WO2020233069A1 - 点云数据处理方法、装置、电子设备及存储介质 - Google Patents

点云数据处理方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2020233069A1
WO2020233069A1 PCT/CN2019/121776 CN2019121776W WO2020233069A1 WO 2020233069 A1 WO2020233069 A1 WO 2020233069A1 CN 2019121776 W CN2019121776 W CN 2019121776W WO 2020233069 A1 WO2020233069 A1 WO 2020233069A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
discrete convolution
data
cloud data
weight
Prior art date
Application number
PCT/CN2019/121776
Other languages
English (en)
French (fr)
Inventor
毛佳庚
王晓刚
李鸿升
Original Assignee
北京市商汤科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市商汤科技开发有限公司 filed Critical 北京市商汤科技开发有限公司
Priority to JP2020565957A priority Critical patent/JP7475287B2/ja
Priority to KR1020207031573A priority patent/KR102535158B1/ko
Priority to SG11202010693SA priority patent/SG11202010693SA/en
Priority to US17/082,686 priority patent/US20210042501A1/en
Publication of WO2020233069A1 publication Critical patent/WO2020233069A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19173Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/26Techniques for post-processing, e.g. correcting the recognition result
    • G06V30/262Techniques for post-processing, e.g. correcting the recognition result using context analysis, e.g. lexical, syntactic or semantic context
    • G06V30/274Syntactic or semantic context, e.g. balancing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/08Detecting or categorising vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Definitions

  • This application relates to the field of computer application technology, and in particular to a point cloud data processing method, device, electronic equipment, and computer-readable storage medium.
  • Point cloud recognition is an important issue in the field of computer vision and deep learning. By learning point cloud data, the three-dimensional structure of an object can be recognized.
  • the embodiments of the present application provide a point cloud data processing method, device, and electronic equipment.
  • the embodiment of the present application provides a point cloud data processing method, the method includes:
  • the point cloud data in the target scene and the weight vector of the first discrete convolution kernel perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain the first Weight data; the first weight data characterizes the weight at the corresponding position of the weight vector of the point cloud data assigned to the first discrete convolution kernel; based on the first weight data and the first discrete convolution kernel Perform a first discrete convolution process on the point cloud data to obtain a first discrete convolution result; based on the first discrete convolution result, obtain the spatial structure of at least part of the point cloud data in the point cloud data feature.
  • the embodiment of the present application also provides a point cloud data processing device, the device includes: an acquisition unit, an interpolation processing unit, and a feature acquisition unit; wherein,
  • the obtaining unit is configured to obtain point cloud data in the target scene and the weight vector of the first discrete convolution kernel
  • the interpolation processing unit is configured to perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain first weight data;
  • the first weight data represents the Weights at positions corresponding to the weight vectors of the point cloud data assigned to the first discrete convolution kernel;
  • the feature acquisition unit is configured to perform first discrete convolution processing on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain a first discrete convolution result;
  • the first discrete convolution result obtains the spatial structure feature of at least part of the point cloud data in the point cloud data.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the method described in the embodiment of the present application are implemented.
  • An embodiment of the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor implements the method described in the embodiment of the present application when the program is executed. A step of.
  • An embodiment of the present application further provides a computer program product, wherein the computer program product includes computer executable instructions, and after the computer executable instructions are executed, any point cloud data processing method provided in the embodiments of the present application can be implemented .
  • the point cloud data processing method, device, electronic device, and computer-readable storage medium include: obtaining point cloud data in a target scene and a weight vector of a first discrete convolution kernel; The point cloud data and the weight vector of the first discrete convolution kernel interpolate the point cloud data to obtain first weight data; the first weight data is used to establish the point cloud data and the first The correlation of the weight vectors of the discrete convolution kernels; performing discrete convolution processing on the point cloud data based on the first weight data and the weight vectors of the first discrete convolution kernel to obtain at least part of the point cloud data The spatial structure characteristics of point cloud data.
  • the association between the point cloud data and the first discrete convolution kernel is established, that is, the characteristic point cloud data allocated to the first discrete convolution kernel is obtained.
  • the weight vector corresponds to the weight at the position, so as to align the discrete point cloud data with the weight vector of the discrete convolution kernel, and explicitly define the geometric relationship between the point cloud data and the first discrete convolution kernel, so that the discrete volume
  • the spatial structure characteristics of point cloud data can be better captured in the process of product processing.
  • FIG. 1 is a first flowchart of a point cloud data processing method according to an embodiment of the application
  • FIGS. 2a and 2b are respectively schematic diagrams of interpolation processing in a point cloud processing method according to an embodiment of the application;
  • FIG. 3 is a schematic diagram 2 of a flow chart of a point cloud data processing method according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of the structure of the first network in the point cloud data processing method according to an embodiment of the application;
  • FIG. 5 is a third schematic flowchart of a point cloud data processing method according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a second network in the point cloud data processing method according to an embodiment of the application.
  • FIG. 7 is a schematic diagram 1 of the composition structure of a point cloud data processing device according to an embodiment of the application.
  • FIG. 8 is a second schematic diagram of the composition structure of the point cloud data processing device according to an embodiment of the application.
  • FIG. 9 is a third schematic diagram of the composition structure of a point cloud data processing device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the composition structure of an electronic device according to an embodiment of the application.
  • Fig. 1 is a schematic flow chart 1 of a point cloud data processing method according to an embodiment of the application; as shown in Fig. 1, the method includes:
  • Step 101 Obtain the point cloud data in the target scene and the weight vector of the first discrete convolution kernel
  • Step 102 Perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain first weight data;
  • the first weight data represents the point cloud data distribution The weight at the corresponding position of the weight vector to the first discrete convolution kernel;
  • Step 103 Perform first discrete convolution processing on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain a first discrete convolution result;
  • Step 104 Obtain the spatial structure feature of at least part of the point cloud data in the point cloud data based on the first discrete convolution result.
  • the point cloud data refers to a collection of point data on the appearance surface of an object in the target scene obtained by a measuring device, and a collection of massive points representing the surface characteristics of the object in the target scene.
  • the point cloud data includes three-dimensional coordinate data of each point.
  • the point cloud data can be represented by a matrix vector of N*3, where N represents the number of points in the point cloud data, and the three-dimensional coordinates of each point can be represented by 1*3 Feature vector representation.
  • the point cloud data includes not only the three-dimensional coordinate data of each point, but also color information, such as color data including red (Red), green (Green), and blue (Blue) ( (Referred to as RGB data for short), the point cloud data can be represented by an N*6 matrix, and the data of each point can be represented by a 1*6 matrix. Among them, three-dimensional data is used to represent the three-dimensional coordinates of the point. The data in the remaining three dimensions can be used to represent data in three colors.
  • the point cloud data further includes description information
  • the description information may be represented by the characteristics of each point in the point cloud data, and the characteristics of each point in the point cloud data may include features such as normal direction and curvature.
  • the description information can also be represented by feature vectors containing the features of cloud data. It can be understood that the point cloud data includes position information and feature vectors corresponding to the point cloud data.
  • the weight vector of the discrete convolution kernel (including the weight vector of the first discrete convolution kernel in this embodiment and the weight vector of the second discrete convolution kernel and the third discrete convolution kernel in subsequent embodiments
  • the weight vector of is the weight vector of the three-dimensional discrete convolution kernel.
  • the three-dimensional discrete convolution kernel corresponds to a cube area in the process of discrete convolution processing
  • the eight vertices of the cube area correspond to the weight vector of the discrete convolution kernel (the first discrete convolution kernel in this embodiment)
  • the weight vector of the discrete convolution kernel in this embodiment does not refer to one weight vector, but at least eight weight vectors.
  • the eight weight vectors may be the weights of the same discrete convolution kernel.
  • the vector can also be the weight vector of multiple different discrete convolution kernels.
  • the weight vector of the discrete convolution kernel corresponds to convolution parameters
  • the convolution parameters may include the size and length of the convolution kernel; wherein the size and length of the convolution kernel determine the size range of the convolution operation, That is, it determines the size or side length of the cube area.
  • the point cloud data is first interpolated through the technical solution described in step 102 in this embodiment. , So as to establish the association between the point cloud data and the weight vector of the first discrete convolution kernel, so as to align the position of the point cloud data and the weight vector of the first discrete convolution kernel, so that the discrete convolution process can be better Capture the spatial structure characteristics of point cloud data.
  • the point cloud data is interpolated based on the weight vector of the point cloud data and the first discrete convolution kernel to obtain the first weight
  • the data includes: obtaining first weight data according to a preset interpolation processing method based on the point cloud data and the weight vector of the first discrete convolution kernel, and the first weight data represents the distribution of the point cloud data to The weight at the corresponding position of the weight vector of the first discrete convolution kernel that meets the preset condition; wherein the point cloud data is located in a specific geometry enclosed by the weight vector of the first discrete convolution kernel that meets the preset condition In the shape area.
  • the point cloud data can be interpolated through different preset interpolation processing methods.
  • the interpolation processing can be implemented by interpolation functions, that is, the point cloud data can be interpolated by different interpolation functions.
  • the interpolation processing method may be a trilinear interpolation processing method or a Gaussian interpolation processing method, or the point cloud data can be interpolated through a trilinear interpolation function or a Gaussian function.
  • the weight vector of the discrete convolution kernel in this embodiment, the weight vector of the first discrete convolution kernel
  • the point cloud data specifically, the coordinates of the point cloud data
  • the weight vectors of the first discrete convolution kernels corresponding to the same point cloud data and satisfying preset conditions are different, and the specific geometric shape regions are also different.
  • the weight vector of the first discrete convolution kernel that meets the preset condition is the weight vector of the discrete convolution kernel that encloses the specific geometric shape area where the point cloud data is located.
  • the specific geometric shape area is the cube area corresponding to the discrete convolution kernel, that is, eight weight vectors (this embodiment Where is the cube area formed by the weight vector of the first discrete convolution kernel.
  • the eight vertices of the cube area correspond to eight weight vectors, and the 8 weight vectors corresponding to the 8 vertices of each cube area may be the same discrete volume.
  • the product of the kernel may also be of multiple different discrete convolution kernels.
  • the weight vector of the first discrete convolution kernel that meets the preset condition is the weight vector corresponding to the eight vertices of the cube area where the point is located, as shown in FIG. 2a.
  • the point cloud data is processed through the trilinear interpolation method, and the obtained first weight data represents the weight of the corresponding position of each weight vector in the eight weight vectors corresponding to the cube area where the point cloud data is allocated.
  • the specific geometric shape area is the weight vector of the discrete convolution kernel (in this embodiment, the first discrete convolution).
  • the weight vector of the kernel is a spherical region with the center of the sphere and a predetermined length as a radius; wherein the radii of the spherical regions corresponding to the weight vectors of different discrete convolution kernels can be the same or different. It can be understood that in practical applications, the number of spherical regions where the point cloud data is located can be one, two or more than two, or zero, as shown in Figure 2b.
  • the point cloud data is processed by Gaussian interpolation, and the obtained first weight data represents the distribution of the point cloud data to the center of the sphere where the point cloud data is located (that is, the weight vector of a certain first discrete convolution kernel )the weight of.
  • a point cloud data can be associated with the eight weight vectors of a discrete convolution kernel, as shown in the scene shown in Figure 2a; it can also be associated with a partial weight vector of a discrete convolution kernel (for example, a first discrete convolution kernel).
  • the weight vector of the convolution kernel is associated, as shown in the scene shown in Figure 2b; it can also be associated with part of the weight vector of each discrete convolution kernel in multiple discrete convolution kernels.
  • each spherical shape The radius of the region is so large that the point cloud data is in a spherical region corresponding to the weight vectors of multiple different discrete convolution kernels.
  • discrete convolution processing refers to a processing manner in which two discrete sequences are multiplied and added in pairs according to an agreed rule.
  • the point cloud data is subjected to discrete convolution processing based on the first weight data and the weight vector of the first discrete convolution kernel, which is equivalent to a weighted discrete convolution in this embodiment.
  • the processing method that is, for each pairwise multiplication processing of the related sequence, the multiplication result is multiplied by the first weight data.
  • the weight vector of the first discrete convolution kernel and the feature vector of the point cloud data are multiplied in pairs, and the result of each pairwise multiplication is multiplied by the first weight data, and then Add again.
  • the method further includes: comparing the first discrete convolution result based on a normalized parameter Perform normalization processing; the normalization parameter is determined according to the amount of point cloud data in the specific geometric shape area where the point cloud data is located. As an example, if the three-linear interpolation processing method is adopted, the number of point clouds in a certain cube area as shown in Figure 2a is 4, and then for each of the 4 point cloud data, After the discrete convolution process obtains the first discrete convolution result, the first discrete convolution result is normalized based on the value 4.
  • the number of point clouds in a spherical area as shown in Figure 2b is two, and then for each of the two point cloud data, After the discrete convolution processing obtains the first discrete convolution result, the first discrete convolution result is normalized based on the value 2.
  • Represents the output discrete convolution result after normalization processing (in this embodiment, the first discrete convolution result after normalization processing); Represents the output point cloud position; N p'represents the number of point cloud data in the specific geometric shape area; p'represents the weight vector of the discrete convolution kernel (in this embodiment, the weight vector of the first discrete convolution kernel)
  • p ⁇ represents the position corresponding to the point cloud data
  • T(p ⁇ ,p') represents the position corresponding to the weight vector based on the discrete convolution kernel (in this embodiment, the weight vector of the first discrete convolution kernel)
  • the position corresponding to the point cloud data and the weight data determined by the interpolation function T (the first weight data in this embodiment);
  • W(p') represents the weight vector of the discrete convolution kernel (the first discrete volume in this embodiment)
  • the weight vector of the product core Represents the feature vector of the point cloud data in the specific geometric area.
  • step 103 of this embodiment the point cloud data is subjected to the first discrete convolution processing based on the first weight data and the weight vector of the first discrete convolution kernel, that is, the point cloud data is allocated to the first discrete volume that meets the preset conditions
  • the point cloud data is discretely convolved through the weight vector of the first discrete convolution kernel to obtain the feature vector that characterizes the spatial structure of the point cloud data, that is, the first discrete Convolution result.
  • the neural network can recognize the spatial structure characteristics of the point cloud data and then determine the category of the object in the target scene, such as vehicles, people, etc., through this The neural network can directly output the category of the object in the target scene.
  • the spatial structure feature of at least one point data in the point cloud data can also be identified through the neural network to determine the semantic information of the at least one point data in the point cloud data.
  • the semantic information of the point data can indicate the category of the point data, and the point data The category indicates the object information to which the point data belongs.
  • the target scene includes multiple objects such as people and vehicles
  • it can be identified through the semantic information of the point data to determine whether the object corresponding to the point data in the point cloud data is a person or
  • all the point data corresponding to the person and all the point data corresponding to the vehicle can be identified through the semantic information identification of the point data.
  • step 104 of this embodiment by performing the first discrete convolution processing on the point cloud data, the purpose is to enlarge the difference between the point data in the point cloud data and other point data, so as to obtain at least part of the point cloud data.
  • the spatial structure feature of the point cloud data wherein the spatial structure feature represents the feature of the point cloud data in a three-dimensional space scene, and the feature of the point cloud data may include normal direction, curvature, etc., by comparing the point cloud data
  • the determination of the spatial structure characteristics of at least part of the point cloud data specifically based on the normal direction and curvature of the point cloud data combined with the determination of the location of the point cloud data, is the subsequent determination of the object in the target scene and the category of the object, or Determining the semantic information of at least one point data in the point cloud data provides a basis.
  • the technical solution of this embodiment is suitable for fields such as virtual reality, augmented reality, medical treatment, aviation, intelligent driving, and robotics.
  • the point cloud data is recognized by the processing method in this embodiment, and the object to which each point data in the point cloud data belongs can be determined, thereby realizing each Semantic separation of point data; or the classification of objects in the scene corresponding to the point cloud data can be determined, so as to identify whether the scene in front of the driving vehicle includes other vehicles or pedestrians, etc., and provides for the subsequent operations performed by the driving vehicle Basic data.
  • the association between the point cloud data and the first discrete convolution kernel is established, that is, the characteristic point cloud data allocated to the first discrete convolution kernel is obtained.
  • the weight vector corresponds to the weight at the position, so as to align the discrete point cloud data with the weight vector of the discrete convolution kernel, and explicitly define the geometric relationship between the point cloud data and the first discrete convolution kernel, so that the discrete volume
  • the spatial structure characteristics of point cloud data can be better captured in the process of product processing.
  • Fig. 3 is a schematic diagram 2 of the flow of the point cloud data processing method according to an embodiment of the application; as shown in Fig. 3, the method includes:
  • Step 201 Obtain the point cloud data in the target scene and the weight vector of the first discrete convolution kernel
  • Step 202 Perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain first weight data;
  • the first weight data represents the point cloud data distribution To the weight at the corresponding position of the weight vector of the first discrete convolution kernel; wherein the weight vector of the first discrete convolution kernel is n groups, the first weight data is n groups, and n is 2 or more Integer
  • Step 203 Perform the k-th first discrete convolution processing on the weight vector of the k-th group of first discrete convolution kernels and the point cloud data based on the k-th group of first weight data and the k-th group of first convolution parameters, Obtaining the k-th first discrete convolution result; the k-th group of first convolution parameters correspond to the size range of the k-th first discrete convolution processing; k is an integer greater than or equal to 1 and less than or equal to n;
  • Step 204 Determine the spatial structure feature of the point cloud data based on the n first discrete convolution results.
  • step 201 to step 202 in this embodiment please refer to the detailed description of step 101 to step 102 in the foregoing embodiment, which will not be repeated here.
  • step 101 to step 102 in the foregoing embodiment please refer to the detailed description of step 101 to step 102 in the foregoing embodiment, which will not be repeated here.
  • step 102 to step 103 in the foregoing embodiment can refer to the detailed description of step 102 to step 103 in the foregoing embodiment, which will not be repeated here.
  • the weight vectors of the first discrete convolution kernel are n groups; then the weight vector based on the point cloud data and the first discrete convolution kernel The weight vector performs interpolation processing on the point cloud data to obtain first weight data, including: performing interpolation processing on the point cloud data respectively based on the point cloud data and the weight vector of the k-th group of first discrete convolution kernels, Obtain the k-th group of first weight data; k is an integer greater than or equal to 1 and less than or equal to n; n is an integer greater than or equal to 2.
  • the weight vector of the first discrete convolution kernel may have n groups, and the point cloud data and the weight vectors of the k-th group of the first discrete convolution kernel among the weight vectors of the n groups of first discrete convolution kernels are input respectively To the interpolation function, the k-th group of first weight data is obtained. That is to say, by inputting the point cloud data and the weight vectors of the n groups of first discrete convolution kernels into the interpolation function respectively, n groups of first weight data can be obtained.
  • the three-dimensional discrete convolution kernel corresponds to a cube area during the discrete convolution process
  • the eight vertices of the cube area correspond to eight weight vectors (denoted as the weight vector of the first discrete convolution kernel )
  • each three-dimensional discrete convolution kernel corresponds to a convolution parameter, that is, the weight vector of the first discrete convolution kernel corresponding to the three-dimensional discrete convolution kernel corresponds to a convolution parameter
  • the convolution parameter may include a convolution kernel Size and length; wherein the size and length of the convolution kernel determine the size range of the convolution operation, that is, the size or side length of the cube area.
  • the k-th group of first weight data and the k-th group of first convolution parameters are used to perform the k-th first group of weight vectors and point cloud data on the k-th group of first discrete convolution kernels.
  • Discrete convolution processing to obtain the k-th first discrete convolution result For the specific first discrete convolution processing process, refer to the description in the foregoing embodiment, and will not be repeated here.
  • the interpolation processing and discrete convolution processing in this embodiment can be implemented through the interpolated discrete convolution layer in the network. It can be understood that, in this embodiment, interpolation processing and discrete convolution processing are respectively performed on the same point cloud data through n interpolation discrete convolution layers, thereby obtaining n first discrete convolution results.
  • the k-th group of first convolution parameters corresponds to the size range of the k-th first discrete convolution process, that is, the discrete convolutions corresponding to at least part of the first convolution parameters in the n groups of first convolution parameters
  • the size range of product processing is different. It can be understood that the larger the first convolution parameter, the larger the size range of discrete convolution processing, and the larger the receptive field; correspondingly, the smaller the first convolution parameter, the smaller the size range of discrete convolution processing. , Feel the smaller the wild.
  • the point cloud data can be discretely convolved by using the weight vectors of a set of first discrete convolution kernels corresponding to the smaller first convolution parameters to obtain the fine spatial structure characteristics of the target object surface;
  • the weight vectors of a set of first discrete convolution kernels corresponding to the first convolution parameters of perform discrete convolution processing on the point cloud data to obtain the spatial structure characteristics of the background.
  • the network including n discrete convolutional layers in this embodiment can respectively pass through the weight vectors of the k-th group of first discrete convolution kernels and the corresponding weight vectors of the n groups of first discrete convolution kernels.
  • the k sets of first convolution parameters perform interpolation processing and discrete convolution processing on the point cloud data.
  • the network is a neural network with multiple receptive fields, which can capture the surface fine spatial structure characteristics of the point cloud data and the spatial structure characteristics of the background information. , Which facilitates the determination of the subsequent point cloud data category, that is, the category of the object in the target scene (ie, the classification task), and can improve the accuracy of the classification task.
  • the point cloud data is based on the weight vectors of the n sets of first discrete convolution kernels and the n sets of first convolution parameters in a parallel manner for one interpolation processing and discrete convolution processing, based on the obtained n
  • the first discrete convolution results determine the spatial structure characteristics of the point cloud data.
  • multiple interpolation processing and discrete convolution processing may be performed in sequence. In each of the interpolation processing and discrete convolution processing, it may be based on multiple The weight vectors of the first discrete convolution kernels and the multiple groups of first convolution parameters are processed in parallel for interpolation processing and discrete convolution processing.
  • the determining the spatial structure feature of the point cloud data based on the n first discrete convolution results includes: based on the first processed data and the second discrete convolution kernel The weight vector of the first processed data is interpolated to obtain the second weight data; the second weight data represents the corresponding position of the weight vector assigned to the second discrete convolution kernel by the first processed data Weight; wherein, the first processed data is determined according to the result of the previous discrete convolution processing, and in the case where the result of the previous discrete convolution processing is n first discrete convolution results, the first processed data is determined according to The n first discrete convolution results are determined; based on the second weight data and the weight vector of the second discrete convolution kernel, a second discrete convolution process is performed on the first processed data to obtain a second discrete Convolution result; based on the second discrete convolution result, the spatial structure feature of the point cloud data is obtained.
  • n first discrete convolution results are integrated to obtain first processed data.
  • the data of the corresponding channel in each of the n first discrete convolution results may be weighted and summed to obtain the first processed data.
  • the specific implementation manners of the interpolation processing and the discrete convolution processing are the same as the foregoing embodiments, and will not be repeated here.
  • the first processed data may be determined according to the result of the previous discrete convolution processing, and the method for determining the first processed data is similar to the foregoing implementation manner, and will not be repeated here.
  • the weight vector of the second discrete convolution kernel is in one group, the second weight data is in one group, and l is an integer greater than or equal to 2; the said second weight data is based on the second weight data and the The weight vector of the second discrete convolution kernel performs discrete convolution processing on the first processed data again, including: performing the second discrete convolution process on the m-th group based on the m-th group of second weight data and the m-th group of second convolution parameters
  • the weight vector of the product kernel and the first processed data are subjected to the m-th second discrete convolution processing to obtain the m-th second discrete convolution result; the m-th group of second convolution parameters corresponds to the m-th discrete convolution
  • the size range of the convolution processing; m is an integer greater than or equal to 1 and less than or equal to l; the obtaining the spatial structure feature of the point cloud data based on the second discrete convolution result includes: based on l second discrete convolution As
  • the point cloud data first passes through the k-th group of first discrete convolution kernels in the weight vectors of the n groups of first discrete convolution kernels
  • the weight vector of the first discrete convolution kernel is interpolated separately, and the weight vector of the k-th group of the first discrete convolution kernel in the weight vector of the n groups of first discrete convolution kernels and the k-th group of the n groups of first convolutional layer parameters
  • n first discrete convolution results are obtained; then n first discrete convolution results are integrated into the first processed data, and then through l sets of second discrete convolution kernels Interpolation is performed on the weight vectors of the m-th group of second discrete convolution kernels in the weight vector of, and the weight vectors of the m-th group of second discrete convolution kernels in the weight vectors
  • the point cloud data in this embodiment has undergone the processing process of interpolation-discrete convolution-interpolation-discrete convolution, and each time the interpolation processing and the discrete convolution processing process, the point cloud data is processed through multiple paths. Perform interpolation processing and discrete convolution processing.
  • the number of loop processing can be determined based on actual conditions, for example, it can be three times.
  • each set of interpolation convolutional layers can perform interpolation processing on input data and Discrete convolution processing, that is, each set of interpolation convolution layers can perform the interpolation processing and discrete convolution processing procedures in this embodiment.
  • each interpolated convolution block includes three interpolated convolution layers , Including 1*1*1 interpolation convolution layer (InterpConv), 3*3*3 interpolation convolution layer and 1*1*1 interpolation convolution layer; among them, 1*1*1 interpolation convolution
  • the layer is used to adjust the channel.
  • the convolution parameters corresponding to the 3*3*3 interpolation convolution layer in different interpolation convolution blocks are different, for example, the convolution parameters corresponding to the 3*3*3 interpolation convolution layer in the first interpolation convolution block.
  • the convolution parameter l 0.1.
  • the convolution parameter l represents the convolution kernel length (kernel length).
  • twice the length of the convolution kernel may represent the side length of the cube formed by eight weight vectors shown in FIG. 2.
  • the input point cloud data is represented by an N*3 matrix vector; after the point cloud data is interpolated and convolved through the 1*1*1 interpolation convolution layer of three paths, the data obtained is 32 channels Data, denoted as N*32; then input 32 channels of data (ie N*32) into the 3*3*3 interpolation convolution layer, and the obtained data is 64 channels downsampled to 1/2 of the original data The data is denoted as N/2*64; then the 64-channel data (N/2*64) downsampled to 1/2 of the original data is input to the 1*1*1 interpolation convolution layer for interpolation convolution processing Then, obtain the 128-channel data down-sampled to 1/2 of the original data, denoted as N/2*128.
  • the above processing process can be recorded as a processing process in a point cloud processing block, and the point cloud processing block includes three interpolated convolution blocks (InterpConv Block).
  • the point cloud data can be repeatedly interpolated and convolved through at least two point cloud processing blocks.
  • the point cloud data is repeatedly interpolated and convolved through two point cloud processing blocks.
  • the number of interpolation convolution blocks in each point cloud processing block may be the same or different. In this example, the number of interpolation convolution blocks in the two point cloud processing blocks is the same, which is three. After integrating the three N/2*128 data, the integrated N/2*128 data is processed again through the three interpolation convolution blocks in the point cloud processing block.
  • the processing process is the same as the first point cloud mentioned above.
  • the processing of data blocks is similar.
  • the convolution parameters corresponding to the interpolation convolution block in the second point cloud processing block can be different from the convolution parameters corresponding to the interpolation convolution block in the first point cloud processing block, and the interpolation in the second point cloud processing block
  • the convolution parameter corresponding to the convolution block is greater than the convolution parameter corresponding to the interpolation convolution block in the first point cloud processing block, for example, 3*3*3 in the first interpolation convolution block in the second point cloud processing block
  • the convolution parameter corresponding to the 3*3*3 interpolation convolution layer in the second interpolation convolution block in the second point cloud processing block is
  • the convolution parameter corresponding to each discrete convolution process is Gradually increasing.
  • different discrete convolution processing corresponds to The convolution parameters can be different.
  • the three N/4*256 data obtained by the second point cloud processing block are integrated, specifically, after adding the three N/4*256 channels to obtain 768
  • the data of the channel is recorded as N/4*768.
  • the maximum pooling process is performed on N/4*1024 based on the maximum pooling layer (Maxpooling) to obtain the data representing the global feature vector, which is recorded as 1*1024.
  • 1*1024 is processed based on the fully connected layer (FC), and 40 channels of data are obtained, which is recorded as 1*40.
  • Each channel corresponds to one dimension, that is, 40 dimensions of data are output, and each dimension corresponds to a category.
  • the method further includes: Step 205: Determine the category of the object in the target scene based on the spatial structure feature of the point cloud data.
  • the category of the object corresponding to the point cloud data is determined based on the outputted data representing the spatial structure of the point cloud data in multiple dimensions, that is, the category of the object in the target scene is determined. Specifically, the category of the object is determined based on the data of the dimension with the largest value among the data of the multiple dimensions. For example, in the example shown in Figure 4, 40 dimensions of data are output, and each dimension of data can correspond to a category, then the data of the dimension with the largest value is determined from the data of 40 dimensions, and the dimension with the largest value is determined The category corresponding to the data is determined as the category of the object.
  • the weight data used to establish the association between the point cloud data and the first discrete convolution is obtained, that is, the characteristic point cloud data is obtained and assigned to the first discrete convolution.
  • the weight vector of a discrete convolution kernel corresponds to the weight of the position, so that the discrete point cloud data and the weight vector of the discrete convolution kernel are aligned, so that the space of the point cloud data can be better captured during the discrete convolution processing.
  • the point cloud data is discretely convolved through different convolution parameters to achieve the fine spatial structure features of the surface of the point cloud data and the spatial structure features of the background information, which can improve the point The accuracy of object classification corresponding to cloud data.
  • Fig. 5 is a third schematic flow chart of a point cloud data processing method according to an embodiment of the application; as shown in Fig. 5, the method includes:
  • Step 301 Obtain the point cloud data in the target scene and the weight vector of the first discrete convolution kernel
  • Step 302 Perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain first weight data;
  • the first weight data represents the point cloud data distribution The weight at the corresponding position of the weight vector to the first discrete convolution kernel;
  • Step 303 Perform first discrete convolution processing on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain a first discrete convolution result;
  • Step 304 Perform first upsampling processing on the first discrete convolution result to obtain a first upsampling processing result
  • Step 305 Obtain a spatial structure feature of at least one point data in the point cloud data based on the first upsampling processing result.
  • step 301 to step 302 in this embodiment please refer to the detailed description of step 101 to step 102 in the foregoing embodiment, which will not be repeated here.
  • step 101 to step 102 in the foregoing embodiment please refer to the detailed description of step 101 to step 102 in the foregoing embodiment, which will not be repeated here.
  • step 102 to step 103 in the foregoing embodiment can refer to the detailed description of step 102 to step 103 in the foregoing embodiment, which will not be repeated here.
  • the first discrete convolution result needs to be subjected to a first upsampling process to restore the first discrete convolution result
  • the size of, that is, the size of the first discrete convolution result is enlarged to obtain the first up-sampling processing result, and the spatial structure feature of at least one point data in the point cloud data is obtained based on the first up-sampling processing result.
  • the structure corresponding to interpolation processing and discrete convolution processing can be referred to as an encoder structure
  • the structure corresponding to upsampling processing can be referred to as a decoder structure.
  • the primary interpolation processing, discrete convolution processing, and up-sampling processing of the point cloud data in order to better identify the spatial structure feature of at least one point data in the point cloud data, you can Perform multiple interpolation processing, discrete convolution processing and up-sampling processing multiple times in sequence.
  • the obtaining the spatial structure feature of at least one point data in the point cloud data based on the first upsampling processing result includes: based on the result of the previous upsampling processing And the weight vector of the third discrete convolution kernel to interpolate the result after the previous up-sampling processing to obtain third weight data; the third weight data represents the result of the previous up-sampling processing and is allocated to the The weight at the corresponding position of the weight vector of the third discrete convolution kernel; if the previous upsampling process is the first upsampling process on the first discrete convolution result, the result after the previous upsampling process is the first An upsampling result; based on the third weight data and the weight vector of the third discrete convolution kernel, perform a third discrete convolution process on the result after the previous upsampling process to obtain a third discrete convolution result Perform a second up-sampling process on the third discrete convolution result to obtain a second up-sampling process result; obtain
  • the interpolation processing can be repeated, the second discrete convolution processing and the second upsampling processing, the number of repetitions can be based on The actual situation is pre-configured.
  • FIG. 6 is a schematic structural diagram of the second network in the point cloud data processing method according to an embodiment of the application; as shown in FIG. 6, including an encoder and a decoder; wherein, the encoder includes a plurality of interpolation convolutional layers (InterpConv ), the point cloud data is sequentially subjected to interpolation processing and discrete convolution processing through the plurality of interpolation convolution layers, and each interpolation convolution layer can perform the interpolation processing and discrete convolution processing procedures in this embodiment.
  • the convolution parameters corresponding to the multiple interpolation convolution layers may be different.
  • the convolution parameters corresponding to each of the plurality of interpolation convolution layers may be gradually increased.
  • the convolution parameter l represents the convolution kernel length (kernel length).
  • twice the length of the convolution kernel is the side length of the cube formed by eight weight vectors shown in FIG. 2.
  • the input point cloud data is represented by an N*3 matrix vector; after the point cloud data is interpolated and convolved through the first 3*3*3 interpolation convolution layer, the data obtained is downsampled to The 16-channel data of 1/2 of the original data is denoted as N/2*16; the 16-channel data (N/2*16) down-sampled to 1/2 of the original data is input to the 1*1*1 interpolation volume After the multiplication layer is subjected to interpolation and convolution processing, the data with the number of channels adjusted to 32 channels is obtained, denoted as N/2*32.
  • the 1*1*1 interpolation convolutional layers are all the same For adjusting the number of channels. Input the N/2*32 data into the second 3*3*3 interpolation convolution layer for interpolation and convolution processing, and obtain the 32-channel data down-sampled to 1/4 of the original data, denoted as N/4 *32. After inputting N/4*32 data into the 1*1*1 interpolation convolution layer for interpolation convolution processing, the number of channels is adjusted to 64 channels, which is recorded as N/4*64.
  • upsampling is performed on the N/16*256 data, and the obtained data is the 256-channel data that is up-sampled to 1/8 of the original data, denoted as N/8*256; for N/8* Up-sampling of 256 data, the obtained data is the 128-channel data that is up-sampled to 1/4 of the original data, denoted as N/4*128; the up-sampling of N/4*128 data, the obtained data is The 128-channel data that is up-sampled to 1/2 of the original data is recorded as N/2*128; the N/2*128 data is up-sampled, and the obtained data is the 128-channel data that is up-sampled to the original data , Marked as N*128.
  • N*128 data into the 1*1*1 interpolation convolutional layer for interpolation and convolution processing to obtain N*m data, where m can be expressed as the number of point clouds in the point cloud data, that is to say The feature data corresponding to multiple dimensions of each point cloud.
  • the method further includes step 306: determining the semantic information of the at least one point data based on the spatial structure feature of the at least one point data in the point cloud data.
  • the semantic information of the at least one point data is determined based on the output data representing the spatial structure of the at least one point data in multiple dimensions, that is, the category of the at least one point data is determined.
  • the category indicates the object information to which the point data belongs. For example, if the target scene includes multiple objects such as people and vehicles, the semantic information of the point data can be used to identify the object corresponding to the point data in the point cloud data. If it is a vehicle, all the point data corresponding to the person and all the point data corresponding to the vehicle can be identified through the semantic information recognition of the point data.
  • the semantic information of the point data is determined based on the data of the dimension with the largest value among the feature data of the multiple dimensions corresponding to each point data in the at least one point data.
  • N dimensions of feature data are output for each point data, and each dimension of data can correspond to a category, then the data of the dimension with the largest value is determined from the data of N dimensions.
  • the category corresponding to the data of the dimension with the largest value is determined as the semantic information of the point data.
  • the weight data used to establish the association between the point cloud data and the first discrete convolution is obtained, that is, the representative point cloud data is obtained and assigned to the first discrete volume.
  • the weight vector of the convolution kernel corresponds to the weight of the position, so that the discrete point cloud data and the weight vector of the discrete convolution kernel are aligned, so that the spatial structure characteristics of the point cloud data can be better captured during the discrete convolution processing. So as to better obtain the semantic information of the point cloud data.
  • FIG. 7 is a schematic diagram 1 of the composition structure of a point cloud data processing device according to an embodiment of the application; as shown in FIG. 7, the device includes: an acquisition unit 41, an interpolation processing unit 42 and a feature acquisition unit 43; wherein,
  • the obtaining unit 41 is configured to obtain the point cloud data in the target scene and the weight vector of the first discrete convolution kernel
  • the interpolation processing unit 42 is configured to perform interpolation processing on the point cloud data based on the point cloud data and the weight vector of the first discrete convolution kernel to obtain first weight data; the first weight data represents The point cloud data is assigned to the weight at the corresponding position of the weight vector of the first discrete convolution kernel;
  • the feature acquisition unit 43 is configured to perform first discrete convolution processing on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain a first discrete convolution result; Obtain the spatial structure feature of at least part of the point cloud data in the point cloud data based on the first discrete convolution result.
  • the interpolation processing unit 42 is configured to obtain the first weight data according to a preset interpolation processing method based on the point cloud data and the weight vector of the first discrete convolution kernel, so
  • the first weight data represents the weight for assigning the point cloud data to the corresponding position of the weight vector of the first discrete convolution kernel that meets the preset condition; wherein, the point cloud data is located in the first place that meets the preset condition.
  • the feature acquisition unit 43 is further configured to perform first discrete convolution processing on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain the first Discrete convolution result; normalize the first discrete convolution result based on a normalized parameter; the normalized parameter is based on the point cloud data in the specific geometric shape area where the point cloud data is located The number is determined; based on the normalized result, the spatial structure characteristics of at least part of the point cloud data in the point cloud data are obtained.
  • the weight vector of the first discrete convolution kernel is in n groups, the first weight data is in n groups, and n is an integer greater than or equal to 2;
  • the feature acquisition unit 43 is configured to be based on the first
  • the k sets of first weight data and the k th set of first convolution parameters perform the k th first discrete convolution processing on the weight vector of the k th set of first discrete convolution kernel and the point cloud data to obtain the k th set A discrete convolution result;
  • the k-th group of first convolution parameters corresponds to the size range of the k-th discrete convolution process;
  • k is an integer greater than or equal to 1 and less than and equal to n; based on n first discrete convolution results Determine the spatial structure characteristics of the point cloud data.
  • the interpolation processing unit 42 is further configured to perform interpolation processing on the first processed data based on the first processed data and the weight vector of the second discrete convolution kernel to obtain the first processed data.
  • Two-weight data the second weight data represents the weight at the corresponding position of the weight vector assigned to the second discrete convolution kernel by the first processed data; wherein, the first processed data is based on the previous discrete convolution
  • the result of the processing is determined. In a case where the result of the previous discrete convolution processing is n first discrete convolution results, the first processed data is determined according to the n first discrete convolution results;
  • the feature acquisition unit 43 is further configured to perform a second discrete convolution process on the first processed data based on the second weight data and the weight vector of the second discrete convolution kernel to obtain a second discrete convolution Result; based on the second discrete convolution result, the spatial structure feature of the point cloud data is obtained.
  • the weight vector of the second discrete convolution kernel is a group of 1, the second weight data is a group of 1, and 1 is an integer greater than or equal to 2;
  • the feature acquisition unit 43 is configured to be based on the first The m groups of second weight data and the m group of second convolution parameters perform the mth second discrete convolution processing on the weight vectors of the mth group of second discrete convolution kernels and the first processed data to obtain the mth group The second discrete convolution result;
  • the m-th group of second convolution parameters correspond to the size range of the m-th discrete convolution processing;
  • m is an integer greater than or equal to 1 and less than or equal to 1, and is also configured to be based on l second The discrete convolution result determines the spatial structure characteristics of the point cloud data.
  • the device further includes a first determining unit 44, configured to determine the location of the object in the target scene based on the spatial structure feature of the point cloud data category.
  • the feature acquiring unit 43 is configured to perform a first discrete convolution process on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain A first discrete convolution result; performing a first upsampling process on the first discrete convolution result to obtain a first upsampling process result; obtaining at least one point in the point cloud data based on the first upsampling process result
  • the spatial structure characteristics of the data is configured to perform a first discrete convolution process on the point cloud data based on the first weight data and the weight vector of the first discrete convolution kernel to obtain A first discrete convolution result; performing a first upsampling process on the first discrete convolution result to obtain a first upsampling process result; obtaining at least one point in the point cloud data based on the first upsampling process result The spatial structure characteristics of the data.
  • the interpolation processing unit 42 is further configured to compare the previous value based on the result of the previous upsampling processing and the weight vector of the third discrete convolution kernel.
  • the result of one upsampling processing is interpolated to obtain third weight data;
  • the third weight data represents the result of the previous upsampling processing and is assigned to the corresponding position of the weight vector of the third discrete convolution kernel
  • the weight of the previous upsampling process is the first upsampling process performed on the first discrete convolution result, the result after the previous upsampling process is the first upsampling result;
  • the feature acquisition unit 43 is further configured to perform a third discrete convolution process on the result after the previous upsampling process based on the third weight data and the weight vector of the third discrete convolution kernel to obtain the first Three discrete convolution results; performing a second upsampling process on the third discrete convolution result to obtain a second upsampling process result; obtaining at least one point data in the point cloud data based on the second upsampling process result The characteristics of the spatial structure.
  • the device further includes a second determining unit 45 configured to determine the at least one point cloud data based on the spatial structure feature of the at least one point data The semantic information of a point data.
  • the acquisition unit 41, the interpolation processing unit 42, the feature acquisition unit 43, the first determination unit 44, and the second determination unit 45 in the device can be implemented by a central processing unit (CPU, Central Processing Unit, Digital Signal Processor (DSP, Digital Signal Processor), Microcontroller Unit (MCU) or Programmable Gate Array (FPGA, Field-Programmable Gate Array) implementation.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • MCU Microcontroller Unit
  • FPGA Field-Programmable Gate Array
  • the point cloud data processing device provided in the above embodiment performs point cloud data processing
  • only the division of the above-mentioned program modules is used as an example for illustration.
  • the above-mentioned processing can be allocated to different The program module is completed, that is, the internal structure of the device is divided into different program modules to complete all or part of the processing described above.
  • the point cloud data processing device provided in the foregoing embodiment and the point cloud data processing method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • FIG. 10 is a schematic diagram of the composition structure of an electronic device according to an embodiment of the application; as shown in FIG. 10, it includes a memory 52, a processor 51, and a computer program stored in the memory 52 and running on the processor 51.
  • the processor Step 51 implements the steps of the point cloud data processing method described in the embodiment of the present application when the program is executed.
  • bus system 53 various components in the electronic device may be coupled together through the bus system 53.
  • the bus system 53 is used to implement connection and communication between these components.
  • the bus system 53 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 53 in FIG. 10.
  • the memory 52 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be a read only memory (ROM, Read Only Memory), a programmable read only memory (PROM, Programmable Read-Only Memory), an erasable programmable read only memory (EPROM, Erasable Programmable Read- Only Memory, Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be magnetic disk storage or tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • DRAM dynamic random access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhanced -Type synchronous dynamic random access memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • direct memory bus random access memory DRRAM, Direct Rambus Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 52 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 51 or implemented by the processor 51.
  • the processor 51 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 51 or instructions in the form of software.
  • the aforementioned processor 51 may be a general-purpose processor, a DSP, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 51 may implement or execute various methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 52.
  • the processor 51 reads the information in the memory 52 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic device (CPLD, Complex Programmable Logic Device, FPGA, general-purpose processor, controller, MCU, microprocessor (Microprocessor), or other electronic components are used to implement the aforementioned methods.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programmable Logic Device
  • FPGA general-purpose processor
  • controller MCU
  • microprocessor Microprocessor
  • the embodiment of the present application also provides a computer storage medium, such as a memory 52 including a computer program, which can be executed by the processor 51 of an electronic device to complete the steps described in the foregoing method.
  • the computer storage medium may be FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM, etc.; it may also be various devices including one or any combination of the foregoing memories.
  • the computer storage medium provided by the embodiment of the present application has computer instructions stored thereon, and when the instruction is executed by a processor, the point cloud data processing method described in the embodiment of the present application is implemented.
  • An embodiment of the present application further provides a computer program product, wherein the computer program product includes computer executable instructions, and after the computer executable instructions are executed, any point cloud data processing method provided in the embodiments of the present application can be implemented .
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present application can all be integrated into one processing unit, or each unit can be individually used as a unit, or two or more units can be integrated into one unit;
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a mobile storage device, ROM, RAM, magnetic disk, or optical disk.
  • the above-mentioned integrated unit of this application is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: removable storage devices, ROM, RAM, magnetic disks, or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Image Generation (AREA)

Abstract

一种点云数据处理方法、装置、电子设备及存储介质。所述方法包括:获得目标场景中的点云数据以及第一离散卷积核的权重向量(101);基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据(102);所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果(103);基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征(104)。

Description

点云数据处理方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为201910430700.7、申请日为2019年05月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及计算机应用技术领域,具体涉及一种点云数据处理方法、装置、电子设备及计算机可读存储介质。
背景技术
点云识别是计算机视觉和深度学习领域的重要问题,通过对点云数据进行学习,从而识别物体的三维结构。
发明内容
为解决现有存在的技术问题,本申请实施例提供一种点云数据处理方法、装置及电子设备。
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种点云数据处理方法,所述方法包括:
获得目标场景中的点云数据以及第一离散卷积核的权重向量;基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征。
本申请实施例还提供了一种点云数据处理装置,所述装置包括:获取单元、插值处理单元和特征获取单元;其中,
所述获取单元,配置为获得目标场景中的点云数据以及第一离散卷积核的权重向量;
所述插值处理单元,配置为基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
所述特征获取单元,配置为基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于所述第一离散卷积结果获得所述点云数据中至少部分点云数据的空间结构特征。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序 被处理器执行时实现本申请实施例所述方法的步骤。
本申请实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本申请实施例所述方法的步骤。
本申请实施例还提供一种计算机程序产品,其中,所述计算机程序产品包括计算机可执行指令,该计算机可执行指令被执行后,能够实现本申请实施例提供的任一种点云数据处理方法。
本申请实施例提供的点云数据处理方法、装置、电子设备及计算机可读存储介质,所述方法包括:获得目标场景中的点云数据以及第一离散卷积核的权重向量;基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据用于建立所述点云数据与所述第一离散卷积核的权重向量的关联;基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行离散卷积处理,获得所述点云数据中至少部分点云数据的空间结构特征。采用本申请实施例的技术方案,通过对点云数据进行插值处理,建立点云数据与第一离散卷积核之间的关联,也即获得表征点云数据分配至第一离散卷积核的权重向量对应位置处的权重,从而将离散的点云数据与离散卷积核的权重向量进行对齐,显式定义点云数据和第一离散卷积核之间的几何关系,以便于在离散卷积处理过程中能够更好的捕获点云数据的空间结构特征。
附图说明
图1为本申请实施例的点云数据处理方法的流程示意图一;
图2a和图2b分别为本申请实施例的点云处理方法中的插值处理示意图;
图3为本申请实施例的点云数据处理方法的流程示意图二;
图4为本申请实施例的点云数据处理方法中的第一网络的结构示意图;
图5为本申请实施例的点云数据处理方法的流程示意图三;
图6为本申请实施例的点云数据处理方法中的第二网络的结构示意图;
图7为本申请实施例的点云数据处理装置的组成结构示意图一;
图8为本申请实施例的点云数据处理装置的组成结构示意图二;
图9为本申请实施例的点云数据处理装置的组成结构示意图三;
图10为本申请实施例的电子设备的组成结构示意图。
具体实施方式
下面结合附图及具体实施例对本申请作进一步详细的说明。
本申请实施例提供了一种点云数据处理方法。图1为本申请实施例的点云数据处理方法的流程示意图一;如图1所示,所述方法包括:
步骤101:获得目标场景中的点云数据以及第一离散卷积核的权重向量;
步骤102:基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
步骤103:基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;
步骤104:基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的 空间结构特征。
本实施例中,点云数据指的是通过测量设备得到的目标场景中的对象的外观表面的点数据集合,表征目标场景中的对象的表面特性的海量的点的集合。所述点云数据包括每个点的三维坐标数据。实际应用中,作为一种实施方式,所述点云数据可通过N*3的矩阵向量表示,其中,N表示点云数据中的点的数量,每个点的三维坐标可通过1*3的特征向量表示。在其他实施方式中,所述点云数据除了包括每个点的三维坐标数据之外,还可包括颜色信息,例如包括红色(Red)、绿色(Green)、蓝色(Blue)的颜色数据(简称为RGB数据),则所述点云数据可通过N*6的矩阵表示,每个点的数据可通过1*6的矩阵表示,其中,三个维度的数据用于表示点的三维坐标,其余三个维度的数据可用于表示三种颜色的数据。
其中,所述点云数据还包括描述信息,所述描述信息可通过点云数据中每个点的特征表示,所述点云数据中每个点的特征可包括法线方向、曲率等特征。实际应用中,所述描述信息也可通过包含有点云数据的特征的特征向量表示。可以理解,所述点云数据包括点云数据对应的位置信息和特征向量。
本实施例中,离散卷积核的权重向量(包括本实施例中的第一离散卷积核的权重向量以及后续实施例中的第二离散卷积核的权重向量以及第三离散卷积核的权重向量)为三维离散卷积核的权重向量。可以理解,三维离散卷积核在进行离散卷积处理过程中对应于一立方体区域,则该立方体区域的八个顶点对应于离散卷积核的权重向量(本实施例中的第一离散卷积核的权重向量),可以理解,本实施例中所述离散卷积核的权重向量并非指一个权重向量,至少指八个权重向量,该八个权重向量可以是同一个离散卷积核的权重向量,也可以是多个不同的离散卷积核的权重向量。
本实施例中,离散卷积核的权重向量对应有卷积参数,所述卷积参数可包括卷积核大小和长度;其中,所述卷积核大小和长度决定卷积操作的尺寸范围,也即决定着立方体区域的大小或边长。
本实施例中,由于点云数据中的各个点是离散分布的,为了使点云数据的空间结构信息被充分识别,本实施例中首先通过步骤102记载的技术方案对点云数据进行插值处理,从而建立点云数据与第一离散卷积核的权重向量的关联,以便将点云数据与第一离散卷积核的权重向量所在位置对齐,从而在离散卷积处理过程中能够更好的捕获点云数据的空间结构特征。
在本申请的一种可选实施例中,针对步骤102,所述基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据,包括:基于所述点云数据和所述第一离散卷积核的权重向量按照预设的插值处理方式获得第一权重数据,所述第一权重数据表征将所述点云数据分配至满足预设条件的第一离散卷积核的权重向量对应位置处的权重;其中,所述点云数据位于所述满足预设条件的第一离散卷积核的权重向量所围成的特定几何形状区域内。
本实施例中,可通过预设的不同的插值处理方式对点云数据进行插值处理。其中,插值处理可通过插值函数实现,即可通过不同的插值函数对点云数据进行插值处理。例如,所述插值处理方式可为三线性插值处理方式或高斯插值处理方式,也即可通过三线性插值函数或高斯函数对点云数据进行插值处理。实际应用中,可将离散卷积核的权重向量(本实施例中即为第一离散卷积核的权重向量)和点云数据(具体为点云数据的坐标)输入至插值函数,获得第一权重数据。
本实施例中,对于不同的插值处理方式,对应于相同点云数据的、满足预设条件的第一离散卷积核的权重向量是不同的,并且特定几何形状区域也是不同的。其中,满足预设条件的第一离散卷积核的权重向量为围成点云数据所在的特定几何形状区域的离 散卷积核的权重向量。
图2a和图2b分别为本申请实施例的点云数据处理方法中的插值处理示意图。作为一种实施方式,如图2a所示,在插值处理方式为三线性插值处理方式的情况下,特定几何形状区域为离散卷积核对应的立方体区域,也即八个权重向量(本实施例中为第一离散卷积核的权重向量)形成的立方体区域,立方体区域的八个顶点分别对应八个权重向量,每个立方体区域的8个顶点对应的8个权重向量可能是同一个离散卷积核的,也可能是多个不同离散卷积核的。因此点在哪个立方体区域内,则满足预设条件的第一离散卷积核的权重向量为该点所在的立方体区域的8个顶点对应的权重向量,如图2a所示。相应的,通过三线性插值方式对点云数据进行处理,获得的第一权重数据表征将所述点云数据分配至所在的立方体区域对应的八个权重向量中各个权重向量对应位置的权重。
作为另一种实施方式,如图2b所示,在插值处理方式为高斯插值处理方式的情况下,特定几何形状区域为以离散卷积核的权重向量(本实施例中为第一离散卷积核的权重向量)为球心、预设长度为半径的球状区域;其中,不同的离散卷积核的权重向量对应的球状区域的半径可相同或不同。可以理解,实际应用中,点云数据所在的球状区域可以是一个,也可以是两个或两个以上,也可以是零个,具体如图2b所示。通过高斯插值方式对点云数据进行处理,获得的第一权重数据表征将所述点云数据分配至该点云数据所在的球状区域的球心处(即某第一离散卷积核的权重向量)的权重。
可以理解,一个点云数据可与一个离散卷积核的八个的权重向量均建立关联,如图2a所示的场景;也可与一个离散卷积核的部分权重向量(例如一个第一离散卷积核的权重向量)建立关联,如图2b所示的场景;也可与多个离散卷积核中每个离散卷积核的部分权重向量建立关联,例如高斯插值处理方式中,各个球状区域的半径较大,以至于点云数据处于多个不同的离散卷积核的权重向量对应的球状区域内。
在本申请的一种可选实施例中,针对步骤103,通常情况下,离散卷积处理是指将两个离散序列按照约定规则将有关序列分别两两相乘再相加的处理方式。而本实施例中是基于第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行离散卷积处理,相当于本实施例中是一种带权的离散卷积处理方式,也即针对每一次的有关序列的两两相乘处理,均将相乘结果乘以所述第一权重数据。本实施例中,是将第一离散卷积核的权重向量与点云数据的特征向量进行两两相乘处理,而每个两两相乘的结果均乘以所述第一权重数据,然后再相加。
在本申请的一种可选实施例中,针对步骤103,所述在获得所述第一离散卷积结果之后,所述方法还包括:基于归一化参数对所述第一离散卷积结果进行归一化处理;所述归一化参数是根据所述点云数据所在的所述特定几何形状区域内的点云数据的数量确定的。作为一种示例,若采用三线性插值处理方式,则如图2a所示的某一立方体区域内的点云数量为4个,则在针对这4个点云数据中的每个点云数据进行离散卷积处理获得第一离散卷积结果之后,基于数值4对该第一离散卷积结果进行归一化处理。作为另一种示例,若采用高斯插值处理方式,则如图2b所示的某一球状区域内的点云数量为2个,则在针对这2个点云数据中的每个点云数据进行离散卷积处理获得第一离散卷积结果之后,基于数值2对该第一离散卷积结果进行归一化处理。
作为一种实施方式,上述第一离散卷积处理以及归一化处理可参照以下表达式(1)进行:
Figure PCTCN2019121776-appb-000001
其中,
Figure PCTCN2019121776-appb-000002
表示输出的归一化处理后的离散卷积结果(本实施例中即归一化处 理后的第一离散卷积结果);
Figure PCTCN2019121776-appb-000003
表示输出的点云位置;N p'表示所述特定几何形状区域内的点云数据数量;p'表示离散卷积核的权重向量(本实施例中即第一离散卷积核的权重向量)对应的位置,p δ表示点云数据对应的位置,T(p δ,p')表示基于离散卷积核的权重向量(本实施例中即第一离散卷积核的权重向量)对应的位置和点云数据对应的位置以及插值函数T确定的权重数据(本实施例中即第一权重数据);W(p')表示离散卷积核的权重向量(本实施例中即第一离散卷积核的权重向量);
Figure PCTCN2019121776-appb-000004
表示所述特定几何区域内的点云数据的特征向量。
本实施例步骤103中,基于第一权重数据和第一离散卷积核的权重向量对点云数据进行第一离散卷积处理,也即将点云数据分配至满足预设条件的第一离散卷积核的权重向量对应位置处后,通过第一离散卷积核的权重向量对点云数据进行离散卷积处理,从而获得表征点云数据的空间结构特征的特征向量,也即获得第一离散卷积结果。
结合到应用中,可基于赋予神经网络的任务的不同,通过神经网络识别点云数据的空间结构特征进而确定目标场景中的对象的类别,所述对象的类别例如车辆、人等等,通过该神经网络可直接输出目标场景中的对象的类别。也可通过神经网络识别点云数据中至少一个点数据的空间结构特征进而确定点云数据中的至少一个点数据的语义信息,点数据的语义信息可表示点数据的类别,所述点数据的类别表明所述点数据所属的对象信息,例如,目标场景中包括人、车辆等多个对象,则可通过点数据的语义信息识别,确定点云数据中的点数据对应的对象是人或是车辆,则可通过点数据的语义信息识别确定对应于人的所有点数据以及对应于车辆的所有点数据。
本实施例步骤104中,通过对点云数据进行第一离散卷积处理,目的使点云数据中的点数据与其他点数据之间的差异扩大化,从而获得所述点云数据中至少部分点云数据的空间结构特征,其中,所述空间结构特征表征在三维空间场景下的点云数据的特征,所述点云数据的特征可包括法线方向、曲率等等,通过对点云数据中至少部分点云数据的空间结构特征的确定,具体基于点云数据的法线方向、曲率等特征结合点云数据所在位置的确定,为后续确定目标场景中的对象以及该对象的类别,或者确定点云数据中至少一个点数据的语义信息提供了依据。
基于此,本实施例的技术方案适用于虚拟现实、增强现实、医疗、航空、智能驾驶、机器人等领域。例如在智能驾驶领域,通过对行驶车辆前方场景的点云数据的采集,对点云数据采用本实施例中的处理方式进行识别,可确定点云数据中各个点数据所属的对象,从而实现各点数据的语义分隔;或者还可确定点云数据对应的场景中的对象的分类,从而识别出行驶车辆前方场景中是包括有其他车辆,或是包括行人等,为行驶车辆后续执行的操作提供基础数据。
采用本申请实施例的技术方案,通过对点云数据进行插值处理,建立点云数据与第一离散卷积核之间的关联,也即获得表征点云数据分配至第一离散卷积核的权重向量对应位置处的权重,从而将离散的点云数据与离散卷积核的权重向量进行对齐,显式定义点云数据和第一离散卷积核之间的几何关系,以便于在离散卷积处理过程中能够更好的捕获点云数据的空间结构特征。
本申请实施例还提供了一种点云数据处理方法。图3为本申请实施例的点云数据处理方法的流程示意图二;如图3所示,所述方法包括:
步骤201:获得目标场景中的点云数据以及第一离散卷积核的权重向量;
步骤202:基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;其中,所述第一离散卷积核的权重向量为n 组,所述第一权重数据为n组,n为大于等于2的整数;
步骤203:基于第k组第一权重数据以及第k组第一卷积参数对第k组第一离散卷积核的权重向量和所述点云数据进行第k个第一离散卷积处理,获得第k个第一离散卷积结果;所述第k组第一卷积参数对应于第k个第一离散卷积处理的尺寸范围;k为大于等于1且小于等于n的整数;
步骤204:基于n个第一离散卷积结果确定所述点云数据的空间结构特征。
本实施例步骤201至步骤202的详细阐述具体可参照前述实施例中的步骤101至步骤102中的详细阐述,这里不再赘述。同理,本实施例各步骤中的插值处理和离散卷积处理的详细阐述具体可参照前述实施例中步骤102至步骤103的详细阐述,这里不再赘述。
在本申请的一种可选实施例中,针对步骤202,所述第一离散卷积核的权重向量为n组;则所述基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据,包括:基于所述点云数据和第k组第一离散卷积核的权重向量分别对所述点云数据进行插值处理,获得第k组第一权重数据;k为大于等于1小于等于n的整数;n为大于等于2的整数。实际应用中,第一离散卷积核的权重向量可具有n组,将点云数据和n组第一离散卷积核的权重向量中的第k组第一离散卷积核的权重向量分别输入至插值函数,获得第k组第一权重数据。也就是说,将点云数据和n组第一离散卷积核的权重向量分别输入插值函数中,可获得n组第一权重数据。
本实施例中,三维离散卷积核在进行离散卷积处理过程中对应于一立方体区域,则该立方体区域的八个顶点对应于八个权重向量(记为第一离散卷积核的权重向量),每个三维离散卷积核对应有卷积参数,也即该三维离散卷积核对应的第一离散卷积核的权重向量对应有卷积参数,所述卷积参数可包括卷积核大小和长度;其中,所述卷积核大小和长度决定卷积操作的尺寸范围,也即决定着立方体区域的大小或边长。
本实施例中,针对点云数据,采用第k组第一权重数据以及第k组第一卷积参数对第k组第一离散卷积核的权重向量和点云数据进行第k个第一离散卷积处理,获得第k个第一离散卷积结果,具体的第一离散卷积处理过程可参照前述实施例所述,这里不再赘述。实际应用中,本实施例中的插值处理和离散卷积处理可通过网络中的插值离散卷积层实现。可以理解,本实施例中通过n个插值离散卷积层分别对同一点云数据进行插值处理、离散卷积处理,从而获得n个第一离散卷积结果。
其中,所述第k组第一卷积参数对应于第k个第一离散卷积处理的尺寸范围,也就是说,n组第一卷积参数中至少部分第一卷积参数对应的离散卷积处理的尺寸范围不同。可以理解,所述第一卷积参数越大,离散卷积处理的尺寸范围越大,感受野越大;相应的,所述第一卷积参数越小,离散卷积处理的尺寸范围越小,感受野越小。本实施例可通过较小的第一卷积参数对应的一组第一离散卷积核的权重向量对点云数据进行离散卷积处理,获得目标对象表面精细的空间结构特征;可通过较大的第一卷积参数对应的一组第一离散卷积核的权重向量对点云数据进行离散卷积处理,获得背景的空间结构特征。可以理解,包含本实施例中的n个离散卷积层的网络,能够分别通过n组第一离散卷积核的权重向量中的第k组第一离散卷积核的权重向量以及对应的第k组第一卷积参数对点云数据进行插值处理以及离散卷积处理,该网络为具有多感受野的神经网络,能够捕获点云数据的表面精细的空间结构特征和背景信息的空间结构特征,有利于后续的点云数据的类别,即目标场景中的对象的类别(即分类任务)的确定,能够提升分类任务的准确性。
上述实施方式中,是针对点云数据基于n组第一离散卷积核的权重向量以及n组第一卷积参数采用并行的方式进行的一次的插值处理和离散卷积处理,基于获得的n个第 一离散卷积结果确定所述点云数据的空间结构特征。在其他实施方式中,为了更好的识别点云数据的空间结构特征,可以依次进行多次的插值处理和离散卷积处理,在每次的插值处理和离散卷积处理过程中,可基于多组第一离散卷积核的权重向量以及多组第一卷积参数采用并行的方式进行插值处理和离散卷积处理。
在本申请的一种可选实施例中,所述基于所述n个第一离散卷积结果确定所述点云数据的空间结构特征,包括:基于第一处理数据和第二离散卷积核的权重向量对所述第一处理数据进行插值处理,获得第二权重数据;所述第二权重数据表征所述第一处理数据分配至所述第二离散卷积核的权重向量对应位置处的权重;其中,所述第一处理数据根据前一次离散卷积处理的结果确定,在前一次离散卷积处理的结果为n个第一离散卷积结果的情况下,所述第一处理数据根据所述n个第一离散卷积结果确定;基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据进行第二离散卷积处理,获得第二离散卷积结果;基于所述第二离散卷积结果,获得所述点云数据的空间结构特征。
作为一种实施方式,本实施例中对n个第一离散卷积结果进行整合,获得第一处理数据。实际应用中,可对n个第一离散卷积结果中的每个第一离散卷积结果中的对应通道的数据进行加权求和处理,从而获得第一处理数据。进一步采用第二离散卷积核的权重向量针对所述第一处理数据进行插值处理,以及,基于第二离散卷积核的权重向量和第二权重数据对所述第一数据进行离散卷积处理,获得第二离散卷积结果。其中,插值处理和离散卷积处理的具体实现方式与前述实施例相同,这里不再赘述。在其他实施方式中,可根据前一次离散卷积处理的结果确定所述第一处理数据,所述第一处理数据的确定方式与前述实施方式相似,这里不再赘述。
本实施例中,所述第二离散卷积核的权重向量为l组,所述第二权重数据为l组,l为大于等于2的整数;所述基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据重新进行离散卷积处理,包括:基于第m组第二权重数据以及第m组第二卷积参数对第m组第二离散卷积核的权重向量和所述第一处理数据进行第m个第二离散卷积处理,获得第m个第二离散卷积结果;所述第m组第二卷积参数对应于第m个离散卷积处理的尺寸范围;m为大于等于1且小于等于l的整数;所述基于第二离散卷积结果,获得所述点云数据的空间结构特征,包括:基于l个第二离散卷积结果确定所述点云数据的空间结构特征。其中,l的数值与n的数值相同或不同
可以理解,以点云数据依次进行两次的插值处理和离散卷积处理为例,则点云数据先通过n组第一离散卷积核的权重向量中的第k组第一离散卷积核的权重向量分别进行插值处理,以及通过n组第一离散卷积核的权重向量中的第k组第一离散卷积核的权重向量和n组第一卷积层参数中的第k组第一卷积参数分别进行离散卷积处理后,获得n个第一离散卷积结果;再将n个第一离散卷积结果整合为第一处理数据后,再通过l组第二离散卷积核的权重向量中的第m组第二离散卷积核的权重向量进行插值处理,以及通过l组第二离散卷积核的权重向量中的第m组第二离散卷积核的权重向量和l组第二卷积参数中的第m组第二卷积参数分别进行离散卷积处理,获得l个第二离散卷积结果,基于l个第二离散卷积过程确定所述点云数据的空间结构特征。也就是说,本实施例中的点云数据经过了插值-离散卷积-插值-离散卷积的处理过程,每次插值处理和离散卷积处理过程中又分别通过多条路径对点云数据进行插值处理和离散卷积处理。实际应用中,循环处理的次数可基于实际情况确定,例如可以为三次。
下面结合一具体的网络结构进行详细说明。
图4为本申请实施例的点云数据处理方法中的第一网络的结构示意图;以包括三组插值卷积层为例进行说明,每组插值卷积层可分别对输入数据进行插值处理和离散卷积 处理,即每组插值卷积层可执行本实施例中的插值处理和离散卷积处理过程。如图4所示,将点云数据分别输入至三个插值卷积块(InterpConv Block)中进行插值处理和离散卷积处理;其中,每个插值卷积块中分别包括三个插值卷积层,依次包括1*1*1的插值卷积层(InterpConv)、3*3*3的插值卷积层和1*1*1的插值卷积层;其中,1*1*1的插值卷积层是用于调整通道(channel)的。不同的插值卷积块中的3*3*3的插值卷积层对应的卷积参数不同,例如第一个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.4,第二个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.2,第三个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.1。本示例中,卷积参数l表示卷积核长度(kernel length)。作为一种示例,卷积核长度的两倍(kernel length*2)可以表示图2所示的由八个权重向量形成的立方体的边长。
本示例中,输入的点云数据通过N*3的矩阵向量表示;点云数据分别通过三条路径的1*1*1的插值卷积层进行插值卷积处理后,获得的数据为32通道的数据,记为N*32;再将32通道的数据(即N*32)分别输入至3*3*3的插值卷积层,获得的数据为被下采样到原数据1/2的64通道的数据,记为N/2*64;再将下采样到原数据1/2的64通道的数据(N/2*64)输入至1*1*1的插值卷积层进行插值卷积处理后,获得被下采样到原数据1/2的128通道的数据,记为N/2*128。其中,上述处理过程可记为在一个点云处理块中的处理过程,该点云处理块中科包括三个插值卷积块(InterpConv Block)。在本示例中,可通过至少两个点云处理块重复对点云数据进行插值卷积处理,如图4所示,通过两个点云处理块重复对点云数据进行插值卷积处理。每个点云处理块中的插值卷积块的数量可相同也可不同,在本示例中两个点云处理块中的插值卷积块的数量是相同的,均为三个。将三个N/2*128数据进行整合后,再次通过点云处理块中的三个插值卷积块分别对整合后的N/2*128数据进行处理,处理过程与前述第一个点云数据块的处理过程相似。区别在于,第二个点云处理块中插值卷积块对应的卷积参数与第一个点云处理块中插值卷积块对应的卷积参数可不同,第二个点云处理块中插值卷积块对应的卷积参数大于第一个点云处理块中插值卷积块对应的卷积参数,例如第二个点云处理块中的第一个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.8,第一个点云处理块中的第一个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.4;第二个点云处理块中的第二个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.4,第一个点云处理块中的第二个插值卷积块中3*3*3的插值卷积层对应的卷积参数l=0.2。可以理解,本实施例中在针对点云数据进行重复的插值处理和离散卷积处理过程中(即串行的插值卷积处理过程中),每次的离散卷积处理对应的卷积参数是逐渐增大的。而采用不同的离散卷积核的权重向量和卷积参数分别对点云数据的插值处理和离散卷积处理过程中(即并行的插值卷积处理过程中),不同的离散卷积处理对应的卷积参数可以是不同的。
进一步地,如图4所示,针对第二个点云处理块获得的三个N/4*256数据进行整合,具体是将三个N/4*256进行通道数相加后,获得768个通道的数据,记为N/4*768。对N/4*768通过1*1*1的插值卷积层进行插值卷积处理,获得1024个通道的数据,记为N/4*1024。基于最大池化层(Maxpooling)对N/4*1024进行最大池化处理,获得表征全局的特征向量的数据,记为1*1024。基于全连接层(FC)对1*1024进行处理,获得40个通道的数据,记为1*40,每个通道对应一个维度,也即输出40个维度的数据,每个维度对应一个类别。
在本申请的一种可选实施例中,所述方法还包括:步骤205:基于所述点云数据的空间结构特征确定所述目标场景中的对象的类别。
本实施例中,基于输出的表征点云数据的空间结构特征的多个维度的数据确定所述点云数据对应的对象的类别,也即确定目标场景中的对象的类别。具体的,基于所述多 个维度的数据中数值最大的维度的数据确定所述对象的类别。例如,图4中所示的示例中,输出40个维度的数据,每个维度的数据可对应一个类别,则从40个维度的数据中确定数值最大的维度的数据,将数值最大的维度的数据对应的类别确定为所述对象的类别。
采用本申请实施例的技术方案,一方面,通过对点云数据进行插值处理,获得用于建立点云数据与第一离散卷积的关联的权重数据,也即获得表征点云数据分配至第一离散卷积核的权重向量对应位置的权重,从而使得将离散的点云数据与离散卷积核的权重向量进行对齐,便于在离散卷积处理过程中能够更好的捕获点云数据的空间结构特征;另一方面,通过不同的卷积参数的分别对点云数据进行离散卷积处理,实现了点云数据的表面精细的空间结构特征和背景信息的空间结构特征的获取,能够提升点云数据对应的对象分类的准确性。
本申请实施例还提供了一种点云数据处理方法。图5为本申请实施例的点云数据处理方法的流程示意图三;如图5所示,所述方法包括:
步骤301:获得目标场景中的点云数据以及第一离散卷积核的权重向量;
步骤302:基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
步骤303:基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;
步骤304:对所述第一离散卷积结果进行第一上采样处理,获得第一上采样处理结果;
步骤305:基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
本实施例步骤301至步骤302的详细阐述具体可参照前述实施例中的步骤101至步骤102中的详细阐述,这里不再赘述。同理,本实施例各步骤中的插值处理和离散卷积处理的详细阐述具体可参照前述实施例中步骤102至步骤103的详细阐述,这里不再赘述。
本实施例中,为了能够提取出的点云数据中至少一个点数据的空间结构特征,从而后续便于基于至少一个点数据的空间结构特征确定至少一个点数据的语义信息,本实施例中在对点云数据进行第一离散卷积处理之后,由于离散卷积处理过程伴随着尺寸的缩小,因此需要对所述第一离散卷积结果进行第一上采样处理,从而恢复第一离散卷积结果的尺寸,也即将第一离散卷积结果的尺寸进行放大,获得第一上采样处理结果,基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。实际应用中,插值处理和离散卷积处理对应的结构可称为编码器结构,上采样处理对应的结构可称为解码器结构。
上述实施方式中,是针对点云数据的一次插值处理、离散卷积处理以及上采样处理,在其他实施方式中,为了更好的识别点云数据中的至少一个点数据的空间结构特征,可以依次进行多次的插值处理、离散卷积处理和上采样处理。
在本申请的一种可选实施例中,所述基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征,包括:基于前一次上采样处理后的结果和第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行插值处理,获得第三权重数据;所述第三权重数据表征前一次上采样处理后的结果分配至所述第三离散卷积核的权重向量对应位置处的权重;在前一次上采样处理是对第一离散卷积结果进行的第一上采样处理的情况下,前一次上采样处理后的结果为第一上采样结果;基于所述第三权重数 据和所述第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行第三离散卷积处理,获得第三离散卷积结果;对所述第三离散卷积结果进行第二上采样处理,获得第二上采样处理结果;基于所述第二上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
可以理解,将点云数据进行一次插值处理、第一离散卷积处理以及第一上采样处理后,可重复进行插值处理,第二离散卷积处理以及第二上采样处理,重复的次数可依据实际情况预先配置。
下面结合一具体的网络结构进行详细说明。
图6为本申请实施例的点云数据处理方法中的第二网络的结构示意图;如图6所示,包括编码器和解码器;其中,所述编码器包括多个插值卷积层(InterpConv),通过所述多个插值卷积层依次对点云数据进行插值处理和离散卷积处理,每个插值卷积层可执行本实施例中的插值处理和离散卷积处理过程。其中,所述多个插值卷积层对应的卷积参数可不同。作为一种示例,所述多个插值卷积层各自对应的卷积参数可逐级增加。例如图6所示,第一个3*3*3的插值卷积层对应的卷积参数l=0.05;第二个3*3*3的插值卷积层对应的卷积参数l=0.1;第三个3*3*3的插值卷积层对应的卷积参数l=0.2;第四个3*3*3的插值卷积层对应的卷积参数l=0.4。本示例中,卷积参数l表示卷积核长度(kernel length)。作为一种示例,卷积核长度的两倍(kernel length*2)为图2所示的由八个权重向量形成的立方体的边长。
本示例中,输入的点云数据通过N*3的矩阵向量表示;点云数据通过第一个3*3*3的插值卷积层进行插值卷积处理后,获得的数据为被下采样到原数据1/2的16通道的数据,记为N/2*16;将下采样到原数据1/2的16通道的数据(N/2*16)输入至1*1*1的插值卷积层进行插值卷积处理后,获得通道数量调整为32通道的数据,记为N/2*32,可以理解,本申请各实施例中,1*1*1的插值卷积层均是同于调整通道数量的。将N/2*32的数据输入至第二个3*3*3的插值卷积层进行插值卷积处理,获得被下采样到原数据1/4的32通道的数据,记为N/4*32。将N/4*32的数据输入至1*1*1的插值卷积层进行插值卷积处理后,获得通道数量调整为64通道的数据,记为N/4*64。将N/4*64的数据输入至第三个3*3*3的插值卷积层进行插值卷积处理,获得的数据为被下采样到原数据1/8的32通道的数据,记为N/8*64。将N/8*64的数据输入至1*1*1的插值卷积层进行插值卷积处理后,获得通道数量调整为128通道的数据,记为N/8*128。将N/8*128的数据输入至第四个3*3*3的插值卷积层进行插值卷积处理,获得的数据为被下采样到原数据1/16的128通道的数据,记为N/16*128。将N/16*128的数据输入至1*1*1的插值卷积层进行插值卷积处理后,获得通道数量调整为256通道的数据,记为N/16*256。以上可作为网络的编码器结构的处理过程。
进一步地,对N/16*256数据进行上采样(Upsampling)处理,获得的数据为被上采样到原数据1/8的256通道的数据,记为N/8*256;对N/8*256数据进行上采样处理,获得的数据为被上采样到原数据1/4的128通道的数据,记为N/4*128;对N/4*128数据进行上采样处理,获得的数据为被上采样到原数据1/2的128通道的数据,记为N/2*128;对N/2*128数据进行上采样处理,获得的数据为被上采样到原数据的128通道的数据,记为N*128。将N*128数据输入至1*1*1的插值卷积层进行插值卷积处理后,获得N*m的数据,其中,m可表示为点云数据中的点云的数量,也即获得对应于每个点云的多个维度的特征数据。
在本申请的一种可选实施例中,所述方法还包括步骤306:基于所述点云数据中至少一个点数据的空间结构特征确定所述至少一个点数据的语义信息。
本实施例中,基于输出的表征至少一个点数据的空间结构特征的多个维度的数据确 定所述至少一个点数据的语义信息,也即确定所述至少一个点数据的类别,所述点数据的类别表明所述点数据所属的对象信息,例如,目标场景中包括人、车辆等多个对象,则可通过点数据的语义信息识别,确定点云数据中的点数据对应的对象是人或是车辆,则可通过点数据的语义信息识别确定对应于人的所有点数据以及对应于车辆的所有点数据。具体的,基于所述至少一个点数据中每个点数据对应的多个维度的特征数据中数值最大的维度的数据确定该点数据的语义信息。例如,图6中所示的示例中,针对每个点数据输出N个维度的特征数据,每个维度的数据可对应一个类别,则从N个维度的数据中确定数值最大的维度的数据,将数值最大的维度的数据对应的类别确定为该点数据的语义信息。
采用本申请实施例的技术方案,通过对点云数据进行插值处理,获得用于建立点云数据与第一离散卷积的关联的权重数据,也即获得表征点云数据分配至第一离散卷积核的权重向量对应位置的权重,从而使得将离散的点云数据与离散卷积核的权重向量进行对齐,便于在离散卷积处理过程中能够更好的捕获点云数据的空间结构特征,从而更好的获取点云数据的语义信息。
本申请实施例还提供了一种点云数据处理装置。图7为本申请实施例的点云数据处理装置的组成结构示意图一;如图7所示,所述装置包括:获取单元41、插值处理单元42和特征获取单元43;其中,
所述获取单元41,配置为获得目标场景中的点云数据以及第一离散卷积核的权重向量;
所述插值处理单元42,配置为基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
所述特征获取单元43,配置为基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于所述第一离散卷积结果获得所述点云数据中至少部分点云数据的空间结构特征。
本实施例中,可选地,所述插值处理单元42,配置为基于所述点云数据和所述第一离散卷积核的权重向量按照预设的插值处理方式获得第一权重数据,所述第一权重数据表征将所述点云数据分配至满足预设条件的第一离散卷积核的权重向量对应位置的权重;其中,所述点云数据位于所述满足预设条件的第一离散卷积核的权重向量所围成的特定几何形状区域内。
可选地,所述特征获取单元43,还配置为基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于归一化参数对第一离散卷积结果进行归一化处理;所述归一化参数是根据所述点云数据所在的所述特定几何形状区域内的点云数据的数量确定的;基于归一化处理后的结果,获得所述点云数据中至少部分点云数据的空间结构特征。
作为一种实施方式,所述第一离散卷积核的权重向量为n组,所述第一权重数据为n组,n为大于等于2的整数;所述特征获取单元43,配置为基于第k组第一权重数据以及第k组第一卷积参数对第k组第一离散卷积核的权重向量和所述点云数据进行第k个第一离散卷积处理,获得第k个第一离散卷积结果;所述第k组第一卷积参数对应于第k个离散卷积处理的尺寸范围;k为大于等于1小于且等于n的整数;基于n个第一离散卷积结果确定所述点云数据的空间结构特征。
在本申请的一种可选实施例中,所述插值处理单元42,还配置为基于第一处理数据和第二离散卷积核的权重向量对所述第一处理数据进行插值处理,获得第二权重数据;所述第二权重数据表征所述第一处理数据分配至所述第二离散卷积核的权重向量对应 位置处的权重;其中,所述第一处理数据根据前一次离散卷积处理的结果确定,在前一次离散卷积处理的结果为n个第一离散卷积结果的情况下,所述第一处理数据根据所述n个第一离散卷积结果确定;
所述特征获取单元43,还配置为基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据进行第二离散卷积处理,获得第二离散卷积结果;基于所述第二离散卷积结果,获得所述点云数据的空间结构特征。
其中,可选地,所述第二离散卷积核的权重向量为l组,所述第二权重数据为l组,l为大于等于2的整数;所述特征获取单元43,配置为基于第m组第二权重数据以及第m组第二卷积参数对第m组第二离散卷积核的权重向量和所述第一处理数据进行第m个第二离散卷积处理,获得第m个第二离散卷积结果;所述第m组第二卷积参数对应于第m个离散卷积处理的尺寸范围;m为大于等于1且小于等于l的整数;还配置为基于l个第二离散卷积结果确定所述点云数据的空间结构特征。
在本申请的一种可选实施例中,如图8所示,所述装置还包括第一确定单元44,配置为基于所述点云数据的空间结构特征确定所述目标场景中的对象的类别。
作为另一种实施方式,所述特征获取单元43,配置为基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;对所述第一离散卷积结果进行第一上采样处理,获得第一上采样处理结果;基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
在本申请的另一种可选实施例中,可选地,所述插值处理单元42,还配置为基于前一次上采样处理后的结果和第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行插值处理,获得第三权重数据;所述第三权重数据表征所述前一次上采样处理后的结果分配至所述第三离散卷积核的权重向量对应位置处的权重;在前一次上采样处理是对第一离散卷积结果进行的第一上采样处理的情况下,前一次上采样处理后的结果为第一上采样结果;
所述特征获取单元43,还配置为基于所述第三权重数据和所述第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行第三离散卷积处理,获得第三离散卷积结果;对所述第三离散卷积结果进行第二上采样处理,获得第二上采样处理结果;基于所述第二上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
在本申请的一种可选实施例中,如图9所示,所述装置还包括第二确定单元45,配置为基于所述点云数据中至少一个点数据的空间结构特征确定所述至少一个点数据的语义信息。
本申请实施例中,所述装置中的获取单元41、插值处理单元42、特征获取单元43、第一确定单元44和第二确定单元45,在实际应用中均可由中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现。
需要说明的是:上述实施例提供的点云数据处理装置在进行点云数据处理时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的点云数据处理装置与点云数据处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本申请实施例还提供了一种电子设备。图10为本申请实施例的电子设备的组成结构示意图;如图10所示,包括存储器52、处理器51及存储在存储器52上并可在处理器51上运行的计算机程序,所述处理器51执行所述程序时实现本申请实施例所述点云数据处理方法的步骤。
可选地,电子设备中的各个组件可通过总线系统53耦合在一起。可理解,总线系统53用于实现这些组件之间的连接通信。总线系统53除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统53。
可以理解,存储器52可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器52旨在包括但不限于这些和任意其它适合类型的存储器。
上述本申请实施例揭示的方法可以应用于处理器51中,或者由处理器51实现。处理器51可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器51中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器51可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器51可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器52,处理器51读取存储器52中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
在示例性实施例中,本申请实施例还提供了一种计算机存储介质,例如包括计算机程序的存储器52,上述计算机程序可由电子设备的处理器51执行,以完成前述方法所述步骤。计算机存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
本申请实施例提供的计算机存储介质,其上存储有计算机指令,该指令被处理器执行时实现本申请实施例所述的点云数据处理方法。
本申请实施例还提供一种计算机程序产品,其中,所述计算机程序产品包括计算机可执行指令,该计算机可执行指令被执行后,能够实现本申请实施例提供的任一种点云数据处理方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种点云数据处理方法,所述方法包括:
    获得目标场景中的点云数据以及第一离散卷积核的权重向量;
    基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
    基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;
    基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征。
  2. 根据权利要求1所述的方法,其中,所述基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据,包括:
    基于所述点云数据和所述第一离散卷积核的权重向量按照预设的插值处理方式获得第一权重数据,所述第一权重数据表征将所述点云数据分配至满足预设条件的第一离散卷积核的权重向量对应位置处的权重;其中,所述点云数据位于所述满足预设条件的第一离散卷积核的权重向量所围成的特定几何形状区域内。
  3. 根据权利要求2所述的方法,其中,在获得所述第一离散卷积结果之后,所述方法还包括:基于归一化参数对第一离散卷积结果进行归一化处理;所述归一化参数是根据所述点云数据所在的所述特定几何形状区域内的点云数据的数量确定的;
    所述基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征,包括:基于归一化处理后的结果,获得所述点云数据中至少部分点云数据的空间结构特征。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一离散卷积核的权重向量为n组,所述第一权重数据为n组,n为大于等于2的整数;
    所述基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果,包括:基于第k组第一权重数据以及第k组第一卷积参数对第k组第一离散卷积核的权重向量和所述点云数据进行第k个第一离散卷积处理,获得第k个第一离散卷积结果;所述第k组第一卷积参数对应于第k个第一离散卷积处理的尺寸范围;k为大于等于1且小于等于n的整数;
    所述基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征,包括:基于n个第一离散卷积结果确定所述点云数据的空间结构特征。
  5. 根据权利要求4所述的方法,其中,所述基于所述n个第一离散卷积结果确定所述点云数据的空间结构特征,包括:
    基于第一处理数据和第二离散卷积核的权重向量对所述第一处理数据进行插值处理,获得第二权重数据;所述第二权重数据表征所述第一处理数据分配至所述第二离散卷积核的权重向量对应位置处的权重;其中,所述第一处理数据根据前一次离散卷积处理的结果确定,在前一次离散卷积处理的结果为n个第一离散卷积结果的情况下,所述第一处理数据根据所述n个第一离散卷积结果确定;
    基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据进行第二离散卷积处理,获得第二离散卷积结果;
    基于所述第二离散卷积结果,获得所述点云数据的空间结构特征。
  6. 根据权利要求5所述的方法,其中,所述第二离散卷积核的权重向量为l组,所 述第二权重数据为l组,l为大于等于2的整数;
    所述基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据重新进行离散卷积处理,包括:基于第m组第二权重数据以及第m组第二卷积参数对第m组第二离散卷积核的权重向量和所述第一处理数据进行第m个第二离散卷积处理,获得第m个第二离散卷积结果;所述第m组第二卷积参数对应于第m个第二离散卷积处理的尺寸范围;m为大于等于1且小于等于l的整数;
    所述基于第二离散卷积结果,获得所述点云数据的空间结构特征,包括:
    基于l个第二离散卷积结果确定所述点云数据的空间结构特征。
  7. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    基于所述点云数据的空间结构特征确定所述目标场景中的对象的类别。
  8. 根据权利要求1至3任一项所述的方法,其中,所述基于所述第一离散卷积结果,获得所述点云数据中至少部分点云数据的空间结构特征,包括:
    对所述第一离散卷积结果进行第一上采样处理,获得第一上采样处理结果;
    基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
  9. 根据权利要求8所述的方法,其中,所述基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征,包括:
    基于前一次上采样处理后的结果和第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行插值处理,获得第三权重数据;所述第三权重数据表征所述前一次上采样处理后的结果分配至所述第三离散卷积核的权重向量对应位置处的权重;在前一次上采样处理是对第一离散卷积结果进行的第一上采样处理的情况下,前一次上采样处理后的结果为第一上采样结果;
    基于所述第三权重数据和所述第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行第三离散卷积处理,获得第三离散卷积结果;
    对所述第三离散卷积结果进行第二上采样处理,获得第二上采样处理结果;
    基于所述第二上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
  10. 根据权利要求1至3、8和9任一项所述的方法,其中,所述方法还包括:
    基于所述点云数据中至少一个点数据的空间结构特征确定所述至少一个点数据的语义信息。
  11. 一种点云数据处理装置,所述装置包括:获取单元、插值处理单元和特征获取单元;其中,
    所述获取单元,配置为获得目标场景中的点云数据以及第一离散卷积核的权重向量;
    所述插值处理单元,配置为基于所述点云数据和所述第一离散卷积核的权重向量对所述点云数据进行插值处理,获得第一权重数据;所述第一权重数据表征所述点云数据分配至所述第一离散卷积核的权重向量对应位置处的权重;
    所述特征获取单元,配置为基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于所述第一离散卷积结果获得所述点云数据中至少部分点云数据的空间结构特征。
  12. 根据权利要求11所述的装置,其中,所述插值处理单元,配置为基于所述点云数据和所述第一离散卷积核的权重向量按照预设的插值处理方式获得第一权重数据,所述第一权重数据表征将所述点云数据分配至满足预设条件的第一离散卷积核的权重向量对应位置处的权重;其中,所述点云数据位于所述满足预设条件的第一离散卷积核 的权重向量所围成的特定几何形状区域内。
  13. 根据权利要求12所述的装置,其中,所述特征获取单元,配置为:基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;基于归一化参数对第一离散卷积结果进行归一化处理;所述归一化参数是根据所述点云数据所在的所述特定几何形状区域内的点云数据的数量确定的;基于归一化处理后的结果,获得所述点云数据中至少部分点云数据的空间结构特征。
  14. 根据权利要求11至13任一项所述的装置,其中,所述第一离散卷积核的权重向量为n组,所述第一权重数据为n组,n为大于等于2的整数;所述特征获取单元,配置为:基于第k组第一权重数据以及第k组第一卷积参数对k组第一离散卷积核的权重向量和所述点云数据进行第k个第一离散卷积处理,获得第k个第一离散卷积结果;所述第k组第一卷积参数对应于第k个第一离散卷积处理的尺寸范围;k为大于等于1且小于等于n的整数;基于n个第一离散卷积结果确定所述点云数据的空间结构特征。
  15. 根据权利要求14所述的装置,其中,所述插值处理单元,还配置为:基于第一处理数据和第二离散卷积核的权重向量对所述第一处理数据进行插值处理,获得第二权重数据;所述第二权重数据表征所述第一处理数据分配至所述第二离散卷积核的权重向量对应位置处的权重;其中,所述第一处理数据根据前一次离散卷积处理的结果确定,在前一次离散卷积处理的结果为n个第一离散卷积结果的情况下,所述第一处理数据根据所述n个第一离散卷积结果确定;
    所述特征获取单元,还配置为基于所述第二权重数据和所述第二离散卷积核的权重向量对所述第一处理数据进行第二离散卷积处理,获得第二离散卷积结果;基于所述第二离散卷积结果,获得所述点云数据的空间结构特征。
  16. 根据权利要求15所述的装置,其中,所述第二离散卷积核的权重向量为l组,所述第二权重数据为l组,l为大于等于2的整数;
    所述特征获取单元,配置为基于第m组第二权重数据以及第m组第二卷积参数对第m组第二离散卷积核的权重向量和所述第一处理数据进行第m个第二离散卷积处理,获得第m个第二离散卷积结果;所述第m组第二卷积参数对应于第m个离散卷积处理的尺寸范围;m为大于等于1且小于等于l的整数;基于l个第二离散卷积结果确定所述点云数据的空间结构特征。
  17. 根据权利要求11至16任一项所述的装置,其中,所述装置还包括第一确定单元,配置为基于所述点云数据的空间结构特征确定所述目标场景中的对象的类别。
  18. 根据权利要求11至13任一项所述的装置,其中,所述特征获取单元,配置为:基于所述第一权重数据和所述第一离散卷积核的权重向量对所述点云数据进行第一离散卷积处理,获得第一离散卷积结果;对所述第一离散卷积结果进行第一上采样处理,获得第一上采样处理结果;基于所述第一上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
  19. 根据权利要求18所述的装置,其中,所述插值处理单元,还配置为:基于前一次上采样处理后的结果和第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行插值处理,获得第三权重数据;所述第三权重数据表征所述前一次上采样处理后的结果分配至所述第三离散卷积核的权重向量对应位置处的权重;在前一次上采样处理是对第一离散卷积结果进行的第一上采样处理的情况下,前一次上采样处理后的结果为第一上采样结果;
    所述特征获取单元,还配置为基于所述第三权重数据和所述第三离散卷积核的权重向量对所述前一次上采样处理后的结果进行第三离散卷积处理,获得第三离散卷积结 果;对所述第三离散卷积结果进行第二上采样处理,获得第二上采样处理结果;基于所述第二上采样处理结果获得所述点云数据中至少一个点数据的空间结构特征。
  20. 根据权利要求11至13、18和19任一项所述的装置,其中,所述装置还包括第二确定单元,配置为基于所述点云数据中至少一个点数据的空间结构特征确定所述至少一个点数据的语义信息。
  21. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1至10任一项所述方法的步骤。
  22. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至10任一项所述方法的步骤。
  23. 一种计算机程序产品,所述计算机程序产品包括计算机可执行指令,该计算机可执行指令被执行后,能够实现权利要求1至10任一项所述的方法步骤。
PCT/CN2019/121776 2019-05-22 2019-11-28 点云数据处理方法、装置、电子设备及存储介质 WO2020233069A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020565957A JP7475287B2 (ja) 2019-05-22 2019-11-28 ポイントクラウドデータの処理方法、装置、電子機器、記憶媒体及びコンピュータプログラム
KR1020207031573A KR102535158B1 (ko) 2019-05-22 2019-11-28 포인트 클라우드 데이터 처리 방법, 장치, 전자 기기 및 저장 매체
SG11202010693SA SG11202010693SA (en) 2019-05-22 2019-11-28 Method and device for processing point cloud data, electronic device and storage medium
US17/082,686 US20210042501A1 (en) 2019-05-22 2020-10-28 Method and device for processing point cloud data, electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430700.7A CN110163906B (zh) 2019-05-22 2019-05-22 点云数据处理方法、装置、电子设备及存储介质
CN201910430700.7 2019-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/082,686 Continuation US20210042501A1 (en) 2019-05-22 2020-10-28 Method and device for processing point cloud data, electronic device and storage medium

Publications (1)

Publication Number Publication Date
WO2020233069A1 true WO2020233069A1 (zh) 2020-11-26

Family

ID=67632023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121776 WO2020233069A1 (zh) 2019-05-22 2019-11-28 点云数据处理方法、装置、电子设备及存储介质

Country Status (6)

Country Link
US (1) US20210042501A1 (zh)
JP (1) JP7475287B2 (zh)
KR (1) KR102535158B1 (zh)
CN (1) CN110163906B (zh)
SG (1) SG11202010693SA (zh)
WO (1) WO2020233069A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110163906B (zh) * 2019-05-22 2021-10-29 北京市商汤科技开发有限公司 点云数据处理方法、装置、电子设备及存储介质
CN110969689A (zh) * 2019-12-03 2020-04-07 上海眼控科技股份有限公司 点云特征提取方法、装置、计算机设备和存储介质
CN112935703B (zh) * 2021-03-19 2022-09-27 山东大学 识别动态托盘终端的移动机器人位姿校正方法及系统
CN113189634B (zh) * 2021-03-02 2022-10-25 四川新先达测控技术有限公司 一种类高斯成形方法
CN112991473B (zh) * 2021-03-19 2023-07-18 华南理工大学 一种基于立方体模板的神经网络编码解码方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358655A (zh) * 2017-07-27 2017-11-17 深圳前海倍思拓技术有限公司 基于离散平稳小波变换的半球面和圆锥面模型的辨识方法
CN108921939A (zh) * 2018-07-04 2018-11-30 王斌 一种基于图片的三维场景重建方法
CN110163906A (zh) * 2019-05-22 2019-08-23 北京市商汤科技开发有限公司 点云数据处理方法、装置、电子设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631250B1 (en) * 1993-06-21 2002-03-20 Nippon Telegraph And Telephone Corporation Method and apparatus for reconstructing three-dimensional objects
BRPI0520370B8 (pt) * 2005-06-28 2023-01-31 Scanalyse Pty Ltd Sistema e método para medição e mapeamento de uma superfície com relação a uma referência
CN101063967B (zh) * 2006-04-28 2010-11-10 鸿富锦精密工业(深圳)有限公司 点云自动修剪系统及方法
WO2008066740A2 (en) * 2006-11-22 2008-06-05 Parker Vision, Inc. Multi-dimensional error correction for communications systems
US10378891B2 (en) * 2007-12-28 2019-08-13 Outotec Pty Ltd System and method for measuring and mapping a surface relative to a reference
US9068809B1 (en) * 2013-06-06 2015-06-30 The Boeing Company Quasi-virtual locate/drill/shim process
CN105590311A (zh) * 2014-11-13 2016-05-18 富泰华工业(深圳)有限公司 图形化平面数据分析系统及方法
US10459084B2 (en) * 2014-12-30 2019-10-29 Nokia Technologies Oy Range sensing using a hybrid range sensing device
CN105550688B (zh) * 2015-12-04 2019-03-29 百度在线网络技术(北京)有限公司 点云数据的分类方法及装置
US11458034B2 (en) * 2016-05-03 2022-10-04 Icarus Medical, LLC Method for automating body part sizing
CN107918753B (zh) * 2016-10-10 2019-02-22 腾讯科技(深圳)有限公司 点云数据处理方法及装置
CN108230329B (zh) * 2017-12-18 2021-09-21 孙颖 基于多尺度卷积神经网络的语义分割方法
US11221413B2 (en) * 2018-03-14 2022-01-11 Uatc, Llc Three-dimensional object detection
US10572770B2 (en) * 2018-06-15 2020-02-25 Intel Corporation Tangent convolution for 3D data
CN109410307B (zh) * 2018-10-16 2022-09-20 大连理工大学 一种场景点云语义分割方法
CN109597087B (zh) * 2018-11-15 2022-07-01 天津大学 一种基于点云数据的3d目标检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358655A (zh) * 2017-07-27 2017-11-17 深圳前海倍思拓技术有限公司 基于离散平稳小波变换的半球面和圆锥面模型的辨识方法
CN108921939A (zh) * 2018-07-04 2018-11-30 王斌 一种基于图片的三维场景重建方法
CN110163906A (zh) * 2019-05-22 2019-08-23 北京市商汤科技开发有限公司 点云数据处理方法、装置、电子设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOMARICHEV, ARTEM ET AL.: "A-CNN: Annularly Convolutional Neural Networks on Point Clouds", ARXIV.ORG, 16 April 2019 (2019-04-16), pages 7413 - 7422, XP033686912 *
WU, WENXUAN ET AL.: "PointConv: Deep Convolutional Networks on 3D Point Clouds", ARXIV.ORG, 11 April 2019 (2019-04-11), pages 9613 - 9622, XP033687285 *

Also Published As

Publication number Publication date
US20210042501A1 (en) 2021-02-11
CN110163906B (zh) 2021-10-29
SG11202010693SA (en) 2020-12-30
JP2021528726A (ja) 2021-10-21
KR102535158B1 (ko) 2023-05-22
KR20200139761A (ko) 2020-12-14
CN110163906A (zh) 2019-08-23
JP7475287B2 (ja) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2020233069A1 (zh) 点云数据处理方法、装置、电子设备及存储介质
CN109522874B (zh) 人体动作识别方法、装置、终端设备及存储介质
WO2020177651A1 (zh) 图像分割方法和图像处理装置
CN110378381B (zh) 物体检测方法、装置和计算机存储介质
CN110473137B (zh) 图像处理方法和装置
CN107292256B (zh) 基于辅任务的深度卷积小波神经网络表情识别方法
CN112990010B (zh) 点云数据处理方法、装置、计算机设备和存储介质
CN111914997B (zh) 训练神经网络的方法、图像处理方法及装置
CN112529904B (zh) 图像语义分割方法、装置、计算机可读存储介质和芯片
EP4006776A1 (en) Image classification method and apparatus
CN109948454B (zh) 表情数据库的增强方法、训练方法、计算设备及存储介质
CN110619334B (zh) 基于深度学习的人像分割方法、架构及相关装置
WO2021147551A1 (zh) 点云数据处理方法、智能行驶方法及相关装置、电子设备
WO2023065665A1 (zh) 图像处理方法、装置、设备、存储介质及计算机程序产品
WO2020207134A1 (zh) 图像处理方法、装置、设备以及计算机可读介质
CN113298931B (zh) 一种物体模型的重建方法、装置、终端设备和存储介质
CN116030259A (zh) 一种腹部ct图像多器官分割方法、装置及终端设备
CN112149662A (zh) 一种基于扩张卷积块的多模态融合显著性检测方法
Paulus et al. Color cluster rotation
CN112333468B (zh) 图像处理方法、装置、设备及存储介质
AU2012268887A1 (en) Saliency prediction method
US11797854B2 (en) Image processing device, image processing method and object recognition system
CN116883770A (zh) 深度估计模型的训练方法、装置、电子设备及存储介质
CN114792370A (zh) 一种全肺图像分割方法、装置、电子设备及存储介质
CN110223334B (zh) 一种景深图获取方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20207031573

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020565957

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930049

Country of ref document: EP

Kind code of ref document: A1