WO2020233503A1 - Detection method - Google Patents

Detection method Download PDF

Info

Publication number
WO2020233503A1
WO2020233503A1 PCT/CN2020/090425 CN2020090425W WO2020233503A1 WO 2020233503 A1 WO2020233503 A1 WO 2020233503A1 CN 2020090425 W CN2020090425 W CN 2020090425W WO 2020233503 A1 WO2020233503 A1 WO 2020233503A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
cytotoxic
target cells
target
Prior art date
Application number
PCT/CN2020/090425
Other languages
French (fr)
Inventor
Hang Heng WONG
Haitao Wang
Kuan Un WONG
Original Assignee
University Of Macau
Aw Medical Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Macau, Aw Medical Co. Ltd. filed Critical University Of Macau
Publication of WO2020233503A1 publication Critical patent/WO2020233503A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells

Definitions

  • THIS INVENTION relates to methods of detecting and assessing cytotoxicity. More particularly, this invention relates to methods of detecting and assessing cytotoxicity by cytotoxic cells in a microfluidic system.
  • Chimeric antigen receptor (CAR) T cell therapy is a type of cancer immunotherapy approved by the US Food and Drug Administration (FDA) .
  • CAR-T and T cell receptor (TCR) T cell therapies are both personalized medicine that exploits cytotoxic T lymphocytes genetically engineered from the patient under therapy 1, 2 .
  • TCR-T cells recognize cancer cells by the major histocompatibility complex (MHC) that is sometimes masked in tumors 3
  • MHC major histocompatibility complex
  • the basic CAR construct consists of an extracellular target cell-specific recognition site associated to an intracellular stimulatory signal for cytotoxic T cell activation 4 to improve targeting efficiency.
  • CAR-T cell therapy has been shown to achieve good treatment outcomes in acute lymphoblastic leukemia (ALL) and diffuse large B cell lymphoma (DLBCL) 6 to make it a promising approach for cancer therapy.
  • ALL acute lymphoblastic leukemia
  • DLBCL diffuse large B cell lymphoma
  • CAR-T cells involves extracting T lymphocytes from the blood of the patient, followed by ex vivo culture to amplify the cells for genetic engineering and cell sorting to isolate the CAR-expressing cells 7 .
  • analytic tests are carried out on each CAR-T cell product for quality control purposes.
  • in vitro measurement of CAR expression or cytokine release provides the economical option, but these results indirectly reflect CAR-T cytotoxicity.
  • the xenograft model closely mimicks the in vivo scenario, but this method is low throughput and costly.
  • in vitro cytotoxicity screens are considered.
  • Prevalent in vitro bulk cytotoxicity screens e.g.
  • MTT assay cannot be used because they could not distinguish whether signals come from CAR-T or cancer cells.
  • the 51 Cr release and BATDA assays circumvent the problem by specifically labeling cancer cells 8 , these bulk assays require a large pool of both CAR-T and cancer cells, limiting their application in practice.
  • co-culture systems of T cells and tumor organoids require a tumor organoid amplification time of 2 weeks to generate enough cells for fluorescence activated cell sorting (FACS) or plate reader assays 9 , in addition to a success rate of below 50% 10 . Accordingly, there remains a need for improved methods of assessing the cytotoxicity of cytotoxic cells more broadly in vitro.
  • the present invention is broadly directed to a methods, kits and systems for assessing the cytotoxicity of cytotoxic cells using a microfluidic device.
  • the invention provides a method for assessing cytotoxicity of a cytotoxic cell that includes determining whether a cytotoxic cell has a cytotoxic effect on a target cell (e.g., killing of the target cell) when cultured together in a microfluidic device.
  • the invention provides a method for assessing cytotoxicity of a cytotoxic cell, said method including the steps of:
  • the present method further includes the step of identifying or differentiating the target cells and/or the cytotoxic cells in the microfluidic device.
  • step (b) of the present method includes determining a cell count and/or a status of the target cells and/or the cytotoxic cells.
  • the status of the target cell and/or the cytotoxic cells suitably indicates or is capable of indicating cytotoxicity of the cytotoxic cell.
  • step (b) comprises: (i) determining the cell count and/or the status of the target cells and/or the cytotoxic cells at respective first and second time points; and (ii) comparing the cell count and/or the status of the target cells and/or the cytotoxic cells at the first and second time points, wherein a change between the cell count and/or the status measured at the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
  • the status of the target cells and/or the cytotoxic cells is selected from the group consisting of cell viability, cell death, cell cluster size, cell cluster number, cell shape, cell proliferation, cell apoptosis, cell necrosis, cell autophagy, cell lysis, cell growth arrest, cell antigen expression suppression, cell cytokine receptor expression, cell cytokine expression, cell receptor expression, cell ligand expression and any combination thereof.
  • the status of the target cells is or comprises cell death.
  • the status of the cytotoxic cells is or comprises cell proliferation.
  • the target cells express a detectable label and/or the cytotoxic cells express a further detectable label.
  • the detectable label and the further detectable label can be for identifying a cell type to facilitate determining the cell count thereof.
  • step (b) includes determining whether the cytotoxic cells and/or the target cells in the microfluidic device bind an agent that facilitates determining the status thereof.
  • the present method further includes the initial step of contacting the cytotoxic cells and/or the target cells with the agent.
  • the agent is or comprises a nucleic acid dye, such as a membrane impermeable nucleic acid dye, that facilitates determining cell death of the target cells.
  • the plurality of target cells are or comprise a cancer cell.
  • the cytotoxic cell is or comprises an immune cell.
  • the immune cell comprises a receptor that binds to a target protein, such as an antigen.
  • the target protein is suitably expressed, such as cell surface expressed, by the target cell.
  • the receptor is a T-cell receptor (TCR) or a chimeric antigen receptor (CAR) .
  • the cytotoxic cell is or comprises a CAR-T cell.
  • the method of the present aspect further includes the initial step of loading the cytotoxic cells and the target cells into the microfluidic device.
  • step (b) includes imaging the target cells and/or the cytotoxic cells in the microfluidic device.
  • the cytotoxic cells and the target cells are cultured in one or more droplets in the microfluidic device.
  • the microfluidic device comprises at least one droplet-forming channel, each of the at least one droplet-forming channel comprising a plurality of droplet-forming units serially connected together.
  • the method comprises culturing the cytotoxic cells with the target cells in the microfluidic device for at least about 1 hour to about 120 hours.
  • the invention resides in a kit for assessing cytotoxicity of a cytotoxic cell, said kit comprising a microfluidic device, one or more target cells, and optionally one or more of the cytotoxic cell.
  • the kit further comprises instructions for assessing the cytotoxicity of the cytotoxic cell.
  • the invention relates a system for assessing cytotoxicity of a cytotoxic cell, the system comprising:
  • the system further comprises an imaging device for imaging the cytotoxic cells and the target cells in the microfluidic device.
  • kit of the second aspect and the system of the third aspect are for use in the method of the first aspect.
  • refers to a tolerance or variation in a stated value or amount that does not appreciably or substantially affect function, activity or efficacy. Typically, the tolerance or variation is no more than 10%, 5%, 3%, 2%, or 1%above or below a stated value or amount.
  • FIG. 1 Paradigm of this study.
  • CAR-T construct design and FACS characterization CAR was constructed with the CD19-targeting FMC63-scFv domain (FMC63-sFv) , the CD28 transmembrane domain (TM) , the CD28 endodomain (CD28) , CD3 ⁇ signaling domain (CD3 ⁇ ) , the Toll/interleukin-1 receptor domain of Toll-like receptor 2 (TLR2) , the 2A self-cleaving peptide (2A) and the extracellular and transmembrane domains of truncated human epidermal growth factor receptor (EGFRt) .
  • FMC63-sFv CD19-targeting FMC63-scFv domain
  • TM CD28 transmembrane domain
  • CD28 CD28 endodomain
  • CD3 ⁇ CD3 ⁇ signaling domain
  • TLR2 Toll/interleukin-1 receptor domain of Toll-like receptor 2
  • CAR-T cells were purified 12 h post-transduction using anti-human EGFR antibody and side scattering (SSC) ; the percentage of CAR-T cells in the population of all transduced T cells was indicated.
  • SSC side scattering
  • CAR-T and Nalm6 cancer cells were mixed and loaded on chip, followed by 24 h incubation and imaging. The design of the chip and its wells was shown in the insets.
  • EH1 red fluorescent dye ethidium homodimer 1
  • FIG. 1 Cytotoxicity assessment on chip.
  • FIG. 3 CAR-T cell expansion analysis. Analysis of CAR-T occupancy before and after treatment on chip was performed. CAR-T droplet cell count was plotted against treatment time; each dot represented one well; the thick black line, grey box and dotted error bars of the box plot indicated median CAR-T droplet cell count, interquartile range between -1 ⁇ and 1 ⁇ , and range of all wells, respectively; the numbers indicated p values of 1-tailed T test.
  • FIG. 4 Ratiometric parameters for CAR-T cytotoxicity assessment.
  • FIG. 5 CAR-T cell characterization.
  • FIG. 6 Cell occupancy analysis of Batch 1 CAR-T cells. Frequency distribution analysis of CAR-T (CT) and Nalm6 (N6) cells alone and in sum on chip at 0 h was performed. Distribution frequency and probability was plotted against cell occupancy in all wells on chip; each column represented one data grid automatically classified by GraphPad Prism; the lines indicated Poisson distribution curves generated by GraphPad Prism.
  • CT CAR-T
  • N6 Nalm6
  • the present invention is at least partly based on the development of methods for assessing the cytotoxicity of cytotoxic cells cultured in a microfluidic device. These methods may be particularly suitable for the in vitro assessment of the cytotoxicity of immune cells, such as T cells, expressing T cell receptors (TCRs) or chimeric antigen receptors (CARs) that may be suitable for adoptive immunotherapy in subjects with, for example, cancer.
  • immune cells such as T cells, expressing T cell receptors (TCRs) or chimeric antigen receptors (CARs) that may be suitable for adoptive immunotherapy in subjects with, for example, cancer.
  • the invention provides a method for assessing cytotoxicity of a cytotoxic cell, said method including the steps of:
  • isolated material, such as a cytotoxic cell or a target cell, that has been removed from its natural state or otherwise been subjected to human manipulation.
  • Isolated material may be substantially or essentially free from components that normally accompany it in its natural state, or may be manipulated so as to be in an artificial state together with components that normally accompany it in its natural state.
  • Isolated material may be in recombinant, chemical synthetic, enriched, purified or partially purified form.
  • determining includes any form of measurement, and includes determining if an element is present or not.
  • the terms “determining” , “measuring” , “evaluating” , “assessing” and “assaying” are used interchangeably and include quantitative and qualitative determinations. Determining may be relative or absolute. “Determining the presence of” includes determining the amount of something present (e.g., a cytotoxic effect, such as those described herein) , and/or determining whether it is present or absent.
  • cytotoxicity refers to the ability of a cytotoxic cell to disrupt the normal metabolism, function and/or structure of a target cell, in a potentially irreversible manner, and which often leads to cell death or killing of the target cell. Accordingly, a cytotoxic effect can refer to a cell death effect, a cytostatic effect and/or an antiproliferative effect of the cytotoxic cell on the target cell.
  • cytotoxic cell generally refers to a cell which can damage, injure or destroy a target cell, such as a cancer cell, a microorganism, or other diseased cells, such as virally-infected cells.
  • a target cell such as a cancer cell, a microorganism, or other diseased cells, such as virally-infected cells.
  • the cytotoxic cell can bind to a target cell when co-cultured under suitable conditions, such as through an antibody, receptor, ligand or fragments/derivatives thereof, to form a stable complex therewith, which subsequently stimulates the cytotoxic cell to damage or destroy the target cell.
  • cytotoxic cells include immune cells, such as natural killer (NK) cells, natural killer T cells, activated NK cells, neutrophils, T cells (inclusive of CD4 + and CD8 + T cells, ⁇ T cells, NK T cells, and regulatory T cells) , granulocytes, eosinophils, basophils, B-cells, macrophages, lymphokine-activated killer (LAK) cells, cells with stem cell and/or progenitor cell properties (e.g., hematopoietic stem/progenitor cells) , embryonic stem cells (ESCs) , cord blood stem cells, induced pluripotent stem cells (iPSCs) , iPSC-derived T cells and iPSC-derived NK cells, albeit without any limitation thereto.
  • NK natural killer
  • T cells inclusive of CD4 + and CD8 + T cells, ⁇ T cells, NK T cells, and regulatory T cells
  • granulocytes eosinophils, basophil
  • the cytotoxic cell is an immune cell having a receptor that binds to a target protein, such as an antigen.
  • a target protein such as an antigen.
  • the term “receptor” refers to a polypeptide, or portion thereof, present on a cell membrane that selectively binds one or more ligands.
  • the cytotoxic cell is additionally or alternatively capable of exerting a cytotoxic effect on a target cell without having a receptor binding to a target protein or ligand thereon (e.g., macrophagocytosis)
  • the target protein or antigen is expressed, such as cell surface expressed, by the target cell.
  • the target protein is or comprises a cancer-or tumour-associated antigen (TAA) (i.e., a protein or antigen expressed in both normal cells and cancer cells, but its expression is relatively limited to cancer cells) or a tumour-specific antigen (TSA) (i.e., an antigen specific to cancer cells) .
  • TAA cancer-or tumour-associated antigen
  • TSA tumour-specific antigen
  • a “protein” is an amino acid polymer, wherein the amino acids may include D-amino acids, L-amino acids, natural and/or non-natural amino acids.
  • a “peptide” is a protein comprising no more than sixty (60) contiguous amino acids.
  • a “polypeptide” is a protein comprising more than sixty (60) contiguous amino acids.
  • the term “protein” should also be understood to encompass protein- containing molecules, such as glycoproteins and lipoproteins, although without limitation thereto.
  • the receptor is or comprises a T-cell receptor (TCR) .
  • T-cell receptor is used herein in a conventional manner to mean a molecule capable of recognising a peptide when presented by an MHC or HLA molecule.
  • the molecule may be a heterodimer of two chains alpha ( ⁇ ) and beta ( ⁇ ) (or optionally gamma ( ⁇ ) and delta ( ⁇ ) ) or it may be a single chain TCR construct.
  • the respective chains (e.g., the alpha chain and beta chain) of the T-cell receptor can be joined by a linker, such as those known in the art.
  • the linker can join the respective chains of the TCR by way of a disulphide bridge or bond.
  • the TCR selectively binds to one or more epitopes or antigenic determinants derived from a target protein or antigen (i.e., demonstrates antigenic specificity) when presented by a MHC or HLA molecule.
  • antigenic specificity means that the TCR (including functional portions and functional variants thereof) can specifically bind to and immunologically recognize the target protein or antigen.
  • the receptor is or comprises a chimeric antigen receptor (CAR) .
  • the cytotoxic cell suitably is or comprises a CAR-T cell.
  • a CAR is an artificially constructed hybrid protein or polypeptide containing the antigen binding domains of an antibody (e.g., single chain variable fragment (scFv) ) linked to a T-cell signalling domain.
  • Characteristics of CARs include their ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC-restricted manner and exploiting the antigen-binding properties of monoclonal antibodies.
  • the non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumour escape.
  • CARs advantageously do not dimerize with endogenous T cell receptor (TCR) alpha and beta chains.
  • the CARs of the invention may be considered to be, for example, a first generation, second generation, third generation or fourth generation (i.e., associated with a T cell redirected for universal cytokine-mediated killing (TRUCKs) ) CAR, as are known in the art.
  • First generation CARs typically join an antibody-derived scFv to the CD3-zeta ( ⁇ or z) intracellular signalling domain of the T-cell receptor through hinge and transmembrane domains.
  • Second generation CARs incorporate an additional domain (e.g., CD28, 4-lBB, or ICOS) to supply a costimulatory signal.
  • Third-generation CARs typically contain two costimulatory domains fused with the TCR CD3-zeta chain.
  • Third-generation costimulatory domains may include, for example, a combination of CD3z, CD27, CD28, 4-lBB, ICOS, DAP-10 or OX40.
  • the CARs of the invention may contain an ectodomain commonly derived from a single chain variable fragment (scFv) , a hinge, a transmembrane domain, and an endodomain with one (first generation) , two (second generation) , or three (third generation) signalling domains derived from CD3-zeta and/or co-stimulatory molecules.
  • scFv single chain variable fragment
  • the CAR is associated with a T-cell redirected for cytokine activity (e.g., TRUCK) , also known as a fourth generation CAR.
  • TRUCKs are CAR-redirected T-cells used as vehicles to trigger effector activity of the CAR T cells and in addition produce and release a transgenic cytokine (e.g., IL-12) that accumulates in the targeted tissue (e.g., a tumour tissue) .
  • the transgenic cytokine is made constitutively or released upon CAR engagement of the target.
  • TRUCK cells may deposit a variety of therapeutic cytokines at the target site. This may result in therapeutic concentrations at the targeted site and avoid systemic toxicity of these same cytokines.
  • the CARs of the invention suitably have antigen specificity for a target protein or antigen expressed by the target cell. Similar to the above, the phrases “have antigen specificity” and “elicit antigen-specific response” as used herein means that the CAR can specifically bind to and immunologically recognize an antigen, such that binding of the CAR to the target protein or antigen elicits an immune response. Without being bound to a particular theory or mechanism, it is believed that by eliciting an antigen-specific response against the target protein or antigen, the CARs described herein can target and kill target cells expressing the target protein or antigen.
  • the CAR comprises an antigen binding domain of a monoclonal antibody known in the art.
  • the antigen binding domain may comprise a light chain variable region and/or a heavy chain variable region of a monoclonal antibody.
  • an “antibody” is or comprises an immunoglobulin protein.
  • immunoglobulin includes any antigen-binding protein product of a mammalian immunoglobulin gene complex, including immunoglobulin isotypes IgA, IgD, IgM, IgG and IgE and antigen-binding fragments thereof. Included in the term “immunoglobulin” are immunoglobulins that are monoclonal, polyclonal, recombinant, chimeric or humanized or otherwise comprise altered or variant amino acid residues, sequences and/or glycosylation, whether naturally occurring or produced by human intervention (e.g. by recombinant DNA technology) .
  • target cells include cancer cells, cells associated with autoimmune diseases, disorders or conditions, cells associated with inflammatory diseases, disorders or conditions, pathogen-infected cells (e.g., virally infected cells) and infectious cells (e.g., infectious bacteria, fungi, mycoplasma) .
  • pathogen-infected cells e.g., virally infected cells
  • infectious cells e.g., infectious bacteria, fungi, mycoplasma
  • Cells of infectious organisms such as mammalian parasites are also contemplated as target cells.
  • the target cell is a cancer cell.
  • cancer cells include lung cancer cells, breast cancer cells, ovarian cancer cells, leukemia cells, colorectal cancer cells, prostate cancer cells, sarcoma cells, mesothelioma cells, and lymphoma cells, but it is envisaged that the target cell may be derived from any cancer type known in the art.
  • cancer refers to diseases or conditions, or to cells or tissues associated with the diseases or conditions, characterized by aberrant or abnormal cell proliferation, differentiation and/or migration often accompanied by an aberrant or abnormal molecular phenotype that includes one or more genetic mutations or other genetic changes associated with oncogenesis, expression of tumour markers, loss of tumour suppressor expression or activity and/or aberrant or abnormal cell surface marker expression.
  • Cancers may include any aggressive or potentially aggressive cancers, tumours or other malignancies such as listed in the NCI Cancer Index at http: //www. cancer. gov/cancertopics/alphalist, including all major cancer forms such as sarcomas, carcinomas, lymphomas, leukaemias, myelomas and blastomas, although without limitation thereto.
  • breast cancer lung cancer inclusive of lung adenocarcinoma
  • cancers of the reproductive system inclusive of ovarian cancer, cervical cancer, uterine cancer and prostate cancer
  • cancers of the brain and nervous system head and neck cancers
  • gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer
  • liver cancer kidney cancer
  • skin cancers such as melanoma and skin carcinomas
  • blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers
  • cancers of the endocrine system such as pancreatic cancer and pituitary cancers
  • musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto.
  • the cancer is a solid cancer, such as glioblastoma multiforme.
  • the cancer expresses, such as overexpresses, a target protein or antigen, such as on a cell surface or plasma membrane thereof, which can be recognised or bound by the cytotoxic cell.
  • microfluidic device refers to a device comprising fluidic structures and internal channels having microfluidic dimensions.
  • the microfluidic device is or comprises a microfluidic chip.
  • microfluidic chip generally refers to herein a substrate having microfluidic structures, such as chambers or wells, contained therein or thereon.
  • the microfluidic device may be any as are described in the art.
  • the cytotoxic cells and the target cells are cultured in one or more droplets or wells in the microfluidic device.
  • the microfluidic device can be that described in US20190291112A1, which is incorporated in its entirety herein.
  • a schematic figure of the microfluidic device described in US20190291112A1 is provided in Figure 1b.
  • the microfluidic device may comprise at least one droplet-forming channel, each of the at least one droplet-forming channel comprising a plurality of droplet-forming units serially connected together.
  • the microfluidic device may include an inlet for receiving a loading fluid and providing the loading fluid to the plurality of droplet-forming units; and an outlet for discharging the loading fluid remained after passing through the plural droplet-forming units; wherein: an individual droplet-forming unit comprising an inflow channel, a neck channel, a droplet-forming well, a restricted flow port element, and an outflow channel all of which are sequentially arranged along a flow direction of the loading fluid; the inflow channel is configured to accept the loading fluid and is in fluid communication with the neck channel, the neck channel is in fluid communication with the droplet-forming well for delivering a first portion of the loading fluid from the inflow channel to the droplet-forming well, and is configured to have a cross-sectional width that is smaller than a cross-sectional width of the droplet-forming well
  • the neck channel and the bypass channel have a cross-sectional width ratio of the bypass channel to the neck channel, the cross-sectional width ratio being selected such that the first portion of the loading fluid fills the droplet-forming well before the second portion of the loading fluid fills the bypass channel.
  • the cross-sectional width ratio of the bypass channel to the neck channel is approximately 0.2 to approximately 1.0.
  • the cross-sectional width ratio of the bypass channel to the neck channel is approximately 0.75.
  • the neck channel has a cross-sectional width of approximately 50-150 ⁇ m.
  • the droplet-forming well has a cross-sectional width of approximately 100-500 ⁇ m.
  • the restricted flow port element is a restriction channel having a cross-sectional width of approximately 5-20 ⁇ m.
  • the method of the present aspect includes the initial step of loading the cytotoxic cells and the target cells into the microfluidic device.
  • the present method may further include the step of mixing the cytotoxic cells and the target cells prior to being loaded into the microfluidic device.
  • the cytotoxic cells and/or target cells are loaded into the microfluidic device at a concentration and ratio sufficient to determine whether the cytotoxic cells have a cytotoxic effect on the target cells.
  • the cytotoxic cells and/or the target cells are loaded into the microfluidic device at a concentration of between about 1 x 10 5 to about 1 x 10 8 cells/mL (e.g., 1 x 10 5 , 2 x 10 5 , 3 x 10 5 , 4 x 10 5 , 5 x 10 5 , 6 x 10 5 , 7 x 10 5 , 8 x 10 5 , 9 x 10 5 , 1 x 10 6 , 2 x 10 6 , 3 x 10 6 , 4 x 10 6 , 5 x 10 6 , 6 x 10 6 , 7 x 10 6 , 8 x 10 6 , 9 x 10 6 , 1 x 10 7 , 2 x 10 7 , 3 x 10 7 , 4 x 10
  • the ratio of the cytotoxic cells to the target cells loaded into the microfluidic device is between about 10: 1 to about 1: 10 (e.g., 10: 1, 9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 1, 3: 1, 2: 1, 1: 1, 1: 2, 1: 3, 1: 4, 1: 5, 1: 6, 1: 7, 1: 8, 1: 9, 1: 10 and any range therein) .
  • step (b) includes imaging or visualising the target cells and/or cytotoxic cells in the microfluidic device.
  • the cytotoxic cells and/or the target cells may be imaged by a camera.
  • a microscope may be also used for cell imaging for the present method; for example, cells may be imaged by a camera and a microscope (e.g., a confocal microscope) , such as by a camera forming an image using a microscope, as are well known in the art.
  • the microscope is utilized to implement a form of microscopy selected from the group consisting of confocal microscopy, spinning disk microscopy, epi-fluorescence microscopy, light field microscopy, light-sheet microscopy, multiphoton microscopy and any combination thereof.
  • step (b) of the method of the present aspect includes determining a cell count of the target cells and/or the cytotoxic cells cultured in the microfluidic device.
  • cell count refers to a qualitative or quantitative assessment (i.e., relative or absolute) , inclusive of estimates thereof, of the number of cells in a sample, or on a surface, or in a field of view, or in a volume, such as in a droplet or well of the microfluidic device.
  • a cell count can include: an estimate of the number of cells in a sample (such as by absorbance of light passing through, or scattered or otherwise altered by cells in a sample; by light or other radiation emitted by cells expressing fluorescent or otherwise detectable proteins, or labelled by dyes, radionuclides, or other markers, such as those described herein) ; an enumeration of the number of cells in an image (e.g., an image of a droplet or well of a microfluidic device acquired by a camera, a microscope, or other optical imaging device) ; and a quantitative measurement of the number of cells adherent to a surface or present in a suspension.
  • an estimate of the number of cells in a sample such as by absorbance of light passing through, or scattered or otherwise altered by cells in a sample; by light or other radiation emitted by cells expressing fluorescent or otherwise detectable proteins, or labelled by dyes, radionuclides, or other markers, such as those described herein
  • step (b) of the method of the present aspect can include determining a status of the target cells and/or the cytotoxic cells.
  • the status of the target cell and/or the cytotoxic cells indicates cytotoxicity of the cytotoxic cell.
  • the status of the target cells and/or the cytotoxic cells is selected from the group consisting of cell viability, cell death, cell cluster size, cell cluster number, cell shape, cell proliferation, cell apoptosis, cell necrosis, cell autophagy, cell lysis, cell growth arrest, cell antigen expression suppression, cell cytokine receptor expression, cell cytokine expression, cell receptor expression, cell ligand expression and any combination thereof.
  • the status of the target cells is or comprises cell death.
  • the identification of target cells that are dead or dying may be taken into consideration when determining the cell count thereof.
  • a high or relatively high level of cell death in the target cells can indicate that the cytotoxic cells are having or exerting a cytotoxic effect on the target cells.
  • the status of the cytotoxic cells is or comprises cell proliferation.
  • proliferation or expansion of the cytotoxic cells can indicate or correlate with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
  • the status of the target cells is or comprises cell cluster size and/or cell cluster number.
  • a small or relatively small cluster size and/or cell cluster number e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 cells or any range therein
  • the target cells such as an average thereof, may indicate or correlate with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
  • the status of the target cells and/or the cytotoxic cells is or comprises cell viability.
  • cell viability may be assessed, such as hereinafter described, by determining a ratio of a cell count of total live cells (including target cells and cytotoxic cells) to a cell count of total cells (including target cells and cytotoxic cells) , inclusive of live and dead cells (referred to herein as droplet cell viability or DCV) .
  • a value for the ratio of the cell count of total live cells to the cell count of total cells of less than 1 indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
  • cell viability may be assessed for each individual well or droplet of the microfluidic device as required.
  • droplet cell viability refers to the ratio of the cell count of total live cells to the cell count of total cells in one droplet or well.
  • Weighted mean droplet cell viability refers to the mean of the droplet cell viability of each droplet or well multiplied by the ratio of the cell count of total cells in each droplet or well to the sum of the cell count of total cells in all droplets or wells of the microfluidic device.
  • Mean droplet cell viability refers to the mean of the droplet cell viability of all droplets or wells of the microfluidic device.
  • cell viability may be determined at least partly by determining a ratio of a cell count of the cytotoxic cells to a cell count of the target cells. As will be appreciated by the skilled artisan, a high or relatively high level of such a ratio can indicate that the cytotoxic cells are having or exerting a cytotoxic effect on the target cells.
  • any suitable methods for measuring or assessing cell status can be used to measure the status of the target cells and/or cytotoxic cells.
  • the status of the target cells and/or cytotoxic cells is measured or determined by imaging or visualisation thereof in the microfluidic device.
  • the method of the present aspect includes contacting the cytotoxic cells and/or the target cells with an agent, such as a detectable marker, that facilitates determining the status thereof and detecting whether the cytotoxic cells and/or the target cells in the microfluidic device bind or interact with the agent.
  • an agent such as a detectable marker
  • the agent is capable of generating a detectable signal which may then be detected by imaging the cytotoxic cells and target cells in the microfluidic device.
  • the agent may comprise a fluorescent reporter dye for which a wide variety are known in the art.
  • the fluorophore of such a fluorescent reporter dye is an aromatic or heteroaromatic compound and can be a pyrene, anthracene, naphthalene, acridine, stilbene, indole, benzindole, oxazole, thiazole, benzothiazole, cyanine, carbocyanine, salicylate, anthranilate, coumarin, fluorescein, rhodamine or other like compounds.
  • the agent is or comprises a nucleic acid dye.
  • Nucleic acid dyes are generally capable of binding to DNA, RNA, or to a hybrid thereof.
  • a nucleic acid binding dye can be an intercalating dye or a minor groove binding dye.
  • the nucleic acid binding dye can also be a fluorescent reporter dye.
  • the fluorescent reporter dye may display different fluoresence spectra depending on whether it is bound or not bound to a double-stranded nucleic acid molecule.
  • the nucleic acid binding dye may be substantially non-fluorescent when not complexed with a double-stranded nucleic acid molecule and becomes substantially fluorescent when complexed with a double-stranded nucleic acid molecule.
  • Suitable nucleic acid dyes include many commercially available dyes and those known in the art.
  • the nucleic acid dye is a membrane-impermeable nucleic acid dye that facilitates determining cell death of the target cells.
  • membrane-impermeable nucleic acid dyes include cyanine nucleic acid labels, such as TOTO TM , YOYO TM , BOBO TM , POPO TM , TO-PRO TM , YO-PRO TM , BO-PRO TM , and PO-PRO TM , ethidium analogues, such as ethidium-acridine heterodimer, ethidium bromide, ethidium diazide and ethidium homodimers 1, 2 and 3, propidium iodide and green nucleic acid stain SYTOX TM .
  • the cell count and/or the status of the cytotoxic cells and/or the targets cells may be assessed for individual wells or droplets of the microfluidic device, such that a range, median and/or mean of the cell count and/or the status across all or a number of wells or droplets of the microfluidic device can be calculated.
  • a well ratio may be calculated, which includes calculating a ratio of the sum or number of wells of the microfluidic device that demonstrate a decrease in cell count of the target cells to the sum or number of wells of the microfluidic device that demonstrate an increase in cell count of the target cells following culturing with the cytotoxic cells.
  • a well ratio greater than 1 e.g., 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10 etc or any range therein
  • more particularly greater than 2 and even more particularly greater than 5 indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
  • a cell ratio may be calculated, which includes calculating a ratio of the decrease in cell count or cell number of the target cells in a first set of wells of the microfluidic device that demonstrate such a decrease to an increase in cell count or cell number of the target cells in a second set of wells of the microfluidic device that demonstrate such an increase.
  • a cell ratio greater than 1 e.g., 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10 etc or any range therein
  • more particularly greater than 2 and even more particularly greater than 5 indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
  • a value for the cell ratio greater than 1 indicates that a decrease in cell count of the target cells in a first set of wells exceeds an increase in cell count of the target cells in a second set of wells of the microfluidic device.
  • the present method may include the initial step of identifying the cytotoxic cells and/or the target cells in the microfluidic device. To this end, the present method may allow for differentiating the target cells from the cytotoxic cells.
  • the target cells express a detectable label capable of generating a detectable signal (e.g., fluorophores, enzymes, radioactive isotopes) , such as for identifying the target cells and/or facilitating determining the cell count thereof.
  • a detectable label capable of generating a detectable signal (e.g., fluorophores, enzymes, radioactive isotopes) , such as for identifying the target cells and/or facilitating determining the cell count thereof.
  • the cytotoxic cell may express a further detectable label, such as for those embodiments in which the target cell does not express a detectable label. In certain embodiments, however, the cytotoxic cell does not express any detectable label.
  • the target cells express a detectable label and the cytotoxic cells express a further detectable label
  • different or distinct detectable labels are preferably used that can be detected individually or separately from the other (e.g., the detectable label comprises a fluorophore or fluorochrome that is distinct from a fluorophore or fluorochrome associated with the further detectable label) .
  • Exemplary detectable labels include, but are not limited to, fluorescent compounds (e.g., GFP, RFP, CFP, YFP, OFP, far red fluorescent protein, switchable fluorescent protein) , chemiluminescent, bioluminescent or luminescent compounds (e.g., biotin, luciferase, such as bacterial, firefly, click beetle and the like, luciferin, and aequorin) , enzymes (e.g., alkaline phosphatase or horseradish peroxidase) , radioisotopes (e.g. 125 I, 131 I, 67 Ga, 111 In) , colloidal metals, paramagnetic labels and photoacoustic properties.
  • fluorescent compounds e.g., GFP, RFP, CFP, YFP, OFP, far red fluorescent protein, switchable fluorescent protein
  • chemiluminescent e.g., bioluminescent or luminescent compounds
  • the target cells and/or cytotoxic cells may alternatively be differentiated by way of one or more detectable markers and staining, detection or identification thereof by, for example, a fluorescent dye or the like.
  • the target cells and/or cytotoxic cells may be differentiated by label-free detection by, for example, multiphoton microscopy.
  • the target cells constitutively express a fluorescent protein.
  • the fluorescent label suitably comprises a fluorophore or fluorochrome that is distinct from a fluorophore or fluorochrome associated with the fluorescent reporter dye.
  • step (b) of the present method suitably includes determining an expression level of or detecting expression of the detectable label by the target cells and/or the further detectable label by the cytotoxic cells. Accordingly, determining the cell count of the target cells can at least partly include detecting expression of the detectable label thereof. Similarly, determining the cell count of the cytotoxic cells can at least partly include detecting expression of the further detectable label thereof. In alternative embodiments in which the cytotoxic cells do not express a further detectable label and the target cells express a detectable label, determining the cell count of the cytotoxic cells can at least partly include detecting cells that do not express the detectable label.
  • the method of the present aspect comprises culturing the cytotoxic cells with the target cells in the microfluidic device for at least about 1 hour to about 120 hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120 hours or any range therein) .
  • the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell at least about 1 hour (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120 hours or any range therein) from the initial contact or culturing of the cytotoxic cell with the target cell.
  • the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell no later than about 120 hours from the initial contact or culturing of the cytotoxic cell with the target cell.
  • the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell about 24 hours from the initial contact or culturing of the cytotoxic cell with the target cell.
  • the cell count and/or the status of the cytotoxic cell and/or the target cell may be assessed at multiple time points (e.g., 2, 3, 4, 5, etc time points) during culturing of the cytotoxic cells with the target cells in the microfluidic device.
  • step (b) comprises:
  • the terms “change” , “alter” or “modulate” refer to positively or negatively alter a value or characteristic, such as the cell count or status of the target cells and/or the cytotoxic cells.
  • exemplary modulations include an about 1%, about 2%, about 5%, about 10%, about 25%, about 50%, about 75%, about 100%, about 150%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%or about 500%change.
  • an increase in the cell count of the cytotoxic cells between the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
  • the term “increase” refers to alter positively, such as by at least about 5%, including, but not limited to, alter positively by about 5%, by about 10%, by about 25%, by about 30%, by about 50%, by about 75%, by about 100%, by about 150%, by about 200%, by about 250%, by about 300%, by about 350%, by about 400%, by about 450%or by about 500%.
  • a decrease in the cell count of the target cells between the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
  • the terms “decrease” or “reduce” refers to alter negatively, such as by at least about 5%including, but not limited to, alter negatively by about 5%, by about 10%, by about 25%, by about 30%, by about 50%, by about 75%, by about 100%, by about 150%, by about 200%, by about 250%, by about 300%, by about 350%, by about 400%, by about 450%or by about 500%.
  • the first time point can be at or around the time of initial contact or culturing of the cytotoxic cell with the target cell (e.g., about 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5 etc hours or any range therein from the initial contact or culturing of the cytotoxic cell with the target cell in the microfluidic device)
  • the second time point is suitably at a sufficient time period from the first time point, such as initial contact or culturing of the cytotoxic cells with the target cells, to allow for assessment of any cytotoxic effect thereon (e.g., about 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66 or 72 hours or any range therein from the first time point) .
  • the invention relates to a kit for assessing cytotoxicity of a cytotoxic cell, said kit comprising a microfluidic device, one or more target cells, and optionally the cytotoxic cell.
  • the microfluidic device, the target cells and the cytotoxic cells may be that hereinbefore described.
  • the kit further comprises instructions for assessing cytotoxicity of the cytotoxic cells.
  • the instructions comprise methods for assessing cytotoxicity of cytotoxic cells as described by the present disclosure.
  • the invention provides a system for assessing cytotoxicity of a cytotoxic cell, the system comprising:
  • a processor configured for determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
  • the microfluidic device, the target cells and the cytotoxic cells may be that hereinbefore described.
  • the system may further comprise an imaging device, such as those known in the art.
  • the system further comprises instructions for assessing cytotoxicity of the cytotoxic cells.
  • the instructions comprise methods for assessing cytotoxicity of cytotoxic cells as hereinbefore described.
  • the processor can be in communication or operably connected with one or more input devices, such as an imaging device (e.g., a microscope and associated camera) and optionally a storage device.
  • the processor can generate one or more reports based on user input and/or input directly from the input devices (e.g., images of one or more wells or droplets of the microfluidic device) in relation to the target cells and/or cytotoxic cells cultured in the microfluidic device.
  • the processor is further configured to automatically generate or determine from, for example, such input data a cell count and/or a status of the cytotoxic cells and/or target cells cultured in respective droplets or wells of the microfluidic device.
  • the processor can be further adapted to conduct comparisons of the cell count and/or the status determined for the target cells and/or cytotoxic cells with a control value or threshold to assess whether the cytotoxic cells have a cytotoxic effect on the target cells.
  • the processor may be adapted to compare the cell count and/or the status of the target cells and/or cytotoxic cells at multiple time points as hereinbefore described.
  • the processor can, for example, form part of a server which comprises the storage device or be a separate computing device that is in communication with the storage device.
  • the processor forms part of a computer, such as be a personal computer (PC) , a tablet PC, a set-top box (STB) , a Personal Digital Assistant (PDA) , a cellular telephone, a web appliance, a network router, switch or bridge, or any computer capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that computer, as are known in the art.
  • PC personal computer
  • PDA Personal Digital Assistant
  • STB set-top box
  • a cellular telephone a cellular telephone
  • web appliance a web appliance
  • network router switch or bridge
  • computer shall also be taken to include any collection of computer that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the computer can operate as a standalone device or may be connected (e.g. networked) to other computers.
  • the computer may operate in the capacity of a server, as described earlier, or a client computer in a server-client network environment, or as a peer computer in a peer-to-peer (or distributed) network environment.
  • the processor may provide a graphical user interface (GUI) for displaying one or more reports.
  • the one or more reports can include one or more metrics or readouts for determining whether the cytotoxic cells have a cytotoxic effect on the target cells, such as those described herein.
  • the one or more reports include one or more visualisations, classifications, graphs, tables or the like, generated based on the cell count and/or the status of the cytotoxic cells and/or the target cells, and the GUI can comprise one or more controls to select the one or more visualisations to be displayed.
  • the storage device can comprise a computer memory which can be, for example, a computer readable medium (e.g., software embodying or utilised by any one or more of the methodologies or functions described herein) , such as, one or more hard disk drives or solid state drives.
  • the computer memory may store the status and cell count data of the target cells and/or cytotoxic cells.
  • the computer memory can also comprise computer readable code components that when selectively executed by the processor implements one or more aspects of the present invention, such as, generating aspects of the GUI and providing the GUI via the communications network.
  • the inventors exploited their previously developed droplet microfluidic platform for drug screening of cancer cell lines and human primary tumor dissociated cells 11 to establish a two cell type model for screening CAR-T cells against cancer cells.
  • the basic chip design and data acquisition procedures are identical, but analysis by cell counting became challenging.
  • a CD19 + Nalm6 cancer cell line stably expressing green fluorescent protein (GFP) and luciferase 12 to setup our model.
  • This Example presents the method and insight obtained from cytotoxicity screen on two batches of CD19-targeting CAR-T cells.
  • Table 1 further outlines some disadvantages of prior art methods of screening for cytotoxicity versus the present method described for microfluidic devices, such as microfluidic chips.
  • PBMCs Peripheral mononuclear cells
  • Lymphoprep TM SteMCELL TM Technologies
  • Primary human T cells were isolated from PBMCs by negative selection using the Pan T Isolation Kit (Miltenyi Biotec) .
  • T cells were cultured in R10 Medium containing RPMI 1640 (Life Technologies) supplemented with 10%fetal bovine serum (Life Technologies) , 100 U/mL Penicillin-Streptomycin (Life Technologies) , 2 mM L-glutamine (Life Technologies) , 25 mM HEPES pH7.5 (Life Technologies) and 100 ⁇ g/mL Streptavidin (Sigma-Aldrich) , and stimulated with particles coated with anti-CD3/anti-CD28 antibodies (Miltenyi Biotec) at a cell-to-bead ratio of 1: 2. Approximately 48 h after activation, T cells were transfected with supernatant containing lentiviral vector expressing CAR.
  • transduced T cells After transduction for 12 h, all transduced T cells were sorted by fluorescence activated cell sorting (FACS) using anti-EGFR antibody (BioLegend) . Purified CAR-T cells were cultured or assayed with Activation Medium containing IMDM Medium or R10 Medium supplemented with 300 U/mL IL-2 (clinical grade) . The CAR-T cells were fed every 2 days with fresh media for no more than 5 d, and frozen in liquid nitrogen until use following standard freezing procedures.
  • FACS fluorescence activated cell sorting
  • Nalm6 cells were transduced with a lentiviral vector co-expressing GFP and luciferase.
  • Nalm6 cells were cultured in Culture Medium containing RPMI 1640 (Life Technologies) supplemented with 10% (v/v) fetal bovine serum (Life Technologies) , 100 U/mL Penicillin-Streptomycin (Life Technologies) , 2 mM L-glutamine (Life Technologies) , 25 mM HEPES pH7.5 (Life Technologies) and 50 ⁇ M ⁇ -mercaptoethanol (Sigma-Aldrich) .
  • Blank controls contained Culture Medium but no cells.
  • CAR-T cells were constructed and assessed of their cytotoxic activity as displayed ( Figure 1) .
  • Two batches of CAR-T cells were screened against a CD19 + Nalm6 cancer cell line stably expressing green fluorescent protein (GFP) and luciferase in vitro. After confirming that the CAR-T cells were active by luciferase assay on plate ( Figure 5) and that cell number distribution displays Poisson distribution ( Figure 6) like our previous one cell type model 11 , these CAR-T cells were used for subsequent analysis on chip.
  • GFP green fluorescent protein
  • the mean droplet cell viability of Nalm6 cells was 62.4%and 89.4%in Batch 1 and Batch 2 CAR-T cells, respectively. This suggested that Batch 1 CAR-T cells were more active than Batch 2 CAR-T cells on chip.
  • CAR-T cell expansion is an important feature of efficient CAR-T cytotoxicity 13, 14 , but cannot be achieved in one assay using current protocols 8, 15 .
  • our method circumvented this issue by cell labeling and counting, thus enables simultaneous monitoring of cancer cell reduction and CAR-T cell expansion.
  • CAR-T cytotoxicity by the Well Ratio and the Cell Ratio that are correlated to Nalm6 cell number variance in droplets ( Figure 4) .
  • the Well Ratio expressed as the number of wells with decreasing Nalm6 cells to that of increasing Nalm6 cells, suggested of CAR-T cytotoxicity in a population of droplets.
  • the Cell Ratio expressed as the number of decreased Nalm6 cells divided by the number of increased Nalm6 cells, suggested of the cytotoxic activity of CAR-T cells as a population.
  • Table 2 and Table 3 respectively.
  • the Well Ratio and Cell Ratio indicate CAR-T cytotoxicity in a population and as a population. These parameters provide simple, straight-forward metrics for CAR-T cytotoxicity assessment for the laboratory and industrial applications. However, it is noteworthy that this method simultaneously assesses CAR-T cytotoxicity, expressed as cancer cell reduction, and CAR-T cell expansion in one single assay. Therefore, scoring the Well Ratio and Cell Ratio of both the cancer cells and CAR-T cells leads to a Final Score (Table 4) that unifies the scale for batch analysis. Additionally, CAR-T batch quality control can be accomplished by pre-assignment of criteria for absolute scoring of the Well Ratio and Cell Ratio (Table 5) . Please note that the criteria for “Pass” and “Fail” are arbitrary; other score groups, e.g. “Excellent” , “Good” , “Fair” and “Poor” , can be designed.
  • ⁇ DCV or wmDCV and DCV Range should be considered.
  • ⁇ DCV or wmDCV is used to assess the cytotoxic activity of the therapeutic agent (s)
  • DCV Range assesses the homogeneity of response. Interpretation of these parameters is indicated in Table 6.
  • wmDCV is recommended over ⁇ DCV on our droplet microfluidic screening platform because the population size, i.e. droplet cell count, is taken into account during computation.
  • wmDCV addresses the issue of different sample size among replicate wells, which is indispensable during sample loading on chip.
  • DCV Range is related to both the therapeutic agent (s) and the input cells.
  • the DCV Range induced by inhomogeneity of input cells is deduced from the DCV Range of mock control at 0 h post-treatment. Good response homogeneity indicates higher cytotoxic activity in vitro, which in turn, suggests of higher certainty of cytotoxic effect. Similar to the Well Ratio and Cell Ratio, absolute scoring could also be applied to interpretation of ⁇ DCV, wmDCV and DCV Range.
  • Table 5 The procedures are identical to the example shown in Table 5.
  • Trypan Blue cell counting is used to compare with ⁇ DCV or wmDCV obtained on chip at 0 h and 24 h post-treatment during label-free analysis or mock control at 24 h post-treatment in EH1-labelled cytotoxicity assays to evaluate the viability of the input cells. This step is exceptionally critical to human primary cancers due to severe cell inhomogeneity for various reasons.
  • This Example demonstrates a novel in vitro CAR-T cytotoxicity assessment method using droplet microfluidics.
  • the virtues of this method include low sample input, cost-effectiveness, simple working principle, and parallel assessment of CAR-T cell expansion and cancer cell reduction. Most importantly, this method can be applied to any cell-kill-cell experiment.
  • DCV Range is related to both the therapeutic agent (s) and the input cells.

Abstract

Provided is a method for assessing cytotoxicity of a cytotoxic cell that includes culturing a plurality of the cytotoxic cells with a plurality of target cells in a microfluidic device and determining whether the cytotoxic cells have a cytotoxic effect on the target cells, such as by determining a cell count and/or status of the cytotoxic cells and/or the target cells. A kit and a system for use in the aforementioned method are also provided.

Description

DETECTION METHOD
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority of United States Provisional Application Number 62/849,172, filed on May 17, 2019, the contents of which are hereby incorporated by reference in their entirety for all purposes.
TECHNICAL FIELD
THIS INVENTION relates to methods of detecting and assessing cytotoxicity. More particularly, this invention relates to methods of detecting and assessing cytotoxicity by cytotoxic cells in a microfluidic system.
BACKGROUND
Chimeric antigen receptor (CAR) T cell therapy is a type of cancer immunotherapy approved by the US Food and Drug Administration (FDA) . CAR-T and T cell receptor (TCR) T cell therapies are both personalized medicine that exploits cytotoxic T lymphocytes genetically engineered from the patient under therapy 1, 2. While TCR-T cells recognize cancer cells by the major histocompatibility complex (MHC) that is sometimes masked in tumors 3, the basic CAR construct consists of an extracellular target cell-specific recognition site associated to an intracellular stimulatory signal for cytotoxic T cell activation 4 to improve targeting efficiency. Although various side effects had been documented 5, CAR-T cell therapy has been shown to achieve good treatment outcomes in acute lymphoblastic leukemia (ALL) and diffuse large B cell lymphoma (DLBCL) 6 to make it a promising approach for cancer therapy.
The production of CAR-T cells involves extracting T lymphocytes from the blood of the patient, followed by ex vivo culture to amplify the cells for genetic engineering and cell sorting to isolate the CAR-expressing cells 7. Like all therapeutics, analytic tests are carried out on each CAR-T cell product for quality control purposes. Among these tests, in vitro measurement of CAR expression or cytokine release provides the economical option, but these results indirectly reflect CAR-T cytotoxicity. On the contrary, the xenograft model closely mimicks the in vivo scenario, but this method is low throughput and costly. Thus, in vitro cytotoxicity screens are considered. Prevalent in vitro bulk cytotoxicity screens, e.g. MTT assay, cannot be used because they could not distinguish whether signals come from CAR-T or cancer cells. Although the  51Cr release and BATDA assays circumvent the problem by specifically labeling cancer cells 8, these bulk assays require a large pool of both CAR-T and cancer cells, limiting their application in practice. Alternatively, co-culture  systems of T cells and tumor organoids require a tumor organoid amplification time of 2 weeks to generate enough cells for fluorescence activated cell sorting (FACS) or plate reader assays 9, in addition to a success rate of below 50% 10. Accordingly, there remains a need for improved methods of assessing the cytotoxicity of cytotoxic cells more broadly in vitro.
SUMMARY
The present invention is broadly directed to a methods, kits and systems for assessing the cytotoxicity of cytotoxic cells using a microfluidic device.
Accordingly, in one broad form, the invention provides a method for assessing cytotoxicity of a cytotoxic cell that includes determining whether a cytotoxic cell has a cytotoxic effect on a target cell (e.g., killing of the target cell) when cultured together in a microfluidic device.
In a first aspect, the invention provides a method for assessing cytotoxicity of a cytotoxic cell, said method including the steps of:
(a) culturing a plurality of the cytotoxic cells with a plurality of target cells in a microfluidic device; and
(b) determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
In particular embodiments, the present method further includes the step of identifying or differentiating the target cells and/or the cytotoxic cells in the microfluidic device.
Suitably, step (b) of the present method includes determining a cell count and/or a status of the target cells and/or the cytotoxic cells. In this regard, the status of the target cell and/or the cytotoxic cells suitably indicates or is capable of indicating cytotoxicity of the cytotoxic cell.
In some embodiments, step (b) comprises: (i) determining the cell count and/or the status of the target cells and/or the cytotoxic cells at respective first and second time points; and (ii) comparing the cell count and/or the status of the target cells and/or the cytotoxic cells at the first and second time points, wherein a change between the cell count and/or the status measured at the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
Suitably, the status of the target cells and/or the cytotoxic cells is selected from the group consisting of cell viability, cell death, cell cluster size, cell cluster number, cell shape, cell proliferation, cell apoptosis, cell necrosis, cell autophagy, cell lysis, cell growth arrest, cell antigen expression suppression, cell cytokine receptor expression, cell cytokine expression, cell receptor expression, cell ligand expression and any combination thereof. In  particular embodiments, the status of the target cells is or comprises cell death. In various embodiments, the status of the cytotoxic cells is or comprises cell proliferation.
In some embodiments, the target cells express a detectable label and/or the cytotoxic cells express a further detectable label. To this end, the detectable label and the further detectable label can be for identifying a cell type to facilitate determining the cell count thereof.
Suitably, step (b) includes determining whether the cytotoxic cells and/or the target cells in the microfluidic device bind an agent that facilitates determining the status thereof. In certain embodiments, the present method further includes the initial step of contacting the cytotoxic cells and/or the target cells with the agent. In some embodiments, the agent is or comprises a nucleic acid dye, such as a membrane impermeable nucleic acid dye, that facilitates determining cell death of the target cells.
In particular embodiments, the plurality of target cells are or comprise a cancer cell.
Suitably, the cytotoxic cell is or comprises an immune cell. In some embodiments, the immune cell comprises a receptor that binds to a target protein, such as an antigen. In this regard, the target protein is suitably expressed, such as cell surface expressed, by the target cell. In certain embodiments, the receptor is a T-cell receptor (TCR) or a chimeric antigen receptor (CAR) . In various embodiments, the cytotoxic cell is or comprises a CAR-T cell.
Suitably, the method of the present aspect further includes the initial step of loading the cytotoxic cells and the target cells into the microfluidic device.
In some embodiments, step (b) includes imaging the target cells and/or the cytotoxic cells in the microfluidic device.
Suitably, the cytotoxic cells and the target cells are cultured in one or more droplets in the microfluidic device. In some embodiments, the microfluidic device comprises at least one droplet-forming channel, each of the at least one droplet-forming channel comprising a plurality of droplet-forming units serially connected together.
In some embodiments, the method comprises culturing the cytotoxic cells with the target cells in the microfluidic device for at least about 1 hour to about 120 hours.
In a second aspect, the invention resides in a kit for assessing cytotoxicity of a cytotoxic cell, said kit comprising a microfluidic device, one or more target cells, and optionally one or more of the cytotoxic cell.
In some embodiments, the kit further comprises instructions for assessing the cytotoxicity of the cytotoxic cell.
In a third aspect, the invention relates a system for assessing cytotoxicity of a cytotoxic cell, the system comprising:
(a) a microfluidic device for culturing a plurality of the cytotoxic cells with a plurality of target cells therein; and
(b) a processor for determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
Suitably, the system further comprises an imaging device for imaging the cytotoxic cells and the target cells in the microfluidic device.
Suitably, the kit of the second aspect and the system of the third aspect are for use in the method of the first aspect.
Throughout this specification, unless the context requires otherwise, the words “comprise” , “comprises” and “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
As used herein, the indefinite articles ‘a’ and ‘an’ are used here to refer to or encompass singular or plural elements or features and should not be taken as meaning or defining “one” or a “single” element or feature.
As generally used herein “about” refers to a tolerance or variation in a stated value or amount that does not appreciably or substantially affect function, activity or efficacy. Typically, the tolerance or variation is no more than 10%, 5%, 3%, 2%, or 1%above or below a stated value or amount.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1. Paradigm of this study. (a) CAR-T construct design and FACS characterization. CAR was constructed with the CD19-targeting FMC63-scFv domain (FMC63-sFv) , the CD28 transmembrane domain (TM) , the CD28 endodomain (CD28) , CD3ζ□signaling domain (CD3ζ) , the Toll/interleukin-1 receptor domain of Toll-like receptor 2 (TLR2) , the 2A self-cleaving peptide (2A) and the extracellular and transmembrane domains of truncated human epidermal growth factor receptor (EGFRt) . CAR-T cells were purified 12 h post-transduction using anti-human EGFR antibody and side scattering (SSC) ; the percentage of CAR-T cells in the population of all transduced T cells was indicated. (b) Experimental workflow of this study. CAR-T and Nalm6 cancer cells were mixed and loaded on chip, followed by 24 h incubation and imaging. The design of the chip and its wells was shown in the insets. (c) Analytic workflow of this study. Nalm6 cells were initially identified by GFP  fluorescence, followed by cell category classification, cell counting and viability calculation. Cell category classification was arbitrary as shown in the inset. Dead cells were indicated by the red fluorescent dye ethidium homodimer 1 (EH1) ; for EH1-free assays, cell viability was calculated by the difference of the number of Nalm6 cells before and after treatment.
Figure 2. Cytotoxicity assessment on chip. (a, c) Analysis of Nalm6 occupancy before and after treatment on chip. Analysis of Nalm6 occupancy in different cell categories at 0 h and 24 h post-treatment on chip was performed. Nalm6 droplet cell count was plotted against cell category and treatment time; each dot represented one well; the thick black line, grey box and dotted error bars of the box plot indicated median Nalm6 droplet cell count, interquartile range between -1σ and 1σ, and range of Nalm6 droplet cell count of all wells, respectively; the numbers indicated p values of 2-tailed T test. (b, d) Hill plot of Nalm6 occupancy along all wells on chip. Nalm6 droplet cell count was plotted against consecutive wells on chip; each peak indicated the number of Nalm6 cells in the specified droplet; dark-colored shade indicated the number before treatment, whereas light-colored shade indicated the number after treatment.
Figure 3. CAR-T cell expansion analysis. Analysis of CAR-T occupancy before and after treatment on chip was performed. CAR-T droplet cell count was plotted against treatment time; each dot represented one well; the thick black line, grey box and dotted error bars of the box plot indicated median CAR-T droplet cell count, interquartile range between -1σ and 1σ, and range of all wells, respectively; the numbers indicated p values of 1-tailed T test.
Figure 4. Ratiometric parameters for CAR-T cytotoxicity assessment. (a, c) Well Ratio analysis of CAR-T cytotoxicity. Well Ratio was plotted against cell categories; each column indicated the number of wells containing no, increasing, same or decreasing number of Nalm6 cells; the numbers indicated the Well Ratio of the specified dataset. (b, d) Cell Ratio analysis of CAR-T cytotoxicity under different fluid conditions. Cell Ratio was plotted against cell categories; each column indicated the number of Nalm6 cells that increased or decreased in sum; the numbers indicated the Cell Ratio of the specified dataset.
Figure 5. CAR-T cell characterization. (a-b) Luciferase assay of Batch 1 and Batch 2 CAR-T cells. Nalm6 cell viability was plotted against CT: N6 ratio; each dot represented mean Nalm6 cell viability of three replicate experiments; the lines indicated non-linear regression of the data points by GraphPad Prism; the error bars denoted standard deviation of the mean. (c) Standard curve of luminescence against Nalm6 cell numbers. In order to compare results between conventional luciferase assay and our chip assay, we performed serial dilution of Nalm6 cells to plot the standard curve. Luminescence was plotted against Nalm6 cell  number; each dot represented the mean of three replicates; the red line indicated linear regression of the data points by GraphPad Prism.
Figure 6. Cell occupancy analysis of Batch 1 CAR-T cells. Frequency distribution analysis of CAR-T (CT) and Nalm6 (N6) cells alone and in sum on chip at 0 h was performed. Distribution frequency and probability was plotted against cell occupancy in all wells on chip; each column represented one data grid automatically classified by GraphPad Prism; the lines indicated Poisson distribution curves generated by GraphPad Prism.
DETAILED DESCRIPTION
The present invention is at least partly based on the development of methods for assessing the cytotoxicity of cytotoxic cells cultured in a microfluidic device. These methods may be particularly suitable for the in vitro assessment of the cytotoxicity of immune cells, such as T cells, expressing T cell receptors (TCRs) or chimeric antigen receptors (CARs) that may be suitable for adoptive immunotherapy in subjects with, for example, cancer.
In one aspect, the invention provides a method for assessing cytotoxicity of a cytotoxic cell, said method including the steps of:
(a) culturing a plurality of the cytotoxic cells with a plurality of target cells in a microfluidic device; and
(b) determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
As used herein, by “isolated” is meant material, such as a cytotoxic cell or a target cell, that has been removed from its natural state or otherwise been subjected to human manipulation. Isolated material may be substantially or essentially free from components that normally accompany it in its natural state, or may be manipulated so as to be in an artificial state together with components that normally accompany it in its natural state. Isolated material may be in recombinant, chemical synthetic, enriched, purified or partially purified form.
The term “determining” includes any form of measurement, and includes determining if an element is present or not. As used herein, the terms “determining” , “measuring” , “evaluating” , “assessing” and “assaying” are used interchangeably and include quantitative and qualitative determinations. Determining may be relative or absolute. “Determining the presence of” includes determining the amount of something present (e.g., a cytotoxic effect, such as those described herein) , and/or determining whether it is present or absent.
As used herein, the term “cytotoxicity” or “cytotoxic effect” refers to the ability of a cytotoxic cell to disrupt the normal metabolism, function and/or structure of a target cell, in a  potentially irreversible manner, and which often leads to cell death or killing of the target cell. Accordingly, a cytotoxic effect can refer to a cell death effect, a cytostatic effect and/or an antiproliferative effect of the cytotoxic cell on the target cell.
The term “cytotoxic cell” generally refers to a cell which can damage, injure or destroy a target cell, such as a cancer cell, a microorganism, or other diseased cells, such as virally-infected cells. Generally, the cytotoxic cell can bind to a target cell when co-cultured under suitable conditions, such as through an antibody, receptor, ligand or fragments/derivatives thereof, to form a stable complex therewith, which subsequently stimulates the cytotoxic cell to damage or destroy the target cell.
Exemplary cytotoxic cells include immune cells, such as natural killer (NK) cells, natural killer T cells, activated NK cells, neutrophils, T cells (inclusive of CD4 + and CD8 + T cells, γδT cells, NK T cells, and regulatory T cells) , granulocytes, eosinophils, basophils, B-cells, macrophages, lymphokine-activated killer (LAK) cells, cells with stem cell and/or progenitor cell properties (e.g., hematopoietic stem/progenitor cells) , embryonic stem cells (ESCs) , cord blood stem cells, induced pluripotent stem cells (iPSCs) , iPSC-derived T cells and iPSC-derived NK cells, albeit without any limitation thereto.
In particular embodiments, the cytotoxic cell is an immune cell having a receptor that binds to a target protein, such as an antigen. As generally used herein, the term “receptor” refers to a polypeptide, or portion thereof, present on a cell membrane that selectively binds one or more ligands. In some embodiments, the cytotoxic cell is additionally or alternatively capable of exerting a cytotoxic effect on a target cell without having a receptor binding to a target protein or ligand thereon (e.g., macrophagocytosis)
Suitably, the target protein or antigen is expressed, such as cell surface expressed, by the target cell. In particular embodiments, the target protein is or comprises a cancer-or tumour-associated antigen (TAA) (i.e., a protein or antigen expressed in both normal cells and cancer cells, but its expression is relatively limited to cancer cells) or a tumour-specific antigen (TSA) (i.e., an antigen specific to cancer cells) .
As used herein a “protein” is an amino acid polymer, wherein the amino acids may include D-amino acids, L-amino acids, natural and/or non-natural amino acids. As typically used herein, a “peptide” is a protein comprising no more than sixty (60) contiguous amino acids. As typically used herein, a “polypeptide” is a protein comprising more than sixty (60) contiguous amino acids. The term “protein” should also be understood to encompass protein- containing molecules, such as glycoproteins and lipoproteins, although without limitation thereto.
In various embodiments, the receptor is or comprises a T-cell receptor (TCR) . The term "T-cell receptor" is used herein in a conventional manner to mean a molecule capable of recognising a peptide when presented by an MHC or HLA molecule. The molecule may be a heterodimer of two chains alpha (α) and beta (β) (or optionally gamma (γ) and delta (δ) ) or it may be a single chain TCR construct. In certain embodiments, the respective chains (e.g., the alpha chain and beta chain) of the T-cell receptor can be joined by a linker, such as those known in the art. By way of example, the linker can join the respective chains of the TCR by way of a disulphide bridge or bond.
Suitably, the TCR selectively binds to one or more epitopes or antigenic determinants derived from a target protein or antigen (i.e., demonstrates antigenic specificity) when presented by a MHC or HLA molecule. The phrase “antigenic specificity, ” as used herein, means that the TCR (including functional portions and functional variants thereof) can specifically bind to and immunologically recognize the target protein or antigen.
In particular embodiments, the receptor is or comprises a chimeric antigen receptor (CAR) . To this end, the cytotoxic cell suitably is or comprises a CAR-T cell.
A CAR is an artificially constructed hybrid protein or polypeptide containing the antigen binding domains of an antibody (e.g., single chain variable fragment (scFv) ) linked to a T-cell signalling domain. Characteristics of CARs include their ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC-restricted manner and exploiting the antigen-binding properties of monoclonal antibodies. The non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize an antigen independent of antigen processing, thus bypassing a major mechanism of tumour escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T cell receptor (TCR) alpha and beta chains.
It is envisaged that the CARs of the invention may be considered to be, for example, a first generation, second generation, third generation or fourth generation (i.e., associated with a T cell redirected for universal cytokine-mediated killing (TRUCKs) ) CAR, as are known in the art. First generation CARs typically join an antibody-derived scFv to the CD3-zeta (ζ or z) intracellular signalling domain of the T-cell receptor through hinge and transmembrane domains. Second generation CARs incorporate an additional domain (e.g., CD28, 4-lBB, or ICOS) to supply a costimulatory signal. Third-generation CARs typically contain two costimulatory domains fused with the TCR CD3-zeta chain. Third-generation costimulatory  domains may include, for example, a combination of CD3z, CD27, CD28, 4-lBB, ICOS, DAP-10 or OX40. Accordingly, the CARs of the invention may contain an ectodomain commonly derived from a single chain variable fragment (scFv) , a hinge, a transmembrane domain, and an endodomain with one (first generation) , two (second generation) , or three (third generation) signalling domains derived from CD3-zeta and/or co-stimulatory molecules.
In some embodiments, the CAR is associated with a T-cell redirected for cytokine activity (e.g., TRUCK) , also known as a fourth generation CAR. TRUCKs are CAR-redirected T-cells used as vehicles to trigger effector activity of the CAR T cells and in addition produce and release a transgenic cytokine (e.g., IL-12) that accumulates in the targeted tissue (e.g., a tumour tissue) . The transgenic cytokine is made constitutively or released upon CAR engagement of the target. TRUCK cells may deposit a variety of therapeutic cytokines at the target site. This may result in therapeutic concentrations at the targeted site and avoid systemic toxicity of these same cytokines.
The CARs of the invention suitably have antigen specificity for a target protein or antigen expressed by the target cell. Similar to the above, the phrases “have antigen specificity” and “elicit antigen-specific response” as used herein means that the CAR can specifically bind to and immunologically recognize an antigen, such that binding of the CAR to the target protein or antigen elicits an immune response. Without being bound to a particular theory or mechanism, it is believed that by eliciting an antigen-specific response against the target protein or antigen, the CARs described herein can target and kill target cells expressing the target protein or antigen.
In particular embodiments, the CAR comprises an antigen binding domain of a monoclonal antibody known in the art. To this end, the antigen binding domain may comprise a light chain variable region and/or a heavy chain variable region of a monoclonal antibody.
As used herein, an “antibody” is or comprises an immunoglobulin protein. The term “immunoglobulin” includes any antigen-binding protein product of a mammalian immunoglobulin gene complex, including immunoglobulin isotypes IgA, IgD, IgM, IgG and IgE and antigen-binding fragments thereof. Included in the term “immunoglobulin” are immunoglobulins that are monoclonal, polyclonal, recombinant, chimeric or humanized or otherwise comprise altered or variant amino acid residues, sequences and/or glycosylation, whether naturally occurring or produced by human intervention (e.g. by recombinant DNA technology) .
Exemplary target cells include cancer cells, cells associated with autoimmune diseases, disorders or conditions, cells associated with inflammatory diseases, disorders or conditions, pathogen-infected cells (e.g., virally infected cells) and infectious cells (e.g., infectious bacteria, fungi, mycoplasma) . Cells of infectious organisms such as mammalian parasites are also contemplated as target cells.
In certain embodiments, the target cell is a cancer cell. Non-limiting examples of cancer cells include lung cancer cells, breast cancer cells, ovarian cancer cells, leukemia cells, colorectal cancer cells, prostate cancer cells, sarcoma cells, mesothelioma cells, and lymphoma cells, but it is envisaged that the target cell may be derived from any cancer type known in the art.
As generally used herein, the terms “cancer” , “tumour” , “malignant” and “malignancy” refer to diseases or conditions, or to cells or tissues associated with the diseases or conditions, characterized by aberrant or abnormal cell proliferation, differentiation and/or migration often accompanied by an aberrant or abnormal molecular phenotype that includes one or more genetic mutations or other genetic changes associated with oncogenesis, expression of tumour markers, loss of tumour suppressor expression or activity and/or aberrant or abnormal cell surface marker expression.
Cancers may include any aggressive or potentially aggressive cancers, tumours or other malignancies such as listed in the NCI Cancer Index at http: //www. cancer. gov/cancertopics/alphalist, including all major cancer forms such as sarcomas, carcinomas, lymphomas, leukaemias, myelomas and blastomas, although without limitation thereto. These may include breast cancer, lung cancer inclusive of lung adenocarcinoma, cancers of the reproductive system inclusive of ovarian cancer, cervical cancer, uterine cancer and prostate cancer, cancers of the brain and nervous system, head and neck cancers, gastrointestinal cancers inclusive of colon cancer, colorectal cancer and gastric cancer, liver cancer, kidney cancer, skin cancers such as melanoma and skin carcinomas, blood cell cancers inclusive of lymphoid cancers and myelomonocytic cancers, cancers of the endocrine system such as pancreatic cancer and pituitary cancers, musculoskeletal cancers inclusive of bone and soft tissue cancers, although without limitation thereto. In particular embodiments, the cancer is a solid cancer, such as glioblastoma multiforme. Suitably, the cancer expresses, such as overexpresses, a target protein or antigen, such as on a cell surface or plasma membrane thereof, which can be recognised or bound by the cytotoxic cell.
The term “microfluidic device” refers to a device comprising fluidic structures and internal channels having microfluidic dimensions. In particular embodiments, the  microfluidic device is or comprises a microfluidic chip. As described herein, the term “microfluidic chip” generally refers to herein a substrate having microfluidic structures, such as chambers or wells, contained therein or thereon.
It is envisaged that the microfluidic device may be any as are described in the art. In particular embodiments, the cytotoxic cells and the target cells are cultured in one or more droplets or wells in the microfluidic device. By way of example, the microfluidic device can be that described in US20190291112A1, which is incorporated in its entirety herein. A schematic figure of the microfluidic device described in US20190291112A1 is provided in Figure 1b.
Accordingly, the microfluidic device may comprise at least one droplet-forming channel, each of the at least one droplet-forming channel comprising a plurality of droplet-forming units serially connected together. Additionally, the microfluidic device may include an inlet for receiving a loading fluid and providing the loading fluid to the plurality of droplet-forming units; and an outlet for discharging the loading fluid remained after passing through the plural droplet-forming units; wherein: an individual droplet-forming unit comprising an inflow channel, a neck channel, a droplet-forming well, a restricted flow port element, and an outflow channel all of which are sequentially arranged along a flow direction of the loading fluid; the inflow channel is configured to accept the loading fluid and is in fluid communication with the neck channel, the neck channel is in fluid communication with the droplet-forming well for delivering a first portion of the loading fluid from the inflow channel to the droplet-forming well, and is configured to have a cross-sectional width that is smaller than a cross-sectional width of the droplet-forming well to prevent droplet escape from the droplet-forming well; the restricted flow port element is configured to generate a restricted flow to facilitate droplet formation in the droplet-forming well; and wherein: the individual droplet-forming unit further comprises a bypass channel; the bypass channel is located around the droplet-forming well, and is configured to deliver a second portion of the loading fluid from the inflow channel to the outflow channel.
In certain embodiments, the neck channel and the bypass channel have a cross-sectional width ratio of the bypass channel to the neck channel, the cross-sectional width ratio being selected such that the first portion of the loading fluid fills the droplet-forming well before the second portion of the loading fluid fills the bypass channel.
In certain embodiments, the cross-sectional width ratio of the bypass channel to the neck channel is approximately 0.2 to approximately 1.0.
In certain embodiments, the cross-sectional width ratio of the bypass channel to the neck channel is approximately 0.75.
In certain embodiments, the neck channel has a cross-sectional width of approximately 50-150 μm.
In certain embodiments, the droplet-forming well has a cross-sectional width of approximately 100-500 μm.
In certain embodiments, the restricted flow port element is a restriction channel having a cross-sectional width of approximately 5-20 μm.
In some embodiments, the method of the present aspect includes the initial step of loading the cytotoxic cells and the target cells into the microfluidic device. In this regard, the present method may further include the step of mixing the cytotoxic cells and the target cells prior to being loaded into the microfluidic device.
Suitably, the cytotoxic cells and/or target cells are loaded into the microfluidic device at a concentration and ratio sufficient to determine whether the cytotoxic cells have a cytotoxic effect on the target cells. In some embodiments, the cytotoxic cells and/or the target cells are loaded into the microfluidic device at a concentration of between about 1 x 10 5 to about 1 x 10 8 cells/mL (e.g., 1 x 10 5, 2 x 10 5, 3 x 10 5, 4 x 10 5, 5 x 10 5, 6 x 10 5, 7 x 10 5, 8 x 10 5, 9 x 10 5, 1 x 10 6, 2 x 10 6, 3 x 10 6, 4 x 10 6, 5 x 10 6, 6 x 10 6, 7 x 10 6, 8 x 10 6, 9 x 10 6, 1 x 10 7, 2 x 10 7, 3 x 10 7, 4 x 10 7, 5 x 10 7, 6 x 10 7, 7 x 10 7, 8 x 10 7, 9 x 10 7, or 1 x 10 8 cells/mL or any range therein) . In various embodiments, the ratio of the cytotoxic cells to the target cells loaded into the microfluidic device is between about 10: 1 to about 1: 10 (e.g., 10: 1, 9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 1, 3: 1, 2: 1, 1: 1, 1: 2, 1: 3, 1: 4, 1: 5, 1: 6, 1: 7, 1: 8, 1: 9, 1: 10 and any range therein) .
In particular embodiments, step (b) includes imaging or visualising the target cells and/or cytotoxic cells in the microfluidic device. The cytotoxic cells and/or the target cells may be imaged by a camera. A microscope may be also used for cell imaging for the present method; for example, cells may be imaged by a camera and a microscope (e.g., a confocal microscope) , such as by a camera forming an image using a microscope, as are well known in the art. In certain embodiments, the microscope is utilized to implement a form of microscopy selected from the group consisting of confocal microscopy, spinning disk microscopy, epi-fluorescence microscopy, light field microscopy, light-sheet microscopy, multiphoton microscopy and any combination thereof.
Suitably, step (b) of the method of the present aspect includes determining a cell count of the target cells and/or the cytotoxic cells cultured in the microfluidic device.
As used herein, the term “cell count” refers to a qualitative or quantitative assessment (i.e., relative or absolute) , inclusive of estimates thereof, of the number of cells in a sample, or on a surface, or in a field of view, or in a volume, such as in a droplet or well of the microfluidic device. By way of example, a cell count can include: an estimate of the number of cells in a sample (such as by absorbance of light passing through, or scattered or otherwise altered by cells in a sample; by light or other radiation emitted by cells expressing fluorescent or otherwise detectable proteins, or labelled by dyes, radionuclides, or other markers, such as those described herein) ; an enumeration of the number of cells in an image (e.g., an image of a droplet or well of a microfluidic device acquired by a camera, a microscope, or other optical imaging device) ; and a quantitative measurement of the number of cells adherent to a surface or present in a suspension.
Further to the above, step (b) of the method of the present aspect can include determining a status of the target cells and/or the cytotoxic cells. Suitably, the status of the target cell and/or the cytotoxic cells indicates cytotoxicity of the cytotoxic cell. In particular embodiments, the status of the target cells and/or the cytotoxic cells is selected from the group consisting of cell viability, cell death, cell cluster size, cell cluster number, cell shape, cell proliferation, cell apoptosis, cell necrosis, cell autophagy, cell lysis, cell growth arrest, cell antigen expression suppression, cell cytokine receptor expression, cell cytokine expression, cell receptor expression, cell ligand expression and any combination thereof.
In particular embodiments, the status of the target cells is or comprises cell death. In this regard, it will be appreciated that the identification of target cells that are dead or dying may be taken into consideration when determining the cell count thereof. Furthermore, a high or relatively high level of cell death in the target cells can indicate that the cytotoxic cells are having or exerting a cytotoxic effect on the target cells.
In other embodiments, the status of the cytotoxic cells is or comprises cell proliferation. As hereinafter described, proliferation or expansion of the cytotoxic cells can indicate or correlate with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
In some embodiments, the status of the target cells is or comprises cell cluster size and/or cell cluster number. As described herein, a small or relatively small cluster size and/or cell cluster number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 cells or any range therein) of the target cells, such as an average thereof, may indicate or correlate with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
In other embodiments, the status of the target cells and/or the cytotoxic cells is or comprises cell viability. By way of example, cell viability may be assessed, such as hereinafter described, by determining a ratio of a cell count of total live cells (including target cells and cytotoxic cells) to a cell count of total cells (including target cells and cytotoxic cells) , inclusive of live and dead cells (referred to herein as droplet cell viability or DCV) . In certain embodiments, a value for the ratio of the cell count of total live cells to the cell count of total cells of less than 1 (e.g., 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.30, 0.25, 0.2, 0.15, 0.1, 0.05 or any range therein) , indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells. As hereinafter described, cell viability may be assessed for each individual well or droplet of the microfluidic device as required. As will be appreciated by the skilled artisan, droplet cell viability (DCV) refers to the ratio of the cell count of total live cells to the cell count of total cells in one droplet or well. Weighted mean droplet cell viability (wmDCV) refers to the mean of the droplet cell viability of each droplet or well multiplied by the ratio of the cell count of total cells in each droplet or well to the sum of the cell count of total cells in all droplets or wells of the microfluidic device. Mean droplet cell viability (μDCV) refers to the mean of the droplet cell viability of all droplets or wells of the microfluidic device.
In other embodiments, cell viability may be determined at least partly by determining a ratio of a cell count of the cytotoxic cells to a cell count of the target cells. As will be appreciated by the skilled artisan, a high or relatively high level of such a ratio can indicate that the cytotoxic cells are having or exerting a cytotoxic effect on the target cells.
Any suitable methods for measuring or assessing cell status can be used to measure the status of the target cells and/or cytotoxic cells. Suitably, the status of the target cells and/or cytotoxic cells is measured or determined by imaging or visualisation thereof in the microfluidic device.
In particular embodiments, the method of the present aspect includes contacting the cytotoxic cells and/or the target cells with an agent, such as a detectable marker, that facilitates determining the status thereof and detecting whether the cytotoxic cells and/or the target cells in the microfluidic device bind or interact with the agent. Suitably, the agent is capable of generating a detectable signal which may then be detected by imaging the cytotoxic cells and target cells in the microfluidic device.
Any agent known in the art that is capable of indicating a status of cytotoxic cells and/or targets cells, such as those described herein, may be used for the present method. By way of example, the agent may comprise a fluorescent reporter dye for which a wide variety  are known in the art. Typically, the fluorophore of such a fluorescent reporter dye is an aromatic or heteroaromatic compound and can be a pyrene, anthracene, naphthalene, acridine, stilbene, indole, benzindole, oxazole, thiazole, benzothiazole, cyanine, carbocyanine, salicylate, anthranilate, coumarin, fluorescein, rhodamine or other like compounds.
In certain embodiments, the agent is or comprises a nucleic acid dye. Nucleic acid dyes are generally capable of binding to DNA, RNA, or to a hybrid thereof. For example, a nucleic acid binding dye can be an intercalating dye or a minor groove binding dye. The nucleic acid binding dye can also be a fluorescent reporter dye. Further, the fluorescent reporter dye may display different fluoresence spectra depending on whether it is bound or not bound to a double-stranded nucleic acid molecule. For example, the nucleic acid binding dye may be substantially non-fluorescent when not complexed with a double-stranded nucleic acid molecule and becomes substantially fluorescent when complexed with a double-stranded nucleic acid molecule. Suitable nucleic acid dyes include many commercially available dyes and those known in the art.
Suitably, the nucleic acid dye is a membrane-impermeable nucleic acid dye that facilitates determining cell death of the target cells. Examples of membrane-impermeable nucleic acid dyes include cyanine nucleic acid labels, such as TOTO TM, YOYO TM, BOBO TM, POPO TM, TO-PRO TM, YO-PRO TM, BO-PRO TM, and PO-PRO TM, ethidium analogues, such as ethidium-acridine heterodimer, ethidium bromide, ethidium diazide and  ethidium homodimers  1, 2 and 3, propidium iodide and green nucleic acid stain SYTOX TM.
In particular embodiments, the cell count and/or the status of the cytotoxic cells and/or the targets cells, such as cell viability, cell cluster size, cell cluster number and cell death, may be assessed for individual wells or droplets of the microfluidic device, such that a range, median and/or mean of the cell count and/or the status across all or a number of wells or droplets of the microfluidic device can be calculated.
Based on the above, a well ratio may be calculated, which includes calculating a ratio of the sum or number of wells of the microfluidic device that demonstrate a decrease in cell count of the target cells to the sum or number of wells of the microfluidic device that demonstrate an increase in cell count of the target cells following culturing with the cytotoxic cells. In some embodiments, a well ratio greater than 1 (e.g., 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10 etc or any range therein) , more particularly greater than 2 and even more particularly greater than 5 indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells.
In addition to the above, a cell ratio may be calculated, which includes calculating a ratio of the decrease in cell count or cell number of the target cells in a first set of wells of the microfluidic device that demonstrate such a decrease to an increase in cell count or cell number of the target cells in a second set of wells of the microfluidic device that demonstrate such an increase. In some embodiments, a cell ratio greater than 1 (e.g., 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10 etc or any range therein) , more particularly greater than 2 and even more particularly greater than 5 indicates or correlates with the cytotoxic cells having or exerting a cytotoxic effect on the target cells. In this regard, a value for the cell ratio greater than 1 indicates that a decrease in cell count of the target cells in a first set of wells exceeds an increase in cell count of the target cells in a second set of wells of the microfluidic device.
In order to facilitate determining the cell count and/or the status of the cytotoxic cells and/or the target cells, the present method may include the initial step of identifying the cytotoxic cells and/or the target cells in the microfluidic device. To this end, the present method may allow for differentiating the target cells from the cytotoxic cells.
In particular embodiments, the target cells express a detectable label capable of generating a detectable signal (e.g., fluorophores, enzymes, radioactive isotopes) , such as for identifying the target cells and/or facilitating determining the cell count thereof. It is also envisaged that the cytotoxic cell may express a further detectable label, such as for those embodiments in which the target cell does not express a detectable label. In certain embodiments, however, the cytotoxic cell does not express any detectable label. In those embodiments in which the target cells express a detectable label and the cytotoxic cells express a further detectable label, then different or distinct detectable labels are preferably used that can be detected individually or separately from the other (e.g., the detectable label comprises a fluorophore or fluorochrome that is distinct from a fluorophore or fluorochrome associated with the further detectable label) .
Exemplary detectable labels include, but are not limited to, fluorescent compounds (e.g., GFP, RFP, CFP, YFP, OFP, far red fluorescent protein, switchable fluorescent protein) , chemiluminescent, bioluminescent or luminescent compounds (e.g., biotin, luciferase, such as bacterial, firefly, click beetle and the like, luciferin, and aequorin) , enzymes (e.g., alkaline phosphatase or horseradish peroxidase) , radioisotopes (e.g.  125I,  131I,  67Ga,  111In) , colloidal metals, paramagnetic labels and photoacoustic properties.
It is envisaged that the target cells and/or cytotoxic cells may alternatively be differentiated by way of one or more detectable markers and staining, detection or identification thereof by, for example, a fluorescent dye or the like. In other embodiments, the  target cells and/or cytotoxic cells may be differentiated by label-free detection by, for example, multiphoton microscopy.
In particular embodiments, the target cells constitutively express a fluorescent protein. In those embodiments in which the aforementioned agent also comprises a fluorescent reporter dye, then the fluorescent label suitably comprises a fluorophore or fluorochrome that is distinct from a fluorophore or fluorochrome associated with the fluorescent reporter dye.
In view of the foregoing, step (b) of the present method suitably includes determining an expression level of or detecting expression of the detectable label by the target cells and/or the further detectable label by the cytotoxic cells. Accordingly, determining the cell count of the target cells can at least partly include detecting expression of the detectable label thereof. Similarly, determining the cell count of the cytotoxic cells can at least partly include detecting expression of the further detectable label thereof. In alternative embodiments in which the cytotoxic cells do not express a further detectable label and the target cells express a detectable label, determining the cell count of the cytotoxic cells can at least partly include detecting cells that do not express the detectable label.
Suitably, the method of the present aspect comprises culturing the cytotoxic cells with the target cells in the microfluidic device for at least about 1 hour to about 120 hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120 hours or any range therein) . In some embodiments, the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell at least about 1 hour (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 or 120 hours or any range therein) from the initial contact or culturing of the cytotoxic cell with the target cell. In certain embodiments, the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell no later than about 120 hours from the initial contact or culturing of the cytotoxic cell with the target cell. In other embodiments, the method comprises determining the cell count and/or the status of the cytotoxic cell and/or the target cell about 24 hours from the initial contact or culturing of the cytotoxic cell with the target cell.
Suitably, the cell count and/or the status of the cytotoxic cell and/or the target cell may be assessed at multiple time points (e.g., 2, 3, 4, 5, etc time points) during culturing of the cytotoxic cells with the target cells in the microfluidic device.
Accordingly, in particular embodiments, step (b) comprises:
(i) determining the cell count and/or the status of the target cells and/or the cytotoxic cells at respective first and second time points; and
(ii) comparing the cell count and/or the status of the target cells and/or the cytotoxic cells at the first and second time points, wherein a change between the cell count and/or the status measured at the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
As used herein, the terms “change” , “alter” or “modulate” refer to positively or negatively alter a value or characteristic, such as the cell count or status of the target cells and/or the cytotoxic cells. Exemplary modulations include an about 1%, about 2%, about 5%, about 10%, about 25%, about 50%, about 75%, about 100%, about 150%, about 200%, about 250%, about 300%, about 350%, about 400%, about 450%or about 500%change.
In particular embodiments, an increase in the cell count of the cytotoxic cells between the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell. As used herein, the term “increase” refers to alter positively, such as by at least about 5%, including, but not limited to, alter positively by about 5%, by about 10%, by about 25%, by about 30%, by about 50%, by about 75%, by about 100%, by about 150%, by about 200%, by about 250%, by about 300%, by about 350%, by about 400%, by about 450%or by about 500%.
In various embodiments, a decrease in the cell count of the target cells between the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell. As used herein, the terms “decrease” or “reduce” refers to alter negatively, such as by at least about 5%including, but not limited to, alter negatively by about 5%, by about 10%, by about 25%, by about 30%, by about 50%, by about 75%, by about 100%, by about 150%, by about 200%, by about 250%, by about 300%, by about 350%, by about 400%, by about 450%or by about 500%.
By way of example, the first time point can be at or around the time of initial contact or culturing of the cytotoxic cell with the target cell (e.g., about 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5 etc hours or any range therein from the initial contact or culturing of the cytotoxic cell with the target cell in the microfluidic device) , whilst the second time point is suitably at a sufficient time period from the first time point, such as initial contact or culturing of the cytotoxic cells with the target cells, to allow for assessment of any cytotoxic effect thereon (e.g., about 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 30, 36, 42, 48, 54, 60, 66 or 72 hours or any range therein from the first time point) .
In a related aspect, the invention relates to a kit for assessing cytotoxicity of a cytotoxic cell, said kit comprising a microfluidic device, one or more target cells, and optionally the cytotoxic cell.
Suitably, the microfluidic device, the target cells and the cytotoxic cells may be that hereinbefore described.
In certain embodiments, the kit further comprises instructions for assessing cytotoxicity of the cytotoxic cells. In certain embodiments, the instructions comprise methods for assessing cytotoxicity of cytotoxic cells as described by the present disclosure.
In a final aspect, the invention provides a system for assessing cytotoxicity of a cytotoxic cell, the system comprising:
(a) a microfluidic device for culturing a plurality of the cytotoxic cells with a plurality of target cells therein; and
(b) a processor configured for determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
Suitably, the microfluidic device, the target cells and the cytotoxic cells may be that hereinbefore described.
In particular embodiments, the system may further comprise an imaging device, such as those known in the art.
In certain embodiments, the system further comprises instructions for assessing cytotoxicity of the cytotoxic cells. In certain embodiments, the instructions comprise methods for assessing cytotoxicity of cytotoxic cells as hereinbefore described.
The processor can be in communication or operably connected with one or more input devices, such as an imaging device (e.g., a microscope and associated camera) and optionally a storage device. The processor can generate one or more reports based on user input and/or input directly from the input devices (e.g., images of one or more wells or droplets of the microfluidic device) in relation to the target cells and/or cytotoxic cells cultured in the microfluidic device. In some embodiments, the processor is further configured to automatically generate or determine from, for example, such input data a cell count and/or a status of the cytotoxic cells and/or target cells cultured in respective droplets or wells of the microfluidic device.
Based on the above, the processor can be further adapted to conduct comparisons of the cell count and/or the status determined for the target cells and/or cytotoxic cells with a control value or threshold to assess whether the cytotoxic cells have a cytotoxic effect on the target cells. In this regard, the processor may be adapted to compare the cell count and/or the  status of the target cells and/or cytotoxic cells at multiple time points as hereinbefore described.
The processor can, for example, form part of a server which comprises the storage device or be a separate computing device that is in communication with the storage device. In particular embodiments, the processor forms part of a computer, such as be a personal computer (PC) , a tablet PC, a set-top box (STB) , a Personal Digital Assistant (PDA) , a cellular telephone, a web appliance, a network router, switch or bridge, or any computer capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that computer, as are known in the art. The term “computer” shall also be taken to include any collection of computer that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The computer can operate as a standalone device or may be connected (e.g. networked) to other computers. In a networked deployment, the computer may operate in the capacity of a server, as described earlier, or a client computer in a server-client network environment, or as a peer computer in a peer-to-peer (or distributed) network environment.
The processor may provide a graphical user interface (GUI) for displaying one or more reports. The one or more reports can include one or more metrics or readouts for determining whether the cytotoxic cells have a cytotoxic effect on the target cells, such as those described herein. In some embodiments, the one or more reports include one or more visualisations, classifications, graphs, tables or the like, generated based on the cell count and/or the status of the cytotoxic cells and/or the target cells, and the GUI can comprise one or more controls to select the one or more visualisations to be displayed.
The storage device can comprise a computer memory which can be, for example, a computer readable medium (e.g., software embodying or utilised by any one or more of the methodologies or functions described herein) , such as, one or more hard disk drives or solid state drives. The computer memory may store the status and cell count data of the target cells and/or cytotoxic cells. The computer memory can also comprise computer readable code components that when selectively executed by the processor implements one or more aspects of the present invention, such as, generating aspects of the GUI and providing the GUI via the communications network.
Throughout the specification the aim has been to describe the preferred embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. It will therefore be appreciated by those of skill in the art that, in light of the  instant disclosure, various modifications and changes can be made in the particular embodiments exemplified without departing from the scope of the present invention.
All computer programs, algorithms, patent and scientific literature referred to herein is incorporated herein by reference.
So that preferred embodiments may be described in detail and put into practical effect, reference is made to the following non-limiting Examples.
EXAMPLES
For the present Example, the inventors exploited their previously developed droplet microfluidic platform for drug screening of cancer cell lines and human primary tumor dissociated cells 11 to establish a two cell type model for screening CAR-T cells against cancer cells. The basic chip design and data acquisition procedures are identical, but analysis by cell counting became challenging. Eventually, we resolved the issue by application of a CD19 + Nalm6 cancer cell line stably expressing green fluorescent protein (GFP) and luciferase 12 to setup our model. This Example presents the method and insight obtained from cytotoxicity screen on two batches of CD19-targeting CAR-T cells. Table 1 further outlines some disadvantages of prior art methods of screening for cytotoxicity versus the present method described for microfluidic devices, such as microfluidic chips.
2. Methods
Preparation of CAR-T cells
Usage of primary human T cells in this study was approved by the Institutional Review Board of Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, under ethics approval no. GIBH-IRB07-2018024. Peripheral mononuclear cells (PBMCs) were separated in Lymphoprep TM (STEMCELL TM Technologies) by density gradient centrifugation. Primary human T cells were isolated from PBMCs by negative selection using the Pan T Isolation Kit (Miltenyi Biotec) . Batch 1 T cells were cultured in IMDM Medium containing Icove’s Modified Dulbecco’s Medium (IMDM) (Life Technologies) supplemented with 10% (v/v) fetal bovine serum (Life Technologies) and 100 U/mL Penicillin-Streptomycin (Life Technologies) , and stimulated with TransAct TM (Miltenyi Biotec) . Batch 2 T cells were cultured in R10 Medium containing RPMI 1640 (Life Technologies) supplemented with 10%fetal bovine serum (Life Technologies) , 100 U/mL Penicillin-Streptomycin (Life Technologies) , 2 mM L-glutamine (Life Technologies) , 25 mM HEPES pH7.5 (Life Technologies) and 100 μg/mL Streptavidin (Sigma-Aldrich) , and  stimulated with particles coated with anti-CD3/anti-CD28 antibodies (Miltenyi Biotec) at a cell-to-bead ratio of 1: 2. Approximately 48 h after activation, T cells were transfected with supernatant containing lentiviral vector expressing CAR. After transduction for 12 h, all transduced T cells were sorted by fluorescence activated cell sorting (FACS) using anti-EGFR antibody (BioLegend) . Purified CAR-T cells were cultured or assayed with Activation Medium containing IMDM Medium or R10 Medium supplemented with 300 U/mL IL-2 (clinical grade) . The CAR-T cells were fed every 2 days with fresh media for no more than 5 d, and frozen in liquid nitrogen until use following standard freezing procedures.
Preparation of Nalm6 cancer cells stably expressing green fluorescent protein (GFP)
Nalm6 cells
Figure PCTCN2020090425-appb-000001
were transduced with a lentiviral vector co-expressing GFP and luciferase. Nalm6 cells were cultured in Culture Medium containing RPMI 1640 (Life Technologies) supplemented with 10% (v/v) fetal bovine serum (Life Technologies) , 100 U/mL Penicillin-Streptomycin (Life Technologies) , 2 mM L-glutamine (Life Technologies) , 25 mM HEPES pH7.5 (Life Technologies) and 50 μM β-mercaptoethanol (Sigma-Aldrich) .
Luciferase assay
1.0 × 10 5 Nalm6 cells were incubated with CAR-T cells in Activation Medium at the indicated ratios in triplicate wells of a 96-well U-bottomed plate for 18 h. Luminescence was obtained after applying the Dual-Luciferase Assay Kit (Promega) in a 96-well opaque plate following manufacturer’s protocol and measured on Perkin Elmer Victor X3 Plate Reader. Background luminescence was negligible (signal : noise (S/N) ratio <0.01) . Subsequently, cell viability was calculated by Equation (1) :
Figure PCTCN2020090425-appb-000002
For comparison to on-chip results, a standard curve of serially diluted Nalm6 cells from 2.0 ×10 5 cells/well to 3.1 × 10 3 cells/well was plotted against luminescence. Linear regression was performed using Microsoft Excel 2013 for calculation of absolute cell numbers from relative luminescence.
y=22.9x-7749.1   (2)
where y denoted luminescence and x denoted Nalm6 cell number.
Blank controls contained Culture Medium but no cells.
On-chip CAR-T cytotoxicity assay
2μL CAR-T and Nalm6 cells were mixed at a final concentration of 5.0 × 10 6 and 1.0 × 10 6 cells/mL in Activation Medium, respectively. 2 μM ethidium homodimer 1 (Life Technologies) was added to stain dead cells if indicated. Chip loading was performed as previously described.  11 Chips were incubated in a 37℃ humidified incubator supplemented with 5%CO 2. All wells on chip were imaged under 10× objective in the channels of brightfield, GFP and RFP on Life Technologies EVOS FL Imaging System at 0 h and 24 h post-treatment respectively.
Data analysis and visualization
All images were initially imported as image stacks into ImageJ v1.52e, followed by brightness and contrast adjustment, cropping, trimming, and image stack reduction to obtain the final image sequence or montage as depicted. All graphs and plots were drawn by GraphPad Prism v5.1 or using ggplot in R v3.3.2. Statistical analysis was performed as indicated in Tables 7 to 11 or in corresponding figure legend (s) . Figures were prepared by assembling images, graphs and plots using
Figure PCTCN2020090425-appb-000003
CS6 v16.0.0.
3. Results
In this study, CAR-T cells were constructed and assessed of their cytotoxic activity as displayed (Figure 1) . Two batches of CAR-T cells were screened against a CD19 + Nalm6 cancer cell line stably expressing green fluorescent protein (GFP) and luciferase in vitro. After confirming that the CAR-T cells were active by luciferase assay on plate (Figure 5) and that cell number distribution displays Poisson distribution (Figure 6) like our previous one cell type model  11, these CAR-T cells were used for subsequent analysis on chip.
3.1. Analysis of CAR-T Cytotoxicity on Chip
The mean droplet cell viability of Nalm6 cells was 62.4%and 89.4%in Batch 1 and Batch 2 CAR-T cells, respectively. This suggested that Batch 1 CAR-T cells were more active than Batch 2 CAR-T cells on chip.
Next, considering each cell cluster as a micro-reaction center for CAR-T killing, we investigated if its size, which is proportionate to the number of cells in one reaction center, affects CAR-T cytotoxicity. To achieve this, we classified cells into arbitrary cell categories to dissect the cell killing paradigm. Firstly, significant CAR-T cytotoxicity occurred in single (p = 9.5e-11) , small (p = 5.0e-6) and medium clusters (p = 1.5e-3) but not in large clusters (p = 4.7e-1) in Batch 1 CAR-T cells (Figure 2) . Analysis of Nalm6 occupancy depicted that  Nalm6 cells were evenly distributed in all cell categories without significant difference (Table 7) , suggesting that the difference in CAR-T cytotoxicity among clusters did not result from uneven Nalm6 cell distribution. Hence, this data demonstrated that CAR-T cytotoxicity diminishes in larger clusters as compared to smaller ones.
After that, we tested if Nalm6 occupancy or CAR-T cytotoxicity could be correlated to well position on chip, which is critical to multi-drug loading 11. First, random distribution of Nalm6 occupancy was observed along the wells on chip (Figure 2) . Second, two-way ANOVA analysis of Nalm6 occupancy in different cell categories against well position showed that there was insignificant difference between Nalm6 occupancy and well position in all cell categories (p = 0.291) (Table 8) . These data suggested that Nalm6 occupancy in droplets and in clusters are both uncorrelated to well position. Third, two-way ANOVA analysis of the difference of Nalm6 occupancy between 0 h and 24 h post-treatment against well position showed that there was insignificant correlation between CAR-T cytotoxicity and well position (p = 0.941) (Table 9) . Collectively, these data suggested of the lack of global modulation factor (s) that coherently affect CAR-T cytotoxicity within one droplet. This suggested that the droplet merely defines the spatial constraint of cell-cell interaction, whereas the cell clusters in each droplet provide micro-reaction centers for CAR-T cytotoxic activity.
Consistent to its mean droplet cell viability, Batch 2 CAR-T cells depicted insignificant cytotoxic activity in all clusters and all wells on chip (Figure 2) . Hence, this method provides a technical solution for quality control of different CAR-T cell batches.
3.2. Assessment of CAR-T Cell Expansion
CAR-T cell expansion is an important feature of efficient CAR-T cytotoxicity 13, 14, but cannot be achieved in one assay using current protocols  8, 15. However, our method circumvented this issue by cell labeling and counting, thus enables simultaneous monitoring of cancer cell reduction and CAR-T cell expansion. Like measuring Nalm6 cell occupancy to calculate cancer cell reduction, CAR-T occupancy before and after treatment was quantified to assess CAR-T cell expansion. For instance, Batch 1 CAR-T cells expanded (mean = 24.1, median = 18.5) , whereas Batch 2 CAR-T cells diminished (mean = -3.2, median = -2.0) (Figure 3) . These data were consistent with statistical analyses (Tables 10 and 11) . Results depicted that CAR-T cell expansion is reflective of cytotoxic activity on Nalm6 cells in corresponding batches of CAR-T cells. Therefore, our method not only enabled assessment of CAR-T cytotoxicity by Nalm6 occupancy, but also illustrated CAR-T cell expansion as  supporting evidence. Although in vitro CAR-T cell expansion could not guarantee expansion in vivo, this method discriminates CAR-T cytotoxicity into two facets of cancer cell reduction and CAR-T cell expansion, which potentially facilitates in-depth investigation of CAR-T cytotoxic activity by the reductionist approach.
3.3 Result Interpretation
To further simplify our method for real-life applications, we summarized CAR-T cytotoxicity by the Well Ratio and the Cell Ratio that are correlated to Nalm6 cell number variance in droplets (Figure 4) . The Well Ratio, expressed as the number of wells with decreasing Nalm6 cells to that of increasing Nalm6 cells, suggested of CAR-T cytotoxicity in a population of droplets. Alternatively, the Cell Ratio, expressed as the number of decreased Nalm6 cells divided by the number of increased Nalm6 cells, suggested of the cytotoxic activity of CAR-T cells as a population. Interpretation of the Well Ratio and the Cell Ratio is exemplified in Table 2 and Table 3, respectively.
Efficacy ranking
The Well Ratio and Cell Ratio indicate CAR-T cytotoxicity in a population and as a population. These parameters provide simple, straight-forward metrics for CAR-T cytotoxicity assessment for the laboratory and industrial applications. However, it is noteworthy that this method simultaneously assesses CAR-T cytotoxicity, expressed as cancer cell reduction, and CAR-T cell expansion in one single assay. Therefore, scoring the Well Ratio and Cell Ratio of both the cancer cells and CAR-T cells leads to a Final Score (Table 4) that unifies the scale for batch analysis. Additionally, CAR-T batch quality control can be accomplished by pre-assignment of criteria for absolute scoring of the Well Ratio and Cell Ratio (Table 5) . Please note that the criteria for “Pass” and “Fail” are arbitrary; other score groups, e.g. “Excellent” , “Good” , “Fair” and “Poor” , can be designed.
In-depth analytic parameters
For in-depth analysis, the parameters of μDCV or wmDCV and DCV Range should be considered. μDCV or wmDCV is used to assess the cytotoxic activity of the therapeutic agent (s) , whereas the DCV Range assesses the homogeneity of response. Interpretation of these parameters is indicated in Table 6.
wmDCV is recommended over μDCV on our droplet microfluidic screening platform because the population size, i.e. droplet cell count, is taken into account during computation.  wmDCV addresses the issue of different sample size among replicate wells, which is indispensable during sample loading on chip. For other assay platforms where invariant input cells are loaded could be assessed using μDCV. DCV Range is related to both the therapeutic agent (s) and the input cells. The DCV Range induced by inhomogeneity of input cells is deduced from the DCV Range of mock control at 0 h post-treatment. Good response homogeneity indicates higher cytotoxic activity in vitro, which in turn, suggests of higher certainty of cytotoxic effect. Similar to the Well Ratio and Cell Ratio, absolute scoring could also be applied to interpretation of μDCV, wmDCV and DCV Range. The procedures are identical to the example shown in Table 5.
Additional Notes
In addition to assessment parameters obtained on chip, it is advisable for the researcher to conduct a routine Trypan Blue cell counting on the input cells before starting the assay. The Trypan Blue result is used to compare with μDCV or wmDCV obtained on chip at 0 h and 24 h post-treatment during label-free analysis or mock control at 24 h post-treatment in EH1-labelled cytotoxicity assays to evaluate the viability of the input cells. This step is exceptionally critical to human primary cancers due to severe cell inhomogeneity for various reasons.
4. Conclusion
This Example demonstrates a novel in vitro CAR-T cytotoxicity assessment method using droplet microfluidics. The virtues of this method include low sample input, cost-effectiveness, simple working principle, and parallel assessment of CAR-T cell expansion and cancer cell reduction. Most importantly, this method can be applied to any cell-kill-cell experiment.
5. References
1. Farhood, B., Najafi, M. & Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 234, 8509–8521 (2019) .
2. Ye, B. et al. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies. J. Immunol. Res. 2017, 5210459 (2017) .
3. Fesnak, A.D., June, C.H. & Levine, B.L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016) .
4. National Cancer Institute. CAR T Cells: Engineering Immune Cells to Treat Cancer. (2019) . Available at: https: //www. cancer. gov/about-cancer/treatment/research/car-t-cells. (Accessed: 1st January 2020)
5. Zheng, P. -P., Kros, J.M. & Li, J. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov. Today 23, 1175–1182 (2018) .
6. Ali, S. et al. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma. Oncologist (2019) . doi: 10.1634/theoncologist. 2019-0233
7. Levine, B.L., Miskin, J., Wonnacott, K. & Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Clin. Dev. 4, 92–101 (2017) .
8. Li, Y.H., Huo, Y., Yu, L. & Wang, J. Z. Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering 5, 122–131 (2019) .
9. Dijkstra, K.K. et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell 174, 1586-1598. e12 (2018) .
10. Cattaneo, C.M. et al. Tumor organoid–T-cell coculture systems. Nat. Protoc. (2019) . doi: 10.1038/s41596-019-0232-9
11. Wong, A.H. et al. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci. Rep. 7, 9109 (2017) .
12. Lai, Y. et al. Toll-like receptor 2 costimulation potentiates the antitumor efficacy of CAR T Cells. Leukemia 32, 801–808 (2018) .
13. Junghans, R.P. The challenges of solid tumor for designer CAR-T therapies: a 25-year perspective. Cancer Gene Ther. 24, 89–99 (2017) .
14. Alcantara, M., Tesio, M., June, C.H. & Houot, R. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 32, 2307–2315 (2018) .
15. Xue, Q. et al. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5, (2017) .
Table 1. Summary of CAR-T efficacy tests.
Figure PCTCN2020090425-appb-000004
Table 2. Interpretation of the Well Ratio (WR) .
Figure PCTCN2020090425-appb-000005
Table 3. Interpretation of the Cell Ratio (CR) .
Figure PCTCN2020090425-appb-000006
Table 4. Example score sheet for CAR-T cell ranking.
Figure PCTCN2020090425-appb-000007
Table 5. Example score sheet for CAR-T batch quality control.
Figure PCTCN2020090425-appb-000008
Table 6. Interpretation of μDCV, wmDCV and DCV Range.
Figure PCTCN2020090425-appb-000009
Figure PCTCN2020090425-appb-000010
DCV Range is related to both the therapeutic agent (s) and the input cells.
Table 7 -One-way ANOVA analysis of Nalm6 droplet cell count against different cell categories at 0 h in Batch 1 CAR-T cells
Figure PCTCN2020090425-appb-000011
Table 8 -Two-way ANOVA analysis of Nalm6 droplet cell count in different cell categories against well position at 0 h in Batch 1 CAR-T cells
Figure PCTCN2020090425-appb-000012
Figure PCTCN2020090425-appb-000013
Table 9 -Two-way ANOVA analysis of Nalm6 droplet cell count difference between 0 h and 24 h in different cell categories against well position in Batch 1 CAR-T cells
Figure PCTCN2020090425-appb-000014
Figure PCTCN2020090425-appb-000015
Table 10 -Comparison of CAR-T expansion in Batch 1 CAR-T cells
Figure PCTCN2020090425-appb-000016
Table 11 –Comparison of CAR-T expansion in Batch 2 CAR-T cells
Figure PCTCN2020090425-appb-000017

Claims (24)

  1. A method for assessing cytotoxicity of a cytotoxic cell, said method including the steps of:
    (a) culturing a plurality of the cytotoxic cells with a plurality of target cells in a microfluidic device; and
    (b) determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
  2. The method of Claim 1, including the step of identifying or differentiating the target cells and/or the cytotoxic cells.
  3. The method of Claim 1 or Claim 2, wherein step (b) includes determining a cell count and/or a status of the target cells and/or the cytotoxic cells.
  4. The method Claim 3, wherein step (b) comprises:
    (i) determining the cell count and/or the status of the target cells and/or the cytotoxic cells at respective first and second time points; and
    (ii) comparing the cell count and/or the status of the target cells and/or the cytotoxic cells at the first and second time points, wherein a change between the cell count and/or the status measured at the first and second time points indicates that the cytotoxic cell has a cytotoxic effect on the target cell.
  5. The method of Claim 3 or Claim 4, wherein the status of the target cells and/or the cytotoxic cells is selected from the group consisting of cell viability, cell death, cell cluster size, cell cluster number, cell shape, cell proliferation, cell apoptosis, cell necrosis, cell autophagy, cell lysis, cell growth arrest, cell antigen expression suppression, cell cytokine receptor expression, cell cytokine expression, cell receptor expression, cell ligand expression and any combination thereof.
  6. The method of Claim 5, wherein the status of the target cells is or comprises cell death.
  7. The method of Claim 5 or Claim 6, wherein the status of the cytotoxic cells is or comprises cell proliferation.
  8. The method of any one of the preceding claims, wherein the target cells express a detectable label.
  9. The method of any one of Claims 3 to 8, wherein step (b) includes determining whether the cytotoxic cells and/or the target cells in the microfluidic device bind an agent that facilitates determining the status thereof.
  10. The method of Claim 9, further including the initial step of contacting the cytotoxic cells and/or the target cells with the agent.
  11. The method of Claim 9 or Claim 10, wherein the agent is or comprises a nucleic acid dye.
  12. The method of any one of the preceding claims, wherein the plurality of target cells are or comprise a cancer cell.
  13. The method of any one of the preceding claims, wherein the cytotoxic cell is or comprises an immune cell.
  14. The method of Claim 13, wherein the immune cell comprises a receptor that binds to a target protein.
  15. The method of Claim 14, wherein the receptor is a T-cell receptor (TCR) or a chimeric antigen receptor (CAR) .
  16. The method of Claim 14, wherein the cytotoxic cell is or comprises a CAR-T cell.
  17. The method of any one of the preceding claims, further including the initial step of loading the cytotoxic cells and the target cells into the microfluidic device.
  18. The method of Claim 17, wherein the microfluidic device comprises at least one droplet-forming channel, each of the at least one droplet-forming channel comprising a plurality of droplet-forming units serially connected together.
  19. The method of any one of the preceding claims, wherein the method comprises culturing the cytotoxic cells with the target cells in the microfluidic device for at least about 1 hour to about 120 hours.
  20. A kit for assessing cytotoxicity of a cytotoxic cell, said kit comprising a microfluidic device, one or more target cells, and optionally the cytotoxic cell.
  21. The kit of Claim 20, further comprising instructions for assessing the cytotoxicity of the cytotoxic cell.
  22. The kit of Claim 20 or Claim 21, wherein the kit is for use in the method of any one of Claims 1 to 19.
  23. A system for assessing cytotoxicity of a cytotoxic cell, the system comprising:
    (a) a microfluidic device for culturing a plurality of the cytotoxic cells with a plurality of target cells in a microfluidic device; and
    (b) a processor for determining whether the cytotoxic cells have a cytotoxic effect on the target cells.
  24. The system of Claim 23, wherein the system is for use in the method of any one of Claims 1 to 19.
PCT/CN2020/090425 2019-05-17 2020-05-15 Detection method WO2020233503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962849172P 2019-05-17 2019-05-17
US62/849,172 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020233503A1 true WO2020233503A1 (en) 2020-11-26

Family

ID=73458357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090425 WO2020233503A1 (en) 2019-05-17 2020-05-15 Detection method

Country Status (1)

Country Link
WO (1) WO2020233503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214835A1 (en) * 2021-04-09 2022-10-13 Achilles Therapeutics Uk Limited Batch release assay for pharmaceutical products relating to t cell therapies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053902A1 (en) * 2015-09-25 2017-03-30 Abvitro Llc High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences
WO2017123978A1 (en) * 2016-01-15 2017-07-20 Berkeley Lights, Inc. Methods of producing patient-specific anti-cancer therapeutics and methods of treatment therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053902A1 (en) * 2015-09-25 2017-03-30 Abvitro Llc High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences
WO2017123978A1 (en) * 2016-01-15 2017-07-20 Berkeley Lights, Inc. Methods of producing patient-specific anti-cancer therapeutics and methods of treatment therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADA HANG-HENG WONG, HAORAN LI, YANWEI JIA, PUI-IN MAK, RUI PAULO DA SILVA MARTINS, YAN LIU, CHI MAN VONG, HANG CHEONG WONG, PAK KI: "Drug screening of cancer cell lines and human primary tumors using droplet microfluidics", SCIENTIFIC REPORTS, vol. 7, no. 1, 9109, 22 August 2017 (2017-08-22), pages 1410 - 1412, XP055755749, DOI: 10.1038/s41598-017-08831-z *
ANDREA K. POMERANTZ, SARI-SARRAF FARID, GROVE KERRI J., PEDRO LILIANA, RUDEWICZ PATRICK J., FATHMAN JOHN W., KRUCKER THOMAS: "Enabling drug discovery and development through single-cell imaging", EXPERT OPINION ON DRUG DISCOVERY, vol. 14, no. 2, 24 December 2018 (2018-12-24), pages 115 - 125, XP055756587, ISSN: 1746-0441, DOI: 10.1080/17460441.2019.1559147 *
PRADIP BAJGAIN; SUPANNIKAR TAWINWUNG; LINDSEY D’ELIA; SUJITA SUKUMARAN; NORIHIRO WATANABE; VALENTINA HOYOS; PREMAL LULLA; MALCOLMK: "CAR T cell therapy for breast cancer:harnessing the tumor milieu to drive T cell activation", JOURNAL FOR IMMUNOTHERAPY OF CANCER, vol. 6, no. 1, 10 May 2018 (2018-05-10), pages 1 - 13, XP021256347, DOI: :10.1186/s40425-018-0347-5 *
SHI,X. M. ET AL: "Progress in detection methods of cytotoxic T lymphocyte activity", ZHONGGUO MIANYIXUE ZAZHI = CHINESE JOURNAL OF IMMUNOLOGY, vol. 31, no. 3, 31 December 2015 (2015-12-31), pages 439 - 432, XP009524432, ISSN: 1000-484X, DOI: 10.3969/j.issn.1000-484X.2015.03.033 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214835A1 (en) * 2021-04-09 2022-10-13 Achilles Therapeutics Uk Limited Batch release assay for pharmaceutical products relating to t cell therapies

Similar Documents

Publication Publication Date Title
Wang et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics
Freeman et al. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target
Xiong et al. Immunological synapse predicts effectiveness of chimeric antigen receptor cells
Li et al. T cell antigen discovery via trogocytosis
Zaritskaya et al. New flow cytometric assays for monitoring cell-mediated cytotoxicity
Li et al. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape
Bloemberg et al. A high-throughput method for characterizing novel chimeric antigen receptors in Jurkat cells
Mair et al. Extricating human tumour immune alterations from tissue inflammation
KR102623927B1 (en) Markers selectively deregulated in tumor-infiltrating regulatory T cells
Schlößer et al. Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma
US20230065632A1 (en) Cytometric assays
Mou et al. The regulatory effect of UL-16 binding protein-3 expression on the cytotoxicity of NK cells in cancer patients
KR20210100624A (en) Methods of making genetically engineered T cells
EP3329282A1 (en) Quality of immunological synapse predicts effectiveness of chimeric antigen receptor (car) t cells
Chen et al. Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ
Chen et al. B7‐H5/CD 28H is a co‐stimulatory pathway and correlates with improved prognosis in pancreatic ductal adenocarcinoma
Castellanos-Rueda et al. speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing
WO2021173442A1 (en) In-series synthetic receptor and-gate circuits for expression of a therapeutic payload by engineered cells
WO2020233503A1 (en) Detection method
Silk et al. Engineering cancer antigen-specific T cells to overcome the immunosuppressive effects of TGF-β
James et al. CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells
Cocco et al. Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes
Sugiyarto et al. Protective low-avidity anti-tumour CD8+ T cells are selectively attenuated by regulatory T cells
Bajgelman Principles and applications of flow cytometry
Rausch et al. Phosphatidylserine-positive extracellular vesicles boost effector CD8+ T cell responses during viral infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810383

Country of ref document: EP

Kind code of ref document: A1