WO2020233594A1 - 彩膜基板及其制造方法和显示面板 - Google Patents

彩膜基板及其制造方法和显示面板 Download PDF

Info

Publication number
WO2020233594A1
WO2020233594A1 PCT/CN2020/091279 CN2020091279W WO2020233594A1 WO 2020233594 A1 WO2020233594 A1 WO 2020233594A1 CN 2020091279 W CN2020091279 W CN 2020091279W WO 2020233594 A1 WO2020233594 A1 WO 2020233594A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light guide
nanostructure
layer
aperiodic
Prior art date
Application number
PCT/CN2020/091279
Other languages
English (en)
French (fr)
Inventor
姚成鹏
郭磊
李振东
张维
石侠
刘家庆
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/289,331 priority Critical patent/US20220019008A1/en
Publication of WO2020233594A1 publication Critical patent/WO2020233594A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a color filter substrate, a manufacturing method thereof, and a display panel.
  • the color film (CF) substrate is one of the key components for manufacturing thin film transistor liquid crystal display (TFT-LCD) panels.
  • TFT-LCD thin film transistor liquid crystal display
  • the CF substrate enables the light transmitted through the liquid crystal molecules to display different colors after passing through different color filters, and then can display color patterns through the combination of different colors of light.
  • the color film substrate uses a color filter material of a specific color (for example, red, green or blue) to achieve the light color filter function.
  • a color filter material of a specific color (for example, red, green or blue) to achieve the light color filter function.
  • the greater the thickness of the color filter material the purer the color of the obtained monochromatic light. , The higher the color gamut of liquid crystal displays, but the light transmittance will be sacrificed.
  • the color resistance material includes organic resins and pigments that may form ionic impurities, and the ionic impurities may form a direct current (DC) bias electric field due to the diffusion to the surface of the alignment film and the bias voltage inside the display panel, so the display of the display panel Afterimages may be aggravated.
  • DC direct current
  • a color filter substrate includes: a substrate; a color filter structure arranged on one side of the substrate; wherein the color filter substrate includes a plurality of pixel regions, and each pixel region includes A plurality of sub-pixel regions; the color filter structure includes a nanostructure layer and a light guide structure layer, the light guide structure layer is disposed on a side of the nanostructure layer away from the substrate, and the light guide structure layer includes multiple Light guide structures, each light guide structure is located in a corresponding one of the plurality of pixel regions, each light guide structure includes a plurality of sub-light guide portions, and each sub-light guide portion is located in a plurality of sub-pixels of the pixel area where it is located within a corresponding one of the regions, the nanostructure layer includes a plurality of aperiodic nanostructures, each sub-pixel region corresponds to at least one of the aperiodic nanostructures, and each aperiodic nanostructure is located in a corresponding one The sub-pixel area
  • each aperiodic nanostructure includes: disposed on a surface of the aperiodic nanostructure on a side away from the substrate and on the surface parallel to the aperiodic nanostructure A plurality of grooves arranged in a first direction of the aperiodic nanostructure, and a slit penetrating the aperiodic nanostructure in a third direction perpendicular to the surface of the aperiodic nanostructure.
  • the concave depth of each groove from the surface is less than the thickness of the aperiodic nanostructure in the third direction.
  • the width of the plurality of grooves in the first direction is aperiodic
  • the pitch of the plurality of grooves in the first direction is aperiodic.
  • the widths of the plurality of grooves in the first direction are different from each other, and the pitches of the plurality of grooves in the first direction are different from each other, And the width of each groove in the first direction is different from the width of the slit in the first direction.
  • the plurality of grooves And the slits extend parallel to each other, and the lengths of the plurality of grooves and the slits in the second direction are equal to the size of the aperiodic nanostructures in the second direction.
  • the plurality of grooves in each aperiodic nanostructure, have the same depth in the third direction.
  • the pitches of the grooves are different from each other, so The widths of the grooves are different from each other, and the widths of the two slits of the two aperiodic nanostructures are the same.
  • the width of the aperiodic nanostructure is 5 ⁇ m.
  • the width of each groove in the first direction ranges from 50 nm to 400 nm, and the width of each groove in the third direction The depth is 100nm.
  • the width of the slit is 100 nm.
  • the plurality of sub-pixel regions in each pixel region are arranged along the first direction, and the plurality of non-periodic nanostructures are arranged along the first direction.
  • the width of one sub-pixel area along the first direction is 1 or n times the width of one non-periodic nanostructure along the first direction, 2 ⁇ n ⁇ 500.
  • the plurality of sub-pixels are arranged in an array, and the size of the plurality of non-periodic nanostructures in the second direction is equal to that of the array of the plurality of sub-pixels in the second direction. On the size.
  • a transparent conductive layer is further provided between the substrate and the nanostructure layer, and the nanostructure layer is provided on a side of the transparent conductive layer away from the substrate.
  • the light-emitting surface of the plurality of sub-light-guiding parts of each light-guiding structure facing the nano-structure layer has a first surface of the nano-structure layer that is away from the substrate.
  • the different angles enable the lights emitted from the plurality of sub-pixel regions corresponding to the plurality of sub-light guide portions to the outside of the color filter substrate to have different colors.
  • each pixel area includes a red sub-pixel area, a green sub-pixel area, and a blue sub-pixel area;
  • the light guide structure corresponding to the pixel area includes a first light guide sub-part, a second light guide
  • the sub-light-guiding portion and the third sub-light-guiding portion, the first sub-light-guiding portion, the second sub-light-guiding portion, and the third sub-light-guiding portion are respectively located in the red sub-pixel area and the green sub-pixel area
  • the sub-pixel area and the blue sub-pixel area the acute angle between the light-emitting surface of the first sub-light guide part and the first surface is 0°, and the second sub-light guide part
  • the acute angle between the light emitting surface and the first surface is 19°, and the acute angle between the light emitting surface of the third light guide part and the first surface is 31.9°.
  • the non-periodic nanostructures include silver.
  • the light guide structure includes polymethyl methacrylate.
  • a display panel includes the above-mentioned color filter substrate and an array substrate.
  • a method for manufacturing the above-mentioned color filter substrate includes: forming a nanostructure layer and a light guide structure layer on a base.
  • the light guide structure layer is located on a side of the nanostructure layer away from the substrate.
  • forming the nanostructure layer includes: forming a transparent conductive layer on a substrate; forming a sacrificial layer on the transparent conductive layer; patterning the sacrificial layer to form a sacrificial pattern; Forming a first nanostructure layer on the upper and the sacrificial pattern; removing the sacrificial pattern and the part of the first nanostructure layer located on the sacrificial pattern; on the transparent conductive layer and the first nanostructure A second nanostructure layer is formed on the remaining part of the structure layer; a slit is formed through the remaining part of the first nanostructure layer and the second nanostructure layer.
  • FIG. 1 shows a schematic cross-sectional view of the structure of a color filter substrate according to an embodiment of the present disclosure
  • Figure 2 shows a schematic partial cross-sectional view of a nanostructured layer according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic top view of a nanostructure of a nanostructure layer according to an embodiment of the present disclosure
  • Figure 4 shows the calculated spectral curves of red, green and blue light emitted from the nanostructured layer
  • Figure 5 shows the measured spectrum curves of red light, green light and blue light emitted from the nanostructured layer
  • FIG. 6 is a schematic diagram showing the principle of changing the light path of the light guide structure layer of the color filter substrate according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing that light emitted from the first light guide portion is converted into red light after being incident on the nanostructure layer;
  • FIG. 8 is a schematic diagram showing that the light emitted from the second light guide part is converted into green light after being incident on the nanostructure layer;
  • FIG. 9 is a schematic diagram showing that the light emitted by the third light guide part is converted into blue light after being incident on the nanostructure layer;
  • 10 to 16 are schematic diagrams showing various stages of a method for manufacturing a color filter substrate according to an embodiment of the present disclosure
  • FIG. 17 shows a flowchart of forming a nanostructure layer in a method for manufacturing a color filter substrate according to an embodiment of the present disclosure
  • FIG. 18 shows a schematic cross-sectional view of the structure of a display panel according to an embodiment of the present disclosure
  • FIG. 19 shows a schematic cross-sectional view of the structure of a display panel according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a color filter substrate according to an embodiment of the present disclosure.
  • the color filter substrate according to the embodiment of the present disclosure includes a base 1 and a color filter structure provided on one side of the base 1.
  • the color filter structure includes a nanostructure layer 2 and a light guide structure layer 3.
  • the light guide structure layer 3 is disposed on the side of the nanostructure layer 2 away from the substrate 1.
  • the color filter substrate according to the embodiment of the present disclosure includes a plurality of pixel regions 6.
  • each of the pixel regions 6 includes a plurality of sub-pixel regions 4.
  • the light guide structure layer 3 may include a plurality of light guide structures 31, and each light guide structure 31 is located in a corresponding one of the plurality of pixel regions 6.
  • the light guide structure layer 3 includes a plurality of light guide structures 31 corresponding to the plurality of pixel regions 6 one to one. As shown in FIG. 1, each light guide structure 31 includes a plurality of sub-light guide portions, and each sub-light guide portion is located in a corresponding one of the plurality of sub-pixel regions 4 of the pixel region 6 where it is located. In some embodiments, each light guide structure 31 is located in the pixel area 6 corresponding to it, and each light guide structure 31 includes a plurality of sub-light guide portions corresponding to a plurality of sub-pixel areas of the corresponding pixel area one by one, and Each sub-light guide part is located in the corresponding sub-pixel area 4.
  • the nanostructure layer 2 includes a plurality of nanostructures 21, each sub-pixel area 4 corresponds to at least one nanostructure 21, and each nanostructure 21 is located in the sub-pixel area 4 corresponding thereto.
  • the pixel area 6 includes three sub-pixel areas 41, 42 and 43, and the light guide structure 31 located in the pixel area 6 includes three sub-pixel areas 41, 42 and 43, respectively.
  • each of the plurality of sub-light guide parts located in the same pixel area 6 is configured so that light incident thereon exits at different angles and enters the nanostructure 21 located in the same sub-pixel area.
  • the nano structure 21 is configured to couple and interfere with light incident thereon, so that the light emitted from the sub-pixel area where the nano structure 21 is located has a predetermined color.
  • the color filter substrate according to the embodiment of the present disclosure realizes the color filtering of light by replacing the color resist materials of different colors with the color filter structure composed of the nanostructure layer 2 and the light guide structure layer 3, so that light can be filtered without sacrificing light transmission. Increase the color gamut in the case of high rate
  • the color film structure does not include ionic impurities, so it can eliminate or reduce the display afterimage caused by the DC bias electric field formed by ionic impurities.
  • FIG. 2 shows a schematic partial cross-sectional view of a nanostructure layer according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic top view of the nanostructure of the nanostructure layer according to an embodiment of the present disclosure.
  • the nanostructure layer 2 includes a plurality of nanostructures 21.
  • Each nanostructure 21 includes: a plurality of grooves 210 arranged on the surface 21LS on the side of the nanostructure 21 away from the substrate 1 and arranged in a first direction parallel to the surface 21LS, and a plurality of grooves 210 arranged perpendicular to the surface 21LS
  • the third direction penetrates through the slit 211 of the nanostructure 21.
  • the depth of the groove 210 in the direction perpendicular to the surface 21LS is smaller than the thickness of the nanostructure 21 in the third direction.
  • the width of the plurality of grooves 210 in the first direction is aperiodic
  • the pitch of the plurality of grooves 210 in the first direction is aperiodic. of.
  • the term "pitch" refers to the distance between two adjacent grooves.
  • the widths of the plurality of grooves 210 in the first direction are different from each other, and the pitches of the plurality of grooves 210 in the first direction are different from each other.
  • the width in the first direction is different from the width of the slit 211 in the first direction.
  • each nanostructure 21 in a second direction parallel to the surface 21LS and intersecting the first direction, the grooves 210 and the slits 211 extend parallel to each other, The length of each groove 210 and slit 211 in the second direction is equal to the size of the nanostructure 21 in the second direction.
  • the grooves 210 have the same depth in the third direction.
  • any two nanostructures 21 in the first direction, the pitches of the grooves 210 are different from each other, and the widths of the grooves 210 are different from each other.
  • the slits in the two nanostructures 21 The width of 211 is the same.
  • the working principle of the nanostructure layer 2 is: the plasma at the interface between the groove 210 and the air in the nanostructure 21 oscillates and is coupled with incident light, thereby generating surface plasmons (Surface Plasmon). Plasmon Polariton, SPP).
  • SPP is a surface wave that propagates along the surface of the nanostructure 21 and interferes with the incident polarized light at the slit 211, so that monochromatic light with a specific wavelength can be emitted from the nanostructure 21.
  • the wavelength of the light emitted from the nanostructure 21 can be adjusted by adjusting the angle of the light incident on the nanostructure 21, so as to achieve color filtering of light.
  • light is incident on the nanostructures 21 in different sub-pixel areas 4 at different angles, so that the light emitted from the nanostructures 21 in different sub-pixel areas 4 has different wavelengths. That is, different colors appear.
  • the width of the nanostructure 21 in the first direction is 5 ⁇ m. In some embodiments, the width of the groove 210 in the first direction ranges from 50 nm to 400 nm, and the depth of the groove 210 in the third direction is 100 nm. In some embodiments, in the first direction, the width of the slit 211 is 100 nm.
  • the width of the slit 211 of different nanostructures 21 may also be different.
  • 10 grooves 210 are provided in one nanostructure 21, and 5 grooves 210 are provided on each of the two sides of the slit 211. It should be noted that the number, distribution, and pitch of the grooves 210 in the nanostructure 21 in the sub-pixel area for emitting light of different colors can be set to be different from each other, and can be performed according to the wavelength of the color of the emitted light. Set up.
  • the sub-pixel regions 4 for emitting light of different colors are arranged along the first direction, and therefore the plurality of nanostructures 21 corresponding to these sub-pixel regions are arranged along the first direction .
  • one pixel area 6 is composed of three sub-pixel areas 41, 42 and 43 respectively used to emit light of three different colors of red, green, and blue, using nanostructure layers 2 and In the light guide structure layer 3, the three sub-pixel regions 41, 42 and 43 can respectively emit light in three colors of red, green and blue, so that the pixel region can realize color display.
  • FIG. 1 the sub-pixel regions 4 for emitting light of different colors are arranged along the first direction.
  • one pixel area 6 is composed of three sub-pixel areas 41, 42 and 43 respectively used to emit light of three different colors of red, green, and blue, using nanostructure layers 2 and In the light guide structure layer 3, the three sub-pixel regions 41, 42 and 43 can respectively emit light in three colors of red, green and blue, so that the pixel region can realize color display.
  • the sub-pixel area 41 is used to emit red light
  • the sub-pixel area 42 is used to emit green light
  • the sub-pixel area 43 is used to emit blue light, but the present disclosure is not limited thereto.
  • the calculated spectrum of the red, green and blue light emitted from the nanostructure layer 2 is basically the same as the measured spectrum of the red, green and blue light emitted from the nanostructure layer 2.
  • the calculated spectrum and the measured spectrum of the red, green and blue light emitted from the structural layer 2 are shown in Figs. 4 and 5, respectively.
  • the spectrum of red, green and blue light calculated according to the light interference model is represented by solid lines, and the spectrum of red, green and blue light calculated according to the finite difference time domain (FDTD) method is represented by The dotted line indicates.
  • the measured spectrum of red, green and blue light is represented by the solid line in FIG. 5.
  • the width of one sub-pixel area 4 along the first direction is substantially equal to the width of one nanostructure 21 along the first direction, that is, the width of one sub-pixel area 4 along the first direction
  • the width is 1 times the width of one nanostructure 21 in the first direction, but the present disclosure is not limited thereto.
  • the width of one sub-pixel area 4 along the first direction may be n times the width of one nanostructure 21 along the first direction, 2 ⁇ n ⁇ 500.
  • one sub-pixel area 4 may correspond to a plurality of nano structures 21.
  • the sub-pixel regions 4 are arranged in an array, and the size of the nanostructure 21 in the second direction is equal to the size of the array formed by the sub-pixel regions in the second direction.
  • a transparent conductive layer 5 is further provided between the substrate 1 and the nanostructure layer 2, and the nanostructure layer 2 is provided on the side of the transparent conductive layer 5 away from the substrate 1.
  • the transparent conductive layer 5 makes it possible to form the nanostructure layer 2 more easily.
  • the nanostructure layer 2 includes silver.
  • the transparent conductive layer 5 includes indium tin oxide.
  • each light guide part of each light guide structure 31 located in different sub-pixel regions facing the nanostructure layer 2 is opposite to The surface 21LS has different angles, so that the light emitted from the sub-pixel regions corresponding to the sub-light guide portions to the outside of the color filter substrate has different colors from each other. That is, light incident on the nanostructure layer 2 from different angles is converted into light having a different wavelength, and light incident on the nanostructure layer 2 from a predetermined angle is converted into light having a predetermined wavelength. For example, as shown in FIG.
  • the sub-light guide portions 310, 311, and 312 in the light guide structure 31 correspond to the sub-pixel regions 41, 42 and 42, respectively, and are incident on the nanostructure layer from the sub-light guide portions 310, 311, and 312.
  • the lights in 2 respectively have predetermined different incident angles, so that the light emitted from the nanostructures 21 respectively corresponding to the sub-pixel regions 41, 42 and 42 have predetermined different wavelengths.
  • the light guide structure layer 3 includes polymethyl methacrylate (PMMA), but the present disclosure is not limited thereto.
  • the light guide structure layer 3 may include cycloolefin thermoplastic resin (cycloolefin thermoplastic resin) or polycarbonate (PC) (for example, Zeonor).
  • the pixel area 6 includes a red sub-pixel area 41, a green sub-pixel area 42 and a blue sub-pixel area 43
  • the light guide structure 31 includes a first sub-light guide portion 310
  • the second light guide part 311 and the third light guide part 312, the first light guide part 310, the second light guide part 311 and the third light guide part 312 respectively correspond to the red sub-pixel area 41 and the green In the sub-pixel area 42 and the blue sub-pixel area 43
  • the acute angle between the light-emitting surface of the first light guide portion 310 and the surface 21LS is 0°
  • the acute angle between the light-emitting surface of the second light guide portion 311 and the surface 21LS ⁇ 1 is 19°
  • the acute angle ⁇ 2 between the light exit surface of the third light guide portion 312 and the surface 21LS is 31.9°.
  • the light enters the nanostructure layer 2 at different angles of incidence after passing through the first light guide part 310, the second light guide part 311, and the third light guide part 312, so that the light passes through
  • the light emitted from the red sub-pixel area 41, the green sub-pixel area 42, and the blue sub-pixel area 43 are red light, green light, and blue light, respectively.
  • the green sub-pixel area 42 and the blue sub-pixel area 43 after passing through the nanostructure layer 2 be red light, green light, and blue light, respectively, it is required to guide the light from the first sub-pixel area.
  • the angle between the light emitted from the light portion 310 and the normal direction of the surface 21LS is 0°, and the acute angle ⁇ 1 between the light emitted from the second sub-light guide portion 311 and the normal direction of the surface 21LS is 10°.
  • the acute angle ⁇ 2 between the light emitted by the sub-light guide portion 312 and the normal direction of the surface 21LS is 20°, as shown in FIGS. 7-9.
  • the first sub-light guide portion 310, the second sub-light guide portion 311, and the third sub-light guide portion 312 can be provided by the following formulas (1) to (4) :
  • the angle between the light incident on the second light guide part 311 and the normal to the light exit surface of the second light guide part 311 is ⁇ 1, and the light emitted from the second light guide part 311
  • the angle between the light and the normal of the light-emitting surface of the second light-guiding portion 311 is ⁇ 1;
  • the angle between the light incident on the third light-guiding portion 312 and the normal of the light-emitting surface of the third light-guiding portion 312 is ⁇ 2
  • the angle between the light emitted from the third light guide portion 312 and the normal to the light exit surface of the third light guide portion 312 is ⁇ 2.
  • the refractive index n1 of light in optical acrylic resin is generally 1.49
  • the light guide structure layer 3 includes polymethyl methacrylate, but the present disclosure is not limited thereto. It should be noted that no matter what material the light guide structure layer 3 is made of, in order to make incident light exit from the red sub-pixel area 41, the green sub-pixel area 42 and the blue sub-pixel area 43 after passing through the nanostructure layer 2. The light is red, green, and blue.
  • the angle between the light emitted from the first light guide part 310 and the normal direction of the surface 21LS is 0°
  • the light emitted from the second light guide part 311 is
  • the acute angle ⁇ 1 of the normal direction of the surface 21LS is 10°
  • the acute angle ⁇ 2 of the light emitted from the third light guide portion 312 and the normal direction of the surface 21LS is 20°. Therefore, when the light guide structure layer 3 is made of other materials, the first light guide part 310, the second light guide part 311, and the third light guide part can be adjusted according to formula (1) to formula (4).
  • the angle between the light exit surface of 312 and the surface 21LS is such that the angle between the light emitted from the first light guide part 310 and the normal direction of the surface 21LS is 0°, ⁇ 1 is 10°, and ⁇ 2 is 20°.
  • the color filter substrate according to the embodiment of the present disclosure further includes a black matrix 7, a planarization layer 8 and a spacer 9 arranged on a side of the base 1 away from the color filter structure.
  • the black matrix 7 is configured to block the opaque area
  • the planarization layer 8 is configured to flatten the surface of the color filter substrate facing the array substrate
  • the spacer 9 is configured to support the color filter substrate and the array substrate.
  • the orthographic projection of the spacer 9 on the substrate 1 overlaps the orthographic projection of the black matrix 7 on the substrate 1.
  • the embodiment of the present disclosure also provides a method for manufacturing the color filter substrate as described above, which includes: forming a nanostructure layer 2 and a light guide structure layer 3 on the substrate 1.
  • forming the nanostructure layer 2 on the substrate 1 may include the following steps S01 to S07.
  • step S01 as shown in Figs. 10 and 17, a transparent conductive layer 5 is formed on the substrate 1.
  • a transparent conductive layer 5 having a thickness of 10 nm to 20 nm is formed on the cleaned substrate 1 by a magnetron sputtering process.
  • the transparent conductive layer 5 may include indium tin oxide.
  • step S02 as shown in FIGS. 11 and 17, a sacrificial layer 10 is formed on the transparent conductive layer 5.
  • step S03 as shown in FIGS. 12 and 17, the sacrificial layer 10 is patterned to form a sacrificial pattern 11.
  • a 100 nm thick sacrificial layer 10 (for example, it includes polymethyl methacrylate) is spin-coated on the surface of the transparent conductive layer 5. Then, a 100 KeV electron beam and a mask are used to expose the sacrificial layer 10, and after the exposure is completed, use methyl isobutyl ketone for 60s development, and after the development is completed, use isopropanol for 30s cleaning to obtain the sacrifice Pattern 11.
  • step S04 as shown in FIG. 13 and FIG. 17, the first nanostructure layer 12 is formed on the transparent conductive layer 5 and the sacrificial pattern 11.
  • step S05 as shown in FIGS. 14 and 17, the sacrificial pattern 11 and the portion of the first nanostructure layer 12 on the sacrificial pattern 11 are removed, thereby forming the remaining portion 13 of the first nanostructure layer.
  • step S06 as shown in FIGS. 15 and 17, a second nanostructure layer is formed on the transparent conductive layer 5 and the remaining part 13 of the first nanostructure layer.
  • an electron beam evaporation process is used to form a 100 nm-thick first nanostructure layer 12 (for example, it includes silver) on the sacrificial pattern 11. Then, the substrate 1 on which the first nanostructure layer 12 is formed is immersed in acetone for 12 hours to remove the sacrificial pattern 11 and the portion of the first nanostructure layer 12 on the sacrificial pattern 11. Then, an electron beam evaporation process is used to form a 150nm-thick second nanostructure layer (for example, it includes silver) on the transparent conductive layer 5 and the remaining part 13 of the first nanostructure layer, thereby forming a groove 210 Nanostructured layer 14.
  • step S07 as shown in FIGS. 16 and 17, a slit 211 penetrating the remaining portion 13 of the first nanostructure layer and the second nanostructure layer is formed.
  • a focused electron beam (FIB Milling) process is used to form a slit 211 with a width of 100 nm by etching the remaining part 13 of the first nanostructure layer and the second nanostructure layer, thereby forming the nanostructure layer 2.
  • FIB Milling focused electron beam
  • any known and suitable process for example, a dry etching process may be used to form the light guide structure layer 3, which will not be repeated here.
  • the method for manufacturing a color filter substrate according to an embodiment of the present disclosure may further include using any known and suitable process to form a black matrix 7 as shown in FIG. 1 on the side of the substrate 1 away from the nanostructure layer 2. , The planarization layer 8 and the spacer 9 are not repeated here.
  • the color film structure composed of the nanostructure layer 2 and the light guide structure layer 3 is used to replace the color resist materials of different colors. Achieve light color filtering, which can improve the color gamut without sacrificing light transmittance.
  • the color film structure does not include ionic impurities, so it can eliminate or reduce the display afterimage caused by the DC bias electric field formed by ionic impurities.
  • Embodiments of the present disclosure also provide a display panel including the color filter substrate according to the embodiments of the present disclosure.
  • the display panel according to an embodiment of the present disclosure may further include an array substrate 15.
  • the array substrate 15 may be disposed on the side of the base 1 of the color filter substrate 16 away from the light guide structure layer 3, and the color filter substrate 16 and the array substrate 15 are separated by a spacer.
  • the cushion 9 supports, but the present disclosure is not limited to this.
  • the array substrate 15 may be disposed on the side of the base 1 in the color filter substrate 16 close to the light guide structure layer 3; in this case, the spacer 9 is disposed on the guide structure layer 3.
  • the light structure layer 3 has a side away from the base 1 and supports the color filter substrate 16 and the array substrate 15.
  • the display panel according to an embodiment of the present disclosure may further include a backlight source 17.
  • the backlight source 17 is configured to provide collimated light.
  • the backlight source 17 may be disposed on the side of the color filter substrate 16 away from the array substrate 15, but the present disclosure is not limited thereto. In some embodiments, as shown in FIG. 19, the backlight source 17 may be disposed on the side of the color filter substrate 16 close to the array substrate 15, and the array substrate 15 is located between the backlight source 17 and the color filter substrate 16.
  • the display panel includes the color filter substrate according to the embodiment of the present disclosure, thereby improving its display effect.

Abstract

彩膜基板包括设置在基底(1)一侧的彩膜结构,其包括多个像素区(6),每个像素区(6)包括多个子像素区(4)。彩膜结构包括顺序地设置在基底(1)上的纳米结构层(2)和导光结构层(3)。导光结构层(3)包括多个导光结构(31),每个导光结构(31)位于多个像素区(6)中的对应一个内并且包括多个子导光部,每个子导光部位于其所在的像素区(6)的多个子像素区(4)中的对应一个内。纳米结构层(2)包括多个纳米结构(21),每个子像素区(4)对应于至少一个纳米结构(21),每个纳米结构(21)位于对应的子像素区(4)内。同一个像素区(6)中的多个子导光部中的每一个构造为使入射光以不同角度出射并且进入与其位于同一子像素区(4)的纳米结构(21),每个纳米结构(21)构造为使从与纳米结构(21)所在的子像素区(4)出射的光具有预定颜色。

Description

彩膜基板及其制造方法和显示面板
相关申请的交叉引用
本公开要求于2019年5月23日提交的中国专利申请No.201910435794.7的优先权,该中国专利申请通过引用的方式全文并入本公开中。
技术领域
本公开属于显示技术领域,具体涉及一种彩膜基板及其制造方法和显示面板。
背景技术
彩膜(CF)基板是制造薄膜晶体管液晶显示(TFT-LCD)面板的关键部件之一。CF基板使得透过液晶分子的光在通过不同颜色的滤光片后能够显示不同的颜色,而后可以通过不同颜色的光的组合显示色彩图案。
通常,彩膜基板通过特定颜色(例如,红、绿或蓝)的色阻(color filter)材料来实现光的滤色功能,色阻材料的厚度越大,得到的单色光的颜色越纯,液晶显示器的色域越高,但光的透过率会被牺牲。另外,色阻材料包括可能形成离子杂质的有机树脂和颜料,并且离子杂质可能由于扩散到取向膜表面并且受到显示面板内部的偏置电压而形成直流(DC)偏置电场,因此显示面板的显示残像可能加重。
发明内容
根据本公开的实施例,一种彩膜基板包括:基底;彩膜结构,其设置在所述基底的一侧;其中,所述彩膜基板包括多个像素区,每个所述像素区包括多个子像素区;所述彩膜结构包括纳米结构层和导光结构层,所述导光结构层设置于所述纳米结构层的远离所述基底的一侧,所述导光结构层包括多个导光结构,每个导光 结构位于所述多个像素区中的对应一个内,每个导光结构包括多个子导光部,每个子导光部位于其所在的像素区的多个子像素区中的对应一个内,所述纳米结构层包括多个非周期性纳米结构,每个子像素区对应于至少一个所述非周期性纳米结构,每个所述非周期性纳米结构位于对应的一个所述子像素区内;并且在同一个像素区中的所述多个子导光部中的每一个构造为使入射到其的光以不同角度出射并且进入与其位于同一子像素区的非周期性纳米结构,每个非周期性纳米结构构造为使入射到其的光发生耦合和干涉,以使从与该非周期性纳米结构所在的子像素区出射的光具有预定颜色。
在一些实施例中,每个非周期性纳米结构包括:设置在所述非周期性纳米结构的远离所述基底的一侧的表面上且在平行于所述非周期性纳米结构的所述表面的第一方向上排列的多个凹槽,以及在垂直于所述非周期性纳米结构的所述表面的第三方向上贯穿所述非周期性纳米结构的狭缝。每个凹槽从所述表面凹入的深度小于所述非周期性纳米结构在所述第三方向上的厚度。在每个非周期性纳米结构中,所述多个凹槽在第一方向上的宽度是非周期性的,并且所述多个凹槽在第一方向上的间距是非周期性的。
在一些实施例中,在每个非周期性纳米结构中,所述多个凹槽在所述第一方向上的宽度彼此不同,所述多个凹槽在第一方向上的间距彼此不同,并且每个所述凹槽在所述第一方向上的宽度与所述狭缝在所述第一方向上的宽度不同。
在一些实施例中,在每个非周期性纳米结构中,在平行于所述非周期性纳米结构的所述表面且与所述第一方向相交的第二方向上,所述多个凹槽和所述狭缝彼此平行地延伸,所述多个凹槽和所述狭缝在所述第二方向上的长度等于所述非周期性纳米结构在所述第二方向上的尺寸。
在一些实施例中,在每个非周期性纳米结构中,所述多个凹槽在所述第三方向上具有相同的深度。
在一些实施例中,在所述多个非周期性纳米结构中的任意两 个所述非周期性纳米结构中,在所述第一方向上,所述多个凹槽的间距彼此不同,所述凹槽的宽度彼此不同,两个所述非周期性纳米结构的两个所述狭缝的宽度相同。
在一些实施例中,在每个非周期性纳米结构中,在所述第一方向上,所述非周期性纳米结构的宽度为5μm。
在一些实施例中,在每个非周期性纳米结构中,每个所述凹槽在所述第一方向上的宽度范围为50nm-400nm,每个所述凹槽在所述第三方向上的深度为100nm。
在一些实施例中,在每个非周期性纳米结构中,在所述第一方向上,所述狭缝的宽度为100nm。
在一些实施例中,每个像素区中的所述多个子像素区沿所述第一方向排布,所述多个非周期性纳米结构沿所述第一方向排布。
在一些实施例中,一个子像素区沿所述第一方向的宽度为一个所述非周期性纳米结构沿所述第一方向的宽度的1倍或n倍,2≤n≤500。
在一些实施例中,所述多个子像素呈阵列排布,所述多个非周期性纳米结构在所述第二方向上的尺寸等于所述多个子像素的所述阵列在所述第二方向上的尺寸。
在一些实施例中,在所述基底和所述纳米结构层之间还设置有透明导电层,所述纳米结构层设置于所述透明导电层的远离所述基底的一侧。
在一些实施例中,每个所述导光结构的所述多个子导光部的面向所述纳米结构层的出光面相对于所述纳米结构层的远离所述基底的一侧的第一表面具有不同角度,使得从与所述多个子导光部相对应的多个子像素区出射到所述彩膜基板外部的光彼此具有不同的颜色。
在一些实施例中,每个像素区包括红色子像素区、绿色子像素区和蓝色子像素区;与所述像素区相对应的所述导光结构包括第一子导光部、第二子导光部和第三子导光部,所述第一子导光部、所述第二子导光部和所述第三子导光部分别位于所述红色子 像素区、所述绿色子像素区和所述蓝色子像素区;所述第一子导光部的所述出光面与所述第一表面的锐角夹角为0°,所述第二子导光部的所述出光面与所述第一表面的锐角夹角为19°,所述第三子导光部的所述出光面与所述第一表面的锐角夹角为31.9°。
在一些实施例中,所述非周期性纳米结构包括银。
在一些实施例中,所述导光结构包括聚甲基丙烯酸甲酯。
根据本公开的实施例,一种显示面板包括上述彩膜基板,以及阵列基板。
根据本公开的实施例,一种用于制造上述彩膜基板的方法包括:在基底上形成纳米结构层和导光结构层。所述导光结构层位于所述纳米结构层的远离所述基底的一侧。
在一些实施例中,形成所述纳米结构层包括:在基底上形成透明导电层;在所述透明导电层上形成牺牲层;图案化所述牺牲层以形成牺牲图案;在所述透明导电层上和所述牺牲图案上形成第一纳米结构层;去除所述牺牲图案和所述第一纳米结构层的位于所述牺牲图案上的部分;在所述透明导电层上和所述第一纳米结构层的剩余部分上形成第二纳米结构层;形成贯穿所述第一纳米结构层的剩余部分和所述第二纳米结构层的狭缝。
附图说明
图1示出了根据本公开的实施例的彩膜基板的结构的示意性剖面图;
图2示出了根据本公开的实施例的纳米结构层的示意性局部剖面图;
图3示出了根据本公开的实施例的纳米结构层的纳米结构的示意性俯视图;
图4示出了从纳米结构层出射的红光、绿光和蓝光的计算光谱曲线;
图5示出了从纳米结构层出射的红光、绿光和蓝光的实测光谱曲线;
图6是示出根据本公开的实施例的彩膜基板的导光结构层改变光路的原理示意图;
图7是示出从第一子导光部出射的光入射至纳米结构层后被转换为红光的示意图;
图8是示出从第二子导光部出射的光入射至纳米结构层后被转换为绿光的示意图;
图9是示出第三子导光部出射的光入射至纳米结构层后被转换为蓝光的示意图;
图10至图16是示出根据本公开的实施例的用于制造彩膜基板的方法的各阶段的示意图;
图17示出了根据本公开的实施例的用于制造彩膜基板的方法中的形成纳米结构层的流程图;
图18示出了根据本公开的实施例的显示面板的结构的示意性剖面图;
图19示出了根据本公开的实施例的显示面板的结构的示意性剖面图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开构思作进一步详细描述。
图1是示出根据本公开的实施例的彩膜基板的结构的示意性剖面图。
如图1所示,根据本公开的实施例的彩膜基板包括基底1和设置在基底1的一侧的彩膜结构。如图1所示,彩膜结构包括纳米结构层2和导光结构层3,导光结构层3设置于纳米结构层2的远离基底1的一侧。根据本公开的实施例的彩膜基板包括多个像素区6。如图1所示,每个所述像素区6包括多个子像素区4。导光结构层3可以包括多个导光结构31,每个导光结构31位于多个像素区6中的对应一个内。在一些实施例中,导光结构层3包括与多个像素区6一一对应的多个导光结构31。如图1所示,每 个导光结构31包括多个子导光部,每个子导光部位于其所在的像素区6的多个子像素区4中的对应一个内。在一些实施例中,每个导光结构31位于与其对应的像素区6内,每个导光结构31包括与其所对应的像素区的多个子像素区一一对应的多个子导光部,并且每个子导光部位于与其对应的子像素区4内。纳米结构层2包括多个纳米结构21,每个子像素区4对应于至少一个纳米结构21,每个纳米结构21位于与其对应的子像素区4内。在一些实施例中,如图1所示,像素区6包括三个子像素区41、42和43,并且位于该像素区6内的导光结构31包括分别位于三个子像素区41、42和43内的三个子导光部310、311和312。
如图1所示,位于同一个像素区6中的多个子导光部中的每一个构造为使入射到其的光以不同角度出射并且进入与其位于同一子像素区的纳米结构21,每个纳米结构21构造为使入射到其的光发生耦合和干涉,以使从与该纳米结构21所在的子像素区出射的光具有预定颜色。
根据本公开的实施例的彩膜基板通过用由纳米结构层2和导光结构层3构成的彩膜结构取代不同颜色的色阻材料来实现光的滤色,从而可以在不牺牲光透过率的情况下提升色域。此外,彩膜结构不包括离子杂质,因此可以消除或者减轻由于由离子杂质形成的直流偏置电场所导致的显示残像。
图2示出了根据本公开的实施例的纳米结构层的示意性局部剖面图。图3示出了根据本公开的实施例的纳米结构层的纳米结构的示意性俯视图。
如图2和图3所示,纳米结构层2包括多个纳米结构21。每个纳米结构21包括:设置在该纳米结构21的远离基底1的一侧的表面21LS上且在平行于表面21LS的第一方向上排列的多个凹槽210,以及在垂直于表面21LS的第三方向上贯穿该纳米结构21的狭缝211。如图2所示,凹槽210在垂直于表面21LS的方向上的深度小于纳米结构21在第三方向上的厚度。如图2和图3所示,在每个纳米结构21中,多个凹槽210在第一方向上的宽度是非周 期性的,并且多个凹槽210在第一方向上的间距是非周期性的。在本文中,术语“间距”指的是相邻两凹槽之间的距离。
在一些实施例中,在每个纳米结构21中,多个凹槽210在第一方向上的宽度彼此不同,并且多个凹槽210在第一方向上的间距彼此不同,每个凹槽210在第一方向上的宽度与狭缝211在第一方向上的宽度不同。
在一些实施例中,如图3所示,在每个纳米结构21中,在与表面21LS平行且与第一方向相交的第二方向上,各凹槽210和狭缝211彼此平行地延伸,各凹槽210和狭缝211第二方向上的长度等于纳米结构21在第二方向上的尺寸。
在一些实施例中,在每个纳米结构21中,各凹槽210在第三方向上具有相同的深度。
在一些实施例中,在任意两个纳米结构21中,在第一方向上,多个凹槽210的间距彼此不同,各凹槽210的宽度彼此不同,这两个纳米结构21中的狭缝211的宽度相同。
根据本公开的实施例的纳米结构层2的工作原理为:纳米结构21中的凹槽210和空气的界面处的等离子体发生振荡,并且与入射光耦合,从而产生表面等离子体激元(Surface Plasmon Polariton,SPP)。SPP是一种表面波,其沿着纳米结构21表面传播,并且在狭缝211处与入射的偏振光发生干涉,从而可以使具有特定波长的单色光从纳米结构21出射。可以通过调整光入射到纳米结构21的角度来调整从纳米结构21出射光的波长,从而实现对光的滤色。在一些实施例中,如图1所示,光以不同的角度入射到不同子像素区4中的纳米结构21,使得从不同子像素区4中的纳米结构21出射的光具有不同的波长,即呈现不同的颜色。
在一些实施例中,纳米结构21在第一方向上的宽度为5μm。在一些实施例中,凹槽210在第一方向上的宽度范围为50nm-400nm,凹槽210在第三方向上的深度为100nm。在一些实施例中,在第一方向上,狭缝211的宽度为100nm。
不同的纳米结构21的狭缝211的宽度也可以不同。
在一些实施例中,如图1至图3所示,一个纳米结构21中设置有10个凹槽210,狭缝211的两侧中的每一侧设置有5个凹槽210。需要说明的是,位于用于发射不同颜色的光的子像素区的纳米结构21中的凹槽210的数量、分布和间距可以被设置为彼此不同,并且可根据发射的光的颜色的波长进行设置。
在一些实施例中,如图1所示,用于发射不同颜色光的子像素区4沿第一方向排布,并且因此对应于这些子像素区的多个纳米结构21沿第一方向排布。在一些实施例中,如图1所示,一个像素区6由分别用于发出红、绿、蓝三种不同颜色的光的三个子像素区41、42和43构成,利用纳米结构层2和导光结构层3,三个子像素区41、42和43能够分别发出红、绿、蓝三种颜色的光,以使像素区实现彩色显示。在一些实施例中,如图1所示,子像素区41用于发射红光,子像素区42用于发射绿光,子像素区43用于发射蓝光,但是本公开不限于此。在这种情况下,计算出的从纳米结构层2出射的红绿蓝三种颜色光的光谱和实测到的从纳米结构层2出射的红绿蓝三种颜色光的光谱基本一致,从纳米结构层2出射的红绿蓝三种颜色光的计算光谱和实测光谱分别如图4和图5所示。如图4所示,根据光干涉模型计算出的红绿蓝三种颜色光的光谱由实线表示,并且根据时域有限差分(FDTD)法计算出的红绿蓝三种颜色光的光谱由虚线表示。实测到的红绿蓝三种颜色光的光谱由图5中的实线表示。
在一些实施例中,如图1所示,,一个子像素区4沿第一方向的宽度基本上等于一个纳米结构21沿第一方向的宽度,即,一个子像素区4沿第一方向的宽度为一个纳米结构21沿第一方向的宽度的1倍,但是本公开不限于此。
在一些实施例中,一个子像素区4沿第一方向的宽度可以为一个纳米结构21沿第一方向的宽度的n倍,2≤n≤500。在这种情况下,一个子像素区4可以对应于多个纳米结构21。
在一些实施例中,各子像素区4呈阵列排布,纳米结构21在第二方向上的尺寸等于各子像素区构成的阵列在第二方向上的尺 寸。
在一些实施例中,如图1所示,在基底1和纳米结构层2之间还设置有透明导电层5,纳米结构层2设置于透明导电层5的远离基底1的一侧。透明导电层5使得可以更容易地形成纳米结构层2。
在一些实施例中,纳米结构层2包括银。在一些实施例中,透明导电层5包括氧化铟锡。
在根据本公开的实施例的导光结构层3中,如图1所示,每个导光结构31的分别位于不同子像素区的各子导光部的面向纳米结构层2的出光面相对于表面21LS具有不同角度,使得从与这些子导光部相对应的子像素区出射到所述彩膜基板外部的光彼此具有不同的颜色。也就是说,从不同角度入射到纳米结构层2光被转换为具有不同波长的光,并且从预定角度入射到纳米结构层2光被转换为具有预定波长的光。例如,如图1所示,导光结构31中的子导光部310、311和312与子像素区41、42和42分别对应,从子导光部310、311和312入射至纳米结构层2中的光分别具有预定的不同入射角,使得从分别对应于子像素区41、42和42的纳米结构21中出射的光具有预定的不同波长。
在一些实施例中,导光结构层3包括聚甲基丙烯酸甲酯(PMMA),但本公开不限于此。在一些实施例中,导光结构层3可以包括(例如,Zeonor的)环烯的热可塑性树脂(cycloolefin thermoplastic resin)或聚碳酸酯(PC)。
在一些实施例中,如图1和图6所示,像素区6包括红色子像素区41、绿色子像素区42和蓝色子像素区43,导光结构31包括第一子导光部310、第二子导光部311和第三子导光部312,第一子导光部310、第二子导光部311和第三子导光部312分别对应于红色子像素区41、绿色子像素区42和蓝色子像素区43,第一子导光部310的出光面与表面21LS的锐角夹角为0°,第二子导光部311的出光面与表面21LS的锐角夹角φ1为19°,第三子导光部312的出光面与表面21LS的锐角夹角φ2为31.9°。在这种 情况下,光在经过第一子导光部310、第二子导光部311和第三子导光部312后分别以不同的入射角入射到纳米结构层2,使得光在经过纳米结构层2之后,从红色子像素区41、绿色子像素区42和蓝色子像素区43出射的光分别为红光、绿光、和蓝光。
为了使光在经过纳米结构层2之后,从红色子像素区41、绿色子像素区42和蓝色子像素区43出射的光分别为红光、绿光、和蓝光,要求从第一子导光部310出射的光与表面21LS的法线方向的夹角为0°,从第二子导光部311出射的光与表面21LS的法线方向的锐角夹角θ1为10°,从第三子导光部312出射的光与表面21LS的法线方向的锐角夹角θ2为20°,如图7-图9所示。
因此,如图1所示,可以根据光的折射定律,通过以下公式(1)至(4)来设置第一子导光部310、第二子导光部311和第三子导光部312:
Figure PCTCN2020091279-appb-000001
Figure PCTCN2020091279-appb-000002
Figure PCTCN2020091279-appb-000003
Figure PCTCN2020091279-appb-000004
如图1和图6所示,入射到第二子导光部311的光与第二子导光部311的出光面的法线的夹角为α1,从第二子导光部311出射的光与第二子导光部311的出光面的法线的夹角为β1;入射到第三子导光部312的光与第三子导光部312的出光面的法线的夹角为α2,从第三子导光部312出射的光与第三子导光部312的出光面的法线的夹角为β2。如图1和图6所示,α1=φ1并且α2=φ2。此外,光在光学亚克力树脂中的折射率n1一般为1.49,光 在空气中的折射率n2一般为1。因此,为了使θ1=10°且θ2=20°,根据公式(1)至公式(4)可以计算出,第二子导光部311的出光面与表面21LS的锐角夹角φ1=19°,第三子导光部312的出光面与表面21LS的锐角夹角φ2=31.9°。因此,可按照φ1=19°且φ2=31.9°来设置导光结构31的第二子导光部311和第三子导光部312的出光面相对于表面21LS的倾斜角度。
如上所述,在本公开的实施例中,导光结构层3包括聚甲基丙烯酸甲酯,但是本公开不限于此。需要说明的是,无论导光结构层3采用什么材料制成,为了使入射光在经过纳米结构层2之后,从红色子像素区41、绿色子像素区42和蓝色子像素区43出射的光分别为红光、绿光、和蓝光,要求从第一子导光部310出射的光与表面21LS的法线方向的夹角为0°,从第二子导光部311出射的光与表面21LS的法线方向的锐角夹角θ1为10°,从第三子导光部312出射的光与表面21LS的法线方向的锐角夹角θ2为20°。因此,当导光结构层3采用其他材料制成时,可以根据公式(1)至公式(4)来调整第一子导光部310、第二子导光部311和第三子导光部312的出光面与表面21LS的夹角,使得从第一子导光部310出射的光与表面21LS的法线方向的夹角为0°,θ1为10°,并且θ2为20°。
在一些实施例中,根据本公开的实施例的彩膜基板还包括设置在基底1的远离彩膜结构的一侧的黑矩阵7、平坦化层8和隔垫物9。黑矩阵7被配置为遮挡不透明区域,平坦化层8被配置为使彩膜基板的面向阵列基板的表面平坦,并且隔垫物9被配置为支撑彩膜基板和阵列基板。隔垫物9在基底1上的正投影与黑矩阵7在基底1上的正投影重叠。
本公开的实施例还提供一种用于制造如上所述的彩膜基板的方法,其包括:在基底1上形成纳米结构层2和导光结构层3。
在一些实施例中,如图10至图16、以及图17所示,在基底1上形成纳米结构层2可以包括以下步骤S01至S07。
在步骤S01中,如图10和图17所示,在基底1上形成透明 导电层5。
在一些实施例中,在清洗后的基底1上通过磁控溅射工艺形成具有10nm至20nm厚的透明导电层5。透明导电层5可以包括氧化铟锡。
在步骤S02中,如图11和图17所示,在透明导电层5上形成牺牲层10。在步骤S03中,如图12和图17所示,图案化牺牲层10以形成牺牲图案11。
在一些实施例中,在透明导电层5表面旋涂100nm厚的牺牲层10(例如,其包括聚甲基丙烯酸甲酯)。然后,采用100 KeV的电子束和掩膜版对牺牲层10进行曝光,并在曝光完成后采用甲基异丁酮进行60s显影,并在显影完成后采用异丙醇进行30s清洗,以得到牺牲图案11。
在步骤S04中,如图13和图17所示,在透明导电层5上和牺牲图案11上形成第一纳米结构层12。在步骤S05中,如图14和图17所示,去除牺牲图案11和第一纳米结构层12的位于牺牲图案11上的部分,从而形成了第一纳米结构层的剩余部分13。在步骤S06中,如图15和图17所示,在透明导电层5上和第一纳米结构层的剩余部分13上形成第二纳米结构层。
在一些实施例中,采用电子束蒸镀工艺在牺牲图案11上形成100nm厚的第一纳米结构层12(例如,其包括银)。然后,将形成了第一纳米结构层12的基底1在丙酮中浸泡12h,以去除牺牲图案11和第一纳米结构层12的位于牺牲图案11上的部分。然后,采用电子束蒸镀工艺在透明导电层5上和第一纳米结构层的剩余部分13上形成150nm厚的第二纳米结构层(例如,其包括银),从而形成了具有凹槽210的纳米结构层14。
在步骤S07中,如图16和图17所示,形成贯穿第一纳米结构层的剩余部分13和第二纳米结构层的狭缝211。
在一些实施例中,采用聚焦电子束(FIB Milling)工艺,通过刻蚀第一纳米结构层的剩余部分13和第二纳米结构层形成100nm宽的狭缝211,从而形成纳米结构层2。
在本公开的实施例中,可以采用任何已知且合适的工艺(例如,干法刻蚀工艺)形成导光结构层3,这里不再赘述。
另外,根据本公开的实施例的用于制造彩膜基板的方法还可以包括采用任何已知且合适的工艺在基底1的远离纳米结构层2的一侧形成如图1所示的黑矩阵7、平坦化层8和隔垫物9,这里不再赘述。
在通过根据本公开的实施例的用于制造彩膜基板的方法制造的彩膜基板中,通过用由纳米结构层2和导光结构层3构成的彩膜结构取代不同颜色的色阻材料来实现光的滤色,从而可以在不牺牲光透过率的情况下提升色域。此外,彩膜结构不包括离子杂质,因此可以消除或者减轻由于由离子杂质形成的直流偏置电场所导致的显示残像。
本公开的实施例还提供一种显示面板,其包括根据本公开的实施例的彩膜基板。
在一些实施例中,如图18和图19所示,根据本公开的实施例的显示面板还可以包括阵列基板15。
在一些实施例中,如图18所示,阵列基板15可以设置在彩膜基板16中的基底1的远离导光结构层3的一侧,并且彩膜基板16与阵列基板15之间通过隔垫物9支撑,但本公开不限于此。在一些实施例中,如图19所示,阵列基板15可以设置在彩膜基板16中的基底1的靠近导光结构层3的一侧;在这种情况下,隔垫物9设置在导光结构层3的远离基底1的一侧,并且支撑彩膜基板16与阵列基板15。
在一些实施例中,如图18和图19所示,根据本公开的实施例的显示面板还可以包括背光源17。背光源17被配置为提供准直光。
在一些实施例中,如图18所示,背光源17可以设置在彩膜基板16的远离阵列基板15的一侧,但本公开不限于此。在一些实施例中,如图19所示,背光源17可以设置在彩膜基板16的靠近阵列基板15的一侧,并且阵列基板15位于背光源17和彩膜基 板16之间。
该显示面板包括根据本公开的实施例的彩膜基板,因此提升了其显示效果。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种彩膜基板,包括:
    基底;
    彩膜结构,其设置在所述基底的一侧;
    其中,所述彩膜基板包括多个像素区,每个所述像素区包括多个子像素区;
    所述彩膜结构包括纳米结构层和导光结构层,所述导光结构层设置于所述纳米结构层的远离所述基底的一侧,所述导光结构层包括多个导光结构,每个导光结构位于所述多个像素区中的对应一个内,每个导光结构包括多个子导光部,每个子导光部位于其所在的像素区的多个子像素区中的对应一个内,所述纳米结构层包括多个非周期性纳米结构,每个子像素区对应于至少一个所述非周期性纳米结构,每个所述非周期性纳米结构位于对应的一个所述子像素区内;并且
    在同一个像素区中的所述多个子导光部中的每一个构造为使入射到其的光以不同角度出射并且进入与其位于同一子像素区的非周期性纳米结构,每个非周期性纳米结构构造为使入射到其的光发生耦合和干涉,以使从与该非周期性纳米结构所在的子像素区出射的光具有预定颜色。
  2. 根据权利要求1所述的彩膜基板,其中,每个非周期性纳米结构包括:设置在所述非周期性纳米结构的远离所述基底的一侧的表面上且在平行于所述非周期性纳米结构的所述表面的第一方向上排列的多个凹槽,以及在垂直于所述非周期性纳米结构的所述表面的第三方向上贯穿所述非周期性纳米结构的狭缝,每个凹槽从所述表面凹入的深度小于所述非周期性纳米结构在所述第三方向上的厚度,并且
    在每个非周期性纳米结构中,所述多个凹槽在第一方向上的宽度是非周期性的,并且所述多个凹槽在第一方向上的间距是非 周期性的。
  3. 根据权利要求2所述的彩膜基板,其中,
    在每个非周期性纳米结构中,所述多个凹槽在所述第一方向上的宽度彼此不同,所述多个凹槽在第一方向上的间距彼此不同,并且每个所述凹槽在所述第一方向上的宽度与所述狭缝在所述第一方向上的宽度不同。
  4. 根据权利要求2所述的彩膜基板,其中,
    在每个非周期性纳米结构中,在平行于所述非周期性纳米结构的所述表面且与所述第一方向相交的第二方向上,所述多个凹槽和所述狭缝彼此平行地延伸,所述多个凹槽和所述狭缝在所述第二方向上的长度等于所述非周期性纳米结构在所述第二方向上的尺寸。
  5. 根据权利要求2所述的彩膜基板,其中,
    在每个非周期性纳米结构中,所述多个凹槽在所述第三方向上具有相同的深度。
  6. 根据权利要求3所述的彩膜基板,其中,在所述多个非周期性纳米结构中的任意两个所述非周期性纳米结构中,在所述第一方向上,所述多个凹槽的间距彼此不同,所述凹槽的宽度彼此不同,两个所述非周期性纳米结构的两个所述狭缝的宽度相同。
  7. 根据权利要求4所述的彩膜基板,其中,在每个非周期性纳米结构中,在所述第一方向上,所述非周期性纳米结构的宽度为5μm。
  8. 根据权利要求4所述的彩膜基板,其中,在每个非周期性纳米结构中,每个所述凹槽在所述第一方向上的宽度范围为 50nm-400nm,每个所述凹槽在所述第三方向上的深度为100nm。
  9. 根据权利要求4所述的彩膜基板,其中,在每个非周期性纳米结构中,在所述第一方向上,所述狭缝的宽度为100nm。
  10. 根据权利要求2-9中任意一项所述的彩膜基板,其中,每个像素区中的所述多个子像素区沿所述第一方向排布,所述多个非周期性纳米结构沿所述第一方向排布。
  11. 根据权利要求10所述的彩膜基板,其中,一个子像素区沿所述第一方向的宽度为一个所述非周期性纳米结构沿所述第一方向的宽度的1倍或n倍,2≤n≤500。
  12. 根据权利要求10所述的彩膜基板,其中,所述多个子像素呈阵列排布,所述多个非周期性纳米结构在所述第二方向上的尺寸等于所述多个子像素的所述阵列在所述第二方向上的尺寸。
  13. 根据权利要求2所述的彩膜基板,其中,在所述基底和所述纳米结构层之间还设置有透明导电层,所述纳米结构层设置于所述透明导电层的远离所述基底的一侧。
  14. 根据权利要求1所述的彩膜基板,其中,每个所述导光结构的所述多个子导光部的面向所述纳米结构层的出光面相对于所述纳米结构层的远离所述基底的一侧的第一表面具有不同角度,使得从与所述多个子导光部相对应的多个子像素区出射到所述彩膜基板外部的光彼此具有不同的颜色。
  15. 根据权利要求14所述的彩膜基板,其中,每个像素区包括红色子像素区、绿色子像素区和蓝色子像素区;
    与所述像素区相对应的所述导光结构包括第一子导光部、第 二子导光部和第三子导光部,所述第一子导光部、所述第二子导光部和所述第三子导光部分别位于所述红色子像素区、所述绿色子像素区和所述蓝色子像素区;
    所述第一子导光部的所述出光面与所述第一表面的锐角夹角为0°,所述第二子导光部的所述出光面与所述第一表面的锐角夹角为19°,所述第三子导光部的所述出光面与所述第一表面的锐角夹角为31.9°。
  16. 根据权利要求1所述的彩膜基板,其中,所述非周期性纳米结构包括银。
  17. 根据权利要求1所述的彩膜基板,其中,所述导光结构包括聚甲基丙烯酸甲酯。
  18. 一种显示面板,包括权利要求1-17中任意一项所述的彩膜基板,和阵列基板。
  19. 一种用于制造彩膜基板的方法,包括:在基底上形成纳米结构层和导光结构层,所述导光结构层位于所述纳米结构层的远离所述基底的一侧,
    其中,所述彩膜基板包括多个像素区,每个所述像素区包括多个子像素区;
    所述导光结构层包括多个导光结构,每个导光结构位于所述多个像素区中的对应一个内,每个导光结构包括多个子导光部,每个子导光部位于其所在的像素区的多个子像素区中的对应一个内,纳米结构层包括多个非周期性纳米结构,每个子像素区对应于至少一个所述非周期性纳米结构,每个所述非周期性纳米结构位于对应的一个所述子像素区内;并且
    在同一个像素区中的所述多个子导光部中的每一个构造为使入射到其的光以不同角度出射并且进入与其位于同一子像素区的 非周期性纳米结构,每个非周期性纳米结构构造为使入射到其的光发生耦合和干涉,以使从与该非周期性纳米结构所在的子像素区出射的光具有预定颜色。
  20. 根据权利要求19所述的用于制造彩膜基板的方法,其中,形成所述纳米结构层包括:
    在基底上形成透明导电层;
    在所述透明导电层上形成牺牲层;
    图案化所述牺牲层以形成牺牲图案;
    在所述透明导电层上和所述牺牲图案上形成第一纳米结构层;
    去除所述牺牲图案和所述第一纳米结构层的位于所述牺牲图案上的部分;
    在所述透明导电层上和所述第一纳米结构层的剩余部分上形成第二纳米结构层;
    形成贯穿所述第一纳米结构层的剩余部分和所述第二纳米结构层的狭缝。
PCT/CN2020/091279 2019-05-23 2020-05-20 彩膜基板及其制造方法和显示面板 WO2020233594A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,331 US20220019008A1 (en) 2019-05-23 2020-05-20 Color filter substrate, method of manufacturing the same, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910435794.7A CN110082950B (zh) 2019-05-23 2019-05-23 彩膜基板及其制备方法和显示面板
CN201910435794.7 2019-05-23

Publications (1)

Publication Number Publication Date
WO2020233594A1 true WO2020233594A1 (zh) 2020-11-26

Family

ID=67421591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091279 WO2020233594A1 (zh) 2019-05-23 2020-05-20 彩膜基板及其制造方法和显示面板

Country Status (3)

Country Link
US (1) US20220019008A1 (zh)
CN (1) CN110082950B (zh)
WO (1) WO2020233594A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082950B (zh) * 2019-05-23 2020-12-25 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示面板
CN113078189B (zh) * 2021-03-22 2022-08-26 武汉天马微电子有限公司 一种显示面板和显示装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100051A1 (en) * 2007-02-13 2008-08-21 Image Lab Co., Ltd. Color improvement film and optical device having the same
TW201024806A (en) * 2008-12-31 2010-07-01 Ind Tech Res Inst Color dividing optical device and image apparatus with the application
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
KR20130016157A (ko) * 2012-12-22 2013-02-14 정영진 금속 나노 슬릿 어레이 회절격자
CN103048715A (zh) * 2013-01-04 2013-04-17 南京邮电大学 平面亚波长非周期高对比度光栅及其制备方法
KR20140069879A (ko) * 2012-11-30 2014-06-10 한국과학기술원 비등방성 패턴을 포함하는 능동형 표면 플라즈모닉 컬러 필터, 및 능동형 표면 플라즈모닉 컬러필터를 포함하는 디스플레이 소자
KR20140086934A (ko) * 2014-05-16 2014-07-08 한국과학기술원 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
US20140268332A1 (en) * 2013-03-15 2014-09-18 Sandia Corporation Dye and pigment-free structural colors and angle-insensitive spectrum filters
CN105259600A (zh) * 2015-09-15 2016-01-20 北京大学 一种纳米超材料全色域调色板
KR101635603B1 (ko) * 2015-10-01 2016-07-01 서울대학교산학협력단 색상 가변 컬러 필터 및 색상 가변 컬러 필터링 방법
US20170235188A1 (en) * 2016-02-12 2017-08-17 Microsoft Technology Licensing, Llc Integrated privacy display filtering
CN107238968A (zh) * 2017-08-04 2017-10-10 京东方科技集团股份有限公司 一种彩膜基板以及制备方法、液晶显示面板
CN206610052U (zh) * 2017-04-12 2017-11-03 深圳市华星光电技术有限公司 一种反射式液晶显示器
US20180284509A1 (en) * 2017-04-04 2018-10-04 University Of Central Florida Research Foundation, Inc. Dynamically tunable, single pixel full-color plasmonic display, method and applications
WO2019068304A1 (en) * 2017-10-02 2019-04-11 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement RESONANT WAVEGUIDE NETWORK AND ITS APPLICATIONS
CN110082950A (zh) * 2019-05-23 2019-08-02 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137263A1 (ja) * 2009-05-29 2010-12-02 パナソニック株式会社 液晶表示装置
KR20140142501A (ko) * 2013-06-04 2014-12-12 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR102168681B1 (ko) * 2013-11-11 2020-10-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
US10840223B2 (en) * 2017-03-23 2020-11-17 Intel Corporation Augmented reality display systems with super-lambertian LED source
US10996451B2 (en) * 2017-10-17 2021-05-04 Lumileds Llc Nanostructured meta-materials and meta-surfaces to collimate light emissions from LEDs

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100051A1 (en) * 2007-02-13 2008-08-21 Image Lab Co., Ltd. Color improvement film and optical device having the same
TW201024806A (en) * 2008-12-31 2010-07-01 Ind Tech Res Inst Color dividing optical device and image apparatus with the application
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
KR20140069879A (ko) * 2012-11-30 2014-06-10 한국과학기술원 비등방성 패턴을 포함하는 능동형 표면 플라즈모닉 컬러 필터, 및 능동형 표면 플라즈모닉 컬러필터를 포함하는 디스플레이 소자
KR20130016157A (ko) * 2012-12-22 2013-02-14 정영진 금속 나노 슬릿 어레이 회절격자
CN103048715A (zh) * 2013-01-04 2013-04-17 南京邮电大学 平面亚波长非周期高对比度光栅及其制备方法
US20140268332A1 (en) * 2013-03-15 2014-09-18 Sandia Corporation Dye and pigment-free structural colors and angle-insensitive spectrum filters
KR20140086934A (ko) * 2014-05-16 2014-07-08 한국과학기술원 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
CN105259600A (zh) * 2015-09-15 2016-01-20 北京大学 一种纳米超材料全色域调色板
KR101635603B1 (ko) * 2015-10-01 2016-07-01 서울대학교산학협력단 색상 가변 컬러 필터 및 색상 가변 컬러 필터링 방법
US20170235188A1 (en) * 2016-02-12 2017-08-17 Microsoft Technology Licensing, Llc Integrated privacy display filtering
US20180284509A1 (en) * 2017-04-04 2018-10-04 University Of Central Florida Research Foundation, Inc. Dynamically tunable, single pixel full-color plasmonic display, method and applications
CN206610052U (zh) * 2017-04-12 2017-11-03 深圳市华星光电技术有限公司 一种反射式液晶显示器
CN107238968A (zh) * 2017-08-04 2017-10-10 京东方科技集团股份有限公司 一种彩膜基板以及制备方法、液晶显示面板
WO2019068304A1 (en) * 2017-10-02 2019-04-11 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement RESONANT WAVEGUIDE NETWORK AND ITS APPLICATIONS
CN110082950A (zh) * 2019-05-23 2019-08-02 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示面板

Also Published As

Publication number Publication date
US20220019008A1 (en) 2022-01-20
CN110082950B (zh) 2020-12-25
CN110082950A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
KR101272052B1 (ko) 표면 플라즈몬을 이용한 컬러필터 및 액정표시장치의 제조방법
WO2020233594A1 (zh) 彩膜基板及其制造方法和显示面板
CN109633965B (zh) 彩膜结构、显示基板及其制造方法、显示装置
US20120287362A1 (en) Plasmonic In-Cell Polarizer
WO2010070929A1 (ja) 基板および基板を備えた表示パネル
KR101338117B1 (ko) 액정표시장치 및 그 제조방법
US20160146997A1 (en) Wire grid polarizer, display device including the same and method for fabricating the same
KR101640818B1 (ko) 표면 플라즈몬을 이용한 편광 컬러필터 및 이를 구비한 액정표시장치
KR101550008B1 (ko) 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
KR20110070574A (ko) 표면 플라즈몬을 이용한 컬러필터와 액정표시장치 및 그 제조방법
Lee et al. Wide-gamut plasmonic color filters using a complementary design method
JP2008262201A (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
KR20110047001A (ko) 프린지 필드형 액정표시장치 및 그 제조방법
TWI792608B (zh) 光學元件及其製造方法
EP3023833B1 (en) Color filter-integrated polarizer and method of manufacturing the same
JP2009069268A (ja) メタルワイヤーパタンの製造方法、バックライトシステム及びそれらを用いた液晶ディスプレイ
KR101455063B1 (ko) 레이저 간섭 리소그래피를 이용한 광결정 구조가 결합된 표면 플라즈모닉 컬러 필터의 제조 방법
KR101445844B1 (ko) 레이저 간섭 리소그래피를 이용한 표면 플라즈모닉 컬러 필터의 제조 방법
US20160077377A1 (en) Wire grid polarizer, display device including the same and method for fabricating the same
TWI457615B (zh) 彩色濾光片、光柵結構及顯示模組
KR102241418B1 (ko) 와이어 그리드 편광자 및 이의 제조방법
KR101575760B1 (ko) 광차단 영역을 가진 자동정렬형 컬러 필터 어레이 및 이의 제조 방법
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
JP5682319B2 (ja) 有機el表示装置、当該有機el表示装置に組み込まれるカラーフィルタおよびカラーフィルタの製造方法
KR102286886B1 (ko) 포토 마스크 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20809499

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20809499

Country of ref document: EP

Kind code of ref document: A1