WO2020233612A1 - Receipt storage method and node combining code annotation with transaction and event types - Google Patents

Receipt storage method and node combining code annotation with transaction and event types Download PDF

Info

Publication number
WO2020233612A1
WO2020233612A1 PCT/CN2020/091370 CN2020091370W WO2020233612A1 WO 2020233612 A1 WO2020233612 A1 WO 2020233612A1 CN 2020091370 W CN2020091370 W CN 2020091370W WO 2020233612 A1 WO2020233612 A1 WO 2020233612A1
Authority
WO
WIPO (PCT)
Prior art keywords
transaction
smart contract
blockchain node
contract
receipt
Prior art date
Application number
PCT/CN2020/091370
Other languages
French (fr)
Chinese (zh)
Inventor
刘琦
闫莺
魏长征
Original Assignee
创新先进技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创新先进技术有限公司 filed Critical 创新先进技术有限公司
Publication of WO2020233612A1 publication Critical patent/WO2020233612A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures

Definitions

  • One or more embodiments of this specification relate to the field of blockchain technology, and in particular to a receipt storage method and node combining code labeling with transaction and event types.
  • Blockchain technology is built on a transmission network (such as a peer-to-peer network).
  • the network nodes in the transmission network use chained data structures to verify and store data, and use distributed node consensus algorithms to generate and update data.
  • TEE Trusted Execution Environment
  • TEE can play the role of a black box in the hardware. Neither the code executed in the TEE nor the data operating system layer can be peeped. Only the pre-defined interface in the code can operate on it.
  • plaintext data is calculated in TEE instead of complex cryptographic operations in homomorphic encryption. There is no loss of efficiency in the calculation process. Therefore, the combination with TEE can achieve less performance loss. Under the premise, the security and privacy of the blockchain are greatly improved. At present, the industry is very concerned about TEE solutions.
  • TEE solutions including TPM (Trusted Platform Module) for software and Intel SGX (Software Guard Extensions) for hardware. , Software Protection Extension), ARM Trustzone (trust zone) and AMD PSP (Platform Security Processor, platform security processor).
  • one or more embodiments of this specification provide a receipt storage method and node that combine code labeling with transaction and event types.
  • a receipt storage method combining code labeling with transaction and event types including:
  • the first blockchain node receives an encrypted transaction corresponding to a smart contract, and the code of the smart contract includes a field marked by an exposed identifier;
  • the first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, and the smart contract includes a special event function;
  • the first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
  • the first blockchain node determines the corresponding exposed field according to the transaction type of the transaction
  • the first blockchain node stores the receipt data, so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the remaining content of the receipt data is stored in cipher text.
  • the content of the receipt includes the exposed field indicated by the exposed identifier.
  • a receipt storage node that combines code labeling with transaction and event types is proposed, including:
  • the receiving unit receives an encrypted transaction corresponding to a smart contract, the code of the smart contract includes a field marked by an exposed identifier;
  • a decryption unit decrypting the transaction in a trusted execution environment to obtain the smart contract, the smart contract including a special event function
  • the determining unit determines the corresponding exposed field according to the transaction type of the transaction
  • the storage unit stores the receipt data so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text, and the at least part of the receipt content includes The exposed field indicated by the exposed identifier.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor implements the method according to the first aspect by running the executable instruction.
  • a computer-readable storage medium is provided, and computer instructions are stored thereon, which, when executed by a processor, implement the steps of the method described in the first aspect.
  • Fig. 1 is a schematic diagram of creating a smart contract according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram of invoking a smart contract provided by an exemplary embodiment.
  • Fig. 3 is a flowchart of a method for storing receipts combining code labeling with transaction and event types according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram of implementing privacy protection on blockchain nodes according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of the functional logic of implementing a blockchain network through a system contract and a chain code provided by an exemplary embodiment.
  • Fig. 6 is a block diagram of a receipt storage node combining code labeling with transaction and event types provided by an exemplary embodiment.
  • the steps of the corresponding method may not be executed in the order shown and described in this specification.
  • the method includes more or fewer steps than described in this specification.
  • a single step described in this specification may be decomposed into multiple steps for description in other embodiments; and multiple steps described in this specification may also be combined into a single step in other embodiments. description.
  • Blockchain is generally divided into three types: Public Blockchain, Private Blockchain and Consortium Blockchain.
  • the most decentralized one is the public chain.
  • the public chain is represented by Bitcoin and Ethereum. Participants who join the public chain can read the data records on the chain, participate in transactions, and compete for the accounting rights of new blocks. Moreover, each participant (ie, node) can freely join and exit the network, and perform related operations.
  • the private chain is the opposite.
  • the write permission of the network is controlled by an organization or institution, and the data read permission is regulated by the organization.
  • the private chain can be a weakly centralized system with strict restrictions and few participating nodes. This type of blockchain is more suitable for internal use by specific institutions.
  • the alliance chain is a block chain between the public chain and the private chain, which can achieve "partial decentralization".
  • Each node in the alliance chain usually has a corresponding entity or organization; participants are authorized to join the network and form a stakeholder alliance to jointly maintain the operation of the blockchain.
  • a smart contract on the blockchain is a contract that can be triggered and executed by a transaction on the blockchain system.
  • Smart contracts can be defined in the form of codes.
  • EVM Ethereum Virtual Machine
  • bytecode virtual machine code
  • the EVM of node 1 can execute the transaction and generate a corresponding contract instance.
  • "0x6f8ae93" in the figure 1 represents the address of this contract, the data field of the transaction can be stored in bytecode, and the to field of the transaction is empty.
  • the contract is successfully created and can be called in the subsequent process.
  • a contract account corresponding to the smart contract appears on the blockchain and has a specific address, and the contract code will be stored in the contract account.
  • the behavior of the smart contract is controlled by the contract code.
  • smart contracts enable virtual accounts containing contract codes and account storage (Storage) to be generated on the blockchain.
  • the EVM of a certain node can execute the transaction and generate a corresponding contract instance.
  • the from field of the transaction in Figure 2 is the address of the account of the transaction initiator (ie Bob), the "0x6f8ae93" in the to field represents the address of the called smart contract, and the value field in Ethereum is the value of Ether ,
  • the method and parameters of calling the smart contract are stored in the data field of the transaction. Smart contracts are executed independently on each node in the blockchain network in a prescribed manner. All execution records and data are stored on the blockchain, so when the transaction is completed, the blockchain will be stored on the blockchain that cannot be tampered with. Lost transaction certificate.
  • the receipt data obtained by a node executing a transaction can include the following:
  • the Result field indicates the execution result of the transaction
  • the Gas used field indicates the gas value consumed by the transaction
  • the Logs field indicates the log generated by the transaction.
  • the log can further include the From field, To field, Topic field, and Log data field, among which the From field indicates the account address of the initiator of the call, and the To field indicates the called object (such as a smart contract)
  • the account address and Topic field indicate the subject of the log, and the Log data field indicates the log data;
  • the Output field indicates the output of the transaction.
  • the receipt data generated after the transaction is executed is stored in plain text, and anyone can see the contents of the above-mentioned receipt fields contained in the receipt data, without privacy protection settings and capabilities.
  • the block chain is a data set stored in a database of a node and organized by a specific logic.
  • the database as described later, may be a storage medium, such as a persistent storage medium, on a physical carrier.
  • only part of the content of the receipt data may be sensitive, while other content is not sensitive. Only sensitive content needs to be protected for privacy, other content can be disclosed, and in some cases it may even be necessary to retrieve some content to drive Implementation of related operations, the implementation of privacy protection for this part of the content will affect the implementation of retrieval operations.
  • the first blockchain node receives an encrypted transaction corresponding to a smart contract, and the code of the smart contract includes a field marked by an exposed identifier.
  • the exposed identifier is a global identifier defined in the programming language of the smart contract and is applicable to all smart contracts written in this programming language. Therefore, by defining the exposure identifier in a programming language, so that the code of any smart contract uses the exposure identifier, the storage control of the receipt data can be realized. For example, when a user writes the code of a smart contract, he can add an exposed identifier to the code to indicate one or more fields to indicate that the user wants the receipt content corresponding to this part of the field in the receipt data to be stored in plain text, and the remaining The content of the receipt corresponding to the field marked with the exposed identifier is not allowed to be stored in plain text, but must be stored in cipher text to achieve corresponding privacy protection.
  • the corresponding receipt content is allowed to be stored in plain text; however, this manual can further consider the transaction type and the event function contained in the smart contract, and Comprehensive consideration is achieved from the dimensions of programming language, transaction type, and event function to determine whether to store the content of the receipt corresponding to the field indicated by the exposure identifier in plain text.
  • Information related to transaction types and event functions will be described below, so I won’t repeat them here.
  • the data field can store the bytecode of the smart contract.
  • the bytecode consists of a series of bytes, and each byte can identify an operation. Based on many considerations such as development efficiency and readability, developers can choose a high-level language to write smart contract code instead of directly writing bytecode.
  • the code of a smart contract written in a high-level language is compiled by a compiler to generate bytecode, and then the bytecode can be deployed on the blockchain.
  • Solidity language As an example, the contract written in it is very similar to the class in the object-oriented programming language. A variety of members can be declared in a contract, including state variables, functions, function modifiers, and events. The following is a simple smart contract code example 1 written in Solidity language:
  • one or more fields can be marked by exposing identifiers, so that the receipt content corresponding to this part of the field in the receipt data is allowed to be stored in clear text (need to further combine the transaction type and The dimensions of the event function determine whether to actually use plaintext storage), and the rest of the receipt content should be stored in ciphertext.
  • one or more fields can also be marked by exposing identifiers to realize the plaintext storage of the relevant receipt content.
  • the exposure identifier may be a receipt field dedicated to indicating that plain text storage is allowed.
  • the keyword plain may be used to characterize the exposure identifier. Then, for the receipt content that you want to store in plain text, you can add plain before the corresponding field (or, you can also associate with the corresponding field in other ways).
  • the fields indicated by the exposure identifier may include receipt fields, such as the Result field, Gas used field, Logs field, Output field, etc., as described above, or the From field, To field, Topic field, and Log data field further contained in the Logs field Wait.
  • receipt fields such as the Result field, Gas used field, Logs field, Output field, etc., as described above, or the From field, To field, Topic field, and Log data field further contained in the Logs field Wait.
  • the code sample 1 above can be adjusted to the following code sample 2:
  • the exposed identifier plain is added to the front of the code of the smart contract. From the perspective of the programming language, the exposed identifier plain indicates: the receipt data generated after the code of the smart contract is executed All fields in are allowed to be stored in plain text, so subsequent retrieval operations can be performed on the receipt content in these fields. For example, the From field can be used to count the transaction volume initiated by an account. However, by further combining dimensions such as transaction types and event functions, there may be different storage schemes for receipt data, which can be seen below.
  • the smart contract corresponding to the transaction received by the first blockchain node may be a smart contract written in a high-level language, or may be a smart contract in the form of bytecode.
  • the first blockchain node when the smart contract is a smart contract written in a high-level language, the first blockchain node also compiles the smart contract written in the high-level language through a compiler to generate a smart contract in the form of bytecode to be used in a trusted execution environment In execution.
  • the smart contract in bytecode form can be obtained by compiling the smart contract written in high-level language by the client through the compiler , And the smart contract written in this high-level language is written by the user on the client.
  • the smart contract corresponding to the transaction received by the first blockchain node may be a smart contract generated by the user on the first blockchain node.
  • the first blockchain node also uses a compiler to compile the smart contract written in the high-level language into a smart contract in the form of bytecode; or, the user may also be in the first area Smart contracts in bytecode form are directly written on the blockchain nodes.
  • the smart contract corresponding to the transaction received by the first blockchain node may be a smart contract generated by the user on the client.
  • the client submits the transaction to the first blockchain node.
  • the first blockchain node includes a transaction/query interface, which can be connected with the client, so that the client can submit the above-mentioned transaction to the first blockchain node.
  • the user can use a high-level language to write a smart contract on the client, and then the client uses a compiler to compile the smart contract in the high-level language to obtain the corresponding smart contract in bytecode form.
  • the client can directly send a smart contract written in a high-level language to the first blockchain node, so that the first blockchain node is compiled into a bytecode smart contract by a compiler.
  • the smart contract corresponding to the transaction received by the first blockchain node can be the smart contract in the transaction sent by the client through the second blockchain node.
  • the smart contract is usually in the form of bytecode; of course, the smart contract It can also be a smart contract written in a high-level language, and the first blockchain node can be compiled into a bytecode smart contract by a compiler.
  • the smart contract written in a high-level language and the smart contract in the form of bytecode may have the same exposure identifier.
  • the bytecode can use an exposed identifier different from a high-level language.
  • the code of a smart contract written in a high-level language contains the first identifier and the code of the smart contract in the form of bytecode. If the second identifier is included, there is a corresponding relationship between the first identifier and the second identifier to ensure that after being compiled into bytecode by a high-level language, the function of exposing the identifier will not be affected.
  • step 304A the first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, and the smart contract includes a special event function.
  • the smart contract may include one or more events, and each event is used to implement predefined related processing logic. After each event contained in the smart contract is called and executed, the corresponding Logs field will be generated. For example, when the smart contract contains event 1 and event 2, event 1 can generate the corresponding Logs field, and event 2 can generate the corresponding Logs field. , So that the receipt data corresponding to the smart contract contains multiple Logs fields at the same time.
  • the events contained in the smart contract can be divided into special event functions and ordinary event functions.
  • the logs generated by the ordinary event functions are stored in cipher text to achieve privacy protection; the special event functions generated
  • the log allows at least part of the log fields to be stored in clear text on the premise of meeting the privacy protection requirements (specifically, the dimensions of the programming language and transaction type must be combined to determine whether to store in clear text), so that this part of the log fields can be stored
  • the content is searched to drive the implementation of related operations.
  • the event function belonging to the "special event function” can be recorded in the chain code of the blockchain network or the system contract, for example, can be recorded in the special event function list; accordingly, by adding the Comparing the event function with the above special event function list can determine whether the event function included in the smart contract is the above special event function.
  • the special event function can be any function defined in the smart contract, and by adding a type identifier for the event function in the smart contract, the event function can be marked as a special event function.
  • the code example of the event function in the above code example 1 is as follows:
  • the smart contract defines an event: the event currentPrice.
  • the event does not contain any type identifier, so the corresponding event function is a normal event function.
  • the code example of the event function can be obtained as follows:
  • the smart contract defines an event: event currentPrice.
  • event currentPrice By adding the type identifier "expose" to the event currentPrice, the event currentPrice can be marked as the above-mentioned special event function.
  • High-level languages supported by Ethereum such as Solidity, Serpent, and LLL languages
  • a smart contract written in a high-level language can be compiled into a corresponding bytecode through a compiler, and the first blockchain node will finally execute the smart contract in the form of bytecode in the EVM virtual machine.
  • the above-mentioned type identifier can be the same in high-level language and bytecode smart contract code, or the first type identifier in high-level language smart contract code, and the second type in bytecode smart contract code Type identifier, the first type identifier and the second type identifier can correspond to each other.
  • the encrypted transaction can be kept in a state of privacy protection, and the transaction content can be prevented from being exposed.
  • the transaction content may contain information such as the account address of the transaction initiator and the account address of the transaction target. Encryption processing can ensure that these transaction contents cannot be directly read.
  • the foregoing transaction may be encrypted by a symmetric encryption algorithm, or may be encrypted by an asymmetric algorithm.
  • the encryption algorithm used by symmetric encryption such as DES algorithm, 3DES algorithm, TDEA algorithm, Blowfish algorithm, RC5 algorithm, IDEA algorithm, etc.
  • Asymmetric encryption algorithms such as RSA, Elgamal, knapsack algorithm, Rabin, D-H, ECC (elliptic curve encryption algorithm), etc.
  • the foregoing transaction may be encrypted by a combination of a symmetric encryption algorithm and an asymmetric encryption algorithm.
  • the client can use a symmetric encryption algorithm to encrypt the transaction content, that is, use the symmetric encryption algorithm key to encrypt the transaction content, and use an asymmetric encryption algorithm to encrypt the symmetric encryption algorithm
  • the key used for example, the key used in the public key encryption symmetric encryption algorithm using an asymmetric encryption algorithm.
  • the first blockchain node After the first blockchain node receives the encrypted transaction, it can first decrypt it with the private key of the asymmetric encryption algorithm to obtain the key of the symmetric encryption algorithm, and then decrypt it with the key of the symmetric encryption algorithm to obtain the transaction content.
  • a transaction When a transaction is used to call a smart contract, it can be a call of multiple nested structures. For example, the transaction directly calls smart contract 1, and the code of smart contract 1 calls smart contract 2, and the code in smart contract 2 points to the contract address of smart contract 3, so that the transaction actually calls the code of smart contract 3 indirectly , And smart contract 3 includes a certain event function. In this way, it is equivalent to the event function included in smart contract 1.
  • the specific implementation process is similar to the above process, and will not be repeated here.
  • step 306A the first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function.
  • a corresponding Logs field will be generated, that is, a log corresponding to each event function will be generated.
  • the log corresponding to the special event function can be further determined, so that at least a part of the log field corresponding to the special event function is stored in plain text.
  • the first blockchain node after receiving a transaction invoking a smart contract from a client, the first blockchain node can check whether the transaction is valid, the format is correct, and the signature of the transaction is legal.
  • the nodes in Ethereum are generally nodes that compete for the right to bookkeeping. Therefore, the first blockchain node as the node that competes for the right to bookkeeping can execute the transaction locally. If one of the nodes competing for the accounting right wins in the current round of the accounting right, it becomes the accounting node. If the first blockchain node wins this round of competition for accounting rights, it becomes the accounting node; of course, if the first blockchain node does not win in this round of competition for accounting rights, it is not Accounting nodes, and other nodes may become accounting nodes.
  • a smart contract is similar to a class in object-oriented programming.
  • the result of execution generates a contract instance corresponding to the smart contract, similar to the object corresponding to the generated class.
  • the process of executing the code used to create a smart contract in a transaction will create a contract account and deploy the contract in the account space.
  • the address of the smart contract account is generated from the sender's address ("0xf5e -- in Figure 1-2) and the transaction nonce (nonce) as input, and is generated by an encryption algorithm, such as in Figure 1-2
  • the contract address "0x6f8ae93" is generated from the sender's address "0xf5e" and the nonce in the transaction through an encryption algorithm.
  • consensus algorithms such as Proof of Work (POW), Proof of Stake (POS), and Delegated Proof of Stake (DPOS) are adopted in blockchain networks that support smart contracts. All nodes competing for the right to account can execute the transaction after receiving the transaction including the creation of a smart contract. One of the nodes competing for the right to bookkeeping may win this round and become the bookkeeping node.
  • the accounting node can package the transaction containing the smart contract with other transactions and generate a new block, and send the generated new block to other nodes for consensus.
  • the nodes with the right to book accounts have been agreed before this round of bookkeeping. Therefore, after the first blockchain node receives the above transaction, if it is not the accounting node of this round, it can send the transaction to the accounting node.
  • accounting nodes which can be the first blockchain node
  • the accounting node packages the transaction (or other transactions together) and generates a new block
  • the generated new block or block header is sent to other nodes for consensus.
  • the accounting nodes in this round can package and package the transaction. Generate a new block, and send the header of the generated new block to other nodes for consensus. If other nodes receive the block and verify that there is no problem, they can append the new block to the end of the original block chain to complete the accounting process and reach a consensus; if the transaction is used to create a smart contract, then The deployment of the smart contract on the blockchain network is completed. If the transaction is used to call the smart contract, the call and execution of the smart contract are completed. In the process of verifying the new block or block header sent by the accounting node, other nodes may also execute the transaction in the block.
  • the execution process can generally be executed by a virtual machine. Taking Ethereum as an example, it supports users to create and/or call some complex logic in the Ethereum network. This is the biggest challenge that distinguishes Ethereum from Bitcoin blockchain technology.
  • the core of Ethereum as a programmable blockchain is the Ethereum Virtual Machine (EVM), and every Ethereum node can run EVM.
  • EVM is a Turing complete virtual machine, which means that various complex logic can be implemented through it. Users publish and call smart contracts in Ethereum run on the EVM.
  • the first blockchain node can execute the decrypted smart contract code in a Trusted Execution Environment (TEE).
  • TEE Trusted Execution Environment
  • the first blockchain node can be divided into a regular execution environment (on the left in the figure) and TEE, and transactions submitted by the client (as described above, transactions can have other sources; here, the client submits Take the transaction as an example to illustrate)
  • First enter the "transaction/query interface" in the regular execution environment for identification.
  • Transactions that do not require privacy processing can be left in the regular execution environment for processing (here can be based on the user type of the transaction initiator , Transaction type, identifier contained in the exchange, etc.
  • TEE is isolated from the conventional execution environment.
  • the transaction is encrypted before entering the TEE, and it is decrypted into the transaction content in the clear in the trusted execution environment, so that the transaction content in the clear text can be efficiently processed in the TEE and in the TEE under the premise of ensuring data security.
  • the receipt data in plaintext is generated in.
  • TEE is a secure extension based on CPU hardware and a trusted execution environment completely isolated from the outside.
  • TEE was first proposed by Global Platform to solve the security isolation of resources on mobile devices, and parallel to the operating system to provide a trusted and secure execution environment for applications.
  • ARM's Trust Zone technology is the first to realize the real commercial TEE technology.
  • security requirements are getting higher and higher.
  • Not only mobile devices, cloud devices, and data centers have put forward more needs for TEE.
  • the concept of TEE has also been rapidly developed and expanded. Compared with the originally proposed concept, TEE is a broader TEE. For example, server chip manufacturers Intel, AMD, etc. have successively introduced hardware-assisted TEE and enriched the concept and characteristics of TEE, which has been widely recognized in the industry.
  • Intel Software Protection Extensions (SGX) and other TEE technologies isolate code execution, remote attestation, secure configuration, secure storage of data, and trusted paths for code execution.
  • the applications running in the TEE are protected by security and are almost impossible to be accessed by third parties.
  • SGX provides an enclave (also called an enclave), which is an encrypted trusted execution area in the memory, and the CPU protects data from being stolen.
  • enclave also called an enclave
  • the CPU protects data from being stolen.
  • a part of the area EPC Enclave Page Cache, enclave page cache or enclave page cache
  • the encryption engine MEE Memory Encryption Engine
  • SGX users can distrust the operating system, VMM (Virtual Machine Monitor), and even BIOS (Basic Input Output System). They only need to trust the CPU to ensure that private data will not leakage.
  • the private data can be encrypted and transmitted to the circle in cipher text, and the corresponding secret key can also be transmitted to the circle through remote certification. Then, the data is used for calculation under the encryption protection of the CPU, and the result will be returned in cipher text. In this mode, you can use powerful computing power without worrying about data leakage.
  • the transaction contains the code of the smart contract
  • the first blockchain node can decrypt the transaction in the TEE to obtain the code of the smart contract contained therein, and then Execute this code in TEE.
  • the first blockchain node can execute the code in the TEE (if the called smart contract handles the encryption state, the smart contract needs to be executed in the TEE first. Decrypt to get the corresponding code).
  • the first blockchain node may use the newly added processor instructions in the CPU to allocate a part of the area EPC in the memory, and encrypt the above-mentioned plaintext code and store it in the EPC through the encryption engine MEE in the CPU.
  • the encrypted content in EPC is decrypted into plain text after entering the CPU.
  • the plaintext code for executing smart contracts can load the EVM into the enclosure.
  • the key management server can calculate the hash value of the local EVM code and compare it with the hash value of the EVM code loaded in the first blockchain node. The correct comparison result is a necessary condition for passing remote certification. , So as to complete the measurement of the code loaded in the SGX circle of the first blockchain node. After measurement, the correct EVM can execute the above smart contract code in SGX.
  • Step 304B The first blockchain node determines the corresponding exposed field according to the transaction type of the transaction.
  • the transaction may include a type field (such as a Type field), and the value of the type field is used to indicate the corresponding transaction type. Therefore, by reading the value of the type field in the exchange, the transaction type can be determined, such as the type of deposit certificate, the type of asset transfer (such as transfer), the type of contract creation, and the type of contract invocation. This manual does not limit this.
  • a type field such as a Type field
  • the value of the type field is used to indicate the corresponding transaction type. Therefore, by reading the value of the type field in the exchange, the transaction type can be determined, such as the type of deposit certificate, the type of asset transfer (such as transfer), the type of contract creation, and the type of contract invocation. This manual does not limit this.
  • different types of transactions may respectively have corresponding exposed fields.
  • the exposed field is one or more fields specified in the receipt data.
  • the receipt data needs to be stored in cipher text to protect privacy, it can be combined with the field indicated by the aforementioned exposure identifier, and the log corresponding to the special event function and the exposed field Selectively store the exposed fields marked by the exposed identifier in the log corresponding to the special event function in plain text, instead of storing all fields marked by the exposed identifier or all exposed fields in plain text , While meeting the privacy protection requirements, subsequent retrieval and other operations can be performed on the content of the receipt stored in plaintext.
  • the mapping relationship between each transaction type and the exposed field may be predefined, and the mapping relationship may be recorded in the blockchain, so that the first blockchain node can obtain the predefined mapping relationship, And further determine the exposed fields in the receipt data according to the transaction type of the above-mentioned transaction and the mapping relationship.
  • the exposed field corresponding to the attestation type may include all fields except the above-mentioned From field
  • the exposed field corresponding to the asset transfer type may include the above-mentioned To field
  • the exposed field corresponding to the contract creation type and contract invocation type may include the above-mentioned From field. All the fields except for the other transaction types will not be repeated here.
  • mapping relationship can be specifically recorded in the system contract.
  • the mapping relationship can also be recorded in the chain code of the blockchain network.
  • Step 308 The first blockchain node stores the receipt data, so that at least a part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text.
  • the at least part of the receipt content includes an exposed field marked by the exposure identifier.
  • the exposed identifier can indicate one or more fields, and these fields have corresponding receipt content in the receipt data. Different types of transactions often have different privacy protection requirements, and the corresponding exposed fields can be allowed to be stored in plain text.
  • the receipt data contains a log corresponding to the special event function, which is actually part of the receipt content in the receipt data.
  • the cross content of the above three parts of receipt content can be filtered out, and the cross content can be stored in plain text.
  • the rest of the receipt data is in cipher text. storage.
  • the exposed identifier is a global identifier defined in the programming language of the smart contract, it is difficult to modify the fields marked by the exposed identifier as long as the exposed identifier is written in the smart contract.
  • the transaction type has nothing to do with the programming language and can be selected by the user according to the actual needs.
  • the definition of the special event function is not necessarily based on the programming language. For example, when recording the special event function based on the special event function list, even in the smart contract A certain event function included is originally a special event function.
  • a smart contract can include the following code example 3:
  • the exposed identifier "plain” is located at the forefront of the code of the smart contract, so that all fields in the receipt data are marked as contract-level fields; at the same time, in the smart contract Contains events currentPrice1 and event currentPrice2: Assuming that the From field is the exposed field corresponding to the transaction type, and the event currentPrice1 corresponds to the special event function defined in the special event function list, and the event currentPrice2 corresponds to the normal event function, then in the event currentPrice1 and event currentPrice2 In the generated logs Log1 and Log2, the From field contained in log Log1 is stored in plain text, and the From field contained in log Log2 is stored in cipher text; similarly, other fields in log Log1 that are exposed fields are also stored in plain text.
  • Non-exposed fields are stored in cipher text, while all fields of log Log2 are stored in cipher text. Moreover, if the event currentPrice2 is updated to correspond to the special event function after updating the list of special event functions, all fields belonging to the exposed fields contained in the log Log2 will be stored in plain text, without the need to do anything to the smart contract code change.
  • the aforementioned type identifier can be used to indicate whether the event function included in the smart contract is a special event function.
  • the above code sample 3 can be adjusted to the following code sample 4:
  • the contract-level fields include all fields in the receipt data; at the same time, the smart contract contains the event currentPrice1 and the event currentPrice2: because the event currentPrice1 contains the above mentioned
  • the type identifier expose causes the event currentPrice1 to be marked as corresponding to the special event function, while the event currentPrice2 does not contain the type identifier expose, so that the event currentPrice2 is marked as corresponding to the normal event function, then the event currentPrice1 and event currentPrice2 are generated respectively In the logs Log1 and Log2, all the exposed fields corresponding to the transaction type in the log Log1 are stored in plain text, and all the fields contained in the log Log2 are stored in cipher text.
  • the type identifier and the exposed identifier are similar, they are both global identifiers defined in the programming language of the smart contract, but the exposed identifier acts on the contract-level fields and the type identifier acts on the event function, so that by In conjunction with the type identifier, you only need to add a single exposure identifier to set the contract-level fields mentioned above, and then you can flexibly mark the event functions that you want to store the contract-level fields in plaintext, especially when smart contracts When there are a large number of event functions included in the event function and the number of fields involved in the event function is large, you only need to add a "plain" similar to the above. There is no need to implement settings for each event function separately, which can simplify the code logic , Prevent mislabeling or missing labels.
  • the fields marked by the exposure identifier may include: event-level fields corresponding to at least one event defined in the smart contract, so that the first blockchain node can determine the at least one event when storing the receipt data.
  • a log generated by a special event function corresponding to an event, and the determined exposed fields belonging to the event-level field in the log are stored in plain text.
  • the above event-level fields can be set for at least some of the events, so that the exposed fields belonging to the event-level fields in the logs corresponding to these events are stored in plain text, and this part of the events Other fields in the corresponding log and the contents of receipts corresponding to other events are stored in cipher text.
  • the event currentPrice1 does not add the exposed identifier "plain", it contains the content "from".
  • the content "from” corresponds to the From field and is used to indicate the From field in the log generated by the event currentPrice1 It needs to be stored in plain text, so the content "from” not only belongs to the above exposed identifier, but also indicates the From field that needs to be stored in plain text.
  • the From field is an event-level field, so that when the From field is an exposed field corresponding to the transaction type and the event currentPrice1 corresponds to a special event function, the log generated in the event currentPrice1 corresponds to In Logs, the From field will be stored in plain text, and other fields will be stored in cipher text.
  • the other event currentPrice2 contained in code example 5 since no exposure identifier is added for the event currentPrice2, regardless of whether the event currentPrice2 corresponds to a special event function or a normal event function, the generated log Logs are in the form of ciphertext storage.
  • From indicates that the From field is set as an event-level field; however, in other embodiments, the specific field may not be specified.
  • code sample 4 can be adjusted to the following code sample 6:
  • all the fields in the log generated by the event currentPrice1 can be used as the aforementioned event-level fields, such as the aforementioned From field and To field. , Topic field, Log Data field, etc.
  • the event currentPrice1 corresponds to a special event function
  • the log field that belongs to both the above event-level field and the exposed field corresponding to the transaction type can be determined from the log generated by the event currentPrice1, and stored in plain text; If the above-mentioned From field, To field, Topic field, Log Data field, etc. are all exposed fields, it is equivalent to storing all receipt content (such as the generated log) corresponding to the event currentPrice1 in plain text.
  • This manual exposes the content of the receipt to a certain extent to realize the driver of the DAPP client or other function extensions.
  • this manual comprehensively considers the fields indicated by the exposed identifier, the exposed fields corresponding to the transaction type, and the logs generated by the special event function, and can accurately select the fields for plaintext storage, that is, at the same time satisfying "matches to the fields indicated by the exposed identifiers" ",” “matching transaction type” and “belonging to a log generated by a special event function", so as to meet the above-mentioned function expansion requirements while ensuring that most of the user privacy can be protected.
  • the first blockchain node when it recognizes the special event function based on the information recorded on the blockchain network (such as the list of special event functions), it can perform the "special event function" after the smart contract has been created.
  • Update to adjust the storage method of receipt data such as changing the original receipt content stored in plain text to cipher text storage, or changing the original receipt content stored in cipher text to plain text storage.
  • the computing device By running the program code of the blockchain (hereinafter referred to as the chain code) on the computing device (physical machine or virtual machine), the computing device can be configured as a blockchain node in the blockchain network, such as the first Blockchain nodes, etc.
  • the first blockchain node runs the above chain code to realize the corresponding functional logic. Therefore, when the blockchain network is created, the receipt data storage logic related to the exposed identifier, transaction type, and event function described above can be written into the chain code, so that each blockchain node can implement the receipt Data storage logic; taking the first blockchain node as an example, the receipt data storage logic related to the exposure identifier, transaction type, and event function may include: transaction type recognition logic, event function recognition logic, and exposure-based The identifier stores the logic of the receipt content.
  • the identification logic of the transaction type is used to instruct the first blockchain node: to identify the type of transaction initiated by the transaction initiator. For example, according to the value of the type field contained in the exchange, determine the transaction type corresponding to the transaction. For details, please refer to the relevant description of identifying transaction types above, which will not be repeated here.
  • the identification logic of the event function is used to instruct the first blockchain node to identify the type of event function contained in the smart contract corresponding to the transaction. For example: according to the type identifier contained in the event function, or according to the list of special event functions recorded in the blockchain network. For details, please refer to the relevant description of identifying special event functions above, which will not be repeated here.
  • the logic of storing the content of the receipt based on the exposed identifier is used to instruct the first blockchain node: for the fields marked by the exposed identifier, the fields not marked by the exposed identifier, etc., how to store the corresponding receipt content.
  • the exposed field marked by the exposure identifier in the log generated by the special event function is stored in plain text
  • the rest is stored in cipher text
  • the other receipt content in the receipt data All are stored in ciphertext form.
  • chain code is used to realize the basic functions of the blockchain network, and the function expansion during operation can be achieved through the system Realized by way of contract.
  • the system contract includes code in the form of bytecode, for example, the first blockchain node can run the system contract code (for example, according to the unique corresponding address "0x53a98" to read the system The code in the contract) to realize the functional supplement of the chain code.
  • the first blockchain node can read the code of the system contract, which defines the receipt data storage logic related to the exposure identifier, transaction type, and event function; then, the first blockchain node
  • the code of the system contract can be executed, and based on the receipt data storage logic related to the exposure identifier, transaction type, and event function, at least part of the receipt content in the log corresponding to the special event function is stored in clear text.
  • the remaining content of the data is stored in a ciphertext form, and the at least a part of the receipt content includes the exposed field indicated by the exposure identifier.
  • the system contract read by the first blockchain node may include a preset system contract configured in the genesis block of the blockchain network; and, the administrator in the blockchain network (ie, the above-mentioned management user) may have The update authority of the system contract, so as to update the preset system contract such as the above, the system contract read by the first blockchain node may also include the corresponding updated system contract.
  • the updated system contract can be obtained by the administrator after one update of the preset system contract; or, the updated system contract can be obtained by the administrator after multiple iterations of the preset system contract, such as the preset system contract Update the system contract 1, update the system contract 1 to obtain the system contract 2, update the system contract 2 to obtain the system contract 3.
  • the system contract 1, the system contract 2, and the system contract 3 can all be regarded as the updated system contract, but the first Blockchain nodes usually follow the latest version of the system contract. For example, the first blockchain node will follow the code in system contract 3 instead of the code in system contract 1 or system contract 2.
  • the administrator can also publish system contracts in subsequent blocks and update the published system contracts.
  • system contracts in subsequent blocks and update the published system contracts.
  • a certain degree of restrictions should be imposed on the issuance and update of system contracts through methods such as authority management to ensure that the functional logic of the blockchain network can operate normally and avoid unnecessary losses to any users.
  • the first blockchain node encrypts at least a part of the receipt content through the key.
  • the encryption may be symmetric encryption or asymmetric encryption. If the first blockchain node uses symmetric encryption, that is, the symmetric key of the symmetric encryption algorithm is used to encrypt the content of the receipt, the client (or other object holding the key) can use the symmetric key pair of the symmetric encryption algorithm The encrypted receipt content is decrypted.
  • the symmetric key may be provided to the first blockchain node in advance by the client. Then, since only the client (actually the user corresponding to the logged-in account on the client) and the first blockchain node have the symmetric key, only the client can decrypt the corresponding encrypted receipt content, avoiding Irrelevant users and even criminals decrypt the encrypted receipt content.
  • the client when the client initiates a transaction to the first blockchain node, the client can use the initial key of the symmetric encryption algorithm to encrypt the transaction content to obtain the transaction; accordingly, the first blockchain node can obtain
  • the initial key is used to directly or indirectly encrypt the content of the receipt.
  • the initial key can be negotiated in advance by the client and the first blockchain node, or sent by the key management server to the client and the first blockchain node, or sent by the client to the first blockchain node.
  • the client can encrypt the initial key with the public key of the asymmetric encryption algorithm, and then send the encrypted initial key to the first block
  • the chain node, and the first blockchain node decrypts the encrypted initial key through the private key of the asymmetric encryption algorithm to obtain the initial key, which is the digital envelope encryption described above, which will not be repeated here.
  • the first blockchain node can use the aforementioned initial key to encrypt the content of the receipt. Different transactions can use the same initial key, so that all transactions submitted by the same user are encrypted with this initial key, or different transactions can use different initial keys. For example, the client can randomly generate an initial key for each transaction. Key to improve security.
  • the first blockchain node can generate a derived key according to the initial key and the impact factor, and encrypt the content of the receipt through the derived key.
  • the derived key can increase the degree of randomness, thereby increasing the difficulty of being compromised and helping to optimize the security protection of data.
  • the impact factor can be related to the transaction; for example, the impact factor can include the specified bits of the transaction hash value.
  • the first blockchain node can associate the initial key with the first 16 bits (or the first 32 bits, the last 16 bits) of the transaction hash value. Bits, last 32 bits, or other bits) are spliced, and the spliced string is hashed to generate a derived key.
  • the first blockchain node can also use an asymmetric encryption method, that is, use the public key of the asymmetric encryption algorithm to encrypt the content of the receipt, and accordingly, the client can use the private key of the asymmetric encryption algorithm to decrypt the encrypted The contents of the receipt.
  • the key of an asymmetric encryption algorithm for example, can be that the client generates a pair of public and private keys, and sends the public key to the first blockchain node in advance, so that the first blockchain node can use the receipt content Public key encryption.
  • the first blockchain node realizes the function by running the code used to realize the function. Therefore, for the functions that need to be implemented in the TEE, the relevant code also needs to be executed. For the code executed in the TEE, it needs to comply with the relevant specifications and requirements of the TEE; accordingly, for the code used to implement a certain function in the related technology, the code needs to be rewritten in combination with the specifications and requirements of the TEE. Large amount of development, and easy to produce loopholes (bugs) in the process of rewriting, affecting the reliability and stability of function implementation.
  • the first blockchain node can execute the storage function code outside the TEE to store the receipt data generated in the TEE (including the receipt content in plain text that needs to be stored in plain text, and the receipt content in cipher text that needs to be stored in cipher text.
  • TEE Is stored in an external storage space outside the TEE, so that the storage function code can be the code used to implement the storage function in the related technology, and does not need to be rewritten in conjunction with the specifications and requirements of the TEE to achieve safe and reliable receipt data
  • the storage of TEE can not only reduce the amount of related code development without affecting security and reliability, but also reduce TCB (Trusted Computing Base) by reducing the related code of TEE, making TEE technology and regional In the process of combining block chain technology, the additional security risks caused are in a controllable range.
  • TCB Trusted Computing Base
  • the first blockchain node may execute the write cache function code in the TEE to store the above-mentioned receipt data in the write cache in the TEE.
  • the write cache may correspond to the one shown in FIG. 2 "Cache".
  • the first blockchain node outputs the data in the write cache from the trusted execution environment to be stored in the external storage space.
  • the write cache function code can be stored in the TEE in plain text, and the cache function code in the plain text can be directly executed in the TEE; or, the write cache function code can be stored outside the TEE in cipher text, such as the above External storage space (such as the "package + storage” shown in Figure 2, where "package” means that the first blockchain node packs the transaction into blocks outside the trusted execution environment), the ciphertext form
  • the write cache function code is read into the TEE, decrypted into the plaintext code in the TEE, and the plaintext code is executed.
  • Write cache refers to a "buffer" mechanism provided to avoid “impact” to the external storage space when data is written to the external storage space.
  • the above-mentioned write cache can be implemented by using buffer; of course, the write cache can also be implemented by using cache, which is not limited in this specification.
  • the write cache mechanism can be used to write the data in the cache to the external storage space in batches, thereby reducing the gap between the TEE and the external storage space. The number of interactions increases the efficiency of data storage.
  • TEE may need to retrieve the generated data.
  • the data to be called happens to be in the write cache, the data can be read directly from the write cache.
  • the interaction between the external storage space eliminates the decryption process of the data read from the external storage space, thereby improving the data processing efficiency in the TEE.
  • the write cache can also be established outside the TEE.
  • the first blockchain node can execute the write cache function code outside the TEE, so as to store the above receipt data in the write cache outside the TEE, and further write The data in the cache is stored in an external storage space.
  • the receiving unit 61 receives an encrypted transaction corresponding to a smart contract, the code of the smart contract includes a field marked by an exposed identifier;
  • a decryption unit 62 decrypting the transaction in a trusted execution environment to obtain the smart contract, the smart contract including a special event function;
  • the execution unit 63 executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
  • the determining unit 64 determines the corresponding exposed field according to the transaction type of the transaction
  • the storage unit 65 stores the receipt data so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text, and the at least part of the receipt content Including the exposed field indicated by the exposed identifier.
  • the smart contract corresponding to the transaction received by the first blockchain node includes:
  • the node when the smart contract corresponding to the transaction received by the first blockchain node is a smart contract written in a high-level language, the node further includes:
  • the compiling unit 66 compiles the smart contract written in the high-level language through a compiler, and generates the smart contract in bytecode form for execution in the trusted execution environment.
  • the smart contract in the form of bytecode is a smart contract written in a high-level language by the client through a compiler It is obtained by compiling, and the smart contract written in the high-level language is written by the user on the client.
  • the smart contract written in the high-level language and the smart contract in bytecode form have the same or corresponding exposure identifier.
  • the smart contract corresponding to the transaction received by the first blockchain node includes:
  • the smart contract generated by the user on the first blockchain node or,
  • the smart contract generated by the user on the client or,
  • the fields marked by the exposure identifier include: contract-level fields; the storage unit 65 is specifically used for:
  • the exposed fields belonging to the contract-level fields in the logs generated by all special event functions are stored in plain text.
  • the field marked by the exposure identifier includes: an event-level field corresponding to at least one event defined in the smart contract; the storage unit 65 is specifically configured to:
  • the log generated by the special event function corresponding to the at least one event is determined, and the exposed fields belonging to the event-level field in the determined log are stored in plain text.
  • the transaction includes a type field, and the value of the type field is used to indicate the corresponding transaction type.
  • the transaction type of the transaction includes: deposit certificate type, asset transfer type, contract creation type, contract call type.
  • a predefined mapping relationship between the transaction type and the exposed field is stored in the blockchain, and the mapping relationship is used to determine the exposed field corresponding to the transaction type of the transaction.
  • the event function in the smart contract includes a type identifier, and the type identifier is used to mark the event function as a special event function.
  • the event function included in the smart contract is in the special function list recorded on the blockchain, the event function included in the smart contract is determined to be a special event function.
  • the storage unit 65 is specifically used for:
  • Reading the code of the system contract defines the receipt data storage logic related to the exposure identifier, transaction type and special event function;
  • the code of the system contract is executed to store at least part of the receipt content in the log corresponding to the special event function in plain text, and the rest of the receipt data in cipher text, and the at least part of the receipt content includes The exposed field indicated by the exposed identifier.
  • the system contract includes: a preset system contract recorded in the genesis block, or an updated system contract corresponding to the preset system contract.
  • the storage unit 65 is specifically used for:
  • the storage function code is executed outside the trusted execution environment to store the receipt data in an external storage space outside the trusted execution environment.
  • the key used by the first blockchain node to encrypt the receipt data includes: a key of a symmetric encryption algorithm or a key of an asymmetric encryption algorithm.
  • the key of the symmetric encryption algorithm includes an initial key provided by the client; or, the key of the symmetric encryption algorithm includes a derived key generated by the initial key and an influence factor.
  • the transaction is encrypted by the initial key, and the initial key is encrypted by the public key of an asymmetric encryption algorithm; the decryption unit 62 is specifically configured to:
  • the initial key is generated by the client; or, the initial key is sent to the client by the key management server.
  • the impact factor is related to the transaction.
  • the impact factor includes: a designated bit of the hash value of the transaction.
  • a programmable logic device Programmable Logic Device, PLD
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • Verilog Verilog
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers. Examples of controllers include but are not limited to the following microcontrollers: ARC625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as part of the memory control logic.
  • controller in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • This specification can also be practiced in distributed computing environments, in which tasks are performed by remote processing devices connected through a communication network.
  • program modules can be located in local and remote computer storage media including storage devices.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computer includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • the memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic disk storage, quantum memory, graphene-based storage media or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • first, second, third, etc. may be used in one or more embodiments of this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or “in response to certainty”.

Abstract

One or more embodiments of the description provide a receipt storage method and node combining code annotation with transaction and event types. The method may comprise: a first blockchain node receives an encrypted transaction corresponding to a smart contract, the code of the smart contract comprising a field indicated by an expose identifier; the first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, the smart contract comprising a special event function; the first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, the receipt data comprising a log corresponding to the special event function; the first blockchain node determines a corresponding expose field according to the transaction type of the transaction; the first blockchain node stores the receipt data, so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text and the rest of the receipt data is stored in cipher text, the at least part of the receipt content comprising an expose field identified by the expose identifier.

Description

结合代码标注与交易、事件类型的收据存储方法和节点Receipt storage method and node combining code annotation with transaction and event type 技术领域Technical field
本说明书一个或多个实施例涉及区块链技术领域,尤其涉及一种结合代码标注与交易、事件类型的收据存储方法和节点。One or more embodiments of this specification relate to the field of blockchain technology, and in particular to a receipt storage method and node combining code labeling with transaction and event types.
背景技术Background technique
区块链技术构建在传输网络(例如点对点网络)之上。传输网络中的网络节点利用链式数据结构来验证与存储数据,并采用分布式节点共识算法来生成和更新数据。Blockchain technology is built on a transmission network (such as a peer-to-peer network). The network nodes in the transmission network use chained data structures to verify and store data, and use distributed node consensus algorithms to generate and update data.
目前企业级的区块链平台技术上最大的两个挑战就是隐私和性能,往往这两个挑战很难同时解决。大多解决方案都是通过损失性能换取隐私,或者不大考虑隐私去追求性能。常见的解决隐私问题的加密技术,如同态加密(Homomorphic encryption)和零知识证明(Zero-knowledge proof)等复杂度高,通用性差,而且还可能带来严重的性能损失。At present, the two biggest challenges of enterprise-level blockchain platform technology are privacy and performance. It is often difficult to solve these two challenges at the same time. Most of the solutions are to lose performance in exchange for privacy, or do not consider privacy to pursue performance. Common encryption technologies that solve privacy problems, such as Homomorphic encryption and Zero-knowledge proof, are highly complex, poor in versatility, and may also cause serious performance losses.
可信执行环境(Trusted Execution Environment,TEE)是另一种解决隐私问题的方式。TEE可以起到硬件中的黑箱作用,在TEE中执行的代码和数据操作系统层都无法偷窥,只有代码中预先定义的接口才能对其进行操作。在效率方面,由于TEE的黑箱性质,在TEE中进行运算的是明文数据,而不是同态加密中的复杂密码学运算,计算过程效率没有损失,因此与TEE相结合可以在性能损失较小的前提下很大程度上提升区块链的安全性和隐私性。目前工业界十分关注TEE的方案,几乎所有主流的芯片和软件联盟都有自己的TEE解决方案,包括软件方面的TPM(Trusted Platform Module,可信赖平台模块)以及硬件方面的Intel SGX(Software Guard Extensions,软件保护扩展)、ARM Trustzone(信任区)和AMD PSP(Platform Security Processor,平台安全处理器)。Trusted Execution Environment (TEE) is another way to solve privacy issues. TEE can play the role of a black box in the hardware. Neither the code executed in the TEE nor the data operating system layer can be peeped. Only the pre-defined interface in the code can operate on it. In terms of efficiency, due to the black-box nature of TEE, plaintext data is calculated in TEE instead of complex cryptographic operations in homomorphic encryption. There is no loss of efficiency in the calculation process. Therefore, the combination with TEE can achieve less performance loss. Under the premise, the security and privacy of the blockchain are greatly improved. At present, the industry is very concerned about TEE solutions. Almost all mainstream chip and software alliances have their own TEE solutions, including TPM (Trusted Platform Module) for software and Intel SGX (Software Guard Extensions) for hardware. , Software Protection Extension), ARM Trustzone (trust zone) and AMD PSP (Platform Security Processor, platform security processor).
发明内容Summary of the invention
有鉴于此,本说明书一个或多个实施例提供一种结合代码标注与交易、事件类型的收据存储方法和节点。In view of this, one or more embodiments of this specification provide a receipt storage method and node that combine code labeling with transaction and event types.
为实现上述目的,本说明书一个或多个实施例提供技术方案如下:To achieve the foregoing objectives, one or more embodiments of this specification provide technical solutions as follows:
根据本说明书一个或多个实施例的第一方面,提出了一种结合代码标注与交易、事件类型的收据存储方法,包括:According to the first aspect of one or more embodiments of this specification, a receipt storage method combining code labeling with transaction and event types is proposed, including:
第一区块链节点接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段;The first blockchain node receives an encrypted transaction corresponding to a smart contract, and the code of the smart contract includes a field marked by an exposed identifier;
第一区块链节点在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数;The first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, and the smart contract includes a special event function;
第一区块链节点在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志;The first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
第一区块链节点根据所述交易的交易类型,确定相应的暴露字段;The first blockchain node determines the corresponding exposed field according to the transaction type of the transaction;
第一区块链节点存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The first blockchain node stores the receipt data, so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the remaining content of the receipt data is stored in cipher text. The content of the receipt includes the exposed field indicated by the exposed identifier.
根据本说明书一个或多个实施例的第二方面,提出了一种结合代码标注与交易、事件类型的收据存储节点,包括:According to the second aspect of one or more embodiments of this specification, a receipt storage node that combines code labeling with transaction and event types is proposed, including:
接收单元,接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段;The receiving unit receives an encrypted transaction corresponding to a smart contract, the code of the smart contract includes a field marked by an exposed identifier;
解密单元,在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数;A decryption unit, decrypting the transaction in a trusted execution environment to obtain the smart contract, the smart contract including a special event function;
执行单元,在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志;An execution unit to execute the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
确定单元,根据所述交易的交易类型,确定相应的暴露字段;The determining unit determines the corresponding exposed field according to the transaction type of the transaction;
存储单元,存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The storage unit stores the receipt data so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text, and the at least part of the receipt content includes The exposed field indicated by the exposed identifier.
根据本说明书一个或多个实施例的第三方面,提出了一种电子设备,包括:According to a third aspect of one or more embodiments of this specification, an electronic device is proposed, including:
处理器;processor;
用于存储处理器可执行指令的存储器;A memory for storing processor executable instructions;
其中,所述处理器通过运行所述可执行指令以实现如第一方面所述的方法。Wherein, the processor implements the method according to the first aspect by running the executable instruction.
根据本说明书一个或多个实施例的第四方面,提出了一种计算机可读存储介质,其 上存储有计算机指令,该指令被处理器执行时实现如第一方面所述方法的步骤。According to the fourth aspect of one or more embodiments of the present specification, a computer-readable storage medium is provided, and computer instructions are stored thereon, which, when executed by a processor, implement the steps of the method described in the first aspect.
附图说明Description of the drawings
图1是一示例性实施例提供的一种创建智能合约的示意图。Fig. 1 is a schematic diagram of creating a smart contract according to an exemplary embodiment.
图2是一示例性实施例提供的一种调用智能合约的示意图。Fig. 2 is a schematic diagram of invoking a smart contract provided by an exemplary embodiment.
图3是一示例性实施例提供的一种结合代码标注与交易、事件类型的收据存储方法的流程图。Fig. 3 is a flowchart of a method for storing receipts combining code labeling with transaction and event types according to an exemplary embodiment.
图4是一示例性实施例提供的一种在区块链节点上实现隐私保护的示意图。Fig. 4 is a schematic diagram of implementing privacy protection on blockchain nodes according to an exemplary embodiment.
图5是一示例性实施例提供的一种通过系统合约和链代码实现区块链网络的功能逻辑的示意图。Fig. 5 is a schematic diagram of the functional logic of implementing a blockchain network through a system contract and a chain code provided by an exemplary embodiment.
图6是一示例性实施例提供的一种结合代码标注与交易、事件类型的收据存储节点的框图。Fig. 6 is a block diagram of a receipt storage node combining code labeling with transaction and event types provided by an exemplary embodiment.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书一个或多个实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书一个或多个实施例的一些方面相一致的装置和方法的例子。Here, exemplary embodiments will be described in detail, and examples thereof are shown in the accompanying drawings. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings indicate the same or similar elements. The implementation manners described in the following exemplary embodiments do not represent all implementation manners consistent with one or more embodiments of this specification. On the contrary, they are merely examples of devices and methods consistent with some aspects of one or more embodiments of this specification as detailed in the appended claims.
需要说明的是:在其他实施例中并不一定按照本说明书示出和描述的顺序来执行相应方法的步骤。在一些其他实施例中,其方法所包括的步骤可以比本说明书所描述的更多或更少。此外,本说明书中所描述的单个步骤,在其他实施例中可能被分解为多个步骤进行描述;而本说明书中所描述的多个步骤,在其他实施例中也可能被合并为单个步骤进行描述。It should be noted that in other embodiments, the steps of the corresponding method may not be executed in the order shown and described in this specification. In some other embodiments, the method includes more or fewer steps than described in this specification. In addition, a single step described in this specification may be decomposed into multiple steps for description in other embodiments; and multiple steps described in this specification may also be combined into a single step in other embodiments. description.
区块链一般被划分为三种类型:公有链(Public Blockchain),私有链(Private Blockchain)和联盟链(Consortium Blockchain)。此外,还有多种类型的结合,比如私有链+联盟链、联盟链+公有链等不同组合形式。其中去中心化程度最高的是公有链。公有链以比特币、以太坊为代表,加入公有链的参与者可以读取链上的数据记录、参与交易以及竞争新区块的记账权等。而且,各参与者(即节点)可自由加入以及退出网络, 并进行相关操作。私有链则相反,该网络的写入权限由某个组织或者机构控制,数据读取权限受组织规定。简单来说,私有链可以为一个弱中心化系统,参与节点具有严格限制且少。这种类型的区块链更适合于特定机构内部使用。联盟链则是介于公有链以及私有链之间的区块链,可实现“部分去中心化”。联盟链中各个节点通常有与之相对应的实体机构或者组织;参与者通过授权加入网络并组成利益相关联盟,共同维护区块链运行。Blockchain is generally divided into three types: Public Blockchain, Private Blockchain and Consortium Blockchain. In addition, there are many types of combinations, such as private chain + alliance chain, alliance chain + public chain and other different combinations. The most decentralized one is the public chain. The public chain is represented by Bitcoin and Ethereum. Participants who join the public chain can read the data records on the chain, participate in transactions, and compete for the accounting rights of new blocks. Moreover, each participant (ie, node) can freely join and exit the network, and perform related operations. The private chain is the opposite. The write permission of the network is controlled by an organization or institution, and the data read permission is regulated by the organization. In simple terms, the private chain can be a weakly centralized system with strict restrictions and few participating nodes. This type of blockchain is more suitable for internal use by specific institutions. The alliance chain is a block chain between the public chain and the private chain, which can achieve "partial decentralization". Each node in the alliance chain usually has a corresponding entity or organization; participants are authorized to join the network and form a stakeholder alliance to jointly maintain the operation of the blockchain.
不论是公有链、私有链还是联盟链,都可能提供智能合约的功能。区块链上的智能合约是在区块链系统上可以被交易触发执行的合约。智能合约可以通过代码的形式定义。Whether it is a public chain, a private chain or a consortium chain, it is possible to provide the function of a smart contract. A smart contract on the blockchain is a contract that can be triggered and executed by a transaction on the blockchain system. Smart contracts can be defined in the form of codes.
以以太坊为例,支持用户在以太坊网络中创建并调用一些复杂的逻辑,这是以太坊区别于比特币区块链技术的最大挑战。以太坊作为一个可编程区块链的核心是以太坊虚拟机(EVM),每个以太坊节点都可以运行EVM。EVM是一个图灵完备的虚拟机,这意味着可以通过它实现各种复杂的逻辑。用户在以太坊中发布和调用智能合约就是在EVM上运行的。实际上,虚拟机直接运行的是虚拟机代码(虚拟机字节码,下简称“字节码”)。部署在区块链上的智能合约可以是字节码的形式。Taking Ethereum as an example, it supports users to create and call some complex logic in the Ethereum network. This is the biggest challenge that distinguishes Ethereum from Bitcoin blockchain technology. The core of Ethereum as a programmable blockchain is the Ethereum Virtual Machine (EVM), and each Ethereum node can run EVM. EVM is a Turing complete virtual machine, which means that various complex logic can be implemented through it. Users publish and call smart contracts in Ethereum run on the EVM. In fact, the virtual machine directly runs virtual machine code (virtual machine bytecode, hereinafter referred to as "bytecode"). The smart contract deployed on the blockchain can be in the form of bytecode.
例如图1所示,Bob将一个包含创建智能合约信息的交易发送到以太坊网络后,节点1的EVM可以执行这个交易并生成对应的合约实例。图中1中的“0x6f8ae93…”代表了这个合约的地址,交易的data字段保存的可以是字节码,交易的to字段为空。节点间通过共识机制达成一致后,这个合约成功创建,并且可以在后续过程中被调用。合约创建后,区块链上出现一个与该智能合约对应的合约账户,并拥有一个特定的地址,合约代码将保存在该合约账户中。智能合约的行为由合约代码控制。换句话说,智能合约使得区块链上产生包含合约代码和账户存储(Storage)的虚拟账户。For example, as shown in Figure 1, after Bob sends a transaction containing the creation of a smart contract to the Ethereum network, the EVM of node 1 can execute the transaction and generate a corresponding contract instance. "0x6f8ae93..." in the figure 1 represents the address of this contract, the data field of the transaction can be stored in bytecode, and the to field of the transaction is empty. After the nodes reach an agreement through the consensus mechanism, the contract is successfully created and can be called in the subsequent process. After the contract is created, a contract account corresponding to the smart contract appears on the blockchain and has a specific address, and the contract code will be stored in the contract account. The behavior of the smart contract is controlled by the contract code. In other words, smart contracts enable virtual accounts containing contract codes and account storage (Storage) to be generated on the blockchain.
如图2所示,仍以以太坊为例,Bob将一个用于调用智能合约的交易发送到以太坊网络后,某一节点的EVM可以执行这个交易并生成对应的合约实例。图中2中交易的from字段是交易发起方(即Bob)的账户的地址,to字段中的“0x6f8ae93…”代表了被调用的智能合约的地址,value字段在以太坊中是以太币的值,交易的data字段保存的调用智能合约的方法和参数。智能合约以规定的方式在区块链网络中每个节点独立的执行,所有执行记录和数据都保存在区块链上,所以当交易完成后,区块链上就保存了无法篡改、不会丢失的交易凭证。As shown in Figure 2, still taking Ethereum as an example, after Bob sends a transaction for invoking a smart contract to the Ethereum network, the EVM of a certain node can execute the transaction and generate a corresponding contract instance. The from field of the transaction in Figure 2 is the address of the account of the transaction initiator (ie Bob), the "0x6f8ae93..." in the to field represents the address of the called smart contract, and the value field in Ethereum is the value of Ether , The method and parameters of calling the smart contract are stored in the data field of the transaction. Smart contracts are executed independently on each node in the blockchain network in a prescribed manner. All execution records and data are stored on the blockchain, so when the transaction is completed, the blockchain will be stored on the blockchain that cannot be tampered with. Lost transaction certificate.
区块链网络中的节点在执行Bob发起的交易后,会生成相应的收据(receipt)数据,以用于记录该交易相关的收据信息。以以太坊为例,节点执行交易所得的收据数据可以 包括如下内容:After the nodes in the blockchain network execute the transaction initiated by Bob, they will generate corresponding receipt data to record the receipt information related to the transaction. Taking Ethereum as an example, the receipt data obtained by a node executing a transaction can include the following:
Result字段,表示交易的执行结果;The Result field indicates the execution result of the transaction;
Gas used字段,表示交易消耗的gas值;The Gas used field indicates the gas value consumed by the transaction;
Logs字段,表示交易产生的日志,日志可以进一步包括From字段、To字段、Topic字段和Log data字段等,其中From字段表示调用的发起方的账户地址、To字段表示被调用对象(如智能合约)的账户地址、Topic字段表示日志的主题、Log data字段表示日志数据;The Logs field indicates the log generated by the transaction. The log can further include the From field, To field, Topic field, and Log data field, among which the From field indicates the account address of the initiator of the call, and the To field indicates the called object (such as a smart contract) The account address and Topic field indicate the subject of the log, and the Log data field indicates the log data;
Output字段,表示交易的输出。The Output field indicates the output of the transaction.
一般的,交易执行后生成的收据数据以明文形式进行存储,任何人都可以看到收据数据所含的上述各个收据字段的内容,无隐私保护的设置和能力。而在一些区块链与TEE相结合的解决方案中,为了实现隐私保护,收据数据的全部内容均被当作需要隐私保护的数据存储在区块链上。所述区块链,是存储在节点的数据库中特定逻辑组织而成的数据集合。所述数据库,如后所述,其物理载体可以存储介质,例如持久性存储介质。实际上,收据数据中可能只有部分内容是敏感的,而其它内容并不敏感,只需要针对敏感的内容进行隐私保护、其他内容可以公开,甚至在一些情况下可能需要对部分内容实施检索以驱动相关操作的实施,那么针对这部分内容实施隐私保护将影响检索操作的实施。Generally, the receipt data generated after the transaction is executed is stored in plain text, and anyone can see the contents of the above-mentioned receipt fields contained in the receipt data, without privacy protection settings and capabilities. In some solutions that combine blockchain and TEE, in order to achieve privacy protection, the entire content of the receipt data is stored on the blockchain as data that requires privacy protection. The block chain is a data set stored in a database of a node and organized by a specific logic. The database, as described later, may be a storage medium, such as a persistent storage medium, on a physical carrier. In fact, only part of the content of the receipt data may be sensitive, while other content is not sensitive. Only sensitive content needs to be protected for privacy, other content can be disclosed, and in some cases it may even be necessary to retrieve some content to drive Implementation of related operations, the implementation of privacy protection for this part of the content will affect the implementation of retrieval operations.
以下结合图3所示说明本申请一结合代码标注与交易、事件类型的收据存储方法的实施例的实现过程:The following describes the implementation process of an embodiment of a receipt storage method combining code labeling and transaction and event types of this application with reference to FIG. 3:
步骤302,第一区块链节点接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段。In step 302, the first blockchain node receives an encrypted transaction corresponding to a smart contract, and the code of the smart contract includes a field marked by an exposed identifier.
暴露标识符为智能合约的编程语言中所定义的全局性标识,适用于采用该编程语言编写的所有智能合约。因此,通过在编程语言中定义暴露标识符,使得在任一智能合约的代码使用该暴露标识符,即可实现对收据数据的存储控制。例如,用户在编写智能合约的代码时,可以通过在代码中添加暴露标识符来标明一个或多个字段,以表明用户希望收据数据中对应于这部分字段的收据内容采用明文存储,而剩余未标注暴露标识符的字段所对应的收据内容不允许采用明文存储、必须采用密文存储,以实现相应的隐私保护。The exposed identifier is a global identifier defined in the programming language of the smart contract and is applicable to all smart contracts written in this programming language. Therefore, by defining the exposure identifier in a programming language, so that the code of any smart contract uses the exposure identifier, the storage control of the receipt data can be realized. For example, when a user writes the code of a smart contract, he can add an exposed identifier to the code to indicate one or more fields to indicate that the user wants the receipt content corresponding to this part of the field in the receipt data to be stored in plain text, and the remaining The content of the receipt corresponding to the field marked with the exposed identifier is not allowed to be stored in plain text, but must be stored in cipher text to achieve corresponding privacy protection.
换言之,对于暴露标识符标明的字段,从编程语言的维度上而言,允许将相应的收 据内容以明文形式存储;但是,本说明书还可以进一步考量交易类型和智能合约所含的事件函数,并从编程语言、交易类型和事件函数的维度上实现综合考量,确定是否将暴露标识符标明的字段所对应的收据内容以明文形式存储。与交易类型和事件函数相关的信息将在下文描述,此处暂不赘述。In other words, for the fields marked by the exposed identifier, from the perspective of the programming language, the corresponding receipt content is allowed to be stored in plain text; however, this manual can further consider the transaction type and the event function contained in the smart contract, and Comprehensive consideration is achieved from the dimensions of programming language, transaction type, and event function to determine whether to store the content of the receipt corresponding to the field indicated by the exposure identifier in plain text. Information related to transaction types and event functions will be described below, so I won’t repeat them here.
如上文所述,在用于创建智能合约的交易中,data字段保存的可以是该智能合约的字节码。字节码由一连串的字节组成,每一字节可以标识一个操作。基于开发效率、可读性等多方面考虑,开发者可以不直接书写字节码,而是选择一门高级语言编写智能合约代码。高级语言编写的智能合约的代码,经过编译器编译而生成字节码,进而该字节码可以部署到区块链上。以太坊支持的高级语言很多,如Solidity、Serpent、LLL语言等。As mentioned above, in a transaction used to create a smart contract, the data field can store the bytecode of the smart contract. The bytecode consists of a series of bytes, and each byte can identify an operation. Based on many considerations such as development efficiency and readability, developers can choose a high-level language to write smart contract code instead of directly writing bytecode. The code of a smart contract written in a high-level language is compiled by a compiler to generate bytecode, and then the bytecode can be deployed on the blockchain. There are many high-level languages supported by Ethereum, such as Solidity, Serpent, and LLL languages.
以Solidity语言为例,用其编写的合约与面向对象编程语言中的类(Class)很相似,在一个合约中可以声明多种成员,包括状态变量、函数、函数修改器、事件等。如下是以Solidity语言编写的一个简单的智能合约的代码示例1:Taking the Solidity language as an example, the contract written in it is very similar to the class in the object-oriented programming language. A variety of members can be declared in a contract, including state variables, functions, function modifiers, and events. The following is a simple smart contract code example 1 written in Solidity language:
Figure PCTCN2020091370-appb-000001
Figure PCTCN2020091370-appb-000001
在基于Solidity语言编写的智能合约的代码中,可以通过暴露标识符来标明一个或多个字段,使得收据数据中对应于这部分字段的收据内容被允许以明文形式存储(需要进一步结合交易类型和事件函数的维度来确定实际是否采用明文存储),而其余的收据内容应当以密文形式存储。类似地,在基于Serpent、LLL语言等编写的智能合约的代码中,同样可以通过暴露标识符来标明一个或多个字段,以实现相关收据内容的明文存储。In the code of the smart contract written in Solidity language, one or more fields can be marked by exposing identifiers, so that the receipt content corresponding to this part of the field in the receipt data is allowed to be stored in clear text (need to further combine the transaction type and The dimensions of the event function determine whether to actually use plaintext storage), and the rest of the receipt content should be stored in ciphertext. Similarly, in the code of a smart contract written based on Serpent, LLL languages, etc., one or more fields can also be marked by exposing identifiers to realize the plaintext storage of the relevant receipt content.
暴露标识符可以为专用于标明允许明文存储的收据字段,例如可以采用关键字plain来表征该暴露标识符。那么,对于希望以明文形式存储的收据内容,可以在相应的字段 之前添加plain(或者,也可以采用其他方式与相应的字段进行关联)。The exposure identifier may be a receipt field dedicated to indicating that plain text storage is allowed. For example, the keyword plain may be used to characterize the exposure identifier. Then, for the receipt content that you want to store in plain text, you can add plain before the corresponding field (or, you can also associate with the corresponding field in other ways).
暴露标识符标明的字段可以包括收据字段,比如上文所述的Result字段、Gas used字段、Logs字段、Output字段等,或者Logs字段中进一步包含的From字段、To字段、Topic字段、Log data字段等。例如,可以将上述的代码示例1调整为下述的代码示例2:The fields indicated by the exposure identifier may include receipt fields, such as the Result field, Gas used field, Logs field, Output field, etc., as described above, or the From field, To field, Topic field, and Log data field further contained in the Logs field Wait. For example, the code sample 1 above can be adjusted to the following code sample 2:
Figure PCTCN2020091370-appb-000002
Figure PCTCN2020091370-appb-000002
在上述的代码示例2中,在智能合约的代码最前方添加暴露标识符plain,仅从编程语言的维度而言,该暴露标识符plain表明:使得智能合约的代码被执行后,产生的收据数据中的所有字段均允许以明文形式进行存储,那么后续可以针对这些字段中的收据内容实施检索操作,比如对于From字段而言,可以用于统计某一账户所发起的交易量等。而通过进一步结合交易类型和事件函数等维度,对收据数据的存储方案可能存在不同,可参见下文。In the above code example 2, the exposed identifier plain is added to the front of the code of the smart contract. From the perspective of the programming language, the exposed identifier plain indicates: the receipt data generated after the code of the smart contract is executed All fields in are allowed to be stored in plain text, so subsequent retrieval operations can be performed on the receipt content in these fields. For example, the From field can be used to count the transaction volume initiated by an account. However, by further combining dimensions such as transaction types and event functions, there may be different storage schemes for receipt data, which can be seen below.
在一实施例中,第一区块链节点接收的交易对应的智能合约,可以是通过高级语言编写的智能合约,或者可以是字节码形式的智能合约。其中,当智能合约为高级语言编写的智能合约时,第一区块链节点还通过编译器对该高级语言编写的智能合约进行编译,生成字节码形式的智能合约,以在可信执行环境中执行。而当第一区块链节点接收的交易对应的智能合约为字节码形式的智能合约时,该字节码形式的智能合约可由客户端通过编译器对高级语言编写的智能合约进行编译而得到,而该高级语言编写的智能合约由用户在客户端上编写得到。In an embodiment, the smart contract corresponding to the transaction received by the first blockchain node may be a smart contract written in a high-level language, or may be a smart contract in the form of bytecode. Among them, when the smart contract is a smart contract written in a high-level language, the first blockchain node also compiles the smart contract written in the high-level language through a compiler to generate a smart contract in the form of bytecode to be used in a trusted execution environment In execution. When the smart contract corresponding to the transaction received by the first blockchain node is a smart contract in bytecode form, the smart contract in bytecode form can be obtained by compiling the smart contract written in high-level language by the client through the compiler , And the smart contract written in this high-level language is written by the user on the client.
对于第一区块链节点接收的交易对应的智能合约,可以为用户在第一区块链节点上生成的智能合约。当用户采用高级语言编写得到上述的智能合约时,第一区块链节点还通过编译器将该高级语言编写的智能合约编译为字节码形式的智能合约;或者,用户也可能在第一区块链节点上直接编写得到字节码形式的智能合约。The smart contract corresponding to the transaction received by the first blockchain node may be a smart contract generated by the user on the first blockchain node. When the user writes the above-mentioned smart contract in a high-level language, the first blockchain node also uses a compiler to compile the smart contract written in the high-level language into a smart contract in the form of bytecode; or, the user may also be in the first area Smart contracts in bytecode form are directly written on the blockchain nodes.
对于第一区块链节点接收的交易对应的智能合约,可以为用户在客户端上生成的智能合约。例如,用户通过对应的账户在客户端生成该交易后,通过该客户端将交易提交至第一区块链节点。以图4为例,第一区块链节点中包含交易/查询接口,该接口可与客户端对接,使得客户端可以向第一区块链节点提交上述交易。比如上文所述,用户可以采用高级语言在客户端上编写智能合约,然后由客户端通过编译器对该高级语言的智能合约进行编译,得到相应的字节码形式的智能合约。当然,客户端可以直接将高级语言编写的智能合约发送至第一区块链节点,使得第一区块链节点通过编译器编译为字节码形式的智能合约。The smart contract corresponding to the transaction received by the first blockchain node may be a smart contract generated by the user on the client. For example, after the user generates the transaction on the client through the corresponding account, the client submits the transaction to the first blockchain node. Taking FIG. 4 as an example, the first blockchain node includes a transaction/query interface, which can be connected with the client, so that the client can submit the above-mentioned transaction to the first blockchain node. For example, as mentioned above, the user can use a high-level language to write a smart contract on the client, and then the client uses a compiler to compile the smart contract in the high-level language to obtain the corresponding smart contract in bytecode form. Of course, the client can directly send a smart contract written in a high-level language to the first blockchain node, so that the first blockchain node is compiled into a bytecode smart contract by a compiler.
对于第一区块链节点接收的交易对应的智能合约,可以为客户端通过第二区块链节点发来的交易中的智能合约,该智能合约通常为字节码形式;当然,该智能合约也可以为高级语言编写的智能合约,则第一区块链节点可以通过编译器编译为字节码形式的智能合约。For the smart contract corresponding to the transaction received by the first blockchain node, it can be the smart contract in the transaction sent by the client through the second blockchain node. The smart contract is usually in the form of bytecode; of course, the smart contract It can also be a smart contract written in a high-level language, and the first blockchain node can be compiled into a bytecode smart contract by a compiler.
在一实施例中,当智能合约的代码中包括暴露标识符时,高级语言编写的智能合约与字节码形式的智能合约可以具有相同的暴露标识符。而本领域技术人员应当理解的是:字节码可以采用不同于高级语言的暴露标识符,比如高级语言编写的智能合约的代码中包含第一标识符、字节码形式的智能合约的代码中包含第二标识符,则第一标识符与第二标识符之间存在对应关系,确保由高级语言编译为字节码后,不会影响暴露标识符的功能。In an embodiment, when the code of the smart contract includes an exposure identifier, the smart contract written in a high-level language and the smart contract in the form of bytecode may have the same exposure identifier. Those skilled in the art should understand that the bytecode can use an exposed identifier different from a high-level language. For example, the code of a smart contract written in a high-level language contains the first identifier and the code of the smart contract in the form of bytecode. If the second identifier is included, there is a corresponding relationship between the first identifier and the second identifier to ensure that after being compiled into bytecode by a high-level language, the function of exposing the identifier will not be affected.
步骤304A,第一区块链节点在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数。In step 304A, the first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, and the smart contract includes a special event function.
在一实施例中,智能合约可以包含一个或多个事件,每一事件用于实现预定义的相关处理逻辑。智能合约所含的每一事件被调用执行后,均会生成对应的Logs字段,比如当智能合约包含事件1和事件2时,事件1可以生成对应的Logs字段、事件2可以生成对应的Logs字段,使得该智能合约对应的收据数据同时包含多个Logs字段。In an embodiment, the smart contract may include one or more events, and each event is used to implement predefined related processing logic. After each event contained in the smart contract is called and executed, the corresponding Logs field will be generated. For example, when the smart contract contains event 1 and event 2, event 1 can generate the corresponding Logs field, and event 2 can generate the corresponding Logs field. , So that the receipt data corresponding to the smart contract contains multiple Logs fields at the same time.
在一实施例中,智能合约所含的事件可以分为特殊事件函数和普通事件函数,其中:普通事件函数所产生的日志采用密文形式进行存储,以实现隐私保护;特殊事件函数所产生的日志则允许在满足隐私保护需求的前提下,将至少一部分日志字段以明文形式进行存储(具体需结合编程语言和交易类型的维度,以确定是否以明文形式存储),从而可以针对该部分日志字段的内容实施检索,以驱动相关操作的实施。In one embodiment, the events contained in the smart contract can be divided into special event functions and ordinary event functions. The logs generated by the ordinary event functions are stored in cipher text to achieve privacy protection; the special event functions generated The log allows at least part of the log fields to be stored in clear text on the premise of meeting the privacy protection requirements (specifically, the dimensions of the programming language and transaction type must be combined to determine whether to store in clear text), so that this part of the log fields can be stored The content is searched to drive the implementation of related operations.
在一实施例中,可以在区块链网络的链代码或系统合约中记录属于“特殊事件函数”的事件函数,譬如可以记录在特殊事件函数列表中;相应地,通过将智能合约中包含的事件函数与上述的特殊事件函数列表进行对比,可以确定智能合约包含的事件函数是否为上述的特殊事件函数。In one embodiment, the event function belonging to the "special event function" can be recorded in the chain code of the blockchain network or the system contract, for example, can be recorded in the special event function list; accordingly, by adding the Comparing the event function with the above special event function list can determine whether the event function included in the smart contract is the above special event function.
在一实施例中,特殊事件函数可以为智能合约中自定义的任意函数,并通过在智能合约中添加针对事件函数的类型标识符,可以将该事件函数标记为特殊事件函数。以Solidity语言为例,上述代码示例1中包含事件函数的代码示例如下:In an embodiment, the special event function can be any function defined in the smart contract, and by adding a type identifier for the event function in the smart contract, the event function can be marked as a special event function. Taking the Solidity language as an example, the code example of the event function in the above code example 1 is as follows:
event currentPrice(int price);event currentPrice(int price);
在上述代码示例中,智能合约定义了事件:事件currentPrice。但是,该事件未包含任何类型标识符,因而相应的事件函数属于普通事件函数。而对代码示例1中的事件函数进行调整后,可以得到事件函数的代码示例如下:In the above code example, the smart contract defines an event: the event currentPrice. However, the event does not contain any type identifier, so the corresponding event function is a normal event function. After adjusting the event function in Code Example 1, the code example of the event function can be obtained as follows:
event currentPrice expose(int price);event currentPrice expose(int price);
在上述修改后的代码示例中,智能合约定义了事件:事件currentPrice。通过在事件currentPrice中添加类型标识符“expose”,可以将该事件currentPrice标记为上述的特殊事件函数。In the above modified code example, the smart contract defines an event: event currentPrice. By adding the type identifier "expose" to the event currentPrice, the event currentPrice can be marked as the above-mentioned special event function.
以太坊支持的高级语言很多,如Solidity、Serpent、LLL语言等,均可以包含上述的类型标识符。通过编译器可以将高级语言编写的智能合约编译为相应的字节码,第一区块链节点最终在EVM虚拟机中执行字节码形式的智能合约。那么,上述的类型标识符在高级语言和字节码形式的智能合约代码中可以相同,或者高级语言的智能合约代码中为第一类型标识符、字节码形式的智能合约代码中为第二类型标识符,第一类型标识符与第二类型标识符之间可以相互对应。Many high-level languages supported by Ethereum, such as Solidity, Serpent, and LLL languages, can contain the above type identifiers. A smart contract written in a high-level language can be compiled into a corresponding bytecode through a compiler, and the first blockchain node will finally execute the smart contract in the form of bytecode in the EVM virtual machine. Then, the above-mentioned type identifier can be the same in high-level language and bytecode smart contract code, or the first type identifier in high-level language smart contract code, and the second type in bytecode smart contract code Type identifier, the first type identifier and the second type identifier can correspond to each other.
在一实施例中,通过对交易内容进行加密,可使上述经过加密的交易处于隐私保护的状态,避免交易内容发生暴露。譬如,交易内容中可能包含交易发起方的账户地址、交易目标的账户地址等信息,通过加密处理可以确保这些交易内容均无法被直接读取。In one embodiment, by encrypting the transaction content, the encrypted transaction can be kept in a state of privacy protection, and the transaction content can be prevented from being exposed. For example, the transaction content may contain information such as the account address of the transaction initiator and the account address of the transaction target. Encryption processing can ensure that these transaction contents cannot be directly read.
在一实施例中,上述交易可以通过对称加密算法的方式进行加密,也可以采用非对称算法的方式进行加密。对称加密采用的加密算法,例如是DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法等。非对称加密算法,例如是RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。In an embodiment, the foregoing transaction may be encrypted by a symmetric encryption algorithm, or may be encrypted by an asymmetric algorithm. The encryption algorithm used by symmetric encryption, such as DES algorithm, 3DES algorithm, TDEA algorithm, Blowfish algorithm, RC5 algorithm, IDEA algorithm, etc. Asymmetric encryption algorithms, such as RSA, Elgamal, knapsack algorithm, Rabin, D-H, ECC (elliptic curve encryption algorithm), etc.
在一实施例中,上述交易可以通过对称加密算法结合非对称加密算法的方式进行加 密。以客户端将上述交易提交至第一区块链节点为例,客户端可以采用对称加密算法加密交易内容,即采用对称加密算法的密钥加密交易内容,并用非对称加密算法加密对称加密算法中采用的密钥,譬如采用非对称加密算法的公钥加密对称加密算法中采用的密钥。这样,第一区块链节点接收到加密的交易后,可以先采用非对称加密算法的私钥进行解密,得到对称加密算法的密钥,进而用对称加密算法的密钥解密得到交易内容。In one embodiment, the foregoing transaction may be encrypted by a combination of a symmetric encryption algorithm and an asymmetric encryption algorithm. Taking the client submitting the above transaction to the first blockchain node as an example, the client can use a symmetric encryption algorithm to encrypt the transaction content, that is, use the symmetric encryption algorithm key to encrypt the transaction content, and use an asymmetric encryption algorithm to encrypt the symmetric encryption algorithm The key used, for example, the key used in the public key encryption symmetric encryption algorithm using an asymmetric encryption algorithm. In this way, after the first blockchain node receives the encrypted transaction, it can first decrypt it with the private key of the asymmetric encryption algorithm to obtain the key of the symmetric encryption algorithm, and then decrypt it with the key of the symmetric encryption algorithm to obtain the transaction content.
当交易用于调用智能合约时,可以是多重嵌套结构的调用。例如,交易直接调用智能合约1,而该智能合约1的代码调用了智能合约2,且智能合约2中的代码指向了智能合约3的合约地址,使得交易实际上间接调用了智能合约3的代码,而智能合约3中包括某一事件函数。这样,相当于智能合约1中包含了该事件函数。具体实现过程与上述过程类似,在此不再赘述。When a transaction is used to call a smart contract, it can be a call of multiple nested structures. For example, the transaction directly calls smart contract 1, and the code of smart contract 1 calls smart contract 2, and the code in smart contract 2 points to the contract address of smart contract 3, so that the transaction actually calls the code of smart contract 3 indirectly , And smart contract 3 includes a certain event function. In this way, it is equivalent to the event function included in smart contract 1. The specific implementation process is similar to the above process, and will not be repeated here.
步骤306A,第一区块链节点在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志。In step 306A, the first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function.
如前所述,第一区块链节点在执行智能合约的代码时,针对代码所含的每一事件函数,将分别生成对应的Logs字段,即分别生成对应于每一事件函数的日志。通过确定出特殊事件函数,可以进一步确定出特殊事件函数对应的日志,从而将特殊事件函数对应的至少一部分日志字段采用明文形式进行存储。As mentioned above, when the first blockchain node executes the code of the smart contract, for each event function contained in the code, a corresponding Logs field will be generated, that is, a log corresponding to each event function will be generated. By determining the special event function, the log corresponding to the special event function can be further determined, so that at least a part of the log field corresponding to the special event function is stored in plain text.
在一实施例中,比如在以太坊中,第一区块链节点接收到客户端发来的调用智能合约的交易后,可以检查交易是否有效、格式是否正确,验证交易的签名是否合法等。In an embodiment, such as in Ethereum, after receiving a transaction invoking a smart contract from a client, the first blockchain node can check whether the transaction is valid, the format is correct, and the signature of the transaction is legal.
一般来说,以太坊中的节点一般也是争夺记账权的节点,因此,第一区块链节点作为争夺记账权的节点可以在本地执行所述交易。如果争夺记账权的节点中的一个在本轮争夺记账权的过程中胜出,则成为记账节点。第一区块链节点如果在本轮争夺记账权的过程中胜出,就成为记账节点;当然,如果第一区块链节点如果在本轮争夺记账权的过程中没有胜出,则不是记账节点,而其它节点可能成为记账节点。Generally speaking, the nodes in Ethereum are generally nodes that compete for the right to bookkeeping. Therefore, the first blockchain node as the node that competes for the right to bookkeeping can execute the transaction locally. If one of the nodes competing for the accounting right wins in the current round of the accounting right, it becomes the accounting node. If the first blockchain node wins this round of competition for accounting rights, it becomes the accounting node; of course, if the first blockchain node does not win in this round of competition for accounting rights, it is not Accounting nodes, and other nodes may become accounting nodes.
智能合约类似于面向对象编程中的类,执行的结果生成对应该智能合约的合约实例,类似于生成类对应的对象。执行交易中用于创建智能合约的代码的过程,会创建合约账户,并在账户空间中部署合约。以太坊中,智能合约账户的地址是由发送者的地址(如图1-2中的“0xf5e…”)和交易随机数(nonce)作为输入,通过加密算法生成的,比如图1-2中的合约地址“0x6f8ae93…”即由发送者的地址“0xf5e…”和交易中的nonce经加密算法生成。A smart contract is similar to a class in object-oriented programming. The result of execution generates a contract instance corresponding to the smart contract, similar to the object corresponding to the generated class. The process of executing the code used to create a smart contract in a transaction will create a contract account and deploy the contract in the account space. In Ethereum, the address of the smart contract account is generated from the sender's address ("0xf5e..." in Figure 1-2) and the transaction nonce (nonce) as input, and is generated by an encryption algorithm, such as in Figure 1-2 The contract address "0x6f8ae93..." is generated from the sender's address "0xf5e..." and the nonce in the transaction through an encryption algorithm.
一般的,采用工作量证明(Proof of Work,POW)以及股权证明(Proof of Stake,POS)、委任权益证明(Delegated Proof of Stake,DPOS)等共识算法的支持智能合约的区块链网络中,争夺记账权的节点都可以在接收到包含创建智能合约的交易后执行所述交易。争夺记账权的节点中可能其中一个在本轮争夺记账权的过程中胜出,成为记账节点。记账节点可以将该包含智能合约的交易与其它交易一起打包并生成新的区块,并将生成的新的区块发送至其它节点进行共识。Generally, consensus algorithms such as Proof of Work (POW), Proof of Stake (POS), and Delegated Proof of Stake (DPOS) are adopted in blockchain networks that support smart contracts. All nodes competing for the right to account can execute the transaction after receiving the transaction including the creation of a smart contract. One of the nodes competing for the right to bookkeeping may win this round and become the bookkeeping node. The accounting node can package the transaction containing the smart contract with other transactions and generate a new block, and send the generated new block to other nodes for consensus.
对于采用实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)等机制的支持智能合约的区块链网络中,具有记账权的节点在本轮记账前已经商定好。因此,第一区块链节点接收到上述交易后,如果自身不是本轮的记账节点,则可以将该交易发送至记账节点。对于本轮的记账节点(可以是第一区块链节点),在将该交易打包并生成新区块的过程中或者之前,或在将该交易与其它交易一起打包并生成新区块的过程中或者之前,可以执行该交易。所述记账节点将该交易打包(或还包括其它交易一起打包)并生成新的区块后,将生成的新的区块或者区块头发送至其它节点进行共识。For a blockchain network supporting smart contracts that adopts mechanisms such as Practical Byzantine Fault Tolerance (PBFT), the nodes with the right to book accounts have been agreed before this round of bookkeeping. Therefore, after the first blockchain node receives the above transaction, if it is not the accounting node of this round, it can send the transaction to the accounting node. For this round of accounting nodes (which can be the first blockchain node), during or before packaging the transaction and generating a new block, or during the process of packaging the transaction together with other transactions and generating a new block Or before, the transaction can be executed. After the accounting node packages the transaction (or other transactions together) and generates a new block, the generated new block or block header is sent to other nodes for consensus.
如上所述,采用POW机制的支持智能合约的区块链网络中,或者采用POS、DPOS、PBFT机制的支持智能合约的区块链网络中,本轮的记账节点都可以将该交易打包并生成新的区块,并将生成的新的区块后区块头发送至其它节点进行共识。如果其它节点接收到所述区块后经验证没有问题,可以将该新的区块追加到原有的区块链末尾,从而完成记账过程,达成共识;若交易用于创建智能合约,则完成了智能合约在区块链网络上的部署,若交易用于调用智能合约,则完成了智能合约的调用和执行。其它节点验证记账节点发来的新的区块或区块头的过程中,也可以执行所述区块中的交易。As mentioned above, in the blockchain network that supports smart contracts using the POW mechanism, or in the blockchain network that supports smart contracts using the POS, DPOS, and PBFT mechanisms, the accounting nodes in this round can package and package the transaction. Generate a new block, and send the header of the generated new block to other nodes for consensus. If other nodes receive the block and verify that there is no problem, they can append the new block to the end of the original block chain to complete the accounting process and reach a consensus; if the transaction is used to create a smart contract, then The deployment of the smart contract on the blockchain network is completed. If the transaction is used to call the smart contract, the call and execution of the smart contract are completed. In the process of verifying the new block or block header sent by the accounting node, other nodes may also execute the transaction in the block.
所述执行过程,一般可以通过虚拟机执行。以以太坊为例,支持用户在以太坊网络中创建和/或调用一些复杂的逻辑,这是以太坊区别于比特币区块链技术的最大挑战。以太坊作为一个可编程区块链的核心是以太坊虚拟机(EVM,Ethereum Virtual Machine),每个以太坊节点都可以运行EVM。EVM是一个图灵完备的虚拟机,这意味着可以通过它实现各种复杂的逻辑。用户在以太坊中发布和调用智能合约就是在EVM上运行的。The execution process can generally be executed by a virtual machine. Taking Ethereum as an example, it supports users to create and/or call some complex logic in the Ethereum network. This is the biggest challenge that distinguishes Ethereum from Bitcoin blockchain technology. The core of Ethereum as a programmable blockchain is the Ethereum Virtual Machine (EVM), and every Ethereum node can run EVM. EVM is a Turing complete virtual machine, which means that various complex logic can be implemented through it. Users publish and call smart contracts in Ethereum run on the EVM.
本实施例中,第一区块链节点可以在可信执行环境(Trusted Execution Environment,TEE)中执行解密的智能合约的代码。例如图4所示,第一区块链节点可以划分为常规执行环境(图中位于左侧)和TEE,客户端提交的交易(如上文所述,交易可以存在其他来源;此处以客户端提交的交易为例进行说明)首先进入常规执行环境中的“交易/查询接口”进行识别,不存在隐私处理需求的交易可以被留在常规执行环境中进行处理 (这里可以根据交易发起方的用户类型、交易类型、交易所含的标识符等识别是否存在隐私处理需求),而将存在隐私处理需求的交易传递至TEE中进行处理。TEE与常规执行环境相互隔离。交易在进入TEE之前处于加密状态,在可信执行环境内则被解密为明文的交易内容,从而在确保数据安全的前提下,使得该明文的交易内容能够在TEE中实现高效处理,并在TEE中生成明文的收据数据。In this embodiment, the first blockchain node can execute the decrypted smart contract code in a Trusted Execution Environment (TEE). For example, as shown in Figure 4, the first blockchain node can be divided into a regular execution environment (on the left in the figure) and TEE, and transactions submitted by the client (as described above, transactions can have other sources; here, the client submits Take the transaction as an example to illustrate) First, enter the "transaction/query interface" in the regular execution environment for identification. Transactions that do not require privacy processing can be left in the regular execution environment for processing (here can be based on the user type of the transaction initiator , Transaction type, identifier contained in the exchange, etc. to identify whether there is a privacy processing requirement), and the transaction that has a privacy processing requirement is passed to the TEE for processing. TEE is isolated from the conventional execution environment. The transaction is encrypted before entering the TEE, and it is decrypted into the transaction content in the clear in the trusted execution environment, so that the transaction content in the clear text can be efficiently processed in the TEE and in the TEE under the premise of ensuring data security. The receipt data in plaintext is generated in.
TEE是基于CPU硬件的安全扩展,且与外部完全隔离的可信执行环境。TEE最早是由Global Platform提出的概念,用于解决移动设备上资源的安全隔离,平行于操作系统为应用程序提供可信安全的执行环境。ARM的Trust Zone技术最早实现了真正商用的TEE技术。伴随着互联网的高速发展,安全的需求越来越高,不仅限于移动设备,云端设备,数据中心都对TEE提出了更多的需求。TEE的概念也得到了高速的发展和扩充。现在所说的TEE相比与最初提出的概念已经是更加广义的TEE。例如,服务器芯片厂商Intel,AMD等都先后推出了硬件辅助的TEE并丰富了TEE的概念和特性,在工业界得到了广泛的认可。现在提起的TEE通常更多指这类硬件辅助的TEE技术。不同于移动端,云端访问需要远程访问,终端用户对硬件平台不可见,因此使用TEE的第一步就是要确认TEE的真实可信。因此现在的TEE技术都引入了远程证明机制,由硬件厂商(主要是CPU厂商)背书并通过数字签名技术确保用户对TEE状态可验证。同时仅仅是安全的资源隔离也无法满足的安全需求,进一步的数据隐私保护也被提出。包括Intel SGX,AMD SEV在内的商用TEE也都提供了内存加密技术,将可信硬件限定在CPU内部,总线和内存的数据均是密文防止恶意用户进行窥探。例如,英特尔的软件保护扩展(SGX)等TEE技术隔离了代码执行、远程证明、安全配置、数据的安全存储以及用于执行代码的可信路径。在TEE中运行的应用程序受到安全保护,几乎不可能被第三方访问。TEE is a secure extension based on CPU hardware and a trusted execution environment completely isolated from the outside. TEE was first proposed by Global Platform to solve the security isolation of resources on mobile devices, and parallel to the operating system to provide a trusted and secure execution environment for applications. ARM's Trust Zone technology is the first to realize the real commercial TEE technology. With the rapid development of the Internet, security requirements are getting higher and higher. Not only mobile devices, cloud devices, and data centers have put forward more needs for TEE. The concept of TEE has also been rapidly developed and expanded. Compared with the originally proposed concept, TEE is a broader TEE. For example, server chip manufacturers Intel, AMD, etc. have successively introduced hardware-assisted TEE and enriched the concept and characteristics of TEE, which has been widely recognized in the industry. The TEE mentioned now usually refers to this kind of hardware-assisted TEE technology. Unlike the mobile terminal, cloud access requires remote access, and the end user is invisible to the hardware platform. Therefore, the first step in using TEE is to confirm the authenticity of TEE. Therefore, the current TEE technology has introduced a remote certification mechanism, which is endorsed by hardware vendors (mainly CPU vendors) and digital signature technology ensures that users can verify the state of the TEE. At the same time, security requirements that cannot be met by only secure resource isolation, further data privacy protection are also proposed. Commercial TEEs, including Intel SGX and AMD SEV, also provide memory encryption technology to limit trusted hardware to the inside of the CPU. The data on the bus and memory are ciphertext to prevent malicious users from snooping. For example, Intel’s Software Protection Extensions (SGX) and other TEE technologies isolate code execution, remote attestation, secure configuration, secure storage of data, and trusted paths for code execution. The applications running in the TEE are protected by security and are almost impossible to be accessed by third parties.
以Intel SGX技术为例,SGX提供了围圈(enclave,也称为飞地),即内存中一个加密的可信执行区域,由CPU保护数据不被窃取。以第一区块链节点采用支持SGX的CPU为例,利用新增的处理器指令,在内存中可以分配一部分区域EPC(Enclave Page Cache,围圈页面缓存或飞地页面缓存),通过CPU内的加密引擎MEE(Memory Encryption Engine)对其中的数据进行加密。EPC中加密的内容只有进入CPU后才会被解密成明文。因此,在SGX中,用户可以不信任操作系统、VMM(Virtual Machine Monitor,虚拟机监控器)、甚至BIOS(Basic Input Output System,基本输入输出系统),只需要信任CPU便能确保隐私数据不会泄漏。实际应用中,可以将隐私数据加密后以密文形式传递至围圈中,并通过远程证明将对应的秘钥也传入围圈。然后,在CPU的 加密保护下利用数据进行运算,结果会以密文形式返回。这种模式下,既可以利用强大的计算力,又不用担心数据泄漏。Taking Intel SGX technology as an example, SGX provides an enclave (also called an enclave), which is an encrypted trusted execution area in the memory, and the CPU protects data from being stolen. Taking the first blockchain node using a CPU that supports SGX as an example, using the newly added processor instructions, a part of the area EPC (Enclave Page Cache, enclave page cache or enclave page cache) can be allocated in the memory through the CPU. The encryption engine MEE (Memory Encryption Engine) encrypts the data in it. The encrypted content in EPC will be decrypted into plaintext only after entering the CPU. Therefore, in SGX, users can distrust the operating system, VMM (Virtual Machine Monitor), and even BIOS (Basic Input Output System). They only need to trust the CPU to ensure that private data will not leakage. In practical applications, the private data can be encrypted and transmitted to the circle in cipher text, and the corresponding secret key can also be transmitted to the circle through remote certification. Then, the data is used for calculation under the encryption protection of the CPU, and the result will be returned in cipher text. In this mode, you can use powerful computing power without worrying about data leakage.
如上文所述,通过在TEE中执行解密后的交易内容,可以确保执行过程在可信环境内完成,以确保隐私信息不会发生泄漏。当上述存在隐私处理需求的交易用于创建智能合约时,该交易中包含智能合约的代码,第一区块链节点可以在TEE中对该交易进行解密得到其所含智能合约的代码,并进而在TEE中执行该代码。当上述存在隐私处理需求的交易用于调用智能合约时,第一区块链节点可以在TEE中执行该代码(若被调用的智能合约处理加密状态,则需要先在TEE中对该智能合约进行解密,以得到相应的代码)。具体的,第一区块链节点可以利用CPU中新增的处理器指令,在内存中分配一部分区域EPC,通过CPU内的加密引擎MEE对上述的明文代码进行加密存入所述EPC中。EPC中加密的内容进入CPU后被解密成明文。在CPU中,对明文的代码进行运算,完成执行过程。例如,在SGX技术中,执行智能合约的明文代码,可以将EVM加载进围圈中。在远程证明过程中,密钥管理服务器可以计算本地EVM代码的hash值,并与第一区块链节点中加载的EVM代码的hash值比对,比对结果正确作为通过远程证明的一个必要条件,从而完成对第一区块链节点SGX围圈加载的代码的度量。经过度量,正确的EVM可以在SGX中执行上述智能合约的代码。As mentioned above, by executing the decrypted transaction content in the TEE, it can be ensured that the execution process is completed in a trusted environment to ensure that private information will not be leaked. When the above transaction with privacy processing requirements is used to create a smart contract, the transaction contains the code of the smart contract, and the first blockchain node can decrypt the transaction in the TEE to obtain the code of the smart contract contained therein, and then Execute this code in TEE. When the above transaction with privacy processing requirements is used to call a smart contract, the first blockchain node can execute the code in the TEE (if the called smart contract handles the encryption state, the smart contract needs to be executed in the TEE first. Decrypt to get the corresponding code). Specifically, the first blockchain node may use the newly added processor instructions in the CPU to allocate a part of the area EPC in the memory, and encrypt the above-mentioned plaintext code and store it in the EPC through the encryption engine MEE in the CPU. The encrypted content in EPC is decrypted into plain text after entering the CPU. In the CPU, perform operations on the plaintext code to complete the execution process. For example, in SGX technology, the plaintext code for executing smart contracts can load the EVM into the enclosure. During the remote certification process, the key management server can calculate the hash value of the local EVM code and compare it with the hash value of the EVM code loaded in the first blockchain node. The correct comparison result is a necessary condition for passing remote certification. , So as to complete the measurement of the code loaded in the SGX circle of the first blockchain node. After measurement, the correct EVM can execute the above smart contract code in SGX.
步骤304B,第一区块链节点根据所述交易的交易类型,确定相应的暴露字段。 Step 304B: The first blockchain node determines the corresponding exposed field according to the transaction type of the transaction.
在一实施例中,交易可以包括类型字段(如Type字段),该类型字段的取值用于标明相应的交易类型。因此,通过读取交易所含类型字段的取值,可以确定出交易类型,比如存证类型、资产转移(如转账)类型、合约创建类型、合约调用类型等,本说明书并不对此进行限制。In an embodiment, the transaction may include a type field (such as a Type field), and the value of the type field is used to indicate the corresponding transaction type. Therefore, by reading the value of the type field in the exchange, the transaction type can be determined, such as the type of deposit certificate, the type of asset transfer (such as transfer), the type of contract creation, and the type of contract invocation. This manual does not limit this.
在一实施例中,不同类型的交易可以分别存在对应的暴露字段。暴露字段为收据数据中指定的一个或多个字段,在收据数据需要密文存储以保护隐私的前提下,可以结合前述的暴露标识符标明的字段、特殊事件函数对应的日志与暴露字段之间的匹配情况,选择性地将特殊事件函数对应的日志中被暴露标识符标明的暴露字段以明文形式进行存储,而并非将所有被暴露标识符标明的字段或者所有暴露字段均以明文形式进行存储,可以在满足隐私保护需求的同时,以便后续针对该明文形式存储的收据内容实施检索等操作。In an embodiment, different types of transactions may respectively have corresponding exposed fields. The exposed field is one or more fields specified in the receipt data. Under the premise that the receipt data needs to be stored in cipher text to protect privacy, it can be combined with the field indicated by the aforementioned exposure identifier, and the log corresponding to the special event function and the exposed field Selectively store the exposed fields marked by the exposed identifier in the log corresponding to the special event function in plain text, instead of storing all fields marked by the exposed identifier or all exposed fields in plain text , While meeting the privacy protection requirements, subsequent retrieval and other operations can be performed on the content of the receipt stored in plaintext.
在一实施例中,可以预先定义每一交易类型与暴露字段之间的映射关系,并将该映射关系记录于区块链中,使得第一区块链节点可以获取该预定义的映射关系,并进一步 根据上述交易的交易类型和该映射关系,确定收据数据中的暴露字段。例如,存证类型对应的暴露字段可以包括上述From字段之外的所有字段,资产转移类型对应的暴露字段可以包括上述的To字段,合约创建类型和合约调用类型对应的暴露字段可以包括上述From字段之外的所有字段,而对于其他交易类型的情况,此处不再一一赘述。In an embodiment, the mapping relationship between each transaction type and the exposed field may be predefined, and the mapping relationship may be recorded in the blockchain, so that the first blockchain node can obtain the predefined mapping relationship, And further determine the exposed fields in the receipt data according to the transaction type of the above-mentioned transaction and the mapping relationship. For example, the exposed field corresponding to the attestation type may include all fields except the above-mentioned From field, the exposed field corresponding to the asset transfer type may include the above-mentioned To field, and the exposed field corresponding to the contract creation type and contract invocation type may include the above-mentioned From field. All the fields except for the other transaction types will not be repeated here.
其中,上述的映射关系具体可以记录于系统合约中。还可以将该映射关系记录于区块链网络的链代码中。通过将映射关系记录于系统合约中,便于后续针对该映射关系进行更新升级,而记录于链代码中的映射关系则相对不易实现更新升级,后续将针对两者的差异进行描述,此处暂不赘述。Among them, the above-mentioned mapping relationship can be specifically recorded in the system contract. The mapping relationship can also be recorded in the chain code of the blockchain network. By recording the mapping relationship in the system contract, it is convenient to update and upgrade the mapping relationship later, while the mapping relationship recorded in the chain code is relatively difficult to update and upgrade. The differences between the two will be described later, and I will not temporarily Repeat.
步骤308,第一区块链节点存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。Step 308: The first blockchain node stores the receipt data, so that at least a part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text. The at least part of the receipt content includes an exposed field marked by the exposure identifier.
在智能合约的代码中,暴露标识符可以标明一个或多个字段,这些字段在收据数据中存在对应的收据内容。不同类型的交易往往存在不同的隐私保护需求,可以允许相应的暴露字段以明文形式存储。而特殊事件函数被执行后,收据数据中包含对应于特殊事件函数的日志,该日志实际为收据数据中的部分收据内容。而本说明书中通过对暴露标识符、交易类型和特殊事件函数进行综合考量,可以筛选出上述三部分收据内容的交叉内容,并针对该交叉内容实施明文存储,收据数据的其余内容均采用密文存储。In the code of the smart contract, the exposed identifier can indicate one or more fields, and these fields have corresponding receipt content in the receipt data. Different types of transactions often have different privacy protection requirements, and the corresponding exposed fields can be allowed to be stored in plain text. After the special event function is executed, the receipt data contains a log corresponding to the special event function, which is actually part of the receipt content in the receipt data. In this manual, by comprehensively considering the exposure identifier, transaction type, and special event function, the cross content of the above three parts of receipt content can be filtered out, and the cross content can be stored in plain text. The rest of the receipt data is in cipher text. storage.
由于暴露标识符为智能合约的编程语言中所定义的全局性标识,因而只要在智能合约中写入暴露标识符后,就难以修改该暴露标识符所标明的字段。而交易类型与编程语言无关,可由用户根据实际需求进行选择;同时,特殊事件函数的定义也不一定基于编程语言实现,比如在基于特殊事件函数列表等方式记录特殊事件函数时,即便智能合约中包含的某一事件函数原本属于特殊事件函数,也可以通过对特殊事件函数列表进行更改的方式,将原有的特殊事件函数更新为普通事件函数,从而避免该事件函数产生的日志以明文形式存储,或者将原有的普通事件函数更新为特殊事件函数,使得该事件函数产生的日志中的至少一部分内容以明文形式存储。Since the exposed identifier is a global identifier defined in the programming language of the smart contract, it is difficult to modify the fields marked by the exposed identifier as long as the exposed identifier is written in the smart contract. The transaction type has nothing to do with the programming language and can be selected by the user according to the actual needs. At the same time, the definition of the special event function is not necessarily based on the programming language. For example, when recording the special event function based on the special event function list, even in the smart contract A certain event function included is originally a special event function. You can also update the original special event function to a normal event function by changing the list of special event functions, so as to prevent the log generated by the event function from being stored in plain text , Or update the original ordinary event function to a special event function, so that at least part of the content in the log generated by the event function is stored in plain text.
以上述的代码示例2为例:假定事件currentPrice原本并未记录于特殊事件函数列表中,即事件currentPrice对应于普通事件函数,那么即便在智能合约的代码中添加了暴露标识符plain,事件currentPrice产生的日志中的各个字段(包括暴露字段)仍以密文形式存储。但是,如果将事件currentPrice添加至特殊事件函数列表中,那么代码示例2不需要调整的情况下,即可使得事件currentPrice对应的日志中的暴露字段以明文形式 存储;比如,当From字段和To字段为暴露字段时,事件currentPrice所产生日志中的From字段和To字段将以明文形式存储,而其余字段则以密文形式存储。Take the above code example 2 as an example: assuming that the event currentPrice was not originally recorded in the special event function list, that is, the event currentPrice corresponds to a normal event function, then even if the exposed identifier plain is added to the smart contract code, the event currentPrice is generated All fields in the log (including exposed fields) are still stored in ciphertext. However, if the event currentPrice is added to the list of special event functions, then the exposed fields in the log corresponding to the event currentPrice can be stored in plain text without the need to adjust the code example 2; for example, when the From field and the To field To expose fields, the From field and To field in the log generated by the event currentPrice will be stored in plain text, while the remaining fields will be stored in cipher text.
需要指出的是:在上述的代码示例2中,通过在代码最前方声明“plain”,该暴露标识符“plain”所标明的字段为收据数据中的所有字段,且这些字段均为合约级字段,使得第一区块链节点在存储收据数据时,收据数据中所有对应于该合约级字段的收据内容,均被允许以明文形式存储。当然,如果代码示例2中通过暴露标识符标注了譬如From字段,那么该From字段为上述的合约级字段,当该From字段进一步属于交易类型对应的暴露字段时,可使第一区块链节点在存储收据数据时,收据数据中所有对应于该From字段的收据内容,均被允许以明文形式存储。It should be pointed out that: in the code example 2 above, by declaring "plain" at the front of the code, the fields marked by the exposed identifier "plain" are all fields in the receipt data, and these fields are contract-level fields , So that when the first blockchain node stores the receipt data, all the receipt contents corresponding to the contract-level field in the receipt data are allowed to be stored in plain text. Of course, if the From field is marked with the exposed identifier in Code Example 2, then the From field is the contract-level field mentioned above. When the From field is further an exposed field corresponding to the transaction type, the first blockchain node can be used When storing receipt data, all the receipt contents corresponding to the From field in the receipt data are allowed to be stored in plain text.
当智能合约的代码中包含多个事件函数时,在多个事件函数分别产生的各自对应的Logs字段中,均可能存在属于合约级字段的暴露字段;进一步地,可以通过识别各个事件函数的类型为普通事件函数或特殊事件函数,从而将所有特殊事件函数所产生的日志中属于合约级字段的暴露字段以明文形式存储。例如,智能合约可以包括下述的代码示例3:When the code of a smart contract contains multiple event functions, in the respective Logs fields generated by the multiple event functions, there may be exposed fields belonging to contract-level fields; further, the type of each event function can be identified It is a normal event function or a special event function, so that the exposed fields belonging to the contract-level fields in the logs generated by all special event functions are stored in plaintext. For example, a smart contract can include the following code example 3:
plain Contract Example{plain Contract Example{
  int price;Int price;
  int price1;Int price1;
  event currentPrice1(int price);Event currentPrice1(int price);
  event currentPrice2(int price1);Event currentPrice2(int price1);
  …
在上述的代码示例3中,与代码示例2相类似地,暴露标识符“plain”位于智能合约的代码最前方,使得收据数据中的所有字段均被标注为合约级字段;同时,智能合约中包含了事件currentPrice1和事件currentPrice2:假定From字段为交易类型对应的暴露字段,并且事件currentPrice1对应于特殊事件函数列表中定义的特殊事件函数、事件currentPrice2对应于普通事件函数,那么在事件currentPrice1和事件currentPrice2分别产生的日志Log1、Log2中,日志Log1包含的From字段以明文形式存储、日志Log2包含的From字段以密文形式存储;类似地,日志Log1中属于暴露字段的其他字段也以明文形式存储、非暴露字段以密文形式存储,而日志Log2的所有字段均以密文形式存储。并且,如果通过对特殊事件函数列表进行更新后,将事件currentPrice2更新为对应 于特殊事件函数,那么日志Log2包含的属于暴露字段的所有字段将以明文形式存储,而无需对智能合约的代码做任何变动。In the above code example 3, similar to the code example 2, the exposed identifier "plain" is located at the forefront of the code of the smart contract, so that all fields in the receipt data are marked as contract-level fields; at the same time, in the smart contract Contains events currentPrice1 and event currentPrice2: Assuming that the From field is the exposed field corresponding to the transaction type, and the event currentPrice1 corresponds to the special event function defined in the special event function list, and the event currentPrice2 corresponds to the normal event function, then in the event currentPrice1 and event currentPrice2 In the generated logs Log1 and Log2, the From field contained in log Log1 is stored in plain text, and the From field contained in log Log2 is stored in cipher text; similarly, other fields in log Log1 that are exposed fields are also stored in plain text. Non-exposed fields are stored in cipher text, while all fields of log Log2 are stored in cipher text. Moreover, if the event currentPrice2 is updated to correspond to the special event function after updating the list of special event functions, all fields belonging to the exposed fields contained in the log Log2 will be stored in plain text, without the need to do anything to the smart contract code change.
对于上述的合约级字段而言,可以通过前述的类型标识符来标明智能合约所含的事件函数是否为特殊事件函数。例如,可以将上述的代码示例3调整为下述的代码示例4:For the aforementioned contract-level fields, the aforementioned type identifier can be used to indicate whether the event function included in the smart contract is a special event function. For example, the above code sample 3 can be adjusted to the following code sample 4:
plain Contract Example{plain Contract Example{
  int price;Int price;
  int price1;Int price1;
  event currentPrice1expose(int price);Event currentPrice1expose(int price);
  event currentPrice2(int price1);Event currentPrice2(int price1);
  …
在上述的代码示例4中,与代码示例2相类似地,合约级字段包括收据数据中的所有字段;同时,智能合约中包含了事件currentPrice1和事件currentPrice2:由于事件currentPrice1在包含如前所述的类型标识符expose,使得该事件currentPrice1被标注为对应于特殊事件函数,而事件currentPrice2并未包含类型标识符expose,使得事件currentPrice2被标注为对应于普通事件函数,那么在事件currentPrice1和事件currentPrice2分别产生的日志Log1、Log2中,日志Log1中对应于交易类型的所有暴露字段均以明文形式存储、日志Log2包含的所有字段均以密文形式存储。In the above code example 4, similar to the code example 2, the contract-level fields include all fields in the receipt data; at the same time, the smart contract contains the event currentPrice1 and the event currentPrice2: because the event currentPrice1 contains the above mentioned The type identifier expose causes the event currentPrice1 to be marked as corresponding to the special event function, while the event currentPrice2 does not contain the type identifier expose, so that the event currentPrice2 is marked as corresponding to the normal event function, then the event currentPrice1 and event currentPrice2 are generated respectively In the logs Log1 and Log2, all the exposed fields corresponding to the transaction type in the log Log1 are stored in plain text, and all the fields contained in the log Log2 are stored in cipher text.
虽然类型标识符与暴露标识符相类似的,都是智能合约的编程语言中所定义的全局性标识,但是暴露标识符作用于合约级字段、类型标识符作用于事件函数,使得通过将暴露标识符与类型标识符配合使用,仅需单次添加暴露标识符即可设定形成上述的合约级字段,并且进而可以灵活地标注希望对合约级字段进行明文存储的事件函数,尤其是当智能合约中包含的事件函数的数量较多、事件函数中涉及的字段的数量较多时,仅需添加类似于上述的“plain”即可,无需针对每一事件函数分别实施设定操作,可以简化代码逻辑、防止错标或漏标。Although the type identifier and the exposed identifier are similar, they are both global identifiers defined in the programming language of the smart contract, but the exposed identifier acts on the contract-level fields and the type identifier acts on the event function, so that by In conjunction with the type identifier, you only need to add a single exposure identifier to set the contract-level fields mentioned above, and then you can flexibly mark the event functions that you want to store the contract-level fields in plaintext, especially when smart contracts When there are a large number of event functions included in the event function and the number of fields involved in the event function is large, you only need to add a "plain" similar to the above. There is no need to implement settings for each event function separately, which can simplify the code logic , Prevent mislabeling or missing labels.
除了合约级字段之外,暴露标识符标明的字段可以包括:对应于智能合约中定义的至少一个事件的事件级字段,使得第一区块链节点在存储收据数据时,可以确定出所述至少一个事件对应的特殊事件函数产生的日志,并将确定出的日志中属于事件级字段的暴露字段以明文形式存储。尤其是,当智能合约中包含多个事件时,可以针对至少一部分事件设定上述的事件级字段,使得这部分事件对应的日志中属于事件级字段的暴露字 段以明文形式存储,而这部分事件对应的日志中的其他字段、其余事件对应的收据内容均以密文形式存储。以From字段为例,可以将上述的代码示例4调整为下述的代码示例5:In addition to the contract-level fields, the fields marked by the exposure identifier may include: event-level fields corresponding to at least one event defined in the smart contract, so that the first blockchain node can determine the at least one event when storing the receipt data. A log generated by a special event function corresponding to an event, and the determined exposed fields belonging to the event-level field in the log are stored in plain text. In particular, when the smart contract contains multiple events, the above event-level fields can be set for at least some of the events, so that the exposed fields belonging to the event-level fields in the logs corresponding to these events are stored in plain text, and this part of the events Other fields in the corresponding log and the contents of receipts corresponding to other events are stored in cipher text. Taking the From field as an example, the above code example 4 can be adjusted to the following code example 5:
Contract Example{Contract Example{
int price;int price;
int price1;int price1;
event currentPrice1(“from”,int price);event currentPrice1("from",int price);
event currentPrice2(int price1);event currentPrice2(int price1);
在上述的代码示例5中,事件currentPrice1虽然未添加暴露标识符“plain”,但是包含了内容“from”,该内容“from”对应于From字段,用于表明事件currentPrice1所产生日志中的From字段需要以明文形式存储,因而该内容“from”既属于上述的暴露标识符,又标明了需要明文存储的From字段。并且,由于内容“from”位于事件currentPrice1中,因而From字段为事件级字段,使得当From字段为交易类型对应的暴露字段且该事件currentPrice1对应于特殊事件函数时,在该事件currentPrice1对应产生的日志Logs中,From字段将以明文形式进行存储、其他字段以密文形式存储。而对于代码示例5所含的另一事件currentPrice2,由于并未针对该事件currentPrice2添加暴露标识符,因而不论该事件currentPrice2对应于特殊事件函数或普通事件函数,所产生的日志Logs均以密文形式存储。In the above code example 5, although the event currentPrice1 does not add the exposed identifier "plain", it contains the content "from". The content "from" corresponds to the From field and is used to indicate the From field in the log generated by the event currentPrice1 It needs to be stored in plain text, so the content "from" not only belongs to the above exposed identifier, but also indicates the From field that needs to be stored in plain text. Moreover, since the content "from" is in the event currentPrice1, the From field is an event-level field, so that when the From field is an exposed field corresponding to the transaction type and the event currentPrice1 corresponds to a special event function, the log generated in the event currentPrice1 corresponds to In Logs, the From field will be stored in plain text, and other fields will be stored in cipher text. As for the other event currentPrice2 contained in code example 5, since no exposure identifier is added for the event currentPrice2, regardless of whether the event currentPrice2 corresponds to a special event function or a normal event function, the generated log Logs are in the form of ciphertext storage.
上述的关键词“from”指明了将From字段设定为事件级字段;而在其他实施例中,也可以并不指明具体的字段。例如,可以将上述的代码示例4调整为下述的代码示例6:The above keyword "from" indicates that the From field is set as an event-level field; however, in other embodiments, the specific field may not be specified. For example, the above code sample 4 can be adjusted to the following code sample 6:
Contract Example{Contract Example{
int price;int price;
int price1;int price1;
plain event currentPrice1(int price);plain event currentPrice1(int price);
event currentPrice2(int price1);event currentPrice2(int price1);
在上述的代码示例6中,通过在事件currentPrice1之前添加暴露标识符“plain”, 可以将该事件currentPrice1所产生的日志中的所有字段均作为上述的事件级字段,譬如前述的From字段、To字段、Topic字段、Log Data字段等。那么,当该事件currentPrice1对应于特殊事件函数时,可以从该事件currentPrice1所产生日志中的确定出既属于上述的事件级字段又属于交易类型对应的暴露字段的日志字段,以采用明文形式存储;如果上述的From字段、To字段、Topic字段、Log Data字段等均为暴露字段,那么相当于将该事件currentPrice1对应的所有收据内容(比如产生的日志)均以明文形式存储。In the above code example 6, by adding the exposure identifier "plain" before the event currentPrice1, all the fields in the log generated by the event currentPrice1 can be used as the aforementioned event-level fields, such as the aforementioned From field and To field. , Topic field, Log Data field, etc. Then, when the event currentPrice1 corresponds to a special event function, the log field that belongs to both the above event-level field and the exposed field corresponding to the transaction type can be determined from the log generated by the event currentPrice1, and stored in plain text; If the above-mentioned From field, To field, Topic field, Log Data field, etc. are all exposed fields, it is equivalent to storing all receipt content (such as the generated log) corresponding to the event currentPrice1 in plain text.
在上述的代码示例5-6对应的实施例中,即对于事件级字段而言,可以通过特殊事件函数列表或者类型标识符的方式识别智能合约所含的事件函数是否为特殊事件函数,此处不再一一赘述。In the embodiment corresponding to the above code examples 5-6, that is, for the event-level field, it can be recognized whether the event function contained in the smart contract is a special event function by means of a special event function list or type identifier. Do not repeat them one by one.
本说明书通过在一定程度上暴露收据内容,以用于实现对DAPP客户端的驱动或其他的功能扩展。并且,本说明书通过综合考虑暴露标识符标明的字段、交易类型对应的暴露字段和特殊事件函数产生的日志,可以准确选取用于明文存储的字段,即同时满足“匹配于暴露标识符标明的字段”、“匹配于交易类型”和“属于特殊事件函数产生的日志”的收据内容,从而在满足上述功能扩展需求的同时,确保绝大部分的用户隐私能够得到保护。尤其是,当第一区块链节点是根据区块链网络上记载的信息(如特殊事件函数列表)来识别特殊事件函数时,可以在智能合约已经创建之后,通过对“特殊事件函数”进行更新,以调整收据数据的存储方式,比如将原本明文存储的收据内容改为密文存储,或者将原本密文存储的收据内容改为明文存储。This manual exposes the content of the receipt to a certain extent to realize the driver of the DAPP client or other function extensions. In addition, this manual comprehensively considers the fields indicated by the exposed identifier, the exposed fields corresponding to the transaction type, and the logs generated by the special event function, and can accurately select the fields for plaintext storage, that is, at the same time satisfying "matches to the fields indicated by the exposed identifiers" "," "matching transaction type" and "belonging to a log generated by a special event function", so as to meet the above-mentioned function expansion requirements while ensuring that most of the user privacy can be protected. In particular, when the first blockchain node recognizes the special event function based on the information recorded on the blockchain network (such as the list of special event functions), it can perform the "special event function" after the smart contract has been created. Update to adjust the storage method of receipt data, such as changing the original receipt content stored in plain text to cipher text storage, or changing the original receipt content stored in cipher text to plain text storage.
通过在计算设备(物理机或虚拟机)上运行区块链的程序代码(以下简称为链代码),可以将该计算设备配置为区块链网络中的区块链节点,比如上述的第一区块链节点等。换言之,第一区块链节点通过运行上述的链代码,以实现相应的功能逻辑。因此,可以在创建区块链网络时,将上文所述的与暴露标识符、交易类型和事件函数相关的收据数据存储逻辑写入链代码中,使得各个区块链节点均可以实现该收据数据存储逻辑;以第一区块链节点为例,该与暴露标识符、交易类型和事件函数相关的收据数据存储逻辑可以包括:对交易类型的识别逻辑、对事件函数的识别逻辑、基于暴露标识符对收据内容进行存储的逻辑。By running the program code of the blockchain (hereinafter referred to as the chain code) on the computing device (physical machine or virtual machine), the computing device can be configured as a blockchain node in the blockchain network, such as the first Blockchain nodes, etc. In other words, the first blockchain node runs the above chain code to realize the corresponding functional logic. Therefore, when the blockchain network is created, the receipt data storage logic related to the exposed identifier, transaction type, and event function described above can be written into the chain code, so that each blockchain node can implement the receipt Data storage logic; taking the first blockchain node as an example, the receipt data storage logic related to the exposure identifier, transaction type, and event function may include: transaction type recognition logic, event function recognition logic, and exposure-based The identifier stores the logic of the receipt content.
对交易类型的识别逻辑用于指示第一区块链节点:识别交易发起方所发起的交易的类型。比如:根据交易所含的类型字段的取值,确定该交易对应的交易类型。具体可以参考上文中识别交易类型的相关描述,此处不再赘述。The identification logic of the transaction type is used to instruct the first blockchain node: to identify the type of transaction initiated by the transaction initiator. For example, according to the value of the type field contained in the exchange, determine the transaction type corresponding to the transaction. For details, please refer to the relevant description of identifying transaction types above, which will not be repeated here.
对事件函数的识别逻辑用于指示第一区块链节点:识别交易对应的智能合约所 含的事件函数的类型。比如:根据事件函数所含的类型标识符进行识别,或者根据区块链网络中记载的特殊事件函数列表进行识别。具体可以参考上文中识别特殊事件函数的相关描述,此处不再赘述。The identification logic of the event function is used to instruct the first blockchain node to identify the type of event function contained in the smart contract corresponding to the transaction. For example: according to the type identifier contained in the event function, or according to the list of special event functions recorded in the blockchain network. For details, please refer to the relevant description of identifying special event functions above, which will not be repeated here.
基于暴露标识符对收据内容进行存储的逻辑用于指示第一区块链节点:针对暴露标识符标明的字段、暴露标识符未标明的字段等,分别采用何种方式存储相应的收据内容。比如:对于识别出的特殊事件函数,将该特殊事件函数产生的日志中由暴露标识符标明的暴露字段采用明文形式进行存储、其余部分采用密文形式进行存储,并且收据数据中其他的收据内容均采用密文形式进行存储。The logic of storing the content of the receipt based on the exposed identifier is used to instruct the first blockchain node: for the fields marked by the exposed identifier, the fields not marked by the exposed identifier, etc., how to store the corresponding receipt content. For example: for the identified special event function, the exposed field marked by the exposure identifier in the log generated by the special event function is stored in plain text, the rest is stored in cipher text, and the other receipt content in the receipt data All are stored in ciphertext form.
然而,链代码的升级更新相对较为困难,使得采用链代码实现对收据数据的存储存在灵活性低、可扩展性不足的问题。为了实现对链代码的功能扩展,如图5所示,可以采用链代码与系统合约相结合的方式:链代码用于实现区块链网络的基础功能,而运行过程中的功能扩展可以通过系统合约的方式实现。与上述的智能合约相类似的,系统合约包括譬如字节码形式的代码,第一区块链节点可以通过运行系统合约的代码(比如,根据唯一对应的地址“0x53a98…”来读取该系统合约中的代码),实现对链代码的功能补充。相应地,第一区块链节点可以读取系统合约的代码,该系统合约的代码中定义了与暴露标识符、交易类型和事件函数相关的收据数据存储逻辑;然后,第一区块链节点可以执行系统合约的代码,从而基于与暴露标识符、交易类型和事件函数相关的收据数据存储逻辑,将对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。However, it is relatively difficult to upgrade the chain code, which makes the storage of receipt data using the chain code have the problems of low flexibility and insufficient scalability. In order to realize the function expansion of the chain code, as shown in Figure 5, a combination of chain code and system contract can be used: chain code is used to realize the basic functions of the blockchain network, and the function expansion during operation can be achieved through the system Realized by way of contract. Similar to the above-mentioned smart contract, the system contract includes code in the form of bytecode, for example, the first blockchain node can run the system contract code (for example, according to the unique corresponding address "0x53a98..." to read the system The code in the contract) to realize the functional supplement of the chain code. Correspondingly, the first blockchain node can read the code of the system contract, which defines the receipt data storage logic related to the exposure identifier, transaction type, and event function; then, the first blockchain node The code of the system contract can be executed, and based on the receipt data storage logic related to the exposure identifier, transaction type, and event function, at least part of the receipt content in the log corresponding to the special event function is stored in clear text. The remaining content of the data is stored in a ciphertext form, and the at least a part of the receipt content includes the exposed field indicated by the exposure identifier.
区别于上述由用户发布至区块链的智能合约,系统合约无法由用户自由发布。第一区块链节点读取的系统合约可以包括配置于区块链网络的创世块中的预置系统合约;以及,区块链网络中的管理员(即上述的管理用户)可以具有针对系统合约的更新权限,从而针对诸如上述的预置系统合约进行更新,则上述第一区块链节点读取的系统合约还可以包括相应的更新后系统合约。当然,更新后系统合约可以由管理员对预置系统合约实施一次更新后得到;或者,更新后系统合约可以由管理员对预置系统合约实施多次迭代更新后得到,比如由预置系统合约更新得到系统合约1、对系统合约1更新得到系统合约2、对系统合约2更新得到系统合约3,该系统合约1、系统合约2、系统合约3均可以视为更新后系统合约,但第一区块链节点通常会以最新版本的系统合约为准,比如第一区块链节点会以系统合约3中的代码为准,而非系统合约1或系统合约2中的 代码。Different from the above-mentioned smart contracts issued by users to the blockchain, system contracts cannot be freely issued by users. The system contract read by the first blockchain node may include a preset system contract configured in the genesis block of the blockchain network; and, the administrator in the blockchain network (ie, the above-mentioned management user) may have The update authority of the system contract, so as to update the preset system contract such as the above, the system contract read by the first blockchain node may also include the corresponding updated system contract. Of course, the updated system contract can be obtained by the administrator after one update of the preset system contract; or, the updated system contract can be obtained by the administrator after multiple iterations of the preset system contract, such as the preset system contract Update the system contract 1, update the system contract 1 to obtain the system contract 2, update the system contract 2 to obtain the system contract 3. The system contract 1, the system contract 2, and the system contract 3 can all be regarded as the updated system contract, but the first Blockchain nodes usually follow the latest version of the system contract. For example, the first blockchain node will follow the code in system contract 3 instead of the code in system contract 1 or system contract 2.
除了创世块中包含的预置系统合约之外,管理员还可以在后续区块内发布系统合约,以及针对所发布的系统合约进行更新。总之,应当通过诸如权限管理等方式,对系统合约的发布和更新实施一定程度的限制,以确保区块链网络的功能逻辑能够正常运作,并且避免对任何用户造成不必要的损失。In addition to the preset system contracts included in the genesis block, the administrator can also publish system contracts in subsequent blocks and update the published system contracts. In short, a certain degree of restrictions should be imposed on the issuance and update of system contracts through methods such as authority management to ensure that the functional logic of the blockchain network can operate normally and avoid unnecessary losses to any users.
第一区块链节点通过密钥对至少一部分收据内容进行加密。所述加密,可以采用对称加密,也可以采用非对称加密。如果第一区块链节点用对称加密方式,即用对称加密算法的对称密钥对收据内容加密,则客户端(或其他持有密钥的对象)可以用该对称加密算法的对称密钥对加密后的收据内容进行解密。The first blockchain node encrypts at least a part of the receipt content through the key. The encryption may be symmetric encryption or asymmetric encryption. If the first blockchain node uses symmetric encryption, that is, the symmetric key of the symmetric encryption algorithm is used to encrypt the content of the receipt, the client (or other object holding the key) can use the symmetric key pair of the symmetric encryption algorithm The encrypted receipt content is decrypted.
第一区块链节点用对称加密算法的对称密钥对收据内容进行加密时,该对称密钥可由客户端预先提供至第一区块链节点。那么,由于只有客户端(实际应当为客户端上的已登录账户对应的用户)和第一区块链节点掌握该对称密钥,使得仅该客户端能够解密相应的加密后的收据内容,避免无关用户甚至不法分子对加密后的收据内容进行解密。When the first blockchain node uses the symmetric key of the symmetric encryption algorithm to encrypt the content of the receipt, the symmetric key may be provided to the first blockchain node in advance by the client. Then, since only the client (actually the user corresponding to the logged-in account on the client) and the first blockchain node have the symmetric key, only the client can decrypt the corresponding encrypted receipt content, avoiding Irrelevant users and even criminals decrypt the encrypted receipt content.
例如,客户端在向第一区块链节点发起交易时,客户端可以用对称加密算法的初始密钥对交易内容进行加密,以得到该交易;相应地,第一区块链节点可以通过获得该初始密钥,以用于直接或间接对收据内容进行加密。譬如,该初始密钥可以由客户端与第一区块链节点预先协商得到,或者由密钥管理服务器发送至客户端和第一区块链节点,或者由客户端发送至第一区块链节点。当初始密钥由客户端发送至第一区块链节点时,客户端可以通过非对称加密算法的公钥对该初始密钥进行加密后,将加密后的初始密钥发送至第一区块链节点,而第一区块链节点通过非对称加密算法的私钥对该加密后的初始密钥进行解密,得到初始密钥,即上文所述的数字信封加密,此处不再赘述。For example, when the client initiates a transaction to the first blockchain node, the client can use the initial key of the symmetric encryption algorithm to encrypt the transaction content to obtain the transaction; accordingly, the first blockchain node can obtain The initial key is used to directly or indirectly encrypt the content of the receipt. For example, the initial key can be negotiated in advance by the client and the first blockchain node, or sent by the key management server to the client and the first blockchain node, or sent by the client to the first blockchain node. When the initial key is sent by the client to the first blockchain node, the client can encrypt the initial key with the public key of the asymmetric encryption algorithm, and then send the encrypted initial key to the first block The chain node, and the first blockchain node decrypts the encrypted initial key through the private key of the asymmetric encryption algorithm to obtain the initial key, which is the digital envelope encryption described above, which will not be repeated here.
第一区块链节点可以采用上述的初始密钥对收据内容进行加密。不同交易采用的初始密钥可以相同,使得同一用户所提交的所有交易均采用该初始密钥进行加密,或者不同交易采用的初始密钥可以不同,比如客户端可以针对每一交易随机生成一初始密钥,以提升安全性。The first blockchain node can use the aforementioned initial key to encrypt the content of the receipt. Different transactions can use the same initial key, so that all transactions submitted by the same user are encrypted with this initial key, or different transactions can use different initial keys. For example, the client can randomly generate an initial key for each transaction. Key to improve security.
第一区块链节点可以根据初始密钥与影响因子生成衍生密钥,并通过该衍生密钥对收据内容进行加密。相比于直接采用初始密钥进行加密,衍生密钥可以增加随机度,从而提升被攻破的难度,有助于优化数据的安全保护。影响因子可以与交易相关;例如, 影响因子可以包括交易哈希值的指定位,比如第一区块链节点可以将初始密钥与交易哈希值的前16位(或前32位、后16位、后32位,或者其他位)进行拼接,并对拼接后的字符串进行哈希运算,从而生成衍生密钥。The first blockchain node can generate a derived key according to the initial key and the impact factor, and encrypt the content of the receipt through the derived key. Compared with directly using the initial key for encryption, the derived key can increase the degree of randomness, thereby increasing the difficulty of being compromised and helping to optimize the security protection of data. The impact factor can be related to the transaction; for example, the impact factor can include the specified bits of the transaction hash value. For example, the first blockchain node can associate the initial key with the first 16 bits (or the first 32 bits, the last 16 bits) of the transaction hash value. Bits, last 32 bits, or other bits) are spliced, and the spliced string is hashed to generate a derived key.
第一区块链节点还可以采用非对称加密方式,即用非对称加密算法的公钥对收据内容加密,则相应地,客户端可以用所述非对称加密算法的私钥解密上述加密后的收据内容。非对称加密算法的密钥,例如可以是由客户端生成一对公钥和私钥,并将公钥预先发送至第一区块链节点,从而第一区块链节点可以将收据内容用该公钥加密。The first blockchain node can also use an asymmetric encryption method, that is, use the public key of the asymmetric encryption algorithm to encrypt the content of the receipt, and accordingly, the client can use the private key of the asymmetric encryption algorithm to decrypt the encrypted The contents of the receipt. The key of an asymmetric encryption algorithm, for example, can be that the client generates a pair of public and private keys, and sends the public key to the first blockchain node in advance, so that the first blockchain node can use the receipt content Public key encryption.
第一区块链节点通过运行用于实现某一功能的代码,以实现该功能。因此,对于需要在TEE中实现的功能,同样需要执行相关代码。而对于在TEE中执行的代码,需要符合TEE的相关规范和要求;相应地,对于相关技术中用于实现某一功能的代码,需要结合TEE的规范和要求重新进行代码编写,不仅存在相对更大的开发量,而且容易在重新编写过程中产生漏洞(bug),影响功能实现的可靠性和稳定性。The first blockchain node realizes the function by running the code used to realize the function. Therefore, for the functions that need to be implemented in the TEE, the relevant code also needs to be executed. For the code executed in the TEE, it needs to comply with the relevant specifications and requirements of the TEE; accordingly, for the code used to implement a certain function in the related technology, the code needs to be rewritten in combination with the specifications and requirements of the TEE. Large amount of development, and easy to produce loopholes (bugs) in the process of rewriting, affecting the reliability and stability of function implementation.
因此,第一区块链节点可以通过在TEE之外执行存储功能代码,将TEE中生成的收据数据(包括需要明文存储的明文形式的收据内容,以及需要密文存储的密文形式的收据内容)存储至TEE之外的外部存储空间,使得该存储功能代码可以为相关技术中用于实现存储功能的代码、不需要结合TEE的规范和要求重新进行代码编写,即可针对收据数据实现安全可靠的存储,不仅可以在不影响安全、可靠程度的基础上,减少相关代码的开发量,而且可以通过减少TEE的相关代码而降低TCB(Trusted Computing Base,可信计算基),使得TEE技术与区块链技术进行结合的过程中,额外造成的安全风险处于可控范围。Therefore, the first blockchain node can execute the storage function code outside the TEE to store the receipt data generated in the TEE (including the receipt content in plain text that needs to be stored in plain text, and the receipt content in cipher text that needs to be stored in cipher text. ) Is stored in an external storage space outside the TEE, so that the storage function code can be the code used to implement the storage function in the related technology, and does not need to be rewritten in conjunction with the specifications and requirements of the TEE to achieve safe and reliable receipt data The storage of TEE can not only reduce the amount of related code development without affecting security and reliability, but also reduce TCB (Trusted Computing Base) by reducing the related code of TEE, making TEE technology and regional In the process of combining block chain technology, the additional security risks caused are in a controllable range.
在一实施例中,第一区块链节点可以在TEE内执行写缓存功能代码,以将上述的收据数据存入TEE内的写缓存中,比如该写缓存可以对应于如图2所示的“缓存”。进一步的,第一区块链节点将写缓存中的数据从可信执行环境输出,以存储至外部存储空间。其中,写缓存功能代码可以以明文形式存储于TEE中,可以直接在TEE中执行该明文形式的缓存功能代码;或,写缓存功能代码可以以密文形式存储于TEE之外,比如存储于上述的外部存储空间(比如图2所示的“打包+存储”,其中“打包”表示第一区块链节点在可信执行环境之外对交易进行打包成块),可以将该密文形式的写缓存功能代码读入TEE、在TEE中进行解密为明文代码,并执行该明文代码。In an embodiment, the first blockchain node may execute the write cache function code in the TEE to store the above-mentioned receipt data in the write cache in the TEE. For example, the write cache may correspond to the one shown in FIG. 2 "Cache". Further, the first blockchain node outputs the data in the write cache from the trusted execution environment to be stored in the external storage space. Among them, the write cache function code can be stored in the TEE in plain text, and the cache function code in the plain text can be directly executed in the TEE; or, the write cache function code can be stored outside the TEE in cipher text, such as the above External storage space (such as the "package + storage" shown in Figure 2, where "package" means that the first blockchain node packs the transaction into blocks outside the trusted execution environment), the ciphertext form The write cache function code is read into the TEE, decrypted into the plaintext code in the TEE, and the plaintext code is executed.
写缓存是指在将数据写入外部存储空间时,为了避免造成对外部存储空间的“冲击”而提供的“缓冲”机制。例如,可以采用buffer实现上述的写缓存;当然,写缓存 也可以采用cache来实现,本说明书并不对此进行限制。实际上,由于TEE为隔离的安全环境,而外部存储空间位于TEE之外,使得通过采用写缓存机制,可以对缓存内的数据进行批量写入外部存储空间,从而减少TEE与外部存储空间之间的交互次数,提升数据存储效率。同时,TEE在不断执行各条交易的过程中,可能需要调取已生成的数据,如果需调用的数据恰好位于写缓存中,可以直接从写缓存中读取该数据,这样一方面可以减少与外部存储空间之间的交互,另一方面免去了对从外部存储空间所读取数据的解密过程,从而提升在TEE中的数据处理效率。Write cache refers to a "buffer" mechanism provided to avoid "impact" to the external storage space when data is written to the external storage space. For example, the above-mentioned write cache can be implemented by using buffer; of course, the write cache can also be implemented by using cache, which is not limited in this specification. In fact, because the TEE is an isolated security environment and the external storage space is outside the TEE, the write cache mechanism can be used to write the data in the cache to the external storage space in batches, thereby reducing the gap between the TEE and the external storage space. The number of interactions increases the efficiency of data storage. At the same time, in the process of continuously executing each transaction, TEE may need to retrieve the generated data. If the data to be called happens to be in the write cache, the data can be read directly from the write cache. The interaction between the external storage space, on the other hand, eliminates the decryption process of the data read from the external storage space, thereby improving the data processing efficiency in the TEE.
当然,也可以将写缓存建立于TEE之外,比如第一区块链节点可以在TEE之外执行写缓存功能代码,从而将上述的收据数据存入TEE外的写缓存中,并进一步将写缓存中的数据存储至外部存储空间。Of course, the write cache can also be established outside the TEE. For example, the first blockchain node can execute the write cache function code outside the TEE, so as to store the above receipt data in the write cache outside the TEE, and further write The data in the cache is stored in an external storage space.
以下结合图6介绍本说明书一种结合代码标注与交易、事件类型的收据存储节点的实施例,包括:The following describes an embodiment of a receipt storage node combining code labeling and transaction and event types in this specification with reference to FIG. 6, including:
接收单元61,接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段;The receiving unit 61 receives an encrypted transaction corresponding to a smart contract, the code of the smart contract includes a field marked by an exposed identifier;
解密单元62,在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数;A decryption unit 62, decrypting the transaction in a trusted execution environment to obtain the smart contract, the smart contract including a special event function;
执行单元63,在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志;The execution unit 63 executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
确定单元64,根据所述交易的交易类型,确定相应的暴露字段;The determining unit 64 determines the corresponding exposed field according to the transaction type of the transaction;
存储单元65,存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The storage unit 65 stores the receipt data so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text, and the at least part of the receipt content Including the exposed field indicated by the exposed identifier.
可选的,第一区块链节点接收的交易对应的智能合约,包括:Optionally, the smart contract corresponding to the transaction received by the first blockchain node includes:
高级语言编写的智能合约;或,Smart contracts written in high-level languages; or,
字节码形式的智能合约。Smart contract in bytecode form.
可选的,当第一区块链节点接收的交易对应的智能合约为高级语言编写的智能合约时,所述节点还包括:Optionally, when the smart contract corresponding to the transaction received by the first blockchain node is a smart contract written in a high-level language, the node further includes:
编译单元66,通过编译器对所述高级语言编写的智能合约进行编译,生成字节 码形式的智能合约,以在所述可信执行环境中执行。The compiling unit 66 compiles the smart contract written in the high-level language through a compiler, and generates the smart contract in bytecode form for execution in the trusted execution environment.
可选的,当第一区块链节点接收的交易对应的智能合约为字节码形式的智能合约时,所述字节码形式的智能合约由客户端通过编译器对高级语言编写的智能合约进行编译而得到,所述高级语言编写的智能合约由用户在所述客户端上编写得到。Optionally, when the smart contract corresponding to the transaction received by the first blockchain node is a smart contract in the form of bytecode, the smart contract in the form of bytecode is a smart contract written in a high-level language by the client through a compiler It is obtained by compiling, and the smart contract written in the high-level language is written by the user on the client.
可选的,所述高级语言编写的智能合约与所述字节码形式的智能合约具有相同或对应的暴露标识符。Optionally, the smart contract written in the high-level language and the smart contract in bytecode form have the same or corresponding exposure identifier.
可选的,第一区块链节点接收的交易对应的智能合约,包括:Optionally, the smart contract corresponding to the transaction received by the first blockchain node includes:
用户在第一区块链节点上生成的智能合约;或,The smart contract generated by the user on the first blockchain node; or,
用户在客户端上生成的智能合约;或,The smart contract generated by the user on the client; or,
所述客户端通过第二区块链节点发来的交易中的智能合约。The smart contract in the transaction sent by the client through the second blockchain node.
可选的,所述暴露标识符标明的字段包括:合约级字段;存储单元65具体用于:Optionally, the fields marked by the exposure identifier include: contract-level fields; the storage unit 65 is specifically used for:
在存储所述收据数据时,将所有特殊事件函数产生的日志中属于合约级字段的暴露字段以明文形式存储。When storing the receipt data, the exposed fields belonging to the contract-level fields in the logs generated by all special event functions are stored in plain text.
可选的,所述暴露标识符标明的字段包括:对应于所述智能合约中定义的至少一个事件的事件级字段;存储单元65具体用于:Optionally, the field marked by the exposure identifier includes: an event-level field corresponding to at least one event defined in the smart contract; the storage unit 65 is specifically configured to:
在存储所述收据数据时,确定出所述至少一个事件对应的特殊事件函数产生的日志,并将确定出的日志中属于所述事件级字段的暴露字段以明文形式存储。When storing the receipt data, the log generated by the special event function corresponding to the at least one event is determined, and the exposed fields belonging to the event-level field in the determined log are stored in plain text.
可选的,所述交易包括类型字段,所述类型字段的取值用于标明相应的交易类型。Optionally, the transaction includes a type field, and the value of the type field is used to indicate the corresponding transaction type.
可选的,所述交易的交易类型包括:存证类型、资产转移类型、合约创建类型、合约调用类型。Optionally, the transaction type of the transaction includes: deposit certificate type, asset transfer type, contract creation type, contract call type.
可选的,区块链中存储有预定义的交易类型与暴露字段之间的映射关系,所述映射关系被用于确定所述交易的交易类型对应的暴露字段。Optionally, a predefined mapping relationship between the transaction type and the exposed field is stored in the blockchain, and the mapping relationship is used to determine the exposed field corresponding to the transaction type of the transaction.
可选的,所述智能合约中的事件函数包含类型标识符,所述类型标识符用于将所述事件函数标记为特殊事件函数。Optionally, the event function in the smart contract includes a type identifier, and the type identifier is used to mark the event function as a special event function.
可选的,当所述智能合约包含的事件函数位于区块链上记录的特殊函数列表中时,所述智能合约包含的事件函数被判定为特殊事件函数。Optionally, when the event function included in the smart contract is in the special function list recorded on the blockchain, the event function included in the smart contract is determined to be a special event function.
可选的,存储单元65具体用于:Optionally, the storage unit 65 is specifically used for:
读取系统合约的代码,所述系统合约的代码中定义了与暴露标识符、交易类型和特殊事件函数相关的收据数据存储逻辑;Reading the code of the system contract, the code of the system contract defines the receipt data storage logic related to the exposure identifier, transaction type and special event function;
执行所述系统合约的代码,以将对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The code of the system contract is executed to store at least part of the receipt content in the log corresponding to the special event function in plain text, and the rest of the receipt data in cipher text, and the at least part of the receipt content includes The exposed field indicated by the exposed identifier.
可选的,所述系统合约包括:记录于创世块中的预置系统合约,或所述预置系统合约对应的更新后系统合约。Optionally, the system contract includes: a preset system contract recorded in the genesis block, or an updated system contract corresponding to the preset system contract.
可选的,存储单元65具体用于:Optionally, the storage unit 65 is specifically used for:
在所述可信执行环境之外执行存储功能代码,以将所述收据数据存储至所述可信执行环境之外的外部存储空间。The storage function code is executed outside the trusted execution environment to store the receipt data in an external storage space outside the trusted execution environment.
可选的,第一区块链节点对所述收据数据进行加密的密钥包括:对称加密算法的密钥或非对称加密算法的密钥。Optionally, the key used by the first blockchain node to encrypt the receipt data includes: a key of a symmetric encryption algorithm or a key of an asymmetric encryption algorithm.
可选的,所述对称加密算法的密钥包括所述客户端提供的初始密钥;或,所述对称加密算法的密钥包括所述初始密钥与影响因子生成的衍生密钥。Optionally, the key of the symmetric encryption algorithm includes an initial key provided by the client; or, the key of the symmetric encryption algorithm includes a derived key generated by the initial key and an influence factor.
可选的,所述交易由所述初始密钥进行加密,且所述初始密钥被非对称加密算法的公钥进行加密;解密单元62具体用于:Optionally, the transaction is encrypted by the initial key, and the initial key is encrypted by the public key of an asymmetric encryption algorithm; the decryption unit 62 is specifically configured to:
用所述非对称加密算法的私钥解密得到所述初始密钥,并用所述初始密钥对所述交易进行解密,以得到所述交易内容。Decryption with the private key of the asymmetric encryption algorithm to obtain the initial key, and decrypt the transaction with the initial key to obtain the transaction content.
可选的,所述初始密钥由客户端生成;或,所述初始密钥由密钥管理服务器发送至所述客户端。Optionally, the initial key is generated by the client; or, the initial key is sent to the client by the key management server.
可选的,所述影响因子与所述交易相关。Optionally, the impact factor is related to the transaction.
可选的,所述影响因子包括:所述交易的哈希值的指定位。Optionally, the impact factor includes: a designated bit of the hash value of the transaction.
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如, 可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。In the 1990s, the improvement of a technology can be clearly distinguished between hardware improvements (for example, improvements in circuit structures such as diodes, transistors, switches, etc.) or software improvements (improvements in method flow). However, with the development of technology, the improvement of many methods and procedures of today can be regarded as a direct improvement of the hardware circuit structure. Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware entity modules. For example, a programmable logic device (Programmable Logic Device, PLD) (such as a Field Programmable Gate Array (FPGA)) is such an integrated circuit whose logic function is determined by the user's programming of the device. It is programmed by the designer to "integrate" a digital system on a PLD without requiring the chip manufacturer to design and manufacture a dedicated integrated circuit chip. Moreover, nowadays, instead of manually making integrated circuit chips, this kind of programming is mostly realized by "logic compiler" software, which is similar to the software compiler used in program development and writing. The original code must also be written in a specific programming language, which is called Hardware Description Language (HDL), and there is not only one type of HDL, but many types, such as ABEL (Advanced Boolean Expression Language) , AHDL (Altera Hardware Description Language), Confluence, CUPL (Cornell University Programming Language), HDCal, JHDL (Java Hardware Description Language), Lava, Lola, MyHDL, PALASM, RHDL (Ruby Hardware Description), etc., currently most commonly used The ones are VHDL (Very-High-Speed Integrated Circuit Hardware Description Language) and Verilog. It should also be clear to those skilled in the art that only a little logic programming of the method flow in the above hardware description languages and programming into an integrated circuit can easily obtain the hardware circuit that implements the logic method flow.
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。The controller can be implemented in any suitable manner. For example, the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers. Examples of controllers include but are not limited to the following microcontrollers: ARC625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as part of the memory control logic. Those skilled in the art also know that in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。The systems, devices, modules, or units illustrated in the above embodiments may be specifically implemented by computer chips or entities, or implemented by products with certain functions. A typical implementation device is a computer. Specifically, the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, when describing the above device, the functions are divided into various units and described separately. Of course, when implementing this specification, the functions of each unit can be implemented in the same or multiple software and/or hardware.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present invention. It should be understood that each process and/or block in the flowchart and/or block diagram, and the combination of processes and/or blocks in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment are generated It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。This specification may be described in the general context of computer-executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. This specification can also be practiced in distributed computing environments, in which tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device. The device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。在一个典型的配置中,计算机包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment. The instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram. In a typical configuration, the computer includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM) 和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。The memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带、磁盘存储、量子存储器、基于石墨烯的存储介质或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology. The information can be computer-readable instructions, data structures, program modules, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic disk storage, quantum memory, graphene-based storage media or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, product or equipment including a series of elements not only includes those elements, but also includes Other elements that are not explicitly listed, or include elements inherent to this process, method, commodity, or equipment. If there are no more restrictions, the element defined by the sentence "including a..." does not exclude the existence of other identical elements in the process, method, commodity, or equipment that includes the element.
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。The foregoing describes specific embodiments of this specification. Other embodiments are within the scope of the appended claims. In some cases, the actions or steps described in the claims may be performed in a different order than in the embodiments and still achieve desired results. In addition, the processes depicted in the drawings do not necessarily require the specific order or sequential order shown to achieve the desired result. In some embodiments, multitasking and parallel processing are also possible or may be advantageous.
在本说明书一个或多个实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书一个或多个实施例。在本说明书一个或多个实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terms used in one or more embodiments of this specification are only for the purpose of describing specific embodiments, and are not intended to limit one or more embodiments of this specification. The singular forms of "a", "said" and "the" used in one or more embodiments of this specification and the appended claims are also intended to include plural forms, unless the context clearly indicates other meanings. It should also be understood that the term "and/or" used herein refers to and includes any or all possible combinations of one or more associated listed items.
应当理解,尽管在本说明书一个或多个实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书一个或多个实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所 使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that, although the terms first, second, third, etc. may be used in one or more embodiments of this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of one or more embodiments of this specification, the first information may also be referred to as second information, and similarly, the second information may also be referred to as first information. Depending on the context, the word "if" as used herein can be interpreted as "when" or "when" or "in response to certainty".
以上所述仅为本说明书一个或多个实施例的较佳实施例而已,并不用以限制本说明书一个或多个实施例,凡在本说明书一个或多个实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例保护的范围之内。The above descriptions are only preferred embodiments of one or more embodiments of this specification, and are not used to limit one or more embodiments of this specification. All within the spirit and principle of one or more embodiments of this specification, Any modification, equivalent replacement, improvement, etc. made should be included in the protection scope of one or more embodiments of this specification.

Claims (25)

  1. 一种结合代码标注与交易、事件类型的收据存储方法,包括:A receipt storage method that combines code labeling with transaction and event types, including:
    第一区块链节点接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段;The first blockchain node receives an encrypted transaction corresponding to a smart contract, and the code of the smart contract includes a field marked by an exposed identifier;
    第一区块链节点在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数;The first blockchain node decrypts the transaction in a trusted execution environment to obtain the smart contract, and the smart contract includes a special event function;
    第一区块链节点在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志;The first blockchain node executes the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
    第一区块链节点根据所述交易的交易类型,确定相应的暴露字段;The first blockchain node determines the corresponding exposed field according to the transaction type of the transaction;
    第一区块链节点存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The first blockchain node stores the receipt data, so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the remaining content of the receipt data is stored in cipher text. The content of the receipt includes the exposed field indicated by the exposed identifier.
  2. 根据权利要求1所述的方法,第一区块链节点接收的交易对应的智能合约,包括:According to the method of claim 1, the smart contract corresponding to the transaction received by the first blockchain node includes:
    高级语言编写的智能合约;或,Smart contracts written in high-level languages; or,
    字节码形式的智能合约。Smart contract in bytecode form.
  3. 根据权利要求2所述的方法,当第一区块链节点接收的交易对应的智能合约为高级语言编写的智能合约时,所述方法还包括:The method according to claim 2, when the smart contract corresponding to the transaction received by the first blockchain node is a smart contract written in a high-level language, the method further comprises:
    第一区块链节点通过编译器对所述高级语言编写的智能合约进行编译,生成字节码形式的智能合约,以在所述可信执行环境中执行。The first blockchain node compiles the smart contract written in the high-level language through the compiler, and generates the smart contract in the form of bytecode for execution in the trusted execution environment.
  4. 根据权利要求2所述的方法,当第一区块链节点接收的交易对应的智能合约为字节码形式的智能合约时,所述字节码形式的智能合约由客户端通过编译器对高级语言编写的智能合约进行编译而得到,所述高级语言编写的智能合约由用户在所述客户端上编写得到。According to the method of claim 2, when the smart contract corresponding to the transaction received by the first blockchain node is a smart contract in the form of bytecode, the smart contract in the form of bytecode is checked by the client through a compiler. The smart contract written in the language is compiled and obtained, and the smart contract written in the high-level language is written by the user on the client.
  5. 根据权利要求2所述的方法,所述高级语言编写的智能合约与所述字节码形式的智能合约具有相同或对应的暴露标识符。According to the method of claim 2, the smart contract written in the high-level language and the smart contract in the bytecode form have the same or corresponding exposure identifier.
  6. 根据权利要求1所述的方法,第一区块链节点接收的交易对应的智能合约,包括:According to the method of claim 1, the smart contract corresponding to the transaction received by the first blockchain node includes:
    用户在第一区块链节点上生成的智能合约;或,The smart contract generated by the user on the first blockchain node; or,
    用户在客户端上生成的智能合约;或,The smart contract generated by the user on the client; or,
    所述客户端通过第二区块链节点发来的交易中的智能合约。The smart contract in the transaction sent by the client through the second blockchain node.
  7. 根据权利要求1所述的方法,所述暴露标识符标明的字段包括:合约级字段;第一区块链节点存储所述收据数据,包括:The method according to claim 1, wherein the fields indicated by the exposure identifier include: contract-level fields; and storing the receipt data by the first blockchain node includes:
    第一区块链节点在存储所述收据数据时,将所有特殊事件函数产生的日志中属于合约级字段的暴露字段以明文形式存储。When storing the receipt data, the first blockchain node stores the exposed fields belonging to the contract-level fields in the logs generated by all special event functions in plain text.
  8. 根据权利要求1所述的方法,所述暴露标识符标明的字段包括:对应于所述智能合约中定义的至少一个事件的事件级字段;第一区块链节点存储所述收据数据,包括:The method according to claim 1, wherein the field indicated by the exposure identifier includes: an event-level field corresponding to at least one event defined in the smart contract; and storing the receipt data by the first blockchain node includes:
    第一区块链节点在存储所述收据数据时,确定出所述至少一个事件对应的特殊事件函数产生的日志,并将确定出的日志中属于所述事件级字段的暴露字段以明文形式存储。When storing the receipt data, the first blockchain node determines the log generated by the special event function corresponding to the at least one event, and stores the exposed fields belonging to the event-level field in the determined log in plain text .
  9. 根据权利要求1所述的方法,所述交易包括类型字段,所述类型字段的取值用于标明相应的交易类型。The method according to claim 1, wherein the transaction includes a type field, and the value of the type field is used to indicate the corresponding transaction type.
  10. 根据权利要求1所述的方法,所述交易的交易类型包括:存证类型、资产转移类型、合约创建类型、合约调用类型。The method according to claim 1, wherein the transaction type of the transaction includes: deposit certificate type, asset transfer type, contract creation type, contract call type.
  11. 根据权利要求1所述的方法,区块链中存储有预定义的交易类型与暴露字段之间的映射关系,所述映射关系被用于确定所述交易的交易类型对应的暴露字段。The method according to claim 1, wherein a predefined mapping relationship between a transaction type and an exposed field is stored in the blockchain, and the mapping relationship is used to determine the exposed field corresponding to the transaction type of the transaction.
  12. 根据权利要求1所述的方法,所述智能合约中的事件函数包含类型标识符,所述类型标识符用于将所述事件函数标记为特殊事件函数。The method according to claim 1, wherein the event function in the smart contract includes a type identifier, and the type identifier is used to mark the event function as a special event function.
  13. 根据权利要求1所述的方法,当所述智能合约包含的事件函数位于区块链上记录的特殊函数列表中时,所述智能合约包含的事件函数被判定为特殊事件函数。According to the method of claim 1, when the event function included in the smart contract is in a special function list recorded on the blockchain, the event function included in the smart contract is determined to be a special event function.
  14. 根据权利要求1所述的方法,第一区块链节点存储所述收据数据,包括:The method according to claim 1, wherein the first blockchain node storing the receipt data includes:
    第一区块链节点读取系统合约的代码,所述系统合约的代码中定义了与暴露标识符、交易类型和特殊事件函数相关的收据数据存储逻辑;The first blockchain node reads the code of the system contract, and the code of the system contract defines the receipt data storage logic related to the exposure identifier, transaction type, and special event function;
    第一区块链节点执行所述系统合约的代码,以将对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The first blockchain node executes the code of the system contract to store at least a part of the receipt content in the log corresponding to the special event function in plain text, and the rest of the receipt data in cipher text, so The at least part of the receipt content includes an exposed field marked by the exposure identifier.
  15. 根据权利要求14所述的方法,所述系统合约包括:记录于创世块中的预置系统合约,或所述预置系统合约对应的更新后系统合约。The method according to claim 14, wherein the system contract comprises: a preset system contract recorded in the genesis block, or an updated system contract corresponding to the preset system contract.
  16. 根据权利要求1所述的方法,第一区块链节点存储所述收据数据,包括:The method according to claim 1, wherein the first blockchain node storing the receipt data includes:
    第一区块链节点在所述可信执行环境之外执行存储功能代码,以将所述收据数据存储至所述可信执行环境之外的外部存储空间。The first blockchain node executes the storage function code outside the trusted execution environment to store the receipt data in an external storage space outside the trusted execution environment.
  17. 根据权利要求1所述的方法,第一区块链节点对所述收据数据进行加密的密钥包括:对称加密算法的密钥或非对称加密算法的密钥。According to the method of claim 1, the key used by the first blockchain node to encrypt the receipt data comprises: a key of a symmetric encryption algorithm or a key of an asymmetric encryption algorithm.
  18. 根据权利要求17所述的方法,所述对称加密算法的密钥包括所述客户端提供的初始密钥;或,所述对称加密算法的密钥包括所述初始密钥与影响因子生成的衍生密钥。The method according to claim 17, wherein the key of the symmetric encryption algorithm comprises an initial key provided by the client; or, the key of the symmetric encryption algorithm comprises a derivative generated by the initial key and an impact factor Key.
  19. 根据权利要求18所述的方法,所述交易由所述初始密钥进行加密,且所述初始密钥被非对称加密算法的公钥进行加密;第一区块链节点在可信执行环境中解密所述交易,包括:The method according to claim 18, wherein the transaction is encrypted by the initial key, and the initial key is encrypted by the public key of an asymmetric encryption algorithm; the first blockchain node is in a trusted execution environment Decrypt the transaction, including:
    第一区块链节点用所述非对称加密算法的私钥解密得到所述初始密钥,并用所述初始密钥对所述交易进行解密,以得到所述交易内容。The first blockchain node decrypts the private key of the asymmetric encryption algorithm to obtain the initial key, and uses the initial key to decrypt the transaction to obtain the transaction content.
  20. 根据权利要求18所述的方法,所述初始密钥由客户端生成;或,所述初始密钥由密钥管理服务器发送至所述客户端。According to the method of claim 18, the initial key is generated by a client; or, the initial key is sent to the client by a key management server.
  21. 根据权利要求18所述的方法,所述影响因子与所述交易相关。The method of claim 18, wherein the impact factor is related to the transaction.
  22. 根据权利要求21所述的方法,所述影响因子包括:所述交易的哈希值的指定位。The method according to claim 21, wherein the impact factor comprises: a designated bit of a hash value of the transaction.
  23. 一种结合代码标注与交易、事件类型的收据存储节点,包括:A receipt storage node that combines code labeling with transaction and event types, including:
    接收单元,接收经过加密的对应于智能合约的交易,所述智能合约的代码中包括通过暴露标识符标明的字段;The receiving unit receives an encrypted transaction corresponding to a smart contract, the code of the smart contract includes a field marked by an exposed identifier;
    解密单元,在可信执行环境中解密所述交易以获得所述智能合约,所述智能合约包含特殊事件函数;A decryption unit, decrypting the transaction in a trusted execution environment to obtain the smart contract, the smart contract including a special event function;
    执行单元,在所述可信执行环境中执行所述智能合约,得到收据数据,所述收据数据包含对应于所述特殊事件函数的日志;An execution unit to execute the smart contract in the trusted execution environment to obtain receipt data, where the receipt data includes a log corresponding to the special event function;
    确定单元,根据所述交易的交易类型,确定相应的暴露字段;The determining unit determines the corresponding exposed field according to the transaction type of the transaction;
    存储单元,存储所述收据数据,使对应于所述特殊事件函数的日志中的至少一部分收据内容以明文形式存储、所述收据数据的其余内容以密文形式存储,所述至少一部分收据内容包括由所述暴露标识符标明的暴露字段。The storage unit stores the receipt data so that at least part of the receipt content in the log corresponding to the special event function is stored in plain text, and the rest of the receipt data is stored in cipher text, and the at least part of the receipt content includes The exposed field indicated by the exposed identifier.
  24. 一种电子设备,包括:An electronic device including:
    处理器;processor;
    用于存储处理器可执行指令的存储器;A memory for storing processor executable instructions;
    其中,所述处理器通过运行所述可执行指令以实现如权利要求1-22中任一项所述的方法。Wherein, the processor executes the executable instruction to implement the method according to any one of claims 1-22.
  25. 一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现如权利要求1-22中任一项所述方法的步骤。A computer-readable storage medium having computer instructions stored thereon, which, when executed by a processor, implements the steps of the method according to any one of claims 1-22.
PCT/CN2020/091370 2019-05-20 2020-05-20 Receipt storage method and node combining code annotation with transaction and event types WO2020233612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910419897.4A CN110278193B (en) 2019-05-20 2019-05-20 Receipt storage method and node combining code marking with transaction and event types
CN201910419897.4 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233612A1 true WO2020233612A1 (en) 2020-11-26

Family

ID=67960099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091370 WO2020233612A1 (en) 2019-05-20 2020-05-20 Receipt storage method and node combining code annotation with transaction and event types

Country Status (2)

Country Link
CN (1) CN110278193B (en)
WO (1) WO2020233612A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038242B (en) * 2017-04-24 2020-02-07 杭州趣链科技有限公司 Block chain-oriented global intelligent contract service data analysis method
WO2020233424A1 (en) * 2019-05-20 2020-11-26 创新先进技术有限公司 Event function type-based receipt storage method and node
CN110266644B (en) * 2019-05-20 2021-04-06 创新先进技术有限公司 Receipt storage method and node combining code marking and transaction types
WO2020233421A1 (en) * 2019-05-20 2020-11-26 创新先进技术有限公司 Object-level receipt storage method and node based on code marking
CN110278193B (en) * 2019-05-20 2021-06-01 创新先进技术有限公司 Receipt storage method and node combining code marking with transaction and event types
CN110263089B (en) * 2019-05-20 2021-05-04 创新先进技术有限公司 Receipt storage method and node combining conditional restrictions of transaction and event types
CN111176944A (en) * 2019-12-27 2020-05-19 杭州趣链科技有限公司 Block chain intelligent contract calling record analysis method, device, terminal and storage medium
WO2020098833A2 (en) 2020-02-03 2020-05-22 Alipay (Hangzhou) Information Technology Co., Ltd. Blockchain-based trustable gurantees
CN113222596A (en) * 2021-04-23 2021-08-06 上海和数软件有限公司 Electric power data storage method and system based on block chain intelligent contract

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564330A (en) * 2018-02-28 2018-09-21 深圳市元征科技股份有限公司 Information processing method and platform and computer-readable medium
CN108776936A (en) * 2018-06-05 2018-11-09 中国平安人寿保险股份有限公司 Settlement of insurance claim method, apparatus, computer equipment and storage medium
CN109102384A (en) * 2018-07-27 2018-12-28 中国联合网络通信集团有限公司 Fee payment method and network system
US10176418B1 (en) * 2018-07-23 2019-01-08 Capital One Services, Llc System and apparatus for encrypted data collection using RFID cards
CN109522328A (en) * 2018-12-27 2019-03-26 石更箭数据科技(上海)有限公司 A kind of data processing method and its device, medium, terminal
CN109559117A (en) * 2018-11-14 2019-04-02 北京科技大学 Block chain contract method for secret protection and system based on the encryption of attribute base
CN110264198A (en) * 2019-05-20 2019-09-20 阿里巴巴集团控股有限公司 In conjunction with the conditional receipt storage method and node of code mark and type of transaction
CN110278193A (en) * 2019-05-20 2019-09-24 阿里巴巴集团控股有限公司 It is marked and transaction, the receipt storage method of event type and node in conjunction with code

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106850200B (en) * 2017-01-25 2019-10-22 中钞信用卡产业发展有限公司杭州区块链技术研究院 A kind of safety method, system and the terminal of digital cash of the use based on block chain
CN107294709A (en) * 2017-06-27 2017-10-24 阿里巴巴集团控股有限公司 A kind of block chain data processing method, apparatus and system
CN108765158B (en) * 2018-05-31 2020-11-24 杭州溪塔科技有限公司 Intelligent contract engine system based on block chain and contract execution method thereof
CN109325331B (en) * 2018-09-13 2022-05-20 北京航空航天大学 Big data acquisition transaction system based on block chain and trusted computing platform
CN109493020B (en) * 2018-11-08 2022-02-11 众安信息技术服务有限公司 Block chain based secure transaction method and device
CN109710235B (en) * 2018-12-29 2022-04-01 杭州趣链科技有限公司 Transaction implementation system and method based on Java intelligent contract service logic
CN109766722B (en) * 2019-01-22 2020-11-10 苏州同济区块链研究院有限公司 Method for constructing intelligent contract in block chain
CN110071802A (en) * 2019-04-24 2019-07-30 西安纸贵互联网科技有限公司 Data processing method and device suitable for block chain

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564330A (en) * 2018-02-28 2018-09-21 深圳市元征科技股份有限公司 Information processing method and platform and computer-readable medium
CN108776936A (en) * 2018-06-05 2018-11-09 中国平安人寿保险股份有限公司 Settlement of insurance claim method, apparatus, computer equipment and storage medium
US10176418B1 (en) * 2018-07-23 2019-01-08 Capital One Services, Llc System and apparatus for encrypted data collection using RFID cards
CN109102384A (en) * 2018-07-27 2018-12-28 中国联合网络通信集团有限公司 Fee payment method and network system
CN109559117A (en) * 2018-11-14 2019-04-02 北京科技大学 Block chain contract method for secret protection and system based on the encryption of attribute base
CN109522328A (en) * 2018-12-27 2019-03-26 石更箭数据科技(上海)有限公司 A kind of data processing method and its device, medium, terminal
CN110264198A (en) * 2019-05-20 2019-09-20 阿里巴巴集团控股有限公司 In conjunction with the conditional receipt storage method and node of code mark and type of transaction
CN110278193A (en) * 2019-05-20 2019-09-24 阿里巴巴集团控股有限公司 It is marked and transaction, the receipt storage method of event type and node in conjunction with code

Also Published As

Publication number Publication date
CN110278193A (en) 2019-09-24
CN110278193B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020233644A1 (en) Conditional receipt storage method and node combining dimensions of code annotation and type
WO2020233616A1 (en) Receipt storage method and node employing code marking in combination with transaction type and user type
WO2020233642A1 (en) Conditional receipt storage method and node which combine code labelling and type dimension
WO2020233638A1 (en) Receipt storage method and node based on code labeling and transaction type
WO2020233612A1 (en) Receipt storage method and node combining code annotation with transaction and event types
WO2020233643A1 (en) Receipt storage method and node employing multi-dimensional information and having restriction
WO2020233622A1 (en) Receipt storage method and node based on code labeling and multiple types of dimensions
WO2020233613A1 (en) Conditional receipt storage method and node which combine code marking with transaction type
WO2020233610A1 (en) Receipt storage method combining code labelling with user and event type, and node
WO2020233637A1 (en) Receipt storage method combining code labelling with user type, and node
WO2020233609A1 (en) Conditional receipt storage method and node combining code labeling with user type
WO2020233623A1 (en) Receipt storage method and node combining transaction type and judgment condition
WO2020233640A1 (en) Receipt storage method and node based on code labeling and determination condition
WO2020233614A1 (en) Conditional receipt storage method and node combining code labeling with event type
WO2020233635A1 (en) Receipt storage method combining conditional restrictions of multiple types of dimensions and node
WO2020233639A1 (en) Receipt storage method and node based on code labeling and event function type
WO2020233626A1 (en) Receipt storage method and node in combination with conditional limitation of transaction and user types
WO2020233615A1 (en) Receipt storage method combining user type and event function type and node
WO2020233625A1 (en) Receipt storage method combining user type and determination conditions and node
WO2020233628A1 (en) Receipt storage method and node based on combination of event function type and judgment condition
WO2020233624A1 (en) Receipt storage method and node employing transaction type in combination with event function type
WO2020233630A1 (en) User type-based receipt storing method and node
WO2020233619A1 (en) Receipt storage method and node in combination with user type and transaction type
WO2020233629A1 (en) Object-level receipt storage method and node based on code labeling
WO2020233627A1 (en) Receipt storage method and node based on multiple types of dimensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810189

Country of ref document: EP

Kind code of ref document: A1