WO2020235282A1 - Dimming system, information processing device, and computer program - Google Patents

Dimming system, information processing device, and computer program Download PDF

Info

Publication number
WO2020235282A1
WO2020235282A1 PCT/JP2020/017125 JP2020017125W WO2020235282A1 WO 2020235282 A1 WO2020235282 A1 WO 2020235282A1 JP 2020017125 W JP2020017125 W JP 2020017125W WO 2020235282 A1 WO2020235282 A1 WO 2020235282A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
dimming
transmittance
control unit
solar radiation
Prior art date
Application number
PCT/JP2020/017125
Other languages
French (fr)
Japanese (ja)
Inventor
紳平 岡本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021520663A priority Critical patent/JPWO2020235282A1/ja
Publication of WO2020235282A1 publication Critical patent/WO2020235282A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a dimming system, an information processing device, and a computer program for adjusting the amount of solar radiation transmitted by using a dimming member.
  • greenhouses in which the skeleton is covered with a glass or synthetic resin film are widely used in order to prevent the effects of rain and dew condensation on plants such as agricultural products.
  • So-called vinyl greenhouses are also included in this, and the same materials as greenhouses are used for solariums.
  • Patent Document 1 the surface of the windshield, the surface of the window glass of the driver's seat and the passenger seat, the surface of the window glass of the rear seat, and the surface of the rear glass are in either a transmissive state or a mirror surface state, respectively.
  • An automobile provided with an electrochromic layer that can be variably controlled to a state is disclosed.
  • Patent Document 1 describes an example in which an electrochromic layer is applied to a glass greenhouse and a vinyl greenhouse.
  • Patent Document 1 only controlling the electrochromic layer to either a transmission state or a mirror surface state is considered. Also, nothing is mentioned about how to supply power for control.
  • the present invention has been made in view of such circumstances, and an object of the present invention is a dimming system, an information processing device, and a computer program capable of adjusting the transmittance of solar radiation in a dimming member in a timely and appropriate manner. Is to provide.
  • the dimming system includes a dimming member installed on a facility and capable of adjusting the light transmittance, a solar cell that supplies power to the dimming member, and light from the dimming member. It is provided with a control unit for adjusting the transmittance of the light.
  • a dimming member whose light transmittance can be adjusted by electric power from a solar cell is installed on the facility, and the control unit adjusts the light transmittance in the dimming member.
  • the transmittance of solar radiation into the facility can be adjusted without using an external power source.
  • the dimming system includes a solar radiation sensor that detects the amount of solar radiation, and the control unit adjusts the transmittance based on the amount of solar radiation detected by the solar radiation sensor.
  • the light transmittance in the dimming member is adjusted based on the detected amount of solar radiation.
  • the solar cell is installed on or outside the facility, and the control unit is based on the amount of solar radiation detected from the generated power of the solar cell. Adjust the transmittance.
  • the solar cell can efficiently generate electricity on or off the facility. Even if the solar radiation sensor is not installed, the amount of solar radiation is detected by converting the power generated by the solar cells installed on or outside the facility, and the amount of solar radiation into the facility is based on the detected amount of solar radiation. The transmittance of the can be adjusted.
  • the dimming system includes a storage battery that stores electric power from the solar cell.
  • the power from the solar cell is stored in the dedicated battery and supplied to each part in the own device, it is necessary even in rainy weather or cloudy weather when the power generation amount of the solar cell is significantly reduced. Control can be performed.
  • the dimming system includes a reception unit that receives selection of an irradiation target to which the transmitted light of the dimming member is irradiated, and the control unit is an irradiation target that the reception unit has received the selection.
  • the transmittance is adjusted accordingly.
  • the transmittance of solar radiation into the facility can be adjusted in consideration of the difference in the irradiation target. ..
  • the facility is a greenhouse including a vinyl house
  • the irradiation target to which the transmitted light of the dimming member is irradiated is an agricultural product
  • the temperature at which the temperature in the greenhouse is detected is detected.
  • a sensor is provided, and the control unit adjusts the transmittance according to the crop based on the temperature detected by the temperature sensor.
  • the dimming member is adjusted based on the detected amount of solar radiation, but also the dimming member is based on the temperature in the greenhouse including the vinyl house and considering the difference in crops. Adjust the light transmittance in. As a result, the transmitted light of solar radiation into the greenhouse can be adjusted to a level suitable for the growth of crops.
  • the dimming member is installed in a plurality of installation areas on the facility, and the control unit adjusts the transmittance for each of the plurality of installation areas. ..
  • control unit adjusts the light transmittance of the dimming members installed in the plurality of installation areas on the facility for each installation area.
  • the transmittance of solar radiation into the facility can be adjusted according to the position in the facility of the irradiation target to which the transmitted light of the dimming member is irradiated, the portion of the irradiation target having a large shape, and the like.
  • the dimming system includes a communication unit that communicates with an external terminal, an imaging unit that images the inside of the facility, a transmittance adjusted by the control unit, the detected amount of solar radiation, and the detected amount of solar radiation. It includes a first output unit that outputs an image captured by the imaging unit to the external terminal via the communication unit.
  • the adjusted transmittance, the current amount of solar radiation, and the image in the facility can be monitored by the external terminal.
  • the dimming system includes an imaging unit that images the inside of the facility, an extraction unit that extracts an image of an imaging region corresponding to each of the installation areas from the image captured by the imaging unit, and an extraction unit.
  • the first learning model that outputs the presence / absence information of detection of the monitoring target when an image is input
  • the first acquisition unit that inputs the image extracted by the extraction unit and acquires the presence / absence information for each imaging region.
  • the control unit adjusts the transmittance for each of the plurality of installation areas based on the presence / absence information acquired by the first acquisition unit.
  • the image extracted for each imaging area corresponding to the installation area of the dimming member is input to the first learning model from the image in the facility, and the detection of the monitoring target acquired from the first learning model is detected.
  • the light transmittance is adjusted for each installation area of the dimming member based on the presence / absence information. This makes it possible to finely adjust the light transmittance according to the difference in the monitoring target and the position of the monitoring target.
  • the monitoring target is livestock or seafood
  • the control unit determines that detection is possible based on the presence / absence information acquired by the first acquisition unit.
  • the transmittance is adjusted according to the movement between the imaging regions.
  • the light transmittance in the dimming member corresponding to the imaging region is adjusted according to the movement between the imaging regions of the livestock or seafood to be monitored.
  • the transmittance of solar radiation to the destination can be adjusted according to the movement of livestock or seafood.
  • the image pickup unit captures an image of the inside of the facility and a second learning model that outputs information on the degree of sunburn to be monitored when an image is input.
  • the control unit includes a second acquisition unit that inputs an image and acquires the degree information, and the control unit adjusts the transmittance based on the degree information acquired by the second acquisition unit.
  • the image in the facility is input to the second learning model, and the light transmittance in the dimming member is adjusted based on the degree information of sunburn acquired from the second learning model. This makes it possible to finely adjust the light transmittance according to the degree of sunburn to be monitored.
  • the dimming system outputs a communication unit that communicates with an external terminal, an imaging unit that images the inside of the facility, and information on the degree of growth of the monitored object when an image is input.
  • the third acquisition unit that inputs the image captured by the imaging unit to acquire the degree information and the degree information acquired by the third acquisition unit are transmitted to the third learning model via the communication unit. It includes a second output unit that outputs to the terminal.
  • the image in the facility is input to the third learning model, and the growth degree information acquired from the third learning model is output to the external terminal.
  • the degree of growth of the monitored object can be monitored by the external terminal.
  • the information processing device includes an output unit that outputs a command value for adjusting the light transmittance in a dimming member that is installed on the facility and is supplied with power from a solar cell, and an output unit of the facility. It includes an acquisition unit that acquires the amount of solar radiation around it, and a control unit that controls a command value output from the output unit based on the amount of solar radiation acquired by the acquisition unit.
  • the amount of solar radiation around the facility where the dimming member whose light transmittance can be adjusted is acquired, and the command value for adjusting the transmittance based on the acquired amount of solar radiation is set. Output.
  • the light transmittance of the dimming member can be adjusted remotely at a position away from the facility.
  • the computer program according to one aspect of the present disclosure communicates with an external device that adjusts the light transmission rate in the dimming member installed on the facility and supplied with power from the solar cell, and the transmission rate adjusted by the external device. Is acquired, and the computer is made to execute the process of displaying the acquired transparency.
  • the adjusted light transmittance is acquired and displayed by communication.
  • the light transmittance of the dimming member can be monitored by the computer terminal.
  • the external device is installed in each of a plurality of facilities, and the computer is made to execute a process of displaying the transmittance acquired for the plurality of facilities.
  • the light transmittance of the dimming members installed on a plurality of facilities can be monitored by one computer terminal.
  • the computer program accepts the selection of the facility and causes the computer to execute a process of displaying the transmittance acquired for the selected facility.
  • the light transmittance of the light control member on the facility selected by the computer user can be monitored by the computer terminal.
  • FIG. It is a block diagram which shows the structural example of the dimming system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structural example of the external terminal which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows typically the appearance of the vinyl house in which a dimming system is installed. It is a schematic perspective view of the inside of a vinyl house as seen from the wife's face. It is sectional drawing which shows typically the structure of the dimming member. It is a graph which illustrates the wavelength characteristic of the light transmittance in a dimming member. It is a chart which shows the correspondence between the amount of solar radiation and room temperature, and the adjustment coefficient A of the transmittance.
  • FIG. 5 is a flowchart showing a processing procedure of a control unit that recognizes a monitoring target in an image in the dimming system according to the third embodiment. It is a schematic diagram which shows the content example of the learning model which concerns on Embodiment 3. It is a schematic diagram which shows the content example of the learning model which concerns on modification 2. It is a flowchart which shows the processing procedure of the control part which recognizes the degree of sunburn by the dimming control device which concerns on Embodiment 4.
  • FIG. 1 is a block diagram showing a configuration example of the dimming system 100 according to the first embodiment.
  • the dimming system 100 includes a dimming member 3, 3, 3 in which the light transmittance can be adjusted, a dimming control device 1 for controlling the light transmittance in the dimming member 3, 3, and 3.
  • the dimming control device 1 and solar panels 4, 4, 4 which are modularized solar cells serving as a power source for the dimming members 3, 3, and 3 are included.
  • the dimming control device 1 is communicably connected to an external terminal 200 (corresponding to an external device) via a network Nw including a mobile phone network or on a one-to-one basis.
  • the dimming control device 1 includes a control unit 10, a storage unit 11, a display unit 12, an operation unit 13, a voltage / current acquisition unit 14, a solar radiation sensor 15, a temperature / humidity sensor 16, an imaging unit 17, a drive unit 18, and a communication unit 19. Be prepared.
  • the dimming control device 1 further includes a DCDC converter 21 that further converts the voltage from the solar panels 4, 4, and 4 to generate a voltage of the power supply Vcc, and a power supply battery 22 (corresponding to a storage battery) charged by the DCDC converter 21. To be equipped. Each part in the dimming control device 1 is operated by the power supply Vcc.
  • the control unit 10 includes one or a plurality of processors such as a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and a GPU (Graphics Processing Unit).
  • the control unit 10 controls the entire device by executing the control program stored in the storage unit 11.
  • the storage unit 11 rewrites a flash memory, a non-volatile memory such as EPROM (Erasable Programmable Read Only Memory) and EPROM (Electrically EPROM: registered trademark), and a DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory). Includes possible memory.
  • the non-volatile memory stores in advance a control program executed by the control unit 10 and various data.
  • the rewritable memory stores learning models X, Y, Z, which will be described later, and data that is temporarily generated.
  • the display unit 12 is a display device such as a liquid crystal display or an organic EL display, and is controlled by the control unit 10 to display various information.
  • the operation unit 13 is an interface for receiving an operation by the user, and may be configured by a physical button or a touch panel integrated with the display unit 12.
  • the voltage / current acquisition unit 14 is an interface for acquiring the voltage and current generated by the solar panels 4, 4, 4 from the detection unit 40.
  • the generated power (kW) is calculated by multiplying the voltage and current acquired by the voltage / current acquisition unit 14 to obtain the moving average value. It is also possible to obtain the amount of solar radiation (kW / m 2 ) by converting the generated power.
  • the solar radiation sensor 15 is provided outside the vinyl house 300 (see FIG. 3), which will be described later, and detects the amount of solar radiation.
  • the temperature / humidity sensor 16 is provided inside the greenhouse 300 and detects the temperature and humidity inside the greenhouse.
  • the imaging unit 17 is provided in the upper part of the central portion in the vinyl house 300, and captures a bird's-eye view image in the vinyl house 300.
  • the drive unit 18 supplies a current to the dimming members 3, 3 and 3 in order to adjust the light transmittance of the dimming members 3, 3 and 3.
  • the dimming members 3, 3, ... 3 have a rectangular shape in a plan view, and the light transmission mode changes from a transparent state to a light-shielding state according to the supplied current, but the light transmitting member 3, 3, ... 3 is limited to this. It's not a thing.
  • it may be a gas chromic sheet whose light transmittance changes depending on a gas such as hydrogen.
  • the communication unit 19 is an interface for connecting to the network Nw by wireless communication, and transmits / receives data including an image to / from the external terminal 200 via the network Nw.
  • the communication unit 19 performs communication conforming to the standard of the mobile communication system via, for example, a base station (not shown), and is an external terminal in an infrastructure mode via a wireless LAN access point or an ad hoc mode by peer-to-peer connection. It may communicate with 200.
  • the communication unit 19 may also communicate with the external terminal 200 by wireless communication conforming to the communication standard of Bluetooth (registered trademark).
  • the voltage and current generated by the solar panels 4, 4, and 4 are input via the detection unit 40, and the generated power is efficiently supplied to the power supply battery by performing MPPT (Maximum Power Point Tracking) control.
  • MPPT Maximum Power Point Tracking
  • FIG. 2 is a block diagram showing a configuration example of the external terminal 200 according to the first embodiment.
  • the external terminal 200 is, for example, a smartphone, but may be a wearable device such as a tablet terminal, a general-purpose PC (Personal Computer), or a smart watch.
  • the external terminal 200 includes a control unit 210, a storage unit 211, a display unit 212, an operation unit 213, and a communication unit 214.
  • the operation unit 213 is a touch panel integrated with the display unit 212, but is not limited thereto.
  • the control unit 210 includes a processor such as a CPU and a GPU, and a memory and the like.
  • the control unit 210 may be configured as one piece of hardware (SoC: System On a Chip) in which a processor, a memory, a storage unit 211, and a communication unit 214 are integrated.
  • SoC System On a Chip
  • the control unit 210 performs control based on the application program 211a stored in the storage unit 211.
  • the storage unit 211 includes a non-volatile memory such as a flash memory.
  • the storage unit 211 stores the application program 211a.
  • the application program 211a may include a Web browser function, or a general-purpose Web browser program may be separately stored in the storage unit 211.
  • the application program 211a may be one that is stored in the storage medium 215 and is read out by the control unit 210 via the communication unit 214 or an input / output unit (not shown) and duplicated in the storage unit 211.
  • the communication unit 214 is an interface for connecting to the network Nw by wireless communication, and transmits / receives data including an image to / from the dimming control device 1 via the network Nw.
  • the communication unit 214 may communicate with the external terminal 200 in an infrastructure mode via a wireless LAN access point or an ad hoc mode by peer-to-peer connection, or may be a wireless device conforming to a Bluetooth (registered trademark) communication standard. It may communicate with the dimming control device 1 by communication.
  • FIG. 3 is a perspective view schematically showing the appearance of the vinyl house 300 in which the dimming system 100 is installed.
  • the vinyl house 300 (corresponding to a facility that is a greenhouse) is a front-view kamaboko-shaped structure in which a plurality of pipe-shaped bone members are connected at appropriate positions with a fastener to form a sheet material made of a synthetic resin film. The sheet material is provided so as to give tension.
  • the gable-shaped roof portion 301 is supported by the side surface portions 302 from both sides in the inclined direction, and the end face portion 303 closes the end faces facing each other in the longitudinal direction.
  • the dimming members 3, 3, ... 3 are arranged and installed in the area where the height on the roof portion 301 is relatively high, but they do not necessarily have to be aligned.
  • the dimming members 3, 3, ... 3 may be installed on the side surface portion 302.
  • the dimming members 3, 3, ... 3 are installed on either the upper surface side or the lower surface side of the roof portion 301, or on the outer side or the inner side of the side surface portion 302.
  • the dimming members 3, 3, ... 3 themselves may form a part of the roof portion 301 or the side surface portion 302.
  • the arrangement in the longitudinal direction of a series of regions in the vinyl house 300 is referred to as a "row", and the arrangement in the direction orthogonal to the longitudinal direction is referred to as a "column”.
  • the dimming members 3, 3, ... 3 are installed in the installation area of 2 rows and 4 columns, but are not limited to this, and are installed in the installation area of 1 row or 3 rows or more. It may be installed in the installation area of 1 to 3 rows or 5 rows or more.
  • Solar panels 4, 4, 4 are installed side by side in the area where the height on the roof 301 is relatively low.
  • the solar panels 4, 4, ... 4 do not necessarily have to be installed on the vinyl house 300, but it is preferable that the solar panels 4, 4, ... 4 are installed in a sunny position outside the vinyl house 300.
  • the solar radiation sensor 15 is installed at an appropriate position on the roof portion 301, for example.
  • FIG. 4 is a schematic perspective view of the inside of the vinyl house 300 as viewed from the end face portion 303.
  • the installation area in the mth row and nth column (m and n are natural numbers) is represented by Ra [m, n]. It is assumed that the side surface portion 302 located on the right side of the paper surface faces south.
  • the installation areas on the sloped portion on the south side of the roof portion 301 are Ra [1,1] to Ra [1,4] in order from the west side. Further, the installation area on the inclined portion on the north side of the roof portion 301 is Ra [2,1] to Ra [2,4] in order from the west side.
  • the imaging unit 17 is installed downward in the central portion of the lower surface of the roof portion 301.
  • each of the imaging areas Rb [1,1] to Rb [2,4] is, for example, an area in which the installation areas Ra [1,1] to Ra [2,4] are projected onto the open ground from one point outside the greenhouse 300. is there.
  • This one point may be a fixed point, or may be, for example, a point that changes with the movement of the sun on the celestial sphere.
  • a table for converting the position of the sun on the celestial sphere with respect to the date and time is stored, and the imaging regions Rb [1,1] to Rb [2] are stored according to the position of the sun converted using the table. 4] may be determined.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the dimming member 3.
  • the dimming member 3 includes two EC (Electrochromic) layers 32a and 32b with an electrolyte layer 31 interposed therebetween, and is transparent on the surface of each of the EC layers 32a and 32b opposite to the electrolyte layer 31 side. Electrodes 33a and 33b are formed.
  • Each of the transparent electrodes 33a and 33b is a conductive layer formed on one surface of a transparent base material 34a and 34b such as glass. That is, the transparent electrode 33a, the EC layer 32a, the electrolyte layer 31, the EC layer 32b, and the transparent electrode 33b are laminated in this order between the two transparent base materials 34a and 34b.
  • a sealing material 30 for sealing the electrolyte is provided at the end of the electrolyte layer 31.
  • the electrolyte layer 31 is a carrier supply layer that supplies electrons or ions to the EC layers 32a and 32b.
  • the electrolyte various forms such as solid, liquid, and gel can be used.
  • the ion source lithium salt, sodium salt, potassium salt and the like are mainly used.
  • the EC layers 32a and 32b contain compounds that develop color by a redox reaction.
  • a redox reaction for example, when an oxidation-type coloring compound that develops color by an oxidation reaction is used for the EC layer 32a and a reduction-type coloring compound that develops color by a reduction reaction is used for the EC layer 32b, the EC layers 32a and 32b develop color when energized. It becomes a light-shielded state, and when the energization is stopped, the color fades and becomes transparent.
  • PEDOT polyethylene dioxythiophene
  • polyaniline polyaniline
  • ITO Indium Tin Oxide
  • a take-out electrode (not shown) for connecting to the drive unit 18 is provided at one end of each of the transparent electrodes 33a and 33b.
  • the transparent substrates 34a and 34b are not limited to glass, and an insulating film that is colorless and transparent and has flexibility in the visible light region may be used.
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are preferable.
  • the dimming member 3 supplies an electric current between the transparent electrodes 33a and 33b from the drive unit 18 to transfer ions between the EC layers 32a and 32b via the electrolyte layer 31.
  • the EC layers 32a and 32b are redox-reduced to develop a color (transparent ⁇ colored), and the color of the transmitted light changes.
  • the structure of the dimming member 3 is such that the transparent electrodes 33a and 33b and the EC layers 32a and 32b face each other via the electrolyte layer 31, but the structure is not necessarily limited to this structure.
  • the design may be flexibly changed according to the request, such as those having the EC layer 32a or 32b on only one side or those having no sealing material 30.
  • FIG. 6 is a graph illustrating the wavelength characteristics of the light transmittance of the dimming member 3.
  • the horizontal axis of the figure represents the wavelength of light (nm), and the vertical axis represents the transmittance of light (%).
  • the light transmittance is 3% in the wavelength region including the visible light region where the wavelength is 380 nm to 780 nm. It drops below.
  • the dimming member 3 fades and becomes transparent (indicated by a solid line)
  • the light transmittance increases to 60 to 70% in a wavelength region including a visible light region excluding a part on the short wavelength side.
  • the color of the dimming member 3 at the time of color development changes due to the difference in the color-developing compound contained in the EC layers 32a and 32b. That is, the wavelength range when the light transmittance changes can be arbitrarily changed. Further, by controlling the magnitude of the current supplied from the drive unit 18 to the dimming member 3, the thicknesses of the EC layers 32a and 32b, and the ion source type of the electrolyte layer 31, the light transmittance in the dimming member 3 is increased. It is possible to make the state intermediate between the light-shielded state and the transparent state of the color (that is, change the light transmittance arbitrarily).
  • the dimming control device 1 acquires the amount of solar radiation from the solar radiation sensor 15, acquires the temperature and humidity in the vinyl house 300 from the temperature and humidity sensor 16, and acquires them in chronological order.
  • the light transmittance of the dimming members 3, 3, 3 is adjusted based on the amount of solar radiation and the temperature and humidity.
  • the acquired solar radiation amount and temperature and the adjusted transmittance are output to the external terminal 200 via the network Nw.
  • the external terminal 200 acquires the amount of solar radiation, the temperature, and the transmittance from the dimming control device 1 and displays them on the display unit 212.
  • the light transmittance is independently adjusted for each dimming member 3, 3, 3 installed in different installation areas according to changes in the amount of solar radiation and changes in temperature and humidity. Therefore, in the first embodiment, the transmittance adjustment coefficient A according to the amount of solar radiation and the temperature and the transmittance adjustment coefficient B according to the installation area of the dimming members 3, 3, 3 are introduced.
  • the dimming control device 1 adjusts the transmittance of the dimming members 3, 3, ... 3 according to the multiplication value of the adjustment coefficient A and the adjustment coefficient B.
  • FIG. 7 is a chart showing the correspondence between the amount of solar radiation and room temperature and the adjustment coefficient A of the transmittance.
  • FIG. 8 is a chart showing the correspondence between the installation areas of the dimming members 3, 3, ... 3 and the transmittance adjustment coefficient B.
  • the five stages of the scope of the solar radiation amount from 0.1 kw / m 2 to 0.9 kW / m 2, Yes divided into a 0.1 kw / m 2 and less than 0.9 kW / m 2 or more, a solar radiation
  • the adjustment coefficient A becomes smaller as the amount is larger.
  • the temperature range is divided into five stages from 0 ° C. to 50 ° C., and less than 0 ° C. and 50 ° C.
  • the numerical values in FIG. 7 are stored in the storage unit 11 as a table associated with the amount of solar radiation and the temperature. These numbers are examples, and are not limited to these. It is preferable to use a table in which the same or different numerical values as those shown in FIG. 7 are stored according to the humidity.
  • the guideline of the numerical value of the amount of solar radiation shown in FIG. 7 is as follows.
  • the number of rows and the number of columns in the installation area of the dimming members 3, 3, ... 3 are set to M (M is a natural number of 4 or more) and N (N is a natural number of 5 or more), respectively. It is generalized.
  • the adjustment coefficient B becomes smaller as the installation area represented by the row number and the column number is closer to the central portion of the roof portion 301.
  • the numerical values in FIG. 8 are stored in the storage unit 11 as a table associated with the row numbers and the column numbers. These numbers are examples, and are not limited to these. It is preferable to use a table in which numerical values that are the same as or different from the numerical values shown in FIG. 8 are stored depending on the object to be irradiated to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated.
  • FIG. 9 is a flowchart showing a processing procedure of the control unit 10 for adjusting the light transmittance in the dimming members 3, 3, and 3.
  • FIG. 10 is a flowchart showing a processing procedure of the external terminal 200 that stores the data acquired from the dimming control device 1 in the display memory.
  • FIG. 11 is a schematic view showing a display example in the external terminal 200 according to the first embodiment. The processes of FIGS. 9 and 10 are started at regular intervals (for example, every minute), but the present invention is not limited to this, and the processes may be started irregularly.
  • M and N in the figure are the number of rows and columns of the installation area of the dimming members 3, 3, ... 3, respectively.
  • Each of m and n is a counter for counting row numbers and column numbers.
  • an agricultural product is targeted for irradiation, and information indicating the object is stored in advance in the storage unit 11.
  • the relationship between the transmittance of the dimming member 3 and the current supplied to the dimming member 3 is stored in advance in the storage unit 11.
  • the adjustment coefficient A and the adjustment coefficient B are simply referred to as the coefficient A and the coefficient B, respectively.
  • the control unit 10 acquires an image for one frame from the image pickup unit 17 (S11), and the acquired image is externally transmitted via the communication unit 19. Output to the terminal 200 (S12: corresponds to a part of the first output unit). Next, the control unit 10 acquires the amount of solar radiation from the solar radiation sensor 15 (S13), acquires the temperature inside the vinyl house 300 from the temperature / humidity sensor 16 (S14), and obtains the acquired solar radiation amount and temperature in the communication unit 19. Is output to the external terminal 200 via (S15: corresponding to a part of the first output unit). Humidity may be acquired with temperature, and the acquired humidity may be output together with temperature.
  • control unit 10 reads the adjustment coefficient A from the table stored in the storage unit 11 according to the acquired amount of solar radiation and temperature (S16). Next, the control unit 10 initializes m to 1 (S17) and further initializes n to 1 (S18) in preparation for reading the adjustment coefficient B.
  • the control unit 10 reads out an object stored in the storage unit 11 in advance as an irradiation target (S20), and the mth row and nth column from the table stored in the storage unit 11 according to the read object.
  • the adjustment coefficient B of is read out (S21).
  • the control unit 10 calculates the transmittance by multiplying the constant P by the adjustment coefficient A and the adjustment coefficient B (S22), and obtains the calculated transmittance of the dimming member 3 in the mth row and nth column in the communication unit.
  • the constant P may be, for example, an average value of the transmittance on the transparent side shown in FIG.
  • the current values of m and n are added to the transmittance and output.
  • control unit 10 adjusts the transmittance of the dimming member 3 in the installation area of the mth row and nth column so as to be the value calculated in step S23 (S24).
  • control unit 10 increments n by 1 (S25) in order to advance the column number by one, and determines whether or not n becomes N + 1, that is, whether or not n exceeds the number of the last column. (S26).
  • n is not N + 1 (S26: NO)
  • the control unit 10 shifts the process to step S20 in order to adjust the transmittance of the dimming member 3 in the next row.
  • n is N + 1 (S26: YES)
  • the control unit 10 initializes the column number n to 1 (S27), and then increments m by 1 in order to advance the row number by one (S28). ), It is determined whether or not m becomes M + 1, that is, whether or not m exceeds the number of the last line (S29).
  • control unit 10 shifts the process to step S20 in order to adjust the transmittance of the dimming member 3 in the next row.
  • control unit 10 ends the process of FIG. If it is known that the object is constant in the entire area of the vinyl house 300, the process may be transferred from steps S26 and S29 to step S21.
  • the control unit 210 determines whether or not data has been received from the dimming control device 1 between the time of the previous activation and the present (). In S201), if no reception is performed (S201: NO), the process of FIG. 10 is terminated without executing any special process.
  • the control unit 201 determines whether or not the transmittance has been received (S202), and when the transmittance is received (S202: YES), the reception The transmittance acquired in this manner is stored in the display memory secured in the storage unit 11 (S203), and the process of FIG. 10 is completed.
  • the transmittance is sequentially stored in the display memory according to the values of m and n added at the time of acquisition.
  • step S202 If the transmittance is not received in step S202 (S202: NO), the control unit 210 determines whether or not the amount of solar radiation has been received (S204), and if the amount of solar radiation is received (S204: YES), receives the transmittance. The acquired amount of solar radiation is stored in the display memory (S205), and the process of FIG. 10 is completed.
  • step S204 the control unit 201 determines whether or not the temperature has been received (S206), and when the temperature is received (S206: YES), it has been received and acquired. The temperature is stored in the display memory (S207), and the process of FIG. 10 is completed.
  • step S206 determines whether or not the image data has been received (S208), and if the image data is received (S208: YES), receives and acquires the temperature.
  • the image data is stored in the display memory (S209).
  • the transmittance, the amount of solar radiation, and the temperature stored in the display memory and the image based on the stored image data are displayed on the display unit 212 at a predetermined frame rate.
  • the images output to the display unit 212 of the external terminal 200 in steps S12, S23, and S15 in the processing procedure on the dimming control device 1 side (in-house monitor image: here, here).
  • Image of cabbage the transmittance of the dimming members 3, 3, and 3 in rows M and N, and the amount of solar radiation and temperature are displayed. Humidity may be displayed in addition to temperature. For example, a grid showing an imaging area may be displayed on the monitor image in the house.
  • the display of the transmittance is not merely a matrix-like numerical display, but the numerical value of the transmittance may be displayed on the image diagram of the arrangement of the dimming members 3, 3, ... 3.
  • the dimming members 3, 3 and 3 whose light transmittance can be adjusted by the electric power from the solar panels 4, 4 and 4 are installed on the vinyl house 300.
  • the control unit 10 adjusts the light transmittance of the dimming members 3, 3, and 3. Therefore, it is possible to adjust the transmittance of solar radiation into the greenhouse 300 in a timely and appropriate manner without using an external power source.
  • the control unit 10 adjusts the light transmittance in the dimming members 3, 3, ... 3 based on the detected amount of solar radiation. Therefore, when the amount of solar radiation is excessive, the transmission of solar radiation is suppressed, and when the amount of solar radiation is relatively small, it is possible to effectively take in the solar radiation into the facility.
  • the power battery 22 stores the electric power from the solar panels 4, 4 and 4 and supplies the electric power to each part in the own device, the amount of power generated by the solar panels 4, 4 and 4 is increased. It is possible to perform the required control even in the case of rainy weather or cloudy weather, which is significantly reduced.
  • the light transmittance in the dimming members 3, 3, ... 3 is adjusted based on the detected amount of solar radiation, but also the difference in crops is determined based on the temperature in the vinyl house 300. In consideration of this, the light transmittance of the dimming members 3, 3, ... 3 is adjusted. Therefore, it is possible to adjust the transmitted light of solar radiation into the greenhouse 300 to a level suitable for the growth of agricultural products.
  • the control unit 10 adjusts the light transmittance of the dimming members 3, 3, 3 installed in the plurality of installation areas on the vinyl house 300 for each installation area.
  • the transmittance of solar radiation into the vinyl house 300 depending on the position in the vinyl house 300 to be irradiated with the transmitted light of the dimming members 3, 3, 3 and the portion having a large shape to be irradiated. Can be adjusted.
  • the adjusted transmittance, the current amount of solar radiation, and the image in the facility can be monitored by the external terminal 200.
  • the external terminal 200 acquires the adjusted light transmittance by communication and displays it on the display unit 212. Therefore, the light transmittance of the dimming members 3, 3, ... 3 can be monitored by the external terminal 200.
  • the first embodiment is a form in which the amount of solar radiation is detected by the solar radiation sensor 15, whereas the modified example 1 is a form in which the amount of solar radiation is detected from the generated power of the solar panels 4, 4, and 4. Since the block configuration of the dimming control device 1 according to the first modification is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
  • the dimming control device 1 acquires the voltage and current generated by the solar panels 4, 4, and 4 in chronological order, calculates the generated power (kW), and emits the calculated generated power to solar radiation. Convert to quantity (kW / m 2 ). This conversion is performed based on the power generation efficiency, surface area, normal angle with respect to sunlight, and the like of the solar panels 4, 4, and 4.
  • the conversion formula is stored in the storage unit 11 in advance.
  • the amount of solar radiation detected by the control unit 10 by conversion is stored in the storage unit 11, and is read out from the storage unit 11 instead of acquiring the amount of solar radiation from the solar radiation sensor 15 in step S13 of FIG.
  • FIG. 12 is a flowchart showing a processing procedure of the control unit 10 for calculating the amount of solar radiation in the dimming system according to the first modification.
  • the process of FIG. 12 is started at a fixed cycle (for example, every 10 seconds), but the present invention is not limited to this, and the process may be started irregularly.
  • the control unit 10 acquires the generated voltage from the detection unit 40 with respect to the power generated by the solar panels 4, 4, 4 (S31), and then To acquire the generated current (S32).
  • the control unit 10 calculates the generated power by multiplying the acquired generated voltage and the generated current (S33), and calculates the moving average of the generated power (S34). As a result, the instantaneous fluctuation of the generated power is smoothed.
  • the control unit 10 converts the generated power obtained by taking the moving average into the amount of solar radiation (S35), stores the amount of solar radiation detected by the conversion in the storage unit 11 (S36), and ends the process of FIG. To do.
  • the solar panels 4, 4, and 4 can efficiently generate electricity on the vinyl house 300. Further, even when the solar radiation sensor 15 is not provided, the amount of solar radiation is detected and detected by converting the generated power of the solar panels 4, 4, 4 installed on the vinyl house 300 or outside the vinyl house 300. It is possible to adjust the transmittance of solar radiation into the vinyl house 300 based on the amount of solar radiation generated.
  • the information indicating the object to be irradiated with the transmitted light of the dimming members 3, 3, ... 3 is stored in the storage unit 11 in advance, but the second embodiment is the irradiation target. It is a form that accepts the selection of. Since the block configuration of the dimming control device 1 according to the second embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
  • the control unit 10 that receives the operation displays the object selection screen on the display unit 12, and the user Let you select the object.
  • the object selected for each installation area of the dimming members 3, 3, ... 3 is stored in the storage unit 11 and read out in step S20 shown in FIG. 9 of the first embodiment. It should be noted that selecting an object for each installation area is semantically equivalent to selecting an object for each imaging area corresponding to the installation area.
  • FIG. 13 is a flowchart showing a processing procedure of the control unit 10 that accepts the selection of the irradiation target in the dimming system according to the second embodiment.
  • FIG. 14 is a schematic view showing a display example in the dimming control device 1 according to the second embodiment.
  • the process of FIG. 13 is started at a fixed cycle (for example, every 0.1 seconds), but the present invention is not limited to this, and the process may be started irregularly.
  • the control unit 10 determines whether or not there is an operation on the operation unit 13 (S41), and when there is no operation (S41: NO). ), The process of FIG. 13 is completed without executing any special process.
  • S41: YES it is further determined whether or not the operation is an operation related to the menu selection of the irradiation target (S42).
  • S42: YES the control unit 10 displays an object selection screen on the display unit 12 (S43), and ends the process of FIG. 13.
  • step S42 determines whether or not the operation is a text box selection operation (S42: NO). S44). When the operation is a text box selection operation (S44: YES), the control unit 10 moves the cursor to the selected text box (S45) and ends the process of FIG. 13.
  • step S44 determines whether or not the operation is an input operation on the text box. (S46).
  • the control unit 10 displays the input characters / numbers in the text box (S47), and ends the process of FIG.
  • step S46 determines whether or not the operation is an object selection operation. (S48).
  • the control unit 10 accepts the selected object (corresponds to the reception unit) and associates it with the installation area of the designated row number and column number. It is stored in the storage unit 11 (S49).
  • the control unit 10 ends the process of FIG.
  • the display unit 12 includes text boxes 121 and 122 for designating the row numbers and column numbers of the installation areas of the dimming members 3, 3, and 3, an object selection menu 123, and an object selection menu 123.
  • a text box 124 for inputting the number of the object to be selected and a selection button 125 for confirming the selection of the object are displayed.
  • the control unit 10 accepts the selection of the object.
  • the display unit 12 and the operation unit 13 accept the selection of the object to be irradiated, but the present invention is not limited to this.
  • the object selected by the external terminal 200 may be acquired via the communication unit 19, and the acquired object may be received (corresponding to the reception unit) and stored in the storage unit 11.
  • the vinyl house 300 by selecting in advance the irradiation target to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated, the vinyl house 300 takes into consideration the difference in the irradiation target. It is possible to adjust the transmittance of solar radiation inward.
  • the second embodiment accepts the selection of the irradiation target to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated
  • the third embodiment is the monitoring target in the image captured by the imaging unit 17. Is a form in which the recognized object is the irradiation target. Since the block configuration of the dimming control device 1 according to the third embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
  • the dimming control device 1 extracts an image of an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and is included in the extracted image.
  • the monitoring target (agricultural product) of is recognized by AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • the recognized object is stored in the storage unit 11 as an irradiation target in the imaging region, and in step S20 shown in FIG. 9 of the first embodiment, the mth row (m is a natural number from 1 to M) nth column (n). Is a natural number from 1 to N) and is read out as an object in the imaging region.
  • the read object is used for table selection in step S21.
  • FIG. 15 is a flowchart showing a processing procedure of the control unit 10 that recognizes the monitoring target in the image in the dimming system according to the third embodiment.
  • FIG. 16 is a schematic diagram showing a content example of the learning model X1 according to the third embodiment.
  • the learning model X1 (corresponding to the first learning model) is included in the learning model X shown in FIG.
  • the process of FIG. 15 is started at a fixed cycle (for example, every day), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S51 to S55 of FIG. 15 are equivalent to the processes of steps S25 to S29 of FIG. 9, the description will be simplified.
  • the control unit 10 acquires an image for one frame from the imaging unit 17 (S41). Next, the control unit 10 initializes m to 1 (S42) and further initializes n to 1 (S43) in order to start processing from the imaging region of the first row and first column.
  • control unit 10 extracts an image of the imaging region in the mth row and nth column from the acquired image (S44: corresponding to the extraction unit), inputs the extracted image into the learning model X1 (S45), and learns.
  • the presence / absence information of detection of the monitoring target is acquired from the model X1 (S46: corresponding to the first acquisition unit).
  • the learning model X1 used in steps S45 and S46 described above uses, for example, a multi-layer convolutional neural network (CNN) learned by deep learning. However, it may be learned by other machine learning.
  • a convolutional neural network has an intermediate layer between the input layer and the output layer.
  • the intermediate layer includes a convolutional layer and a pooling layer composed of a plurality of stages, and a fully connected layer in the final stage. The number of convolution layers, pooling layers and fully connected layers can be appropriately determined.
  • nodes there are one or more nodes in each of the input layer, intermediate layer and output layer.
  • the nodes of each layer are unidirectionally connected to the nodes existing in the previous and next layers with desired weights and biases.
  • the output of one layer is calculated using the activation function including the weight and the bias, and the calculated output is input to the next layer.
  • the output of the output layer is transmitted to the subsequent layers one after another until the output is obtained.
  • the learning model X1 takes the pixel value of each pixel constituting the image extracted from the image for one frame as an input, and the probability that the monitoring target exists (that is, with detection) in the input image and none of the monitoring targets exists.
  • the output is the probability (ie no detection).
  • the probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0.
  • the monitoring target here is at least one of agricultural products such as lettuce, tomato, and strawberry.
  • an appropriate filter including a convolution filter may be applied to the image, and the pixel value of each pixel obtained after applying the filter may be input to the input layer.
  • the learning model X1 was trained to output detection presence / absence information for each monitoring target when an image is input using teacher data including an image to be monitored and information indicating each type. It is a model. In the learning model X1, data such as coefficients and thresholds of a function that defines a predetermined operation performed on an input value are optimized.
  • the learning model X1 may be downloaded and stored in the storage unit 11 after being learned by a learning device composed of a personal computer, a server computer, or the like, and may be read from a portable storage medium that stores the learning model X1 and stored. It may be stored in the part 11.
  • control unit 10 determines whether or not the acquired presence / absence information indicates no detection (S47), and if it indicates no detection (S47: YES), stores that the monitoring target is not detected. It is stored in the part 11 (S48). Whether or not to indicate no detection is determined, for example, whether or not the probability of no detection is greater than 0.6.
  • the judgment threshold is not limited to 0.6.
  • the control unit 10 determines whether or not the presence / absence information indicates detection for each monitoring target (S49).
  • the presence / absence information indicates that the specific monitoring target (agricultural crops such as lettuce, tomato, and strawberry) has been detected (S49: YES)
  • the control unit 10 stores in the storage unit 11 that the specific monitoring target has been detected. (S50). Whether or not to indicate the presence or absence of detection is determined, for example, whether or not the probability of the presence or absence of detection is greater than 0.6. The judgment threshold is not limited to 0.6.
  • step S48 or S50 When the processing of step S48 or S50 is completed, or when the presence / absence information does not indicate the presence / absence of detection for any of the monitoring targets in step S49 (S49: NO), the control unit 10 increments n by 1 (S51). , N is determined to be N + 1 (S52). When n is not N + 1 (S52: NO), the control unit 10 shifts the process to step S44 in order to recognize the image in the imaging region in the next row.
  • n N + 1 (S52: YES)
  • the control unit 10 initializes the column number n to 1 (S53), then increments the row number m by 1 (S54), and m becomes M + 1. It is determined whether or not it is (S55). When m is not M + 1 (S55: NO), the control unit 10 shifts the process to step S44. On the other hand, when m is M + 1 (S55: YES), the control unit 10 ends the process of FIG.
  • steps S42 to S44 and S51 to S55 may be deleted, and the entire image acquired in step S45 may be input to the learning model X1.
  • the image extracted from the image in the vinyl house 300 for each imaging area corresponding to the installation area of the dimming member 3, 3, 3 is input to the learning model X1.
  • the light transmittance is adjusted for each installation area of the dimming members 3, 3, and 3. This makes it possible to finely adjust the light transmittance according to the difference in the monitoring target and the position of the monitoring target.
  • the image recognition of the monitored object which is an agricultural product
  • the modified example 2 the image recognition of the monitored target, which is a livestock or seafood
  • the dimming control device 1 is installed in a facility suitable for raising livestock or culturing seafood (for example, a barn such as a barn, a water tank, or a cage on the sea).
  • the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image. Recognize the subject (livestock or seafood) by AI. The recognized object is stored in the storage unit 11 and used in step S20 shown in FIG. 9 as in the case of the third embodiment. However, since livestock and seafood move around in the facility, a flowchart similar to that shown in FIG. 15 of the third embodiment is executed, for example, at a cycle of 1 minute to follow the movement of the object.
  • FIG. 17 is a schematic diagram showing a content example of the learning model X2 according to the modified example 2.
  • the learning model X2 (corresponding to the first learning model) is included in the learning model X shown in FIG. Unlike the learning model X1, the learning model X2 outputs the probability that livestock or seafood such as cows, pigs, and shrimp are present in the input image from the output layer.
  • the learning method and the like of the learning model X2 are the same as those of the learning model X1.
  • the light transmittance in the dimming members 3, 3, 3 corresponding to the imaging region is determined according to the movement between the imaging regions of the livestock or seafood to be monitored. adjust. Therefore, it is possible to adjust the transmittance of solar radiation to the destination according to the movement of livestock or seafood.
  • the third embodiment is a mode in which the light transmittance of the dimming members 3, 3, ... 3 is adjusted according to the difference in the crops to be monitored, whereas the fourth embodiment is the degree of sunburn of the crops. It is a form in which the light transmittance is adjusted accordingly. Since the block configuration of the dimming control device 1 according to the fourth embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
  • the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image.
  • the degree of sunburn of the target (agricultural product) (hereinafter referred to as the degree of sunburn) is recognized by AI.
  • the dimming control device 1 further calculates the transmittance adjustment coefficient C of the dimming members 3, 3, 3 based on the recognized sunburn degree for each installation area corresponding to the imaging area, and the calculated adjustment coefficient.
  • C is stored in the storage unit 11 as a table of sunburn adjustment coefficients in rows M and N.
  • the processing procedure for adjusting the transmittance is the same as the processing procedure shown in FIG. 9 of the first embodiment.
  • the control unit 10 reads the adjustment coefficient C of the dimming member 3 in the mth row and nth column from the table of the adjustment coefficient of the sunburn between steps S21 and S22 in FIG. 9, and in step S22, the right side
  • the transmittance is reduced according to the degree of sunburn. Since the processing contents of the other steps shown in FIG. 9 are the same as those in the first embodiment, the description of the flowchart is omitted.
  • FIG. 18 is a flowchart showing a processing procedure of the control unit 10 that recognizes the degree of sunburn in the dimming control device 1 according to the fourth embodiment.
  • FIG. 19 is a schematic diagram showing a content example of the learning model Y according to the fourth embodiment.
  • the process of FIG. 18 is started at a fixed cycle (for example, every hour), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S61 to S64 and the processes of steps S71 to S75 of FIG. 18 are equivalent to the processes of steps S41 to S44 and the processes of steps S51 to S55 of FIG. 15, most of the description is omitted. To do.
  • the control unit 10 uses the extracted image as the learning model Y (second learning). (Corresponding to the model) is input (S65), and the sunburn degree j to be monitored is acquired from the learning model Y (S66: corresponding to the second acquisition unit).
  • the sunburn degree j acquired here is, for example, the sunburn degree with the highest probability.
  • the control unit 10 stores the value of the adjustment coefficient C calculated by "1-sunburn degree j" in the mth row and nth column of the table of the adjustment coefficient of sunburn (S67).
  • incrementing n and m in sequence is the same as in the case of FIG.
  • the control unit 10 ends the process of FIG.
  • the tanning adjustment factor table stores the adjustment factor C in all of the M rows and N columns, and is ready to be referred to in the process shown in FIG. 9 of Embodiment 1.
  • the learning model Y used in steps S65 and S66 described above can use, for example, a multi-layer convolutional neural network (CNN) learned by deep learning, but other machines. It may be what was learned by learning.
  • the learning model Y uses teacher data including an image to be monitored and information indicating each degree of sunburn, and when an image is input, no sunburn or a degree of sunburn J from 1 to the degree of sunburn J is set for each monitored object.
  • the learning model Y inputs the pixel values of each pixel constituting the image extracted from the image for one frame, and determines the probability that the monitoring target in the input image is each of the sunburn degree 1 to the sunburn degree J and the probability of no sunburn. Output.
  • the probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0.
  • the learning model Y may be integrated with the learning model X1 shown in FIG. 16 of the third embodiment. In this case, from each output node of the output layer, the probability that the monitoring target is a specific crop (lettuce, tomato, ... strawberry) having a specific degree of sunburn (none or 1 to J) is subdivided for each crop. Is output.
  • the image in the vinyl house 300 is input to the learning model Y, and the light in the dimming members 3, 3, 3 is based on the degree of sunburn obtained from the learning model Y. Adjust the transmittance. Therefore, it is possible to finely adjust the light transmittance according to the degree of sunburn to be monitored.
  • the fourth embodiment recognizes the degree of growth of the crop and outputs it to the external terminal 200. Since the block configuration of the dimming control device 1 according to the fifth embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
  • the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image.
  • the degree of growth of the target (agricultural product) (hereinafter referred to as the degree of growth) is recognized by AI.
  • the ungrown and grown degree k (k 1,2 ... K: K is a natural number of 2 or more) represents the rate of growth from 0 to 1 in ascending order.
  • the dimming control device 1 further outputs the recognized growth degree to the external terminal 200 and displays it.
  • FIG. 20 is a flowchart showing a processing procedure of the control unit 10 that recognizes the degree of growth in the dimming control device 1 according to the fifth embodiment.
  • FIG. 21 is a schematic diagram showing a content example of the learning model Z according to the fifth embodiment.
  • the process of FIG. 20 is started at a fixed cycle (for example, every day), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S81 to S84 and the processes of steps S91 to S95 of FIG. 20 are equivalent to the processes of steps S41 to S44 and the processes of steps S51 to S55 of FIG. 15, most of the description is omitted. To do.
  • the control unit 10 uses the extracted image as the learning model Z (third learning). (Corresponding to the model) is input (S85), and the growth degree k of the monitoring target is acquired from the learning model Z (S86: corresponding to the third acquisition unit).
  • the growth rate k acquired here is, for example, the growth rate having the maximum probability.
  • the control unit 10 outputs the acquired growth rate k to the external terminal 200 via the communication unit 19 (S87: corresponding to the second output unit).
  • the row number m and the column number n of the imaging region are assigned to the growth degree k.
  • incrementing n and m in sequence is the same as in the case of FIG.
  • the control unit 10 ends the process of FIG. 20.
  • the external terminal 200 that has received the growth degree k for all the imaging regions can display all the growth degrees, for example, in the same manner as the display of the transmittance shown in FIG. 11 of the first embodiment.
  • the learning model Z used in steps S85 and S86 described above can use, for example, a multi-layer convolutional neural network (CNN) learned by deep learning, but other machines. It may be what was learned by learning.
  • the learning model Z uses the teacher data including the image of the monitoring target and the information indicating the growth degree of each, and when the image is input, the growth degree 1 to the growth degree K is determined for each monitoring target. A model trained to output.
  • the learning model Z inputs the pixel values of each pixel constituting the image extracted from the image for one frame, and determines the probability that the monitoring target in the input image is each of growth degree 1 to growth degree K and the probability of non-growth. Output.
  • the probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0.
  • the learning model Z may be integrated with the learning model X1 shown in FIG. 16 of the third embodiment. In this case, from each output node of the output layer, the probability that the monitoring target is a specific crop (lettuce, tomato, ... strawberry) having a specific growth rate (ungrown or 1 to K) is subdivided for each crop. It is converted and output.
  • the image in the vinyl house 300 is input to the learning model Z, and the growth degree acquired from the learning model Z is output to the external terminal 200. Therefore, when the communication is connected to the external terminal 200, the growth rate of the monitored object can be monitored by the external terminal 200.
  • the growth rate of the crop to be monitored was simply monitored, but in the fourth embodiment, the light transmittance of the dimming members 3, 3, ... 3 is adjusted.
  • the degree of growth may be reflected in the adjustment of the light transmittance, just as the degree of sunburn is reflected in.
  • the control unit 10 calculates the transmittance adjustment coefficient D of the dimming members 3, 3, ... 3 based on the recognized growth rate for each installation area corresponding to the imaging area, and the calculated adjustment coefficient D. Is stored in the storage unit 11 as a table of sunburn adjustment coefficients in M rows and N columns. Specifically, a step equivalent to step S67 of the flowchart shown in FIG.
  • the processing procedure for adjusting the transmittance is the same as the processing procedure shown in FIG. 9 of the first embodiment.
  • the control unit 10 reads the adjustment coefficient D of the dimming member 3 in the mth row and nth column from the growth adjustment coefficient table between steps S21 and S22 in FIG. 9, and in step S22, the right side
  • the transmittance is reduced according to the degree of growth.
  • each dimming control device 1 in the sixth embodiment is exactly the same as that in the first embodiment.
  • the external terminal 200 communicates with a plurality of dimming control devices 1, acquires solar radiation amount, temperature, transmittance and image data for each vinyl house 300, and stores them in different display memories (see FIG. 10).
  • the display of each greenhouse 300 can be the same as that shown in FIG. 11 of the first embodiment.
  • the page of the screen may be turned or the screen may be scrolled, but in the sixth embodiment, which greenhouse is used.
  • the user is allowed to select whether to display the 300 on the display unit 212.
  • the control unit 210 accepts the user's selection of the vinyl house 300, and displays the selected vinyl house 300 in the same manner as in FIG.
  • FIG. 22 is a flowchart showing a processing procedure of the control unit 210 that accepts the selection of the vinyl house 300 in the dimming system according to the sixth embodiment.
  • FIG. 23 is a schematic view showing a display example in the external terminal 200 according to the sixth embodiment. The process of FIG. 22 is started at a fixed cycle (for example, every 0.1 seconds), but the present invention is not limited to this, and the process may be started irregularly.
  • the control unit 210 determines whether or not there is an operation on the operation unit 213 (S211), and when there is no operation (S211: NO), The process of FIG. 22 is terminated without executing any special process.
  • S211: YES it is further determined whether or not the operation is an operation related to the menu selection to be displayed (S212).
  • the control unit 210 displays a house selection screen on the display unit 212 (S213), and ends the process of FIG. 22.
  • step S212 determines whether or not the operation is a text box selection operation (S212: NO). S214). When the operation is a text box selection operation (S214: YES), the control unit 210 moves the cursor to the selected text box (S215) and ends the process of FIG. 22.
  • step S214 determines whether or not the operation is an input operation on the text box. (S216).
  • the control unit 210 displays the input characters / numbers in the text box (S217), and ends the process of FIG. 22.
  • step S216 determines whether or not the operation is a house selection operation (S.216: NO). S218).
  • the control unit 210 displays the contents stored in the display memory (see FIG. 10) on the display unit 212 for the selected house (S219).
  • the control unit 210 ends the process of FIG. 22.
  • the display unit 212 displays a house selection menu 223, a text box 224 for inputting a house number to be selected, and a selection button 225 for confirming the house selection. There is.
  • the control unit 210 accepts the house selection.
  • the light transmittance of the dimming members 3, 3, 3 installed on the plurality of greenhouses 300 can be monitored by one external terminal 200. ..
  • the light transmittance of the dimming members 3, 3, 3 on the vinyl house 300 selected by the user of the external terminal 200 can be monitored by the external terminal 200.
  • the dimming control device 1 has all the functions for adjusting the light transmittance of the dimming members 3, 3, ... 3, but in the seventh embodiment, the network Nw The above information processing device shares a part of the functions of the dimming control device 1.
  • FIG. 24 is a block diagram showing a configuration example of the dimming system 100b according to the seventh embodiment.
  • the dimming system 100b includes dimming members 3, 3, ... 3, a dimming control device 1b, solar panels 4, 4, and 4, and an information processing device 400.
  • the information processing device 400 is communicably connected to the dimming control device 1b and the external terminal 200 via a network Nw including a mobile phone network.
  • the dimming control device 1b has a configuration in which the learning models X, Y, X in the storage unit 11, the display unit 12, and the operation unit 13 are excluded from the dimming control device 1 according to the first embodiment.
  • the dimming control device 1b includes the voltage and current acquired by the voltage / current acquisition unit 14, the amount of solar radiation detected by the solar radiation sensor 15, the temperature and humidity detected by the temperature / humidity sensor 16, and the image data captured by the imaging unit 17. Is transmitted to the information processing device 400 via the communication unit 19.
  • the dimming control device 1b also receives the transmittance calculated for each dimming member 3, 3, 3 from the information processing device, and makes each dimming member 3, 3, ... A current is supplied to 3.
  • FIG. 25 is a block diagram showing a configuration example of the information processing device 400 according to the seventh embodiment.
  • the information processing device 400 is, for example, a general-purpose PC, but may be a cloud server.
  • the information processing device 400 includes a control unit 410, a storage unit 411, a display unit 412, an operation unit 413, and a communication unit 419.
  • the functions of the display unit 412 and the operation unit 413 may be further shared by another PC or an external terminal 200.
  • another PC or the external terminal 200 may execute the process of accepting the selection of the object shown in the third embodiment.
  • the control unit 410 includes one or a plurality of processors such as a CPU, an MPU (Micro-Processing Unit), and a GPU.
  • the storage unit 411 includes a non-volatile memory and a rewritable memory.
  • the rewritable memory stores the learning models X, Y, and Z shown in FIG. 1 of the first embodiment.
  • the display unit 412 is controlled by the control unit 410 to display various types of information.
  • the operation unit 413 is, for example, a touch panel integrated with the display unit 412.
  • the communication unit 419 transmits / receives data including an image between the dimming control device 1b and the external terminal 200 via the network Nw.
  • the information processing device 400 configured as described above communicates the amount of solar radiation detected by the solar radiation sensor 15 from the dimming control device 1b, the temperature detected by the temperature / humidity sensor 16, and the image data captured by the imaging unit 17. Receive and acquire by 419.
  • the information processing device 400 transmits the acquired solar radiation amount, temperature, and image data to the external terminal 200, and based on the acquired solar radiation amount and temperature (or temperature / humidity), the light in each dimming member 3, 3, ...
  • the transmittance of the light is calculated, and the calculated transmittance is transmitted to the dimming control device 1b.
  • the flowchart showing the operation of the dimming control device 1b is a part deleted or changed from the one shown in FIG. 9 of the first embodiment. Specifically, the output target in steps S12 and S15 is the information processing device, steps S16 and S20 to S22 are deleted, the transmittance is received from the information processing device 400 in step S23, and dimming is performed in step S24. The light transmittance of the members 3, 3, ... 3 is adjusted.
  • the flowchart showing the operation of the information processing device 400 is substantially the same as that shown in FIG. 9 of the first embodiment.
  • the control unit 410 executes all the steps of FIG. 9, the acquisition target in steps S11, S13 (corresponding to the acquisition unit) and S14 is the dimming control device 1b, and the output in steps S12 and S15.
  • the target is the external terminal 200
  • the target of output in step S23 (corresponding to the output unit that outputs the command value) is the dimming control device 1b and the external terminal 200. Since the transmittance is adjusted based on the command value by the dimming control device 1b, step S24 is deleted.
  • the information processing apparatus 400 dims the amount of solar radiation around the vinyl house 300 in which the dimming members 3, 3, 3 for adjusting the light transmittance are installed. It is acquired via the control device 1b, and a command value for adjusting the transmittance based on the acquired amount of solar radiation is output to the dimming control device 1b. As a result, the light transmittance of the dimming members 3, 3, 3 can be adjusted remotely at a position away from the vinyl house 300. That is, even when the function of the dimming control device 1 is shared between the dimming control device 1b and the information processing device 400, the same effect as in the case of the first embodiment is obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Botany (AREA)
  • Architecture (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Civil Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A dimming system comprises: dimming members installed in a facility, the dimming members making it possible to adjust the transmittance of light; a solar cell that supplies electric power to the dimming members; and a control unit that adjusts the transmittance of light of the dimming members.

Description

調光システム、情報処理装置及びコンピュータプログラムDimming system, information processing device and computer program
 本発明は、調光部材を用いて日射の透過量を調整する調光システム、情報処理装置及びコンピュータプログラムに関する。 The present invention relates to a dimming system, an information processing device, and a computer program for adjusting the amount of solar radiation transmitted by using a dimming member.
 従来、農作物等の植物に対する雨及び結露の影響を防ぐために、躯体をガラス又は合成樹脂のフィルムで覆った温室が広く用いられている。いわゆるビニールハウスもこれに含まれており、サンルームにも温室と同様の部材が用いられる。 Conventionally, greenhouses in which the skeleton is covered with a glass or synthetic resin film are widely used in order to prevent the effects of rain and dew condensation on plants such as agricultural products. So-called vinyl greenhouses are also included in this, and the same materials as greenhouses are used for solariums.
 一方、日射量が比較的多い地域では、温室内の植物に日焼けが生じるため、必要に応じて日射量を低減することが望まれる。過大な日射量の影響を特に受け易い自動車についても同様の事情がある。 On the other hand, in areas where the amount of solar radiation is relatively high, the plants in the greenhouse will get sunburned, so it is desirable to reduce the amount of solar radiation as necessary. The same is true for automobiles, which are particularly susceptible to excessive solar radiation.
 これに対し、特許文献1には、フロントガラスの表面、運転席及び助手席の窓ガラスの表面、後部座席の窓ガラスの表面、並びにリアガラスの表面それぞれに、透過状態及び鏡面状態の何れかの状態に可変に制御し得るエレクトロクロミック層が設けられた自動車が開示されている。特許文献1には、ガラス温室及びビニールハウスにエレクトロクロミック層を適用した例が記載されている。 On the other hand, in Patent Document 1, the surface of the windshield, the surface of the window glass of the driver's seat and the passenger seat, the surface of the window glass of the rear seat, and the surface of the rear glass are in either a transmissive state or a mirror surface state, respectively. An automobile provided with an electrochromic layer that can be variably controlled to a state is disclosed. Patent Document 1 describes an example in which an electrochromic layer is applied to a glass greenhouse and a vinyl greenhouse.
特開2014-104863号公報Japanese Unexamined Patent Publication No. 2014-104863
 しかしながら、特許文献1に開示された技術では、エレクトロクロミック層を透過状態及び鏡面状態の何れかに制御することしか考慮されていない。また、制御を行うための電源をどのように供給するかついては、何も言及されていない。 However, in the technique disclosed in Patent Document 1, only controlling the electrochromic layer to either a transmission state or a mirror surface state is considered. Also, nothing is mentioned about how to supply power for control.
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、調光部材における日射の透過率を適時適切に調整することが可能な調光システム、情報処理装置及びコンピュータプログラムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is a dimming system, an information processing device, and a computer program capable of adjusting the transmittance of solar radiation in a dimming member in a timely and appropriate manner. Is to provide.
 本開示の一態様に係る調光システムは、施設上に設置され、光の透過率が調整可能な調光部材と、該調光部材に電源を供給する太陽電池と、前記調光部材の光の透過率を調整する制御部とを備える。 The dimming system according to one aspect of the present disclosure includes a dimming member installed on a facility and capable of adjusting the light transmittance, a solar cell that supplies power to the dimming member, and light from the dimming member. It is provided with a control unit for adjusting the transmittance of the light.
 本態様にあっては、太陽電池からの電力により光の透過率が調整可能な調光部材が施設上に設置されており、該調光部材における光の透過率を制御部が調整する。これにより、施設内への日射の透過率を外部電源によらずに調整することができる。 In this embodiment, a dimming member whose light transmittance can be adjusted by electric power from a solar cell is installed on the facility, and the control unit adjusts the light transmittance in the dimming member. As a result, the transmittance of solar radiation into the facility can be adjusted without using an external power source.
 本開示の一態様に係る調光システムは、日射量を検出する日射センサを備え、前記制御部は、前記日射センサにより検出した日射量に基づいて前記透過率を調整する。 The dimming system according to one aspect of the present disclosure includes a solar radiation sensor that detects the amount of solar radiation, and the control unit adjusts the transmittance based on the amount of solar radiation detected by the solar radiation sensor.
 本態様にあっては、検出した日射量に基づいて調光部材における光の透過率を調整する。これにより、日射量が過大であるときは日射の透過を抑制し、日射量が比較的少ないときは施設内に日射を有効に取り込むことができる。 In this aspect, the light transmittance in the dimming member is adjusted based on the detected amount of solar radiation. As a result, when the amount of solar radiation is excessive, the transmission of solar radiation is suppressed, and when the amount of solar radiation is relatively small, the solar radiation can be effectively taken into the facility.
 本開示の一態様に係る調光システムは、前記太陽電池は、前記施設上又は前記施設外に設置されており、前記制御部は、前記太陽電池の発電電力から検出した日射量に基づいて前記透過率を調整する。 In the dimming system according to one aspect of the present disclosure, the solar cell is installed on or outside the facility, and the control unit is based on the amount of solar radiation detected from the generated power of the solar cell. Adjust the transmittance.
 本態様にあっては、太陽電池は、施設上又は施設外にて効率よく発電することができる。また、日射センサが備わっていない場合であっても、施設上又は施設外に設置された太陽電池の発電電力を換算して日射量を検出し、検出した日射量に基づいて施設内への日射の透過率を調整することができる。 In this embodiment, the solar cell can efficiently generate electricity on or off the facility. Even if the solar radiation sensor is not installed, the amount of solar radiation is detected by converting the power generated by the solar cells installed on or outside the facility, and the amount of solar radiation into the facility is based on the detected amount of solar radiation. The transmittance of the can be adjusted.
 本開示の一態様に係る調光システムは、前記太陽電池からの電力を蓄電する蓄電池を備える。 The dimming system according to one aspect of the present disclosure includes a storage battery that stores electric power from the solar cell.
 本態様にあっては、専用バッテリに太陽電池からの電力を蓄電して自装置内の各部に給電するため、太陽電池の発電量が大幅に低下する雨天又は曇天の場合であっても所要の制御を行うことができる。 In this embodiment, since the power from the solar cell is stored in the dedicated battery and supplied to each part in the own device, it is necessary even in rainy weather or cloudy weather when the power generation amount of the solar cell is significantly reduced. Control can be performed.
 本開示の一態様に係る調光システムは、前記調光部材の透過光が照射される照射対象の選択を受け付ける受付部を備え、前記制御部は、前記受付部が選択を受け付けた照射対象に応じて前記透過率を調整する。 The dimming system according to one aspect of the present disclosure includes a reception unit that receives selection of an irradiation target to which the transmitted light of the dimming member is irradiated, and the control unit is an irradiation target that the reception unit has received the selection. The transmittance is adjusted accordingly.
 本態様にあっては、調光部材の透過光が照射される照射対象を予め選択しておくことにより、照射対象の違いを考慮して施設内への日射の透過率を調整することができる。 In this embodiment, by selecting in advance the irradiation target to which the transmitted light of the dimming member is irradiated, the transmittance of solar radiation into the facility can be adjusted in consideration of the difference in the irradiation target. ..
 本開示の一態様に係る調光システムは、前記施設はビニールハウスを含む温室であり、前記調光部材の透過光が照射される照射対象は農作物であり、前記温室内の温度を検出する温度センサを備え、前記制御部は、前記温度センサで検出した温度に基づき、前記農作物に応じて前記透過率を調整する。 In the dimming system according to one aspect of the present disclosure, the facility is a greenhouse including a vinyl house, the irradiation target to which the transmitted light of the dimming member is irradiated is an agricultural product, and the temperature at which the temperature in the greenhouse is detected is detected. A sensor is provided, and the control unit adjusts the transmittance according to the crop based on the temperature detected by the temperature sensor.
 本態様にあっては、検出した日射量に基づいて調光部材における光の透過率を調整するのみならず、ビニールハウスを含む温室内の温度に基づき、農作物の違いを考慮して調光部材における光の透過率を調整する。これにより、温室内への日射の透過光を農作物の生育に適したレベルに調整することができる。 In this aspect, not only the light transmittance in the dimming member is adjusted based on the detected amount of solar radiation, but also the dimming member is based on the temperature in the greenhouse including the vinyl house and considering the difference in crops. Adjust the light transmittance in. As a result, the transmitted light of solar radiation into the greenhouse can be adjusted to a level suitable for the growth of crops.
 本開示の一態様に係る調光システムは、前記調光部材は、前記施設上の複数の設置領域に設置されており、前記制御部は、前記複数の設置領域毎に前記透過率を調整する。 In the dimming system according to one aspect of the present disclosure, the dimming member is installed in a plurality of installation areas on the facility, and the control unit adjusts the transmittance for each of the plurality of installation areas. ..
 本態様にあっては、施設上の複数の設置領域に設置された調光部材における光の透過率を、設置領域毎に制御部が調整する。これにより、調光部材の透過光が照射される照射対象の施設内における位置、形状が大きい照射対象の部位等に応じて施設内への日射の透過率を調整することができる。 In this embodiment, the control unit adjusts the light transmittance of the dimming members installed in the plurality of installation areas on the facility for each installation area. As a result, the transmittance of solar radiation into the facility can be adjusted according to the position in the facility of the irradiation target to which the transmitted light of the dimming member is irradiated, the portion of the irradiation target having a large shape, and the like.
 本開示の一態様に係る調光システムは、外部端末との間で通信を行う通信部と、前記施設内を撮像する撮像部と、前記制御部が調整した透過率、前記検出した日射量及び前記撮像部が撮像した画像を、前記通信部を介して前記外部端末に出力する第1出力部とを備える。 The dimming system according to one aspect of the present disclosure includes a communication unit that communicates with an external terminal, an imaging unit that images the inside of the facility, a transmittance adjusted by the control unit, the detected amount of solar radiation, and the detected amount of solar radiation. It includes a first output unit that outputs an image captured by the imaging unit to the external terminal via the communication unit.
 本態様にあっては、外部端末と通信接続した場合は、調整された透過率、現在の日射量及び施設内の画像を外部端末にてモニタすることができる。 In this embodiment, when a communication connection is made with an external terminal, the adjusted transmittance, the current amount of solar radiation, and the image in the facility can be monitored by the external terminal.
 本開示の一態様に係る調光システムは、前記施設内を撮像する撮像部と、該撮像部が撮像した画像から、前記設置領域のそれぞれに対応する撮像領域の画像を抽出する抽出部と、画像を入力した場合に監視対象の検出の有無情報を出力する第1学習モデルに、前記抽出部が抽出した画像を入力して前記有無情報を前記撮像領域毎に取得する第1取得部とを備え、前記制御部は、前記第1取得部により取得した有無情報に基づいて前記複数の設置領域毎に前記透過率を調整する。 The dimming system according to one aspect of the present disclosure includes an imaging unit that images the inside of the facility, an extraction unit that extracts an image of an imaging region corresponding to each of the installation areas from the image captured by the imaging unit, and an extraction unit. In the first learning model that outputs the presence / absence information of detection of the monitoring target when an image is input, the first acquisition unit that inputs the image extracted by the extraction unit and acquires the presence / absence information for each imaging region. The control unit adjusts the transmittance for each of the plurality of installation areas based on the presence / absence information acquired by the first acquisition unit.
 本態様にあっては、施設内の画像から、調光部材の設置領域に対応する撮像領域毎に抽出した画像を第1学習モデルに入力し、第1学習モデルから取得した監視対象の検出の有無情報に基づいて、調光部材の設置領域毎に光の透過率を調整する。これにより、監視対象の違い及び監視対象の位置に応じたきめ細かな光の透過率の調整が可能となる。 In this embodiment, the image extracted for each imaging area corresponding to the installation area of the dimming member is input to the first learning model from the image in the facility, and the detection of the monitoring target acquired from the first learning model is detected. The light transmittance is adjusted for each installation area of the dimming member based on the presence / absence information. This makes it possible to finely adjust the light transmittance according to the difference in the monitoring target and the position of the monitoring target.
 本開示の一態様に係る調光システムは、前記監視対象は家畜又は魚介類であり、前記制御部は、前記第1取得部により取得した有無情報に基づいて検出有と判定した監視対象の前記撮像領域間の移動に応じて前記透過率を調整する。 In the dimming system according to one aspect of the present disclosure, the monitoring target is livestock or seafood, and the control unit determines that detection is possible based on the presence / absence information acquired by the first acquisition unit. The transmittance is adjusted according to the movement between the imaging regions.
 本態様にあっては、監視対象である家畜又は魚介類の撮像領域間の移動に応じて、撮像領域に対応する調光部材における光の透過率を調整する。これにより、家畜又は魚介類の動きに応じて移動先に対する日射の透過率を調整することができる。 In this embodiment, the light transmittance in the dimming member corresponding to the imaging region is adjusted according to the movement between the imaging regions of the livestock or seafood to be monitored. As a result, the transmittance of solar radiation to the destination can be adjusted according to the movement of livestock or seafood.
 本開示の一態様に係る調光システムは、前記施設内を撮像する撮像部と、画像を入力した場合に監視対象の日焼けの程度情報を出力する第2学習モデルに、前記撮像部により撮像した画像を入力して前記程度情報を取得する第2取得部とを備え、前記制御部は、前記第2取得部により取得した程度情報に基づいて前記透過率を調整する。 In the dimming system according to one aspect of the present disclosure, the image pickup unit captures an image of the inside of the facility and a second learning model that outputs information on the degree of sunburn to be monitored when an image is input. The control unit includes a second acquisition unit that inputs an image and acquires the degree information, and the control unit adjusts the transmittance based on the degree information acquired by the second acquisition unit.
 本態様にあっては、施設内の画像を第2学習モデルに入力し、第2学習モデルから取得した日焼けの程度情報に基づいて、調光部材における光の透過率を調整する。これにより、監視対象の日焼けの程度に応じたきめ細かな光の透過率の調整が可能となる。 In this aspect, the image in the facility is input to the second learning model, and the light transmittance in the dimming member is adjusted based on the degree information of sunburn acquired from the second learning model. This makes it possible to finely adjust the light transmittance according to the degree of sunburn to be monitored.
 本開示の一態様に係る調光システムは、外部端末との間で通信を行う通信部と、前記施設内を撮像する撮像部と、画像を入力した場合に監視対象の生育の程度情報を出力する第3学習モデルに、前記撮像部により撮像した画像を入力して前記程度情報を取得する第3取得部と、該第3取得部により取得した程度情報を、前記通信部を介して前記外部端末に出力する第2出力部とを備える。 The dimming system according to one aspect of the present disclosure outputs a communication unit that communicates with an external terminal, an imaging unit that images the inside of the facility, and information on the degree of growth of the monitored object when an image is input. The third acquisition unit that inputs the image captured by the imaging unit to acquire the degree information and the degree information acquired by the third acquisition unit are transmitted to the third learning model via the communication unit. It includes a second output unit that outputs to the terminal.
 本態様にあっては、施設内の画像を第3学習モデルに入力し、第3学習モデルから取得した生育の程度情報を外部端末に出力する。これにより、外部端末と通信接続した場合は、監視対象の成育の程度を外部端末にてモニタすることができる。 In this embodiment, the image in the facility is input to the third learning model, and the growth degree information acquired from the third learning model is output to the external terminal. As a result, when a communication connection is made with an external terminal, the degree of growth of the monitored object can be monitored by the external terminal.
 本開示の一態様に係る情報処理装置は、施設上に設置され太陽電池から電源が供給される調光部材における光の透過率を調整するための指令値を出力する出力部と、前記施設の周囲の日射量を取得する取得部と、該取得部により取得した日射量に基づいて前記出力部から出力する指令値を制御する制御部とを備える。 The information processing device according to one aspect of the present disclosure includes an output unit that outputs a command value for adjusting the light transmittance in a dimming member that is installed on the facility and is supplied with power from a solar cell, and an output unit of the facility. It includes an acquisition unit that acquires the amount of solar radiation around it, and a control unit that controls a command value output from the output unit based on the amount of solar radiation acquired by the acquisition unit.
 本態様にあっては、光の透過率が調整可能な調光部材が設置された施設の周囲の日射量を取得し、取得した日射量に基づいて上記透過率を調整するための指令値を出力する。これにより、施設から離れた位置にてリモートで調光部材における光の透過率を調整することができる。 In this embodiment, the amount of solar radiation around the facility where the dimming member whose light transmittance can be adjusted is acquired, and the command value for adjusting the transmittance based on the acquired amount of solar radiation is set. Output. As a result, the light transmittance of the dimming member can be adjusted remotely at a position away from the facility.
 本開示の一態様に係るコンピュータプログラムは、施設上に設置され太陽電池から電源が供給される調光部材における光の透過率を調整する外部装置と通信し、前記外部装置により調整された透過率を取得し、取得した透過率を表示する処理をコンピュータに実行させる。 The computer program according to one aspect of the present disclosure communicates with an external device that adjusts the light transmission rate in the dimming member installed on the facility and supplied with power from the solar cell, and the transmission rate adjusted by the external device. Is acquired, and the computer is made to execute the process of displaying the acquired transparency.
 本態様にあっては、調整された光の透過率を通信により取得して表示する。これにより、調光部材における光の透過率をコンピュータ端末にてモニタすることができる。 In this embodiment, the adjusted light transmittance is acquired and displayed by communication. As a result, the light transmittance of the dimming member can be monitored by the computer terminal.
 本開示の一態様に係るコンピュータプログラムは、前記外部装置は複数の施設にそれぞれ設置されており、複数の前記施設について取得した透過率を表示する処理をコンピュータに実行させる。 In the computer program according to one aspect of the present disclosure, the external device is installed in each of a plurality of facilities, and the computer is made to execute a process of displaying the transmittance acquired for the plurality of facilities.
 本態様にあっては、複数の施設上に設置された調光部材における光の透過率を1台のコンピュータ端末にてモニタすることができる。 In this embodiment, the light transmittance of the dimming members installed on a plurality of facilities can be monitored by one computer terminal.
 本開示の一態様に係るコンピュータプログラムは、前記施設の選択を受け付け、選択された施設について取得した透過率を表示する処理をコンピュータに実行させる。 The computer program according to one aspect of the present disclosure accepts the selection of the facility and causes the computer to execute a process of displaying the transmittance acquired for the selected facility.
 本態様にあっては、コンピュータのユーザによって選択された施設上の調光部材における光の透過率をコンピュータ端末にてモニタすることができる。 In this embodiment, the light transmittance of the light control member on the facility selected by the computer user can be monitored by the computer terminal.
 本発明によれば、調光部材における日射の透過率を適時適切に調整することが可能となる。 According to the present invention, it is possible to adjust the transmittance of solar radiation in the dimming member in a timely and appropriate manner.
実施形態1に係る調光システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the dimming system which concerns on Embodiment 1. FIG. 実施形態1に係る外部端末の構成例を示すブロック図である。It is a block diagram which shows the structural example of the external terminal which concerns on Embodiment 1. FIG. 調光システムが設置されるビニールハウスの外観を模式的に示す斜視図である。It is a perspective view which shows typically the appearance of the vinyl house in which a dimming system is installed. ビニールハウスの内部を妻面部から見た模式的な透視図である。It is a schematic perspective view of the inside of a vinyl house as seen from the wife's face. 調光部材の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the dimming member. 調光部材における光の透過率の波長特性を例示するグラフである。It is a graph which illustrates the wavelength characteristic of the light transmittance in a dimming member. 日射量及び室温と透過率の調整係数Aとの対応を示す図表である。It is a chart which shows the correspondence between the amount of solar radiation and room temperature, and the adjustment coefficient A of the transmittance. 調光部材の設置領域と透過率の調整係数Bとの対応を示す図表である。It is a figure which shows the correspondence between the installation area of a dimming member, and the adjustment coefficient B of a transmittance. 調光部材における光の透過率を調整する制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which adjusts the light transmittance in a light control member. 調光制御装置から取得したデータを表示メモリに記憶する外部端末の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the external terminal which stores the data acquired from a dimming control device in a display memory. 実施形態1に係る外部端末における表示例を示す模式図である。It is a schematic diagram which shows the display example in the external terminal which concerns on Embodiment 1. 変形例1に係る調光システムで日射量を算出する制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which calculates the amount of solar radiation in the dimming system which concerns on modification 1. 実施形態2に係る調光システムで照射対象の選択を受け付ける制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which accepts the selection of the irradiation target in the dimming system which concerns on Embodiment 2. 実施形態2に係る調光制御装置における表示例を示す模式図である。It is a schematic diagram which shows the display example in the dimming control device which concerns on Embodiment 2. 実施形態3に係る調光システムで画像中の監視対象を認識する制御部の処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure of a control unit that recognizes a monitoring target in an image in the dimming system according to the third embodiment. 実施形態3に係る学習モデルの内容例を示す模式図である。It is a schematic diagram which shows the content example of the learning model which concerns on Embodiment 3. 変形例2に係る学習モデルの内容例を示す模式図である。It is a schematic diagram which shows the content example of the learning model which concerns on modification 2. 実施形態4に係る調光制御装置で日焼け度を認識する制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which recognizes the degree of sunburn by the dimming control device which concerns on Embodiment 4. 実施形態4に係る学習モデルの内容例を示す模式図である。It is a schematic diagram which shows the content example of the learning model which concerns on Embodiment 4. 実施形態5に係る調光制御装置で生育度を認識する制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which recognizes the growth degree by the dimming control device which concerns on Embodiment 5. 実施形態5に係る学習モデルの内容例を示す模式図である。It is a schematic diagram which shows the content example of the learning model which concerns on Embodiment 5. 実施形態6に係る調光システムでビニールハウスの選択を受け付ける制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the control part which accepts the selection of the vinyl house in the dimming system which concerns on Embodiment 6. 実施形態6に係る外部端末における表示例を示す模式図である。It is a schematic diagram which shows the display example in the external terminal which concerns on Embodiment 6. 実施形態7に係る調光システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the dimming system which concerns on Embodiment 7. 実施形態7に係る情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which concerns on Embodiment 7.
 以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
 図1は、実施形態1に係る調光システム100の構成例を示すブロック図である。調光システム100は、光の透過率が調整可能な調光部材3,3・・3と、該調光部材3,3・・3における光の透過率を制御する調光制御装置1と、該調光制御装置1及び調光部材3,3・・3の電源となる太陽電池をモジュール化したソーラーパネル4,4・・4とを含む。調光制御装置1は、携帯電話網を含むネットワークNwを介して又は1対1で外部端末200(外部装置に相当)と通信可能に接続されている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration example of the dimming system 100 according to the first embodiment. The dimming system 100 includes a dimming member 3, 3, 3 in which the light transmittance can be adjusted, a dimming control device 1 for controlling the light transmittance in the dimming member 3, 3, and 3. The dimming control device 1 and solar panels 4, 4, 4 which are modularized solar cells serving as a power source for the dimming members 3, 3, and 3 are included. The dimming control device 1 is communicably connected to an external terminal 200 (corresponding to an external device) via a network Nw including a mobile phone network or on a one-to-one basis.
 調光制御装置1は、制御部10、記憶部11、表示部12、操作部13、電圧電流取得部14、日射センサ15、温湿度センサ16、撮像部17、駆動部18及び通信部19を備える。調光制御装置1は、更にソーラーパネル4,4・・4からの電圧を変換して電源Vccの電圧を生成するDCDCコンバータ21及び該DCDCコンバータ21によって充電される電源バッテリ22(蓄電池に相当)を備える。調光制御装置1内の各部は、電源Vccによって動作する。 The dimming control device 1 includes a control unit 10, a storage unit 11, a display unit 12, an operation unit 13, a voltage / current acquisition unit 14, a solar radiation sensor 15, a temperature / humidity sensor 16, an imaging unit 17, a drive unit 18, and a communication unit 19. Be prepared. The dimming control device 1 further includes a DCDC converter 21 that further converts the voltage from the solar panels 4, 4, and 4 to generate a voltage of the power supply Vcc, and a power supply battery 22 (corresponding to a storage battery) charged by the DCDC converter 21. To be equipped. Each part in the dimming control device 1 is operated by the power supply Vcc.
 制御部10は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)等の1又は複数のプロセッサを含む。制御部10は、記憶部11に記憶されている制御プログラムを実行することにより、装置全体を制御する。 The control unit 10 includes one or a plurality of processors such as a CPU (Central Processing Unit), an MPU (Micro-Processing Unit), and a GPU (Graphics Processing Unit). The control unit 10 controls the entire device by executing the control program stored in the storage unit 11.
 記憶部11は、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically EPROM:登録商標)等の不揮発性メモリ、及びDRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)等の書き換え可能なメモリを含む。不揮発性メモリは、制御部10が実行する制御プログラム及び各種のデータを予め記憶する。書き換え可能なメモリは、後述する学習モデルX,Y,Z及び一時的に発生するデータを記憶する。 The storage unit 11 rewrites a flash memory, a non-volatile memory such as EPROM (Erasable Programmable Read Only Memory) and EPROM (Electrically EPROM: registered trademark), and a DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory). Includes possible memory. The non-volatile memory stores in advance a control program executed by the control unit 10 and various data. The rewritable memory stores learning models X, Y, Z, which will be described later, and data that is temporarily generated.
 表示部12は、液晶ディスプレイ、有機ELディスプレイ等の表示器であり、制御部10に制御されて各種の情報を表示する。操作部13は、ユーザによる操作を受け付けるためのインタフェースであり、物理ボタンで構成してもよいし、表示部12と一体化されたタッチパネルで構成してもよい。 The display unit 12 is a display device such as a liquid crystal display or an organic EL display, and is controlled by the control unit 10 to display various information. The operation unit 13 is an interface for receiving an operation by the user, and may be configured by a physical button or a touch panel integrated with the display unit 12.
 電圧電流取得部14は、ソーラーパネル4,4・・4が発電した電圧及び電流を検出部40から取得するためのインタフェースである。電圧電流取得部14により取得した電圧及び電流を乗算して移動平均値を求めることにより、発電電力(kW)が算出される。発電電力を換算して日射量(kW/m)を求めることもできる。 The voltage / current acquisition unit 14 is an interface for acquiring the voltage and current generated by the solar panels 4, 4, 4 from the detection unit 40. The generated power (kW) is calculated by multiplying the voltage and current acquired by the voltage / current acquisition unit 14 to obtain the moving average value. It is also possible to obtain the amount of solar radiation (kW / m 2 ) by converting the generated power.
 日射センサ15は、後述するビニールハウス300(図3参照)の外側に設けられ、日射量を検出する。温湿度センサ16は、ビニールハウス300の内部に設けられ、ビニールハウス内の温度及び湿度を検出する。撮像部17は、ビニールハウス300内の中央部の上部に設けられ、ビニールハウス300内の俯瞰画像を撮像する。 The solar radiation sensor 15 is provided outside the vinyl house 300 (see FIG. 3), which will be described later, and detects the amount of solar radiation. The temperature / humidity sensor 16 is provided inside the greenhouse 300 and detects the temperature and humidity inside the greenhouse. The imaging unit 17 is provided in the upper part of the central portion in the vinyl house 300, and captures a bird's-eye view image in the vinyl house 300.
 駆動部18は、調光部材3,3・・3における光の透過率を調整するために、調光部材3,3・・3に対して電流を供給する。調光部材3,3・・3は、平面視が矩形状をなし、供給される電流に応じて透明な状態から遮光状態まで光の透過態様が変化するものであるが、これに限定されるものではない。例えば、水素等のガスによって光の透過率が変化するガスクロミックシートであってもよい。 The drive unit 18 supplies a current to the dimming members 3, 3 and 3 in order to adjust the light transmittance of the dimming members 3, 3 and 3. The dimming members 3, 3, ... 3 have a rectangular shape in a plan view, and the light transmission mode changes from a transparent state to a light-shielding state according to the supplied current, but the light transmitting member 3, 3, ... 3 is limited to this. It's not a thing. For example, it may be a gas chromic sheet whose light transmittance changes depending on a gas such as hydrogen.
 通信部19は、無線通信によってネットワークNwに接続するためのインタフェースであり、ネットワークNwを介して外部端末200との間で画像を含むデータの送受信を行う。通信部19は、例えば不図示の基地局を介して移動通信システムの規格に準拠する通信を行うものであるが、無線LANのアクセスポイントを介したインフラストラクチャモード又はピアツーピア接続によるアドホックモードで外部端末200と通信を行うものであってもよい。通信部19は、また、ブルートゥース(登録商標)の通信規格に準拠する無線通信によって外部端末200と通信を行うものであってもよい。 The communication unit 19 is an interface for connecting to the network Nw by wireless communication, and transmits / receives data including an image to / from the external terminal 200 via the network Nw. The communication unit 19 performs communication conforming to the standard of the mobile communication system via, for example, a base station (not shown), and is an external terminal in an infrastructure mode via a wireless LAN access point or an ad hoc mode by peer-to-peer connection. It may communicate with 200. The communication unit 19 may also communicate with the external terminal 200 by wireless communication conforming to the communication standard of Bluetooth (registered trademark).
 DCDCコンバータ21は、ソーラーパネル4,4・・4が発電した電圧及び電流が検出部40を介して入力されており、MPPT(Maximum Power Point Tracking )制御を行うことによって発電電力を効率よく電源バッテリ22に蓄電する。 In the DCDC converter 21, the voltage and current generated by the solar panels 4, 4, and 4 are input via the detection unit 40, and the generated power is efficiently supplied to the power supply battery by performing MPPT (Maximum Power Point Tracking) control. The electricity is stored in 22.
 図2は、実施形態1に係る外部端末200の構成例を示すブロック図である。外部端末200は、例えばスマートフォンであるが、タブレット端末、汎用のPC(Personal Computer )、又はスマートウォッチ等のウェアラブルデバイスであってもよい。外部端末200は、制御部210、記憶部211、表示部212、操作部213及び通信部214を備える。操作部213は、表示部212と一体化されたタッチパネルであるが、これに限定されるものではない。 FIG. 2 is a block diagram showing a configuration example of the external terminal 200 according to the first embodiment. The external terminal 200 is, for example, a smartphone, but may be a wearable device such as a tablet terminal, a general-purpose PC (Personal Computer), or a smart watch. The external terminal 200 includes a control unit 210, a storage unit 211, a display unit 212, an operation unit 213, and a communication unit 214. The operation unit 213 is a touch panel integrated with the display unit 212, but is not limited thereto.
 制御部210は、CPU、GPU等のプロセッサと、メモリ等を含む。制御部210は、プロセッサ、メモリ、記憶部211及び通信部214を集積した1つのハードウェア(SoC:System On a Chip )として構成してもよい。制御部210は、記憶部211に記憶されているアプリプログラム211aに基づく制御を行う。 The control unit 210 includes a processor such as a CPU and a GPU, and a memory and the like. The control unit 210 may be configured as one piece of hardware (SoC: System On a Chip) in which a processor, a memory, a storage unit 211, and a communication unit 214 are integrated. The control unit 210 performs control based on the application program 211a stored in the storage unit 211.
 記憶部211は、例えばフラッシュメモリ等の不揮発性メモリを含む。記憶部211は、アプリプログラム211aを記憶する。アプリプログラム211aがWebブラウザ機能を含んでもよいし、汎用のWebブラウザプログラムが別途記憶部211に記憶されていてもよい。アプリプログラム211aは、記憶媒体215に記憶されたものを制御部210が通信部214又は図示しない入出力部を介して読み出して記憶部211に複製したものであってもよい。 The storage unit 211 includes a non-volatile memory such as a flash memory. The storage unit 211 stores the application program 211a. The application program 211a may include a Web browser function, or a general-purpose Web browser program may be separately stored in the storage unit 211. The application program 211a may be one that is stored in the storage medium 215 and is read out by the control unit 210 via the communication unit 214 or an input / output unit (not shown) and duplicated in the storage unit 211.
 通信部214は、無線通信によってネットワークNwに接続するためのインタフェースであり、ネットワークNwを介して調光制御装置1との間で画像を含むデータの送受信を行う。通信部214は、無線LANのアクセスポイントを介したインフラストラクチャモード又はピアツーピア接続によるアドホックモードで外部端末200と通信を行うものであってもよいし、ブルートゥース(登録商標)の通信規格に準拠する無線通信によって調光制御装置1と通信を行うものであってもよい。 The communication unit 214 is an interface for connecting to the network Nw by wireless communication, and transmits / receives data including an image to / from the dimming control device 1 via the network Nw. The communication unit 214 may communicate with the external terminal 200 in an infrastructure mode via a wireless LAN access point or an ad hoc mode by peer-to-peer connection, or may be a wireless device conforming to a Bluetooth (registered trademark) communication standard. It may communicate with the dimming control device 1 by communication.
 図3は、調光システム100が設置されるビニールハウス300の外観を模式的に示す斜視図である。ビニールハウス300(温室である施設に相当)は、複数のパイプ状骨部材を適宜の箇所にて緊締具で連結して組上げた正面視蒲鉾状の構造物に、合成樹脂フィルムからなるシート材を該シート材に張りを与えるように設けて構成されている。ビニールハウス300は、切妻状の屋根部301を傾斜方向の両側から側面部302が支持し、長手方向に対向する妻面を妻面部303が閉塞している。 FIG. 3 is a perspective view schematically showing the appearance of the vinyl house 300 in which the dimming system 100 is installed. The vinyl house 300 (corresponding to a facility that is a greenhouse) is a front-view kamaboko-shaped structure in which a plurality of pipe-shaped bone members are connected at appropriate positions with a fastener to form a sheet material made of a synthetic resin film. The sheet material is provided so as to give tension. In the vinyl house 300, the gable-shaped roof portion 301 is supported by the side surface portions 302 from both sides in the inclined direction, and the end face portion 303 closes the end faces facing each other in the longitudinal direction.
 屋根部301上の高さが比較的高い領域には、調光部材3,3・・3が整列して設置されているが、必ずしも整列されていなくてもよい。調光部材3,3・・3は、側面部302に設置されていてもよい。調光部材3,3・・3は、屋根部301の上面側及び下面側の何れか、又は側面部302の外側及び内側の何れかに設置されている。調光部材3,3・・3自体が屋根部301又は側面部302の一部を構成してもよい。 The dimming members 3, 3, ... 3 are arranged and installed in the area where the height on the roof portion 301 is relatively high, but they do not necessarily have to be aligned. The dimming members 3, 3, ... 3 may be installed on the side surface portion 302. The dimming members 3, 3, ... 3 are installed on either the upper surface side or the lower surface side of the roof portion 301, or on the outer side or the inner side of the side surface portion 302. The dimming members 3, 3, ... 3 themselves may form a part of the roof portion 301 or the side surface portion 302.
 本実施形態1では、ビニールハウス300における一連の領域の長手方向の並びを「行」と称し、長手方向と直交する方向の並びを「列」と称す。図3では、調光部材3,3・・3が2行4列の設置領域に設置されているが、これに限定されるものではなく、1行又は3行以上の設置領域に設置されていてもよいし、1~3列又は5列以上の設置領域に設置されていてもよい。 In the first embodiment, the arrangement in the longitudinal direction of a series of regions in the vinyl house 300 is referred to as a "row", and the arrangement in the direction orthogonal to the longitudinal direction is referred to as a "column". In FIG. 3, the dimming members 3, 3, ... 3 are installed in the installation area of 2 rows and 4 columns, but are not limited to this, and are installed in the installation area of 1 row or 3 rows or more. It may be installed in the installation area of 1 to 3 rows or 5 rows or more.
 屋根部301上の高さが比較的低い領域には、ソーラーパネル4,4・・4が整列して設置されている。ソーラーパネル4,4・・4は必ずしもビニールハウス300上に設置されている必要はないが、ビニールハウス300の外部で日当たりが良好な位置に設置されていることが好ましい。日射センサ15は、例えば屋根部301上の適宜の位置に設置されている。 Solar panels 4, 4, 4 are installed side by side in the area where the height on the roof 301 is relatively low. The solar panels 4, 4, ... 4 do not necessarily have to be installed on the vinyl house 300, but it is preferable that the solar panels 4, 4, ... 4 are installed in a sunny position outside the vinyl house 300. The solar radiation sensor 15 is installed at an appropriate position on the roof portion 301, for example.
 図4は、ビニールハウス300の内部を妻面部303から見た模式的な透視図である。第m行第n列(m,nは自然数)の設置領域をRa[m,n]で表す。紙面の右側に位置する側面部302が南向きであるとする。屋根部301の南側の傾斜部位にある設置領域は、西側から順にRa[1,1]~Ra[1,4]である。また、屋根部301の北側の傾斜部位にある設置領域は、西側から順にRa[2,1]~Ra[2,4]である。撮像部17は、屋根部301の下面の中央部に下向きに設置されている。 FIG. 4 is a schematic perspective view of the inside of the vinyl house 300 as viewed from the end face portion 303. The installation area in the mth row and nth column (m and n are natural numbers) is represented by Ra [m, n]. It is assumed that the side surface portion 302 located on the right side of the paper surface faces south. The installation areas on the sloped portion on the south side of the roof portion 301 are Ra [1,1] to Ra [1,4] in order from the west side. Further, the installation area on the inclined portion on the north side of the roof portion 301 is Ra [2,1] to Ra [2,4] in order from the west side. The imaging unit 17 is installed downward in the central portion of the lower surface of the roof portion 301.
 撮像部17で撮像した俯瞰画像に含まれる撮像領域のうち、調光部材3,3・・3の設置領域Ra[1,1]~Ra[2,4]それぞれに対応する露地面の撮像領域をRb[1,1]~Rb[2,4]とする。撮像領域Rb[1,1]~Rb[2,4]それぞれは、例えばビニールハウス300外の1点から設置領域Ra[1,1]~Ra[2,4]を露地面に投影した領域である。この1点は固定的な点であってもよいし、例えば天球上の太陽の移動に伴って変化する点であってもよい。この場合、日時に対して天球上の太陽の位置を変換するテーブルを記憶しておき、該テーブルを用いて変換した太陽の位置に応じて、撮像領域Rb[1,1]~Rb[2,4]を決定すればよい。 Of the imaging areas included in the bird's-eye view image captured by the imaging unit 17, the exposure area of the open ground corresponding to each of the installation areas Ra [1,1] to Ra [2,4] of the dimming members 3, 3, ... Let be Rb [1,1] to Rb [2,4]. Each of the imaging areas Rb [1,1] to Rb [2,4] is, for example, an area in which the installation areas Ra [1,1] to Ra [2,4] are projected onto the open ground from one point outside the greenhouse 300. is there. This one point may be a fixed point, or may be, for example, a point that changes with the movement of the sun on the celestial sphere. In this case, a table for converting the position of the sun on the celestial sphere with respect to the date and time is stored, and the imaging regions Rb [1,1] to Rb [2] are stored according to the position of the sun converted using the table. 4] may be determined.
 図5は、調光部材3の構成を模式的に示す断面図である。調光部材3は、電解質層31が間に介在している2つのEC(Electrochromic )層32a及び32bを備え、EC層32a及び32bそれぞれの電解質層31側とは反対側の面には、透明電極33a及び33bが形成されている。透明電極33a及び33bのそれぞれは、ガラス等の透明基材34a及び34bの一面上に形成された導電層である。即ち、2つの透明基材34a及び34bの間に、透明電極33a、EC層32a、電解質層31、EC層32b及び透明電極33bが、この順に積層されている。電解質層31の端部には、電解質を封止するシール材30が設けられている。 FIG. 5 is a cross-sectional view schematically showing the configuration of the dimming member 3. The dimming member 3 includes two EC (Electrochromic) layers 32a and 32b with an electrolyte layer 31 interposed therebetween, and is transparent on the surface of each of the EC layers 32a and 32b opposite to the electrolyte layer 31 side. Electrodes 33a and 33b are formed. Each of the transparent electrodes 33a and 33b is a conductive layer formed on one surface of a transparent base material 34a and 34b such as glass. That is, the transparent electrode 33a, the EC layer 32a, the electrolyte layer 31, the EC layer 32b, and the transparent electrode 33b are laminated in this order between the two transparent base materials 34a and 34b. A sealing material 30 for sealing the electrolyte is provided at the end of the electrolyte layer 31.
 電解質層31は、EC層32a及び32bに電子又はイオンの供給を行うキャリア供給層である。電解質には、固体、液体、ゲル状等の様々な形態のものを用いることができる。イオン源としては、リチウム塩、ナトリウム塩、カリウム塩等が主に用いられる。 The electrolyte layer 31 is a carrier supply layer that supplies electrons or ions to the EC layers 32a and 32b. As the electrolyte, various forms such as solid, liquid, and gel can be used. As the ion source, lithium salt, sodium salt, potassium salt and the like are mainly used.
 EC層32a及び32bは、酸化還元反応によって発色する化合物を含む。例えば、EC層32aに酸化反応で発色する酸化型発色化合物を用い、EC層32bに還元反応で発色する還元型発色化合物を用いた場合、EC層32a及び32bは、通電することにより発色して遮光状態となり、通電を止めることにより退色して透明状態となる。このような変化をもたらす発色化合物の組み合わせとして、例えば、ポリエチレンジオキシチオフェン(PEDOT)及びポリアニリン(polyaniline )を用いる。 The EC layers 32a and 32b contain compounds that develop color by a redox reaction. For example, when an oxidation-type coloring compound that develops color by an oxidation reaction is used for the EC layer 32a and a reduction-type coloring compound that develops color by a reduction reaction is used for the EC layer 32b, the EC layers 32a and 32b develop color when energized. It becomes a light-shielded state, and when the energization is stopped, the color fades and becomes transparent. As a combination of color-developing compounds that bring about such changes, for example, polyethylene dioxythiophene (PEDOT) and polyaniline (polyaniline) are used.
 透明電極33a及び33bは、例えば酸化インジウムスズ(ITO=Indium Tin Oxide )を含む透明な導電層である。透明電極33a及び33bそれぞれの一端部には、駆動部18と接続するための取出電極(不図示)が設けられている。 The transparent electrodes 33a and 33b are transparent conductive layers containing, for example, indium tin oxide (ITO = Indium Tin Oxide). A take-out electrode (not shown) for connecting to the drive unit 18 is provided at one end of each of the transparent electrodes 33a and 33b.
 透明基材34a及び34bは、ガラスに限定されず、可視光領域にて無色透明で可撓性を有する絶縁フィルムを用いてもよい。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂が好ましい。 The transparent substrates 34a and 34b are not limited to glass, and an insulating film that is colorless and transparent and has flexibility in the visible light region may be used. For example, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are preferable.
 調光部材3は、透明電極33a及び33bの間に駆動部18から電流を供給することにより、EC層32a及び32bの間で電解質層31を介してイオンが授受される。これにより、EC層32a及び32bが酸化還元されて発色(透明→着色)し、透過光の色が変化する。上記調光部材3の構成は透明電極33a及び33bとEC層32a及び32bとが電解質層31を介して対向した構造となっているが、必ずしも本構造に限定されるものではない。EC層32a又は32bが片側にしかないものや、シール材30が存在しないものなど、要求に応じて柔軟に設計を変更してもよい。 The dimming member 3 supplies an electric current between the transparent electrodes 33a and 33b from the drive unit 18 to transfer ions between the EC layers 32a and 32b via the electrolyte layer 31. As a result, the EC layers 32a and 32b are redox-reduced to develop a color (transparent → colored), and the color of the transmitted light changes. The structure of the dimming member 3 is such that the transparent electrodes 33a and 33b and the EC layers 32a and 32b face each other via the electrolyte layer 31, but the structure is not necessarily limited to this structure. The design may be flexibly changed according to the request, such as those having the EC layer 32a or 32b on only one side or those having no sealing material 30.
 図6は、調光部材3における光の透過率の波長特性を例示するグラフである。図の横軸は光の波長(nm)を表し、縦軸は光の透過率(%)を表す。図6に示す例では、調光部材3が駆動部18からの電流によって発色した場合(破線で示す)、波長が380nm~780nmである可視光領域を含む波長域で光の透過率が3%以下に低下する。一方、調光部材3が退色して透明になった場合(実線で示す)、短波長側の一部を除く可視光領域を含む波長域で光の透過率が60~70%に増加する。 FIG. 6 is a graph illustrating the wavelength characteristics of the light transmittance of the dimming member 3. The horizontal axis of the figure represents the wavelength of light (nm), and the vertical axis represents the transmittance of light (%). In the example shown in FIG. 6, when the dimming member 3 develops color by the current from the drive unit 18 (indicated by the broken line), the light transmittance is 3% in the wavelength region including the visible light region where the wavelength is 380 nm to 780 nm. It drops below. On the other hand, when the dimming member 3 fades and becomes transparent (indicated by a solid line), the light transmittance increases to 60 to 70% in a wavelength region including a visible light region excluding a part on the short wavelength side.
 EC層32a及び32bに含まれる発色化合物の違いにより、調光部材3の発色時の色が変わる。即ち光の透過率が変化するときの波長域を任意に変化させることができる。また、駆動部18から調光部材3に供給する電流の大きさや、EC層32a及び32bの厚み、電解質層31のイオン源種を制御することにより、調光部材3における光の透過率を濃い色の遮光状態と透明な状態との中間の状態にする(即ち、光の透過率を任意に変える)ことが可能である。 The color of the dimming member 3 at the time of color development changes due to the difference in the color-developing compound contained in the EC layers 32a and 32b. That is, the wavelength range when the light transmittance changes can be arbitrarily changed. Further, by controlling the magnitude of the current supplied from the drive unit 18 to the dimming member 3, the thicknesses of the EC layers 32a and 32b, and the ion source type of the electrolyte layer 31, the light transmittance in the dimming member 3 is increased. It is possible to make the state intermediate between the light-shielded state and the transparent state of the color (that is, change the light transmittance arbitrarily).
 以上のとおり構成された調光システム100において、調光制御装置1は、日射センサ15から日射量を取得し、温湿度センサ16からビニールハウス300内の温湿度を取得し、時系列的に取得した日射量及び温湿度に基づいて、調光部材3,3・・3における光の透過率を調整する。取得された日射量及び温度と、調整された透過率とは、ネットワークNwを介して外部端末200に出力される。外部端末200は、調光制御装置1から日射量、温度及び透過率を取得して表示部212に表示する。 In the dimming system 100 configured as described above, the dimming control device 1 acquires the amount of solar radiation from the solar radiation sensor 15, acquires the temperature and humidity in the vinyl house 300 from the temperature and humidity sensor 16, and acquires them in chronological order. The light transmittance of the dimming members 3, 3, 3 is adjusted based on the amount of solar radiation and the temperature and humidity. The acquired solar radiation amount and temperature and the adjusted transmittance are output to the external terminal 200 via the network Nw. The external terminal 200 acquires the amount of solar radiation, the temperature, and the transmittance from the dimming control device 1 and displays them on the display unit 212.
 光の透過率は、日射量の変化及び温湿度の変化に応じて、異なる設置領域に設置された調光部材3,3・・3毎に独立して調整される。このため、本実施形態1では、日射量及び温度に応じた透過率の調整係数Aと、調光部材3,3・・3の設置領域に応じた透過率の調整係数Bとを導入する。調光制御装置1は、調整係数A及び調整係数Bの乗算値に応じて調光部材3,3・・3の透過率を調整する。 The light transmittance is independently adjusted for each dimming member 3, 3, 3 installed in different installation areas according to changes in the amount of solar radiation and changes in temperature and humidity. Therefore, in the first embodiment, the transmittance adjustment coefficient A according to the amount of solar radiation and the temperature and the transmittance adjustment coefficient B according to the installation area of the dimming members 3, 3, 3 are introduced. The dimming control device 1 adjusts the transmittance of the dimming members 3, 3, ... 3 according to the multiplication value of the adjustment coefficient A and the adjustment coefficient B.
 図7は、日射量及び室温と透過率の調整係数Aとの対応を示す図表である。図8は、調光部材3,3・・3の設置領域と透過率の調整係数Bとの対応を示す図表である。図7では、日射量の範囲を0.1kw/mから0.9kw/mまでの5段階と、0.1kw/m未満及び0.9kw/m以上とに分けてあり、日射量が多いほど調整係数Aが小さくなるようにしてある。また、温度の範囲を0℃から50℃までの5段階と、0℃未満及び50℃以上とに分けてあり、温度が高いほど調整係数Aが小さくなるようにしてある。図7中の数値は、日射量及び温度に対応付けたテーブルとして記憶部11に記憶されている。これらの数値は一例であり、これに限定されない。湿度に応じて図7に示す数値と同一又は異なる数値が記憶されたテーブルを用いることが好ましい。 FIG. 7 is a chart showing the correspondence between the amount of solar radiation and room temperature and the adjustment coefficient A of the transmittance. FIG. 8 is a chart showing the correspondence between the installation areas of the dimming members 3, 3, ... 3 and the transmittance adjustment coefficient B. In Figure 7, the five stages of the scope of the solar radiation amount from 0.1 kw / m 2 to 0.9 kW / m 2, Yes divided into a 0.1 kw / m 2 and less than 0.9 kW / m 2 or more, a solar radiation The adjustment coefficient A becomes smaller as the amount is larger. Further, the temperature range is divided into five stages from 0 ° C. to 50 ° C., and less than 0 ° C. and 50 ° C. or higher, and the higher the temperature, the smaller the adjustment coefficient A. The numerical values in FIG. 7 are stored in the storage unit 11 as a table associated with the amount of solar radiation and the temperature. These numbers are examples, and are not limited to these. It is preferable to use a table in which the same or different numerical values as those shown in FIG. 7 are stored according to the humidity.
 図7に記載した日射量の数値の目安は次の通りである。
(a)0.9以上:2月~10月の晴天下で空の透き通った日の12時頃の値
(b)0.8~0.9:2月~10月の薄い雲で覆われた晴れの日の12時頃の値又は11月~1月の晴れの日の12時頃の値
(c)0.7~0.8:季節にかかわらず雲が多い晴れの日の12時頃の値
(d)0.5~0.7:季節にかかわらず雲が多い晴れか曇りの日の12時頃の値
(e)0.2~0.5:季節にかかわらず曇りの日の12時頃の値
(f)0.1~0.2:季節にかかわらず曇っている時か雨天の時の値
(g)0.1未満:季節にかかわらず雨天の時の値
The guideline of the numerical value of the amount of solar radiation shown in FIG. 7 is as follows.
(A) 0.9 or more: Value around 12:00 on a clear day in the clear sky from February to October (b) 0.8 to 0.9: Covered with thin clouds from February to October Value around 12:00 on a sunny day or value around 12:00 on a sunny day from November to January (c) 0.7 to 0.8: 12:00 on a sunny day with many clouds regardless of the season Around value (d) 0.5-0.7: Cloudy days regardless of the season Around 12:00 on a sunny or cloudy day (e) 0.2-0.5: Cloudy day regardless of the season Value around 12 o'clock (f) 0.1-0.2: Value when it is cloudy or rainy regardless of the season (g) Less than 0.1: Value when it is rainy regardless of the season
 図8に移って、この図では、調光部材3,3・・3の設置領域の行数及び列数それぞれをM(Mは4以上の自然数)及びN(Nは5以上の自然数)に一般化してある。図8では、行番号及び列番号で表される設置領域が、屋根部301の中央部に近いほど調整係数Bが小さくなるようにしてある。図8中の数値は、行番号及び列番号に対応付けたテーブルとして記憶部11に記憶されている。これらの数値は一例であり、これに限定されない。調光部材3,3・・3の透過光が照射される照射対象となる対象物に応じて、図8に示す数値と同一又は異なる数値が記憶されたテーブルを用いることが好ましい。 Moving to FIG. 8, in this figure, the number of rows and the number of columns in the installation area of the dimming members 3, 3, ... 3 are set to M (M is a natural number of 4 or more) and N (N is a natural number of 5 or more), respectively. It is generalized. In FIG. 8, the adjustment coefficient B becomes smaller as the installation area represented by the row number and the column number is closer to the central portion of the roof portion 301. The numerical values in FIG. 8 are stored in the storage unit 11 as a table associated with the row numbers and the column numbers. These numbers are examples, and are not limited to these. It is preferable to use a table in which numerical values that are the same as or different from the numerical values shown in FIG. 8 are stored depending on the object to be irradiated to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図9は、調光部材3,3・・3における光の透過率を調整する制御部10の処理手順を示すフローチャートである。図10は、調光制御装置1から取得したデータを表示メモリに記憶する外部端末200の処理手順を示すフローチャートである。図11は、実施形態1に係る外部端末200における表示例を示す模式図である。図9及び図10の処理は一定周期(例えば1分毎)で起動されるが、これに限定されず、不定期に起動されてもよい。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 9 is a flowchart showing a processing procedure of the control unit 10 for adjusting the light transmittance in the dimming members 3, 3, and 3. FIG. 10 is a flowchart showing a processing procedure of the external terminal 200 that stores the data acquired from the dimming control device 1 in the display memory. FIG. 11 is a schematic view showing a display example in the external terminal 200 according to the first embodiment. The processes of FIGS. 9 and 10 are started at regular intervals (for example, every minute), but the present invention is not limited to this, and the processes may be started irregularly.
 図中のM及びNそれぞれは、調光部材3,3・・3の設置領域の行数及び列数である。m及びnそれぞれは行番号及び列番号を計数するためのカウンタである。ここでは例えば農作物を照射対象とし、対象物を示す情報が予め記憶部11に記憶されている。調光部材3の透過率と、調光部材3に供給する電流との関係は、予め記憶部11に記憶されている。なお、調整係数A及び調整係数Bそれぞれは、単に係数A及び係数Bと表記する。 M and N in the figure are the number of rows and columns of the installation area of the dimming members 3, 3, ... 3, respectively. Each of m and n is a counter for counting row numbers and column numbers. Here, for example, an agricultural product is targeted for irradiation, and information indicating the object is stored in advance in the storage unit 11. The relationship between the transmittance of the dimming member 3 and the current supplied to the dimming member 3 is stored in advance in the storage unit 11. The adjustment coefficient A and the adjustment coefficient B are simply referred to as the coefficient A and the coefficient B, respectively.
 調光制御装置1にて図9の処理が起動された場合、制御部10は、撮像部17から1フレーム分の画像を取得し(S11)、取得した画像を、通信部19を介して外部端末200に出力する(S12:第1出力部の一部に相当)。次いで、制御部10は、日射センサ15から日射量を取得する(S13)と共に、温湿度センサ16からビニールハウス300内の温度を取得し(S14)、取得した日射量及び温度を、通信部19を介して外部端末200に出力する(S15:第1出力部の一部に相当)。温度と共に湿度を取得し、取得した湿度を温度と共に出力してもよい。 When the process of FIG. 9 is activated by the dimming control device 1, the control unit 10 acquires an image for one frame from the image pickup unit 17 (S11), and the acquired image is externally transmitted via the communication unit 19. Output to the terminal 200 (S12: corresponds to a part of the first output unit). Next, the control unit 10 acquires the amount of solar radiation from the solar radiation sensor 15 (S13), acquires the temperature inside the vinyl house 300 from the temperature / humidity sensor 16 (S14), and obtains the acquired solar radiation amount and temperature in the communication unit 19. Is output to the external terminal 200 via (S15: corresponding to a part of the first output unit). Humidity may be acquired with temperature, and the acquired humidity may be output together with temperature.
 その後、制御部10は、取得した日射量及び温度に応じて記憶部11に記憶されているテーブルから調整係数Aを読み出す(S16)。次いで、制御部10は、調整係数Bを読み出すための準備としてmを1に初期化し(S17)、更にnを1に初期化する(S18)。 After that, the control unit 10 reads the adjustment coefficient A from the table stored in the storage unit 11 according to the acquired amount of solar radiation and temperature (S16). Next, the control unit 10 initializes m to 1 (S17) and further initializes n to 1 (S18) in preparation for reading the adjustment coefficient B.
 その後、制御部10は、照射対象として予め記憶部11に記憶されている対象物を読み出し(S20)、読み出した対象物に応じて記憶部11に記憶されているテーブルから第m行第n列の調整係数Bを読み出す(S21)。次いで、制御部10は、常数Pに調整係数A及び調整係数Bを乗算して透過率を算出し(S22)、算出した第m行第n列の調光部材3の透過率を、通信部19を介して外部端末200に出力する(S23:第1出力部の一部に相当)。常数Pは、例えば、図6に示される透明側の透過率の平均的な値にすればよい。なお、透過率には、現在のm及びnの値が付加されて出力される。 After that, the control unit 10 reads out an object stored in the storage unit 11 in advance as an irradiation target (S20), and the mth row and nth column from the table stored in the storage unit 11 according to the read object. The adjustment coefficient B of is read out (S21). Next, the control unit 10 calculates the transmittance by multiplying the constant P by the adjustment coefficient A and the adjustment coefficient B (S22), and obtains the calculated transmittance of the dimming member 3 in the mth row and nth column in the communication unit. Output to the external terminal 200 via 19 (S23: corresponding to a part of the first output unit). The constant P may be, for example, an average value of the transmittance on the transparent side shown in FIG. The current values of m and n are added to the transmittance and output.
 その後、制御部10は、第m行第n列の設置領域にある調光部材3の透過率を、ステップS23で算出した値になるように調整する(S24)。次いで、制御部10は、列番号を1つ進めるために、nを1だけインクリメントし(S25)、nがN+1になったか否か、即ちnが最終列の番号を越えたか否かを判定する(S26)。 After that, the control unit 10 adjusts the transmittance of the dimming member 3 in the installation area of the mth row and nth column so as to be the value calculated in step S23 (S24). Next, the control unit 10 increments n by 1 (S25) in order to advance the column number by one, and determines whether or not n becomes N + 1, that is, whether or not n exceeds the number of the last column. (S26).
 nがN+1ではない場合(S26:NO)、制御部10は、次の列の調光部材3の透過率を調整するためにステップS20に処理を移す。一方、nがN+1である場合(S26:YES)、制御部10は、列番号nを1に初期化した(S27)後、行番号を1つ進めるために、mを1だけインクリメントし(S28)、mがM+1になったか否か、即ちmが最終行の番号を越えたか否かを判定する(S29)。 When n is not N + 1 (S26: NO), the control unit 10 shifts the process to step S20 in order to adjust the transmittance of the dimming member 3 in the next row. On the other hand, when n is N + 1 (S26: YES), the control unit 10 initializes the column number n to 1 (S27), and then increments m by 1 in order to advance the row number by one (S28). ), It is determined whether or not m becomes M + 1, that is, whether or not m exceeds the number of the last line (S29).
 mがM+1ではない場合(S29:NO)、制御部10は、次の行の調光部材3の透過率を調整するためにステップS20に処理を移す。一方、mがM+1である場合(S29:YES)、制御部10は、図9の処理を終了する。なお、対象物がビニールハウス300内の全域で一定であることが分かっている場合は、ステップS26及びS29からステップS21に処理を移してもよい。 When m is not M + 1 (S29: NO), the control unit 10 shifts the process to step S20 in order to adjust the transmittance of the dimming member 3 in the next row. On the other hand, when m is M + 1 (S29: YES), the control unit 10 ends the process of FIG. If it is known that the object is constant in the entire area of the vinyl house 300, the process may be transferred from steps S26 and S29 to step S21.
 次に、外部端末200にて図10の処理が起動された場合、制御部210は、前回の起動時から現在までの間に調光制御装置1からデータを受信したか否かを判定し(S201)、受信しない場合(S201:NO)、特段の処理を実行することなく図10の処理を終了する。調光制御装置1からデータを受信した場合(S201:YES)、制御部201は、透過率を受信したか否かを判定し(S202)、透過率を受信した場合(S202:YES)、受信して取得した透過率を、記憶部11に確保された表示メモリに記憶して(S203)、図10の処理を終了する。透過率は、取得時に付加されているm及びnの値に応じて表示メモリ内に順次記憶される。 Next, when the process of FIG. 10 is activated by the external terminal 200, the control unit 210 determines whether or not data has been received from the dimming control device 1 between the time of the previous activation and the present (). In S201), if no reception is performed (S201: NO), the process of FIG. 10 is terminated without executing any special process. When data is received from the dimming control device 1 (S201: YES), the control unit 201 determines whether or not the transmittance has been received (S202), and when the transmittance is received (S202: YES), the reception The transmittance acquired in this manner is stored in the display memory secured in the storage unit 11 (S203), and the process of FIG. 10 is completed. The transmittance is sequentially stored in the display memory according to the values of m and n added at the time of acquisition.
 ステップS202で透過率を受信しない場合(S202:NO)、制御部210は、日射量を受信したか否かを判定し(S204)、日射量を受信した場合(S204:YES)、受信して取得した日射量を表示メモリに記憶して(S205)、図10の処理を終了する。ステップS204で日射量を受信しない場合(S204:NO)、制御部201は、温度を受信したか否かを判定し(S206)、温度を受信した場合(S206:YES)、受信して取得した温度を表示メモリに記憶して(S207)、図10の処理を終了する。 If the transmittance is not received in step S202 (S202: NO), the control unit 210 determines whether or not the amount of solar radiation has been received (S204), and if the amount of solar radiation is received (S204: YES), receives the transmittance. The acquired amount of solar radiation is stored in the display memory (S205), and the process of FIG. 10 is completed. When the amount of solar radiation is not received in step S204 (S204: NO), the control unit 201 determines whether or not the temperature has been received (S206), and when the temperature is received (S206: YES), it has been received and acquired. The temperature is stored in the display memory (S207), and the process of FIG. 10 is completed.
 ステップS206で温度を受信しない場合(S206:NO)、制御部210は、画像データを受信したか否かを判定し(S208)、画像データを受信した場合(S208:YES)、受信して取得した画像データを表示メモリに記憶する(S209)。表示メモリに記憶された透過率、日射量及び温度と、記憶された画像データに基づく画像とは、所定のフレームレートで表示部212に表示される。ステップS209の処理を終えた場合、又はステップS208で画像データを受信しない場合(S208:NO)、制御部210は、図10の処理を終了する。 If the temperature is not received in step S206 (S206: NO), the control unit 210 determines whether or not the image data has been received (S208), and if the image data is received (S208: YES), receives and acquires the temperature. The image data is stored in the display memory (S209). The transmittance, the amount of solar radiation, and the temperature stored in the display memory and the image based on the stored image data are displayed on the display unit 212 at a predetermined frame rate. When the process of step S209 is completed, or when the image data is not received in step S208 (S208: NO), the control unit 210 ends the process of FIG.
 図11に移って、外部端末200の表示部212には、調光制御装置1側の処理手順におけるステップS12と、S23と、S15とにてそれぞれ出力された画像(ハウス内モニタ画像:ここではキャベツの画像)と、M行N列の調光部材3,3・・3における透過率と、日射量及び温度とが表示されている。温度に加えて湿度が表示されてもよい。例えば、ハウス内モニタ画像には、撮像領域を示すグリッドを表示してもよい。また、透過率の表示は単なるマトリックス状の数値表示ではなく、調光部材3,3・・3の並びのイメージ図の上に透過率の数値を表示してもよい。 Moving to FIG. 11, the images output to the display unit 212 of the external terminal 200 in steps S12, S23, and S15 in the processing procedure on the dimming control device 1 side (in-house monitor image: here, here). (Image of cabbage), the transmittance of the dimming members 3, 3, and 3 in rows M and N, and the amount of solar radiation and temperature are displayed. Humidity may be displayed in addition to temperature. For example, a grid showing an imaging area may be displayed on the monitor image in the house. Further, the display of the transmittance is not merely a matrix-like numerical display, but the numerical value of the transmittance may be displayed on the image diagram of the arrangement of the dimming members 3, 3, ... 3.
 以上のように本実施形態1によれば、ソーラーパネル4,4・・4からの電力により光の透過率が調整可能な調光部材3,3・・3がビニールハウス300上に設置されており、該調光部材3,3・・3における光の透過率を制御部10が調整する。従って、ビニールハウス300内への日射の透過率を外部電源によらずに適時適切に調整することが可能となる。 As described above, according to the first embodiment, the dimming members 3, 3 and 3 whose light transmittance can be adjusted by the electric power from the solar panels 4, 4 and 4 are installed on the vinyl house 300. The control unit 10 adjusts the light transmittance of the dimming members 3, 3, and 3. Therefore, it is possible to adjust the transmittance of solar radiation into the greenhouse 300 in a timely and appropriate manner without using an external power source.
 また、実施形態1によれば、検出した日射量に基づいて調光部材3,3・・3における光の透過率を制御部10が調整する。従って、日射量が過大であるときは日射の透過を抑制し、日射量が比較的少ないときは施設内に日射を有効に取り込むことが可能となる。 Further, according to the first embodiment, the control unit 10 adjusts the light transmittance in the dimming members 3, 3, ... 3 based on the detected amount of solar radiation. Therefore, when the amount of solar radiation is excessive, the transmission of solar radiation is suppressed, and when the amount of solar radiation is relatively small, it is possible to effectively take in the solar radiation into the facility.
 更に、実施形態1によれば、電源バッテリ22にソーラーパネル4,4・・4からの電力を蓄電して自装置内の各部に給電するため、ソーラーパネル4,4・・4の発電量が大幅に低下する雨天又は曇天の場合であっても所要の制御を行うことが可能となる。 Further, according to the first embodiment, since the power battery 22 stores the electric power from the solar panels 4, 4 and 4 and supplies the electric power to each part in the own device, the amount of power generated by the solar panels 4, 4 and 4 is increased. It is possible to perform the required control even in the case of rainy weather or cloudy weather, which is significantly reduced.
 また、実施形態1によれば、検出した日射量に基づいて調光部材3,3・・3における光の透過率を調整するのみならず、ビニールハウス300内の温度に基づき、農作物の違いを考慮して調光部材3,3・・3における光の透過率を調整する。従って、ビニールハウス300内への日射の透過光を農作物の生育に適したレベルに調整することが可能となる。 Further, according to the first embodiment, not only the light transmittance in the dimming members 3, 3, ... 3 is adjusted based on the detected amount of solar radiation, but also the difference in crops is determined based on the temperature in the vinyl house 300. In consideration of this, the light transmittance of the dimming members 3, 3, ... 3 is adjusted. Therefore, it is possible to adjust the transmitted light of solar radiation into the greenhouse 300 to a level suitable for the growth of agricultural products.
 更に、実施形態1によれば、ビニールハウス300上の複数の設置領域に設置された調光部材3,3・・3における光の透過率を、設置領域毎に制御部10が調整する。これにより、調光部材3,3・・3の透過光が照射される照射対象のビニールハウス300内における位置、形状が大きい照射対象の部位等に応じてビニールハウス300内への日射の透過率を調整することが可能となる。 Further, according to the first embodiment, the control unit 10 adjusts the light transmittance of the dimming members 3, 3, 3 installed in the plurality of installation areas on the vinyl house 300 for each installation area. As a result, the transmittance of solar radiation into the vinyl house 300 depending on the position in the vinyl house 300 to be irradiated with the transmitted light of the dimming members 3, 3, 3 and the portion having a large shape to be irradiated. Can be adjusted.
 更に、実施形態1によれば、外部端末200と通信接続した場合は、調整された透過率、現在の日射量及び施設内の画像を外部端末200にてモニタすることが可能となる。 Further, according to the first embodiment, when the communication is connected to the external terminal 200, the adjusted transmittance, the current amount of solar radiation, and the image in the facility can be monitored by the external terminal 200.
 更に、実施形態1によれば、外部端末200は、調整された光の透過率を通信により取得して表示部212に表示する。従って、調光部材3,3・・3における光の透過率を外部端末200にてモニタすることができる。 Further, according to the first embodiment, the external terminal 200 acquires the adjusted light transmittance by communication and displays it on the display unit 212. Therefore, the light transmittance of the dimming members 3, 3, ... 3 can be monitored by the external terminal 200.
(変形例1)
 実施形態1は、日射センサ15により日射量を検出する形態であるのに対し、変形例1は、ソーラーパネル4,4・・4の発電電力から日射量を検出する形態である。変形例1に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Modification example 1)
The first embodiment is a form in which the amount of solar radiation is detected by the solar radiation sensor 15, whereas the modified example 1 is a form in which the amount of solar radiation is detected from the generated power of the solar panels 4, 4, and 4. Since the block configuration of the dimming control device 1 according to the first modification is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
 本変形例1では、調光制御装置1は、ソーラーパネル4,4・・4が発電した電圧及び電流を時系列的に取得して発電電力(kW)を算出し、算出した発電電力を日射量(kW/m)に換算する。この換算は、ソーラーパネル4,4・・4の発電効率、表面積、太陽光に対する法線の角度等に基づいて行われる。換算式は予め記憶部11に記憶されている。制御部10が換算によって検出した日射量は記憶部11に記憶され、図9のステップS13における日射センサ15からの日射量の取得に代えて、記憶部11から読み出される。 In this modification 1, the dimming control device 1 acquires the voltage and current generated by the solar panels 4, 4, and 4 in chronological order, calculates the generated power (kW), and emits the calculated generated power to solar radiation. Convert to quantity (kW / m 2 ). This conversion is performed based on the power generation efficiency, surface area, normal angle with respect to sunlight, and the like of the solar panels 4, 4, and 4. The conversion formula is stored in the storage unit 11 in advance. The amount of solar radiation detected by the control unit 10 by conversion is stored in the storage unit 11, and is read out from the storage unit 11 instead of acquiring the amount of solar radiation from the solar radiation sensor 15 in step S13 of FIG.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図12は、変形例1に係る調光システムで日射量を算出する制御部10の処理手順を示すフローチャートである。図12の処理は一定周期(例えば10秒毎)で起動されるが、これに限定されず、不定期に起動されてもよい。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 12 is a flowchart showing a processing procedure of the control unit 10 for calculating the amount of solar radiation in the dimming system according to the first modification. The process of FIG. 12 is started at a fixed cycle (for example, every 10 seconds), but the present invention is not limited to this, and the process may be started irregularly.
 調光制御装置1にて図12の処理が起動された場合、制御部10は、ソーラーパネル4,4・・4が発電した電力に関して、検出部40から発電電圧を取得し(S31)、続いて発電電流を取得する(S32)。制御部10は、取得した発電電圧及び発電電流を乗算して発電電力を算出し(S33)、発電電力の移動平均を算出する(S34)。これにより、発電電力の瞬時変動を平滑化する。その後、制御部10は、移動平均をとった発電電力を日射量に換算し(S35)、換算することによって検出した日射量を記憶部11に記憶して(S36)、図12の処理を終了する。 When the process of FIG. 12 is activated by the dimming control device 1, the control unit 10 acquires the generated voltage from the detection unit 40 with respect to the power generated by the solar panels 4, 4, 4 (S31), and then To acquire the generated current (S32). The control unit 10 calculates the generated power by multiplying the acquired generated voltage and the generated current (S33), and calculates the moving average of the generated power (S34). As a result, the instantaneous fluctuation of the generated power is smoothed. After that, the control unit 10 converts the generated power obtained by taking the moving average into the amount of solar radiation (S35), stores the amount of solar radiation detected by the conversion in the storage unit 11 (S36), and ends the process of FIG. To do.
 以上のように本変形例1によれば、ソーラーパネル4,4・・4は、ビニールハウス300上にて効率よく発電することができる。また、日射センサ15が備わっていない場合であっても、ビニールハウス300上又はビニールハウス300外に設置されたソーラーパネル4,4・・4の発電電力を換算して日射量を検出し、検出した日射量に基づいてビニールハウス300内への日射の透過率を調整することが可能となる。 As described above, according to the present modification 1, the solar panels 4, 4, and 4 can efficiently generate electricity on the vinyl house 300. Further, even when the solar radiation sensor 15 is not provided, the amount of solar radiation is detected and detected by converting the generated power of the solar panels 4, 4, 4 installed on the vinyl house 300 or outside the vinyl house 300. It is possible to adjust the transmittance of solar radiation into the vinyl house 300 based on the amount of solar radiation generated.
(実施形態2)
 実施形態1は、調光部材3,3・・3の透過光が照射される対象物を示す情報が、予め記憶部11に記憶されている形態であったが、実施形態2は、照射対象の選択を受け付ける形態である。実施形態2に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Embodiment 2)
In the first embodiment, the information indicating the object to be irradiated with the transmitted light of the dimming members 3, 3, ... 3 is stored in the storage unit 11 in advance, but the second embodiment is the irradiation target. It is a form that accepts the selection of. Since the block configuration of the dimming control device 1 according to the second embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
 本実施形態2では、ユーザが操作部13に対して照射対象のメニューを選択する操作を行った場合に、これを受け付けた制御部10が表示部12に対象物の選択画面を表示し、ユーザに対象物を選択させる。調光部材3,3・・3の設置領域毎に選択された対象物は記憶部11に記憶され、実施形態1の図9に示すステップS20にて読み出される。なお、対象物を設置領域毎に選択することは、対象物を設置領域に対応する撮像領域毎に選択することと意味的に等しい。 In the second embodiment, when the user performs an operation of selecting an irradiation target menu for the operation unit 13, the control unit 10 that receives the operation displays the object selection screen on the display unit 12, and the user Let you select the object. The object selected for each installation area of the dimming members 3, 3, ... 3 is stored in the storage unit 11 and read out in step S20 shown in FIG. 9 of the first embodiment. It should be noted that selecting an object for each installation area is semantically equivalent to selecting an object for each imaging area corresponding to the installation area.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図13は、実施形態2に係る調光システムで照射対象の選択を受け付ける制御部10の処理手順を示すフローチャートである。図14は、実施形態2に係る調光制御装置1における表示例を示す模式図である。図13の処理は一定周期(例えば0.1秒毎)で起動されるが、これに限定されず、不定期に起動されてもよい。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 13 is a flowchart showing a processing procedure of the control unit 10 that accepts the selection of the irradiation target in the dimming system according to the second embodiment. FIG. 14 is a schematic view showing a display example in the dimming control device 1 according to the second embodiment. The process of FIG. 13 is started at a fixed cycle (for example, every 0.1 seconds), but the present invention is not limited to this, and the process may be started irregularly.
 調光制御装置1にて図13の処理が起動された場合、制御部10は、操作部13への操作が有ったか否かを判定し(S41)、操作が無かった場合(S41:NO)、特段の処理を実行することなく図13の処理を終了する。操作が有った場合(S41:YES)、当該操作が、照射対象のメニュー選択に係る操作であるか否かを更に判定する(S42)。当該操作がメニュー選択に係る操作であった場合(S42:YES)、制御部10は、表示部12に対象物の選択画面を表示して(S43)、図13の処理を終了する。 When the process of FIG. 13 is activated by the dimming control device 1, the control unit 10 determines whether or not there is an operation on the operation unit 13 (S41), and when there is no operation (S41: NO). ), The process of FIG. 13 is completed without executing any special process. When there is an operation (S41: YES), it is further determined whether or not the operation is an operation related to the menu selection of the irradiation target (S42). When the operation is an operation related to menu selection (S42: YES), the control unit 10 displays an object selection screen on the display unit 12 (S43), and ends the process of FIG. 13.
 ステップS42で、操作部13への操作がメニュー選択に係る操作ではないと判定した場合(S42:NO)、制御部10は、当該操作がテキストボックスの選択操作であるか否かを判定する(S44)。当該操作がテキストボックスの選択操作である場合(S44:YES)、制御部10は、選択されたテキストボックスにカーソルを移動させて(S45)、図13の処理を終了する。 If it is determined in step S42 that the operation on the operation unit 13 is not an operation related to menu selection (S42: NO), the control unit 10 determines whether or not the operation is a text box selection operation (S42: NO). S44). When the operation is a text box selection operation (S44: YES), the control unit 10 moves the cursor to the selected text box (S45) and ends the process of FIG. 13.
 ステップS44で、操作部13への操作がテキストボックスの選択操作ではないと判定した場合(S44:NO)、制御部10は、当該操作がテキストボックスへの入力操作であるか否かを判定する(S46)。当該操作がテキストボックスへの入力操作である場合(S46:YES)、制御部10は、入力された文字/数字をテキストボックスに表示させて(S47)、図13の処理を終了する。 If it is determined in step S44 that the operation on the operation unit 13 is not a text box selection operation (S44: NO), the control unit 10 determines whether or not the operation is an input operation on the text box. (S46). When the operation is an input operation to the text box (S46: YES), the control unit 10 displays the input characters / numbers in the text box (S47), and ends the process of FIG.
 ステップS46で、操作部13への操作がテキストボックスへの入力操作ではないと判定した場合(S46:NO)、制御部10は、当該操作が対象物の選択操作であるか否かを判定する(S48)。当該操作が対象物の選択操作である場合(S48:YES)、制御部10は、選択された対象物を受け付け(受付部に相当)、指定された行番号,列番号の設置領域に対応付けて記憶部11に記憶する(S49)。ステップS49の処理を終えた場合、又はステップS48で当該操作が対象物の選択操作ではないと判定した場合(S48:NO)、制御部10は、図13の処理を終了する。 When it is determined in step S46 that the operation to the operation unit 13 is not an input operation to the text box (S46: NO), the control unit 10 determines whether or not the operation is an object selection operation. (S48). When the operation is an object selection operation (S48: YES), the control unit 10 accepts the selected object (corresponds to the reception unit) and associates it with the installation area of the designated row number and column number. It is stored in the storage unit 11 (S49). When the process of step S49 is completed, or when it is determined in step S48 that the operation is not the object selection operation (S48: NO), the control unit 10 ends the process of FIG.
 図14に移って、表示部12には、調光部材3,3・・3の設置領域の行番号及び列番号を指定するためのテキストボックス121,122と、対象物の選択メニュー123と、選択する対象物の番号を入力するためのテキストボックス124と、対象物の選択を確定するための選択ボタン125とが表示されている。ユーザが、テキストボックス121,122,124に数字を入力した後に、選択ボタン125にタッチした場合、制御部10が対象物の選択を受け付ける。 Moving on to FIG. 14, the display unit 12 includes text boxes 121 and 122 for designating the row numbers and column numbers of the installation areas of the dimming members 3, 3, and 3, an object selection menu 123, and an object selection menu 123. A text box 124 for inputting the number of the object to be selected and a selection button 125 for confirming the selection of the object are displayed. When the user touches the selection button 125 after inputting a number in the text boxes 121, 122, 124, the control unit 10 accepts the selection of the object.
 本実施形態2にあっては、表示部12及び操作部13により、照射対象となる対象物の選択を受け付けたが、これに限定されるものではない。例えば、外部端末200にて選択された対象物を、通信部19を介して取得し、取得した対象物を受け付けて(受付部に相当)記憶部11に記憶するようにしてもよい。 In the second embodiment, the display unit 12 and the operation unit 13 accept the selection of the object to be irradiated, but the present invention is not limited to this. For example, the object selected by the external terminal 200 may be acquired via the communication unit 19, and the acquired object may be received (corresponding to the reception unit) and stored in the storage unit 11.
 以上のように本実施形態2によれば、調光部材3,3・・3の透過光が照射される照射対象を予め選択しておくことにより、照射対象の違いを考慮してビニールハウス300内への日射の透過率を調整することが可能となる。 As described above, according to the second embodiment, by selecting in advance the irradiation target to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated, the vinyl house 300 takes into consideration the difference in the irradiation target. It is possible to adjust the transmittance of solar radiation inward.
(実施形態3)
 実施形態2は、調光部材3,3・・3の透過光が照射される照射対象の選択を受け付ける形態であるのに対し、実施形態3は、撮像部17で撮像した画像中の監視対象を認識し、認識した対象物を照射対象とする形態である。実施形態3に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Embodiment 3)
The second embodiment accepts the selection of the irradiation target to which the transmitted light of the dimming members 3, 3, ... 3 is irradiated, whereas the third embodiment is the monitoring target in the image captured by the imaging unit 17. Is a form in which the recognized object is the irradiation target. Since the block configuration of the dimming control device 1 according to the third embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
 本実施形態3では、調光制御装置1は、撮像部17で撮像した画像から、調光部材3,3・・3それぞれの設置領域に対応する撮像領域の画像を抽出し、抽出した画像中の監視対象(農作物)をAI(Artificial Intelligence )で認識する。認識された対象物は、当該撮像領域における照射対象として記憶部11に記憶され、実施形態1の図9に示すステップS20にて第m行(mは1からMの自然数)第n列(nは1からNの自然数)の撮像領域における対象物として読み出される。読み出された対象物は、ステップS21にてテーブルの選択に用いられる。 In the third embodiment, the dimming control device 1 extracts an image of an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and is included in the extracted image. The monitoring target (agricultural product) of is recognized by AI (Artificial Intelligence). The recognized object is stored in the storage unit 11 as an irradiation target in the imaging region, and in step S20 shown in FIG. 9 of the first embodiment, the mth row (m is a natural number from 1 to M) nth column (n). Is a natural number from 1 to N) and is read out as an object in the imaging region. The read object is used for table selection in step S21.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図15は、実施形態3に係る調光システムで画像中の監視対象を認識する制御部10の処理手順を示すフローチャートである。図16は、実施形態3に係る学習モデルX1の内容例を示す模式図である。学習モデルX1(第1学習モデルに相当)は、図1に示す学習モデルXに含まれている。図15の処理は一定周期(例えば1日毎)で起動されるが、これに限定されず、不定期に起動されてもよい。図15のステップS51からS55までの処理は、図9のステップS25からS29までの処理と同等であるため、説明を簡略化する。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 15 is a flowchart showing a processing procedure of the control unit 10 that recognizes the monitoring target in the image in the dimming system according to the third embodiment. FIG. 16 is a schematic diagram showing a content example of the learning model X1 according to the third embodiment. The learning model X1 (corresponding to the first learning model) is included in the learning model X shown in FIG. The process of FIG. 15 is started at a fixed cycle (for example, every day), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S51 to S55 of FIG. 15 are equivalent to the processes of steps S25 to S29 of FIG. 9, the description will be simplified.
 調光制御装置1にて図15の処理が起動された場合、制御部10は、撮像部17から1フレーム分の画像を取得する(S41)。次いで、制御部10は、第1行第1列の撮像領域から処理を開始するためにmを1に初期化し(S42)、更にnを1に初期化する(S43)。 When the process of FIG. 15 is activated by the dimming control device 1, the control unit 10 acquires an image for one frame from the imaging unit 17 (S41). Next, the control unit 10 initializes m to 1 (S42) and further initializes n to 1 (S43) in order to start processing from the imaging region of the first row and first column.
 その後、制御部10は、取得した画像から第m行第n列の撮像領域の画像を抽出し(S44:抽出部に相当)、抽出した画像を学習モデルX1に入力して(S45)、学習モデルX1から監視対象の検出の有無情報を取得する(S46:第1取得部に相当)。 After that, the control unit 10 extracts an image of the imaging region in the mth row and nth column from the acquired image (S44: corresponding to the extraction unit), inputs the extracted image into the learning model X1 (S45), and learns. The presence / absence information of detection of the monitoring target is acquired from the model X1 (S46: corresponding to the first acquisition unit).
 ここで一旦図16に移って、上述のステップS45,S46で用いられる学習モデルX1は、例えば、深層学習(ディープラーニング)によって学習された多層の畳み込みニューラルネットワーク(CNN:Convolutional Neural Network )を用いることができるが、他の機械学習で学習したものであってもよい。畳み込みニューラルネットワークは、入力層と出力層との間に中間層を備える。中間層は、複数段からなる畳み込み層及びプーリング層、並びに最終段の全結合層を備える。畳み込み層、プーリング層及び全結合層の数は適宜決定できる。 Here, once moving to FIG. 16, the learning model X1 used in steps S45 and S46 described above uses, for example, a multi-layer convolutional neural network (CNN) learned by deep learning. However, it may be learned by other machine learning. A convolutional neural network has an intermediate layer between the input layer and the output layer. The intermediate layer includes a convolutional layer and a pooling layer composed of a plurality of stages, and a fully connected layer in the final stage. The number of convolution layers, pooling layers and fully connected layers can be appropriately determined.
 入力層、中間層及び出力層それぞれには、1又は複数のノードが存在する。各層のノードは、前後の層に存在するノードと一方向に所望の重み及びバイアスで結合されている。入力層に入力されたデータが中間層に入力された場合、重み及びバイアスを含む活性化関数を用いて、一の層の出力が算出され、算出された出力が次の層に入力される。以下同様にして、出力層の出力が求められるまで次々と後の層に伝達される。 There are one or more nodes in each of the input layer, intermediate layer and output layer. The nodes of each layer are unidirectionally connected to the nodes existing in the previous and next layers with desired weights and biases. When the data input to the input layer is input to the intermediate layer, the output of one layer is calculated using the activation function including the weight and the bias, and the calculated output is input to the next layer. In the same manner below, the output of the output layer is transmitted to the subsequent layers one after another until the output is obtained.
 学習モデルX1は、1フレーム分の画像から抽出した画像を構成する各画素の画素値を入力とし、入力画像中に監視対象が存在する(即ち検出有りの)確率及び何れの監視対象も存在しない(即ち検出無しの)確率を出力とする。出力層の各出力ノードが出力する確率は0~1.0の値であり、全ての出力ノードが出力する確率の合計は1.0である。ここでの監視対象は、レタス、トマト、イチゴ等の農作物の少なくとも1つである。なお、入力層に画像を入力する前に、畳み込みフィルタを含む適宜のフィルタを画像に適用し、フィルタを適用した後に得られる各画素の画素値を入力層に入力してもよい。 The learning model X1 takes the pixel value of each pixel constituting the image extracted from the image for one frame as an input, and the probability that the monitoring target exists (that is, with detection) in the input image and none of the monitoring targets exists. The output is the probability (ie no detection). The probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0. The monitoring target here is at least one of agricultural products such as lettuce, tomato, and strawberry. Before inputting an image to the input layer, an appropriate filter including a convolution filter may be applied to the image, and the pixel value of each pixel obtained after applying the filter may be input to the input layer.
 学習モデルX1は、監視対象の画像と、それぞれの種類を示す情報とを含む教師データを用いて、画像が入力された場合に、監視対象毎に検出の有無情報を出力するように学習されたモデルである。学習モデルX1は、入力値に対して行う所定の演算を規定する関数の係数や閾値等のデータが最適化されている。学習モデルX1は、パーソナルコンピュータやサーバコンピュータ等で構成された学習装置で学習された後にダウンロードされて記憶部11に記憶されてもよく、学習モデルX1を記憶する可搬型記憶媒体から読み取られて記憶部11に記憶されてもよい。 The learning model X1 was trained to output detection presence / absence information for each monitoring target when an image is input using teacher data including an image to be monitored and information indicating each type. It is a model. In the learning model X1, data such as coefficients and thresholds of a function that defines a predetermined operation performed on an input value are optimized. The learning model X1 may be downloaded and stored in the storage unit 11 after being learned by a learning device composed of a personal computer, a server computer, or the like, and may be read from a portable storage medium that stores the learning model X1 and stored. It may be stored in the part 11.
 図15に戻って、制御部10は、取得した有無情報が検出無しを示すか否かを判定し(S47)、検出無しを示す場合(S47:YES)、監視対象の検出無しの旨を記憶部11に記憶する(S48)。検出無しを示すか否かは、例えば検出無しの確率が0.6より大きいか否かを判定する。判定の閾値は0.6に限定されない。 Returning to FIG. 15, the control unit 10 determines whether or not the acquired presence / absence information indicates no detection (S47), and if it indicates no detection (S47: YES), stores that the monitoring target is not detected. It is stored in the part 11 (S48). Whether or not to indicate no detection is determined, for example, whether or not the probability of no detection is greater than 0.6. The judgment threshold is not limited to 0.6.
 有無情報が検出無しを示さない場合(S47:NO)、制御部10は、監視対象毎に有無情報が検出有りを示すか否かを判定する(S49)。特定の監視対象(レタス、トマト、イチゴ等の農作物)について有無情報が検出有りを示す場合(S49:YES)、制御部10は、該特定の監視対象の検出有りの旨を記憶部11に記憶する(S50)。検出有りを示すか否かは、例えば検出有りの確率が0.6より大きいか否かを判定する。判定の閾値は0.6に限定されない。 When the presence / absence information does not indicate no detection (S47: NO), the control unit 10 determines whether or not the presence / absence information indicates detection for each monitoring target (S49). When the presence / absence information indicates that the specific monitoring target (agricultural crops such as lettuce, tomato, and strawberry) has been detected (S49: YES), the control unit 10 stores in the storage unit 11 that the specific monitoring target has been detected. (S50). Whether or not to indicate the presence or absence of detection is determined, for example, whether or not the probability of the presence or absence of detection is greater than 0.6. The judgment threshold is not limited to 0.6.
 ステップS48若しくはS50の処理を終えた場合、又はステップS49で何れの監視対象についても有無情報が検出有りを示さない場合(S49:NO)、制御部10は、nを1だけインクリメントし(S51)、nがN+1になったか否かを判定する(S52)。nがN+1ではない場合(S52:NO)、制御部10は、次の列の撮像領域における画像を認識するためにステップS44に処理を移す。 When the processing of step S48 or S50 is completed, or when the presence / absence information does not indicate the presence / absence of detection for any of the monitoring targets in step S49 (S49: NO), the control unit 10 increments n by 1 (S51). , N is determined to be N + 1 (S52). When n is not N + 1 (S52: NO), the control unit 10 shifts the process to step S44 in order to recognize the image in the imaging region in the next row.
 一方、nがN+1である場合(S52:YES)、制御部10は、列番号nを1に初期化した(S53)後、行番号mを1だけインクリメントし(S54)、mがM+1になったか否かを判定する(S55)。mがM+1ではない場合(S55:NO)、制御部10は、ステップS44に処理を移す。一方、mがM+1である場合(S55:YES)、制御部10は、図15の処理を終了する。 On the other hand, when n is N + 1 (S52: YES), the control unit 10 initializes the column number n to 1 (S53), then increments the row number m by 1 (S54), and m becomes M + 1. It is determined whether or not it is (S55). When m is not M + 1 (S55: NO), the control unit 10 shifts the process to step S44. On the other hand, when m is M + 1 (S55: YES), the control unit 10 ends the process of FIG.
 なお、図15のフローチャートに示す処理手順によれば、第m行第n列の撮像領域毎に監視対象の検出の有無を判定したが、これに限定されるものではなく、撮像部17から取得した画像全体について監視対象の検出の有無を判定してもよい。この場合は、ステップS42~S44,S51~S55を削除し、ステップS45にて取得した画像全体を学習モデルX1に入力すればよい。 According to the processing procedure shown in the flowchart of FIG. 15, it was determined whether or not the monitoring target was detected for each imaging region in the mth row and nth column, but the present invention is not limited to this, and the acquisition is obtained from the imaging unit 17. It may be determined whether or not the monitoring target is detected for the entire image. In this case, steps S42 to S44 and S51 to S55 may be deleted, and the entire image acquired in step S45 may be input to the learning model X1.
 以上のように本実施形態3によれば、ビニールハウス300内の画像から、調光部材3,3・・3の設置領域に対応する撮像領域毎に抽出した画像を学習モデルX1に入力し、学習モデルX1から取得した監視対象(農作物)の検出の有無情報に基づいて、調光部材3,3・・3の設置領域毎に光の透過率を調整する。これにより、監視対象の違い及び監視対象の位置に応じたきめ細かな光の透過率の調整が可能となる。 As described above, according to the third embodiment, the image extracted from the image in the vinyl house 300 for each imaging area corresponding to the installation area of the dimming member 3, 3, 3 is input to the learning model X1. Based on the detection presence / absence information of the monitoring target (agricultural product) acquired from the learning model X1, the light transmittance is adjusted for each installation area of the dimming members 3, 3, and 3. This makes it possible to finely adjust the light transmittance according to the difference in the monitoring target and the position of the monitoring target.
(変形例2)
 実施形態3は、農作物である監視対象の画像認識を比較的長周期で実施する形態であったが、変形例2は家畜又は魚介類である監視対象の画像認識を比較的短周期で実施する形態である。変形例2に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。なお、調光制御装置1は家畜の飼育又は魚介類の養殖に適した施設(例えば牛舎等の畜舎又は水槽若しくは海上の生け簀等)に設置されている。
(Modification 2)
In the third embodiment, the image recognition of the monitored object, which is an agricultural product, is carried out in a relatively long cycle, but in the modified example 2, the image recognition of the monitored target, which is a livestock or seafood, is carried out in a relatively short cycle. It is a form. Since the block configuration of the dimming control device 1 according to the second modification is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit. The dimming control device 1 is installed in a facility suitable for raising livestock or culturing seafood (for example, a barn such as a barn, a water tank, or a cage on the sea).
 本変形例2では、調光制御装置1は、撮像部17で撮像した画像から、調光部材3,3・・3それぞれの設置領域に対応する撮像領域を抽出し、抽出した画像中の監視対象(家畜又は魚介類)をAIで認識する。認識された対象物が記憶部11に記憶されて図9に示すステップS20で利用されるのは、実施形態3の場合と同様である。但し、家畜及び魚介類は施設内を動き回るため、実施形態3の図15に示すものと同様のフローチャートを、例えば1分周期で実行して対象物の動きに追従させる。 In the second modification, the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image. Recognize the subject (livestock or seafood) by AI. The recognized object is stored in the storage unit 11 and used in step S20 shown in FIG. 9 as in the case of the third embodiment. However, since livestock and seafood move around in the facility, a flowchart similar to that shown in FIG. 15 of the third embodiment is executed, for example, at a cycle of 1 minute to follow the movement of the object.
 図17は、変形例2に係る学習モデルX2の内容例を示す模式図である。学習モデルX2(第1学習モデルに相当)は、図1に示す学習モデルXに含まれている。学習モデルX2は学習モデルX1とは異なり、入力画像中に牛、ブタ、エビ等の家畜又は魚介類が存在する確率を出力層から出力する。学習モデルX2の学習方法等については学習モデルX1と同様である。 FIG. 17 is a schematic diagram showing a content example of the learning model X2 according to the modified example 2. The learning model X2 (corresponding to the first learning model) is included in the learning model X shown in FIG. Unlike the learning model X1, the learning model X2 outputs the probability that livestock or seafood such as cows, pigs, and shrimp are present in the input image from the output layer. The learning method and the like of the learning model X2 are the same as those of the learning model X1.
 以上のように本変形例2によれば、監視対象である家畜又は魚介類の撮像領域間の移動に応じて、撮像領域に対応する調光部材3,3・・3における光の透過率を調整する。従って、家畜又は魚介類の動きに応じて移動先に対する日射の透過率を調整することが可能となる。 As described above, according to the present modification 2, the light transmittance in the dimming members 3, 3, 3 corresponding to the imaging region is determined according to the movement between the imaging regions of the livestock or seafood to be monitored. adjust. Therefore, it is possible to adjust the transmittance of solar radiation to the destination according to the movement of livestock or seafood.
(実施形態4)
 実施形態3は、監視対象である農作物の違いに応じて調光部材3,3・・3における光の透過率を調整する形態であるのに対し、実施形態4は、農作物の日焼けの程度に応じて光の透過率を調整する形態である。実施形態4に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Embodiment 4)
The third embodiment is a mode in which the light transmittance of the dimming members 3, 3, ... 3 is adjusted according to the difference in the crops to be monitored, whereas the fourth embodiment is the degree of sunburn of the crops. It is a form in which the light transmittance is adjusted accordingly. Since the block configuration of the dimming control device 1 according to the fourth embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
 本実施形態4では、調光制御装置1は、撮像部17で撮像した画像から、調光部材3,3・・3それぞれの設置領域に対応する撮像領域を抽出し、抽出した画像中の監視対象(農作物)の日焼けの程度(以下、日焼け度という)をAIで認識する。日焼け無し及び日焼け度j(j=1,2・・J:Jは2以上の自然数)は、0から1までの日焼けの割合を昇順に表している。調光制御装置1は、更に、認識した日焼け度に基づいて調光部材3,3・・3における透過率の調整係数Cを、撮像領域に対応する設置領域毎に算出し、算出した調整係数Cを、M行N列の日焼けの調整係数のテーブルにして記憶部11に記憶する。 In the fourth embodiment, the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image. The degree of sunburn of the target (agricultural product) (hereinafter referred to as the degree of sunburn) is recognized by AI. No sunburn and sunburn degree j (j = 1,2 ... J: J is a natural number of 2 or more) represent the percentage of sunburns from 0 to 1 in ascending order. The dimming control device 1 further calculates the transmittance adjustment coefficient C of the dimming members 3, 3, 3 based on the recognized sunburn degree for each installation area corresponding to the imaging area, and the calculated adjustment coefficient. C is stored in the storage unit 11 as a table of sunburn adjustment coefficients in rows M and N.
 透過率を調整する処理手順は、実施形態1の図9に示す処理手順と同様である。但し、制御部10は、図9のステップS21とS22の間にて、上記日焼けの調整係数のテーブルから第m行第n列の調光部材3の調整係数Cを読み出し、ステップS22では、右辺の算式に更に調整係数Cを乗算することにより、日焼け度に応じて透過率を低減する。図9に示すその他のステップの処理内容は、実施形態1の場合と同様であるため、フローチャートの記載を省略する。 The processing procedure for adjusting the transmittance is the same as the processing procedure shown in FIG. 9 of the first embodiment. However, the control unit 10 reads the adjustment coefficient C of the dimming member 3 in the mth row and nth column from the table of the adjustment coefficient of the sunburn between steps S21 and S22 in FIG. 9, and in step S22, the right side By further multiplying the formula of the above by the adjustment coefficient C, the transmittance is reduced according to the degree of sunburn. Since the processing contents of the other steps shown in FIG. 9 are the same as those in the first embodiment, the description of the flowchart is omitted.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図18は、実施形態4に係る調光制御装置1で日焼け度を認識する制御部10の処理手順を示すフローチャートである。図19は、実施形態4に係る学習モデルYの内容例を示す模式図である。図18の処理は一定周期(例えば1時間毎)で起動されるが、これに限定されず、不定期に起動されてもよい。図18のステップS61からS64までの処理及びステップS71からS75までの処理は、図15のステップS41からS44までの処理及びステップS51からS55までの処理と同等であるため、説明の大部分を省略する。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 18 is a flowchart showing a processing procedure of the control unit 10 that recognizes the degree of sunburn in the dimming control device 1 according to the fourth embodiment. FIG. 19 is a schematic diagram showing a content example of the learning model Y according to the fourth embodiment. The process of FIG. 18 is started at a fixed cycle (for example, every hour), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S61 to S64 and the processes of steps S71 to S75 of FIG. 18 are equivalent to the processes of steps S41 to S44 and the processes of steps S51 to S55 of FIG. 15, most of the description is omitted. To do.
 調光制御装置1にて図18の処理が起動され、第m行第n列の撮像領域の画像を抽出した(S64)場合、制御部10は、抽出した画像を学習モデルY(第2学習モデルに相当)に入力し(S65)、学習モデルYから監視対象の日焼け度jを取得する(S66:第2取得部に相当)。ここで取得する日焼け度jは、例えば確率が最大の日焼け度である。 When the process of FIG. 18 is activated by the dimming control device 1 and the image of the imaging region in the mth row and nth column is extracted (S64), the control unit 10 uses the extracted image as the learning model Y (second learning). (Corresponding to the model) is input (S65), and the sunburn degree j to be monitored is acquired from the learning model Y (S66: corresponding to the second acquisition unit). The sunburn degree j acquired here is, for example, the sunburn degree with the highest probability.
 次いで、制御部10は、日焼けの調整係数のテーブルにおける第m行第n列に、「1-日焼け度j」によって算出した調整係数Cの値を記憶する(S67)。以下、n及びmを順次インクリメントするのは、図15の場合と同様である。最後にmがM+1となった場合(S75:YES)、制御部10は図18の処理を終了する。この時点で、日焼けの調整係数のテーブルには、M行N列の全てに調整係数Cが記憶されており、実施形態1の図9に示す処理の中で参照される準備が整う。 Next, the control unit 10 stores the value of the adjustment coefficient C calculated by "1-sunburn degree j" in the mth row and nth column of the table of the adjustment coefficient of sunburn (S67). Hereinafter, incrementing n and m in sequence is the same as in the case of FIG. Finally, when m becomes M + 1 (S75: YES), the control unit 10 ends the process of FIG. At this point, the tanning adjustment factor table stores the adjustment factor C in all of the M rows and N columns, and is ready to be referred to in the process shown in FIG. 9 of Embodiment 1.
 図19に移って、上述のステップS65,S66で用いられる学習モデルYは、例えば、深層学習(ディープラーニング)によって学習された多層の畳み込みニューラルネットワーク(CNN)を用いることができるが、他の機械学習で学習したものであってもよい。学習モデルYは、監視対象の画像と、それぞれの日焼け度を示す情報とを含む教師データを用いて、画像が入力された場合に、監視対象毎に日焼け無し又は日焼け度1~日焼け度Jを出力するように学習されたモデルである。 Moving to FIG. 19, the learning model Y used in steps S65 and S66 described above can use, for example, a multi-layer convolutional neural network (CNN) learned by deep learning, but other machines. It may be what was learned by learning. The learning model Y uses teacher data including an image to be monitored and information indicating each degree of sunburn, and when an image is input, no sunburn or a degree of sunburn J from 1 to the degree of sunburn J is set for each monitored object. A model trained to output.
 学習モデルYは、1フレーム分の画像から抽出した画像を構成する各画素の画素値を入力とし、入力画像中の監視対象が日焼け度1~日焼け度Jそれぞれである確率及び日焼け無しの確率を出力とする。出力層の各出力ノードが出力する確率は0~1.0の値であり、全ての出力ノードが出力する確率の合計は1.0である。なお、学習モデルYは、実施形態3の図16に示す学習モデルX1と一体化してもよい。この場合、出力層の各出力ノードからは、監視対象が特定の日焼け度(無し又は1~J)を有する特定の農作物(レタス、トマト、・・イチゴ)である確率が、農作物毎に細分化されて出力される。 The learning model Y inputs the pixel values of each pixel constituting the image extracted from the image for one frame, and determines the probability that the monitoring target in the input image is each of the sunburn degree 1 to the sunburn degree J and the probability of no sunburn. Output. The probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0. The learning model Y may be integrated with the learning model X1 shown in FIG. 16 of the third embodiment. In this case, from each output node of the output layer, the probability that the monitoring target is a specific crop (lettuce, tomato, ... strawberry) having a specific degree of sunburn (none or 1 to J) is subdivided for each crop. Is output.
 以上のように本実施形態4によれば、ビニールハウス300内の画像を学習モデルYに入力し、学習モデルYから取得した日焼け度に基づいて、調光部材3,3・・3における光の透過率を調整する。従って、監視対象の日焼けの程度に応じたきめ細かな光の透過率の調整が可能となる。 As described above, according to the fourth embodiment, the image in the vinyl house 300 is input to the learning model Y, and the light in the dimming members 3, 3, 3 is based on the degree of sunburn obtained from the learning model Y. Adjust the transmittance. Therefore, it is possible to finely adjust the light transmittance according to the degree of sunburn to be monitored.
(実施形態5)
 実施形態4は、農作物の生育の程度を認識して外部端末200に出力する形態である。実施形態5に係る調光制御装置1のブロック構成は、実施形態1の図1に示すブロック構成と同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Embodiment 5)
The fourth embodiment recognizes the degree of growth of the crop and outputs it to the external terminal 200. Since the block configuration of the dimming control device 1 according to the fifth embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be described. Omit.
 本実施形態5では、調光制御装置1は、撮像部17で撮像した画像から、調光部材3,3・・3それぞれの設置領域に対応する撮像領域を抽出し、抽出した画像中の監視対象(農作物)の生育の程度(以下、生育度という)をAIで認識する。未生育及び成育度k(k=1,2・・K:Kは2以上の自然数)は、0から1までの生育の割合を昇順に表している。調光制御装置1は、更に、認識した生育度を外部端末200に出力して表示させる。 In the fifth embodiment, the dimming control device 1 extracts an imaging region corresponding to each installation area of the dimming member 3, 3, 3 from the image captured by the imaging unit 17, and monitors the extracted image. The degree of growth of the target (agricultural product) (hereinafter referred to as the degree of growth) is recognized by AI. The ungrown and grown degree k (k = 1,2 ... K: K is a natural number of 2 or more) represents the rate of growth from 0 to 1 in ascending order. The dimming control device 1 further outputs the recognized growth degree to the external terminal 200 and displays it.
 以下では、上述した調光制御装置1の動作を、それを示すフローチャートを用いて説明する。図20は、実施形態5に係る調光制御装置1で生育度を認識する制御部10の処理手順を示すフローチャートである。図21は、実施形態5に係る学習モデルZの内容例を示す模式図である。図20の処理は一定周期(例えば1日毎)で起動されるが、これに限定されず、不定期に起動されてもよい。図20のステップS81からS84までの処理及びステップS91からS95までの処理は、図15のステップS41からS44までの処理及びステップS51からS55までの処理と同等であるため、説明の大部分を省略する。 In the following, the operation of the dimming control device 1 described above will be described with reference to a flowchart showing the operation. FIG. 20 is a flowchart showing a processing procedure of the control unit 10 that recognizes the degree of growth in the dimming control device 1 according to the fifth embodiment. FIG. 21 is a schematic diagram showing a content example of the learning model Z according to the fifth embodiment. The process of FIG. 20 is started at a fixed cycle (for example, every day), but the present invention is not limited to this, and the process may be started irregularly. Since the processes of steps S81 to S84 and the processes of steps S91 to S95 of FIG. 20 are equivalent to the processes of steps S41 to S44 and the processes of steps S51 to S55 of FIG. 15, most of the description is omitted. To do.
 調光制御装置1にて図20の処理が起動され、第m行第n列の撮像領域の画像を抽出した(S84)場合、制御部10は、抽出した画像を学習モデルZ(第3学習モデルに相当)に入力し(S85)、学習モデルZから監視対象の生育度kを取得する(S86:第3取得部に相当)。ここで取得する生育度kは、例えば確率が最大の生育度である。 When the process of FIG. 20 is activated by the dimming control device 1 and an image of the imaging region in the mth row and nth column is extracted (S84), the control unit 10 uses the extracted image as the learning model Z (third learning). (Corresponding to the model) is input (S85), and the growth degree k of the monitoring target is acquired from the learning model Z (S86: corresponding to the third acquisition unit). The growth rate k acquired here is, for example, the growth rate having the maximum probability.
 次いで、制御部10は、取得した生育度kを、通信部19を介して外部端末200に出力する(S87:第2出力部に相当)。この場合、生育度kに撮像領域の行番号m及び列番号nが付与される。以下、n及びmを順次インクリメントするのは、図15の場合と同様である。最後にmがM+1となった場合(S95:YES)、制御部10は図20の処理を終了する。全ての撮像領域について生育度kを受信した外部端末200は、例えば実施形態1の図11に示す透過率の表示と同様に、全ての生育度を表示することができる。 Next, the control unit 10 outputs the acquired growth rate k to the external terminal 200 via the communication unit 19 (S87: corresponding to the second output unit). In this case, the row number m and the column number n of the imaging region are assigned to the growth degree k. Hereinafter, incrementing n and m in sequence is the same as in the case of FIG. Finally, when m becomes M + 1 (S95: YES), the control unit 10 ends the process of FIG. 20. The external terminal 200 that has received the growth degree k for all the imaging regions can display all the growth degrees, for example, in the same manner as the display of the transmittance shown in FIG. 11 of the first embodiment.
 図21に移って、上述のステップS85,S86で用いられる学習モデルZは、例えば、深層学習(ディープラーニング)によって学習された多層の畳み込みニューラルネットワーク(CNN)を用いることができるが、他の機械学習で学習したものであってもよい。学習モデルZは、監視対象の画像と、それぞれの生育度を示す情報とを含む教師データを用いて、画像が入力された場合に、監視対象毎に未生育又は生育度1~生育度Kを出力するように学習されたモデルである。 Moving to FIG. 21, the learning model Z used in steps S85 and S86 described above can use, for example, a multi-layer convolutional neural network (CNN) learned by deep learning, but other machines. It may be what was learned by learning. The learning model Z uses the teacher data including the image of the monitoring target and the information indicating the growth degree of each, and when the image is input, the growth degree 1 to the growth degree K is determined for each monitoring target. A model trained to output.
 学習モデルZは、1フレーム分の画像から抽出した画像を構成する各画素の画素値を入力とし、入力画像中の監視対象が生育度1~生育度Kそれぞれである確率及び未生育の確率を出力とする。出力層の各出力ノードが出力する確率は0~1.0の値であり、全ての出力ノードが出力する確率の合計は1.0である。なお、学習モデルZは、実施形態3の図16に示す学習モデルX1と一体化してもよい。この場合、出力層の各出力ノードからは、監視対象が特定の生育度(未生育又は1~K)を有する特定の農作物(レタス、トマト、・・イチゴ)である確率が、農作物毎に細分化されて出力される。 The learning model Z inputs the pixel values of each pixel constituting the image extracted from the image for one frame, and determines the probability that the monitoring target in the input image is each of growth degree 1 to growth degree K and the probability of non-growth. Output. The probability of output by each output node of the output layer is a value of 0 to 1.0, and the total of the probabilities of output by all output nodes is 1.0. The learning model Z may be integrated with the learning model X1 shown in FIG. 16 of the third embodiment. In this case, from each output node of the output layer, the probability that the monitoring target is a specific crop (lettuce, tomato, ... strawberry) having a specific growth rate (ungrown or 1 to K) is subdivided for each crop. It is converted and output.
 以上のように本実施形態5によれば、ビニールハウス300内の画像を学習モデルZに入力し、学習モデルZから取得した生育度を外部端末200に出力する。従って、外部端末200と通信接続した場合は、監視対象の生育度を外部端末200にてモニタすることが可能となる。 As described above, according to the fifth embodiment, the image in the vinyl house 300 is input to the learning model Z, and the growth degree acquired from the learning model Z is output to the external terminal 200. Therefore, when the communication is connected to the external terminal 200, the growth rate of the monitored object can be monitored by the external terminal 200.
 なお、本実施形態5にあっては、監視対象である農作物の生育度を単にモニタするだけであったが、実施形態4にて調光部材3,3・・3における光の透過率の調整に日焼け度を反映させたように、光の透過率の調整に生育度を反映させてもよい。この場合、制御部10は、認識した生育度に基づいて調光部材3,3・・3における透過率の調整係数Dを、撮像領域に対応する設置領域毎に算出し、算出した調整係数Dを、M行N列の日焼けの調整係数のテーブルにして記憶部11に記憶する。具体的には、図20に示すフローチャートのステップS86及びS87の間に、実施形態4の図18に示すフローチャートのステップS67と同等のステップを挿入し、生育の調整係数のテーブルにおける第m行第n列に、「1-生育度k」によって算出した調整係数Dの値を記憶する。 In the fifth embodiment, the growth rate of the crop to be monitored was simply monitored, but in the fourth embodiment, the light transmittance of the dimming members 3, 3, ... 3 is adjusted. The degree of growth may be reflected in the adjustment of the light transmittance, just as the degree of sunburn is reflected in. In this case, the control unit 10 calculates the transmittance adjustment coefficient D of the dimming members 3, 3, ... 3 based on the recognized growth rate for each installation area corresponding to the imaging area, and the calculated adjustment coefficient D. Is stored in the storage unit 11 as a table of sunburn adjustment coefficients in M rows and N columns. Specifically, a step equivalent to step S67 of the flowchart shown in FIG. 18 of the fourth embodiment is inserted between steps S86 and S87 of the flowchart shown in FIG. 20, and the m-th row in the table of growth adjustment coefficients is inserted. In column n, the value of the adjustment coefficient D calculated by "1-growth degree k" is stored.
 透過率を調整する処理手順は、実施形態1の図9に示す処理手順と同様である。但し、制御部10は、図9のステップS21とS22の間にて、上記生育の調整係数のテーブルから第m行第n列の調光部材3の調整係数Dを読み出し、ステップS22では、右辺の算式に更に調整係数Dを乗算することにより、生育度に応じて透過率を低減する。 The processing procedure for adjusting the transmittance is the same as the processing procedure shown in FIG. 9 of the first embodiment. However, the control unit 10 reads the adjustment coefficient D of the dimming member 3 in the mth row and nth column from the growth adjustment coefficient table between steps S21 and S22 in FIG. 9, and in step S22, the right side By further multiplying the formula of the above by the adjustment coefficient D, the transmittance is reduced according to the degree of growth.
(実施形態6)
 実施形態1は、ビニールハウス300に設置される調光制御装置1が1つだけ調光システム100に含まれている形態であるのに対し、実施形態6は、複数のビニールハウス300に各別に設置される複数の調光制御装置1が調光システムに含まれている形態である。実施形態6に係る調光システムのブロック構成は、調光制御装置1の数が異なる点を除いて実施形態1の図1に示すブロック構成と同様であるため、ブロック図の図示を省略する。
(Embodiment 6)
In the first embodiment, only one dimming control device 1 installed in the vinyl house 300 is included in the dimming system 100, whereas in the sixth embodiment, each of the plurality of vinyl houses 300 is separately provided. This is a form in which a plurality of installed dimming control devices 1 are included in the dimming system. Since the block configuration of the dimming system according to the sixth embodiment is the same as the block configuration shown in FIG. 1 of the first embodiment except that the number of the dimming control devices 1 is different, the illustration of the block diagram is omitted.
 本実施形態6における各調光制御装置1の動作は、実施形態1の場合と全く同様である。外部端末200は、複数の調光制御装置1と通信し、それぞれのビニールハウス300について日射量、温度、透過率及び画像データを取得して、それぞれ異なる表示メモリ(図10参照)に記憶する。個々のビニールハウス300についての表示は、実施形態1の図11に示すものと同様にすることができる。 The operation of each dimming control device 1 in the sixth embodiment is exactly the same as that in the first embodiment. The external terminal 200 communicates with a plurality of dimming control devices 1, acquires solar radiation amount, temperature, transmittance and image data for each vinyl house 300, and stores them in different display memories (see FIG. 10). The display of each greenhouse 300 can be the same as that shown in FIG. 11 of the first embodiment.
 一のビニールハウス300に係る表示から、他のビニールハウス300に係る表示に切り替えるには、例えば画面のページめくりを行うか又は画面をスクロールさせてもよいが、本実施形態6では、どのビニールハウス300について表示部212に表示させるのかをユーザに選択させる。制御部210は、ユーザによるビニールハウス300の選択を受け付け、選択されたビニールハウス300について、図11と同様の表示を行う。 In order to switch from the display related to one greenhouse 300 to the display related to another greenhouse 300, for example, the page of the screen may be turned or the screen may be scrolled, but in the sixth embodiment, which greenhouse is used. The user is allowed to select whether to display the 300 on the display unit 212. The control unit 210 accepts the user's selection of the vinyl house 300, and displays the selected vinyl house 300 in the same manner as in FIG.
 以下では、上述した外部端末200の動作を、それを示すフローチャートを用いて説明する。図22は、実施形態6に係る調光システムでビニールハウス300の選択を受け付ける制御部210の処理手順を示すフローチャートである。図23は、実施形態6に係る外部端末200における表示例を示す模式図である。図22の処理は一定周期(例えば0.1秒毎)で起動されるが、これに限定されず、不定期に起動されてもよい。 In the following, the operation of the external terminal 200 described above will be described with reference to a flowchart showing the operation. FIG. 22 is a flowchart showing a processing procedure of the control unit 210 that accepts the selection of the vinyl house 300 in the dimming system according to the sixth embodiment. FIG. 23 is a schematic view showing a display example in the external terminal 200 according to the sixth embodiment. The process of FIG. 22 is started at a fixed cycle (for example, every 0.1 seconds), but the present invention is not limited to this, and the process may be started irregularly.
 外部端末200にて図22の処理が起動された場合、制御部210は、操作部213への操作が有ったか否かを判定し(S211)、操作が無かった場合(S211:NO)、特段の処理を実行することなく図22の処理を終了する。操作が有った場合(S211:YES)、当該操作が、表示対象のメニュー選択に係る操作であるか否かを更に判定する(S212)。当該操作がメニュー選択に係る操作であった場合(S212:YES)、制御部210は、表示部212にハウスの選択画面を表示して(S213)、図22の処理を終了する。 When the process of FIG. 22 is activated by the external terminal 200, the control unit 210 determines whether or not there is an operation on the operation unit 213 (S211), and when there is no operation (S211: NO), The process of FIG. 22 is terminated without executing any special process. When there is an operation (S211: YES), it is further determined whether or not the operation is an operation related to the menu selection to be displayed (S212). When the operation is an operation related to menu selection (S212: YES), the control unit 210 displays a house selection screen on the display unit 212 (S213), and ends the process of FIG. 22.
 ステップS212で、操作部213への操作がメニュー選択に係る操作ではないと判定した場合(S212:NO)、制御部210は、当該操作がテキストボックスの選択操作であるか否かを判定する(S214)。当該操作がテキストボックスの選択操作である場合(S214:YES)、制御部210は、選択されたテキストボックスにカーソルを移動させて(S215)、図22の処理を終了する。 If it is determined in step S212 that the operation on the operation unit 213 is not an operation related to menu selection (S212: NO), the control unit 210 determines whether or not the operation is a text box selection operation (S212: NO). S214). When the operation is a text box selection operation (S214: YES), the control unit 210 moves the cursor to the selected text box (S215) and ends the process of FIG. 22.
 ステップS214で、操作部213への操作がテキストボックスの選択操作ではないと判定した場合(S214:NO)、制御部210は、当該操作がテキストボックスへの入力操作であるか否かを判定する(S216)。当該操作がテキストボックスへの入力操作である場合(S216:YES)、制御部210は、入力された文字/数字をテキストボックスに表示させて(S217)、図22の処理を終了する。 If it is determined in step S214 that the operation on the operation unit 213 is not a text box selection operation (S214: NO), the control unit 210 determines whether or not the operation is an input operation on the text box. (S216). When the operation is an input operation to the text box (S216: YES), the control unit 210 displays the input characters / numbers in the text box (S217), and ends the process of FIG. 22.
 ステップS216で、操作部13への操作がテキストボックスへの入力操作ではないと判定した場合(S216:NO)、制御部210は、当該操作がハウスの選択操作であるか否かを判定する(S218)。当該操作がハウスの選択操作である場合(S218:YES)、制御部210は、選択されたハウスについて、表示メモリ(図10参照)に記憶した内容を表示部212に表示する(S219)。ステップS219の処理を終えた場合、又はステップS218で当該操作がハウスの選択操作ではないと判定した場合(S218:NO)、制御部210は、図22の処理を終了する。 When it is determined in step S216 that the operation to the operation unit 13 is not an input operation to the text box (S216: NO), the control unit 210 determines whether or not the operation is a house selection operation (S.216: NO). S218). When the operation is a house selection operation (S218: YES), the control unit 210 displays the contents stored in the display memory (see FIG. 10) on the display unit 212 for the selected house (S219). When the process of step S219 is completed, or when it is determined in step S218 that the operation is not the house selection operation (S218: NO), the control unit 210 ends the process of FIG. 22.
 図23に移って、表示部212には、ハウスの選択メニュー223と、選択するハウスの番号を入力するためのテキストボックス224と、ハウスの選択を確定するための選択ボタン225とが表示されている。ユーザが、テキストボックス224に数字を入力した後に、選択ボタン225にタッチした場合、制御部210がハウスの選択を受け付ける。 Moving to FIG. 23, the display unit 212 displays a house selection menu 223, a text box 224 for inputting a house number to be selected, and a selection button 225 for confirming the house selection. There is. When the user touches the selection button 225 after inputting a number in the text box 224, the control unit 210 accepts the house selection.
 以上のように本実施形態6によれば、複数のビニールハウス300上に設置された調光部材3,3・・3における光の透過率を1台の外部端末200にてモニタすることができる。 As described above, according to the sixth embodiment, the light transmittance of the dimming members 3, 3, 3 installed on the plurality of greenhouses 300 can be monitored by one external terminal 200. ..
 また、実施形態6によれば、外部端末200のユーザによって選択されたビニールハウス300上の調光部材3,3・・3における光の透過率を外部端末200にてモニタすることができる。 Further, according to the sixth embodiment, the light transmittance of the dimming members 3, 3, 3 on the vinyl house 300 selected by the user of the external terminal 200 can be monitored by the external terminal 200.
(実施形態7)
 実施形態1~6は、調光部材3,3・・3における光の透過率を調整するための全ての機能を調光制御装置1が有する形態であったが、実施形態7は、ネットワークNw上の情報処理装置が調光制御装置1の機能の一部を分担する形態である。
(Embodiment 7)
In the first to sixth embodiments, the dimming control device 1 has all the functions for adjusting the light transmittance of the dimming members 3, 3, ... 3, but in the seventh embodiment, the network Nw The above information processing device shares a part of the functions of the dimming control device 1.
 図24は、実施形態7に係る調光システム100bの構成例を示すブロック図である。調光システム100bは、調光部材3,3・・3と、調光制御装置1bと、ソーラーパネル4,4・・4と、情報処理装置400とを含む。情報処理装置400は、携帯電話網を含むネットワークNwを介して調光制御装置1b及び外部端末200と通信可能に接続されている。 FIG. 24 is a block diagram showing a configuration example of the dimming system 100b according to the seventh embodiment. The dimming system 100b includes dimming members 3, 3, ... 3, a dimming control device 1b, solar panels 4, 4, and 4, and an information processing device 400. The information processing device 400 is communicably connected to the dimming control device 1b and the external terminal 200 via a network Nw including a mobile phone network.
 調光制御装置1bは、実施形態1に係る調光制御装置1から、記憶部11における学習モデルX,Y,Xと、表示部12と、操作部13とを除いた構成である。調光制御装置1bは、電圧電流取得部14が取得した電圧及び電流と、日射センサ15が検出した日射量と、温湿度センサ16が検出した温度及び湿度と、撮像部17が撮像した画像データとを通信部19を介して情報処理装置400に送信する。調光制御装置1bは、また、情報処理装置から各調光部材3,3・・3について算出された透過率を受信し、受信した透過率となるように各調光部材3,3・・3に対して電流を供給する。 The dimming control device 1b has a configuration in which the learning models X, Y, X in the storage unit 11, the display unit 12, and the operation unit 13 are excluded from the dimming control device 1 according to the first embodiment. The dimming control device 1b includes the voltage and current acquired by the voltage / current acquisition unit 14, the amount of solar radiation detected by the solar radiation sensor 15, the temperature and humidity detected by the temperature / humidity sensor 16, and the image data captured by the imaging unit 17. Is transmitted to the information processing device 400 via the communication unit 19. The dimming control device 1b also receives the transmittance calculated for each dimming member 3, 3, 3 from the information processing device, and makes each dimming member 3, 3, ... A current is supplied to 3.
 図25は、実施形態7に係る情報処理装置400の構成例を示すブロック図である。情報処理装置400は、例えば汎用のPCであるが、クラウドサーバであってもよい。情報処理装置400は、制御部410、記憶部411、表示部412、操作部413及び通信部419を備える。情報処理装置400がサーバである場合は、表示部412及び操作部413の機能を、更に他のPC又は外部端末200が分担すればよい。具体的には、実施形態3に示した対象物の選択を受け付ける処理を、他のPC又は外部端末200が実行すればよい。 FIG. 25 is a block diagram showing a configuration example of the information processing device 400 according to the seventh embodiment. The information processing device 400 is, for example, a general-purpose PC, but may be a cloud server. The information processing device 400 includes a control unit 410, a storage unit 411, a display unit 412, an operation unit 413, and a communication unit 419. When the information processing device 400 is a server, the functions of the display unit 412 and the operation unit 413 may be further shared by another PC or an external terminal 200. Specifically, another PC or the external terminal 200 may execute the process of accepting the selection of the object shown in the third embodiment.
 制御部410は、CPU、MPU(Micro-Processing Unit)、GPU等の1又は複数のプロセッサを含む。記憶部411は、不揮発性メモリ及び書き換え可能なメモリを含む。書き換え可能なメモリは、実施形態1の図1に示す学習モデルX,Y,Zを記憶する。表示部412は、制御部410に制御されて各種の情報を表示する。操作部413は、例えば表示部412と一体化されたタッチパネルである。通信部419は、ネットワークNwを介して調光制御装置1b及び外部端末200との間で画像を含むデータの送受信を行う。 The control unit 410 includes one or a plurality of processors such as a CPU, an MPU (Micro-Processing Unit), and a GPU. The storage unit 411 includes a non-volatile memory and a rewritable memory. The rewritable memory stores the learning models X, Y, and Z shown in FIG. 1 of the first embodiment. The display unit 412 is controlled by the control unit 410 to display various types of information. The operation unit 413 is, for example, a touch panel integrated with the display unit 412. The communication unit 419 transmits / receives data including an image between the dimming control device 1b and the external terminal 200 via the network Nw.
 以上のとおり構成された情報処理装置400は、調光制御装置1bから日射センサ15が検出した日射量と、温湿度センサ16が検出した温度と、撮像部17が撮像した画像データとを通信部419により受信して取得する。情報処理装置400は、取得した日射量、温度及び画像データを外部端末200に送信すると共に、取得した日射量及び温度(又は温湿度)に基づいて各調光部材3,3・・3における光の透過率を算出し、算出した透過率を調光制御装置1bに送信する。 The information processing device 400 configured as described above communicates the amount of solar radiation detected by the solar radiation sensor 15 from the dimming control device 1b, the temperature detected by the temperature / humidity sensor 16, and the image data captured by the imaging unit 17. Receive and acquire by 419. The information processing device 400 transmits the acquired solar radiation amount, temperature, and image data to the external terminal 200, and based on the acquired solar radiation amount and temperature (or temperature / humidity), the light in each dimming member 3, 3, ... The transmittance of the light is calculated, and the calculated transmittance is transmitted to the dimming control device 1b.
 調光制御装置1bの動作を示すフローチャートは、実施形態1の図9に示すものから一部を削除又は変更したものとなる。具体的には、ステップS12,S15における出力の対象を情報処理装置とし、ステップS16,S20~S22を削除し、ステップS23にて透過率を情報処理装置400から受信し、ステップS24にて調光部材3,3・・3における光の透過率を調整する。 The flowchart showing the operation of the dimming control device 1b is a part deleted or changed from the one shown in FIG. 9 of the first embodiment. Specifically, the output target in steps S12 and S15 is the information processing device, steps S16 and S20 to S22 are deleted, the transmittance is received from the information processing device 400 in step S23, and dimming is performed in step S24. The light transmittance of the members 3, 3, ... 3 is adjusted.
 情報処理装置400の動作を示すフローチャートは、実施形態1の図9に示すものと概ね同一である。具体的には、図9の全てのステップを制御部410が実行し、ステップS11,S13(取得部に相当),S14における取得の対象を調光制御装置1bとし、ステップS12,S15における出力の対象を外部端末200とし、ステップS23(指令値を出力する出力部に相当)における出力の対象を調光制御装置1b及び外部端末200とする。なお、指令値に基づく透過率の調整は調光制御装置1bで行われるため、ステップS24を削除する。 The flowchart showing the operation of the information processing device 400 is substantially the same as that shown in FIG. 9 of the first embodiment. Specifically, the control unit 410 executes all the steps of FIG. 9, the acquisition target in steps S11, S13 (corresponding to the acquisition unit) and S14 is the dimming control device 1b, and the output in steps S12 and S15. The target is the external terminal 200, and the target of output in step S23 (corresponding to the output unit that outputs the command value) is the dimming control device 1b and the external terminal 200. Since the transmittance is adjusted based on the command value by the dimming control device 1b, step S24 is deleted.
 以上のように本実施形態7によれば、光の透過率が調整可能な調光部材3,3・・3が設置されたビニールハウス300の周囲の日射量を、情報処理装置400が調光制御装置1bを介して取得し、取得した日射量に基づいて上記透過率を調整するための指令値を調光制御装置1bに出力する。これにより、ビニールハウス300から離れた位置にてリモートで調光部材3,3・・3における光の透過率を調整することができる。即ち、調光制御装置1の機能を調光制御装置1bと情報処理装置400とで分担した場合であっても、実施形態1の場合と同様の効果を奏する。 As described above, according to the seventh embodiment, the information processing apparatus 400 dims the amount of solar radiation around the vinyl house 300 in which the dimming members 3, 3, 3 for adjusting the light transmittance are installed. It is acquired via the control device 1b, and a command value for adjusting the transmittance based on the acquired amount of solar radiation is output to the dimming control device 1b. As a result, the light transmittance of the dimming members 3, 3, 3 can be adjusted remotely at a position away from the vinyl house 300. That is, even when the function of the dimming control device 1 is shared between the dimming control device 1b and the information processing device 400, the same effect as in the case of the first embodiment is obtained.
 今回開示された実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the claims. In addition, the technical features described in each embodiment can be combined with each other.
 100 調光システム
 1、1b 調光制御装置
 10 制御部
 11 記憶部
 12 表示部
 13 操作部
 14 電圧電流取得部
 15 日射センサ
 16 温湿度センサ
 17 撮像部
 18 駆動部
 19 通信部
 21 DCDCコンバータ
 22 電源バッテリ
 3 調光部材
 4 ソーラーパネル
 40 検出部
 200 外部端末
 210 制御部
 211 記憶部
 211a アプリプログラム
 212 表示部
 214 通信部
 215 記憶媒体
 300 ビニールハウス
 301 屋根部
 302 側面部
 303 妻面部
 400 情報処理装置
 410 制御部
 411 記憶部
 419 通信部
 X、Y、Z 学習モデル
 
100 Dimming system 1, 1b Dimming control device 10 Control unit 11 Storage unit 12 Display unit 13 Operation unit 14 Voltage / current acquisition unit 15 Solar radiation sensor 16 Temperature / humidity sensor 17 Imaging unit 18 Drive unit 19 Communication unit 21 DCDC converter 22 Power supply battery 3 Dimming member 4 Solar panel 40 Detection unit 200 External terminal 210 Control unit 211 Storage unit 211a App program 212 Display unit 214 Communication unit 215 Storage medium 300 Vinyl house 301 Roof unit 302 Side unit 303 Wife surface unit 400 Information processing device 410 Control unit 411 Storage unit 419 Communication unit X, Y, Z Learning model

Claims (16)

  1.  施設上に設置され、光の透過率が調整可能な調光部材と、
     該調光部材に電源を供給する太陽電池と、
     前記調光部材の光の透過率を調整する制御部と
     を備える調光システム。
    A dimming member installed on the facility and whose light transmittance can be adjusted,
    A solar cell that supplies power to the dimming member and
    A dimming system including a control unit for adjusting the light transmittance of the dimming member.
  2.  日射量を検出する日射センサを備え、
     前記制御部は、前記日射センサにより検出した日射量に基づいて前記透過率を調整する
     請求項1に記載の調光システム。
    Equipped with a solar radiation sensor that detects the amount of solar radiation
    The dimming system according to claim 1, wherein the control unit adjusts the transmittance based on the amount of solar radiation detected by the solar radiation sensor.
  3.  前記太陽電池は、前記施設上又は前記施設外に設置されており、
     前記制御部は、前記太陽電池の発電電力から検出した日射量に基づいて前記透過率を調整する
     請求項1に記載の調光システム。
    The solar cell is installed on or outside the facility.
    The dimming system according to claim 1, wherein the control unit adjusts the transmittance based on the amount of solar radiation detected from the generated power of the solar cell.
  4.  前記太陽電池からの電力を蓄電する蓄電池を備える請求項2又は請求項3に記載の調光システム。 The dimming system according to claim 2 or 3, further comprising a storage battery for storing electric power from the solar cell.
  5.  前記調光部材の透過光が照射される照射対象の選択を受け付ける受付部を備え、
     前記制御部は、前記受付部が選択を受け付けた照射対象に応じて前記透過率を調整する
     請求項2から請求項4の何れか1項に記載の調光システム。
    It is provided with a reception unit that accepts the selection of the irradiation target to which the transmitted light of the dimming member is irradiated.
    The dimming system according to any one of claims 2 to 4, wherein the control unit adjusts the transmittance according to an irradiation target for which the reception unit has received selection.
  6.  前記施設はビニールハウスを含む温室であり、
     前記調光部材の透過光が照射される照射対象は農作物であり、
     前記温室内の温度を検出する温度センサを備え、
     前記制御部は、前記温度センサで検出した温度に基づき、前記農作物に応じて前記透過率を調整する
     請求項2から請求項5の何れか1項に記載の調光システム。
    The facility is a greenhouse including a greenhouse,
    The irradiation target to which the transmitted light of the dimming member is irradiated is an agricultural product.
    A temperature sensor for detecting the temperature inside the greenhouse is provided.
    The dimming system according to any one of claims 2 to 5, wherein the control unit adjusts the transmittance according to the crop based on the temperature detected by the temperature sensor.
  7.  前記調光部材は、前記施設上の複数の設置領域に設置されており、
     前記制御部は、前記複数の設置領域毎に前記透過率を調整する
     請求項2から請求項6の何れか1項に記載の調光システム。
    The dimming member is installed in a plurality of installation areas on the facility.
    The dimming system according to any one of claims 2 to 6, wherein the control unit adjusts the transmittance for each of the plurality of installation areas.
  8.  外部端末との間で通信を行う通信部と、
     前記施設内を撮像する撮像部と、
     前記制御部が調整した透過率、前記検出した日射量及び前記撮像部が撮像した画像を、前記通信部を介して前記外部端末に出力する第1出力部と
     を備える請求項2から請求項7の何れか1項に記載の調光システム。
    A communication unit that communicates with an external terminal,
    An imaging unit that images the inside of the facility and
    Claims 2 to 7 include a transmittance adjusted by the control unit, the amount of solar radiation detected, and a first output unit that outputs an image captured by the imaging unit to the external terminal via the communication unit. The dimming system according to any one of the above.
  9.  前記施設内を撮像する撮像部と、
     該撮像部が撮像した画像から、前記設置領域のそれぞれに対応する撮像領域の画像を抽出する抽出部と、
     画像を入力した場合に監視対象の検出の有無情報を出力する第1学習モデルに、前記抽出部が抽出した画像を入力して前記有無情報を前記撮像領域毎に取得する第1取得部と
     を備え、
     前記制御部は、前記第1取得部により取得した有無情報に基づいて前記複数の設置領域毎に前記透過率を調整する
     請求項7に記載の調光システム。
    An imaging unit that images the inside of the facility and
    An extraction unit that extracts an image of an imaging region corresponding to each of the installation areas from an image captured by the imaging unit, and an extraction unit.
    In the first learning model that outputs the presence / absence information of detection of the monitoring target when an image is input, the first acquisition unit that inputs the image extracted by the extraction unit and acquires the presence / absence information for each imaging region. Prepare,
    The dimming system according to claim 7, wherein the control unit adjusts the transmittance for each of the plurality of installation areas based on the presence / absence information acquired by the first acquisition unit.
  10.  前記監視対象は家畜又は魚介類であり、
     前記制御部は、前記第1取得部により取得した有無情報に基づいて検出有と判定した監視対象の前記撮像領域間の移動に応じて前記透過率を調整する
     請求項9に記載の調光システム。
    The monitoring target is livestock or seafood.
    The dimming system according to claim 9, wherein the control unit adjusts the transmittance according to the movement between the imaging regions of the monitoring target determined to be detected based on the presence / absence information acquired by the first acquisition unit. ..
  11.  前記施設内を撮像する撮像部と、
     画像を入力した場合に監視対象の日焼けの程度情報を出力する第2学習モデルに、前記撮像部により撮像した画像を入力して前記程度情報を取得する第2取得部と
     を備え、
     前記制御部は、前記第2取得部により取得した程度情報に基づいて前記透過率を調整する
     請求項1から請求項7の何れか1項に記載の調光システム。
    An imaging unit that images the inside of the facility and
    The second learning model that outputs the degree information of the sunburn to be monitored when an image is input is provided with a second acquisition unit that inputs the image captured by the image pickup unit and acquires the degree information.
    The dimming system according to any one of claims 1 to 7, wherein the control unit adjusts the transmittance based on the degree information acquired by the second acquisition unit.
  12.  外部端末との間で通信を行う通信部と、
     前記施設内を撮像する撮像部と、
     画像を入力した場合に監視対象の生育の程度情報を出力する第3学習モデルに、前記撮像部により撮像した画像を入力して前記程度情報を取得する第3取得部と、
     該第3取得部により取得した程度情報を、前記通信部を介して前記外部端末に出力する第2出力部と
     を備える請求項1から請求項7の何れか1項に記載の調光システム。
    A communication unit that communicates with an external terminal,
    An imaging unit that images the inside of the facility and
    A third acquisition unit that inputs an image captured by the imaging unit and acquires the degree information in a third learning model that outputs information on the degree of growth of the monitored object when an image is input, and a third acquisition unit.
    The dimming system according to any one of claims 1 to 7, further comprising a second output unit that outputs the degree information acquired by the third acquisition unit to the external terminal via the communication unit.
  13.  施設上に設置され太陽電池から電源が供給される調光部材における光の透過率を調整するための指令値を出力する出力部と、
     前記施設の周囲の日射量を取得する取得部と、
     該取得部により取得した日射量に基づいて前記出力部から出力する指令値を制御する制御部と
     を備える情報処理装置。
    An output unit that outputs a command value for adjusting the light transmittance of the dimming member installed on the facility and supplied with power from the solar cell,
    The acquisition department that acquires the amount of solar radiation around the facility,
    An information processing device including a control unit that controls a command value output from the output unit based on the amount of solar radiation acquired by the acquisition unit.
  14.  施設上に設置され太陽電池から電源が供給される調光部材における光の透過率を調整する外部装置と通信し、
     前記外部装置により調整された透過率を取得し、
     取得した透過率を表示する
     処理をコンピュータに実行させるコンピュータプログラム。
    Communicates with an external device that adjusts the light transmittance of the dimming member installed on the facility and supplied with power from the solar cell.
    Obtaining the transmittance adjusted by the external device,
    A computer program that causes a computer to perform a process that displays the acquired transmittance.
  15.  前記外部装置は複数の施設にそれぞれ設置されており、
     複数の前記施設について取得した透過率を表示する
     処理をコンピュータに実行させる請求項14に記載のコンピュータプログラム。
    The external devices are installed in a plurality of facilities, respectively.
    The computer program according to claim 14, wherein the computer executes a process of displaying the transmittance acquired for the plurality of the facilities.
  16.  前記施設の選択を受け付け、
     選択された施設について取得した透過率を表示する
     処理をコンピュータに実行させる請求項15に記載のコンピュータプログラム。
    Accepting the selection of the facility,
    15. The computer program of claim 15, which causes a computer to perform a process of displaying the acquired transmittance for the selected facility.
PCT/JP2020/017125 2019-05-21 2020-04-21 Dimming system, information processing device, and computer program WO2020235282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520663A JPWO2020235282A1 (en) 2019-05-21 2020-04-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-095528 2019-05-21
JP2019095528 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235282A1 true WO2020235282A1 (en) 2020-11-26

Family

ID=73458089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017125 WO2020235282A1 (en) 2019-05-21 2020-04-21 Dimming system, information processing device, and computer program

Country Status (2)

Country Link
JP (1) JPWO2020235282A1 (en)
WO (1) WO2020235282A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245395B2 (en) * 1972-02-28 1977-11-15
JP2006262852A (en) * 2005-03-25 2006-10-05 Sharp Corp Culture system and method for controlling the same
JP2006296304A (en) * 2005-04-21 2006-11-02 Taiyo Kogyo Co Ltd Ventilating system of gardening house and ventilation-controlling method
JP2011120557A (en) * 2009-12-14 2011-06-23 Tokyo Univ Of Agriculture & Technology Plant cultivation system
JP2011172522A (en) * 2010-02-25 2011-09-08 Iseki & Co Ltd Greenhouse shading device
WO2012141091A1 (en) * 2011-04-11 2012-10-18 シャープ株式会社 Plant cultivation device, cultivation controller, cultivation control method and program therefor, and device for designing solar power generation device, method for designing solar power generation device and program therefor
JP2014104863A (en) * 2012-11-28 2014-06-09 Murata Mfg Co Ltd Structure having translucent part on circumference of utilization space
US20150264871A1 (en) * 2014-03-20 2015-09-24 Watt Fuel Cell Corp. Plant cultivation system and method
JP2019071802A (en) * 2017-10-13 2019-05-16 有限会社竹内園芸 Seedling data generating system, seedling discriminating system, seedling data generating program, seedling discriminating program, seedling data generating device, and seedling discriminating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245395B2 (en) * 1972-02-28 1977-11-15
JP2006262852A (en) * 2005-03-25 2006-10-05 Sharp Corp Culture system and method for controlling the same
JP2006296304A (en) * 2005-04-21 2006-11-02 Taiyo Kogyo Co Ltd Ventilating system of gardening house and ventilation-controlling method
JP2011120557A (en) * 2009-12-14 2011-06-23 Tokyo Univ Of Agriculture & Technology Plant cultivation system
JP2011172522A (en) * 2010-02-25 2011-09-08 Iseki & Co Ltd Greenhouse shading device
WO2012141091A1 (en) * 2011-04-11 2012-10-18 シャープ株式会社 Plant cultivation device, cultivation controller, cultivation control method and program therefor, and device for designing solar power generation device, method for designing solar power generation device and program therefor
JP2014104863A (en) * 2012-11-28 2014-06-09 Murata Mfg Co Ltd Structure having translucent part on circumference of utilization space
US20150264871A1 (en) * 2014-03-20 2015-09-24 Watt Fuel Cell Corp. Plant cultivation system and method
JP2019071802A (en) * 2017-10-13 2019-05-16 有限会社竹内園芸 Seedling data generating system, seedling discriminating system, seedling data generating program, seedling discriminating program, seedling data generating device, and seedling discriminating device

Also Published As

Publication number Publication date
JPWO2020235282A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
Kuttybay et al. Optimized single-axis schedule solar tracker in different weather conditions
Prinsloo et al. Solar tracking
Liu et al. Rethinking sustainable sensing in agricultural Internet of Things: From power supply perspective
CN113378459B (en) Photovoltaic power station ultra-short-term power prediction method based on satellite and internet of things information
Akhlaghi et al. Efficient operation of residential solar panels with determination of the optimal tilt angle and optimal intervals based on forecasting model
Azizi et al. Design and Manufacturing of a High‐Precision Sun Tracking System Based on Image Processing
US20220407455A1 (en) Intelligent solar racking system
Waller et al. Evaluating the performance of flexible, semi-transparent large-area organic photovoltaic arrays deployed on a greenhouse
TW202204939A (en) Predictive modeling for tintable windows
Monteleone et al. SLICE: an innovative photovoltaic solution for adaptive envelope prototyping and testing in a relevant environment
WO2020235282A1 (en) Dimming system, information processing device, and computer program
Restrepo-Herrera et al. A holistic approach for design and assessment of building-integrated photovoltaics systems
Gao et al. Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan
Wei Evaluation of photovoltaic power generation by using deep learning in solar panels installed in buildings
Bharathi et al. Developing a dual axis photoelectric tracking module using a multi quadrant photoelectric device
Yang et al. A review of the sustainable development of solar photovoltaic tracking system technology
CN113947235A (en) Photovoltaic power generation prediction hybrid method based on deep all-day image learning
Mitrofanov et al. Operation of solar power plant with solar tracker in orenburg region during the winter
Minelli et al. PhloVer: a Modular and integrated tracking photovoltaic shading Device for sustainable large urban spaces—preliminary Study and prototyping
Racharla et al. Experimental studies on efficiency enhancement of the parabolic solar collector combined with mirrors using the artificial neural network
CN102564577A (en) Illuminance sensing system and method
Ionita et al. Simulation of a dual-axis tracking system for PV modules
Panchal et al. Automated Solar Tracking System for Efficient Energy Utilization
US20240235467A1 (en) Intelligent solar racking system
Sujatha et al. Automation of Solar System for Maximum Power Point Tracking using IoT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809379

Country of ref document: EP

Kind code of ref document: A1