WO2020235081A1 - Quantization device, quantization method and program - Google Patents

Quantization device, quantization method and program Download PDF

Info

Publication number
WO2020235081A1
WO2020235081A1 PCT/JP2019/020468 JP2019020468W WO2020235081A1 WO 2020235081 A1 WO2020235081 A1 WO 2020235081A1 JP 2019020468 W JP2019020468 W JP 2019020468W WO 2020235081 A1 WO2020235081 A1 WO 2020235081A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization
image
pixel
unit
difference
Prior art date
Application number
PCT/JP2019/020468
Other languages
French (fr)
Japanese (ja)
Inventor
小軍 ウ
正樹 北原
清水 淳
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/595,125 priority Critical patent/US20220222860A1/en
Priority to JP2021520007A priority patent/JP7284429B2/en
Priority to PCT/JP2019/020468 priority patent/WO2020235081A1/en
Publication of WO2020235081A1 publication Critical patent/WO2020235081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding

Definitions

  • the present invention relates to a quantization device, a quantization method and a program.
  • semantic data semantic data
  • Patent Document 1 An image representing statistical data (hereinafter referred to as "statistical image") is generated (see Patent Document 1).
  • the coordinates in the statistical image are associated with the positions in real space.
  • the pixel value of a pixel in a statistical image represents statistical data at a position in real space associated with the coordinates of that pixel.
  • the pixel value of each pixel of the statistical image is based on an image coding standard such as HEVC (High Efficiency Video Coding) standard (see Non-Patent Document 1). May be quantized.
  • HEVC High Efficiency Video Coding
  • the pixel value of the pixel of the statistical image represents the statistical data. Therefore, the quality of the image quality of the statistical image is not evaluated by humans.
  • the conventional quantization method of the image coding standard is a quantization method that emphasizes improvement of image quality.
  • the same quantization parameter (QP: Quantization Parameter) is used for all pixels in the statistical image when the pixel value is quantized.
  • the quantization parameter is a parameter used to determine the quantization width of the pixel value.
  • the statistical properties cannot be maintained in the statistical image due to changes in the ratio (dense and dense relationship) between the statistical data represented by each pixel value.
  • the statistical data is, for example, a population
  • the influence of the quantization parameter on the pixel value differs greatly between the pixel value representing a large population in the city center and the pixel value representing a small population in the mountainous area.
  • the quantization parameter is set according to the pixel value representing a large population in the city center, each pixel value representing a small population in each mountainous area will be averaged, so that it represents a small population in each mountainous area.
  • Statistical differences between pixel values are lost. In this way, it may not be possible to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties.
  • One aspect of the present invention is an imaging unit that converts statistical data at a position in real space into a pixel value of coordinates associated with the position in an image, and a quantization parameter corresponding to the quantization width of the pixel value.
  • a quantization device including a derivation unit for deriving one or more positions in the real space for a part or the whole of the image.
  • FIG. 1 is a diagram showing a configuration example of the quantization device 1a.
  • the quantization device 1a is a device that quantizes the pixel value of each pixel of the statistical image.
  • the coordinates in the statistical image are associated with the positions in real space.
  • the pixel value of a pixel in a statistical image represents statistical data at a position in real space associated with the coordinates of that pixel.
  • the statistical data may be, for example, data representing the population or data representing the demand for taxis (for example, the number of dispatched vehicles, the number of candidate passengers).
  • the statistical data may be converted to a value within the permissible range by executing a predetermined conversion process on the statistical data.
  • a predetermined conversion process for example, the conversion process disclosed in Reference Document (Japanese Unexamined Patent Publication No. 2017-123021) may be used.
  • the quantization device 1a includes a coding device 2a (quantization unit) and a decoding device 3 (inverse quantization unit).
  • the coding device 2a includes an imaging unit 20, a derivation unit 21, a subtraction unit 22, and a difference quantization unit 23.
  • the decoding device 3 includes an inverse mapping processing unit 30, a difference decoding unit 31, and an addition unit 32.
  • Part or all of the quantization device 1a is software in which a processor such as a CPU (Central Processing Unit) executes a program stored in a memory which is a non-volatile recording medium (non-temporary recording medium). Is realized as.
  • the program may be recorded on a computer-readable recording medium.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, portable media such as ROM (ReadOnlyMemory) and CD-ROM (CompactDiscReadOnlyMemory), and storage of hard disks built in computer systems. It is a non-temporary storage medium such as a device.
  • the program may be transmitted over a telecommunication line.
  • a part or all of the quantization device 1a is, for example, an electronic circuit (Field Programmable Gate Array) using an LSI (Large Scale Integration circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), or the like. It may be realized by using hardware including electronic circuit or circuitry).
  • the coding device 2a is a device that quantizes a statistical image expressed in an uncompressed image format (hereinafter referred to as "uncompressed statistical image") and encodes the quantized statistical image.
  • the imaging unit 20 acquires statistical data associated with a position in real space.
  • the imaging unit 20 generates an uncompressed statistical image based on the statistical data.
  • the imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the pixel of the coordinates i (x, y) associated with the position in the real space in the image.
  • the imaging unit 20 may generate a statistical image by using the data processing method described in the reference (Japanese Unexamined Patent Publication No. 2017-123021).
  • the imaging unit 20 outputs an uncompressed statistical image to the derivation unit 21 and the subtraction unit 22.
  • the derivation unit 21 acquires an uncompressed statistical image from the imaging unit 20.
  • the derivation unit 21 executes prediction processing (for example, intra-prediction, time-direction prediction) on the uncompressed statistical image.
  • a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of the coordinate i in part or all of the statistical image. The longer the quantization width d i, the value of the quantization parameter is large.
  • Deriving unit 21 derives the quantization parameter corresponding to the long quantization width d i greater the pixel value V i.
  • Deriving unit 21, the pixel value V i of the coordinate i of the statistical image executes the quantization processing by the quantization width d i determined according to the quantization parameter determined for each pixel.
  • Quantization width d i is expressed by the equation (1).
  • i is an index and represents the coordinates in the statistical image corresponding to the position in the real space.
  • V i represents the pixel value of the coordinate i.
  • f represents a predetermined proportional function.
  • the derivation unit 21 outputs the quantization parameter determined for each pixel to the difference quantization unit 23. Deriving unit 21, the quantization width d i instead of the quantization parameter may be outputted to the difference quantization unit 23.
  • the resulting image feature amount of the statistical image against prediction processing including quantized pixel value in the quantization width d i of each pixel, Output to the reverse mapping processing unit 30.
  • the derivation unit 21 maps the feature amount data (low-dimensional data) when the high-dimensional data can be mapped to the low-dimensional data by a predetermined function and the reverse mapping of the mapping result can also be calculated.
  • the resulting data Inverse mapping processing (processing for returning feature data to high-dimensional data) is executed for the feature data (low-dimensional data) obtained as a result of the prediction processing.
  • the derivation unit 21 outputs the prediction image (prediction signal) obtained as a result of the inverse mapping process to the subtraction unit 22.
  • the subtraction unit 22 acquires an uncompressed statistical image from the imaging unit 20.
  • the subtraction unit 22 acquires the predicted image obtained as a result of the reverse mapping process from the derivation unit 21.
  • the subtraction unit 22 subtracts the pixel value of the predicted image from the pixel value of the uncompressed statistical image for each pixel. That is, the subtraction unit 22, a pixel value which are not quantized by the quantization width d i and (non-pixel value of the compressed statistics image), the quantized pixel value in the quantization width d i (pixel value of the prediction image ) And the error value (residual) are derived for each pixel.
  • the subtraction unit 22 outputs the subtraction result to the difference quantization unit 23 as a difference image.
  • the difference quantization unit 23 (compression processing unit) acquires a difference image from the subtraction unit 22.
  • the difference quantization unit 23 acquires the quantization parameter from the derivation unit 21.
  • Difference quantization unit 23 the pixel values of the difference image (error value) is quantized by the quantization width d i determined according to the quantization parameter determined for each pixel.
  • Difference quantization unit 23 the error value of the predetermined criteria (e.g., 0) pixel having an error value in the range from the quantization width "-d i" to the quantization width "+ d i" around a, Detect in the difference image. That is, the difference quantization unit 23, the absolute value of the pixel values of the difference image (error value) is the equal to or less than the absolute value of the pixel of the quantization width " ⁇ d i" is detected in the difference image. The difference quantization unit 23 quantizes the error value of the pixel detected in the difference image to 0. The difference quantization unit 23 outputs the pixel value of the difference image (hereinafter referred to as “difference data”) to the difference decoding unit 31.
  • difference data the pixel value of the difference image
  • the difference quantization unit 23 leaves the error value of the pixel not detected in the difference image as it is.
  • an error value V i in the range of the quantization width "+ d i" to the quantization width "D> (+ d i)" may be replaced with the error value "+ d”.
  • the continuous error value may be replaced with a plurality of discrete error values.
  • the decoding device 3 is a device that decodes a compressed statistical image based on the encoded statistical image.
  • the inverse mapping processing unit 30 acquires feature data from the derivation unit 21.
  • the inverse mapping processing unit 30 executes the inverse mapping processing on the feature data. That is, the inverse mapping processing unit 30 generates a predicted image based on the feature amount data.
  • the reverse mapping processing unit 30 outputs the predicted image obtained as a result of the reverse mapping processing to the adding unit 32.
  • the difference decoding unit 31 acquires the difference data from the difference quantization unit 23.
  • the difference decoding unit 31 executes decoding processing such as inverse quantization on the difference data.
  • the difference decoding unit 31 outputs the result of the difference data decoding process (hereinafter referred to as “difference decoding image”) to the addition unit 32.
  • the addition unit 32 acquires the feature amount data from the inverse mapping processing unit 30.
  • the addition unit 32 acquires the difference decoding image from the difference decoding unit 31.
  • the addition unit 32 adds the pixel value of the feature amount data and the pixel value of the difference-decoded image for each pixel.
  • the addition unit 32 derives the addition result as a statistical image (decoded image) expressed in a compressed image format.
  • the addition unit 32 outputs the addition result to a predetermined external device.
  • FIG. 2 is a diagram showing an example of a statistical image.
  • the statistical image is composed of "8 ⁇ 8" pixel groups as an example.
  • the statistical image includes pixels 100-108.
  • the values described in the pixels in the figure represent the pixel values.
  • "156" described in pixel 100 in FIG. 2 represents the pixel value of pixel 100.
  • the pixel value of pixel 100 represents, for example, the population of a first area that is not a depopulated area (for example, an urban area).
  • the pixel value of the pixel 100 at the coordinates (1,7) is "156" as an example.
  • the pixel value of the pixel 101 represents, for example, the population of a second area that is a depopulated area (for example, a mountainous area).
  • the pixel value of the pixel 101 of the coordinates (7, 1) is "6" as an example.
  • Each pixel value of pixels 102-108 is "6" as an example.
  • the quantization error allowed for the pixel value of the pixel 101 is smaller than the quantization error allowed for the pixel value of the pixel 100. If, for example, the same quantization width "10" is used for the quantization of the pixel value in all the pixels in the statistical image, the pixel value "6 (pixel value less than the quantization width" 10 ") of the pixel 101). "Is changed to" 0 ", and the statistical properties of depopulated areas may not be maintained. In addition, the statistical properties of the statistical image may not be maintained due to changes in the ratio (dense and dense relationship) between the statistical data (values) represented by each pixel value.
  • the derivation unit 21 derives a quantization parameter for each pixel value in order to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties of the depopulated area. For example, the derivation unit 21 derives a quantization parameter corresponding to the long quantization width d i greater the pixel value V i.
  • the derivation unit 21 derives a quantization parameter corresponding to a quantization width “1” less than the threshold value for a pixel having a pixel value less than “50”. As an example, the derivation unit 21 derives a quantization parameter corresponding to a quantization width “10” equal to or larger than the threshold value for a pixel having a pixel value “50” or more.
  • FIG. 3 is a diagram showing an example of a predicted image.
  • the predicted image is composed of "8 ⁇ 8" pixel groups as an example.
  • the derivation unit 21 quantizes the pixel values of the pixels less than the pixel value “50” of the statistical image with the quantization width “1”.
  • the derivation unit 21 quantizes the pixel values of the pixels of the statistical image having a pixel value of “50” or more and less than “150” with a quantization width of “5”.
  • the derivation unit 21 quantizes the pixel values of pixels having a pixel value of “150” or more in the statistical image with a quantization width of “10”.
  • FIG. 4 is a diagram showing an example of a difference image.
  • the difference image is composed of "8 ⁇ 8" pixel groups as an example.
  • the difference image shown in FIG. 4 represents the result (error value) obtained by subtracting the pixel value of the predicted image from the pixel value of the statistical image.
  • FIG. 5 is a diagram (histogram) showing an example of the pixel value (error value) of the pixel 100 of the difference image.
  • the horizontal axis shows the pixel value (error value) of each pixel quantized with the quantization width “10” in the difference image.
  • the vertical axis shows the number of pixels quantized with a quantization width of "10" in the difference image for each pixel value (error value).
  • the difference quantization unit 23 detects the pixel 100 with the pixel value “6”, which is equal to or less than the quantization width “10” in absolute value, in the difference image.
  • the difference quantization unit 23 quantizes the pixel value “6” of the pixel 100 detected in the difference image to 0.
  • FIG. 6 is a diagram (histogram) showing an example of each pixel value (each error value) of pixels 101-108 of the difference image.
  • the horizontal axis shows the pixel value (error value) of each pixel quantized with the quantization width “1” in the difference image.
  • the vertical axis indicates the number of pixels quantized with the quantization width “1” in the difference image for each pixel value (error value).
  • the difference quantization unit 23 detects in the difference image the pixel 100 having a pixel value “0” which is equal to or less than the quantization width “1” in comparison with an absolute value.
  • the difference quantization unit 23 quantizes each pixel value “6” of the pixels 101-108 detected in the difference image to 0.
  • FIG. 7 is a diagram showing an example of a differentially decoded image.
  • the pixel value "6" of the pixel 100 of the difference image is quantized to 0 by the difference quantization unit 23, so that the pixel value of the pixel 100 in the difference data becomes 0. Since each pixel value "6" of the pixel 101-108 of the difference image is quantized to 0 by the difference quantization unit 23, each pixel value of the pixel 101-108 in the difference data becomes 0.
  • the difference decoding unit 31 generates the difference decoding image shown in FIG. 7 by executing the decoding process on the difference data.
  • FIG. 8 is a diagram showing an example of a decoded image.
  • the addition unit 32 generates the decoded image (compressed statistical image) shown in FIG. 8 by adding the predicted image shown in FIG. 3 and the differential decoded image shown in FIG. 7 for each pixel. To do.
  • the decoded image shown in FIG. 8 since each pixel value of pixels 101-108 is not “0”, the statistical property of the depopulated area is maintained. Further, in the decoded image, the ratio of the statistical data (pixel values) represented by the pixels 100 and the pixels 101-108 is almost the same as the ratio of the statistical data represented by the pixels 100 and the pixels 101-108 in the statistical image. , Statistical properties are maintained in the decoded image.
  • FIG. 9 is a flowchart showing an operation example of the quantization device 1a.
  • the imaging unit 20 acquires statistical data for each position in the real space.
  • the imaging unit 20 generates an uncompressed statistical image based on the statistical data.
  • the imaging unit 20 outputs an uncompressed statistical image to the derivation unit 21 and the subtraction unit 22 (step S101).
  • the derivation unit 21 acquires an uncompressed statistical image.
  • the derivation unit 21 derives a quantization parameter corresponding to the quantization width according to the pixel value for each pixel of the coordinate i in the part or the whole of the uncompressed statistical image.
  • the derivation unit 21 outputs the quantization parameter to the difference quantization unit 23 for each pixel (step S102).
  • the derivation unit 21 outputs the feature amount data obtained as a result of the quantization processing to the inverse mapping processing unit 30 (step S103).
  • the subtraction unit 22 acquires an uncompressed statistical image from the imaging unit 20.
  • the subtraction unit 22 acquires the predicted image obtained as a result of the inverse mapping process from the derivation unit 21.
  • the subtraction unit 22 subtracts the pixel value of the predicted image from the pixel value of the uncompressed statistical image for each pixel.
  • the subtraction unit 22 outputs the subtraction result as a difference image to the difference quantization unit 23 (step S104).
  • the difference quantization unit 23 acquires a difference image from the subtraction unit 22.
  • the difference quantization unit 23 acquires the quantization parameter from the derivation unit 21.
  • Difference quantization unit 23 the absolute value of the pixel values of the difference image (error value) is the equal to or less than the absolute value of the pixel of the quantization width " ⁇ d i" is detected in the difference image.
  • the difference quantization unit quantizes the error value of the pixel detected in the difference image to 0.
  • the difference quantization unit 23 outputs the difference data to the difference decoding unit 31 (step S105).
  • the inverse mapping processing unit 30 acquires feature data from the derivation unit 21.
  • the inverse mapping processing unit 30 generates a predicted image based on the feature amount data.
  • the inverse mapping processing unit 30 outputs the predicted image obtained as a result of the inverse mapping processing to the adding unit 32 (step S106).
  • the difference decoding unit 31 acquires the difference data from the difference quantization unit 23.
  • the difference decoding unit 31 executes decoding processing such as inverse quantization on the difference data.
  • the difference decoding unit 31 outputs the difference decoding image to the addition unit 32 (step S107).
  • the addition unit 32 acquires the feature amount data from the inverse mapping processing unit 30.
  • the addition unit 32 acquires the difference decoding image from the difference decoding unit 31.
  • the addition unit 32 adds the pixel value of the feature amount data and the pixel value of the difference-decoded image for each pixel.
  • the addition unit 32 outputs the addition result to a predetermined external device (step S108).
  • the quantization device 1a of the first embodiment includes an imaging unit 20 and a derivation unit 21.
  • the imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the coordinates associated with the position in the statistical image.
  • the derivation unit 21 derives the quantization parameter corresponding to the quantization width of the pixel value for each position (pixel) in the spatial region with respect to a part or the whole of the statistical image.
  • the difference quantization unit 23 quantizes the error value, which is the difference between the pixel value not quantized by the quantization width and the pixel value quantized by the quantization width in the difference image.
  • Difference quantization unit 23 the absolute value of the pixel values of the difference image (error values) may detect a pixel is less than the absolute value of the quantization width " ⁇ d i".
  • the difference quantization unit may quantize the error value of the detected pixel to 0.
  • a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of a plurality of coordinate i in part or all of the statistical image.
  • Quantization width d i is expressed by the equation (2).
  • i is an index and represents the coordinates in the statistical image corresponding to the position in the real space.
  • a i represents the average value of the pixel values V i of a plurality of coordinates i.
  • f represents a predetermined proportional function.
  • a represents a predetermined coefficient.
  • b represents a predetermined constant.
  • the derivation unit 21 outputs the quantization parameters defined for each region including a plurality of pixels to the difference quantization unit 23. Deriving unit 21, the quantization width d i instead of the quantization parameter may be outputted to the difference quantization unit 23.
  • the difference quantization unit 23 (compression processing unit) acquires a difference image from the subtraction unit 22.
  • the difference quantization unit 23 acquires the quantization parameters defined for each region including a plurality of pixels from the derivation unit 21.
  • Difference quantization unit 23 the pixel values of the difference image (error value) is quantized by the quantization width d i determined according to the quantization parameter determined for each region including a plurality of pixels.
  • the quantization device 1a of the second embodiment includes an imaging unit 20 and a derivation unit 21.
  • the imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the coordinates associated with the position in the statistical image.
  • the derivation unit 21 derives the quantization parameter corresponding to the quantization width of the pixel value for each position (each region) of a plurality of spatial regions for a part or the whole of the statistical image.
  • the third embodiment is different from the first embodiment and the second embodiment in that the quantization parameter corresponding to the quantization width according to the operation mode (objective information) is determined.
  • the differences from the first embodiment and the second embodiment will be described.
  • FIG. 10 is a diagram showing a configuration example of the quantization device 1b.
  • the quantization device 1b is a device that quantizes the pixel value of each pixel of the statistical image.
  • the quantization device 1b includes a coding device 2b and a decoding device 3.
  • the coding device 2b includes an imaging unit 20, a derivation unit 21, a subtraction unit 22, a difference quantization unit 23, and an acquisition unit 24.
  • the decoding device 3 includes an inverse mapping processing unit 30, a difference decoding unit 31, and an addition unit 32.
  • the acquisition unit 24 (purpose acquisition unit) is, for example, an input device such as a keyboard or a touch panel.
  • the acquisition unit 24 acquires the operation mode and the coordinate data.
  • the quantization parameters are determined according to the operation mode.
  • the operation mode is predetermined by the user according to the purpose of statistical processing.
  • the purpose of statistical processing is, for example, to obtain statistical data on demand for determining which of a plurality of positions (regions) in real space to dispatch more taxis.
  • the value of the quantization parameter of each pixel corresponding to the office district and the downtown area is the quantization of each pixel corresponding to the residential area and the depopulated area so that each population of the office district and the downtown area can be derived with higher accuracy. It is set to a value smaller than the value of the parameter.
  • the quantization error allowed for the pixel values of the coordinates associated with the positions where statistical data needs to be obtained is allowed for the pixel values of the coordinates associated with the positions where statistical data does not need to be obtained. It is smaller than the quantization error. Therefore, the pixel value of the coordinates associated with the position where statistical data needs to be obtained is quantized with a quantization width smaller than a predetermined threshold value.
  • the coordinate data represents the coordinates of one or more pixels corresponding to one or more positions where statistical data needs to be obtained in the statistical image.
  • the coordinate data may represent the coordinates of one or more pixels corresponding to one or more positions where statistical data does not need to be obtained in the statistical image.
  • the acquisition unit 24 outputs the operation mode and the coordinate data to the derivation unit 21.
  • the derivation unit 21 acquires the operation mode and the coordinate data.
  • the derivation unit 21 acquires an uncompressed statistical image from the imaging unit 20.
  • Deriving section 21 a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of the coordinate i indicated by the coordinate data.
  • the derivation unit 21 quantizes a value less than the threshold value for each pixel of one or more coordinates i indicated by the coordinate data. Derive the parameters.
  • the derivation unit 21 quantizes the value equal to or more than the threshold value for each pixel of one or more coordinates i indicated by the coordinate data. Derive the parameters.
  • the quantization width corresponding to the quantization parameter having a value below the threshold value is shorter than the quantization width corresponding to the quantization parameter having a value above the threshold value.
  • FIG. 11 is a diagram showing an example of a statistical image.
  • the statistical image includes pixels 200-203. Pixels 200-203 are pixels with coordinates associated with each position (each region) for which statistical data needs to be obtained.
  • the pixel value of pixel 200 represents, for example, the number of taxi demands in the third region.
  • the pixel value of the pixel 200 at the coordinates (3, 5) is "23" as an example.
  • the pixel value of pixel 201 represents, for example, the number of taxi demands in the fourth region.
  • the pixel value of the pixel 201 of the coordinates (4,5) is "25" as an example.
  • the pixel value of pixel 202 represents, for example, the number of taxi demands in the fifth region.
  • the pixel value of the pixel 202 at the coordinates (3, 6) is "100" as an example.
  • the pixel value of pixel 203 represents, for example, the number of taxi demands in the sixth region.
  • the pixel value of the pixel 203 of the coordinates (4, 6) is "102" as an example.
  • the permissible quantization error for each pixel value of pixels 200-203 is smaller than the permissible quantization error for the pixel values of pixels other than pixels 200-203 in the statistical image. If, for example, the same quantization width "10" is used for the quantization of the pixel values for all the pixels in the statistical image, the ratio (denseness relationship) between the statistical data (values) represented by each pixel value is Statistical properties may not be maintained in statistical images due to changes.
  • the derivation unit 21 is less than the threshold value for each pixel value of the pixels 200-203.
  • the quantization parameter corresponding to the quantization width (for example, 2) of is derived.
  • the derivation unit 21 may derive a quantization parameter corresponding to a quantization width (for example, 10) equal to or larger than the threshold value for the pixel value of each pixel other than the pixels 200-203.
  • FIG. 12 is a diagram showing an example of a predicted image.
  • the derivation unit 21 quantizes the pixel values of the pixels 200 to 203 with a quantization width “2” that is less than the threshold value, for example.
  • the derivation unit 21 quantizes the pixel values of the pixels other than the pixels 200-203 with a quantization width “10” equal to or larger than the threshold value, for example.
  • the pixel value of the pixel 200 of the predicted image becomes "22".
  • the pixel value of the pixel 201 of the predicted image is "24".
  • FIG. 13 is a diagram showing an example of a difference image.
  • the difference image shown in FIG. 13 represents the result (error value) obtained by subtracting the pixel value of the predicted image from the pixel value of the statistical image.
  • FIG. 14 is a diagram (histogram) showing an example of each pixel value of a predetermined pixel group (pixels 200-203) of the difference image.
  • the horizontal axis represents the pixel value (error value) of the pixels 200-203 quantized with the quantization width “2” in the difference image.
  • the vertical axis shows the number of pixels 200-203 quantized with a quantization width of "2" in the difference image for each pixel value (error value).
  • the difference quantization unit 23 detects in the difference image a pixel having a quantization width of “2” or less as compared with an absolute value among the pixel values of the pixels 200 to 203 indicated by the coordinate data in the difference image. To do.
  • the difference quantization unit 23 quantizes the pixel value of each pixel detected in the difference image to 0.
  • the difference quantization unit 23 may quantize with a quantization width of "10" so that the pixel value of each pixel other than the pixels 200-203 is set to 0 in the difference image.
  • FIG. 15 is a diagram showing an example of an image representing the difference data.
  • the pixel value "1" of the pixels 200-201 of the difference image is quantized to 0 by the difference quantization unit 23, so that the pixel value of the pixel 200 in the difference data becomes 0.
  • the difference decoding unit 31 generates the difference decoding image shown in FIG. 15 by executing the decoding process on the difference data.
  • FIG. 16 is a diagram showing an example of a decoded image.
  • the decoded image (compressed statistical image) shown in FIG. 16 is generated by adding the predicted image shown in FIG. 12 and the differential decoded image shown in FIG. 15 for each pixel. Since the ratio of the statistical data (pixel values) represented by the pixels 200-203 in the decoded image shown in FIG. 16 is almost the same as the ratio of the statistical data represented by the pixels 200-203 in the statistical image, the statistics in the decoded image Characteristic properties are maintained.
  • FIG. 17 is a flowchart showing an operation example of the quantization device 1b.
  • Step S201 shown in FIG. 17 is the same operation as step S101 shown in FIG.
  • the acquisition unit 24 acquires the operation mode and the coordinate data.
  • the acquisition unit 24 outputs the operation mode and coordinate data to the derivation unit 21 (step S202).
  • the derivation unit 21 acquires the operation mode and coordinate data.
  • the derivation unit 21 derives the quantization parameter corresponding to the quantization width according to the operation mode for each pixel indicated by the coordinate data.
  • the derivation unit 21 outputs the quantization parameter to the difference quantization unit 23 for each pixel (step S203).
  • Step S201 shown in FIG. 17 is the same operation as step S101 shown in FIG.
  • the quantization device 1b of the third embodiment further includes an imaging unit 20, a derivation unit 21, and an acquisition unit 24.
  • the acquisition unit 24 acquires information (for example, an operation mode) representing the purpose of statistical processing.
  • the derivation unit 21 derives the quantization parameter based on the position in the real space and the information representing the purpose of the statistical processing. ..
  • the pixel values of the pixels of the statistical image are set so as to maintain the statistical properties for the given area. It is possible to quantize.
  • statistical processing to control taxi dispatch may require more detailed statistical data for areas with a large absolute number of passenger candidates, but statistical properties for areas with a large absolute number of passenger candidates. It is possible to quantize the pixel values of the pixels of the statistical image so as to keep the above.
  • Each function f shown in the equation (1), the equation (2) or the equation (3) may be a function other than the proportional function.
  • the quantization width is determined for each reference value of the plurality of quantized pixel values. May be good. Multiple pixel values quantized in the statistical image according to the distribution range of the plurality of pixel values quantized in the statistical image and the distribution range of the plurality of pixel values (error values) quantized in the difference image.
  • the reference value of may be determined.
  • the function "f" may be, for example, the function shown in the equation (4) expressed using the logarithm "log”.
  • the function of Eq. (4) can increase the change in the quantization width with the change of the value. That is, the function of Eq. (4) can maintain the accuracy of extremely large values.
  • the function of equation (4) may be expressed using, for example, a power instead of being expressed using logarithms.
  • the present invention is applicable to an image processing apparatus that performs image coding and image decoding.

Abstract

A quantization device according to the invention is provided with: an imaging unit that converts statistical data at real-space positions to the pixel values of coordinates associated with the positions in an image; and a deriving unit that derives a quantization parameter corresponding to the quantization width of a pixel value for each of one or more real-space positions with respect to a part of or the whole of the image. The quantization device may be further provided with a target acquisition unit that acquires information representative of a target related to statistics. The deriving unit may derive a quantization parameter corresponding to a quantization width that is longer, the greater the pixel value is.

Description

量子化装置、量子化方法及びプログラムQuantizer, quantization method and program
 本発明は、量子化装置、量子化方法及びプログラムに関する。 The present invention relates to a quantization device, a quantization method and a program.
 セマンティックデータ(Semantic Data:意味論データ)を膨大な統計データから抽出するという需要がある。この需要を満たすために使用される画像として、統計データを表す画像(以下「統計画像」という。)が生成される(特許文献1参照)。統計画像内の座標は、実空間の位置に対応付けられている。統計画像の画素の画素値は、その画素の座標に対応付けられた実空間の位置における統計データを表す。 There is a demand to extract semantic data (semantic data) from a huge amount of statistical data. As an image used to satisfy this demand, an image representing statistical data (hereinafter referred to as "statistical image") is generated (see Patent Document 1). The coordinates in the statistical image are associated with the positions in real space. The pixel value of a pixel in a statistical image represents statistical data at a position in real space associated with the coordinates of that pixel.
 このような膨大な統計データの容量を圧縮することを目的として、HEVC(High Efficiency Video Coding)規格(非特許文献1参照)等の画像符号化規格に基づいて、統計画像の各画素の画素値が量子化される場合がある。 For the purpose of compressing the capacity of such a huge amount of statistical data, the pixel value of each pixel of the statistical image is based on an image coding standard such as HEVC (High Efficiency Video Coding) standard (see Non-Patent Document 1). May be quantized.
特開2018-128731号公報JP-A-2018-128731
 統計画像の画素の画素値は、統計データを表している。このため、統計画像の画質の良否は、人間によって評価されない。しかしながら、従来の画像符号化規格の量子化方法は、画質の向上を重視する量子化方法である。画質の向上を重視するため、従来の画像符号化規格では、統計画像における全ての画素で同じ量子化パラメータ(QP : Quantization Parameter)が、画素値の量子化の際に使用されている。量子化パラメータは、画素値の量子化幅を定めるために使用されるパラメータである。 The pixel value of the pixel of the statistical image represents the statistical data. Therefore, the quality of the image quality of the statistical image is not evaluated by humans. However, the conventional quantization method of the image coding standard is a quantization method that emphasizes improvement of image quality. In order to emphasize the improvement of image quality, in the conventional image coding standard, the same quantization parameter (QP: Quantization Parameter) is used for all pixels in the statistical image when the pixel value is quantized. The quantization parameter is a parameter used to determine the quantization width of the pixel value.
 統計画像における全ての画素で同じ量子化パラメータが使用された場合、各画素値が表す統計データ同士の比(疎密の関係)が変わるなどして、統計画像において統計的な性質が保たれない場合がある。統計データが例えば人口である場合、都心部における多い人口を表す画素値と、山間部における少ない人口を表す画素値とでは、量子化パラメータが画素値に与える影響は大きく異なる。例えば、都心部における多い人口を表す画素値に応じて量子化パラメータが設定された場合、各山間部における少ない人口を表す各画素値が平均化されてしまうので、各山間部における少ない人口を表す画素値同士における統計上の差異が失われてしまう。このように、統計的な性質を保つように統計画像の画素の画素値を量子化することができない場合があった。 When the same quantization parameter is used for all pixels in the statistical image, the statistical properties cannot be maintained in the statistical image due to changes in the ratio (dense and dense relationship) between the statistical data represented by each pixel value. There is. When the statistical data is, for example, a population, the influence of the quantization parameter on the pixel value differs greatly between the pixel value representing a large population in the city center and the pixel value representing a small population in the mountainous area. For example, if the quantization parameter is set according to the pixel value representing a large population in the city center, each pixel value representing a small population in each mountainous area will be averaged, so that it represents a small population in each mountainous area. Statistical differences between pixel values are lost. In this way, it may not be possible to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties.
 上記事情に鑑み、本発明は、統計的な性質を保つように統計画像の画素の画素値を量子化することが可能である量子化装置、量子化方法及びプログラムを提供することを目的としている。 In view of the above circumstances, it is an object of the present invention to provide a quantization device, a quantization method, and a program capable of quantizing the pixel values of the pixels of a statistical image so as to maintain statistical properties. ..
 本発明の一態様は、実空間の位置における統計データを、画像において前記位置に対応付けられた座標の画素値に変換する画像化部と、前記画素値の量子化幅に対応する量子化パラメータを、前記画像の部分又は全体について1以上の前記実空間の位置ごとに導出する導出部とを備える量子化装置である。
 
One aspect of the present invention is an imaging unit that converts statistical data at a position in real space into a pixel value of coordinates associated with the position in an image, and a quantization parameter corresponding to the quantization width of the pixel value. Is a quantization device including a derivation unit for deriving one or more positions in the real space for a part or the whole of the image.
 本発明により、統計的な性質を保つように統計画像の画素の画素値を量子化することが可能である。 According to the present invention, it is possible to quantize the pixel values of the pixels of a statistical image so as to maintain the statistical properties.
第1実施形態における、量子化装置の構成例を示す図である。It is a figure which shows the structural example of the quantization apparatus in 1st Embodiment. 第1実施形態における、統計画像の例を示す図である。It is a figure which shows the example of the statistical image in 1st Embodiment. 第1実施形態における、予測画像の例を示す図である。It is a figure which shows the example of the prediction image in 1st Embodiment. 第1実施形態における、差分画像の例を示す図である。It is a figure which shows the example of the difference image in 1st Embodiment. 第1実施形態における、差分画像の所定画素の画素値の例を示す図である。It is a figure which shows the example of the pixel value of the predetermined pixel of the difference image in 1st Embodiment. 第1実施形態における、差分画像の所定画素群の各画素値の例を示す図である。It is a figure which shows the example of each pixel value of the predetermined pixel group of the difference image in 1st Embodiment. 第1実施形態における、差分復号画像の例を示す図である。It is a figure which shows the example of the differential decoding image in 1st Embodiment. 第1実施形態における、復号画像の例を示す図である。It is a figure which shows the example of the decoded image in 1st Embodiment. 第1実施形態における、量子化装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the quantization apparatus in 1st Embodiment. 第3実施形態における、量子化装置の構成例を示す図である。It is a figure which shows the structural example of the quantization apparatus in 3rd Embodiment. 第3実施形態における、統計画像の例を示す図である。It is a figure which shows the example of the statistical image in 3rd Embodiment. 第3実施形態における、予測画像の例を示す図である。It is a figure which shows the example of the prediction image in 3rd Embodiment. 第3実施形態における、差分画像の例を示す図である。It is a figure which shows the example of the difference image in 3rd Embodiment. 第3実施形態における、差分画像の所定画素群の各画素値の例を示す図である。It is a figure which shows the example of each pixel value of the predetermined pixel group of the difference image in 3rd Embodiment. 第3実施形態における、差分データを表す画像の例を示す図である。It is a figure which shows the example of the image which shows the difference data in 3rd Embodiment. 第3実施形態における、復号画像の例を示す図である。It is a figure which shows the example of the decoded image in 3rd Embodiment. 第3実施形態における、量子化装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the quantization apparatus in 3rd Embodiment.
 本発明の実施形態について、図面を参照して詳細に説明する。
 (第1実施形態)
 図1は、量子化装置1aの構成例を示す図である。量子化装置1aは、統計画像の各画素の画素値を量子化する装置である。統計画像内の座標は、実空間の位置に対応付けられている。統計画像の画素の画素値は、その画素の座標に対応付けられた実空間の位置における統計データを表す。統計データは、例えば、人口を表すデータでもよいし、タクシーの需要(例えば、配車数、乗客の候補の人数)を表すデータでもよい。許容される範囲に画素値が収まらない場合もあるため、統計データは、統計データに対して所定の変換処理が実行されることによって、画素値が許容される範囲となる値に変換されてもよい。所定の変換処理として、例えば、参考文献(特開2017-123021号公報)に開示された変換処理が用いられてもよい。
Embodiments of the present invention will be described in detail with reference to the drawings.
(First Embodiment)
FIG. 1 is a diagram showing a configuration example of the quantization device 1a. The quantization device 1a is a device that quantizes the pixel value of each pixel of the statistical image. The coordinates in the statistical image are associated with the positions in real space. The pixel value of a pixel in a statistical image represents statistical data at a position in real space associated with the coordinates of that pixel. The statistical data may be, for example, data representing the population or data representing the demand for taxis (for example, the number of dispatched vehicles, the number of candidate passengers). Since the pixel value may not fit in the permissible range, the statistical data may be converted to a value within the permissible range by executing a predetermined conversion process on the statistical data. Good. As the predetermined conversion process, for example, the conversion process disclosed in Reference Document (Japanese Unexamined Patent Publication No. 2017-123021) may be used.
 量子化装置1aは、符号化装置2a(量子化部)と、復号装置3(逆量子化部)とを備える。符号化装置2aは、画像化部20と、導出部21と、減算部22と、差分量子化部23とを備える。復号装置3は、逆写像処理部30と、差分復号部31と、加算部32とを備える。 The quantization device 1a includes a coding device 2a (quantization unit) and a decoding device 3 (inverse quantization unit). The coding device 2a includes an imaging unit 20, a derivation unit 21, a subtraction unit 22, and a difference quantization unit 23. The decoding device 3 includes an inverse mapping processing unit 30, a difference decoding unit 31, and an addition unit 32.
 量子化装置1aの一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、不揮発性の記録媒体(非一時的な記録媒体)であるメモリに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置などの非一時的な記憶媒体である。プログラムは、電気通信回線を介して送信されてもよい。量子化装置1aの一部又は全部は、例えば、LSI(Large Scale Integration circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェアを用いて実現されてもよい。 Part or all of the quantization device 1a is software in which a processor such as a CPU (Central Processing Unit) executes a program stored in a memory which is a non-volatile recording medium (non-temporary recording medium). Is realized as. The program may be recorded on a computer-readable recording medium. Computer-readable recording media include, for example, flexible disks, magneto-optical disks, portable media such as ROM (ReadOnlyMemory) and CD-ROM (CompactDiscReadOnlyMemory), and storage of hard disks built in computer systems. It is a non-temporary storage medium such as a device. The program may be transmitted over a telecommunication line. A part or all of the quantization device 1a is, for example, an electronic circuit (Field Programmable Gate Array) using an LSI (Large Scale Integration circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), or the like. It may be realized by using hardware including electronic circuit or circuitry).
 符号化装置2aは、非圧縮画像形式で表現された統計画像(以下「非圧縮の統計画像」という。)を量子化し、量子化された統計画像を符号化する装置である。画像化部20は、実空間の位置に対応付けられた統計データを取得する。画像化部20は、統計データに基づいて、非圧縮の統計画像を生成する。画像化部20は、実空間の位置における統計データを、画像において実空間の位置に対応付けられた座標i(x,y)の画素の画素値に変換する。例えば、画像化部20は、参考文献(特開2017-123021号公報)に記載のデータ処理方法を用いて、統計画像を生成してもよい。画像化部20は、非圧縮の統計画像を、導出部21及び減算部22に出力する。 The coding device 2a is a device that quantizes a statistical image expressed in an uncompressed image format (hereinafter referred to as "uncompressed statistical image") and encodes the quantized statistical image. The imaging unit 20 acquires statistical data associated with a position in real space. The imaging unit 20 generates an uncompressed statistical image based on the statistical data. The imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the pixel of the coordinates i (x, y) associated with the position in the real space in the image. For example, the imaging unit 20 may generate a statistical image by using the data processing method described in the reference (Japanese Unexamined Patent Publication No. 2017-123021). The imaging unit 20 outputs an uncompressed statistical image to the derivation unit 21 and the subtraction unit 22.
 導出部21は、非圧縮の統計画像を、画像化部20から取得する。導出部21は、非圧縮の統計画像に対して、予測処理(例えば、イントラ予測、時間方向の予測)を実行する。 The derivation unit 21 acquires an uncompressed statistical image from the imaging unit 20. The derivation unit 21 executes prediction processing (for example, intra-prediction, time-direction prediction) on the uncompressed statistical image.
 導出部21は、非圧縮の統計画像の画素値の量子化幅dに対応する量子化パラメータを、統計画像の部分又は全体における座標iの画素ごとに導出する。量子化幅dが長いほど、量子化パラメータの値は大きい。導出部21は、画素値Vが大きいほど長い量子化幅dに対応する量子化パラメータを導出する。導出部21は、統計画像の座標iの画素値Vに対して、画素ごとに定められた量子化パラメータに応じて定まる量子化幅dで量子化処理を実行する。量子化幅dは、式(1)のように表される。 Deriving section 21, a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of the coordinate i in part or all of the statistical image. The longer the quantization width d i, the value of the quantization parameter is large. Deriving unit 21 derives the quantization parameter corresponding to the long quantization width d i greater the pixel value V i. Deriving unit 21, the pixel value V i of the coordinate i of the statistical image, executes the quantization processing by the quantization width d i determined according to the quantization parameter determined for each pixel. Quantization width d i is expressed by the equation (1).
 d=f(V) …(1) d i = f (V i) ... (1)
 ここで、iは、インデックスであり、実空間の位置に対応する統計画像内の座標を表す。Vは、座標iの画素値を表す。fは、予め定められた比例関数を表す。 Here, i is an index and represents the coordinates in the statistical image corresponding to the position in the real space. V i represents the pixel value of the coordinate i. f represents a predetermined proportional function.
 導出部21は、画素ごとに定められた量子化パラメータを、差分量子化部23に出力する。導出部21は、量子化パラメータの代わりに量子化幅dを、差分量子化部23に出力してもよい。 The derivation unit 21 outputs the quantization parameter determined for each pixel to the difference quantization unit 23. Deriving unit 21, the quantization width d i instead of the quantization parameter may be outputted to the difference quantization unit 23.
 導出部21は、画素ごとの量子化幅dで量子化された画素値を含む統計画像対する予測処理の結果として得られた画像特徴量のデータ(以下「特徴量データ」という。)を、逆写像処理部30に出力する。導出部21は、特徴量データ(低次元データ)とは、所定の関数によって高次元データを低次元データに写像することが可能であり、写像結果の逆写像も算出可能である場合における、写像結果のデータである。予測処理の結果として得られた特徴量データ(低次元データ)に対して、逆写像処理(特徴量データを高次元データに戻す処理)を実行する。導出部21は、逆写像処理の結果として得られた予測画像(予測信号)を、減算部22に出力する。 Deriving unit 21, the data (hereinafter referred to as "feature data".) The resulting image feature amount of the statistical image against prediction processing including quantized pixel value in the quantization width d i of each pixel, Output to the reverse mapping processing unit 30. The derivation unit 21 maps the feature amount data (low-dimensional data) when the high-dimensional data can be mapped to the low-dimensional data by a predetermined function and the reverse mapping of the mapping result can also be calculated. The resulting data. Inverse mapping processing (processing for returning feature data to high-dimensional data) is executed for the feature data (low-dimensional data) obtained as a result of the prediction processing. The derivation unit 21 outputs the prediction image (prediction signal) obtained as a result of the inverse mapping process to the subtraction unit 22.
 減算部22は、非圧縮の統計画像を、画像化部20から取得する。減算部22は、逆写像処理の結果として得られた予測画像を、導出部21から取得する。減算部22は、予測画像の画素値を非圧縮の統計画像の画素値から、画素ごとに減算する。すなわち、減算部22は、量子化幅dで量子化されていない画素値(非圧縮の統計画像の画素値)と、量子化幅dで量子化された画素値(予測画像の画素値)との差分である誤差値(残差)を、画素ごとに導出する。減算部22は、減算結果を、差分画像として差分量子化部23に出力する。 The subtraction unit 22 acquires an uncompressed statistical image from the imaging unit 20. The subtraction unit 22 acquires the predicted image obtained as a result of the reverse mapping process from the derivation unit 21. The subtraction unit 22 subtracts the pixel value of the predicted image from the pixel value of the uncompressed statistical image for each pixel. That is, the subtraction unit 22, a pixel value which are not quantized by the quantization width d i and (non-pixel value of the compressed statistics image), the quantized pixel value in the quantization width d i (pixel value of the prediction image ) And the error value (residual) are derived for each pixel. The subtraction unit 22 outputs the subtraction result to the difference quantization unit 23 as a difference image.
 差分量子化部23(圧縮処理部)は、差分画像を減算部22から取得する。差分量子化部23は、量子化パラメータを導出部21から取得する。差分量子化部23は、差分画像の画素値(誤差値)を、画素ごとに定められた量子化パラメータに応じて定まる量子化幅dで量子化する。 The difference quantization unit 23 (compression processing unit) acquires a difference image from the subtraction unit 22. The difference quantization unit 23 acquires the quantization parameter from the derivation unit 21. Difference quantization unit 23, the pixel values of the difference image (error value) is quantized by the quantization width d i determined according to the quantization parameter determined for each pixel.
 差分量子化部23は、予め定められた基準の誤差値(例えば、0)を中心として量子化幅「-d」から量子化幅「+d」までの範囲の誤差値を有する画素を、差分画像において検出する。すなわち、差分量子化部23は、差分画像の画素値(誤差値)の絶対値が量子化幅「±d」の絶対値以下である画素を、差分画像において検出する。差分量子化部23は、差分画像において検出された画素の誤差値を0に量子化する。差分量子化部23は、差分画像の画素値(以下「差分データ」という。)を、差分復号部31に出力する。 Difference quantization unit 23, the error value of the predetermined criteria (e.g., 0) pixel having an error value in the range from the quantization width "-d i" to the quantization width "+ d i" around a, Detect in the difference image. That is, the difference quantization unit 23, the absolute value of the pixel values of the difference image (error value) is the equal to or less than the absolute value of the pixel of the quantization width "± d i" is detected in the difference image. The difference quantization unit 23 quantizes the error value of the pixel detected in the difference image to 0. The difference quantization unit 23 outputs the pixel value of the difference image (hereinafter referred to as “difference data”) to the difference decoding unit 31.
 差分量子化部23は、差分画像において検出されていない画素の誤差値を、そのままにする。なお、差分量子化部23は、量子化幅「+d」から量子化幅「D>(+d)」までの範囲内の誤差値Vを、誤差値「+d」に置き換えてもよい。置き換え処理を差分量子化部23が繰り返すことによって、連続的な誤差値は、離散的な複数の誤差値に置き換えられてもよい。 The difference quantization unit 23 leaves the error value of the pixel not detected in the difference image as it is. Incidentally, the difference quantization unit 23, an error value V i in the range of the quantization width "+ d i" to the quantization width "D> (+ d i)" may be replaced with the error value "+ d". By repeating the replacement process by the difference quantization unit 23, the continuous error value may be replaced with a plurality of discrete error values.
 復号装置3は、符号化された統計画像に基づいて、圧縮された統計画像を復号する装置である。逆写像処理部30は、特徴量データを導出部21から取得する。逆写像処理部30は、特徴量データに対して逆写像処理を実行する。すなわち、逆写像処理部30は、特徴量データに基づいて予測画像を生成する。逆写像処理部30は、逆写像処理の結果として得られた予測画像を、加算部32に出力する。 The decoding device 3 is a device that decodes a compressed statistical image based on the encoded statistical image. The inverse mapping processing unit 30 acquires feature data from the derivation unit 21. The inverse mapping processing unit 30 executes the inverse mapping processing on the feature data. That is, the inverse mapping processing unit 30 generates a predicted image based on the feature amount data. The reverse mapping processing unit 30 outputs the predicted image obtained as a result of the reverse mapping processing to the adding unit 32.
 差分復号部31は、差分データを差分量子化部23から取得する。差分復号部31は、差分データに対して、逆量子化等の復号処理を実行する。差分復号部31は、差分データの復号処理の結果(以下「差分復号画像」という。)を、加算部32に出力する。 The difference decoding unit 31 acquires the difference data from the difference quantization unit 23. The difference decoding unit 31 executes decoding processing such as inverse quantization on the difference data. The difference decoding unit 31 outputs the result of the difference data decoding process (hereinafter referred to as “difference decoding image”) to the addition unit 32.
 加算部32は、特徴量データを逆写像処理部30から取得する。加算部32は、差分復号画像を差分復号部31から取得する。加算部32は、特徴量データの画素値と差分復号画像の画素値とを、画素ごとに加算する。加算部32は、加算結果を、圧縮画像形式で表現された統計画像(復号画像)として導出する。加算部32は、加算結果を所定の外部装置に出力する。 The addition unit 32 acquires the feature amount data from the inverse mapping processing unit 30. The addition unit 32 acquires the difference decoding image from the difference decoding unit 31. The addition unit 32 adds the pixel value of the feature amount data and the pixel value of the difference-decoded image for each pixel. The addition unit 32 derives the addition result as a statistical image (decoded image) expressed in a compressed image format. The addition unit 32 outputs the addition result to a predetermined external device.
 次に、量子化処理の例を説明する。
 図2は、統計画像の例を示す図である。以下では、統計画像は、一例として「8×8」個の画素群から構成されている。図2では、統計画像は、画素100-108を含む。以下、図中において画素内に記載された値は、画素値を表す。例えば、図2において画素100に記載された「156」は、画素100の画素値を表す。
Next, an example of quantization processing will be described.
FIG. 2 is a diagram showing an example of a statistical image. In the following, the statistical image is composed of "8 × 8" pixel groups as an example. In FIG. 2, the statistical image includes pixels 100-108. Hereinafter, the values described in the pixels in the figure represent the pixel values. For example, "156" described in pixel 100 in FIG. 2 represents the pixel value of pixel 100.
 画素100の画素値は、一例として、過疎地ではない(例えば都市部である)第1地域の人口を表す。座標(1,7)の画素100の画素値は、一例として「156」である。画素101の画素値は、一例として、過疎地である(例えば山間部である)第2地域の人口を表す。座標(7,1)の画素101の画素値は、一例として「6」である。画素102-108の各画素値は、一例としてそれぞれ「6」である。 The pixel value of pixel 100 represents, for example, the population of a first area that is not a depopulated area (for example, an urban area). The pixel value of the pixel 100 at the coordinates (1,7) is "156" as an example. The pixel value of the pixel 101 represents, for example, the population of a second area that is a depopulated area (for example, a mountainous area). The pixel value of the pixel 101 of the coordinates (7, 1) is "6" as an example. Each pixel value of pixels 102-108 is "6" as an example.
 画素101の画素値が画素100の画素値よりも小さいので、画素101の画素値に対して許容される量子化誤差は、画素100の画素値に対して許容される量子化誤差よりも小さい。仮に、統計画像における全ての画素で例えば同じ量子化幅「10」が画素値の量子化の際に使用された場合、画素101の画素値「6(量子化幅「10」未満の画素値)」が「0」になってしまい、過疎地の統計的な性質が保たれない場合がある。また、各画素値が表す統計データ(値)同士の比(疎密の関係)が変わるなどして、統計画像において統計的な性質が保たれない場合がある。 Since the pixel value of the pixel 101 is smaller than the pixel value of the pixel 100, the quantization error allowed for the pixel value of the pixel 101 is smaller than the quantization error allowed for the pixel value of the pixel 100. If, for example, the same quantization width "10" is used for the quantization of the pixel value in all the pixels in the statistical image, the pixel value "6 (pixel value less than the quantization width" 10 ") of the pixel 101). "Is changed to" 0 ", and the statistical properties of depopulated areas may not be maintained. In addition, the statistical properties of the statistical image may not be maintained due to changes in the ratio (dense and dense relationship) between the statistical data (values) represented by each pixel value.
 導出部21は、過疎地の統計的な性質を保つように統計画像の画素の画素値を量子化するため、画素値ごとに量子化パラメータを導出する。例えば、導出部21は、画素値Vが大きいほど長い量子化幅dに対応する量子化パラメータを導出する。 The derivation unit 21 derives a quantization parameter for each pixel value in order to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties of the depopulated area. For example, the derivation unit 21 derives a quantization parameter corresponding to the long quantization width d i greater the pixel value V i.
 図2では、導出部21は、一例として、画素値「50」未満の画素に対して、閾値未満の量子化幅「1」に対応する量子化パラメータを導出する。導出部21は、一例として、画素値「50」以上の画素に対して、閾値以上の量子化幅「10」に対応する量子化パラメータを導出する。 In FIG. 2, as an example, the derivation unit 21 derives a quantization parameter corresponding to a quantization width “1” less than the threshold value for a pixel having a pixel value less than “50”. As an example, the derivation unit 21 derives a quantization parameter corresponding to a quantization width “10” equal to or larger than the threshold value for a pixel having a pixel value “50” or more.
 図3は、予測画像の例を示す図である。以下では、予測画像は、一例として「8×8」個の画素群から構成されている。導出部21は、統計画像の画素値「50」未満の画素の画素値を、量子化幅「1」で量子化する。導出部21は、統計画像の画素値「50」以上「150」未満の画素の画素値を、量子化幅「5」で量子化する。導出部21は、統計画像の画素値「150」以上の画素の画素値を、量子化幅「10」で量子化する。 FIG. 3 is a diagram showing an example of a predicted image. In the following, the predicted image is composed of "8 × 8" pixel groups as an example. The derivation unit 21 quantizes the pixel values of the pixels less than the pixel value “50” of the statistical image with the quantization width “1”. The derivation unit 21 quantizes the pixel values of the pixels of the statistical image having a pixel value of “50” or more and less than “150” with a quantization width of “5”. The derivation unit 21 quantizes the pixel values of pixels having a pixel value of “150” or more in the statistical image with a quantization width of “10”.
 量子化幅「10」で量子化された結果、予測画像の画素100の画素値は「150」となる。量子化幅「1」で量子化された結果、予測画像の画素101-108の各画素値は、それぞれ「6」のままとなる。 As a result of quantization with a quantization width of "10", the pixel value of the pixel 100 of the predicted image becomes "150". As a result of the quantization with the quantization width "1", each pixel value of the pixels 101-108 of the predicted image remains "6".
 図4は、差分画像の例を示す図である。以下では、差分画像は、一例として「8×8」個の画素群から構成されている。図4に示された差分画像は、統計画像の画素値から予測画像の画素値が減算された結果(誤差値)を表す。差分画像の画素100の画素値は「6(=156-150)」となる。予測画像の画素101-108の各画素値は、それぞれ「0(=6-6)」となる。 FIG. 4 is a diagram showing an example of a difference image. In the following, the difference image is composed of "8 × 8" pixel groups as an example. The difference image shown in FIG. 4 represents the result (error value) obtained by subtracting the pixel value of the predicted image from the pixel value of the statistical image. The pixel value of the pixel 100 of the difference image is "6 (= 156-150)". Each pixel value of pixels 101-108 of the predicted image is "0 (= 6-6)".
 図5は、差分画像の画素100の画素値(誤差値)の例を示す図(ヒストグラム)である。横軸は、差分画像において量子化幅「10」で量子化された各画素の画素値(誤差値)を示す。縦軸は、差分画像において量子化幅「10」で量子化された画素の個数を、画素値(誤差値)ごとに示す。 FIG. 5 is a diagram (histogram) showing an example of the pixel value (error value) of the pixel 100 of the difference image. The horizontal axis shows the pixel value (error value) of each pixel quantized with the quantization width “10” in the difference image. The vertical axis shows the number of pixels quantized with a quantization width of "10" in the difference image for each pixel value (error value).
 差分量子化部23は、絶対値で比較して量子化幅「10」以下である画素値「6」の画素100を、差分画像において検出する。差分量子化部23は、差分画像において検出された画素100の画素値「6」を、0に量子化する。 The difference quantization unit 23 detects the pixel 100 with the pixel value “6”, which is equal to or less than the quantization width “10” in absolute value, in the difference image. The difference quantization unit 23 quantizes the pixel value “6” of the pixel 100 detected in the difference image to 0.
 図6は、差分画像の画素101-108の各画素値(各誤差値)の例を示す図(ヒストグラム)である。横軸は、差分画像において量子化幅「1」で量子化された各画素の画素値(誤差値)を示す。縦軸は、差分画像において量子化幅「1」で量子化された画素の個数を、画素値(誤差値)ごとに示す。 FIG. 6 is a diagram (histogram) showing an example of each pixel value (each error value) of pixels 101-108 of the difference image. The horizontal axis shows the pixel value (error value) of each pixel quantized with the quantization width “1” in the difference image. The vertical axis indicates the number of pixels quantized with the quantization width “1” in the difference image for each pixel value (error value).
 差分量子化部23は、絶対値で比較して量子化幅「1」以下である画素値「0」の画素100を、差分画像において検出する。差分量子化部23は、差分画像において検出された画素101-108の各画素値「6」を、0に量子化する。 The difference quantization unit 23 detects in the difference image the pixel 100 having a pixel value “0” which is equal to or less than the quantization width “1” in comparison with an absolute value. The difference quantization unit 23 quantizes each pixel value “6” of the pixels 101-108 detected in the difference image to 0.
 図7は、差分復号画像の例を示す図である。差分画像の画素100の画素値「6」を差分量子化部23が0に量子化したことによって、差分データにおける画素100の画素値は0となる。差分画像の画素101-108の各画素値「6」を差分量子化部23が0に量子化したことによって、差分データにおける画素101-108の各画素値は0となる。差分復号部31は、差分データに対して復号処理を実行することによって、図7に示された差分復号画像を生成する。 FIG. 7 is a diagram showing an example of a differentially decoded image. The pixel value "6" of the pixel 100 of the difference image is quantized to 0 by the difference quantization unit 23, so that the pixel value of the pixel 100 in the difference data becomes 0. Since each pixel value "6" of the pixel 101-108 of the difference image is quantized to 0 by the difference quantization unit 23, each pixel value of the pixel 101-108 in the difference data becomes 0. The difference decoding unit 31 generates the difference decoding image shown in FIG. 7 by executing the decoding process on the difference data.
 図8は、復号画像の例を示す図である。加算部32は、図3に示された予測画像と図7に示された差分復号画像とを画素ごとに加算することによって、図8に示された復号画像(圧縮された統計画像)を生成する。図8に示された復号画像において、画素101-108の各画素値は「0」になっていないので、過疎地の統計的な性質が保たれている。また、復号画像において、画素100と画素101-108とが表す統計データ(画素値)同士の比が、統計画像において画素100と画素101-108とが表す統計データ同士の比とほとんど変わらないので、復号画像において統計的な性質が保たれている。 FIG. 8 is a diagram showing an example of a decoded image. The addition unit 32 generates the decoded image (compressed statistical image) shown in FIG. 8 by adding the predicted image shown in FIG. 3 and the differential decoded image shown in FIG. 7 for each pixel. To do. In the decoded image shown in FIG. 8, since each pixel value of pixels 101-108 is not “0”, the statistical property of the depopulated area is maintained. Further, in the decoded image, the ratio of the statistical data (pixel values) represented by the pixels 100 and the pixels 101-108 is almost the same as the ratio of the statistical data represented by the pixels 100 and the pixels 101-108 in the statistical image. , Statistical properties are maintained in the decoded image.
 次に、量子化装置1aの動作例を説明する。
 図9は、量子化装置1aの動作例を示すフローチャートである。画像化部20は、実空間の位置ごとに統計データを取得する。画像化部20は、統計データに基づいて、非圧縮の統計画像を生成する。画像化部20は、非圧縮の統計画像を、導出部21及び減算部22に出力する(ステップS101)。
Next, an operation example of the quantization device 1a will be described.
FIG. 9 is a flowchart showing an operation example of the quantization device 1a. The imaging unit 20 acquires statistical data for each position in the real space. The imaging unit 20 generates an uncompressed statistical image based on the statistical data. The imaging unit 20 outputs an uncompressed statistical image to the derivation unit 21 and the subtraction unit 22 (step S101).
 導出部21は、非圧縮の統計画像を取得する。導出部21は、非圧縮の統計画像の部分又は全体における座標iの画素ごとに、画素値に応じた量子化幅に対応する量子化パラメータを導出する。導出部21は、量子化パラメータを画素ごとに差分量子化部23に出力する(ステップS102)。 The derivation unit 21 acquires an uncompressed statistical image. The derivation unit 21 derives a quantization parameter corresponding to the quantization width according to the pixel value for each pixel of the coordinate i in the part or the whole of the uncompressed statistical image. The derivation unit 21 outputs the quantization parameter to the difference quantization unit 23 for each pixel (step S102).
 導出部21は、統計画像の座標iの画素値Vに対して、画素ごとに画素値に基づいて定められた量子化パラメータに応じて定まる量子化幅dで、量子化処理を実行する。導出部21は、量子化処理の結果として得られた特徴量データを、逆写像処理部30に出力する(ステップS103)。 Deriving unit 21, the pixel value V i of the coordinate i of the statistical image, the quantization width d i determined according to the quantization parameter determined based on the pixel values for each pixel, to perform the quantization process .. The derivation unit 21 outputs the feature amount data obtained as a result of the quantization processing to the inverse mapping processing unit 30 (step S103).
 減算部22は、非圧縮の統計画像を、画像化部20から取得する。減算部22は、逆写像処理の結果として得られた予測画像を、導出部21から取得する。減算部22は、予測画像の画素値を非圧縮の統計画像の画素値から、画素ごとに減算する。減算部22は、減算結果を、差分画像として差分量子化部23に出力する(ステップS104)。 The subtraction unit 22 acquires an uncompressed statistical image from the imaging unit 20. The subtraction unit 22 acquires the predicted image obtained as a result of the inverse mapping process from the derivation unit 21. The subtraction unit 22 subtracts the pixel value of the predicted image from the pixel value of the uncompressed statistical image for each pixel. The subtraction unit 22 outputs the subtraction result as a difference image to the difference quantization unit 23 (step S104).
 差分量子化部23は、差分画像を減算部22から取得する。差分量子化部23は、量子化パラメータを導出部21から取得する。差分量子化部23は、差分画像の画素値(誤差値)の絶対値が量子化幅「±d」の絶対値以下である画素を、差分画像において検出する。差分量子化部は、差分画像において検出された画素の誤差値を0に量子化する。差分量子化部23は、差分データを差分復号部31に出力する(ステップS105)。 The difference quantization unit 23 acquires a difference image from the subtraction unit 22. The difference quantization unit 23 acquires the quantization parameter from the derivation unit 21. Difference quantization unit 23, the absolute value of the pixel values of the difference image (error value) is the equal to or less than the absolute value of the pixel of the quantization width "± d i" is detected in the difference image. The difference quantization unit quantizes the error value of the pixel detected in the difference image to 0. The difference quantization unit 23 outputs the difference data to the difference decoding unit 31 (step S105).
 逆写像処理部30は、特徴量データを導出部21から取得する。逆写像処理部30は、特徴量データに基づいて予測画像を生成する。逆写像処理部30は、逆写像処理の結果として得られた予測画像を、加算部32に出力する(ステップS106)。 The inverse mapping processing unit 30 acquires feature data from the derivation unit 21. The inverse mapping processing unit 30 generates a predicted image based on the feature amount data. The inverse mapping processing unit 30 outputs the predicted image obtained as a result of the inverse mapping processing to the adding unit 32 (step S106).
 差分復号部31は、差分データを差分量子化部23から取得する。差分復号部31は、差分データに対して、逆量子化等の復号処理を実行する。差分復号部31は、差分復号画像を加算部32に出力する(ステップS107)。 The difference decoding unit 31 acquires the difference data from the difference quantization unit 23. The difference decoding unit 31 executes decoding processing such as inverse quantization on the difference data. The difference decoding unit 31 outputs the difference decoding image to the addition unit 32 (step S107).
 加算部32は、特徴量データを逆写像処理部30から取得する。加算部32は、差分復号画像を差分復号部31から取得する。加算部32は、特徴量データの画素値と差分復号画像の画素値とを、画素ごとに加算する。加算部32は、加算結果を所定の外部装置に出力する(ステップS108)。 The addition unit 32 acquires the feature amount data from the inverse mapping processing unit 30. The addition unit 32 acquires the difference decoding image from the difference decoding unit 31. The addition unit 32 adds the pixel value of the feature amount data and the pixel value of the difference-decoded image for each pixel. The addition unit 32 outputs the addition result to a predetermined external device (step S108).
 以上のように、第1実施形態の量子化装置1aは、画像化部20と、導出部21とを備える。画像化部20は、実空間の位置における統計データを、統計画像において位置に対応付けられた座標の画素値に変換する。導出部21は、画素値の量子化幅に対応する量子化パラメータを、統計画像の部分又は全体について空間領域の位置(画素)ごとに導出する。 As described above, the quantization device 1a of the first embodiment includes an imaging unit 20 and a derivation unit 21. The imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the coordinates associated with the position in the statistical image. The derivation unit 21 derives the quantization parameter corresponding to the quantization width of the pixel value for each position (pixel) in the spatial region with respect to a part or the whole of the statistical image.
 これによって、統計的な性質(特徴)を保つように統計画像の画素の画素値を量子化することが可能である。 This makes it possible to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties (features).
 導出部21は、座標iの画素値Vが大きいほど長い量子化幅「d=f(V)」に対応する量子化パラメータを導出してもよい。差分量子化部23は、差分画像における、量子化幅で量子化されていない画素値と量子化幅で量子化された画素値との差分である誤差値を量子化する。差分量子化部23は、差分画像の画素値(誤差値)の絶対値が量子化幅「±d」の絶対値以下である画素を検出してもよい。差分量子化部は、検出された画素の誤差値を0に量子化してもよい。 Deriving unit 21 may derive a quantization parameter corresponding to the longer quantization width is larger pixel value V i of the coordinate i 'd i = f (V i). " The difference quantization unit 23 quantizes the error value, which is the difference between the pixel value not quantized by the quantization width and the pixel value quantized by the quantization width in the difference image. Difference quantization unit 23, the absolute value of the pixel values of the difference image (error values) may detect a pixel is less than the absolute value of the quantization width "± d i". The difference quantization unit may quantize the error value of the detected pixel to 0.
 (第2実施形態)
 第2実施形態では、複数画素(領域)ごとに定められた量子化パラメータに応じて定まる量子化幅dで画素値Vが量子化される点が、第1実施形態と相違する。第2実施形態では、第1実施形態との相違点を説明する。
(Second Embodiment)
In the second embodiment, that the pixel value V i at determined quantization width d i according to the quantization parameter determined for each plurality of pixels (area) is quantized, different from the first embodiment. In the second embodiment, the differences from the first embodiment will be described.
 導出部21は、非圧縮の統計画像の画素値の量子化幅dに対応する量子化パラメータを、統計画像の部分又は全体における複数の座標iの画素ごとに導出する。導出部21は、統計画像の複数の座標iの画素値Vに対して、複数画素ごとに定められた量子化パラメータに応じて定まる量子化幅dで量子化処理を実行する。量子化幅dは、式(2)のように表される。 Deriving section 21, a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of a plurality of coordinate i in part or all of the statistical image. Deriving unit 21, the pixel value V i of the plurality of coordinate i of the statistical image, executes the quantization processing by the quantization width d i determined according to the quantization parameter determined for each plurality of pixels. Quantization width d i is expressed by the equation (2).
 d=f(A) …(2) d i = f (A i) ... (2)
 ここで、iは、インデックスであり、実空間の位置に対応する統計画像内の座標を表す。Aは、複数の座標iの画素値Vの平均値を表す。fは、予め定められた比例関数を表す。比例関数「f」は、式(3)に例示された関数で表される。
 f(V)=a×V+b …(3)
Here, i is an index and represents the coordinates in the statistical image corresponding to the position in the real space. A i represents the average value of the pixel values V i of a plurality of coordinates i. f represents a predetermined proportional function. The proportional function "f" is represented by the function exemplified in the equation (3).
f (V i) = a × V i + b ... (3)
 ここで、aは、予め定められた係数を表す。bは、予め定められた定数を表す。 Here, a represents a predetermined coefficient. b represents a predetermined constant.
 導出部21は、複数の画素を含む領域ごとに定められた量子化パラメータを、差分量子化部23に出力する。導出部21は、量子化パラメータの代わりに量子化幅dを、差分量子化部23に出力してもよい。 The derivation unit 21 outputs the quantization parameters defined for each region including a plurality of pixels to the difference quantization unit 23. Deriving unit 21, the quantization width d i instead of the quantization parameter may be outputted to the difference quantization unit 23.
 差分量子化部23(圧縮処理部)は、差分画像を減算部22から取得する。差分量子化部23は、複数の画素を含む領域ごとに定められた量子化パラメータを、導出部21から取得する。差分量子化部23は、差分画像の画素値(誤差値)を、複数の画素を含む領域ごとに定められた量子化パラメータに応じて定まる量子化幅dで量子化する。 The difference quantization unit 23 (compression processing unit) acquires a difference image from the subtraction unit 22. The difference quantization unit 23 acquires the quantization parameters defined for each region including a plurality of pixels from the derivation unit 21. Difference quantization unit 23, the pixel values of the difference image (error value) is quantized by the quantization width d i determined according to the quantization parameter determined for each region including a plurality of pixels.
 以上のように、第2実施形態の量子化装置1aは、画像化部20と、導出部21とを備える。画像化部20は、実空間の位置における統計データを、統計画像において位置に対応付けられた座標の画素値に変換する。導出部21は、画素値の量子化幅に対応する量子化パラメータを、統計画像の部分又は全体について複数の空間領域の位置ごと(領域ごと)に導出する。 As described above, the quantization device 1a of the second embodiment includes an imaging unit 20 and a derivation unit 21. The imaging unit 20 converts the statistical data at the position in the real space into the pixel value of the coordinates associated with the position in the statistical image. The derivation unit 21 derives the quantization parameter corresponding to the quantization width of the pixel value for each position (each region) of a plurality of spatial regions for a part or the whole of the statistical image.
 これによって、複数画素(領域)の単位で統計的な性質を保つように、統計画像の画素の画素値を量子化することが可能である。 This makes it possible to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties in units of multiple pixels (areas).
 (第3実施形態)
 第3実施形態では、動作モード(目的情報)に応じた量子化幅に対応する量子化パラメータが定められる点が、第1実施形態及び第2実施形態と相違する。第3実施形態では、第1実施形態及び第2実施形態との相違点を説明する。
(Third Embodiment)
The third embodiment is different from the first embodiment and the second embodiment in that the quantization parameter corresponding to the quantization width according to the operation mode (objective information) is determined. In the third embodiment, the differences from the first embodiment and the second embodiment will be described.
 図10は、量子化装置1bの構成例を示す図である。量子化装置1bは、統計画像の各画素の画素値を量子化する装置である。量子化装置1bは、符号化装置2bと、復号装置3とを備える。符号化装置2bは、画像化部20と、導出部21と、減算部22と、差分量子化部23と、取得部24とを備える。復号装置3は、逆写像処理部30と、差分復号部31と、加算部32とを備える。 FIG. 10 is a diagram showing a configuration example of the quantization device 1b. The quantization device 1b is a device that quantizes the pixel value of each pixel of the statistical image. The quantization device 1b includes a coding device 2b and a decoding device 3. The coding device 2b includes an imaging unit 20, a derivation unit 21, a subtraction unit 22, a difference quantization unit 23, and an acquisition unit 24. The decoding device 3 includes an inverse mapping processing unit 30, a difference decoding unit 31, and an addition unit 32.
 取得部24(目的取得部)は、例えば、キーボード、タッチパネル等の入力デバイスである。取得部24は、動作モード及び座標データを取得する。量子化パラメータは、動作モードに応じて定められる。動作モードは、統計処理の目的に応じて、ユーザによって予め定められる。統計処理の目的とは、例えば、実空間における複数の位置(地域)のうちのいずれの位置により多くのタクシーを配車するかを決めるための需要に関する統計データを得るという目的である。 The acquisition unit 24 (purpose acquisition unit) is, for example, an input device such as a keyboard or a touch panel. The acquisition unit 24 acquires the operation mode and the coordinate data. The quantization parameters are determined according to the operation mode. The operation mode is predetermined by the user according to the purpose of statistical processing. The purpose of statistical processing is, for example, to obtain statistical data on demand for determining which of a plurality of positions (regions) in real space to dispatch more taxis.
 例えば、夜間の都市部では、住宅街の人口とオフィス街の人口と繁華街の人口とのいずれもが高くなると想定される。人口が同様に高い地域同士であっても、平日の夜間において人が住宅街に帰ることに伴い、住宅街の人口が増加し、オフィス街の人口と繁華街の人口とがいずれも減少する。つまり、オフィス街及び繁華街を起点として、人の流れが発生する。人の流れの起点にタクシーが多く配車されることが望ましいので、オフィス街及び繁華街の各人口がより高精度に導出されることが望ましい。オフィス街及び繁華街の各人口がより高精度に導出されるように、オフィス街及び繁華街に対応する各画素の量子化パラメータの値は、住宅街及び過疎地に対応する各画素の量子化パラメータの値よりも小さい値に設定される。 For example, in urban areas at night, it is expected that the population of residential areas, the population of office areas, and the population of downtown areas will all be high. Even in areas with similarly high populations, as people return to residential areas on weekday nights, the population of residential areas will increase, and the population of both office areas and downtown areas will decrease. That is, a flow of people occurs starting from the office district and the downtown area. Since it is desirable that many taxis are dispatched at the starting point of the flow of people, it is desirable that the populations of the office district and the downtown area be derived with higher accuracy. The value of the quantization parameter of each pixel corresponding to the office district and the downtown area is the quantization of each pixel corresponding to the residential area and the depopulated area so that each population of the office district and the downtown area can be derived with higher accuracy. It is set to a value smaller than the value of the parameter.
 統計データを得る必要がある位置に対応付けられた座標の画素値に対して許容される量子化誤差は、統計データを得る必要がない位置に対応付けられた座標の画素値に対して許容される量子化誤差よりも小さい。このため、統計データを得る必要がある位置に対応付けられた座標の画素値は、所定閾値よりも小さい量子化幅で量子化される。 The quantization error allowed for the pixel values of the coordinates associated with the positions where statistical data needs to be obtained is allowed for the pixel values of the coordinates associated with the positions where statistical data does not need to be obtained. It is smaller than the quantization error. Therefore, the pixel value of the coordinates associated with the position where statistical data needs to be obtained is quantized with a quantization width smaller than a predetermined threshold value.
 座標データは、統計画像において、統計データを得る必要がある1以上の位置に対応する1以上の画素の座標を表す。座標データは、統計画像において、統計データを得る必要がない1以上の位置に対応する1以上の画素の座標を表してもよい。取得部24は、動作モード及び座標データを、導出部21に出力する。 The coordinate data represents the coordinates of one or more pixels corresponding to one or more positions where statistical data needs to be obtained in the statistical image. The coordinate data may represent the coordinates of one or more pixels corresponding to one or more positions where statistical data does not need to be obtained in the statistical image. The acquisition unit 24 outputs the operation mode and the coordinate data to the derivation unit 21.
 導出部21は、動作モード及び座標データを取得する。導出部21は、非圧縮の統計画像を、画像化部20から取得する。導出部21は、非圧縮の統計画像の画素値の量子化幅dに対応する量子化パラメータを、座標データが示す座標iの画素ごとに導出する。 The derivation unit 21 acquires the operation mode and the coordinate data. The derivation unit 21 acquires an uncompressed statistical image from the imaging unit 20. Deriving section 21, a quantization parameter corresponding to the quantization width d i of the pixel values of the uncompressed statistical image is derived for each pixel of the coordinate i indicated by the coordinate data.
 統計データを得る必要がある位置に対応付けられた座標を座標データが示している場合、導出部21は、座標データが示す1個以上の座標iの各画素について、閾値未満の値の量子化パラメータを導出する。統計データを得る必要がない位置に対応付けられた座標を座標データが示している場合、導出部21は、座標データが示す1個以上の座標iの各画素について、閾値以上の値の量子化パラメータを導出する。 When the coordinate data indicates the coordinates associated with the position where the statistical data needs to be obtained, the derivation unit 21 quantizes a value less than the threshold value for each pixel of one or more coordinates i indicated by the coordinate data. Derive the parameters. When the coordinate data indicates the coordinates associated with the positions where it is not necessary to obtain the statistical data, the derivation unit 21 quantizes the value equal to or more than the threshold value for each pixel of one or more coordinates i indicated by the coordinate data. Derive the parameters.
 閾値未満の値の量子化パラメータが対応する量子化幅は、閾値以上の値の量子化パラメータが対応する量子化幅よりも短い。導出部21は、統計画像の座標iの画素値Vに対して、画素ごとに定められた量子化パラメータに応じて定まる量子化幅dで量子化処理を実行する。 The quantization width corresponding to the quantization parameter having a value below the threshold value is shorter than the quantization width corresponding to the quantization parameter having a value above the threshold value. Deriving unit 21, the pixel value V i of the coordinate i of the statistical image, executes the quantization processing by the quantization width d i determined according to the quantization parameter determined for each pixel.
 次に、量子化処理の例を説明する。
 図11は、統計画像の例を示す図である。図11では、統計画像は、画素200-203を含む。画素200-203は、統計データを得る必要がある各位置(各地域)に対応付けられた座標の画素である。
Next, an example of quantization processing will be described.
FIG. 11 is a diagram showing an example of a statistical image. In FIG. 11, the statistical image includes pixels 200-203. Pixels 200-203 are pixels with coordinates associated with each position (each region) for which statistical data needs to be obtained.
 画素200の画素値は、一例として、第3地域におけるタクシーの需要数を表す。座標(3,5)の画素200の画素値は、一例として「23」である。画素201の画素値は、一例として、第4地域におけるタクシーの需要数を表す。座標(4,5)の画素201の画素値は、一例として「25」である。画素202の画素値は、一例として、第5地域におけるタクシーの需要数を表す。座標(3,6)の画素202の画素値は、一例として「100」である。画素203の画素値は、一例として、第6地域におけるタクシーの需要数を表す。座標(4,6)の画素203の画素値は、一例として「102」である。 The pixel value of pixel 200 represents, for example, the number of taxi demands in the third region. The pixel value of the pixel 200 at the coordinates (3, 5) is "23" as an example. The pixel value of pixel 201 represents, for example, the number of taxi demands in the fourth region. The pixel value of the pixel 201 of the coordinates (4,5) is "25" as an example. The pixel value of pixel 202 represents, for example, the number of taxi demands in the fifth region. The pixel value of the pixel 202 at the coordinates (3, 6) is "100" as an example. The pixel value of pixel 203 represents, for example, the number of taxi demands in the sixth region. The pixel value of the pixel 203 of the coordinates (4, 6) is "102" as an example.
 画素200-203の各画素値に対して許容される量子化誤差は、統計画像における画素200-203以外の画素の画素値に対して許容される量子化誤差よりも小さい。仮に、統計画像における全ての画素で例えば同じ量子化幅「10」が画素値の量子化の際に使用された場合、各画素値が表す統計データ(値)同士の比(疎密の関係)が変わるなどして、統計画像において統計的な性質が保たれない場合がある。 The permissible quantization error for each pixel value of pixels 200-203 is smaller than the permissible quantization error for the pixel values of pixels other than pixels 200-203 in the statistical image. If, for example, the same quantization width "10" is used for the quantization of the pixel values for all the pixels in the statistical image, the ratio (denseness relationship) between the statistical data (values) represented by each pixel value is Statistical properties may not be maintained in statistical images due to changes.
 導出部21は、統計データを得る必要がある各地域における統計的な性質を保つように統計画像の画素の画素値を量子化するため、画素200-203の各画素値に対して、閾値未満の量子化幅(例えば、2)に対応する量子化パラメータを導出する。導出部21は、画素200-203以外の各画素の画素値に対して、閾値以上の量子化幅(例えば、10)に対応する量子化パラメータを導出してもよい。 In order to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties in each region where statistical data needs to be obtained, the derivation unit 21 is less than the threshold value for each pixel value of the pixels 200-203. The quantization parameter corresponding to the quantization width (for example, 2) of is derived. The derivation unit 21 may derive a quantization parameter corresponding to a quantization width (for example, 10) equal to or larger than the threshold value for the pixel value of each pixel other than the pixels 200-203.
 図12は、予測画像の例を示す図である。導出部21は、画素200-203の画素値を、例えば閾値未満の量子化幅「2」で量子化する。導出部21は、画素200-203以外の画素の画素値を、例えば閾値以上の量子化幅「10」で量子化する。量子化幅「2」で量子化された結果、予測画像の画素200の画素値は「22」となる。予測画像の画素201の画素値は「24」となる。 FIG. 12 is a diagram showing an example of a predicted image. The derivation unit 21 quantizes the pixel values of the pixels 200 to 203 with a quantization width “2” that is less than the threshold value, for example. The derivation unit 21 quantizes the pixel values of the pixels other than the pixels 200-203 with a quantization width “10” equal to or larger than the threshold value, for example. As a result of the quantization with the quantization width "2", the pixel value of the pixel 200 of the predicted image becomes "22". The pixel value of the pixel 201 of the predicted image is "24".
 図13は、差分画像の例を示す図である。図13に示された差分画像は、統計画像の画素値から予測画像の画素値が減算された結果(誤差値)を表す。差分画像の画素200の画素値は「1(=23-22)」となる。差分画像の画素201の画素値は「1(=25-24)」となる。差分画像の画素202の画素値は「0(=100-100)」となる。差分画像の画素203の画素値は「0(=102-102)」となる。 FIG. 13 is a diagram showing an example of a difference image. The difference image shown in FIG. 13 represents the result (error value) obtained by subtracting the pixel value of the predicted image from the pixel value of the statistical image. The pixel value of the pixel 200 of the difference image is "1 (= 23-22)". The pixel value of the pixel 201 of the difference image is "1 (= 25-24)". The pixel value of the pixel 202 of the difference image is "0 (= 100-100)". The pixel value of the pixel 203 of the difference image is "0 (= 102-102)".
 図14は、差分画像の所定画素群(画素200-203)の各画素値の例を示す図(ヒストグラム)である。横軸は、差分画像において量子化幅「2」で量子化された画素200-203の画素値(誤差値)を示す。縦軸は、差分画像において量子化幅「2」で量子化された画素200-203の個数を、画素値(誤差値)ごとに示す。 FIG. 14 is a diagram (histogram) showing an example of each pixel value of a predetermined pixel group (pixels 200-203) of the difference image. The horizontal axis represents the pixel value (error value) of the pixels 200-203 quantized with the quantization width “2” in the difference image. The vertical axis shows the number of pixels 200-203 quantized with a quantization width of "2" in the difference image for each pixel value (error value).
 差分量子化部23は、差分画像において座標データが示す画素200-203の各画素値のうち、絶対値で比較して量子化幅「2」以下である画素値の画素を、差分画像において検出する。差分量子化部23は、差分画像において検出された各画素の画素値を、0に量子化する。なお、差分量子化部23は、差分画像において画素200-203以外の各画素の画素値を0にするように、例えば量子化幅「10」で量子化してもよい。 The difference quantization unit 23 detects in the difference image a pixel having a quantization width of “2” or less as compared with an absolute value among the pixel values of the pixels 200 to 203 indicated by the coordinate data in the difference image. To do. The difference quantization unit 23 quantizes the pixel value of each pixel detected in the difference image to 0. The difference quantization unit 23 may quantize with a quantization width of "10" so that the pixel value of each pixel other than the pixels 200-203 is set to 0 in the difference image.
 図15は、差分データを表す画像の例を示す図である。差分画像の画素200-201の画素値「1」を差分量子化部23が0に量子化したことによって、差分データにおける画素200の画素値は0となる。差分復号部31は、差分データに対して復号処理を実行することによって、図15に示された差分復号画像を生成する。 FIG. 15 is a diagram showing an example of an image representing the difference data. The pixel value "1" of the pixels 200-201 of the difference image is quantized to 0 by the difference quantization unit 23, so that the pixel value of the pixel 200 in the difference data becomes 0. The difference decoding unit 31 generates the difference decoding image shown in FIG. 15 by executing the decoding process on the difference data.
 図16は、復号画像の例を示す図である。図12に示された予測画像と図15に示された差分復号画像とを画素ごとに加算することによって、図16に示された復号画像(圧縮された統計画像)を生成する。図16に示された復号画像において画素200-203が表す統計データ(画素値)同士の比が、統計画像において画素200-203が表す統計データ同士の比とほとんど変わらないので、復号画像において統計的な性質が保たれている。 FIG. 16 is a diagram showing an example of a decoded image. The decoded image (compressed statistical image) shown in FIG. 16 is generated by adding the predicted image shown in FIG. 12 and the differential decoded image shown in FIG. 15 for each pixel. Since the ratio of the statistical data (pixel values) represented by the pixels 200-203 in the decoded image shown in FIG. 16 is almost the same as the ratio of the statistical data represented by the pixels 200-203 in the statistical image, the statistics in the decoded image Characteristic properties are maintained.
 次に、量子化装置1bの動作例を説明する。
 図17は、量子化装置1bの動作例を示すフローチャートである。図17に示されたステップS201は、図9に示されたステップS101と同様の動作である。取得部24は、動作モード及び座標データを取得する。取得部24は、動作モード及び座標データを導出部21に出力する(ステップS202)。
Next, an operation example of the quantization device 1b will be described.
FIG. 17 is a flowchart showing an operation example of the quantization device 1b. Step S201 shown in FIG. 17 is the same operation as step S101 shown in FIG. The acquisition unit 24 acquires the operation mode and the coordinate data. The acquisition unit 24 outputs the operation mode and coordinate data to the derivation unit 21 (step S202).
 導出部21は、動作モード及び座標データを取得する。導出部21は、動作モードに応じた量子化幅に対応する量子化パラメータを、座標データが示す画素ごとに導出する。導出部21は、量子化パラメータを画素ごとに差分量子化部23に出力する(ステップS203)。図17に示されたステップS201は、図9に示されたステップS101と同様の動作である。 The derivation unit 21 acquires the operation mode and coordinate data. The derivation unit 21 derives the quantization parameter corresponding to the quantization width according to the operation mode for each pixel indicated by the coordinate data. The derivation unit 21 outputs the quantization parameter to the difference quantization unit 23 for each pixel (step S203). Step S201 shown in FIG. 17 is the same operation as step S101 shown in FIG.
 以上のように、第3実施形態の量子化装置1bは、画像化部20と、導出部21と、取得部24とを更に備える。取得部24は、統計処理の目的を表す情報(例えば、動作モード)を取得する。導出部21は、実空間における位置と統計処理の目的を表す情報とに基づいて、量子化パラメータを導出する。。 As described above, the quantization device 1b of the third embodiment further includes an imaging unit 20, a derivation unit 21, and an acquisition unit 24. The acquisition unit 24 acquires information (for example, an operation mode) representing the purpose of statistical processing. The derivation unit 21 derives the quantization parameter based on the position in the real space and the information representing the purpose of the statistical processing. ..
 これによって、動作モード(統計処理の目的)に応じて、統計的な性質を保つように統計画像の画素の画素値を量子化することが可能である。 This makes it possible to quantize the pixel values of the pixels of the statistical image so as to maintain the statistical properties according to the operation mode (purpose of statistical processing).
 例えば、各地域における人口の絶対数に関係なく、所定の地域のみについて詳細な統計データが要求される場合でも、所定の地域について統計的な性質を保つように、統計画像の画素の画素値を量子化することが可能である。 For example, even if detailed statistical data is required only for a given area regardless of the absolute number of population in each area, the pixel values of the pixels of the statistical image are set so as to maintain the statistical properties for the given area. It is possible to quantize.
 例えば、タクシーの配車を制御するための統計処理において、乗客の候補の絶対数が多い地域についてより詳細な統計データが要求される場合でも、乗客の候補の絶対数が多い地域について統計的な性質を保つように、統計画像の画素の画素値を量子化することが可能である。 For example, statistical processing to control taxi dispatch may require more detailed statistical data for areas with a large absolute number of passenger candidates, but statistical properties for areas with a large absolute number of passenger candidates. It is possible to quantize the pixel values of the pixels of the statistical image so as to keep the above.
 (変形例)
 式(1)、式(2)又は式(3)に示された各関数fは、比例関数以外の関数でもよい。統計画像において量子化された複数の画素値の基準値(画素値の分布範囲の中心)が複数存在する場合、量子化幅は、量子化された複数の画素値の基準値ごとに定められてもよい。統計画像において量子化された複数の画素値の分布範囲と、差分画像において量子化された複数の画素値(誤差値)の分布範囲とに応じて、統計画像において量子化された複数の画素値の基準値が決定されてもよい。関数「f」は、例えば、対数「log」を用いて表現される式(4)に示された関数でもよい。
(Modification example)
Each function f shown in the equation (1), the equation (2) or the equation (3) may be a function other than the proportional function. When there are multiple reference values (centers of the distribution range of pixel values) of a plurality of quantized pixel values in a statistical image, the quantization width is determined for each reference value of the plurality of quantized pixel values. May be good. Multiple pixel values quantized in the statistical image according to the distribution range of the plurality of pixel values quantized in the statistical image and the distribution range of the plurality of pixel values (error values) quantized in the difference image. The reference value of may be determined. The function "f" may be, for example, the function shown in the equation (4) expressed using the logarithm "log".
 f(V)=a×log(V) …(4) f (V i) = a × log (V i) ... (4)
 式(1)、式(2)及び式(3)の各関数と比較して、式(4)の関数は、値の変化に伴う量子化幅の変化を大きくすることができる。つまり、式(4)の関数は、極端に大きい値の精度を保つことができる。式(4)の関数は、対数を用いて表現される代わりに、例えば、べき乗を用いて表現されてもよい。 Compared with the functions of Eqs. (1), (2) and (3), the function of Eq. (4) can increase the change in the quantization width with the change of the value. That is, the function of Eq. (4) can maintain the accuracy of extremely large values. The function of equation (4) may be expressed using, for example, a power instead of being expressed using logarithms.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.
 本発明は、画像符号化及び画像復号を実行する画像処理装置に適用可能である。 The present invention is applicable to an image processing apparatus that performs image coding and image decoding.
1a,1b…量子化装置、2a,2b…符号化装置、20…画像化部、21…導出部、22…減算部、23…差分量子化部、24…取得部、30…逆写像処理部、31…差分復号部、32…加算部、100~108…画素、200~203…画素 1a, 1b ... Quantizer, 2a, 2b ... Encoding device, 20 ... Imaging unit, 21 ... Derivation unit, 22 ... Subtraction unit, 23 ... Difference quantization unit, 24 ... Acquisition unit, 30 ... Inverse mapping processing unit , 31 ... difference decoding unit, 32 ... addition unit, 100 to 108 ... pixels, 200 to 203 ... pixels

Claims (6)

  1.  実空間の位置における統計データを、画像において前記位置に対応付けられた座標の画素値に変換する画像化部と、
     前記画素値の量子化幅に対応する量子化パラメータを、前記画像の部分又は全体について1以上の前記実空間の位置ごとに導出する導出部と
     を備える量子化装置。
    An imaging unit that converts statistical data at a position in real space into pixel values of coordinates associated with the position in an image.
    A quantization device including a derivation unit that derives a quantization parameter corresponding to the quantization width of the pixel value for each one or more positions in the real space for a part or the whole of the image.
  2.  統計処理の目的を表す情報を取得する目的取得部を更に備え、
     前記導出部は、前記実空間における位置と前記統計処理の目的を表す情報とに基づいて、前記量子化パラメータを導出する、請求項1に記載の量子化装置。
    Further equipped with a purpose acquisition unit for acquiring information indicating the purpose of statistical processing.
    The quantization device according to claim 1, wherein the derivation unit derives the quantization parameter based on the position in the real space and the information representing the purpose of the statistical processing.
  3.  前記導出部は、前記画素値が大きいほど長い前記量子化幅に対応する前記量子化パラメータを導出する、請求項1又は請求項2に記載の量子化装置。 The quantization device according to claim 1 or 2, wherein the derivation unit derives the quantization parameter corresponding to the quantization width, which is longer as the pixel value is larger.
  4.  前記量子化幅で量子化されていない前記画素値と前記量子化幅で量子化された前記画素値との差分である誤差値を量子化する差分量子化部を更に備え、
     前記差分量子化部は、前記誤差値の絶対値が前記量子化幅の絶対値以下である画素を検出し、検出された前記画素の前記誤差値を0に量子化する、請求項1から請求項3のいずれか一項に記載の量子化装置。
    Further provided with a difference quantization unit that quantizes an error value that is a difference between the pixel value that is not quantized by the quantization width and the pixel value that is quantized by the quantization width.
    The difference quantization unit detects a pixel whose absolute value of the error value is equal to or less than the absolute value of the quantization width, and quantizes the error value of the detected pixel to 0, according to claim 1. Item 3. The quantization apparatus according to any one of items 3.
  5.  量子化装置が実行する量子化方法であって、
     実空間の位置における統計データを、画像において前記位置に対応付けられた座標の画素値に変換するステップと、
     前記画素値の量子化幅に対応する量子化パラメータを、前記画像の部分又は全体について1以上の前記実空間の位置ごとに導出するステップと
     を含む量子化方法。
    It is a quantization method executed by a quantization device.
    A step of converting statistical data at a position in real space into a pixel value of coordinates associated with the position in an image.
    A quantization method including a step of deriving a quantization parameter corresponding to the quantization width of the pixel value for each one or more positions in the real space for a part or the whole of the image.
  6.  請求項1から請求項4のいずれか一項に記載の量子化装置としてコンピュータを機能させるためのプログラム。 A program for operating a computer as the quantization device according to any one of claims 1 to 4.
PCT/JP2019/020468 2019-05-23 2019-05-23 Quantization device, quantization method and program WO2020235081A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/595,125 US20220222860A1 (en) 2019-05-23 2019-05-23 Quantization apparatus, quantization method, and program
JP2021520007A JP7284429B2 (en) 2019-05-23 2019-05-23 Quantization device, quantization method and program
PCT/JP2019/020468 WO2020235081A1 (en) 2019-05-23 2019-05-23 Quantization device, quantization method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020468 WO2020235081A1 (en) 2019-05-23 2019-05-23 Quantization device, quantization method and program

Publications (1)

Publication Number Publication Date
WO2020235081A1 true WO2020235081A1 (en) 2020-11-26

Family

ID=73458964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020468 WO2020235081A1 (en) 2019-05-23 2019-05-23 Quantization device, quantization method and program

Country Status (3)

Country Link
US (1) US20220222860A1 (en)
JP (1) JP7284429B2 (en)
WO (1) WO2020235081A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117384A (en) * 1982-12-23 1984-07-06 Nec Corp Adaptive forecast decoder between frames of television signal
JPS6146685A (en) * 1984-08-13 1986-03-06 Nec Corp Prediction encoder of moving picture signal
JPS62203484A (en) * 1986-03-03 1987-09-08 Nippon Telegr & Teleph Corp <Ntt> Processing system for light-and-shade picture
JP2018128731A (en) * 2017-02-06 2018-08-16 日本電信電話株式会社 Data processing apparatus, data processing method and data processing program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1277416C (en) * 1984-08-13 1990-12-04 Akihiro Furukawa Inter-frame predictive coding apparatus for video signal
US8897359B2 (en) * 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117384A (en) * 1982-12-23 1984-07-06 Nec Corp Adaptive forecast decoder between frames of television signal
JPS6146685A (en) * 1984-08-13 1986-03-06 Nec Corp Prediction encoder of moving picture signal
JPS62203484A (en) * 1986-03-03 1987-09-08 Nippon Telegr & Teleph Corp <Ntt> Processing system for light-and-shade picture
JP2018128731A (en) * 2017-02-06 2018-08-16 日本電信電話株式会社 Data processing apparatus, data processing method and data processing program

Also Published As

Publication number Publication date
JP7284429B2 (en) 2023-05-31
US20220222860A1 (en) 2022-07-14
JPWO2020235081A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP4102841B2 (en) Computer-implemented method for processing video images
KR100318057B1 (en) Image decoding method
US8345767B2 (en) Video encoding method, video encoding device, and video encoding program
US9245355B2 (en) Method for encoding/decoding a 3D mesh model that comprises one or more components
CN101243459B (en) Adaptive coding and decoding of wide-range coefficients
JP4545388B2 (en) System and method for processing video frames with fading estimation / compensation
JP4425563B2 (en) Parameterization for fading compensation
Conoscenti et al. Constant SNR, rate control, and entropy coding for predictive lossy hyperspectral image compression
US20060012719A1 (en) System and method for motion prediction in scalable video coding
CN105684409A (en) Representing blocks with hash values in video and image coding and decoding
US20240114167A1 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
CN103947206A (en) Region-based image compression
Marlapalli et al. A review on image compression techniques
WO2020235081A1 (en) Quantization device, quantization method and program
KR100423226B1 (en) Quantization Device and Quantization Method
US20100039301A1 (en) Variable length decoder, encoder, and variable length decoding method
AU606816B2 (en) Method for encoding/transmitting images
JP5468383B2 (en) Method and apparatus for optimizing compression of a video stream
JP4415651B2 (en) Image encoding apparatus and image decoding apparatus
JP2024507046A (en) Point cloud encoding and decoding methods, encoders, decoders, and computer storage media
JP2924416B2 (en) High efficiency coding method
CN105706447A (en) Moving image coding device, moving image decoding device, moving image coding method, moving image decoding method, and program
JP2002290743A (en) Image information coding method, coding apparatus, digital copying machine, digital facsimile machine, and digital filing apparatus
WO2024079982A1 (en) Mesh decoding device, mesh coding device, mesh decoding method, and program
JP3509346B2 (en) Encoding device and encoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930059

Country of ref document: EP

Kind code of ref document: A1