WO2020235505A1 - Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program - Google Patents

Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program Download PDF

Info

Publication number
WO2020235505A1
WO2020235505A1 PCT/JP2020/019524 JP2020019524W WO2020235505A1 WO 2020235505 A1 WO2020235505 A1 WO 2020235505A1 JP 2020019524 W JP2020019524 W JP 2020019524W WO 2020235505 A1 WO2020235505 A1 WO 2020235505A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
pulse
gradient magnetic
nmr signal
signal
Prior art date
Application number
PCT/JP2020/019524
Other languages
French (fr)
Japanese (ja)
Inventor
智之 拝師
亮平 忰田
佐々木 進
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2021520776A priority Critical patent/JP7412787B2/en
Publication of WO2020235505A1 publication Critical patent/WO2020235505A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance

Definitions

  • the present invention relates to a nuclear magnetic resonance imaging apparatus, a nuclear magnetic resonance imaging method, and a program.
  • Nuclear magnetic resonance imaging is to irradiate a specific RF (Radio Frequency) pulse (excitation pulse) while applying a specific gradient magnetic field to a subject in a static magnetic field to cause nuclear magnetic resonance of a specific atom in the subject.
  • the induced current generated in the receiving coil is acquired as a nuclear magnetic resonance (NMR) signal, and an image of the subject (for example, a two-dimensional image (that is, a cross-sectional image) or a three-dimensional image) is generated from this signal.
  • An NMR signal to which position information is added by applying a gradient magnetic field measured by MRI is also particularly called an MRI signal.
  • the set of RF pulses and gradient magnetic fields applied at a particular intensity and timing to acquire an NMR signal is called a pulse sequence.
  • the above-mentioned gradient magnetic field connects the real space in which the subject is placed and the spatial frequency space (k-space) of the subject by the relationship of Fourier transform, and the above-mentioned MRI signal reflects the information in the k-space of the subject. doing. Therefore, in MRI, information in the k-space of the subject is discretely collected from the MRI signal, and the obtained discrete data is subjected to a discrete inverse Fourier transform to reconstruct the image of the subject in the real space.
  • a triaxial gradient magnetic field (X-axis, Y-axis, Z-axis) is controlled by a triaxial gradient magnetic field coil to control a lattice of the Cartesian coordinate system of the subject in k-space.
  • a method of extracting data on points one by one (line scan), and a method of sequentially extracting data on the polar coordinate system of the subject's k space along a plurality of radial straight lines or spiral curves passing through the origin (radial scan). / Spiral scan) etc. have been put into practical use.
  • the MRI signal has a convex part with strong signal strength generated by manipulating the gradient magnetic field by the designed pulse sequence, and this is called an echo.
  • the echo and the signal changes before and after it include the spatial information of the subject. Echoes caused by the application of a gradient magnetic field are called gradient echoes.
  • An echo caused by continuous application of a high-frequency magnetic field (for example, application of an inversion pulse after application of an excitation pulse) is called a spin echo. Regardless of the cause of the echo, the time from the application of the excitation pulse to the generation of the echo is called the echo time (TE).
  • the partial echo method is known.
  • the partial echo method gradient echo (GRE) method, to shorten the TE, the data corresponding to about half of k-space by obtains the MRI signal until the elapse of the time of half the signal acquisition time t a from the TE Is collected, and the rest of the data in k-space is appropriately corrected (for example, 0 fill (zero fill), complementation by duplication based on Elmeet symmetry), and then the inverse Fourier transform is performed to perform MRI. Generate an image.
  • FIG. 5 shows a pulse sequence when the partial echo method is applied in the GRE method.
  • Patent Document 1 discloses an example of performing correction with 0 fill.
  • the NMR signals of 23 Na is less sensitive than the NMR signal of 1 H (proton).
  • the NMR signal of 23 Na was about 1/20000 of the NMR signal of 1 H.
  • the abundance of many NMR nuclei other than 1 H in the object containing the living body is smaller than the 1 H, it is difficult to obtain the MRI signal having a signal strength required to capture the image.
  • the integrated signal obtained by simply acquiring and integrating the MRI signals corresponding to the same image multiple times.
  • the signal strength is low such as 23 Na
  • 23 Na sodium is an NMR nucleus with a spin quantum number of 3/2.
  • 1 H (proton) it often becomes a large molecule or complex in practice due to the hydrogen bond of H 2 O, but 23 Na exists as almost a single ion in the living body. It is thought that there is. For this reason, T2 relaxation time of 23 Na is as short as several ms (milliseconds) to about 30 ms.
  • the nuclear magnetic resonance imaging apparatus is A static magnetic field forming part that forms a static magnetic field, An object holding unit that holds an object in the static magnetic field, A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to the object in the static magnetic field, and an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is generated.
  • a pulse application unit that dephases the NMR signal and then rephases it by applying A detection unit that detects each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitudes while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal.
  • An image generation unit that generates an image from the NMR signal detected by the detection unit, With The pulse application unit applies the pulse sequence to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
  • the detection unit detects the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
  • the image generation unit generates the image from the entire NMR signal detected over the entire area. It is characterized by that.
  • the nuclear magnetic resonance imaging method is A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to an object in a static magnetic field, an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is applied.
  • a pulse application step in which the NMR signal is dephased and then rephased by A detection step of detecting each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field having different amplitudes while the NMR signal is being rephased by applying the frequency-encoded gradient magnetic field by the pulse application step.
  • An image generation step of generating an image from the NMR signal detected in the detection step and With
  • the pulse application step the pulse sequence is applied to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
  • the detection step the NMR signal is detected over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
  • the image generation step the image is generated from the entire NMR signal detected over the entire area. It is characterized by that.
  • a pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to a target in a static magnetic field to a pulse application unit, and an NMR signal is generated from the target by applying the excitation pulse to generate an NMR signal at the frequency.
  • Each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitude is detected in the detection unit while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal.
  • a detection means for detecting the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase the NMR signal to the elapse of the signal acquisition time.
  • An image generation means for causing an image generation unit to generate an image from the NMR signal detected by the detection unit, and for generating the image from the entire NMR signal detected over the entire area.
  • an MRI image can be preferably taken.
  • (A) shows a cross-sectional image of the surgery group
  • (b) shows a cross-sectional image of the control group. It is a graph which shows the intensity of 1 H-NMR signal and 23 Na-NMR signal of the saline solution measured at the same measurement time with respect to the repetition time. It is a photograph of the measuring table of the 1 H / 23 Na-dual MRI apparatus.
  • (A) is a photograph of the measuring table taken from above, and (b) is a photograph of the bottom plate removed from the measuring table and taken from the back side.
  • the MRI apparatus 100 includes a static magnetic field coil 10, a gradient magnetic field generating unit 20, an RF pulse applying unit 30, a receiving unit 40, and a control device 50.
  • a display unit 60 and an operation unit 70 are provided.
  • the static magnetic field coil 10, the gradient magnetic field coil 21 included in the gradient magnetic field generation unit 20, and the RF (Radio Frequency) coil 31 included in the RF pulse application unit 30 are arranged around the coaxial (Z axis), for example. , It is provided in a housing (not shown).
  • the object 1 to be photographed is held in the bore 3 (inspection space) in the housing by the holding unit 2.
  • the holding unit 2 may be a sleeper.
  • the holding unit 2 moves, for example, the object 1 in the bore 3 according to the imaging site (for example, horizontally moves, vertically moves, or rotates), or moves the object 1 from outside the bore 3 into the bore 3. It may be provided with a transport means for causing.
  • the subject 1 may be a part instead of the whole, and may be not only the whole body of a human being but also a part thereof (for example, the head or the abdomen).
  • the shape of the MRI apparatus 100 particularly the structure around the bore 3, for example, the gradient magnetic field coil 21 and the RF (Radio Frequency) coil 31 is optimized for the shape of the object 1.
  • the static magnetic field coil 10 forms a uniform static magnetic field (for example, 1.5 tesla to 21 tesla) at a level of several ppm in the bore 3.
  • the static magnetic field coil 10 may be formed so that the central axis of the static magnetic field coil 10 or the central axis of the magnetic flux passes through the bore 3 (particularly, the central axis of the bore 3).
  • the static magnetic field formed is a horizontal magnetic field substantially parallel to the Z direction.
  • the static magnetic field coil 10 is composed of, for example, a superconducting coil or a normal conducting coil, and is driven under the control of the control device 50 via a static magnetic field coil driving unit (not shown).
  • the static magnetic field coil 10 may be driven and controlled by a control system independent of the control device 50.
  • the configuration for generating the static magnetic field is not limited to the superconducting coil and the normal conducting coil, and for example, a permanent magnet (for example, 1 tesla or less) may be used.
  • the static magnetic field coil 10 may have a shim coil group (not shown) for correcting the static magnetic field uniformity, and the static magnetic field can be further made uniform by such a shim coil group. If a uniform static magnetic field can be formed, an arbitrary static magnetic field forming portion can be adopted instead of the static magnetic field coil 10.
  • the gradient magnetic field generating unit 20 generates an independent three-axis gradient magnetic field necessary for imaging in the bore 3, and includes a gradient magnetic field coil 21 and a gradient magnetic field coil driving unit 22 for driving the gradient magnetic field coil 21. , Have.
  • the gradient magnetic field coil 21 generates a gradient magnetic field that gives a gradient to the strength of the static magnetic field formed by the static magnetic field coil 10 in three axial directions orthogonal to each other. Therefore, the gradient magnetic field coil 21 has three systems of coils.
  • the gradient magnetic fields in the three axes orthogonal to each other are, for example, a slice gradient magnetic field in the slice axis direction, a phase encode gradient magnetic field in the phase axis direction, or a frequency encode gradient in the frequency axis direction, depending on the pulse sequence used for imaging. Used as a magnetic field.
  • the slice gradient magnetic field is a gradient magnetic field for slice selection.
  • the phase-encoded gradient magnetic field and the frequency-encoded gradient magnetic field are gradient magnetic fields for measuring the spatial distribution of resonant elements. In some cases, the gradient magnetic field in one direction plays two or more roles in the same pulse sequence.
  • the gradient magnetic field coil drive unit 22 supplies a drive signal to the gradient magnetic field coil 21 to generate a gradient magnetic field under the control of the control device 50.
  • the gradient magnetic field coil drive unit 22 has three systems of drive circuits (not shown) corresponding to the three systems of coils included in the gradient magnetic field coil 21.
  • the left-right direction of the paper surface is the X-axis direction
  • the vertical direction of the paper surface is the Y-axis direction
  • the normal direction of the paper surface is the Z-axis direction
  • the gradient axes of the above-mentioned gradient magnetic field are parallel to these X, Y, and Z axes.
  • the gradient axes of the three gradient magnetic fields are limited to the above-mentioned X, Y, and Z axes as long as they are orthogonal to each other. It does not have to match some or all of these.
  • the RF pulse application unit 30 is for applying an RF pulse for generating nuclear magnetic resonance to the object 1, and has an RF coil 31 and an RF coil drive unit 32 for driving the RF coil 31.
  • the RF coil 31 forms a high-frequency magnetic field in the static magnetic field space for exciting the nuclear spins of the target NMR nucleus in the target 1. Forming a high-frequency magnetic field in this way is also referred to as application or transmission of RF pulses.
  • the RF coil 31 has a function of transmitting an RF pulse and a function of receiving a nuclear magnetic resonance (NMR) signal which is an electromagnetic wave generated by an excited nuclear spin.
  • NMR nuclear magnetic resonance
  • An NMR signal to which position information is added by applying a gradient magnetic field measured by MRI is called an MRI signal.
  • the RF pulse transmission coil and the MRI signal reception coil may be separately configured.
  • the RF coil 31 or the RF pulse transmission coil is large, and the MRI signal reception coil is small, and it is desirable that the size is the minimum necessary.
  • the smaller the RF coil 31 or the RF pulse transmission coil the smaller the excitation power (SAR: Specific Absorption), such as when the number of repetitions is increased and the coil is continuously applied in a relatively short time. Rate) can be lowered).
  • the RF coil drive unit 32 supplies a drive signal to the RF coil 31 to drive the RF coil 31 under the control of the control device 50. Specifically, the RF coil driving unit 32 generates an RF pulse corresponding to the Larmor frequency determined by the type of target atom and the magnetic field strength in the RF coil 31 as an excitation pulse.
  • the excitation pulse may be a hard pulse, a Gaussian pulse, or an adiabatic pulse, but it is particularly desirable to employ a hard pulse because the echo time (TE) can be shortened.
  • a 180 ° pulse (commonly known as an Inversion Recovery pulse) that inverts the nuclear magnetization may be preceded, and a few ms of IR time may be arranged as a waiting time. This makes it possible to reduce the signal of nuclear magnetization having a specific T1 time (not shown).
  • the receiving unit (detecting unit) 40 is connected to the RF coil 31 and detects the MRI signal received by the RF coil 31.
  • the receiving unit 40 digitally converts the detected MRI signal and transmits it to the control device 50. It is desirable that unnecessary signals outside the MRI signal necessary for image reconstruction are removed by an analog or digital frequency filter in the receiving unit 40 or the control device 50. For example, a steep bandpass filter may be used as the analog frequency filter.
  • the control device 50 includes a control unit 51 and a storage unit 52, and for example, drives a computer that controls the overall operation of the MRI device 100, an RF coil drive unit 32, and a gradient coil drive unit 22 by a pulse sequence. It consists of a sequencer.
  • the control unit 51 is composed of a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), etc., and executes an operation program stored in the storage unit 52 to execute an MRI apparatus. Control the operation of each part of 100.
  • a CPU Central Processing Unit
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the storage unit 52 is composed of a ROM (Read Only Memory), a RAM (Random Access Memory), etc., holds a CPU as needed, and provides various operation programs (program PG for executing image generation processing described later). (Including) data, table data described later, etc. are stored in advance.
  • the RAM of the storage unit 52 temporarily stores data indicating various calculation results, data indicating discrimination results, and the like, and performs calculations.
  • the storage unit 52 can also be arranged on the Internet.
  • the control unit 51 includes a pulse control unit 51a and an image generation unit 51b as functional units.
  • the pulse control unit 51a includes the gradient magnetic field generation unit 20 and the RF pulse application unit 30 based on the data of the pulse sequence 300 described later showing the pulse sequences of the RF pulse, the phase-encoded gradient magnetic fields Gp1 and Gp2, and the frequency-encoded gradient magnetic field Gr. Drive control of.
  • the data of the pulse sequence 300 may be stored in the storage unit 52 in advance, or may be input or reset by a user operation via the operation unit 70 described later.
  • the image generation unit 51b stores the digitally converted MR signal data collected by the reception unit 40 in the storage unit 52.
  • the data constitutes a three-dimensional Fourier space (k space) by the gradients of the phase-encoded gradient magnetic fields Gp1 and Gp2 and the frequency-encoded gradient magnetic field Gr.
  • the image generation unit 51b generates a three-dimensional image of the target 1 by performing a three-dimensional inverse Fourier transform on the data in the k-space.
  • the display unit 60 displays a waveform showing the intensity of the MRI signal over time that can confirm the echo peak position while scanning the k space, the MRI image generated by the image generation unit 51b, and various other information.
  • the display is composed of, for example, a liquid crystal display (LCD: Liquid Crystal Display), an organic EL display (OELD: Organic Electro Luminescent Display), and the like.
  • LCD Liquid Crystal Display
  • OELD Organic Electro Luminescent Display
  • a personal computer for example, a notebook computer
  • another portable electronic terminal may be used as the display unit 60 and the operation unit 70 described later.
  • the operation unit 70 receives an operation by the user and supplies an operation signal corresponding to the received operation to the control device 50.
  • the operation unit 70 is composed of, for example, a keyboard and a mouse provided with a pointing device, a touch panel integrated with the display unit 60, and the like.
  • the MRI apparatus 100 is configured so that the user can input data of the pulse sequence 300 or the like by an operation from the operation unit 70.
  • the image generation process will be described with reference to FIG.
  • the image generation process is executed by, for example, the control unit 51 in response to a start operation from the operation unit 70 by the user. Before the start of the image generation process, it is assumed that the target 1 mounted on the holding unit 2 is set in the bore 3.
  • the control unit 51 drives the static magnetic field coil 10 via a static magnetic field coil drive unit (not shown) to form a uniform static magnetic field in the bore 3 (step S11).
  • a static magnetic field may be formed in the bore 3 in advance before the image generation process.
  • the uniformity of the static magnetic field is affected by the composition and shape of subject 1. Therefore, the static magnetic field coil 10 may be provided with a shim coil group (not shown) for correcting the uniformity of the static magnetic field to further make the static magnetic field more uniform.
  • control unit 51 drives and controls the gradient magnetic field generation unit 20 and the RF pulse application unit 30 according to the following pulse sequence 300 (pulse application step), and inputs the data in the k-space of the target 1 via the reception unit 40. It is acquired (detection step) and stored in the storage unit 52 (in total, step S12).
  • Pulse Sequence 300 The pulse sequence 300 used in this embodiment is shown in FIG.
  • the pulse sequence 300 is the same as the pulse sequence of the gradient echo (GRE: Gradient Echo) method except for the position of TE (echo time).
  • GRE Gradient Echo
  • RF is a sequence of ⁇ ° pulses 311 which are excitation pulses
  • Gp1 is a first phase-encoded gradient magnetic field
  • Gp2 is a second phase-encoded gradient magnetic field
  • “Gr” is a frequency-encoded gradient.
  • Magnetic field (lead-out gradient magnetic field) indicates an MRI signal.
  • the first phase-encoded gradient magnetic field, the second phase-encoded gradient magnetic field, and the frequency-encoded gradient magnetic field are orthogonal to each other and are, for example, parallel to the X-axis, Y-axis, and Z-axis, respectively.
  • Signal acquisition time t a is the time width of selecting the data to be used for image reconstruction.
  • Signal acquisition time t a is equal to or application time of the frequency encoding gradient magnetic field 342, a short time is used.
  • ⁇ ° excitation of spin is performed by ⁇ ° pulse 311.
  • the flip angle ⁇ ° is 90 ° or less.
  • phase encoding and frequency encoding are performed while the free induction decay (FID) signal 351 is generated.
  • FID free induction decay
  • the first and second phase encoding gradient magnetic fields 321 and 331 are applied while sequentially changing the amplitude for each application of the ⁇ ° pulse 311 (application of a series of ⁇ ° pulses 311 if signal integration is performed). It is done by.
  • the first phase-encoded gradient magnetic field 321 is set to N1 steps (for example, 128 steps)
  • the second phase-encoded gradient magnetic field 331 is set to N2 steps (for example, 32 steps)
  • the number of repetitions (number of signal integrations) is N times.
  • N is 1 or more
  • a series of pulse sequences in which ⁇ ° pulses are applied N times for signal integration and the same phase encoding and frequency encoding are performed for each application is repeated N1 ⁇ N2 times. If the repetition time (TR) is counted as one measurement, the measurement is repeated N ⁇ N1 ⁇ N2 times.
  • the signal integration may be in the order of repeating the measurement of N1 ⁇ N2 N times.
  • a frequency-encoded gradient magnetic field 341 is applied to dephase (flyback) the macroscopic nuclear magnetization, and then a frequency-encoded gradient magnetic field 342 is applied to rephase (refocus) the spin. Then, the MRI signal 352 of the gradient gradient echo is generated. The signal strength becomes maximum after TE from ⁇ ° excitation.
  • the integrated value of the frequency-encoded gradient magnetic field 341 for dephase is the integrated value from the application of the frequency-encoded gradient magnetic field 342 to TE (the integrated value of the frequency-encoded gradient magnetic field 342 in FIG. 2). It is equal to the stippling area). Therefore, by changing the integral value of the frequency-encoded gradient magnetic field 341 for dephasé (for example, depending on the application period, intensity, and / or waveform) without changing the frequency-encoded gradient magnetic field 342, the TE generation time is generated. Can be adjusted. Conventionally, as shown in FIG.
  • TE frequency encoding gradient magnetic field 343 such that the center of the signal acquisition time t a frequency encode gradient magnetic field 342 is adjusted, in the present embodiment, as shown in FIG. 2 a, TE (i.e., echo peak), before the half from the application of the signal acquisition time t a frequency encoding gradient magnetic field 342, in particular, from the tenth of the start of the signal acquisition time t a up to one third
  • the frequency-encoded gradient magnetic field 341 is adjusted so that it is in between.
  • the start time and the signal acquisition starting time of the time t a the application of Figure 2 the frequency encoding 342 is in the same, intended time timing the current value of the frequency encoding 342 falls upstanding or stand up to the set value ing.
  • the MRI signal 352 thus obtained is digitized via the receiving unit 40.
  • Controller 51 over the MRI signal 352 is digitized for each repetition time to the full width of the signal acquisition time t a frequency encoding gradient magnetic field 342 M points (e.g., 128 points) to get the data of the storage unit 52 Remember in.
  • the control unit 51 corresponds to the same position of the object 1 among the data (e.g., first and second phase-encoding gradient magnetic field 321 and 331 amplitude and frequency encoding gradient magnetic field 342 signal acquisition time in t a of (The combination of the positions is the same) N signal strengths are integrated, the integrated signal strength at the position is calculated, and stored in the storage unit 52.
  • control unit 51 generates an image from the k-space data of the target 1 obtained as described above (for example, the k-space data of the target 1 consisting of N1 ⁇ N2 ⁇ M data).
  • Step S13 the data in the k-space is subjected to a three-dimensional discrete inverse Fourier transform to reconstruct the three-dimensional image of the object 1. Due to the recent development of information technology, MRI image reconstruction may be carried out by artificial intelligence AI or deep learning instead of inverse Fourier transform. These may be applied to the reconstruction of the three-dimensional image of the object 1.
  • the signal can be captured with priority given to the echo peak having rough image contour information.
  • the signal component of 23 Na a really fast signal component having a T2 attenuation time of 2 to 3 ms or less can be used for image generation. Therefore, according to the present embodiment, it is possible to suitably generate an MRI image even in an MRI targeting a low-sensitivity atom.
  • the partial echo method as shown in FIG. 5, although the TE and the measurement time can be shortened, there is a problem of mixing false image artifacts due to the configuration of the k space. Further, when the signal is collected by the GRE method, the partial echo method is difficult to apply because the phase variation occurs due to T2 * attenuation. In addition, the partial echo method could not be combined with other MRI measurement methods (eg, compressed sensing methods) due to principle problems.
  • present in the first half of the peak of the MRI signal is the signal acquisition time t a (in particular, between one-tenth of the signal acquisition time t a third of) as shown in FIG. 2, MRI since the high low-frequency component as compared with the signal intensity is high-frequency components in the second half of the attenuation is large signal acquisition time t a signal strength is present, while giving priority to image generation, a narrow and low-noise pixel bandwidth It has been realized. Since the homodyne reconstruction with the phase encoding removed is not performed, the occurrence of false image artifacts is reduced. Therefore, according to the present embodiment, an MRI image can be preferably generated as compared with the partial echo method. Further, the image generation processing method according to the present embodiment can be combined with various MRI measurement methods as shown in the following modified examples.
  • the GRE method is adopted, but a pre-RF pulse may be further laid. This makes it possible to obtain an image having contrast according to the type of pre-RF pulse.
  • a pre-RF pulse for each excitation pulse.
  • the pre-RF pulse may be laid for each excitation pulse, or for each of a plurality of excitation pulses (for example, when the signal is integrated N times). If so, it may be laid (before the first one of N excitation pulses).
  • a quantum pulse may be applied as a pre-RF pulse as shown in FIG.
  • a quantum pulse it is expected that a tissue-specific contrast can be obtained by the transition of spin energy.
  • the conventional 1 H-MRI because the relaxation time of several hundred ms and long from a few tens of ms, was possible the discrimination of using the differences and chemical shift excitation of relaxation time organization.
  • NMR nuclei having a short relaxation time for example, in the case of 23 Na having a short relaxation time of 20 ms or less
  • the transition of spin energy makes it possible to emphasize the tissue difference before the signal is attenuated.
  • the continuous 180 ° pulse is referred to as a pulse train (APCP (Alternating Polarity Carr Purcell)) in which 180 ° pulses of opposite polarity ( ⁇ X direction) are continuously applied from the second pulse, as shown in FIG. S.Watanabe and S.Sasaki.J.Jpn.Appl.Phys.Express Lett. (2003)) or a pulse train ((CPMG) in which 180 ° pulses (+ Y direction) of the same polarity are continuously applied. (Pulse train called Carr-Purcell-Meiboom-Gill) may be used.
  • APCP Alternating Polarity Carr Purcell
  • the NMR signal generated by the pre-RF pulse and the subsequent excitation pulse may be a free induction decay (FID) signal or a spin echo signal.
  • the NMR signal generated by the pre-RF pulse does not have position information added by phase encoding and frequency encoding before the excitation pulse is applied, and the pulse sequence according to the above-mentioned pulse sequence 300 or other modifications is provided. Therefore, after the excitation pulse is applied, the position information is added by phase encoding and frequency encoding.
  • Modification 2 In the above-described embodiment, the three-dimensional Fourier transform is performed, but the phase encoding in the Y direction is omitted, and instead, slice selection is performed along the Y direction, and the MRI image is obtained by the two-dimensional Fourier transform for each slice. It may be generated. Further, the reconstruction of the MRI image may be performed by artificial intelligence AI or deep learning instead of the inverse Fourier transform.
  • the presence or absence of the false image artifact can be confirmed by visually observing the completed MRI image, and the MRI image generated according to the above-described embodiment and the position of the echo peak are the same as in the conventional method for the same part of the same object 1.
  • a correlation coefficient e.g., ZNCC (Zero-mean normalized cross -correlation) by the obtained normalized cross-correlation coefficient
  • the correlation coefficient It can also be determined whether or not it exceeds a certain value (for example, 0.7 for the normalized cross-correlation coefficient obtained by ZNCC).
  • the position of the echo peak in step S12 of the image generation process is not visually confirmed as a false image artifact or the above-mentioned correlation. It is preferable to adjust the number so that it becomes a certain value or more. False images may be removed by artificial intelligence AI or deep learning.
  • Modification example 4 When the object 1 is a sample that is uniform in the thickness direction or a sample that is highly uniform in the thickness direction (for example, when the object 1 is a thin film material), frequency encoding is performed in the thickness direction (for example, the direction perpendicular to the thin film).
  • a two-dimensional MRI image of the cross section of the sample in the thickness direction is obtained by applying the first and second phase-encoded gradient magnetic fields in the direction perpendicular to the gradient magnetic direction and the thickness direction and perpendicular to each other (for example, the direction parallel to the thin film). It may be generated, and in this case, the echo peak position may be at the same time as the start of signal collection or before the start of signal collection.
  • the peak around the MR signal draws a very loose chevron, for the signal acquisition time t a
  • the importance of the echo peak position is relatively low.
  • the repetition time is preferably T2 relaxation time or less in order to suppress signal attenuation.
  • the repetition time is preferably 30 ms, 20 ms, 10 ms, or 6 ms or less.
  • the position of the echo peaks is between (T2 relaxation time to lapse T2 relaxation time which is a main component that can be observed from the application of the excitation pulse a plurality If it is composed of components, it preferably occurs between the application of the excitation pulse and the longest T2 relaxation time, the shortest T2 relaxation time, or the elapse of the T2 relaxation time between them), and in particular, the excitation pulse. It may occur within one-half, one-third, or one-tenth of the T2 relaxation time (or any of those T2 relaxation times if the T2 relaxation time consists of multiple components) from the application of. preferable. If the application of the pre-excitation pulse intentionally extends the signal lifetime of the short relaxation time component, refer to the apparently longer T2 relaxation time.
  • the NMR nucleus is arbitrary, and may be a nucleus having a spin quantum number of 3/2 or 23 Na.
  • Mode 7 Any other MRI technique can be combined with the above embodiments.
  • a compressed sensing method or a multi-quantum coherence method may be adopted.
  • the compressed sensing method does not apply to the partial echo method because it selects the phase encoding as Gaussian-random.
  • Modification 8 If the pulse sequence 300 described above or the pulse sequence according to the modification described above can be applied to the object 1, the configuration of the MRI apparatus 100 is arbitrary, and various configurations can be adopted.
  • the program PG that executes the image generation process is stored in the storage unit 52 in advance, but may be distributed and provided by a detachable recording medium. Further, the program PG may be downloaded from another device connected to the MRI apparatus 100. Further, the MRI apparatus 100 may execute each process according to the program PG by exchanging various data with other devices via a telecommunication network or the like.
  • RF coil 31 to obtain signals derived from two or more types of atoms (eg, 1 H-NMR signal and 23 Na-NMR signal), for example, to enable simultaneous imaging of two types of atoms.
  • a coil capable of transmitting and receiving two or more types of RF pulses having different frequencies corresponding to two or more types of atoms may be adopted.
  • such coils include a single transmit / receive coil tuned to the Lamore frequency of two or more atoms, such as a double tuned bird cage coil, a double tuned surface coil, a double tuned saddle coil, a double tuned butterfly.
  • a mold coil, a double tuning solenoid coil, or the like may be used, or two or more transmission / reception coils individually tuned to the Lamore frequency of two or more kinds of atoms may be used.
  • the RF pulse transmission coil is a single coil tuned to the Lamore frequency of two or more kinds of atoms.
  • a transmission coil of the above or two or more transmission coils individually tuned to the Lamore frequency of two or more types of atoms may be used, and the coil for receiving MRI signals is tuned to the Lamore frequency of two or more types of atoms.
  • a single receiving coil or two or more receiving coils individually tuned to the Lamore frequency of two or more atoms may be used.
  • the coil and the accompanying resonance circuit and RF receiving cable may be arranged.
  • the resonance circuit for one atom are the resonance circuit for the other atom (however, the part excluding the coil) and RF.
  • From a single coil or two coils with different inductances arranged in close proximity eg, overlapping or coaxially, arranged so that they do not overlap the receiving cable, in opposite directions, as shown in FIG. It is preferably arranged so as to extend.
  • Example 1 Comparison of sensitivity between 1 1 H-NMR signal and 23 Na-NMR signal
  • Example 2 Comparison of sensitivity between 1 1 H-NMR signal and 23 Na-NMR signal
  • a plastic test tube containing 2 ml of saline solution (0.9 w / v%) was placed in the coil using an NMR apparatus equipped with the above, and an excitation pulse was applied to the saline solution to measure FID signals.
  • a continuous sine wave with an intensity of -120 dBm to 0 dBm is input to the preamplifier as a pseudo signal from a separately prepared high-frequency transmitter so that the intensity of the NMR signal collected in advance is obtained.
  • the signal strength (dBm) of the 1 H and 23 Na NMR signals after the RF coil was measured, respectively.
  • the measurement results are shown in FIG.
  • the intensity of the 1 H-NMR signal derived from this sample was approximately 20,000 times that of the 23 Na-NMR signal derived from the same sample.
  • the 23 Na-NMR signal on the left side of FIG. 7 (TR ⁇ 50 ms) is depressed due to T1 saturation due to fast repeating TR, but 23 Na exists as a single atom and is also present with other atomic molecules. Since it is not coupled, the transfer of relaxation energy to the surroundings does not occur as frequently as 1 H (proton), so it is considered that what is occurring on the left side of Fig. 7 is not T1 weighted but the signal drop as a whole. Is reasonable. Therefore, it is considered that the 23 Na-NMR signal obtained by the pulse sequence of TR ⁇ 50 ms (for example, TR is about 20 ms) reflects the Na density distribution.
  • Example 2 T1 relaxation time and T2 relaxation time
  • the T1 relaxation time of various concentrations (0.9 w / v% to 26.4 w / v%) of saline solution (2 ml) measured by the saturation recovery method was 100 ms or less.
  • Most of the T2 relaxation times of various concentrations measured by fitting the attenuation curve with a 90-degree pulse were about 20 ms, and a very fast relaxation time component of about 2 to 3 ms was also observed.
  • Example 3 MRI image shooting with a mouse
  • An MRI image was taken with a mouse using a 23 Na-MRI apparatus provided with a holding portion suitable for holding the mouse and having the configuration shown in FIG.
  • the configuration of the MRI apparatus using both transmission and reception RF coils that can send obtained and excitation RF pulse NMR signals from 23 Na, except for performing the image generation process described above, the same as conventional 1 H-MRI device is there.
  • Japanese Patent Application Laid-Open No. 2015-145853 refer to Japanese Patent Application Laid-Open No. 2015-145853.
  • the pulse sequence using the three-dimensional gradient echo method for imaging a region of 420 [mu] m ⁇ 420 [mu] m, performs phase encoding and frequency encoding in the number of pixels 64 pixels ⁇ 64 pixels, repetition time 20 ms, the signal acquisition time t a was 5.12 ms, the number of integrations was 20, and the imaging time was 7 minutes.
  • the frequency-encoded gradient magnetic field for dephasé was adjusted so that the echo peak occurred within 2 ms from the start of application of the frequency-encoded gradient magnetic field for rephase.
  • the mice were C57BL / 6, and those subjected to renal ischemia-reperfusion surgery (surgery group) and those without surgery (control group) were used. Cross-sectional images of the vicinity of the kidney in the surgery group and the control group are shown in FIG.
  • Example 4 Relationship between repetition time and integrated signal value at the same measurement time in 23 Na-NMR signal measurement
  • the measurement time is 100 seconds, when the various changing repetition time, 23 Na-NMR signals and 1 H at various brine sample -The integrated signal value of the NMR signal was measured.
  • the result is shown in FIG.
  • the measurement time is TR ⁇ N.
  • the signal-to-noise ratio S / N ratio
  • S / N ratio the signal-to-noise ratio
  • the 1 H-NMR signal decreases at about -0.5th power of the measurement time, while noise (bottom graph in FIG. 9) also decreases. , It decreases by about -0.5th power of the measurement time. Therefore, the S / N ratio of 1 1 H-NMR signal to noise is substantially constant even if the measurement time changes. This means that even if the repetition time TR is reduced and the signal integration number N is earned, the S / N ratio does not improve if the measurement time is constant.
  • the 23 Na-NMR signal decreases in the measurement time of about -0.7 to the -0.9 power.
  • the multiplier of the exponential regression equation and the Na concentration have a negative correlation. Therefore, in advance, a sample containing various concentrations of Na (for example, saline solution having various concentrations) is used. On the other hand, the signal strength is measured by changing the repetition time variously with the same measurement time, the multiplier of the exponential regression equation for each sample is obtained, and the relational expression (for example, linear function) between the Na concentration and the multiplier is obtained. After that, in a sample with an unknown Na concentration, the signal strength is measured by variously changing the repetition time at the same measurement time, the multiplier of the exponential regression equation in the sample is obtained, and the multiplier is used as the relational expression. By applying to, the Na concentration in the sample can be measured. It is also considered that this concentration measurement method can be applied to nuclei other than Na (for example, nuclei having a spin quantum number of 3/2).
  • the 1 H / 23 Na-dual MRI apparatus is a 400 MHz super-electromagnetic magnet (manufactured by JASTEC, Narrow bore series, bore diameter 54 mm) and a measurement as shown in FIG. 10 arranged in the bore of this super-electromagnetic magnet. Including the stand.
  • Measurement table is a cylindrical shape with open one side as shown in FIG. 10 (a), from the open portion, fitting the bottom plate transmission and reception surface coil is mounted for 1 H / 23 Na measurements. On the surface of the bottom plate, as shown in FIG.

Abstract

A nuclear magnetic resonance imaging device (100) comprises: a magnetostatic coil (10); a holding unit (2); a pulse application unit (30); a reception unit (40); and an image generation unit (51b). The pulse application unit (30) applies a target with a pulse sequence of which echo peak appears before a half of a signal acquisition time from application of a frequency encoding gradient magnetic field for rephasing an NMR signal. The reception unit (40) detects an NMR signal over the entire range from the application of the frequency encoding gradient magnetic field for rephasing the NMR signal to the lapse of the signal acquisition time. The image generation unit (51b) generates an image from the entire NMR signal detected over the above-mentioned entire range.

Description

核磁気共鳴イメージング装置、核磁気共鳴イメージング方法、及びプログラムNuclear magnetic resonance imaging equipment, nuclear magnetic resonance imaging methods, and programs
 本発明は、核磁気共鳴イメージング装置、核磁気共鳴イメージング方法、及びプログラムに関する。 The present invention relates to a nuclear magnetic resonance imaging apparatus, a nuclear magnetic resonance imaging method, and a program.
 核磁気共鳴イメージング(MRI)とは、静磁場内の被写体に特定の勾配磁場を印加しつつ特定のRF(Radio Frequency)パルス(励起パルス)を照射し被写体内の特定原子を核磁気共鳴させることで受信コイルに生じた誘導電流を核磁気共鳴(NMR)信号として取得し、この信号から被写体の画像(例えば、二次元画像(即ち、断面画像)、三次元画像)を生成する方法である。MRIで測定される勾配磁場の印加などにより位置情報が付加されているNMR信号は特にMRI信号とも呼ばれる。また、NMR信号を取得するために特定の強度及びタイミングで印加されるRFパルス及び勾配磁場のセットはパルスシークエンスと呼ばれる。 Nuclear magnetic resonance imaging (MRI) is to irradiate a specific RF (Radio Frequency) pulse (excitation pulse) while applying a specific gradient magnetic field to a subject in a static magnetic field to cause nuclear magnetic resonance of a specific atom in the subject. In this method, the induced current generated in the receiving coil is acquired as a nuclear magnetic resonance (NMR) signal, and an image of the subject (for example, a two-dimensional image (that is, a cross-sectional image) or a three-dimensional image) is generated from this signal. An NMR signal to which position information is added by applying a gradient magnetic field measured by MRI is also particularly called an MRI signal. Also, the set of RF pulses and gradient magnetic fields applied at a particular intensity and timing to acquire an NMR signal is called a pulse sequence.
 前述の勾配磁場により、被写体の置かれている実空間と被写体の空間周波数空間(k空間)とが、フーリエ変換の関係で結びつけられており、前述のMRI信号は被写体のk空間の情報を反映している。そこで、MRIでは、MRI信号から被写体のk空間の情報を離散的に収集し、得られた離散的なデータに離散逆フーリエ変換を施すことで実空間での被写体の画像を再構成する。 The above-mentioned gradient magnetic field connects the real space in which the subject is placed and the spatial frequency space (k-space) of the subject by the relationship of Fourier transform, and the above-mentioned MRI signal reflects the information in the k-space of the subject. doing. Therefore, in MRI, information in the k-space of the subject is discretely collected from the MRI signal, and the obtained discrete data is subjected to a discrete inverse Fourier transform to reconstruct the image of the subject in the real space.
 MRI信号からのk空間のデータの収集法としては、三軸傾斜磁場(X軸、Y軸、Z軸)を三軸勾配磁場コイルによって制御することで、被写体のk空間のデカルト座標系の格子点上のデータを一列ずつ抽出する方法(ラインスキャン)、被写体のk空間の極座標系上のデータを原点を通る複数の放射状の直線又は螺旋状の曲線に沿って順番に抽出する方法(ラジアルスキャン/スパイラルスキャン)などが実用化されている。 As a method of collecting k-space data from the MRI signal, a triaxial gradient magnetic field (X-axis, Y-axis, Z-axis) is controlled by a triaxial gradient magnetic field coil to control a lattice of the Cartesian coordinate system of the subject in k-space. A method of extracting data on points one by one (line scan), and a method of sequentially extracting data on the polar coordinate system of the subject's k space along a plurality of radial straight lines or spiral curves passing through the origin (radial scan). / Spiral scan) etc. have been put into practical use.
 MRI信号には、設計されたパルスシークエンスによる勾配磁場の操作によって発生する凸状の信号強度の強い部分があり、これをエコーと呼ぶ。エコー及びその前後の信号変化が被写体の空間情報を含んでいる。勾配磁場の印加に起因するエコーは、勾配エコー(gradient echo)と呼ばれる。高周波磁場の連続印加(例えば、励起パルスの印加後の反転パルスの印加)に起因するエコーは、スピンエコー(spin echo)と呼ばれる。エコーの原因によらず、励起パルスの印加からエコーの発生までの時間は、エコー時間(TE)と呼ばれる。 The MRI signal has a convex part with strong signal strength generated by manipulating the gradient magnetic field by the designed pulse sequence, and this is called an echo. The echo and the signal changes before and after it include the spatial information of the subject. Echoes caused by the application of a gradient magnetic field are called gradient echoes. An echo caused by continuous application of a high-frequency magnetic field (for example, application of an inversion pulse after application of an excitation pulse) is called a spin echo. Regardless of the cause of the echo, the time from the application of the excitation pulse to the generation of the echo is called the echo time (TE).
 被写体内の標的のNMR原子核は、置かれている状況によって、分布、密度、及び緩和時間が異なるため、標的に適したMRI信号集積法(特に、パルスシークエンス)の研究開発が日進月歩で進められている。 Since the distribution, density, and relaxation time of the target NMR nuclei in the subject differ depending on the situation, research and development of MRI signal integration methods (particularly pulse sequences) suitable for the target are progressing day by day. There is.
 例えば、こうした方法のひとつとして、部分エコー(partial echo)法が知られている。部分エコー法では、勾配エコー(GRE)法、TEを短くして、TEから信号収集時間tの半分の時間が経過するまでMRI信号を取得しすることでk空間のおよそ半分に相当するデータを収集し、k空間のデータの残りの部分に適宜補正(例えば、0フィル(ぜろふぃる)、エルミート対称性に基づく複製による補完)をした後に、逆フーリエ変換を行うことで、MRI画像を生成する。GRE法において部分エコー法を適用する場合のパルスシークエンスを図5に示す。例えば、0フィルで補正を行う例が、特許文献1に開示されている。 For example, as one of these methods, the partial echo method is known. The partial echo method, gradient echo (GRE) method, to shorten the TE, the data corresponding to about half of k-space by obtains the MRI signal until the elapse of the time of half the signal acquisition time t a from the TE Is collected, and the rest of the data in k-space is appropriately corrected (for example, 0 fill (zero fill), complementation by duplication based on Elmeet symmetry), and then the inverse Fourier transform is performed to perform MRI. Generate an image. FIG. 5 shows a pulse sequence when the partial echo method is applied in the GRE method. For example, Patent Document 1 discloses an example of performing correction with 0 fill.
米国特許第6166545号明細書U.S. Pat. No. 6,166,545
 従来のMRIでは、生体などの被写体内に豊富に存在するH(プロトン)の在否に基づいて生体の断面画像を生成する。しかし、診断精度の向上や研究対象の拡大を狙い、他のNMR原子核を標的とするMRI装置の開発が望まれている。例えば、生体内のナトリウムを可視化し、特に脳や腎臓に関連する病状を早期に発見することなどを期待し、23Na-MRI装置の開発の試みが始まっている。 In conventional MRI, to generate a cross-sectional image of the subject based on the presence or absence of abundant in subjects such as bio 1 H (proton). However, with the aim of improving diagnostic accuracy and expanding research subjects, it is desired to develop an MRI apparatus that targets other NMR nuclei. For example, with the expectation that sodium in the living body will be visualized and pathological conditions related to the brain and kidneys will be detected at an early stage, attempts to develop a 23 Na-MRI apparatus have begun.
 しかし、23NaのNMR信号はH(プロトン)のNMR信号に比べて低感度であることが知られている。例えば、図7に示すように、生理食塩水(0.9%NaCl水溶液、2ml)を測定したところ、23NaのNMR信号はHのNMR信号の20000分の1程度であった。 However, it is known that the NMR signals of 23 Na is less sensitive than the NMR signal of 1 H (proton). For example, as shown in FIG. 7, when physiological saline (0.9% NaCl aqueous solution, 2 ml) was measured, the NMR signal of 23 Na was about 1/20000 of the NMR signal of 1 H.
 また、生体を含む多くの被写体でH以外のNMR原子核の存在量がHに比べて少ないため、画像の取得に必要な信号強度を有するMRI信号を取得することが困難であった。 Moreover, since the abundance of many NMR nuclei other than 1 H in the object containing the living body is smaller than the 1 H, it is difficult to obtain the MRI signal having a signal strength required to capture the image.
 H以外の原子を標的としたMRIで実用的な信号強度のMRI信号を得るためには、単純には、同一画像に対応するMRI信号を複数回取得し積算することで得られた積算信号から画像を生成することが考えられるが、23Naのように信号強度が低い場合、静磁場強度が高い磁石を選択してNMR信号強度を稼ぎ、さらには信号収集の繰り返し回数を大きく増やす必要があり、これでは患者が耐えられる測定時間を超えてしまうおそれがある。そのため、繰り返し回数を稼ぎつつ測定時間を許容限度に収めるために、一回のMRI信号の取得に掛かる繰り返し時間(TR)、特に、励起パルスの印加からMRI信号のエコーの発生までに掛かるエコー時間(TE)を極力短くする必要がある。 1 In order to obtain an MRI signal with a practical signal strength in an MRI targeting an atom other than H, the integrated signal obtained by simply acquiring and integrating the MRI signals corresponding to the same image multiple times. However, when the signal strength is low such as 23 Na, it is necessary to select a magnet with a high static magnetic field strength to increase the NMR signal strength and greatly increase the number of repetitions of signal collection. Yes, this can exceed the measurement time that the patient can tolerate. Therefore, in order to keep the measurement time within the permissible limit while increasing the number of repetitions, the repetition time (TR) required for acquiring one MRI signal, particularly the echo time required from the application of the excitation pulse to the generation of the echo of the MRI signal. It is necessary to make (TE) as short as possible.
 しかし、特許文献1のような部分エコー法では、半分の撮像データからk空間を構成しているため、偽像アーチファクトがしばしば混入する恐れがあった。特に、勾配エコー法によるMRI撮像の場合は、空間的な静磁場の不均一性などによって、エルミート対称性が不完全となり、偽像アーチファクトの問題が顕著であった。 However, in the partial echo method as in Patent Document 1, since the k-space is composed of half of the captured data, there is a risk that false image artifacts are often mixed. In particular, in the case of MRI imaging by the gradient echo method, the Hermitian symmetry becomes incomplete due to the inhomogeneity of the spatial static magnetic field and the like, and the problem of false image artifacts is remarkable.
 また、23Na-MRIの実用化のため、23NaのNMR信号におけるS/N比の一層の改善が望まれていた。23Naナトリウムはスピン量子数が3/2のNMR原子核である。また、H(プロトン)の場合にはHOの水素結合に起因して実行的に大きな分子や錯体となることが多いが、23Naは生体内でもほぼ単一のイオンとして存在していると考えられる。このため、23NaのT2緩和時間が数ms(ミリ秒)から約30msと短いものが混在している。この2点の特徴により、23Na-MRIの場合には、生体の水と脂質に含まれるH(プロトン)(スピン量子数1/2、おもなT2緩和時間は数十ms~数百ms)の撮像理論のうち画像コントラスト生成の方法論を単純に当てはめることが困難であった。 Further, in order to put 23 Na-MRI to practical use, further improvement of the S / N ratio in the NMR signal of 23 Na has been desired. 23 Na sodium is an NMR nucleus with a spin quantum number of 3/2. Moreover, in the case of 1 H (proton), it often becomes a large molecule or complex in practice due to the hydrogen bond of H 2 O, but 23 Na exists as almost a single ion in the living body. It is thought that there is. For this reason, T2 relaxation time of 23 Na is as short as several ms (milliseconds) to about 30 ms. Due to these two characteristics, in the case of 23 Na-MRI, 1 H (proton) (spin quantum number 1/2, main T2 relaxation time is several tens of ms to several hundreds) contained in the water and lipid of the living body. It was difficult to simply apply the methodology of image contrast generation in the imaging theory of ms).
 以上を鑑み、本発明は、好適にMRI画像を撮影できる核磁気共鳴イメージング装置、核磁気共鳴イメージング方法、及びプログラムを提供することを目的とする。 In view of the above, it is an object of the present invention to provide a nuclear magnetic resonance imaging apparatus, a nuclear magnetic resonance imaging method, and a program capable of suitably capturing an MRI image.
 本発明の第1の観点に係る核磁気共鳴イメージング装置は、
 静磁場を形成する静磁場形成部と、
 前記静磁場内に対象を保持する対象保持部と、
 前記静磁場内の前記対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加し、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加部と、
 異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加部により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出する検出部と、
 前記検出部が検出した前記NMR信号から画像を生成する画像生成部と、
 を備え、
 前記パルス印加部は、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加し、
 前記検出部は、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出し、
 前記画像生成部は、前記全域に渡って検出された前記NMR信号全体から前記画像を生成する、
 ことを特徴とする。
The nuclear magnetic resonance imaging apparatus according to the first aspect of the present invention is
A static magnetic field forming part that forms a static magnetic field,
An object holding unit that holds an object in the static magnetic field,
A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to the object in the static magnetic field, and an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is generated. A pulse application unit that dephases the NMR signal and then rephases it by applying
A detection unit that detects each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitudes while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal. ,
An image generation unit that generates an image from the NMR signal detected by the detection unit,
With
The pulse application unit applies the pulse sequence to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
The detection unit detects the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
The image generation unit generates the image from the entire NMR signal detected over the entire area.
It is characterized by that.
 本発明の第2の観点に係る核磁気共鳴イメージング方法は、
 静磁場内の対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加し、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加工程と、
 異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加工程により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出する検出工程と、
 前記検出工程で検出した前記NMR信号から画像を生成する画像生成工程と、
 を備え、
 前記パルス印加工程では、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加し、
 前記検出工程では、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出し、
 前記画像生成工程では、前記全域に渡って検出された前記NMR信号全体から前記画像を生成する、
 ことを特徴とする。
The nuclear magnetic resonance imaging method according to the second aspect of the present invention is
A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to an object in a static magnetic field, an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is applied. A pulse application step in which the NMR signal is dephased and then rephased by
A detection step of detecting each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field having different amplitudes while the NMR signal is being rephased by applying the frequency-encoded gradient magnetic field by the pulse application step. ,
An image generation step of generating an image from the NMR signal detected in the detection step, and
With
In the pulse application step, the pulse sequence is applied to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
In the detection step, the NMR signal is detected over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
In the image generation step, the image is generated from the entire NMR signal detected over the entire area.
It is characterized by that.
 本発明の第3の観点に係るプログラムは、
 コンピュータを、
 パルス印加部に、静磁場内の対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加させ、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加手段であって、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加させるパルス印加手段、
 検出部に、異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加部により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出させる検出手段であって、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出させる検出手段、
 画像生成部に、前記検出部で検出した前記NMR信号から画像を生成させる画像生成手段であって、前記全域に渡って検出された前記NMR信号全体から前記画像を生成させる、画像生成手段、
 として機能させる。
The program according to the third aspect of the present invention
Computer,
A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to a target in a static magnetic field to a pulse application unit, and an NMR signal is generated from the target by applying the excitation pulse to generate an NMR signal at the frequency. A pulse application means that dephases the NMR signal by applying an encode gradient magnetic field and then rephases the NMR signal, and echo peaks before half of the signal acquisition time from the application of the frequency encode gradient magnetic field for rephase the NMR signal. A pulse application means for applying the pulse sequence to the target.
Each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitude is detected in the detection unit while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal. A detection means for detecting the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase the NMR signal to the elapse of the signal acquisition time.
An image generation means for causing an image generation unit to generate an image from the NMR signal detected by the detection unit, and for generating the image from the entire NMR signal detected over the entire area.
To function as.
 本発明によれば、好適にMRI画像を撮影できる。 According to the present invention, an MRI image can be preferably taken.
本発明の一実施形態に係るMRI装置の構成を示すブロック図である。It is a block diagram which shows the structure of the MRI apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るパルスシークエンスを示す模式図である。It is a schematic diagram which shows the pulse sequence which concerns on one Embodiment of this invention. 本発明の一実施形態に係る画像生成処理のフローチャートである。It is a flowchart of image generation processing which concerns on one Embodiment of this invention. 従来のGRE法のパルスシークエンスを示す模式図である。It is a schematic diagram which shows the pulse sequence of the conventional GRE method. 部分エコー法のパルスシークエンスを示す模式図である。It is a schematic diagram which shows the pulse sequence of a partial echo method. 量子パルスを示す模式図である。It is a schematic diagram which shows the quantum pulse. 食塩水のH-NMR信号と23Na-NMR信号との強度を、繰り返し時間に対して示すグラフである。It is a graph which shows the intensity of 1 H-NMR signal of saline solution and 23 Na-NMR signal with respect to the repetition time. 23Na-MRIによるマウスの腎臓付近の横断面画像である。(a)は手術群、(b)は対照群の横断面画像を示す。 23 It is a cross-sectional image of the vicinity of the kidney of a mouse by Na-MRI. (A) shows a cross-sectional image of the surgery group, and (b) shows a cross-sectional image of the control group. 同一測定時間で測定した食塩水のH-NMR信号と23Na-NMR信号との強度を、繰り返し時間に対して示すグラフである。It is a graph which shows the intensity of 1 H-NMR signal and 23 Na-NMR signal of the saline solution measured at the same measurement time with respect to the repetition time. H/23Na-デュアルMRI装置の測定台の写真である。(a)は、測定台を上から撮った写真、(b)は底板を測定台から取り外し裏側から撮った写真である。It is a photograph of the measuring table of the 1 H / 23 Na-dual MRI apparatus. (A) is a photograph of the measuring table taken from above, and (b) is a photograph of the bottom plate removed from the measuring table and taken from the back side.
 本発明の一実施形態について図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.
(MRI装置100の構成)
 図1に示すように、本発明の一実施形態に係るMRI装置100は、静磁場コイル10と、勾配磁場発生部20と、RFパルス印加部30と、受信部40と、制御装置50と、表示部60と、操作部70と、を備える。
(Configuration of MRI apparatus 100)
As shown in FIG. 1, the MRI apparatus 100 according to the embodiment of the present invention includes a static magnetic field coil 10, a gradient magnetic field generating unit 20, an RF pulse applying unit 30, a receiving unit 40, and a control device 50. A display unit 60 and an operation unit 70 are provided.
 静磁場コイル10と、勾配磁場発生部20が有する勾配磁場コイル21と、RFパルス印加部30が有するRF(Radio Frequency)コイル31とは、例えば、同軸(Z軸)を中心に配置されるとともに、図示しない筐体内に設けられている。 The static magnetic field coil 10, the gradient magnetic field coil 21 included in the gradient magnetic field generation unit 20, and the RF (Radio Frequency) coil 31 included in the RF pulse application unit 30 are arranged around the coaxial (Z axis), for example. , It is provided in a housing (not shown).
 撮影対象である対象1は、保持部2により筐体内のボア3(検査空間)内に保持される。例えば、対象1がヒトであれば、保持部2は寝台であってもよい。保持部2は、例えば、ボア3内で撮影部位に応じて対象1を移動させる(例えば、水平移動、垂直移動、又は回転移動させる)、又は、ボア3外からボア3内に対象1を移動させる搬送手段を備えてもよい。また、対象1は、全体ではなく一部でもよく、例えば、ヒトの全身のみならず、その一部(例えば、頭部又は腹部など)でもよい。MRI装置100の形状、特に、ボア3周辺の構造、例えば、勾配磁場コイル21、RF(Radio Frequency)コイル31は、対象1の形状に最適化されていることが好ましい。 The object 1 to be photographed is held in the bore 3 (inspection space) in the housing by the holding unit 2. For example, if the subject 1 is a human, the holding unit 2 may be a sleeper. The holding unit 2 moves, for example, the object 1 in the bore 3 according to the imaging site (for example, horizontally moves, vertically moves, or rotates), or moves the object 1 from outside the bore 3 into the bore 3. It may be provided with a transport means for causing. Further, the subject 1 may be a part instead of the whole, and may be not only the whole body of a human being but also a part thereof (for example, the head or the abdomen). It is preferable that the shape of the MRI apparatus 100, particularly the structure around the bore 3, for example, the gradient magnetic field coil 21 and the RF (Radio Frequency) coil 31 is optimized for the shape of the object 1.
 静磁場コイル10は、ボア3内に数ppmレベルでの均一な静磁場(例えば、1.5テスラから21テスラ)を形成する。例えば、静磁場コイル10は、静磁場コイル10の中心軸又は磁束の中心軸がボア3内を(特に、ボア3の中心軸を)通るように形成されてもよい。形成される静磁場は、概ねZ方向に平行な水平磁場である。静磁場コイル10は、例えば、超電導コイルや常電導コイルから構成され、図示しない静磁場コイル駆動部を介して、制御装置50の制御の下で駆動される。なお、静磁場コイル10は、制御装置50と独立した制御系統によって駆動制御されてもよい。また、当該静磁場を発生させる構成としては、超電導コイルや常電導コイルに限られず、例えば、永久磁石(例えば、1テスラ以下)を用いてもよい。静磁場コイル10は、静磁場均一度を補正するためのシムコイル群(図示せず)を有してもよく、こうしたシムコイル群によって静磁場をさらに均一にすることができる。なお、均一な静磁場を形成できるのであれば、静磁場コイル10の代わりに、任意の静磁場形成部を採用できる。 The static magnetic field coil 10 forms a uniform static magnetic field (for example, 1.5 tesla to 21 tesla) at a level of several ppm in the bore 3. For example, the static magnetic field coil 10 may be formed so that the central axis of the static magnetic field coil 10 or the central axis of the magnetic flux passes through the bore 3 (particularly, the central axis of the bore 3). The static magnetic field formed is a horizontal magnetic field substantially parallel to the Z direction. The static magnetic field coil 10 is composed of, for example, a superconducting coil or a normal conducting coil, and is driven under the control of the control device 50 via a static magnetic field coil driving unit (not shown). The static magnetic field coil 10 may be driven and controlled by a control system independent of the control device 50. Further, the configuration for generating the static magnetic field is not limited to the superconducting coil and the normal conducting coil, and for example, a permanent magnet (for example, 1 tesla or less) may be used. The static magnetic field coil 10 may have a shim coil group (not shown) for correcting the static magnetic field uniformity, and the static magnetic field can be further made uniform by such a shim coil group. If a uniform static magnetic field can be formed, an arbitrary static magnetic field forming portion can be adopted instead of the static magnetic field coil 10.
 勾配磁場発生部20は、ボア3内に画像化に必要な独立した3軸の勾配磁場を発生させるものであり、勾配磁場コイル21と、勾配磁場コイル21を駆動する勾配磁場コイル駆動部22と、を有する。 The gradient magnetic field generating unit 20 generates an independent three-axis gradient magnetic field necessary for imaging in the bore 3, and includes a gradient magnetic field coil 21 and a gradient magnetic field coil driving unit 22 for driving the gradient magnetic field coil 21. , Have.
 勾配磁場コイル21は、互いに直交する3軸方向において、静磁場コイル10によって形成された静磁場強度に勾配を持たせる勾配磁場を発生させる。このため、勾配磁場コイル21は、3系統のコイルを有する。互いに直交する3軸方向の勾配磁場は、それぞれ、撮像に用いられるパルスシークエンスに応じて、例えば、スライス軸方向のスライス勾配磁場、位相軸方向の位相エンコード勾配磁場、又は周波数軸方向の周波数エンコード勾配磁場として使用される。スライス勾配磁場は、スライス選択用の勾配磁場である。位相エンコード勾配磁場及び周波数エンコード勾配磁場は、共鳴元素の空間分布を測定するための勾配磁場である。なお、一方向の勾配磁場が同じパルスシークエンス内で2個以上の役割を担当する場合もある。 The gradient magnetic field coil 21 generates a gradient magnetic field that gives a gradient to the strength of the static magnetic field formed by the static magnetic field coil 10 in three axial directions orthogonal to each other. Therefore, the gradient magnetic field coil 21 has three systems of coils. The gradient magnetic fields in the three axes orthogonal to each other are, for example, a slice gradient magnetic field in the slice axis direction, a phase encode gradient magnetic field in the phase axis direction, or a frequency encode gradient in the frequency axis direction, depending on the pulse sequence used for imaging. Used as a magnetic field. The slice gradient magnetic field is a gradient magnetic field for slice selection. The phase-encoded gradient magnetic field and the frequency-encoded gradient magnetic field are gradient magnetic fields for measuring the spatial distribution of resonant elements. In some cases, the gradient magnetic field in one direction plays two or more roles in the same pulse sequence.
 勾配磁場コイル駆動部22は、制御装置50の制御の下で、勾配磁場コイル21に駆動信号を供給して勾配磁場を発生させる。勾配磁場コイル駆動部22は、勾配磁場コイル21が有する3系統のコイルに対応して、図示しない3系統の駆動回路を有する。 The gradient magnetic field coil drive unit 22 supplies a drive signal to the gradient magnetic field coil 21 to generate a gradient magnetic field under the control of the control device 50. The gradient magnetic field coil drive unit 22 has three systems of drive circuits (not shown) corresponding to the three systems of coils included in the gradient magnetic field coil 21.
 なお、図1では、紙面左右方向をX軸方向、紙面上下方向をY軸方向、紙面法線方向をZ軸方向とし、上述の勾配磁場の勾配軸がこれらX、Y、Z軸に平行に印加されるものとして描いているが、3つの勾配磁場の勾配軸(例えば、スライス軸、位相軸、周波数軸)は、互いに直交性を保っていれば、上述のX、Y、Z軸に限定されず、これらの一部又は全てと一致しなくともよい。 In FIG. 1, the left-right direction of the paper surface is the X-axis direction, the vertical direction of the paper surface is the Y-axis direction, and the normal direction of the paper surface is the Z-axis direction, and the gradient axes of the above-mentioned gradient magnetic field are parallel to these X, Y, and Z axes. Although drawn as being applied, the gradient axes of the three gradient magnetic fields (for example, the slice axis, the phase axis, and the frequency axis) are limited to the above-mentioned X, Y, and Z axes as long as they are orthogonal to each other. It does not have to match some or all of these.
 RFパルス印加部30は、核磁気共鳴を発生させるためのRFパルスを対象1に印加するためのものであり、RFコイル31と、RFコイル31を駆動するRFコイル駆動部32と、を有する。 The RF pulse application unit 30 is for applying an RF pulse for generating nuclear magnetic resonance to the object 1, and has an RF coil 31 and an RF coil drive unit 32 for driving the RF coil 31.
 RFコイル31は、対象1内の標的としているNMR原子核の核スピンを励起するための高周波磁場を静磁場空間に形成する。このように高周波磁場を形成することをRFパルスの印加又は送信とも言う。RFコイル31は、RFパルスを送信する機能とともに、励起された核スピンによって生じる電磁波である核磁気共鳴(NMR:Nuclear Magnetic Resonance)信号を受信する機能も有する。なお、MRIで測定される勾配磁場の印加などにより位置情報が付加されたNMR信号のことをMRI信号と言う。なお、RFコイル31の代わりに、RFパルス送信用コイルと、MRI信号受信用コイルとを別々に構成することもできる。 The RF coil 31 forms a high-frequency magnetic field in the static magnetic field space for exciting the nuclear spins of the target NMR nucleus in the target 1. Forming a high-frequency magnetic field in this way is also referred to as application or transmission of RF pulses. The RF coil 31 has a function of transmitting an RF pulse and a function of receiving a nuclear magnetic resonance (NMR) signal which is an electromagnetic wave generated by an excited nuclear spin. An NMR signal to which position information is added by applying a gradient magnetic field measured by MRI is called an MRI signal. Instead of the RF coil 31, the RF pulse transmission coil and the MRI signal reception coil may be separately configured.
 また、RFコイル31又はRFパルス送信用コイルは大きいことが,MRI信号受信用コイルは小さいことが望ましく、必要最小限の大きさであることが望ましい。RFコイル31又はRFパルス送信用コイルは、小さいほど、励起パワーを小さく抑える(繰り返し回数を増やして比較的短時間で連続して印加される場合などのRFパルスの比吸収率(SAR:Specific Absorption Rate)を下げる)ことができる。RFコイル31又はRFパルス受信用コイルは、小さいほど、不要な部分(例えば、対象1において撮像しない部位)からのMRI信号を受け取らないようにすることができる。特に、繰り返し時間とエコー時間を短くできるように、これらの受信コイルの受信領域を狭くして、選択励起パルスを不要にすることが望ましい。 Further, it is desirable that the RF coil 31 or the RF pulse transmission coil is large, and the MRI signal reception coil is small, and it is desirable that the size is the minimum necessary. The smaller the RF coil 31 or the RF pulse transmission coil, the smaller the excitation power (SAR: Specific Absorption), such as when the number of repetitions is increased and the coil is continuously applied in a relatively short time. Rate) can be lowered). The smaller the RF coil 31 or the RF pulse receiving coil is, the more it is possible to prevent receiving an MRI signal from an unnecessary portion (for example, a portion that is not imaged in the object 1). In particular, it is desirable to narrow the receiving region of these receiving coils to eliminate the need for selective excitation pulses so that the repetition time and echo time can be shortened.
 RFコイル駆動部32は、制御装置50の制御の下で、RFコイル31に駆動信号を供給してRFコイル31を駆動する。具体的には、RFコイル駆動部32は、標的の原子の種類及び磁場強度で定まるラーモア周波数に対応するRFパルスを励起パルスとしてRFコイル31に発生させる。励起パルスは、ハードパルス、ガウス型パルス、又は断熱(adiabatic型)パルスであってもよいが、特に、エコー時間(TE)を短くできるのでハードパルスを採用することが望ましい。また、いわゆるT1画像コントラストを生成するために核磁化を反転させる180°パルス(通称、Inversion Recoveryパルス)を前置してさらに待ち時間としてIR時間の数msを配置してもよい。このことで特定のT1時間を持つ核磁化の信号を削減することができる(図示せず)。 The RF coil drive unit 32 supplies a drive signal to the RF coil 31 to drive the RF coil 31 under the control of the control device 50. Specifically, the RF coil driving unit 32 generates an RF pulse corresponding to the Larmor frequency determined by the type of target atom and the magnetic field strength in the RF coil 31 as an excitation pulse. The excitation pulse may be a hard pulse, a Gaussian pulse, or an adiabatic pulse, but it is particularly desirable to employ a hard pulse because the echo time (TE) can be shortened. Further, in order to generate so-called T1 image contrast, a 180 ° pulse (commonly known as an Inversion Recovery pulse) that inverts the nuclear magnetization may be preceded, and a few ms of IR time may be arranged as a waiting time. This makes it possible to reduce the signal of nuclear magnetization having a specific T1 time (not shown).
 受信部(検出部)40は、RFコイル31に接続され、RFコイル31が受信したMRI信号を検出する。受信部40は、検出したMRI信号をデジタル変換して制御装置50へと送信する。画像の再構成に必要なMRI信号の外側にある不要な信号は、受信部40又は制御装置50において、アナログ式又はデジタル式の周波数フィルタで除去されることが望ましい。例えば、アナログ式の周波数フィルタとして、急峻なバンドパスフィルタが用いられてもよい。 The receiving unit (detecting unit) 40 is connected to the RF coil 31 and detects the MRI signal received by the RF coil 31. The receiving unit 40 digitally converts the detected MRI signal and transmits it to the control device 50. It is desirable that unnecessary signals outside the MRI signal necessary for image reconstruction are removed by an analog or digital frequency filter in the receiving unit 40 or the control device 50. For example, a steep bandpass filter may be used as the analog frequency filter.
 制御装置50は、制御部51と、記憶部52と、を備え、例えば、MRI装置100の全体動作を制御するコンピュータや、RFコイル駆動部32や勾配磁場コイル駆動部22をパルスシークエンスで駆動するシーケンサーから構成される。 The control device 50 includes a control unit 51 and a storage unit 52, and for example, drives a computer that controls the overall operation of the MRI device 100, an RF coil drive unit 32, and a gradient coil drive unit 22 by a pulse sequence. It consists of a sequencer.
 制御部51は、CPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等から構成され、記憶部52に格納されている動作プログラムを実行して、MRI装置100の各部の動作を制御する。 The control unit 51 is composed of a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), etc., and executes an operation program stored in the storage unit 52 to execute an MRI apparatus. Control the operation of each part of 100.
 記憶部52は、ROM(Read Only Memory)やRAM(Random Access Memory)等から構成され、必要に応じてCPUを保持し、各種の動作プログラム(後述の画像生成処理を実行するためのプログラムPGを含む)のデータ、後述のテーブルデータなどが予め記憶されている。記憶部52のRAMは、各種演算結果を示すデータや、判別結果を示すデータなどを一時的に記憶し、演算する。記憶部52をインターネット上に配置することもできる。 The storage unit 52 is composed of a ROM (Read Only Memory), a RAM (Random Access Memory), etc., holds a CPU as needed, and provides various operation programs (program PG for executing image generation processing described later). (Including) data, table data described later, etc. are stored in advance. The RAM of the storage unit 52 temporarily stores data indicating various calculation results, data indicating discrimination results, and the like, and performs calculations. The storage unit 52 can also be arranged on the Internet.
 制御部51は、機能部として、パルス制御部51aと、画像生成部51bとを備える。 The control unit 51 includes a pulse control unit 51a and an image generation unit 51b as functional units.
 パルス制御部51aは、RFパルス、位相エンコード勾配磁場Gp1、Gp2、及び周波数エンコード勾配磁場Grのパルスシークエンスを示す後述のパルスシークエンス300のデータに基づいて、勾配磁場発生部20及びRFパルス印加部30の駆動制御を行う。パルスシークエンス300のデータは、予め記憶部52に記憶されていてもよいし、後述の操作部70を介してのユーザ操作により入力や再設定が可能であってもよい。 The pulse control unit 51a includes the gradient magnetic field generation unit 20 and the RF pulse application unit 30 based on the data of the pulse sequence 300 described later showing the pulse sequences of the RF pulse, the phase-encoded gradient magnetic fields Gp1 and Gp2, and the frequency-encoded gradient magnetic field Gr. Drive control of. The data of the pulse sequence 300 may be stored in the storage unit 52 in advance, or may be input or reset by a user operation via the operation unit 70 described later.
 画像生成部51bは、受信部40が収集したデジタル変換後のMR信号のデータを記憶部52に記憶する。当該データは、位相エンコード勾配磁場Gp1、Gp2及び周波数エンコード勾配磁場Grの勾配により、3次元フーリエ空間(k空間)を構成している。画像生成部51bは、このk空間のデータを三次元逆フーリエ変換して対象1の三次元画像を生成する。 The image generation unit 51b stores the digitally converted MR signal data collected by the reception unit 40 in the storage unit 52. The data constitutes a three-dimensional Fourier space (k space) by the gradients of the phase-encoded gradient magnetic fields Gp1 and Gp2 and the frequency-encoded gradient magnetic field Gr. The image generation unit 51b generates a three-dimensional image of the target 1 by performing a three-dimensional inverse Fourier transform on the data in the k-space.
 表示部60は、k空間をスキャンしている最中のエコーピーク位置を確認できるMRI信号の強度を経時的に示した波形、画像生成部51bが生成したMRI画像、及びその他の各種の情報を表示し、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro Luminescent Display)等から構成される。なお、MRI装置100を遠隔作業可能に構成する場合、表示部60及び後述する操作部70としてパーソナルコンピュータ(例えば、ノートパソコンなど)又はその他の携帯電子端末を用いてもよい。 The display unit 60 displays a waveform showing the intensity of the MRI signal over time that can confirm the echo peak position while scanning the k space, the MRI image generated by the image generation unit 51b, and various other information. The display is composed of, for example, a liquid crystal display (LCD: Liquid Crystal Display), an organic EL display (OELD: Organic Electro Luminescent Display), and the like. When the MRI apparatus 100 is configured to enable remote work, a personal computer (for example, a notebook computer) or another portable electronic terminal may be used as the display unit 60 and the operation unit 70 described later.
 操作部70は、ユーザによる操作を受け付け、受け付けた操作に応じた操作信号を制御装置50に供給する。操作部70は、例えば、ポインティングデバイスを備えたキーボード、マウスや、表示部60と一体のタッチパネル等で構成される。例えば、MRI装置100は、ユーザが、操作部70からの操作によって、パルスシークエンス300のデータの入力などを行うことができるように構成される。 The operation unit 70 receives an operation by the user and supplies an operation signal corresponding to the received operation to the control device 50. The operation unit 70 is composed of, for example, a keyboard and a mouse provided with a pointing device, a touch panel integrated with the display unit 60, and the like. For example, the MRI apparatus 100 is configured so that the user can input data of the pulse sequence 300 or the like by an operation from the operation unit 70.
(画像生成処理)
 画像生成処理について、図3を参照しつつ説明する。画像生成処理は、例えば、ユーザによる操作部70から開始操作に応じて、制御部51によって実行される。なお、画像生成処理の開始前には、保持部2に載せられた対象1は、ボア3内にセッティングされているものとする。
(Image generation processing)
The image generation process will be described with reference to FIG. The image generation process is executed by, for example, the control unit 51 in response to a start operation from the operation unit 70 by the user. Before the start of the image generation process, it is assumed that the target 1 mounted on the holding unit 2 is set in the bore 3.
 画像生成処理を開始すると、まず、制御部51は、図示しない静磁場コイル駆動部を介して、静磁場コイル10を駆動し、ボア3内に均一な静磁場を形成する(ステップS11)。なお、画像生成処理の前に予めボア3内に静磁場を形成しておいてもよい。静磁場の均一度は、対象1の組成や形状の影響を受ける。そこで、静磁場コイル10に静磁場均一度を補正するためのシムコイル群(図示せず)を設け、静磁場をさらに均一にすることとしてもよい。 When the image generation process is started, first, the control unit 51 drives the static magnetic field coil 10 via a static magnetic field coil drive unit (not shown) to form a uniform static magnetic field in the bore 3 (step S11). A static magnetic field may be formed in the bore 3 in advance before the image generation process. The uniformity of the static magnetic field is affected by the composition and shape of subject 1. Therefore, the static magnetic field coil 10 may be provided with a shim coil group (not shown) for correcting the uniformity of the static magnetic field to further make the static magnetic field more uniform.
 次に、制御部51は、以下のパルスシークエンス300に従って、勾配磁場発生部20及びRFパルス印加部30を駆動制御し(パルス印加工程)、受信部40を介して対象1のk空間のデータを取得し(検出工程)、記憶部52に記憶する(全体で、ステップS12)。 Next, the control unit 51 drives and controls the gradient magnetic field generation unit 20 and the RF pulse application unit 30 according to the following pulse sequence 300 (pulse application step), and inputs the data in the k-space of the target 1 via the reception unit 40. It is acquired (detection step) and stored in the storage unit 52 (in total, step S12).
(パルスシークエンス300)
 本実施形態で用いるパルスシークエンス300を図2に示す。パルスシークエンス300は、TE(エコー時間)の位置を除けば、勾配エコー(GRE:Gradient Echo)法のパルスシークエンスと同様である。図2において、「RF」は励起パルスであるα°パルス311のシークエンス、「Gp1」は第1の位相エンコード勾配磁場、「Gp2」は第2の位相エンコード勾配磁場、「Gr」は周波数エンコード勾配磁場(リードアウト勾配磁場)、「S」はMRI信号を示す。第1の位相エンコード勾配磁場、第2の位相エンコード勾配磁場、及び周波数エンコード勾配磁場は、互いに直交しており、例えば、それぞれ、X軸、Y軸、及びZ軸に平行である。信号収集時間tは、画像再構成に使用するデータを選択する時間幅である。信号収集時間tは、周波数エンコード勾配磁場342の印加時間と同じか、短い時間が使用される。
(Pulse Sequence 300)
The pulse sequence 300 used in this embodiment is shown in FIG. The pulse sequence 300 is the same as the pulse sequence of the gradient echo (GRE: Gradient Echo) method except for the position of TE (echo time). In FIG. 2, “RF” is a sequence of α ° pulses 311 which are excitation pulses, “Gp1” is a first phase-encoded gradient magnetic field, “Gp2” is a second phase-encoded gradient magnetic field, and “Gr” is a frequency-encoded gradient. Magnetic field (lead-out gradient magnetic field), "S" indicates an MRI signal. The first phase-encoded gradient magnetic field, the second phase-encoded gradient magnetic field, and the frequency-encoded gradient magnetic field are orthogonal to each other and are, for example, parallel to the X-axis, Y-axis, and Z-axis, respectively. Signal acquisition time t a is the time width of selecting the data to be used for image reconstruction. Signal acquisition time t a is equal to or application time of the frequency encoding gradient magnetic field 342, a short time is used.
 まず、α°パルス311により、スピンのα°励起が行われる。フリップアングルα°は90°以下である。 First, α ° excitation of spin is performed by α ° pulse 311. The flip angle α ° is 90 ° or less.
 α°励起後、自由誘導減衰(FID:free induction decay)信号351が発生している間に、位相エンコード及び周波数エンコードが行われる。 After α ° excitation, phase encoding and frequency encoding are performed while the free induction decay (FID) signal 351 is generated.
 位相エンコードは、α°パルス311の印加(信号積算を行うなら一連のα°パルス311の印加)毎に順次に振幅を変動させつつ第1及び第2の位相エンコード勾配磁場321及び331を印加することにより行われる。例えば、第1の位相エンコード勾配磁場321をN1段階(例えば、128段階)とし、第2の位相エンコード勾配磁場331をN2段階(例えば、32段階)とし、繰り返し回数(信号積算回数)をN回(Nは1以上)とする場合、α°パルスを信号積算のためにN回印加し、各印加毎に同じ位相エンコード及び周波数エンコードを行うという一連のパルスシークエンスをN1×N2回繰り返すこととなり、繰り返し時間(TR)1回で1回の測定と数えれば、測定をN×N1×N2回繰り返すこととなる。信号積算はN1×N2の計測をN回繰り返す順序でもよい。 In the phase encoding, the first and second phase encoding gradient magnetic fields 321 and 331 are applied while sequentially changing the amplitude for each application of the α ° pulse 311 (application of a series of α ° pulses 311 if signal integration is performed). It is done by. For example, the first phase-encoded gradient magnetic field 321 is set to N1 steps (for example, 128 steps), the second phase-encoded gradient magnetic field 331 is set to N2 steps (for example, 32 steps), and the number of repetitions (number of signal integrations) is N times. When (N is 1 or more), a series of pulse sequences in which α ° pulses are applied N times for signal integration and the same phase encoding and frequency encoding are performed for each application is repeated N1 × N2 times. If the repetition time (TR) is counted as one measurement, the measurement is repeated N × N1 × N2 times. The signal integration may be in the order of repeating the measurement of N1 × N2 N times.
 それぞれの位相エンコードに並行して、周波数エンコード勾配磁場341の印加により、巨視的な核磁化をディフェーズ(フライバック)し、その後、周波数エンコード勾配磁場342の印加により、スピンをリフェーズ(リフォーカス)して、グラディエント勾配エコーのMRI信号352を発生させる。α°励起からTE後の時点で信号強度が最大となる。 In parallel with each phase encoding, a frequency-encoded gradient magnetic field 341 is applied to dephase (flyback) the macroscopic nuclear magnetization, and then a frequency-encoded gradient magnetic field 342 is applied to rephase (refocus) the spin. Then, the MRI signal 352 of the gradient gradient echo is generated. The signal strength becomes maximum after TE from α ° excitation.
 ディフェーズ用の周波数エンコード勾配磁場341の積分値(図2の周波数エンコード勾配磁場341の点描面積)は、周波数エンコード勾配磁場342の印加からTEまでの積分値(図2の周波数エンコード勾配磁場342の点描面積)と等しくなる。このため、周波数エンコード勾配磁場342を変更せずに、ディフェーズ用の周波数エンコード勾配磁場341の積分値を(例えば、印加期間、強度、及び/又は波形により)変更することで、TEの発生時期を調節できる。従来は、図4に示すように、TEが周波数エンコード勾配磁場342の信号収集時間tの中央にくるように周波数エンコード勾配磁場343は調節されるが、本実施形態では、図2に示すように、TE(即ち、エコーピーク)が、周波数エンコード勾配磁場342の印加から信号取得時間tの半分より前に、特に、信号収集時間tの開始の十分の一から三分の一までの間にくるように、周波数エンコード勾配磁場341は調節される。図2では周波数エンコード342の印加の開始時間と信号収集時間tの開始時間は同一になっているが、周波数エンコード342の電流値が設定値にまで立ち上がったあるいは立ち下がった時間タイミングを意図している。この立ち上がり(立ち下がり)遅延は勾配磁場コイル駆動部22の特性によるもので多くの場合で固定的に50μ秒から500μ秒に調整される。理想的には遅延がないことが期待されているため、記載を省略する。なお、図2、4では、周波数エンコード342の印加終了時間は、対象1に周波数エンコードを施す幅に基づいて定まる信号収集時間tと同一としているが、周波数エンコード342の印加開始から印加終了までの印加時間は信号収集時間t以上であれば任意である。信号収集時間t後に印加される周波数エンコード342は、被写体の核磁化信号の緩和回復を促進する効果がある。 The integrated value of the frequency-encoded gradient magnetic field 341 for dephase (the stippled area of the frequency-encoded gradient magnetic field 341 in FIG. 2) is the integrated value from the application of the frequency-encoded gradient magnetic field 342 to TE (the integrated value of the frequency-encoded gradient magnetic field 342 in FIG. 2). It is equal to the stippling area). Therefore, by changing the integral value of the frequency-encoded gradient magnetic field 341 for dephasé (for example, depending on the application period, intensity, and / or waveform) without changing the frequency-encoded gradient magnetic field 342, the TE generation time is generated. Can be adjusted. Conventionally, as shown in FIG. 4, but TE frequency encoding gradient magnetic field 343 such that the center of the signal acquisition time t a frequency encode gradient magnetic field 342 is adjusted, in the present embodiment, as shown in FIG. 2 a, TE (i.e., echo peak), before the half from the application of the signal acquisition time t a frequency encoding gradient magnetic field 342, in particular, from the tenth of the start of the signal acquisition time t a up to one third The frequency-encoded gradient magnetic field 341 is adjusted so that it is in between. Although the start time and the signal acquisition starting time of the time t a the application of Figure 2 the frequency encoding 342 is in the same, intended time timing the current value of the frequency encoding 342 falls upstanding or stand up to the set value ing. This rise (fall) delay is due to the characteristics of the gradient magnetic field coil drive unit 22, and is fixedly adjusted from 50 μs to 500 μs in many cases. Ideally, it is expected that there will be no delay, so the description is omitted. In FIG. 2 and 4, application end time of the frequency encoding 342, the object 1 has been the same as the signal acquisition time t a which is determined based on the width of performing frequency encoding, to application end from the start of application of the frequency encoding 342 application time is arbitrary as long as the signal acquisition time t a or more. Frequency encoding 342 is applied after the signal acquisition time t a has the effect of promoting the relaxation recovery of the nuclear magnetization signal of an object.
 こうして得られたMRI信号352は、受信部40を介してデジタル化される。制御部51は、繰り返し時間毎にデジタル化されたMRI信号352から周波数エンコード勾配磁場342の信号収集時間tの全幅に渡ってM点(例えば、128点)のデータを取得し、記憶部52に記憶する。その後、制御部51は、当該データのうち対象1の同じ位置に相当する(例えば、第1及び第2の位相エンコード勾配磁場321、331の振幅と周波数エンコード勾配磁場342の信号収集時間t内の位置の組み合わせが同じ)N個の信号強度を積算し、当該位置での積算信号強度を算出し、記憶部52に記憶する。 The MRI signal 352 thus obtained is digitized via the receiving unit 40. Controller 51 over the MRI signal 352 is digitized for each repetition time to the full width of the signal acquisition time t a frequency encoding gradient magnetic field 342 M points (e.g., 128 points) to get the data of the storage unit 52 Remember in. Thereafter, the control unit 51 corresponds to the same position of the object 1 among the data (e.g., first and second phase-encoding gradient magnetic field 321 and 331 amplitude and frequency encoding gradient magnetic field 342 signal acquisition time in t a of (The combination of the positions is the same) N signal strengths are integrated, the integrated signal strength at the position is calculated, and stored in the storage unit 52.
 最後に、制御部51は、以上のようにして得られた対象1のk空間のデータ(例えば、N1×N2×M個のデータからなる対象1のk空間のデータ)から、画像を生成する(ステップS13)。具体的には、このk空間のデータに三次元離散逆フーリエ変換を施し、対象1の三次元画像を再構成する。昨今の情報技術の発展によって、MRIの画像再構成が、逆フーリエ変換ではなく、人工知能AIや、深層学習によって実施される場合がある。これらを対象1の三次元画像の再構成に適用してもよい。 Finally, the control unit 51 generates an image from the k-space data of the target 1 obtained as described above (for example, the k-space data of the target 1 consisting of N1 × N2 × M data). (Step S13). Specifically, the data in the k-space is subjected to a three-dimensional discrete inverse Fourier transform to reconstruct the three-dimensional image of the object 1. Due to the recent development of information technology, MRI image reconstruction may be carried out by artificial intelligence AI or deep learning instead of inverse Fourier transform. These may be applied to the reconstruction of the three-dimensional image of the object 1.
(本実施形態の効果)
 従来のGRE法では、図4に示すように、MRI信号のピークが信号収集時間tの中心にあるが、低感度のNMR原子核(例えば、23Na)を標的としたMRIでは、MRI信号の強度はT2およびT2減衰により小さくなり、ノイズに紛れやすく、検出が困難であった。
(Effect of this embodiment)
In conventional GRE method, as shown in FIG. 4, but in the center of the peak signal acquisition time t a of the MRI signal, the low-sensitivity NMR nuclei (e.g., 23 Na) in MRI targeted to, the MRI signal The intensity was reduced by T2 and T2 * attenuation, easily mixed with noise, and difficult to detect.
 一方、本実施形態に係るMRI装置100では、大まかな画像輪郭情報を有するエコーピークを優先して信号を取り込むことができ、特に、23NaをMRIの標的とする場合、23Naの信号成分のうち、T2減衰時間が2~3ms以下の本当に速い信号成分を画像生成に使用できる。このため、本実施形態によれば、低感度の原子を標的としたMRIにおいても、好適にMRI画像を生成することができる。 On the other hand, in the MRI apparatus 100 according to the present embodiment, the signal can be captured with priority given to the echo peak having rough image contour information. In particular, when 23 Na is targeted for MRI, the signal component of 23 Na Among them, a really fast signal component having a T2 attenuation time of 2 to 3 ms or less can be used for image generation. Therefore, according to the present embodiment, it is possible to suitably generate an MRI image even in an MRI targeting a low-sensitivity atom.
 また、部分エコー法では、図5に示すように、TEと測定時間を短縮できるものの、kスペースの構成にともなう偽像アーチファクトの混入の問題があった。また、GRE法で信号収集を行う場合、T2減衰による位相のばらつきが発生するので、部分エコー法の適用が困難であった。さらに、部分エコー法は、原理的な問題で他のMRI測定方法(例えば、圧縮センシング法)と組み合わせることができなかった。 Further, in the partial echo method, as shown in FIG. 5, although the TE and the measurement time can be shortened, there is a problem of mixing false image artifacts due to the configuration of the k space. Further, when the signal is collected by the GRE method, the partial echo method is difficult to apply because the phase variation occurs due to T2 * attenuation. In addition, the partial echo method could not be combined with other MRI measurement methods (eg, compressed sensing methods) due to principle problems.
 一方、本実施形態では、図2に示すようにMRI信号のピークが信号収集時間tの前半(特に、信号収集時間tの十分の一から三分の一の間)に存在し、MRI信号強度の減衰が大きい信号収集時間tの後半に信号強度が高周波数成分に比べて高い低周波成分が存在するため、画像生成を優先しつつ、画素帯域幅を狭くして低ノイズ化を実現できている。位相エンコードを削除したホモダイン再構成は行わないので偽像アーチファクトの発生は低減される。このため、本実施形態によれば、部分エコー法と比べて、好適にMRI画像を生成することができる。また、本実施形態に係る画像生成処理方法は、以下の変形例でも示すように、種々のMRI測定方法と組み合わせることができる。 On the other hand, in this embodiment, present in the first half of the peak of the MRI signal is the signal acquisition time t a (in particular, between one-tenth of the signal acquisition time t a third of) as shown in FIG. 2, MRI since the high low-frequency component as compared with the signal intensity is high-frequency components in the second half of the attenuation is large signal acquisition time t a signal strength is present, while giving priority to image generation, a narrow and low-noise pixel bandwidth It has been realized. Since the homodyne reconstruction with the phase encoding removed is not performed, the occurrence of false image artifacts is reduced. Therefore, according to the present embodiment, an MRI image can be preferably generated as compared with the partial echo method. Further, the image generation processing method according to the present embodiment can be combined with various MRI measurement methods as shown in the following modified examples.
(変形例)
 本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能である。また、本明細書では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。
(Modification example)
The present invention is not limited to the above embodiments and drawings. Changes (including deletion of components) can be made as appropriate without changing the gist of the present invention. Further, in the present specification, in order to facilitate the understanding of the present invention, the description of known technical matters is appropriately omitted.
(変形例1)
 上述の実施形態では、GRE法を採用したが、前置RFパルスをさらに敷設してもよい。これにより、前置RFパルスの種類に応じたコントラストを持つ画像を得ることができる。緩和時間の短いNMR原子核(例えば、23Na)の場合、励起パルス毎に前置RFパルスを敷設することが望ましい。また、緩和時間の長いNMR原子核(例えば、H)の場合、前置RFパルスは、励起パルス毎に敷設されてもよいし、複数の励起パルス毎に(例えば、信号をN回積算する場合なら、N回の励起パルスの最初の1回の前に)敷設されてもよい。
(Modification example 1)
In the above-described embodiment, the GRE method is adopted, but a pre-RF pulse may be further laid. This makes it possible to obtain an image having contrast according to the type of pre-RF pulse. In the case of NMR nuclei with a short relaxation time (for example, 23 Na), it is desirable to lay a pre-RF pulse for each excitation pulse. Further, in the case of an NMR nucleus having a long relaxation time (for example, 1 H), the pre-RF pulse may be laid for each excitation pulse, or for each of a plurality of excitation pulses (for example, when the signal is integrated N times). If so, it may be laid (before the first one of N excitation pulses).
 例えば、23NaをNMR原子核とする場合、緩和時間内に信号を取得すると、密度強調画像が得られるが、前置RFパルスを敷設することで、密度強調以外のコントラストが付与された画像を得られる。23NaをNMR原子核とする場合、実施例1でも説明したように、HをNMR原子核とする場合のように、繰り返し時間を単純に変えることで密度強調以外のコントラストが得られるわけではないので、前置RFパルスの敷設によるコントラストの付与は有利である。 For example, when 23 Na is used as an NMR nucleus, if a signal is acquired within the relaxation time, a density-weighted image can be obtained, but by laying a pre-RF pulse, an image with contrast other than density-weighted can be obtained. Be done. When 23 Na is used as an NMR nucleus, as described in Example 1, a contrast other than density enhancement cannot be obtained by simply changing the repetition time as in the case where 1 H is used as an NMR nucleus. It is advantageous to give contrast by laying a pre-RF pulse.
 また、このとき、図5に示すような、前置RFパルスとして量子パルスを印加することとしてもよい。こうした量子パルスによれば、スピンエネルギーの遷移により、組織特異的なコントラストが得られると期待される。従来のH-MRIであれば、緩和時間が数十msから数百msと長いので、緩和時間の違いやケミカルシフト励起を利用した組織の弁別が可能であった。しかし、緩和時間が短いNMR原子核の場合(例えば、緩和時間が20ms以下と短い23Naの場合)、こうした弁別が不可能である。量子パルスによれば、こうした緩和時間が短いNMR原子核においても、スピンエネルギーの遷移により、信号減衰する前に組織差異を強調することが可能となる。 Further, at this time, a quantum pulse may be applied as a pre-RF pulse as shown in FIG. According to such a quantum pulse, it is expected that a tissue-specific contrast can be obtained by the transition of spin energy. If the conventional 1 H-MRI, because the relaxation time of several hundred ms and long from a few tens of ms, was possible the discrimination of using the differences and chemical shift excitation of relaxation time organization. However, in the case of NMR nuclei having a short relaxation time (for example, in the case of 23 Na having a short relaxation time of 20 ms or less), such discrimination is impossible. According to the quantum pulse, even in such an NMR nucleus with a short relaxation time, the transition of spin energy makes it possible to emphasize the tissue difference before the signal is attenuated.
 量子パルスでは、90°パルス(+X方向)を印加した後、時間τ経過後に180°パルスを印加し、その後、時間2τおきに180°パルスを連続して印加する。このとき、連続180°パルスは、第2個目から、図5に示すように、反対極性(―X方向)の180°パルスを連続して印加するパルス列(APCP(Alternating Polarity Carr Purcell)と呼称される。S.Watanabe and S.Sasaki.J.Jpn.Appl.Phys.Express Lett.(2003))でもよいし、同じ極性の180°パルス(+Y方向)を連続して印加するパルス列((CPMG(Carr-Purcell-Meiboom-Gill)と呼ばれるパルス列)でもよい。 In the quantum pulse, after applying a 90 ° pulse (+ X direction), a 180 ° pulse is applied after the lapse of time τ, and then a 180 ° pulse is continuously applied every 2τ of time. At this time, the continuous 180 ° pulse is referred to as a pulse train (APCP (Alternating Polarity Carr Purcell)) in which 180 ° pulses of opposite polarity (−X direction) are continuously applied from the second pulse, as shown in FIG. S.Watanabe and S.Sasaki.J.Jpn.Appl.Phys.Express Lett. (2003)) or a pulse train ((CPMG) in which 180 ° pulses (+ Y direction) of the same polarity are continuously applied. (Pulse train called Carr-Purcell-Meiboom-Gill) may be used.
 なお、MRI信号生成のためには、前置RFパルスとそれに続く励起パルスによって生成されるNMR信号は、自由誘導減衰(FID)信号でもスピンエコー信号でもよい。また、前置RFパルスによって生成されるNMR信号には、励起パルスの印加前には、位相エンコード及び周波数エンコードにより位置情報が付加されず、上述したパルスシークエンス300又は他の変形例に係るパルスシークエンスにより、励起パルスの印加後に、位相エンコード及び周波数エンコードにより位置情報が付加される。 For MRI signal generation, the NMR signal generated by the pre-RF pulse and the subsequent excitation pulse may be a free induction decay (FID) signal or a spin echo signal. Further, the NMR signal generated by the pre-RF pulse does not have position information added by phase encoding and frequency encoding before the excitation pulse is applied, and the pulse sequence according to the above-mentioned pulse sequence 300 or other modifications is provided. Therefore, after the excitation pulse is applied, the position information is added by phase encoding and frequency encoding.
(変形例2)
 上述の実施形態では、3次元フーリエ変換を行っているが、Y方向の位相エンコードを割愛し、代わりに、Y方向に沿ってスライス選択を行い、各スライスについて、2次元フーリエ変換によりMRI画像を生成してもよい。また、このMRI画像の再構成を、逆フーリエ変換ではなく、人工知能AIや、深層学習によって実施してもよい。
(Modification 2)
In the above-described embodiment, the three-dimensional Fourier transform is performed, but the phase encoding in the Y direction is omitted, and instead, slice selection is performed along the Y direction, and the MRI image is obtained by the two-dimensional Fourier transform for each slice. It may be generated. Further, the reconstruction of the MRI image may be performed by artificial intelligence AI or deep learning instead of the inverse Fourier transform.
(変形例3)
 エコーピークが周波数エンコード342の信号収集時間tの開始時間に近すぎると、信号収集時間tの起点と終点とで測定したMRI信号の信号強度が大きく食い違い、同一波形が周期的に連続しているという離散逆フーリエ変換の前提が崩れてしまうおそれもある。この場合、例えば、MRI画像にギプスリンギング偽像(縁に縁が多重にできる)などの偽像アーチファクトが生じてしまう。そこで、エコーピークは、こうした偽像アーチファクトが生じない程度に周波数エンコード勾配磁場342の信号収集時間tの開始時間から離れていることが好ましい。偽像アーチファクトの有無は、できあがったMRI画像を人間が目視することで確認できるし、同じ対象1の同じ部位について、上述の実施形態に従って生成したMRI画像と、エコーピークの位置を従来法と同様に信号収集時間tの中心とした基準画像とを、相関係数(例えば、ZNCC(Zero-mean Normalized Cross-Correlation)により求めた正規化相互相関係数)により比較して、相関係数が一定値(例えば、ZNCCにより求めた正規化相互相関係数なら、0.7)を超えるか否かでも判定できる。また、対象1又は対象1と同種の基準対象を用いた事前実験の結果に基づいて、画像生成処理のステップS12でのエコーピークの位置が、目視により偽像アーチファクトが確認されない又は前述の相関係数が一定値以上となるように、調整されることが好ましい。人工知能AIや深層学習によって偽像を除去してもよい。
(Modification 3)
When the echo peak is too close to the start time of the signal acquisition time t a frequency encoding 342, the signal strength of the MRI signal measured at the starting point and the end point of the signal acquisition time t a discrepancy greater, the same waveform is periodically continuously There is a possibility that the premise of the discrete inverse Fourier transform that it is In this case, for example, a false image artifact such as a cast ringing false image (multiple edges can be formed on the edge) occurs in the MRI image. Therefore, it echoes peaks are preferably separated from the start time of the signal acquisition time of the frequency encoding gradient magnetic field 342 t a to the extent that such a false image artifacts do not occur. The presence or absence of the false image artifact can be confirmed by visually observing the completed MRI image, and the MRI image generated according to the above-described embodiment and the position of the echo peak are the same as in the conventional method for the same part of the same object 1. in the reference image with a focus of the signal acquisition time t a, compared with a correlation coefficient (e.g., ZNCC (Zero-mean normalized cross -correlation) by the obtained normalized cross-correlation coefficient), the correlation coefficient It can also be determined whether or not it exceeds a certain value (for example, 0.7 for the normalized cross-correlation coefficient obtained by ZNCC). Further, based on the result of the preliminary experiment using the object 1 or the reference object of the same type as the object 1, the position of the echo peak in step S12 of the image generation process is not visually confirmed as a false image artifact or the above-mentioned correlation. It is preferable to adjust the number so that it becomes a certain value or more. False images may be removed by artificial intelligence AI or deep learning.
(変形例4)
 対象1が、厚み方向に均一な試料又は厚み方向の均一性が高い試料である場合(例えば、対象1が薄膜材料である場合)、当該厚み方向(例えば、薄膜に垂直な方向)に周波数エンコード勾配磁場、厚み方向に垂直で且つ互いに直行する方向(例えば、薄膜と平行な方向)に第1及び第2の位相エンコード勾配磁場を印加して当該試料の厚み方向の断面の二次元MRI画像を生成してもよく、この場合、エコーピーク位置は、信号収集開始と同時か、信号収集開始前でも差し支えない。こうした試料で、厚み方向に周波数エンコード勾配磁場を印加する(即ち、厚み方向に信号読み出し軸を設定する)場合、MR信号のピーク周辺は非常に緩い山型を描くので、信号収集時間tに対するエコーピーク位置の重要性は相対的に低い。
(Modification example 4)
When the object 1 is a sample that is uniform in the thickness direction or a sample that is highly uniform in the thickness direction (for example, when the object 1 is a thin film material), frequency encoding is performed in the thickness direction (for example, the direction perpendicular to the thin film). A two-dimensional MRI image of the cross section of the sample in the thickness direction is obtained by applying the first and second phase-encoded gradient magnetic fields in the direction perpendicular to the gradient magnetic direction and the thickness direction and perpendicular to each other (for example, the direction parallel to the thin film). It may be generated, and in this case, the echo peak position may be at the same time as the start of signal collection or before the start of signal collection. In this sample, applying a frequency encoding gradient magnetic field in the thickness direction (i.e., to set the signal reading-axis thickness direction) case, the peak around the MR signal draws a very loose chevron, for the signal acquisition time t a The importance of the echo peak position is relatively low.
(変形例5)
 上述の実施形態において、信号の減衰を抑制するため、繰り返し時間は、T2緩和時間以下であることが望ましい。例えば、NMR原子核が23Naの場合、繰り返し時間は、30ms、20ms、10ms、又は6ms以下であることが望ましい。
(Modification 5)
In the above-described embodiment, the repetition time is preferably T2 relaxation time or less in order to suppress signal attenuation. For example, when the NMR nucleus is 23 Na, the repetition time is preferably 30 ms, 20 ms, 10 ms, or 6 ms or less.
 また、上述の実施形態において、信号収集時間tの長さとは無関係に、エコーピークの位置は、励起パルスの印加から観測できる主成分であるT2緩和時間経過までの間(T2緩和時間が複数成分からなる場合であれば、励起パルスの印加から、最長のT2緩和時間、最短のT2緩和時間、若しくはこれらの間のT2緩和時間の経過までの間)に生じることが好ましく、特に、励起パルスの印加からT2緩和時間(T2緩和時間が複数成分からなる場合であれば、それらのT2緩和時間のいずれか)の二分の一、三分の一、若しくは十分の一の経過までに生じることが好ましい。前置励起パルスの印加によって意図的に、短い緩和時間成分の信号の寿命が延長された場合は、見かけ上で長くなったT2緩和時間を参照する。 Further, in the embodiment described above, regardless of the length of the signal acquisition time t a, the position of the echo peaks, is between (T2 relaxation time to lapse T2 relaxation time which is a main component that can be observed from the application of the excitation pulse a plurality If it is composed of components, it preferably occurs between the application of the excitation pulse and the longest T2 relaxation time, the shortest T2 relaxation time, or the elapse of the T2 relaxation time between them), and in particular, the excitation pulse. It may occur within one-half, one-third, or one-tenth of the T2 relaxation time (or any of those T2 relaxation times if the T2 relaxation time consists of multiple components) from the application of. preferable. If the application of the pre-excitation pulse intentionally extends the signal lifetime of the short relaxation time component, refer to the apparently longer T2 relaxation time.
(変形例6)
 上述の実施形態で、NMR原子核は、任意であり、スピン量子数が3/2の原子核でもよいし、23Naでもよい。
(Modification 6)
In the above-described embodiment, the NMR nucleus is arbitrary, and may be a nucleus having a spin quantum number of 3/2 or 23 Na.
(変形例7)
 上述の実施形態に、任意の他のMRI技術を組み合わせることができる。例えば、圧縮センシング法や、多量子(マルチ・クオンタム)コヒーレンス法を採用してもよい。特に、圧縮センシング法は、位相エンコードをガウシアンランダム(Gaussian-random)に選択するので、部分エコー法には適用できない。
(Modification 7)
Any other MRI technique can be combined with the above embodiments. For example, a compressed sensing method or a multi-quantum coherence method may be adopted. In particular, the compressed sensing method does not apply to the partial echo method because it selects the phase encoding as Gaussian-random.
(変形例8)
 対象1に、上述したパルスシークエンス300又は上述の変形例に係るパルスシークエンスを印加することができれば、MRI装置100の構成は任意であり、種々の構成を採用することができる。
(Modification 8)
If the pulse sequence 300 described above or the pulse sequence according to the modification described above can be applied to the object 1, the configuration of the MRI apparatus 100 is arbitrary, and various configurations can be adopted.
(変形例9)
 画像生成処理を実行するプログラムPGは、記憶部52に予め記憶されているものとしたが、着脱自在の記録媒体により配布・提供されてもよい。また、プログラムPGは、MRI装置100と接続された他の機器からダウンロードされるものであってもよい。また、MRI装置100は、他の機器と電気通信ネットワークなどを介して各種データの交換を行うことによりプログラムPGに従う各処理を実行してもよい。
(Modification 9)
The program PG that executes the image generation process is stored in the storage unit 52 in advance, but may be distributed and provided by a detachable recording medium. Further, the program PG may be downloaded from another device connected to the MRI apparatus 100. Further, the MRI apparatus 100 may execute each process according to the program PG by exchanging various data with other devices via a telecommunication network or the like.
(変形例10)
 2種類以上の原子由来の信号(例えば、H-NMR信号及び23Na-NMR信号)を取得するために、例えば、これにより2種類の原子の同時撮影を可能とするために、RFコイル31として、2種類以上の原子に対応した異なる周波数の2種類以上のRFパルスを送受信可能なコイルを採用してもよい。例えば、こうしたコイルとして、2種類以上の原子のラーモア周波数に同調された単一の送受信コイル、例えば、二重同調鳥かご型コイル、二重同調表面コイル、二重同調鞍型コイル、二重同調蝶型コイル、二重同調ソレノイドコイルなどを用いてもよいし、2種類以上の原子のラーモア周波数にそれぞれ個別に同調された2つ以上の送受信コイルを用いてもよい。
(Modification example 10)
RF coil 31 to obtain signals derived from two or more types of atoms (eg, 1 H-NMR signal and 23 Na-NMR signal), for example, to enable simultaneous imaging of two types of atoms. As a result, a coil capable of transmitting and receiving two or more types of RF pulses having different frequencies corresponding to two or more types of atoms may be adopted. For example, such coils include a single transmit / receive coil tuned to the Lamore frequency of two or more atoms, such as a double tuned bird cage coil, a double tuned surface coil, a double tuned saddle coil, a double tuned butterfly. A mold coil, a double tuning solenoid coil, or the like may be used, or two or more transmission / reception coils individually tuned to the Lamore frequency of two or more kinds of atoms may be used.
 さらに、RFコイル31の代わりに、RFパルス送信用コイルと、MRI信号受信用コイルとを別々に構成する場合、RFパルス送信用コイルとして、2種類以上の原子のラーモア周波数に同調された単一の送信コイル又は2種類以上の原子のラーモア周波数にそれぞれ個別に同調された2つ以上の送信コイルを用いてもよく、また、MRI信号受信用コイルとして、2種類以上の原子のラーモア周波数に同調された単一の受信コイル又は2種類以上の原子のラーモア周波数にそれぞれ個別に同調された2つ以上の受信コイルを用いてもよい。 Further, when the RF pulse transmission coil and the MRI signal reception coil are separately configured instead of the RF coil 31, the RF pulse transmission coil is a single coil tuned to the Lamore frequency of two or more kinds of atoms. A transmission coil of the above or two or more transmission coils individually tuned to the Lamore frequency of two or more types of atoms may be used, and the coil for receiving MRI signals is tuned to the Lamore frequency of two or more types of atoms. A single receiving coil or two or more receiving coils individually tuned to the Lamore frequency of two or more atoms may be used.
 RFコイル31又はMRI信号受信用コイルとして、上述のコイルを用いる場合、異なる原子用のRF受信ケーブル間で干渉が抑制され、コンパクトな空間内で高いS/N比を得られるように、異なる原子用のコイル並びに付随する共振回路及びRF受信ケーブル(同軸ケーブル)は配置されるとよい。例えば、測定対象の原子が2種類の場合、一方の原子用の共振回路(ただし、コイルを除く部分)及びRF受信ケーブルは、他方の原子用の共振回路(ただし、コイルを除く部分)及びRF受信ケーブルと重ならないように配置され、例えば、単一のコイル又は近接して(例えば、重ねて又は同軸に)配置されたインダクタンスの異なる2つコイルから、図10に示すように、反対方向に延びるように、配置されるのが好ましい。 When the above-mentioned coil is used as the RF coil 31 or the MRI signal receiving coil, different atoms are used so that interference is suppressed between RF receiving cables for different atoms and a high S / N ratio can be obtained in a compact space. The coil and the accompanying resonance circuit and RF receiving cable (coaxial cable) may be arranged. For example, when there are two types of atoms to be measured, the resonance circuit for one atom (however, the part excluding the coil) and the RF receiving cable are the resonance circuit for the other atom (however, the part excluding the coil) and RF. From a single coil or two coils with different inductances arranged in close proximity (eg, overlapping or coaxially), arranged so that they do not overlap the receiving cable, in opposite directions, as shown in FIG. It is preferably arranged so as to extend.
(実施例)
(実施例1:H-NMR信号と23Na-NMR信号の感度の比較)
 NMR信号強度の比較では、直径及び形状の似た、H用(9.4テスラ)又は23Na用(9.4テスラ)のRFコイル(内径φ15mm、ギャップ10mm、2巻x2のヘルムホルツ型)を備えたNMR装置を用い、コイル内に食塩水(0.9w/v%)2mlの入ったプラスチック試験管を配置し、当該食塩水に励起パルスを印加して、FID信号をそれぞれ計測した。NMR信号の絶対強度の計測のために、別途用意した高周波発信機から強度-120dBm~0dBmの連続サイン波を疑似信号として前置増幅器に入力して、事前に収集したNMR信号の強度になるように高周波発信機の出力を調整することで、Hと23NaのNMR信号のRFコイル以降の信号強度(dBm)をそれぞれ計測した。測定結果を図7に示す。この試料由来のH-NMR信号の強度は、同試料由来の23Na-NMR信号の強度のおよそ20,000倍であった。
(Example)
(Example 1: Comparison of sensitivity between 1 1 H-NMR signal and 23 Na-NMR signal)
A comparison of the NMR signal intensity, similar diameter and shape, 1 for H (9.4 tesla) or 23 for Na (9.4 tesla) RF coil (inner diameter 15 mm, the Helmholtz-type gap 10 mm, 2 vol x2) A plastic test tube containing 2 ml of saline solution (0.9 w / v%) was placed in the coil using an NMR apparatus equipped with the above, and an excitation pulse was applied to the saline solution to measure FID signals. In order to measure the absolute intensity of the NMR signal, a continuous sine wave with an intensity of -120 dBm to 0 dBm is input to the preamplifier as a pseudo signal from a separately prepared high-frequency transmitter so that the intensity of the NMR signal collected in advance is obtained. By adjusting the output of the high-frequency transmitter, the signal strength (dBm) of the 1 H and 23 Na NMR signals after the RF coil was measured, respectively. The measurement results are shown in FIG. The intensity of the 1 H-NMR signal derived from this sample was approximately 20,000 times that of the 23 Na-NMR signal derived from the same sample.
 速い繰返しTRによるT1飽和によって、図7の左の方(TR<50ms)の23Na-NMR信号が落ち込んでいることがわかるが、23Naは単原子で存在しており、他の原子分子とも結合していないので周辺との緩和エネルギーの授受は、H(プロトン)ほどには頻繁に起こらないので、図7の左で生じているのはT1強調ではなく、全体としての信号落ち込みと考えるのが妥当である。従って、TR<50ms(例えば、TRが20ms程度の)のパルスシークエンスで得られる23Na-NMR信号は、Na密度分布を反映したものと考えられる。 It can be seen that the 23 Na-NMR signal on the left side of FIG. 7 (TR <50 ms) is depressed due to T1 saturation due to fast repeating TR, but 23 Na exists as a single atom and is also present with other atomic molecules. Since it is not coupled, the transfer of relaxation energy to the surroundings does not occur as frequently as 1 H (proton), so it is considered that what is occurring on the left side of Fig. 7 is not T1 weighted but the signal drop as a whole. Is reasonable. Therefore, it is considered that the 23 Na-NMR signal obtained by the pulse sequence of TR <50 ms (for example, TR is about 20 ms) reflects the Na density distribution.
(実施例2:T1緩和時間及びT2緩和時間)
 実施例1の23Na-NMR装置を用いて、種々の食塩水を対象に、T1緩和時間及びT2緩和時間を測定した。飽和回復法に依って測定した様々な濃度(0.9w/v%~26.4w/v%)の食塩水(2ml)のT1緩和時間は100ms以下であった。90度パルスによる減衰曲線のフィッティングによって計測した種々の濃度のT2緩和時間は、20ms程度のものがほとんどであり、2~3ms程度の非常に速い緩和時間成分も観測された。
(Example 2: T1 relaxation time and T2 relaxation time)
Using the 23 Na-NMR apparatus of Example 1, the T1 relaxation time and the T2 relaxation time were measured for various saline solutions. The T1 relaxation time of various concentrations (0.9 w / v% to 26.4 w / v%) of saline solution (2 ml) measured by the saturation recovery method was 100 ms or less. Most of the T2 relaxation times of various concentrations measured by fitting the attenuation curve with a 90-degree pulse were about 20 ms, and a very fast relaxation time component of about 2 to 3 ms was also observed.
(実施例3:マウスでのMRI画像撮影)
 マウスの保持に適した保持部を備え、図1で示した構成を備えた23Na-MRI装置を用いマウスでのMRI画像撮影を行った。このMRI装置の構成は、23NaからNMR信号を得られかつ励起RFパルスを送信できる送受信兼用RFコイルを用い、上述の画像生成処理を行う点以外は、従来のH-MRI装置と同様である。こうした装置の詳細は、特開2015-145853号明細書を参照されたい。パルスシークエンスとしては、三次元勾配エコー法を用い、420μm×420μmの撮影領域に対して、64ピクセル×64ピクセルの画素数で位相エンコード及び周波数エンコードを行い、繰り返し時間は20ms、信号収集時間tは5.12ms、積算回数は20回、撮像時間は7分とした。このとき、エコーピークが、リフェーズ用の周波数エンコード勾配磁場の印加開始から2ms未満のうちに生じるように、ディフェーズ用の周波数エンコード勾配磁場は調整した。また、マウスは、C57BL/6であり、腎阻血再還流術手術を施したもの(手術群)と、未手術のもの(対照群)とを用いた。手術群と対照群での腎臓付近の横断面画像を、図8に示す。
(Example 3: MRI image shooting with a mouse)
An MRI image was taken with a mouse using a 23 Na-MRI apparatus provided with a holding portion suitable for holding the mouse and having the configuration shown in FIG. The configuration of the MRI apparatus, using both transmission and reception RF coils that can send obtained and excitation RF pulse NMR signals from 23 Na, except for performing the image generation process described above, the same as conventional 1 H-MRI device is there. For details of such a device, refer to Japanese Patent Application Laid-Open No. 2015-145853. The pulse sequence, using the three-dimensional gradient echo method for imaging a region of 420 [mu] m × 420 [mu] m, performs phase encoding and frequency encoding in the number of pixels 64 pixels × 64 pixels, repetition time 20 ms, the signal acquisition time t a Was 5.12 ms, the number of integrations was 20, and the imaging time was 7 minutes. At this time, the frequency-encoded gradient magnetic field for dephasé was adjusted so that the echo peak occurred within 2 ms from the start of application of the frequency-encoded gradient magnetic field for rephase. The mice were C57BL / 6, and those subjected to renal ischemia-reperfusion surgery (surgery group) and those without surgery (control group) were used. Cross-sectional images of the vicinity of the kidney in the surgery group and the control group are shown in FIG.
(実施例4:23Na-NMR信号測定での同一計測時間における繰り返し時間と積算信号値の関係)
 実施例1の23Na-NMR装置及び1H-NMR装置を用いて、計測時間を100秒とし、繰り返し時間を様々に変えたときの、種々の食塩水試料での23Na-NMR信号及びH-NMR信号の積算信号値を測定した。その結果を、図9に示す。なお、図9に示す指数回帰式(y=a×x)は、計測時間をx、繰り返し時間をyとしたときのものである。
(Example 4: Relationship between repetition time and integrated signal value at the same measurement time in 23 Na-NMR signal measurement)
Using 23 Na-NMR apparatus and IH-NMR apparatus in Example 1, the measurement time is 100 seconds, when the various changing repetition time, 23 Na-NMR signals and 1 H at various brine sample -The integrated signal value of the NMR signal was measured. The result is shown in FIG. The exponential regression equation (y = a × x b ) shown in FIG. 9 is when the measurement time is x and the repetition time is y.
 繰り返し時間をTR、積算回数をNとしたとき、計測時間t=TR×Nであるが、一般に、H-MRIの場合、信号対ノイズ比(S/N比)は、√tに比例することが知られている。これは、信号強度は積算回数Nに比例して大きくなるものの、ノイズには冗長性があり√Nでしか減少しないためである。また、TRはH-MRIにおいて被写体の画像コントラストを決定する重要な要素であるため、意図するTRから極端に長い又は短い設定をすることはできない。 When the repetition time is TR and the number of integrations is N, the measurement time is t = TR × N. Generally, in the case of 1 H-MRI, the signal-to-noise ratio (S / N ratio) is proportional to √t. It is known. This is because the signal strength increases in proportion to the number of integrations N, but the noise has redundancy and decreases only by √N. Further, since TR is an important factor for determining the image contrast of a subject in 1 H-MRI, it is not possible to set it extremely long or short from the intended TR.
 図9に示すように、H-NMR信号(図9で一番上のグラフ)は、計測時間の約-0.5乗で減少する一方、ノイズ(図9で一番下のグラフ)も、計測時間の約-0.5乗で減少している。従って、H-NMR信号対ノイズのS/N比は、計測時間が変化してもほぼ一定である。これは、繰り返し時間TRを減少させて信号積算回数Nを稼いでも、計測時間が一定であれば、S/N比が改善しないことを意味している。 As shown in FIG. 9, the 1 H-NMR signal (top graph in FIG. 9) decreases at about -0.5th power of the measurement time, while noise (bottom graph in FIG. 9) also decreases. , It decreases by about -0.5th power of the measurement time. Therefore, the S / N ratio of 1 1 H-NMR signal to noise is substantially constant even if the measurement time changes. This means that even if the repetition time TR is reduced and the signal integration number N is earned, the S / N ratio does not improve if the measurement time is constant.
 一方、23Na-NMR信号(図9でH-NMR信号のグラフとノイズのグラフトの間のグラフ)は、計測時間の約-0.7乗~約-0.9乗で減少する。このとき、23Na-NMR信号対ノイズのS/N比は、計測時間に対して-0.2~-0.4乗で減少する(x-0.7÷x-0.5=x-0.2~x-0.9÷x-0.5=x-0.4)こととなる。これは、23Na-NMR信号の場合、計測時間が一定であっても、繰り返し時間TRを減少させて信号積算回数Nを稼げば、S/N比が改善することを意味している。 On the other hand, the 23 Na-NMR signal (graph in FIG. 9 between the graph of the 1 H-NMR signal and the graph of the noise graft) decreases in the measurement time of about -0.7 to the -0.9 power. At this time, 23 S / N ratio of the Na-NMR signal-to-noise is reduced at -0.2 to -0.4 squared relative measurement time (x -0.7 ÷ x -0.5 = x - 0.2 to x- 0.9 ÷ x- 0.5 = x- 0.4 ). This means that in the case of a 23 Na-NMR signal, even if the measurement time is constant, the S / N ratio can be improved by reducing the repetition time TR and increasing the signal integration number N.
 また、23Na-NMR信号では、指数回帰式の乗数と、Na濃度とは、負の相関関係にあるので、あらかじめ、種々の濃度のNaを含む試料(例えば、種々の濃度の食塩水)に対して同一計測時間で繰り返し時間を様々に変更して信号強度を測定し、各試料での指数回帰式の乗数を求め、Naの濃度と乗数との関係式(例えば、1次関数)を求めておけば、以降は、Na濃度が未知の試料で同一計測時間で繰り返し時間を様々に変更して信号強度を測定し、当該試料での指数回帰式の乗数を求め、当該乗数を前記関係式に当てはめることで、試料中のNa濃度を測定することができる。また、この濃度測定法は、Na以外の原子核(例えば、スピン量子数が3/2の原子核)にも適用できると考えられる。 Further, in the 23 Na-NMR signal, the multiplier of the exponential regression equation and the Na concentration have a negative correlation. Therefore, in advance, a sample containing various concentrations of Na (for example, saline solution having various concentrations) is used. On the other hand, the signal strength is measured by changing the repetition time variously with the same measurement time, the multiplier of the exponential regression equation for each sample is obtained, and the relational expression (for example, linear function) between the Na concentration and the multiplier is obtained. After that, in a sample with an unknown Na concentration, the signal strength is measured by variously changing the repetition time at the same measurement time, the multiplier of the exponential regression equation in the sample is obtained, and the multiplier is used as the relational expression. By applying to, the Na concentration in the sample can be measured. It is also considered that this concentration measurement method can be applied to nuclei other than Na (for example, nuclei having a spin quantum number of 3/2).
(実施例5:H/23Na-デュアルMRI装置によるマウス体内でのNa動態の観察)
 H/23Na-デュアルMRI装置は、400MHz超電磁マグネット(JASTEC社製、Narrow boreシリーズ、ボア径54ミリ)と、この超電磁マグネットのボア内に配置される、図10に示すような測定台とを含む。測定台は、図10(a)に示すように一側面の開いた筒状であり、この開いた部分から、H/23Na測定用の送受信用表面コイルが取り付けられた底板をはめ込む。底板の表面には、図10(a)に示すように、H用表面コイルと23Na用表面コイルとが重ねて配置されており、測定時には、これらのコイルと底板との間にマウスが配置され、マウスの背中側で腎臓周辺にコイルが当たる。また、底板の裏面には、図10(b)に示すように、H用表面コイルのための共振回路のうちコイルを除く部分及びRFケーブルと23Na用表面コイルの共振回路のうちコイルを除く部分及びRFケーブルが、互いに反対方向に延びるように配置されている。その他の構成は、23Naについて上述の実施形態に基づき信号取得を行う点を除けば、従来の多原子用MRI装置と同様である。
(Example 5: Observation of Na dynamics in a mouse by a 1 H / 23 Na-dual MRI apparatus)
The 1 H / 23 Na-dual MRI apparatus is a 400 MHz super-electromagnetic magnet (manufactured by JASTEC, Narrow bore series, bore diameter 54 mm) and a measurement as shown in FIG. 10 arranged in the bore of this super-electromagnetic magnet. Including the stand. Measurement table is a cylindrical shape with open one side as shown in FIG. 10 (a), from the open portion, fitting the bottom plate transmission and reception surface coil is mounted for 1 H / 23 Na measurements. On the surface of the bottom plate, as shown in FIG. 10 (a), are arranged to overlap 1 and H for surface coils and 23 Na for surface coils, the time of measurement, the mouse between the coils and the bottom plate It is placed and the coil hits around the kidney on the back side of the mouse. Further, on the back surface of the bottom plate, as shown in FIG. 10 (b), the coil of the resonance circuit portion and the RF cable and 23 Na for surface coils except for the coils of the resonant circuit for of the 1 H for surface coils The part to be removed and the RF cable are arranged so as to extend in opposite directions. Other configurations are the same as those of the conventional multi-atomic MRI apparatus except that signals are acquired for 23 Na based on the above-described embodiment.
 上記のH/23Na-デュアルMRI装置を用いて、フロセミド処理(1ミリccを注射器で腎臓に注入)後のマウス体内でのNa動態を観察した。H/23Naの測定を同一断面で交互に繰り返すことで、同一期間でのH画像と23Naとを取得した。観察期間を通して、H画像には、フロセミド処理による変化はみられなかった。一方、23Na画像では、フロセミド処理後約2分までは、腎臓でNa濃度が増加した(信号強度が増加した)が、それ以降は、腎臓でのNa濃度は減少し(信号強度が減少し)、代わりに、大腸でNa濃度が増加した。この結果は、フロセミド処理による従来の知見と整合するものであり、本装置がマウスの体内でのNa動態の経時的な観察に適していることを示した。 Using the above 1 H / 23 Na-dual MRI apparatus, Na dynamics in mice after furosemide treatment (1 mmcc was injected into the kidney with a syringe) was observed. By alternately repeating the measurement of 1 H / 23 Na in the same cross section, 1 H images and 23 Na in the same period were obtained. Throughout the observation period, the by 1 H image, change by furosemide treatment was not observed. On the other hand, in the 23 Na image, the Na concentration in the kidney increased (signal intensity increased) until about 2 minutes after the furosemide treatment, but after that, the Na concentration in the kidney decreased (signal intensity decreased). ), Instead, the Na concentration increased in the large intestine. This result is consistent with the conventional findings of furosemide treatment, and showed that this device is suitable for observing Na dynamics in the body of mice over time.
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.
 なお、本願については、2019年5月17日に出願された日本国特許出願2019-093569号を基礎とする優先権を主張し、本明細書中に日本国特許出願2019-093569号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 Regarding the present application, priority is claimed based on Japanese Patent Application No. 2019-093569 filed on May 17, 2019, and the specification of Japanese Patent Application No. 2019-093569 is included in the present specification. , The scope of claims and the entire drawing shall be incorporated as a reference.
100…MRI装置
  1…対象
  2…保持部
  3…ボア
 10…静磁場コイル
 20…勾配磁場発生部、21…勾配磁場コイル、22…勾配磁場コイル駆動部
 30…RFパルス印加部、31…RFコイル、32…RFコイル駆動部
 40…受信部
 50…制御装置
 51…制御部、51a…パルス制御部、51b…画像生成部
 52…記憶部、PG…プログラム
 60…表示部
 70…操作部
 300…パルスシークエンス
 311…α°パルス
 351…信号
 352…MRI信号
 321…第1の位相エンコード勾配磁場
 331…第2の位相エンコード勾配磁場
 341、342…周波数エンコード勾配磁場
100 ... MRI device 1 ... Target 2 ... Holding unit 3 ... Bore 10 ... Static magnetic field coil 20 ... Gradient coil generator, 21 ... Gradient coil, 22 ... Gradient coil drive unit 30 ... RF pulse application unit, 31 ... RF coil , 32 ... RF coil drive unit 40 ... Receiver unit 50 ... Control device 51 ... Control unit, 51a ... Pulse control unit, 51b ... Image generation unit 52 ... Storage unit, PG ... Program 60 ... Display unit 70 ... Operation unit 300 ... Pulse Sequence 311 ... α ° pulse 351 ... signal 352 ... MRI signal 321 ... first phase-encoded gradient coil 331 ... second phase-encoded gradient coil 341, 342 ... frequency-encoded gradient magnetic field

Claims (9)

  1.  静磁場を形成する静磁場形成部と、
     前記静磁場内に対象を保持する対象保持部と、
     前記静磁場内の前記対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加し、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加部と、
     異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加部により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出する検出部と、
     前記検出部が検出した前記NMR信号から画像を生成する画像生成部と、
     を備え、
     前記パルス印加部は、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加し、
     前記検出部は、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出し、
     前記画像生成部は、前記全域に渡って検出された前記NMR信号全体から前記画像を生成する、
     ことを特徴とする、核磁気共鳴イメージング装置。
    A static magnetic field forming part that forms a static magnetic field,
    An object holding unit that holds an object in the static magnetic field,
    A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to the object in the static magnetic field, and an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is generated. A pulse application unit that dephases the NMR signal and then rephases it by applying
    A detection unit that detects each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitudes while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal. ,
    An image generation unit that generates an image from the NMR signal detected by the detection unit,
    With
    The pulse application unit applies the pulse sequence to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
    The detection unit detects the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
    The image generation unit generates the image from the entire NMR signal detected over the entire area.
    A nuclear magnetic resonance imaging apparatus characterized by this.
  2.  測定対象の原子が、スピン量子数3/2の原子核である、請求項1に記載の核磁気共鳴イメージング装置。 The nuclear magnetic resonance imaging apparatus according to claim 1, wherein the atom to be measured is an atomic nucleus having a spin quantum number of 3/2.
  3.  測定対象の原子が、23Naである、請求項2に記載の核磁気共鳴イメージング装置。 The nuclear magnetic resonance imaging apparatus according to claim 2, wherein the atom to be measured is 23 Na.
  4.  前記パルスシークエンスに、前置RFパルスを敷設することによって、コントラスト画像を生成する、請求項1から3のいずれか1項に記載の核磁気共鳴イメージング装置。 The nuclear magnetic resonance imaging apparatus according to any one of claims 1 to 3, which generates a contrast image by laying a pre-RF pulse in the pulse sequence.
  5.  測定対象の原子が23Naであり、
     繰り返し時間が30ms未満であり、
     前記画像が密度分布画像である、
     請求項1から4のいずれか1項に記載の核磁気共鳴イメージング装置。
    The atom to be measured is 23 Na,
    The repetition time is less than 30 ms
    The image is a density distribution image,
    The nuclear magnetic resonance imaging apparatus according to any one of claims 1 to 4.
  6.  前記パルス印加部は、前記位相エンコードが同じ前記パルスシークエンスを複数回にわたり前記対象に印加し、
     前記画像生成部は、前記位相エンコードが同じ複数回の前記パルスシークエンスから得られた前記NMR信号を積算し、積算された前記NMR信号に基づいて前記画像を生成する、
     請求項1から5のいずれか1項に記載の核磁気共鳴イメージング装置。
    The pulse application unit applies the pulse sequence having the same phase encoding to the target a plurality of times.
    The image generation unit integrates the NMR signals obtained from the pulse sequences having the same phase encoding a plurality of times, and generates the image based on the integrated NMR signals.
    The nuclear magnetic resonance imaging apparatus according to any one of claims 1 to 5.
  7.  前記パルス印加部は、2種類の原子に対応した異なる周波数の2種類以上の前記励起パルスを印加可能である、
     請求項1から6のいずれか1項に記載の核磁気共鳴イメージング装置。
    The pulse application unit can apply two or more types of excitation pulses having different frequencies corresponding to two types of atoms.
    The nuclear magnetic resonance imaging apparatus according to any one of claims 1 to 6.
  8.  静磁場内の対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加し、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加工程と、
     異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加工程により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出する検出工程と、
     前記検出工程で検出した前記NMR信号から画像を生成する画像生成工程と、
     を備え、
     前記パルス印加工程では、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加し、
     前記検出工程では、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出し、
     前記画像生成工程では、前記全域に渡って検出された前記NMR信号全体から前記画像を生成する、
     ことを特徴とする、核磁気共鳴イメージング方法。
    A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to an object in a static magnetic field, an NMR signal is generated from the object by applying the excitation pulse, and the frequency-encoded gradient magnetic field is applied. A pulse application step in which the NMR signal is dephased and then rephased by
    A detection step of detecting each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field having different amplitudes while the NMR signal is being rephased by applying the frequency-encoded gradient magnetic field by the pulse application step. ,
    An image generation step of generating an image from the NMR signal detected in the detection step, and
    With
    In the pulse application step, the pulse sequence is applied to the target so that the echo peak comes before half of the signal acquisition time from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal.
    In the detection step, the NMR signal is detected over the entire range from the application of the frequency-encoded gradient magnetic field for rephase of the NMR signal to the elapse of the signal acquisition time.
    In the image generation step, the image is generated from the entire NMR signal detected over the entire area.
    A nuclear magnetic resonance imaging method characterized by this.
  9.  コンピュータを、
     パルス印加部に、静磁場内の対象に、励起パルス、位相エンコード勾配磁場、及び周波数エンコード勾配磁場を含むパルスシークエンスを印加させ、前記励起パルスの印加により前記対象からNMR信号を生じさせ、前記周波数エンコード勾配磁場の印加により当該NMR信号をディフェーズさせた後にリフェーズさせるパルス印加手段であって、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から信号取得時間の半分より前にエコーピークがくるような前記パルスシークエンスを前記対象に印加させるパルス印加手段、
     検出部に、異なる振幅の前記位相エンコード勾配磁場により位相エンコードされた前記NMR信号のそれぞれを、前記パルス印加部により前記周波数エンコード勾配磁場を印加して前記NMR信号をリフェーズさせている最中に検出させる検出手段であって、前記NMR信号をリフェーズさせるための前記周波数エンコード勾配磁場の印加から前記信号取得時間経過までの全域に渡って前記NMR信号を検出させる検出手段、
     画像生成部に、前記検出部で検出した前記NMR信号から画像を生成させる画像生成手段であって、前記全域に渡って検出された前記NMR信号全体から前記画像を生成させる、画像生成手段、
     として機能させる、プログラム。
    Computer,
    A pulse sequence including an excitation pulse, a phase-encoded gradient magnetic field, and a frequency-encoded gradient magnetic field is applied to a target in a static magnetic field to a pulse application unit, and an NMR signal is generated from the target by applying the excitation pulse to generate an NMR signal at the frequency. A pulse application means that dephases the NMR signal by applying an encode gradient magnetic field and then rephases the NMR signal, and echo peaks before half of the signal acquisition time from the application of the frequency encode gradient magnetic field for rephase the NMR signal. A pulse application means for applying the pulse sequence to the target.
    Each of the NMR signals phase-encoded by the phase-encoded gradient magnetic field of different amplitude is detected in the detection unit while the frequency-encoded gradient magnetic field is applied by the pulse application unit to rephase the NMR signal. A detection means for detecting the NMR signal over the entire range from the application of the frequency-encoded gradient magnetic field for rephase the NMR signal to the elapse of the signal acquisition time.
    An image generation means for causing an image generation unit to generate an image from the NMR signal detected by the detection unit, and for generating the image from the entire NMR signal detected over the entire area.
    A program that functions as.
PCT/JP2020/019524 2019-05-17 2020-05-15 Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program WO2020235505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520776A JP7412787B2 (en) 2019-05-17 2020-05-15 Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093569 2019-05-17
JP2019093569 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235505A1 true WO2020235505A1 (en) 2020-11-26

Family

ID=73458326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019524 WO2020235505A1 (en) 2019-05-17 2020-05-15 Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program

Country Status (2)

Country Link
JP (1) JP7412787B2 (en)
WO (1) WO2020235505A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768488A (en) * 2021-09-23 2021-12-10 中国科学院自动化研究所 Magnetic nanoparticle imaging method and system based on non-uniform excitation field
CN116930836A (en) * 2023-09-18 2023-10-24 哈尔滨医科大学 Multi-core synchronous integrated imaging optimal pulse power measuring method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029685A (en) * 1983-07-28 1985-02-15 Yokogawa Hokushin Electric Corp Inspecting method by nuclear magnetic resonance
JPH03231632A (en) * 1990-02-06 1991-10-15 Toshiba Corp Magnetic resonance imaging method
JPH0690921A (en) * 1992-09-11 1994-04-05 Hitachi Medical Corp Magnetic resonance imaging device
JPH06181914A (en) * 1992-08-06 1994-07-05 Wisconsin Alumni Res Found Method of nmr blood vessel figure creation
JPH07178070A (en) * 1993-12-22 1995-07-18 Hitachi Medical Corp Magnetic resonance imaging method
JP2014210175A (en) * 2013-04-04 2014-11-13 株式会社東芝 Magnetic resonance imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2860157C (en) 2011-12-21 2018-07-10 Japan Science And Technology Agency Nmr imaging device and nmr imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029685A (en) * 1983-07-28 1985-02-15 Yokogawa Hokushin Electric Corp Inspecting method by nuclear magnetic resonance
JPH03231632A (en) * 1990-02-06 1991-10-15 Toshiba Corp Magnetic resonance imaging method
JPH06181914A (en) * 1992-08-06 1994-07-05 Wisconsin Alumni Res Found Method of nmr blood vessel figure creation
JPH0690921A (en) * 1992-09-11 1994-04-05 Hitachi Medical Corp Magnetic resonance imaging device
JPH07178070A (en) * 1993-12-22 1995-07-18 Hitachi Medical Corp Magnetic resonance imaging method
JP2014210175A (en) * 2013-04-04 2014-11-13 株式会社東芝 Magnetic resonance imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREISER, A. ET AL.: "Fast 3D 23Na Gradient Echo MRI of the Human Heart", PROCEEDINGS OF INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, 1999, pages 1308, XP055761759 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768488A (en) * 2021-09-23 2021-12-10 中国科学院自动化研究所 Magnetic nanoparticle imaging method and system based on non-uniform excitation field
US11771336B2 (en) 2021-09-23 2023-10-03 Institute Of Automation, Chinese Academy Of Sciences Non-uniform excitation field-based method and system for performing magnetic nanoparticle imaging
CN116930836A (en) * 2023-09-18 2023-10-24 哈尔滨医科大学 Multi-core synchronous integrated imaging optimal pulse power measuring method and system
CN116930836B (en) * 2023-09-18 2023-11-24 哈尔滨医科大学 Multi-core synchronous integrated imaging optimal pulse power measuring method and system

Also Published As

Publication number Publication date
JPWO2020235505A1 (en) 2020-11-26
JP7412787B2 (en) 2024-01-15

Similar Documents

Publication Publication Date Title
US9513358B2 (en) Method and apparatus for magnetic resonance imaging
US6603989B1 (en) T2 contrast in magnetic resonance imaging with gradient echoes
US10768253B2 (en) MR imaging with signal suppression of a spin series
US7375520B2 (en) Method for spectrally selective B1 insensitive T2 preparation contrast enhancement for high field magnetic resonance imaging
US9316707B2 (en) System and method of receive sensitivity correction in MR imaging
JP6275148B2 (en) Metal-resistant MR imaging reference scan
CN102257399A (en) Mr imaging with cest contrast enhancement
JP5142979B2 (en) Magnetic resonance method for spatially resolving and determining relaxation parameters
US10247798B2 (en) Simultaneous multi-slice MRI measurement
CN103229069A (en) MR imaging using a multi-point dixon technique
JP5848713B2 (en) Magnetic resonance imaging apparatus and contrast-enhanced image acquisition method
JP6356809B2 (en) Zero echo time MR imaging with water / fat separation
US9291693B2 (en) Magnetic resonance imaging apparatus and control method thereof
US9211082B2 (en) Method for magnetic resonance imaging using saturation harmonic induced rotary saturation
JP2005205206A (en) Fat-water separating magnetic resonance imaging method and system using steady free precession motion
US20160291113A1 (en) Method and magnetic resonance apparatus for speed-compensated diffusion-based diffusion imaging
US10591566B2 (en) Systems and methods for steady-state echo magnetic resonance imaging
KR20140035838A (en) Method and control device to control a magnetic resonance system
WO2020235505A1 (en) Nuclear magnetic resonance imaging device, nuclear magnetic resonance imaging method, and program
JP2017530761A (en) Zero echo time MR imaging
JP6762284B2 (en) Magnetic resonance imaging device and noise removal method
US6127826A (en) EPI image based long term eddy current pre-emphasis calibration
US9772390B2 (en) Magnetic resonance imaging device and method for generating image using same
US8680860B2 (en) System and method for reducing localized signal fluctuation
WO2012140543A1 (en) Mri of chemical species having different resonance frequencies using an ultra-short echo time sequence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808278

Country of ref document: EP

Kind code of ref document: A1