運動量の増加は、統合失調症の陽性症状のモデルとすることができる。
3. 3. Body weight measurement and measurement of methamphetamine-induced transfer momentum According to the method described in Reference 2, methamphetamine-induced transfer momentum was measured as follows. A transfer motion measuring device (AMB-2020, Ohara Medical Industry Co., Ltd., Tokyo, Japan) was used to measure the transfer momentum. The measurement of the transfer momentum is described in 2. above. Rats administered with Compounds A to C, clozapine or olanzapine were subjected to 57 days after birth (24 hours after the final administration of compounds A, B, C, clozapine or olanzapine). Each rat was weighed prior to the transfer momentum measurement. Thirty minutes after the rats were transferred to the device, methamphetamine 1.0 mg / kg (Dainippon Sumitomo Pharmaceutical Co., Ltd., Tokyo, Japan) was subcutaneously administered, and methamphetamine-induced transfer momentum was measured for 90 minutes. The increase in methamphetamine-induced transfer momentum can be used as a model for positive symptoms of schizophrenia.
4.内側前頭前皮質におけるグルタチオンの測定
 上記3.のメタンフェタミン誘発移所運動量測定後、直ちに脳を取り出し、左前頭前皮質を注意深く切り出し、グルタチオンの測定に供した。グルタチオンの測定は、グルタチオン測定キット(日本老化制御研究所、静岡、日本)を用いて、全グルタチオン、還元型グルタチオン(Glutathione-SH;GSH)と酸化型グルタチオン(Glutathione-S-S-Glutathione;GSSG)を測定した。それぞれの測定量は組織重量当たりの濃度とした。
4. Measurement of glutathione in the medial prefrontal cortex 3. Immediately after the measurement of methamphetamine-induced transfer momentum, the brain was removed, the left prefrontal cortex was carefully excised, and glutathione was measured. For the measurement of glutathione, total glutathione, reduced glutathione (Glutathione-SH; GSH) and oxidized glutathione (Glutathione-S-S-Glutathione; GSSG) were used to measure glutathione using a glutathione measurement kit (Japan Aging Control Laboratory, Shizuoka, Japan). ) Was measured. Each measured amount was the concentration per tissue weight.
5.内側前頭前皮質におけるパルブアルブミン陽性GABA神経数の測定
 上記3.のメタンフェタミン誘発移所運動量測定後、直ちに脳を取り出し、右前頭前皮質を注意深く切り出し、パルブアルブミン陽性GABA神経数の測定に供した。切り出した組織から厚さ30μmの組織標本を作成した。パルブアルブミンに対する抗体を用いて免疫染色し、パルブアルブミン陽性GABA神経数を計測した。
5. Measurement of parvalbumin-positive GABA nerve count in the medial prefrontal cortex. Immediately after the measurement of methamphetamine-induced transfer momentum, the brain was removed, the right prefrontal cortex was carefully excised, and the parvalbumin-positive GABA nerve number was measured. A tissue specimen having a thickness of 30 μm was prepared from the excised tissue. Immunostaining was performed using an antibody against parvalbumin, and the number of parvalbumin-positive GABA nerves was measured.
6.統計
 体重については、2元配置分散分析(post-hoc Bonferroni test)を行った。メタンフェタミン誘発移所運動量と内側前頭前皮質におけるグルタチオン及びパルブアルブミン陽性GABA神経数を、2元配置分散分析で解析した。主効果を、新生仔期処置(生理食塩水、MK-801)と薬物投与(生理食塩水、化合物A、B、C、クロザピン、オランザピン)とした。適切な場合には1元配置分散分析の後、Bonferroni testで各群を比較した。
6. For statistical body weight, a two-way ANOVA (post-hoc Bonferroni test) was performed. Methamphetamine-induced translocation momentum and glutathione- and parvalbumin-positive GABA nerve counts in the medial prefrontal cortex were analyzed by one-way ANOVA. The main effects were neonatal treatment (saline, MK-801) and drug administration (saline, compounds A, B, C, clozapine, olanzapine). If appropriate, after one-way ANOVA, each group was compared on a Bonferroni test.
(結果)
1.各薬剤の体重に対する影響
 生後57日に測定した各群のラットの体重を表1に示す。新生仔期(生後7~10日)のMK-801投与は体重に影響は与えなかった(p=0.055)。一方思春期前後(生後43~56日)の薬物投与では、化合物A、B、Cとオランザピン投与は体重に影響を与えなかったが、クロザピン投与は、体重を減少させた(p<0.01)。
(result)
1. 1. Effect of each drug on body weight Table 1 shows the body weight of rats in each group measured 57 days after birth. Administration of MK-801 during the neonatal period (7-10 days after birth) did not affect body weight (p = 0.055). On the other hand, in the drug administration before and after puberty (43-56 days after birth), the administration of compounds A, B, C and olanzapine did not affect the body weight, but the administration of clozapine reduced the body weight (p <0.01). ).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
2.メタンフェタミン誘発移所運動量
 図12~図14は、それぞれ化合物A、化合物B、クロザピンについてのメタンフェタミン誘発移所運動量測定の結果を示すグラフである。各図において、縦軸は、90分あたりの移所運動量を示し、図中、「*」は、有意水準を5%としたBonferroni testで有意差があることを示す。また、各図において、左から、新生仔期生理食塩水群のうち生後57日に生理食塩水を投与した群、新生仔期生理食塩水群のうち生後57日に薬物(化合物A、B又はクロザピン)を投与した群、新生仔期MK-801群のうち生後57日に生理食塩水を投与した群、新生仔期MK-801群のうち生後57日に薬物(化合物A、B又はクロザピン)を投与した群のグラフを示す。
2. 2. Methamphetamine-induced transfer momentum FIGS. 12 to 14 are graphs showing the results of methamphetamine-induced transfer momentum measurement for compound A, compound B, and clozapine, respectively. In each figure, the vertical axis indicates the amount of transfer momentum per 90 minutes, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%. In addition, in each figure, from the left, the group in which the physiological saline was administered 57 days after birth in the neonatal physiological saline group, and the drug (Compounds A, B or Crozapine) -administered group, neonatal MK-801 group to which saline was administered 57 days after birth, neonatal MK-801 group to receive drug (compound A, B or clozapine) 57 days after birth The graph of the group to which was administered is shown.
 化合物A投与及び化合物B投与において、交互作用(それぞれp<0.01、p=0.025)を認めたが、主効果を認めなかった(それぞれ図12、図13)。オランザピン投与では、交互作用を認めたが(p=0.036)、主効果を認めなかった。クロザピン投与では、交互作用を認めず、新生仔期MK-801投与と薬物投与においてそれぞれ主効果(それぞれp=0.037、p<0.01)を認めた(図14)。これらの統計結果は以下のことを示す。すなわち、化合物A、B、及びオランザピンは、新生仔期MK-801投与により増加するメタンフェタミン誘発運動量を抑制する。クロザピンは、それ自体にメタンフェタミン誘発運動量を増強する効果がある。 Interactions (p <0.01 and p = 0.025, respectively) were observed in compound A administration and compound B administration, but no main effect was observed (FIGS. 12 and 13, respectively). With olanzapine administration, an interaction was observed (p = 0.036), but no main effect was observed. No interaction was observed with clozapine administration, and the main effects (p = 0.037 and p <0.01, respectively) were observed with neonatal MK-801 administration and drug administration, respectively (FIG. 14). These statistical results show the following. That is, compounds A, B, and olanzapine suppress the methamphetamine-induced momentum increased by administration of neonatal MK-801. Clozapine itself has the effect of enhancing methamphetamine-induced momentum.
3.内側前頭前皮質における全グルタチオン
 図15~図19は、それぞれ化合物A、B、C、クロザピン、オランザピンについての、内側前頭前皮質におけるグルタチオン濃度測定の結果を示すグラフである。各図において、縦軸は、組織重量当たりの全グルタチオン濃度を示し、図中、「*」は、有意水準を5%としたBonferroni testで有意差があることを示す。また、各図において、左から、新生仔期生理食塩水群のうち生後57日に生理食塩水を投与した群、新生仔期生理食塩水群のうち生後57日に薬物(化合物A、B、C、クロザピン又はオランザピン)を投与した群、新生仔期MK-801群のうち生後57日に生理食塩水を投与した群、新生仔期MK-801群のうち生後57日に薬物(化合物A、B、C、クロザピン又はオランザピン)を投与した群のグラフを示す。
3. 3. Total glutathione in the medial prefrontal cortex FIGS. 15-19 are graphs showing the results of glutathione concentration measurements in the medial prefrontal cortex for compounds A, B, C, clozapine, and olanzapine, respectively. In each figure, the vertical axis indicates the total glutathione concentration per tissue weight, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%. In addition, in each figure, from the left, the group in which the physiological saline was administered 57 days after birth in the neonatal physiological saline group, and the drug (Compounds A, B, C, clozapine or olanzapine) administered, neonatal MK-801 group administered physiological saline 57 days after birth, neonatal MK-801 group 57 days after birth drug (Compound A, A graph of the group to which B, C, clozapine or olanzapine) was administered is shown.
 全グルタチオン(GSH+GSSH)濃度は、化合物A投与、化合物B投与、化合物C投与において、それぞれ交互作用を認めた(p=0.011、p=0.037、p<0.01)が、化合物A投与、化合物B投与、化合物C投与の主効果を認めなかった(図15、図16、図17)。さらに、化合物A投与と化合物C投与では、Bonferroni testでも有意に、新生仔期MK-801投与によって低下する全グルタチオン濃度が、化合物A投与及び化合物C投与により改善した。一方、オランザピン投与では、交互作用は認められず、新生仔期MK-801投与の主効果のみを認めた(p<0.01)(図18)。クロザピン投与では、交互作用を認めなかったが、新生仔期MK-801投与と、クロザピン投与においてそれぞれ主効果(p<0.01、p<0.01)を認めた(図19)。これらの統計結果は以下のことを示す。すなわち化合物A、B及びCは、新生仔期MK-801投与によって生じるグルタチオンの低下を改善する。オランザピンは、新生仔期MK-801投与によって生じるグルタチオンの低下に影響を与えない。クロザピンは、それ自体にグルタチオンを低下させる効果がある。 The total glutathione (GSH + GSH) concentration showed an interaction between compound A administration, compound B administration, and compound C administration (p = 0.011, p = 0.037, p <0.01), but compound A. No main effects of administration, compound B administration, and compound C administration were observed (FIGS. 15, 16, 16 and 17). Furthermore, in the administration of Compound A and the administration of Compound C, the total glutathione concentration decreased by the administration of MK-801 in the neonatal period was significantly improved by the administration of Compound A and the administration of Compound C even in the Bonferroni test. On the other hand, no interaction was observed with olanzapine administration, and only the main effect of neonatal MK-801 administration was observed (p <0.01) (FIG. 18). No interaction was observed with clozapine administration, but the main effects (p <0.01, p <0.01) were observed with neonatal MK-801 administration and clozapine administration, respectively (Fig. 19). These statistical results show the following. That is, compounds A, B and C ameliorate the reduction in glutathione caused by administration of neonatal MK-801. Olanzapine does not affect the glutathione reduction caused by neonatal MK-801 administration. Clozapine itself has the effect of lowering glutathione.
4.内側前頭前皮質における酸化型グルタチオン/還元型グルタチオン比
 図20及び図21は、それぞれ化合物A、化合物Cについての内側前頭前皮質における酸化型グルタチオン/還元型グルタチオン比を示すグラフである。左から、新生仔期生理食塩水群のうち生後57日に生理食塩水を投与した群、新生仔期生理食塩水群のうち生後57日に薬物(化合物A又はC)を投与した群、新生仔期MK-801群のうち生後57日に生理食塩水を投与した群、新生仔期MK-801群のうち生後57日に薬物(化合物A又はC)を投与した群のグラフを示す。
4. Oxidized glutathione / reduced glutathione ratio in the medial prefrontal cortex FIGS. 20 and 21 are graphs showing the oxidized glutathione / reduced glutathione ratio in the medial prefrontal cortex for compounds A and C, respectively. From the left, the neonatal saline group to which physiological saline was administered 57 days after birth, the neonatal saline group to which the drug (compound A or C) was administered 57 days after birth, and neoplasia. The graph of the group to which the physiological saline was administered 57 days after birth in the childhood MK-801 group, and the group to which the drug (compound A or C) was administered 57 days after birth in the neonatal MK-801 group is shown.
 酸化型グルタチオン/還元型グルタチオン比(GSSG/GSH比)は、化合物A投与及び化合物C投与において、交互作用を認めなかったが、薬物投与(化合物A又は化合物C)の主効果をそれぞれ認めた(p<0.01、p=0.038)(図20、図21)。オランザピン、クロザピン投与は、有意な変化を認めなかった。これらの統計結果は以下のことを示す。すなわち、化合物Aと化合物Cは、それ自体に酸化型グルタチオン/還元型グルタチオン比を下げる効果があるが、クロザピン、オランザピンにはその効果は認められない。 Oxidized glutathione / reduced glutathione ratio (GSSG / GSH ratio) did not show any interaction between compound A administration and compound C administration, but the main effect of drug administration (compound A or compound C) was observed, respectively ( p <0.01, p = 0.038) (FIGS. 20, 21). Administration of olanzapine and clozapine did not show any significant changes. These statistical results show the following. That is, compound A and compound C have the effect of lowering the oxidized glutathione / reduced glutathione ratio by themselves, but clozapine and olanzapine do not have such an effect.
5.内側前頭前皮質におけるパルブアルブミン陽性GABA神経数
 図22~図26は、それぞれ化合物A、B、C、クロザピン、オランザピンについての、内側前頭前皮質におけるパルブアルブミン陽性GABA神経の細胞密度の結果を示すグラフである。各図において、縦軸は、パルブアルブミン陽性GABA神経の細胞密度を示し、図中、「*」は、有意水準を5%としたBonferroni testで有意差があることを示す。また、各図において、左から、新生仔期生理食塩水群のうち生後57日に生理食塩水を投与した群、新生仔期生理食塩水群のうち生後57日に薬物(化合物A、B、C、クロザピン又はオランザピン)を投与した群、新生仔期MK-801群のうち生後57日に生理食塩水を投与した群、新生仔期MK-801群のうち生後57日に薬物(化合物A、B、C、クロザピン又はオランザピン)を投与した群のグラフを示す。
5. Number of parvalbumin-positive GABA nerves in the medial prefrontal cortex FIGS. 22-26 are graphs showing the results of cell density of parvalbumin-positive GABA nerves in the medial prefrontal cortex for compounds A, B, C, clozapine, and olanzapine, respectively. Is. In each figure, the vertical axis indicates the cell density of parvalbumin-positive GABA nerve, and in the figure, “*” indicates that there is a significant difference in the Bonferroni test with the significance level of 5%. In addition, in each figure, from the left, the group in which the physiological saline was administered 57 days after birth in the neonatal physiological saline group, and the drug (compounds A, B, etc.) in the neonatal physiological saline group on 57 days after birth. C, clozapine or olanzapine) administered, neonatal MK-801 group administered physiological saline 57 days after birth, neonatal MK-801 group 57 days after birth drug (Compound A, A graph of the group to which B, C, clozapine or olanzapine) was administered is shown.
 パルブアルブミン陽性GABA神経数は、化合物A投与、化合物B投与及び化合物C投与において、それぞれ交互作用を認めた(p=0.012、p<0.001、p=0.002)。化合物A投与及び化合物B投与において、新生仔期MK-801処置及び薬物投与それぞれに主効果を認めた(化合物A:p<0.001、p=0.012;化合物B:p=0.002、p=0.042)。化合物C投与では、新生仔期MK-801処置で主効果を認めた(p=0.01)。Bonferroni testでは、化合物A投与、化合物B投与及化合物C投与はいずれも、新生仔期MK-801処置によって低下したパルブアルブミン陽性GABA神経数を改善させた。クロザピンとオランザピン投与では交互作用を認めず、いずれも新生仔期MK-801処置による主効果を認めるのみであった(p=0.004、p<0.001)。これらの結果は、化合物A、化合物B及び化合物Cは、MK-801投与によって生じるパルブアルブミン陽性GABA神経数の減少を改善する効果があるが、クロザピンとオランザピンはその効果はないことを示す。 The parvalbumin-positive GABA nerve counts showed an interaction with compound A administration, compound B administration, and compound C administration, respectively (p = 0.012, p <0.001, p = 0.002). In the administration of Compound A and the administration of Compound B, the main effects were observed for each of the neonatal MK-801 treatment and the drug administration (Compound A: p <0.001, p = 0.012; Compound B: p = 0.002). , P = 0.042). In the administration of compound C, the main effect was observed in the treatment of neonatal MK-801 (p = 0.01). In the Bonferroni test, compound A administration, compound B administration, and compound C administration all improved the parvalbumin-positive GABA nerve count decreased by neonatal MK-801 treatment. No interaction was observed with clozapine and olanzapine administration, and only the main effect of neonatal MK-801 treatment was observed (p = 0.004, p <0.001). These results indicate that Compound A, Compound B and Compound C have the effect of improving the decrease in parvalbumin-positive GABA nerve count caused by administration of MK-801, but clozapine and olanzapine have no effect.

Claims (9)

  1.  下記式(1)で示される化合物又はその薬剤学的に許容できる塩。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R及びRは、それぞれ独立に、水素原子、ヒドロキシ基及び炭素数1~6のアルコキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基である。)
    A compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and an alkoxy group having 1 to 6 carbon atoms, and are R 1 , R. at least one of the 2 and R 3 one is a hydroxy group.)
  2.  式(1)中、R、R及びRが、それぞれ独立に、水素原子、ヒドロキシ基及びメトキシ基からなる群から選択される基であり、R、R及びRのうちの少なくとも1つがヒドロキシ基である、請求項1に記載の化合物又はその薬剤学的に許容できる塩。 In formula (1), R 1 , R 2 and R 3 are groups independently selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group, respectively, and among R 1 , R 2 and R 3 . The compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein at least one is a hydroxy group.
  3.  式(1)中、Rがメトキシ基であり、Rがヒドロキシ基であり、Rが水素原子である、請求項1又は2に記載の化合物又はその薬剤学的に許容できる塩。 The compound according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein R 1 is a methoxy group, R 2 is a hydroxy group, and R 3 is a hydrogen atom in the formula (1).
  4.  式(1)中、Rがヒドロキシ基であり、Rがメトキシ基であり、Rが水素原子である、請求項1又は2に記載の化合物又はその薬剤学的に許容できる塩。 The compound according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein R 1 is a hydroxy group, R 2 is a methoxy group, and R 3 is a hydrogen atom in the formula (1).
  5.  式(1)中、R及びRがそれぞれヒドロキシ基であり、Rが水素原子である、請求項1又は2に記載の化合物又はその薬剤学的に許容できる塩。 The compound according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 are hydroxy groups and R 3 is a hydrogen atom, respectively, in the formula (1).
  6.  請求項1~5のいずれか一項に記載の化合物又はその薬剤学的に許容できる塩を有効成分として含有する医薬組成物。 A pharmaceutical composition containing the compound according to any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof as an active ingredient.
  7.  神経保護薬である、請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, which is a neuroprotective agent.
  8.  中枢神経系疾患治療薬である、請求項6又は7に記載の医薬組成物。 The pharmaceutical composition according to claim 6 or 7, which is a therapeutic agent for central nervous system diseases.
  9.  統合失調症治療薬である、請求項6~8のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 6 to 8, which is a therapeutic agent for schizophrenia.
PCT/JP2020/019911 2019-05-21 2020-05-20 Tandospirone derivative WO2020235587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520813A JPWO2020235587A1 (en) 2019-05-21 2020-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019095359 2019-05-21
JP2019-095359 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235587A1 true WO2020235587A1 (en) 2020-11-26

Family

ID=73458313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019911 WO2020235587A1 (en) 2019-05-21 2020-05-20 Tandospirone derivative

Country Status (2)

Country Link
JP (1) JPWO2020235587A1 (en)
WO (1) WO2020235587A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132887A (en) * 1987-10-27 1988-06-04 Sumitomo Pharmaceut Co Ltd Novel imide derivative
WO1998037893A1 (en) * 1997-02-26 1998-09-03 Sumitomo Pharmaceuticals Co., Ltd. Dopamine d4 receptor antagonist

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132887A (en) * 1987-10-27 1988-06-04 Sumitomo Pharmaceut Co Ltd Novel imide derivative
WO1998037893A1 (en) * 1997-02-26 1998-09-03 Sumitomo Pharmaceuticals Co., Ltd. Dopamine d4 receptor antagonist

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PRABHASH NATH TRIPATHIA, PAVAN SRIVASTAVA, PIYOOSH SHARMA, MANISH KUMAR TRIPATHI, ANKIT SETH, AVANISH TRIPATHI, SACHCHIDA NAND RAI: "Biphenyl-3-oxo-1, 2, 4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory", BIOORGANIC CHEMISTRY, vol. 85, 15 December 2018 (2018-12-15), pages 82 - 96, XP055762811 *
UEHARA, TAKASHI ET AL.: "Development of original drug discovery technology, Tandospirone derivative with antioxidant function-Creation of new neuroprotective drugs", THE CHEMICAL INDUSTRY, vol. 71, 1 May 2020 (2020-05-01), pages 298 - 305 *

Also Published As

Publication number Publication date
JPWO2020235587A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
ES2920681T3 (en) compounds
JP6902025B2 (en) Methods and compositions for the prevention and treatment of hearing loss
CA3019012A1 (en) Methods of using (2r, 6r)-hydroxynorketamine and (2s, 6s)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, fatigue, suicidal ideation, and post traumatic stress disorders
Chen et al. A potent multi-functional neuroprotective derivative of tetramethylpyrazine
US10946013B2 (en) Methods for treating central nervous system disorders using vdac inhibitors
JP2013506716A (en) Methods for treating diseases using proanthocyanidin oligomers such as crofelemer
WO2020143762A1 (en) Ketamine pamoate and use thereof
JP7190612B2 (en) Substituted piperidine compound and use thereof
US11311551B2 (en) Use of H3K9me3 modulation for enhancing cognitive function
JP2021507944A (en) Compositions and treatments for neuropathy, including motor neuron disease
CN106632181A (en) Aurone mannich base compound and preparation method and application thereof
CA3103958A1 (en) Activators of the unfolded protein response
CN106946760A (en) Derivatives of indirubin or pharmaceutically receptible salt are used for antineoplastic and preparation method
EA005856B1 (en) Tetrahydrothiopyranphthalazinone derivatives as pde4 inhibitors
JP2022527401A (en) Compounds and methods for treating inflammatory disorders
CN108553456A (en) The new application of benzoic acid and its derivative
CN111035642A (en) Application of alfuzosin compound in preventing or treating Alzheimer&#39;s disease and related diseases
WO2020235587A1 (en) Tandospirone derivative
CN113185447B (en) Phthaloyl cysteamine compound, preparation method and application thereof
JP2010120916A (en) Agent for amelioration or treatment of mental disease and nervous system disease developing in relation to decrease in physiologically active monoamine in vivo
CA3214953A1 (en) Tetracyclic compounds for treating brain disorders
WO2017124969A1 (en) Dicaffeoyl-spermidine cyclic derivative and use thereof
CN1114318A (en) Novel purine derivatives and pharmaceutically acceptable salts thereof
JP7295145B2 (en) Medicaments and uses thereof for treating neurodegenerative diseases
EP1521748A1 (en) Novel anthracene derivatives and the use thereof as a medicament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809062

Country of ref document: EP

Kind code of ref document: A1