WO2020232824A1 - Sag domain recognition method considering uncertainty of load sensitivity - Google Patents

Sag domain recognition method considering uncertainty of load sensitivity Download PDF

Info

Publication number
WO2020232824A1
WO2020232824A1 PCT/CN2019/097841 CN2019097841W WO2020232824A1 WO 2020232824 A1 WO2020232824 A1 WO 2020232824A1 CN 2019097841 W CN2019097841 W CN 2019097841W WO 2020232824 A1 WO2020232824 A1 WO 2020232824A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
node
sag
value
bus
Prior art date
Application number
PCT/CN2019/097841
Other languages
French (fr)
Chinese (zh)
Inventor
李新
武利会
罗容波
邱太洪
范心明
董镝
宋安琪
陈邦发
王俊波
李慧
Original Assignee
广东电网有限责任公司
广东电网有限责任公司佛山供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司, 广东电网有限责任公司佛山供电局 filed Critical 广东电网有限责任公司
Publication of WO2020232824A1 publication Critical patent/WO2020232824A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Locating Faults (AREA)

Abstract

A sag domain recognition method considering the uncertainty of load sensitivity, comprising the following steps: performing power flow calculation to acquire the voltage amplitude of a system node before a fault; calculating sequence impedances; calculating a residual voltage of each bus fault; obtaining upper and lower limits of an uncertainty interval of a sensitive load according to an existing voltage tolerance curve to form a discriminant matrix; calculating a line critical point according to the discriminant matrix and the lower and upper limits of the uncertainty interval of the sensitive load; and traversing all lines and all uncertain spaces, and outputting two sag domain recognition results corresponding to the upper and lower limits of the uncertainty interval of the sensitive load. Considering the uncertainty interval of the sensitive load, a sag domain that is closer to an actual project is described, overcoming the defect that the existing sag domain recognition method fails to consider that sensitive loads have different tolerance to voltage sags, and fixing the sag domain by means of a definite boundary fails to take all sag domain critical points into account.

Description

一种考虑负荷敏感度不确定性的暂降域识别方法A method of sag zone identification considering the uncertainty of load sensitivity 技术领域Technical field
本发明涉及电力系统电压暂降域识别的技术领域,更具体地,涉及一种考虑负荷敏感度不确定性的暂降域识别方法。The present invention relates to the technical field of identifying the voltage sag region of a power system, and more specifically, to a method for identifying the sag region considering the uncertainty of load sensitivity.
背景技术Background technique
负荷敏感度是指负荷对电能质量问题如电压质量的敏感程度,当提供给负荷的电能质量不良时,负荷承受干扰仍可正常工作的能力,能力越低,敏感度越高,在实际电力系统运行中,负荷敏感度是不确定的;暂降域是指电力系统中发生短路故障时,故障导致敏感点的电压幅值降低到某个电压耐受能力阈值以下,使敏感负荷不能正常工作的故障点组成的集合,为降低电压暂降对敏感负荷的不利影响,实现电网的可靠优质运行,识别电压暂降域的方法研究具有重要指导意义。Load sensitivity refers to the sensitivity of the load to power quality problems such as voltage quality. When the power quality provided to the load is poor, the load’s ability to withstand interference and still work normally. The lower the capacity, the higher the sensitivity. In the actual power system During operation, the load sensitivity is uncertain; the sag domain refers to when a short-circuit fault occurs in the power system, the fault causes the voltage amplitude of the sensitive point to drop below a certain voltage tolerance threshold, making the sensitive load unable to work normally In order to reduce the adverse effects of voltage sags on sensitive loads and realize the reliable and high-quality operation of the power grid, the collection of fault points has important guiding significance.
暂降域严格从严格意义上讲不是一个区域,而是由点(变电站)和线(线路和电缆)构成的集合,但利用包络线围成的区域更有利于概念的形象化,可明确电气元件是否归于暂降域内。Strictly speaking, the sag domain is not an area in a strict sense, but a collection of points (substations) and lines (lines and cables), but the area enclosed by the envelope is more conducive to the visualization of the concept, which can be clear Whether the electrical components belong to the sag domain.
目前,国内外已经提出了多种暂降域识别方法,主要包括故障点法、临界距离法、解析法等方法,以上方法在暂降域识别计算里均存在或多或少的缺陷,例如陈铁敏,杨洪耕在《电力自动化设备》(2008,28(6))发表的《基于改进故障点法的电压凹陷评估》中提到故障点法在暂降域识别计算时,精度难以保证,需要大量的故障点信息才能提高计算精度;而且目前现有的暂降域计算方法均基于传统短路计算,算法考虑的影响因素少,导致暂降域预评估结果与实际结果相差较大,另一方面,现有方法计算得到的是一个确切的暂降域边界,暂降域的范围大小主要由设备的电压暂降耐受能力决定,通常情况下虽认为敏感负荷的电压暂降耐受能力是一个具体的数值,但由于设备运行方式、负载情况的不同,敏感设备的耐受能力可能不同,此种情况下,敏感负荷的电压暂降耐受特性不能用一条固定的电压暂降耐受曲线刻画,其电压暂降耐受曲线的位置具有不确定性,相应的电压临界点无法完全考虑在内,因此,固定的暂降域边界将在此时具有一定的局限性。At present, a variety of sag zone identification methods have been proposed at home and abroad, mainly including fault point method, critical distance method, analytical method and other methods. The above methods have more or less defects in the sag zone identification calculation, such as Chen Tiemin , Yang Honggeng mentioned in the "Voltage Sag Evaluation Based on Improved Fault Point Method" published by "Power Automation Equipment" (2008, 28(6)) that the accuracy of the fault point method in the sag domain identification calculation is difficult to guarantee and requires a lot of The information of the fault point can improve the calculation accuracy; and the current sag domain calculation methods are all based on traditional short-circuit calculations, and the algorithm considers few influencing factors, resulting in a large difference between the pre-evaluation results of the sag domain and the actual results. There is a method to calculate an exact sag region boundary. The size of the sag region is mainly determined by the voltage sag tolerance of the equipment. Generally, although the voltage sag tolerance of sensitive loads is considered to be a specific However, due to the different operating modes and load conditions of the equipment, the withstand capability of sensitive equipment may be different. In this case, the voltage sag withstand characteristics of the sensitive load cannot be described by a fixed voltage sag withstand curve. The location of the voltage sag tolerance curve is uncertain, and the corresponding voltage critical point cannot be fully considered. Therefore, the fixed sag domain boundary will have certain limitations at this time.
发明内容Summary of the invention
本发明为克服现有暂降域识别方法未考虑敏感负荷对电压暂降的耐受能力不同,将暂降域用一个明确界线固定,无法将所有电压临界点考虑在内的弊端,本发明基于敏感负荷电压耐受能力曲线区间变化范围的上下界,提出一种考虑负荷敏感度不确定性的暂降域识别方法。The present invention overcomes the disadvantages that the existing sag region identification method does not take into account the different tolerance of sensitive loads to voltage sags, fixes the sag region with a clear boundary and cannot take all voltage critical points into consideration. The present invention is based on Based on the upper and lower bounds of the variation range of the sensitive load voltage tolerance curve interval, a sag region identification method considering the uncertainty of load sensitivity is proposed.
为了达到上述技术效果,本发明的技术方案如下:In order to achieve the above technical effects, the technical solution of the present invention is as follows:
所述方法包括如下步骤:The method includes the following steps:
S1:对系统进行潮流计算,获得短路故障前系统各节点正常运行时的电压幅值U prefS1: Calculate the power flow of the system to obtain the voltage amplitude U pref during normal operation of each node of the system before the short-circuit fault;
S2:设置短路故障节点K及敏感负荷接入节点m,计算K点与m点之间零序、正序、负序转移阻抗及K点的输入阻抗、故障前电压幅值;S2: Set the short-circuit fault node K and the sensitive load access node m, calculate the zero sequence, positive sequence, and negative sequence transfer impedance between point K and point m, and the input impedance of point K and the voltage amplitude before the fault;
S3:根据故障前系统各节点电压幅值及故障点K的输入阻抗,计算各母线残余电压幅值U magS3: Calculate the residual voltage amplitude U mag of each bus according to the voltage amplitude of each node of the system before the fault and the input impedance of the fault point K;
S4:通过已知电压耐受能力曲线图不确定区间的变化范围,获得电压耐受能力曲线不确定区间的上界限U max和下界限U min,并结合各母线故障残余电压幅值U mag,形成判别矩阵BUS和LINE; S4: Obtain the upper limit U max and the lower limit U min of the uncertainty interval of the voltage withstand capability curve by knowing the variation range of the uncertainty interval of the voltage withstand capability curve, combined with the residual voltage amplitude U mag of each busbar fault, Form the discriminant matrix BUS and LINE;
S5:令节点m所带负荷的电压耐受值U th取不确定区间的下界限值U min,根据判别矩阵LINE的值,计算线路的临界点,确定该线路在暂降域中的包含情况; S5: Let the voltage tolerance value U th of the load carried by node m take the lower limit value U min of the uncertainty interval, calculate the critical point of the line according to the value of the discriminant matrix LINE, and determine the inclusion of the line in the sag domain ;
S6:判断是否已遍历系统所有线路及是否已遍历全部所述不确定空间,若是则输出暂降域识别结果;若未遍历所有线路,则返回步骤S4进行下一条线路识别计算;若已遍历所有线路,但未遍历全部所述不确定空间,则令U th取不确定区间的上界限U max,返回步骤S4继续执行计算; S6: Judge whether all lines of the system have been traversed and all the uncertain spaces have been traversed, if yes, output the sag domain recognition result; if not all lines have been traversed, return to step S4 for the next line recognition calculation; if all lines have been traversed Line, but has not traversed all the uncertain spaces, let U th take the upper limit U max of the uncertain interval, and return to step S4 to continue the calculation;
S7:统计两次计算,获得U min对应的暂降域1和U max对应的暂降域2,得到最终的暂降域识别结果。 S7: Count two calculations, obtain sag domain 1 corresponding to U min and sag domain 2 corresponding to U max , and obtain the final sag domain identification result.
优选地,步骤S2所述的故障节点K与敏感负荷接入节点m之间的各序转移阻抗为:Preferably, the sequence transfer impedance between the faulty node K and the sensitive load access node m in step S2 is:
Z mK,0=Z mF,0+p(Z mT,0-Z mF,0) Z mK,0 =Z mF,0 +p(Z mT,0 -Z mF,0 )
Z mK,1=Z mF,1+p(Z mT,1-Z mF,1) Z mK,1 =Z mF,1 +p(Z mT,1 -Z mF,1 )
Z mK,2=Z mF,2+p(Z mT,2-Z mF,2) Z mK,2 =Z mF,2 +p(Z mT,2 -Z mF,2 )
其中,Z mK,0、Z mK,1、Z mK,2为故障节点K与敏感负荷接入节点m之间的各 序转移阻抗,其中,Z mK,0为零序转移阻抗,Z mK,1为正序转移阻抗,Z mK,2为负序转移阻抗;Z mF,0、Z mF,1、Z mF,2为敏感负荷节点m首端母线节点F和负荷点m之间的各序转移阻抗,其中Z mF,0为零序转移阻抗,Z mF,1为正序转移阻抗,Z mF,2为负序转移阻抗;Z mT,0、Z mT,1、Z mT,2为敏感负荷节点m尾端母线节点T和负荷点m之间的各序转移阻抗,其中,Z mT,0为零序转移阻抗,Z mT,1为正序转移阻抗,Z mT,2为负序转移阻抗;p是故障点K到母线首端节点F的距离标幺值表示; Among them, Z mK,0 , Z mK,1 , Z mK,2 are the sequence transfer impedances between the faulty node K and the sensitive load access node m, where Z mK,0 is the zero sequence transfer impedance, Z mK, 1 is the positive sequence transfer impedance, Z mK, 2 is the negative sequence transfer impedance; Z mF,0 , Z mF,1 , Z mF, 2 are the sequences between the first-end bus node F of the sensitive load node m and the load point m Transfer impedance, where Z mF,0 is zero sequence transfer impedance, Z mF,1 is positive sequence transfer impedance, Z mF,2 is negative sequence transfer impedance; Z mT,0 , Z mT,1 , Z mT,2 are sensitive Each sequence transfer impedance between load node m tail bus node T and load point m, where Z mT,0 is zero sequence transfer impedance, Z mT,1 is positive sequence transfer impedance, Z mT,2 is negative sequence transfer Impedance; p is the unit value of the distance from the fault point K to the bus head node F;
故障节点K的输入阻抗为:The input impedance of the fault node K is:
Z KK,0=p 2(Z FF,0+Z TT,0-2Z FT,0-Z C,0)+p[Z C,0-2(Z FF,0-Z TT,0)]+Z FF,0 Z KK,0 =p 2 (Z FF,0 +Z TT,0 -2Z FT,0 -Z C,0 )+p[Z C,0 -2(Z FF,0 -Z TT,0 )]+ Z FF, 0
Z KK,1=p 2(Z FF,1+Z TT,1-2Z FT,1-Z C,1)+p[Z C,1-2(Z FF,1-Z TT,1)]+Z FF,1 Z KK,1 =p 2 (Z FF,1 +Z TT,1 -2Z FT,1 -Z C,1 )+p[Z C,1 -2(Z FF,1 -Z TT,1 )]+ Z FF, 1
Z KK,2=p 2(Z FF,2+Z TT,2-2Z FT,2-Z C,2)+p[Z C,2-2(Z FF,2-Z TT,2)]+Z FF,2 Z KK,2 =p 2 (Z FF,2 +Z TT,2 -2Z FT,2 -Z C,2 )+p[Z C,2 -2(Z FF,2 -Z TT,2 )]+ Z FF,2
式中,Z KK,0、Z KK,1、Z KK,2为故障节点K的各序输入阻抗,其中,Z KK,0为零序阻抗,Z KK,1为正序输入阻抗,Z KK,2为负序输入阻抗;Z FF,1、Z FF,2Z FF,0、Z FF,1、Z FF,2为故障点k的首端母线节点F的输入阻抗,其中,Z FF,0为零序输入阻抗,Z FF,1为正序输入阻抗,Z FF,2为负序输入阻抗;Z TT,0、Z TT,1、Z TT,2为尾端母线节点T的各序输入阻抗,其中,Z TT,0为零序输入阻抗,Z TT,1为正序输入阻抗,Z TT,2为负序输入阻抗;Z C,0、Z C,1、Z C,2为线路FT上的各序阻抗,其中,Z C,0为零序阻抗,Z C,1为正序阻抗,Z C,2为负序阻抗,p与前文所述含义一致; In the formula, Z KK,0 , Z KK,1 , Z KK,2 are the sequence input impedances of the faulty node K, where Z KK,0 is the zero sequence impedance, Z KK,1 is the positive sequence input impedance, and Z KK ,2 is the negative sequence input impedance; Z FF,1 , Z FF,2 Z FF,0 , Z FF,1 , Z FF,2 is the input impedance of the first bus node F at the fault point k, where Z FF, 0 is the zero sequence input impedance, Z FF,1 is the positive sequence input impedance, Z FF,2 is the negative sequence input impedance; Z TT,0 , Z TT,1 , Z TT,2 are the sequences of the tail bus node T Input impedance, where Z TT,0 is zero sequence input impedance, Z TT,1 is positive sequence input impedance, Z TT,2 is negative sequence input impedance; Z C,0 , Z C,1 , Z C,2 are The sequence impedances on the line FT, where Z C,0 is the zero sequence impedance, Z C,1 is the positive sequence impedance, Z C,2 is the negative sequence impedance, and p has the same meaning as described above;
K节点发生短路故障前的电压幅值表示为:The voltage amplitude before short-circuit fault occurs at node K is expressed as:
U K,pref=U F,pref+p(U T,pref-U F,pref) U K,pref =U F,pref +p(U T,pref -U F,pref )
其中,U K,pref表示K节点发生短路故障前的电压;U F,pref表示故障前母线节点F的节点电压幅值;U T,pref表示故障前母线节点T的节点电压幅值;p与前文所述含义一致。 Among them, U K,pref represents the voltage before the short-circuit fault occurs at node K; U F,pref represents the node voltage amplitude of the bus node F before the fault; U T,pref represents the node voltage amplitude of the bus node T before the fault; p and The meaning mentioned above is the same.
优选地,步骤S3所述的母线故障残余电压幅值U magPreferably, the busbar fault residual voltage amplitude U mag described in step S3:
Figure PCTCN2019097841-appb-000001
Figure PCTCN2019097841-appb-000001
Figure PCTCN2019097841-appb-000002
Figure PCTCN2019097841-appb-000002
Figure PCTCN2019097841-appb-000003
Figure PCTCN2019097841-appb-000003
Figure PCTCN2019097841-appb-000004
Figure PCTCN2019097841-appb-000004
其中,U mag表示母线故障残余电压幅值;
Figure PCTCN2019097841-appb-000005
为K点发生故障时母线m的各相电压幅值,
Figure PCTCN2019097841-appb-000006
表示A相电压幅值,
Figure PCTCN2019097841-appb-000007
表示B相电压幅值,
Figure PCTCN2019097841-appb-000008
表示C相电压幅值;U A,m,pref为m点故障前A相电压幅值;a表示旋转因子e j120°
Figure PCTCN2019097841-appb-000009
表示母线节点K发生故障时m点的电压幅值。
Among them, U mag represents the residual voltage amplitude of the bus fault;
Figure PCTCN2019097841-appb-000005
Is the voltage amplitude of each phase of bus m when a fault occurs at point K,
Figure PCTCN2019097841-appb-000006
Indicates the voltage amplitude of phase A,
Figure PCTCN2019097841-appb-000007
Indicates the amplitude of phase B voltage,
Figure PCTCN2019097841-appb-000008
It represents the voltage amplitude of phase C; U A,m,pref is the voltage amplitude of phase A before the fault at point m; a represents the rotation factor e j120° ;
Figure PCTCN2019097841-appb-000009
Represents the voltage amplitude at point m when the bus node K fails.
优选地,步骤S4所述的敏感负荷电压暂降耐受能力不确定性曲线对应的不确定性区间的上限与下限分别为U max和U min,判别矩阵BUS和LINE形成如下: Preferably, the upper and lower limits of the uncertainty interval corresponding to the uncertainty curve of the voltage sag tolerance of the sensitive load described in step S4 are U max and U min respectively , and the discriminant matrices BUS and LINE are formed as follows:
Figure PCTCN2019097841-appb-000010
Figure PCTCN2019097841-appb-000010
Figure PCTCN2019097841-appb-000011
Figure PCTCN2019097841-appb-000011
Figure PCTCN2019097841-appb-000012
Figure PCTCN2019097841-appb-000012
其中,U th表示节点m所带负荷的电压耐受能力;ΔU mag,n表示母线残余电压幅值U mag与电压耐受能力U th的差值;对于i∈(1,…,n),ΔU mag,i的值小于等于零时,BUS i取1,表示该母线i包含于暂降域中;ΔU mag,i的值大于零时,BUS i取0,表示该母线i不包含于暂降域中;LINE值为线路的暂降域判别参数,LINE i值为0,表示母线i不在暂降域中;LINE i值为1,表示母线i中包含一个临界点,LINE i值为2,表示母线i上有两个临界点;
Figure PCTCN2019097841-appb-000013
为线路i两端的母线F的暂降域判别参数;
Figure PCTCN2019097841-appb-000014
为母线T的暂降域判别参数,其中之一取值为1时,则LINE i取1,表示线路有一个临界点;两者都取0时,则LINE i取值为0,表示该条线路无临界点;两者都取1,则LINE i取值2,表示线路有两个临界点。
Among them, U th represents the voltage withstand capability of the load carried by node m; ΔU mag,n represents the difference between the bus residual voltage amplitude U mag and the voltage withstand capability U th ; for i∈(1,...,n), When the value of ΔU mag,i is less than or equal to zero, BUS i takes 1, which means that the bus i is included in the sag domain; when the value of ΔU mag,i is greater than zero, BUS i takes 0, which means that the bus i is not included in the sag domain. The LINE value is the sag domain discrimination parameter of the line. The value of LINE i is 0, which means that bus i is not in the sag domain; the value of LINE i is 1, which means that the bus i contains a critical point, and the value of LINE i is 2. Indicates that there are two critical points on the bus i;
Figure PCTCN2019097841-appb-000013
Is the sag zone discrimination parameter of bus F at both ends of line i;
Figure PCTCN2019097841-appb-000014
Is the sag zone discrimination parameter of bus T. When one of them is set to 1, LINE i is set to 1, which means that the line has a critical point; when both are set to 0, LINE i is set to be 0, which means the line The line has no critical points; if both are 1, then LINE i takes the value 2, which means the line has two critical points.
优选地,敏感负荷电压暂降耐受能力不确定性曲线的上界限U max表示免疫区与不确定区的分界线;下界限U min表示不确定区与失效区的分界线。 Preferably, the upper limit U max of the uncertainty curve of the voltage sag tolerance of the sensitive load represents the boundary between the immune zone and the uncertainty zone; the lower boundary U min represents the boundary between the uncertainty zone and the failure zone.
优选地,步骤S5的过程为:Preferably, the process of step S5 is:
S501:判断LINE i的值是否为0,若LINE i的值为0,表示母线i位于暂降域外,则进行下一条线路判断;若LINE i的值不为0,利用三次样条插值法获得电压暂降幅值曲线,并执行步骤S502; S501: determining whether the value of the LINE i 0, if the value of the LINE i 0, i indicates the bus dips located outside, the next line is performed is determined; the value of the LINE if i is not 0, obtained by cubic spline interpolation Voltage sag amplitude curve, and execute step S502;
S502:判断LINE i的值是否为1,若LINE i的值为1,求取临界点;LINE i的值不为1,执行步骤S503; S502: Determine whether the value of LINE i is 1, if the value of LINE i is 1, find the critical point; if the value of LINE i is not 1, go to step S503;
S503:利用黄金分割搜索法计算线路上电压暂降幅值最大值点p max以及残余电压方程函数f的|f(pmax)|; S503: Calculate the maximum point p max of the voltage sag amplitude on the line and the residual voltage equation function f |f(pmax)| by using the golden section search method;
S504:求得p max后判断|f(p max)|和U th的大小,若|f(p max)|小于U th,则整条线路包含于暂降域中,返回步骤S501继续执行;若|f(p max)|大于U th,则按照LINE i值为1的临界点求取方法,求取临界点。 S504: After obtaining p max , judge the size of |f(p max )| and U th . If |f(p max )| is less than U th , then the entire line is included in the sag domain, and return to step S501 to continue execution; If |f(p max )| is greater than U th , the critical point is determined according to the critical point determination method where the LINE i value is 1.
优选地,步骤S502中,若LINE i的值为1,求取临界点的方法为: Preferably, in step S502, if the value of LINE i is 1, the method for obtaining the critical point is:
S5021:使用p=0、p=0.5和p=1三点进行样条插值,获得残余电压方程函数为
Figure PCTCN2019097841-appb-000015
定义U th=f(p i),式中,x 1、x 2、x 3为函数的系数,p i函数对应的自变量,此时p i分别取p i=0、p i=0.5和p i=1;
S5021: Use the three points p=0, p=0.5, and p=1 to perform spline interpolation, and obtain the residual voltage equation function as
Figure PCTCN2019097841-appb-000015
Define U th =f(p i ), where x 1 , x 2 , and x 3 are the coefficients of the function, and the independent variable corresponding to the p i function. At this time, p i is taken as p i =0, p i =0.5 and p i =1;
S5022:计算|f(0.5)|,步骤S5021所述的三点依次对应线路首节点短路电压幅值、线路尾节点短路电压幅值和|f(0.5)|,求得残余电压方程函数在0≤p ic≤1上的根p icS5022: Calculate |f(0.5)|. The three points described in step S5021 correspond to the short-circuit voltage amplitude of the first node of the line, the short-circuit voltage amplitude of the tail node of the line and |f(0.5)|, and the residual voltage equation function is calculated as 0 The root p ic on ≤p ic ≤1;
S5023:使用所述残余电压方程的根来定义迭代初值,确定临界点附近的两个迭代初值,取[p ic,p ic+Δp]或[p ic-Δp,p ic],△p=0.01为正割迭代的初值点p from和p end,求出临界点;迭代的过程如下: S5023: Use the root of the residual voltage equation to define the initial iteration value, determine the two initial iteration values near the critical point, take [p ic ,p ic +Δp] or [p ic -Δp,p ic ], △p= 0.01 is the initial value points p from and p end of the secant iteration to find the critical point; the iteration process is as follows:
p new=p end-[f(p end)-U th](p end-p from)/[|f(p end)|-|f(p from)|] p new = p end -[f(p end )-U th ](p end -p from )/[|f(p end )|-|f(p from )|]
p from=p end p from = p end
p end=p new p end = p new
其中,p from、p end为迭代的两个初值点;p new为临界点的新迭代值;f(p end)表示点p end的残压幅值;f(p from)表示点p from的残压幅值;U th表示节点m所带负荷的电压耐受能力; Among them, p from and p end are the two initial value points of the iteration; p new is the new iteration value of the critical point; f(p end ) represents the residual pressure amplitude of the point p end ; f(p from ) represents the point p from The residual voltage amplitude; U th represents the voltage withstand capability of the load carried by node m;
收敛条件为:The convergence conditions are:
||f(p new)|-U th|<tol ||f(p new )|-U th |<tol
其中,tol为收敛精度;p new、U th均与前文所述含义一致。 Among them, tol is the accuracy of convergence; both p new and U th have the same meaning as described above.
S5024:利用牛顿法,得出准确临界点精确值。S5024: Use Newton's method to obtain accurate critical point values.
优选地,步骤S503所述的计算线路上电压暂降幅值最大值点p max以及残余电压方程函数f的|f(pmax)|黄金分割搜索法的步骤如下: Preferably, the steps of calculating the maximum value point p max of the voltage sag amplitude value on the line and the residual voltage equation function f described in step S503 are as follows:
S5031:根据黄金分割点
Figure PCTCN2019097841-appb-000016
定义两个初值点p 1、p 2,两个初值点的表达式为:
S5031: According to the golden ratio point
Figure PCTCN2019097841-appb-000016
Define two initial value points p 1 , p 2 , the expression of the two initial value points is:
Figure PCTCN2019097841-appb-000017
Figure PCTCN2019097841-appb-000017
Figure PCTCN2019097841-appb-000018
Figure PCTCN2019097841-appb-000018
S5032:计算p 1、p 2对应的残压方程函数值|f(p 1)|及|f(p 2)|; S5032: Calculate the residual pressure equation function values corresponding to p 1 and p 2 |f(p 1 )| and |f(p 2 )|;
S5033:判断|f(p 1)|是否大于等于|f(p 2)|,若|f(p 1)|≥|f(p 2)|,则执行以下赋值迭代: S5033: Determine whether |f(p 1 )| is greater than or equal to |f(p 2 )|, if |f(p 1 )|≥|f(p 2 )|, perform the following assignment iteration:
p b=p 2 p b = p 2
p 2=p 1p 2 =p 1 ;
Figure PCTCN2019097841-appb-000019
Figure PCTCN2019097841-appb-000019
若|f(p 1)|<|f(p 2)|,则执行以下赋值迭代: If |f(p 1 )|<|f(p 2 )|, then perform the following assignment iteration:
p a=p 1 p a = p 1
p 1=p 2p 1 =p 2 ;
Figure PCTCN2019097841-appb-000020
Figure PCTCN2019097841-appb-000020
S5033:判断|p b-p a|≤ε是否成立,ε表示计算设定精度;若|p b-p a|≤ε成立,则利用当前p 1、p 2,计算最大值点P max:P max=(p b+p a)/2及对应的残压方程函数值|f(P max)|。 S5033: Determine whether |p b -p a |≤ε holds, ε represents the calculation setting accuracy; if |p b -p a |≤ε holds, use current p 1 and p 2 to calculate the maximum point P max : P max =(p b +p a )/2 and the corresponding residual pressure equation function value |f(P max )|.
优选地,步骤S504所述的按照LINE i值为1的临界点求取方法为: Preferably, the method for obtaining the critical point according to the value of LINE i in step S504 is:
S5041:使用p=0、p=p max和p=1三点进行样条插值,获得残余电压方程函数为
Figure PCTCN2019097841-appb-000021
定义U th=f(p i),式中,x 1、x 2、x 3为函数的系数,p i函数对应的自变量,此时p i分别取p i=0、p i=p max和p i=1;
S5041: Use the three points p=0, p=p max and p=1 to perform spline interpolation, and obtain the residual voltage equation function as
Figure PCTCN2019097841-appb-000021
Define U th =f(p i ), where x 1 , x 2 , and x 3 are the coefficients of the function, and the independent variable corresponding to the p i function. At this time, p i is taken as p i = 0 and p i = p max And p i = 1;
S5042:计算|f(p max)|,步骤S5042所述的三点依次对应线路首节点短路电压幅值、线路尾节点短路电压幅值和|f(p max)|,求得残余电压方程函数在0≤p ic≤1上 的根p icS5042: Calculate |f(p max )|, the three points described in step S5042 correspond to the short-circuit voltage amplitude of the first node of the line, the short-circuit voltage amplitude of the tail node of the line, and |f(p max )| to obtain the residual voltage equation function The root p ic on 0≤p ic ≤1;
S5043:使用所述残余电压方程的根来定义迭代初值,确定临界点附近的两个迭代初值,取[p ic,p ic+Δp]或[p ic-Δp,p ic],△p=0.01为正割迭代的初值点p from和p end,求出临界点;迭代的过程如下: S5043: Use the root of the residual voltage equation to define the initial iteration value, determine the two initial iteration values near the critical point, take [p ic ,p ic +Δp] or [p ic -Δp,p ic ], △p= 0.01 is the initial value points p from and p end of the secant iteration to find the critical point; the iteration process is as follows:
p new=p end-[f(p end)-U th](p end-p from)/[|f(p end)|-|f(p from)|] p new = p end -[f(p end )-U th ](p end -p from )/[|f(p end )|-|f(p from )|]
p from=p end p from = p end
p end=p new p end = p new
其中,p from、p end为迭代的两个初值点;p new为临界点的新迭代值;f(p end)表示点p end的残压幅值;f(p from)表示点p from的残压幅值;U th表示节点m所带负荷的电压耐受能力; Among them, p from and p end are the two initial value points of the iteration; p new is the new iteration value of the critical point; f(p end ) represents the residual pressure amplitude of the point p end ; f(p from ) represents the point p from The residual voltage amplitude; U th represents the voltage withstand capability of the load carried by node m;
收敛条件为:The convergence conditions are:
||f(p new)|-U th|<tol ||f(p new )|-U th |<tol
其中,tol为收敛精度,p new、U th均与前文所述含义一致。 Among them, tol is the convergence accuracy, and both p new and U th have the same meaning as described above.
S5043:利用牛顿法求得|f(p max)|大于U th时临界点的精确值。 S5043: Use Newton's method to obtain the exact value of the critical point when |f(p max )| is greater than U th .
与现有技术相比,本发明技术方案的有益效果是:本发明所述方法基于已有电压耐受曲线的不确定性区间,选取不确定区间的上界限与下界限分别求取临界点,刻画出更加贴近工程实际的暂降域,克服现有暂降域识别方法未考虑敏感负荷对电压暂降的耐受能力不同,将暂降域用一个明确界线固定,无法将所有暂降域临界点考虑在内的弊端。Compared with the prior art, the technical solution of the present invention has the beneficial effect that: the method of the present invention is based on the uncertainty interval of the existing voltage withstand curve, selecting the upper limit and the lower limit of the uncertainty interval to obtain critical points, respectively, Describe the sag region that is closer to the actual project, overcome the existing sag region identification method that does not take into account the different tolerance of sensitive loads to voltage sags, fix the sag region with a clear boundary, and cannot make all sag regions critical Points to consider the drawbacks.
附图说明Description of the drawings
图1表示本发明实施例暂降域识别方法的流程图。Fig. 1 shows a flowchart of a method for identifying a sag domain according to an embodiment of the present invention.
图2表示IEEE30节点系统图。Figure 2 shows the IEEE30 node system diagram.
图3表示线路FT发生故障示意图。Figure 3 shows a schematic diagram of a failure of the line FT.
图4表示敏感负荷电压暂降耐受能力曲线图。Figure 4 shows the voltage sag tolerance curve of sensitive loads.
图5表示黄金分割搜索法流程示意图。Figure 5 shows a schematic diagram of the golden section search method.
图6表示一个临界点暂降域结果读取示意图。Figure 6 shows a schematic diagram of reading the critical point sag domain results.
图7表示两个临界点暂降域结果读取示意图。Figure 7 shows a schematic diagram of reading the results of two critical point sag regions.
图8表示IEEE30节点系统的暂降域识别结果示意图。Figure 8 shows a schematic diagram of the sag domain recognition result of the IEEE30 node system.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The attached drawings are only for illustrative purposes, and cannot be understood as a limitation of this patent;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;In order to better illustrate this embodiment, some parts of the drawings may be omitted, enlarged or reduced, and do not represent the size of the actual product;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。For those skilled in the art, it is understandable that some well-known structures in the drawings and their descriptions may be omitted.
下面结合附图和实施例对本发明的技术方案做进一步的说明。The technical solution of the present invention will be further described below in conjunction with the drawings and embodiments.
本实施例实现方法的流程示意图如图1所示,以图2所示的IEEE30节点的系统为例,设系统发生的故障类型为单相接地故障,如图1所示,暂降域计算过程如下:The flow diagram of the implementation method of this embodiment is shown in Fig. 1. Taking the IEEE30 node system shown in Fig. 2 as an example, the fault type of the system is a single-phase grounding fault. As shown in Fig. 1, the sag domain calculation process as follows:
S1:根据图2所示系统的现有网络参数及运行数据,进行潮流计算,获得短路故障前系统各节点正常运行时的电压幅值U prefS1: Perform power flow calculation according to the existing network parameters and operating data of the system shown in Figure 2 to obtain the voltage amplitude U pref of each node of the system before the short-circuit fault in normal operation;
S2:如图3所示,在线路FT上,设置短路故障节点K及敏感负荷接入节点m,计算K点与m点之间零序、正序、负序转移阻抗及K点的输入阻抗、故障前电压幅值:S2: As shown in Figure 3, on the line FT, set the short-circuit fault node K and the sensitive load access node m, calculate the zero sequence, positive sequence, negative sequence transfer impedance between K and m, and the input impedance of K , Voltage amplitude before failure:
故障节点K与敏感负荷节点m之间的各序转移阻抗为:The sequence transfer impedance between the fault node K and the sensitive load node m is:
Z mK,0=Z mF,0+p(Z mT,0-Z mF,0) Z mK,0 =Z mF,0 +p(Z mT,0 -Z mF,0 )
Z mK,1=Z mF,1+p(Z mT,1-Z mF,1) Z mK,1 =Z mF,1 +p(Z mT,1 -Z mF,1 )
Z mK,2=Z mF,2+p(Z mT,2-Z mF,2) Z mK,2 =Z mF,2 +p(Z mT,2 -Z mF,2 )
其中,Z mK,0、Z mK,1、Z mK,2为故障节点K与敏感负荷接入节点m之间的各序转移阻抗,其中,Z mK,0为零序转移阻抗,Z mK,1为正序转移阻抗,Z mK,2为负序转移阻抗;Z mF,0、Z mF,1、Z mF,2为敏感负荷节点m首端母线节点F和负荷点m之间的各序转移阻抗,其中Z mF,0为零序转移阻抗,Z mF,1为正序转移阻抗,Z mF,2为负序转移阻抗;Z mT,0、Z mT,1、Z mT,2为敏感负荷节点m尾端母线节点T和负荷点m之间的各序转移阻抗,其中,Z mT,0为零序转移阻抗,Z mT,1为正序转移阻抗,Z mT,2为负序转移阻抗;p是故障点K到母线首端节点F的距离标幺值表示; Among them, Z mK,0 , Z mK,1 , Z mK,2 are the sequence transfer impedances between the faulty node K and the sensitive load access node m, where Z mK,0 is the zero sequence transfer impedance, Z mK, 1 is the positive sequence transfer impedance, Z mK, 2 is the negative sequence transfer impedance; Z mF,0 , Z mF,1 , Z mF, 2 are the sequences between the first-end bus node F of the sensitive load node m and the load point m Transfer impedance, where Z mF,0 is zero sequence transfer impedance, Z mF,1 is positive sequence transfer impedance, Z mF,2 is negative sequence transfer impedance; Z mT,0 , Z mT,1 , Z mT,2 are sensitive Each sequence transfer impedance between load node m tail bus node T and load point m, where Z mT,0 is zero sequence transfer impedance, Z mT,1 is positive sequence transfer impedance, Z mT,2 is negative sequence transfer Impedance; p is the unit value of the distance from the fault point K to the bus head node F;
故障节点K的输入阻抗为:The input impedance of the fault node K is:
Z KK,0=p 2(Z FF,0+Z TT,0-2Z FT,0-Z C,0)+p[Z C,0-2(Z FF,0-Z TT,0)]+Z FF,0 Z KK,0 =p 2 (Z FF,0 +Z TT,0 -2Z FT,0 -Z C,0 )+p[Z C,0 -2(Z FF,0 -Z TT,0 )]+ Z FF, 0
Z KK,1=p 2(Z FF,1+Z TT,1-2Z FT,1-Z C,1)+p[Z C,1-2(Z FF,1-Z TT,1)]+Z FF,1 Z KK,1 =p 2 (Z FF,1 +Z TT,1 -2Z FT,1 -Z C,1 )+p[Z C,1 -2(Z FF,1 -Z TT,1 )]+ Z FF, 1
Z KK,2=p 2(Z FF,2+Z TT,2-2Z FT,2-Z C,2)+p[Z C,2-2(Z FF,2-Z TT,2)]+Z FF,2 Z KK,2 =p 2 (Z FF,2 +Z TT,2 -2Z FT,2 -Z C,2 )+p[Z C,2 -2(Z FF,2 -Z TT,2 )]+ Z FF,2
式中,Z KK,0、Z KK,1、Z KK,2为故障节点K的各序输入阻抗,其中,Z KK,0为零序阻抗,Z KK,1为正序输入阻抗,Z KK,2为负序输入阻抗;Z FF,1、Z FF,2Z FF,0、Z FF,1、Z FF,2为故障点k的首端母线节点F的输入阻抗,其中,Z FF,0为零序输入阻抗,Z FF,1为正序输入阻抗,Z FF,2为负序输入阻抗;Z TT,0、Z TT,1、Z TT,2为尾端母线节点T的各序输入阻抗,其中,Z TT,0为零序输入阻抗,Z TT,1为正序输入阻抗,Z TT,2为负序输入阻抗;Z C,0、Z C,1、Z C,2为线路FT上的各序阻抗,其中,Z C,0为零序阻抗,Z C,1为正序阻抗,Z C,2为负序阻抗,p与前文所述含义一致; In the formula, Z KK,0 , Z KK,1 , Z KK,2 are the sequence input impedances of the faulty node K, where Z KK,0 is the zero sequence impedance, Z KK,1 is the positive sequence input impedance, and Z KK ,2 is the negative sequence input impedance; Z FF,1 , Z FF,2 Z FF,0 , Z FF,1 , Z FF,2 is the input impedance of the first bus node F at the fault point k, where Z FF, 0 is the zero sequence input impedance, Z FF,1 is the positive sequence input impedance, Z FF,2 is the negative sequence input impedance; Z TT,0 , Z TT,1 , Z TT,2 are the sequences of the tail bus node T Input impedance, where Z TT,0 is zero sequence input impedance, Z TT,1 is positive sequence input impedance, Z TT,2 is negative sequence input impedance; Z C,0 , Z C,1 , Z C,2 are The sequence impedances on the line FT, where Z C,0 is the zero sequence impedance, Z C,1 is the positive sequence impedance, Z C,2 is the negative sequence impedance, and p has the same meaning as described above;
K节点发生短路故障前的电压幅值表示为:The voltage amplitude before short-circuit fault occurs at node K is expressed as:
U K,pref=U F,pref+p(U T,pref-U F,pref) U K,pref =U F,pref +p(U T,pref -U F,pref )
其中,U K,pref表示K节点发生短路故障前的电压;U F,pref表示故障前母线节点F的节点电压幅值;U T,pref表示故障前母线节点T的节点电压幅值;p与前文所述含义一致。 Among them, U K,pref represents the voltage before the short-circuit fault occurs at node K; U F,pref represents the node voltage amplitude of the bus node F before the fault; U T,pref represents the node voltage amplitude of the bus node T before the fault; p and The meaning mentioned above is the same.
S3:根据故障前系统各节点电压幅值及故障点K的输入阻抗,计算各母线残余电压幅值U magS3: Calculate the residual voltage amplitude U mag of each bus according to the voltage amplitude of each node of the system before the fault and the input impedance of the fault point K.
U mag求取如下: U mag is calculated as follows:
Figure PCTCN2019097841-appb-000022
Figure PCTCN2019097841-appb-000022
Figure PCTCN2019097841-appb-000023
Figure PCTCN2019097841-appb-000023
Figure PCTCN2019097841-appb-000024
Figure PCTCN2019097841-appb-000024
Figure PCTCN2019097841-appb-000025
Figure PCTCN2019097841-appb-000025
其中,U mag表示母线故障残余电压幅值;
Figure PCTCN2019097841-appb-000026
为K点发生故障时母线m的各相电压幅值,
Figure PCTCN2019097841-appb-000027
表示A相电压幅值,
Figure PCTCN2019097841-appb-000028
表示B相电压幅值,
Figure PCTCN2019097841-appb-000029
表示C相电压幅值;U A,m,pref为m点故障前A相电压幅值;a表示旋转因子e j120°
Figure PCTCN2019097841-appb-000030
表示母线节点K发生故障时m点的电压幅值。
Among them, U mag represents the residual voltage amplitude of the bus fault;
Figure PCTCN2019097841-appb-000026
Is the voltage amplitude of each phase of bus m when a fault occurs at point K,
Figure PCTCN2019097841-appb-000027
Indicates the voltage amplitude of phase A,
Figure PCTCN2019097841-appb-000028
Indicates the amplitude of phase B voltage,
Figure PCTCN2019097841-appb-000029
It represents the voltage amplitude of phase C; U A,m,pref is the voltage amplitude of phase A before the fault at point m; a represents the rotation factor e j120° ;
Figure PCTCN2019097841-appb-000030
Represents the voltage amplitude at point m when the bus node K fails.
S4:通过现有已知的电压耐受能力曲线不确定区间的变化范围,获得不确定区间的上界限U max和下界限U min,并结合各母线故障残余电压幅值U mag,形成 判别矩阵BUS和LINE; S4: Obtain the upper limit U max and the lower limit U min of the uncertainty interval through the variation range of the uncertainty interval of the existing known voltage withstand capability curve, and combine the residual voltage amplitude U mag of each busbar fault to form a discrimination matrix BUS and LINE;
如图4所示的敏感负荷电压暂降耐受能力曲线图,敏感负荷电压暂降耐受能力不确定性曲线对应的不确定性区间的上限与下限分别为U max和U min,U max表示免疫区与不确定区的分界线;U min表示不确定区域失效区的分界线,判别矩阵BUS和LINE形成如下: As shown in Fig. 4, the voltage sag tolerance curve of sensitive load, the upper limit and lower limit of the uncertainty interval corresponding to the voltage sag tolerance curve of the sensitive load are U max and U min respectively , U max represents The dividing line between the immune zone and the uncertain zone; U min represents the dividing line of the failure zone in the uncertain zone. The discriminant matrices BUS and LINE are formed as follows:
Figure PCTCN2019097841-appb-000031
Figure PCTCN2019097841-appb-000031
Figure PCTCN2019097841-appb-000032
Figure PCTCN2019097841-appb-000032
Figure PCTCN2019097841-appb-000033
Figure PCTCN2019097841-appb-000033
其中,U th表示节点m所带负荷的电压耐受能力;ΔU mag,n表示母线残余电压幅值U mag与电压耐受能力U th的差值;对于i∈(1,…,n),ΔU mag,i的值小于等于零时,BUS i取1,表示该母线i包含于暂降域中;ΔU mag,i的值大于零时,BUS i取0,表示该母线i不包含于暂降域中;LINE值为线路的暂降域判别参数,LINE i值为0,表示母线i不在暂降域中;LINE i值为1,表示母线i中包含一个临界点,LINE i值为2,表示母线i上有两个临界点;
Figure PCTCN2019097841-appb-000034
为线路i两端的母线F的暂降域判别参数;
Figure PCTCN2019097841-appb-000035
为母线T的暂降域判别参数,其中之一取值为1时,则LINE i取1,表示线路有一个临界点;两者都取0时,则LINE i取值为0,表示该条线路无临界点;两者都取1,则LINE i取值2,表示线路有两个临界点。
Among them, U th represents the voltage withstand capability of the load carried by node m; ΔU mag,n represents the difference between the bus residual voltage amplitude U mag and the voltage withstand capability U th ; for i∈(1,...,n), When the value of ΔU mag,i is less than or equal to zero, BUS i takes 1, which means that the bus i is included in the sag domain; when the value of ΔU mag,i is greater than zero, BUS i takes 0, which means that the bus i is not included in the sag domain. The LINE value is the sag domain discrimination parameter of the line. The value of LINE i is 0, which means that bus i is not in the sag domain; the value of LINE i is 1, which means that the bus i contains a critical point, and the value of LINE i is 2. Indicates that there are two critical points on the bus i;
Figure PCTCN2019097841-appb-000034
Is the sag zone discrimination parameter of bus F at both ends of line i;
Figure PCTCN2019097841-appb-000035
Is the sag zone discrimination parameter of bus T. When one of them is set to 1, LINE i is set to 1, which means that the line has a critical point; when both are set to 0, LINE i is set to be 0, which means the line The line has no critical points; if both are 1, then LINE i takes the value 2, which means the line has two critical points.
S5:令母线m点所带负荷的电压耐受值U th取不确定区间的下界限值U min,根据判别矩阵LINE的值,计算线路的临界点,确定该线路在暂降域中的包含情况,如图1所示的过程为: S5: Let the voltage tolerance value U th of the load on the busbar m point take the lower limit value U min of the uncertainty interval, and calculate the critical point of the line according to the value of the discriminant matrix LINE, and determine the inclusion of the line in the sag domain The situation, the process shown in Figure 1 is:
S501:判断LINE i的值是否为0,若LINE i的值为0,表示母线i位于暂降域外,则进行下一条线路判断;若LINE i的值不为0,利用三次样条插值法获得电压暂降幅值曲线,并执行步骤S502; S501: determining whether the value of the LINE i 0, if the value of the LINE i 0, i indicates the bus dips located outside, the next line is performed is determined; the value of the LINE if i is not 0, obtained by cubic spline interpolation Voltage sag amplitude curve, and execute step S502;
S502:判断LINE i的值是否为1,若LINE i的值为1,求取临界点;LINE i的值不为1,执行步骤S503; S502: Determine whether the value of LINE i is 1, if the value of LINE i is 1, find the critical point; if the value of LINE i is not 1, go to step S503;
S503:利用黄金分割搜索法计算线路上电压暂降幅值最大值点p max以及残余电压方程函数f的|f(pmax)|; S503: Calculate the maximum point p max of the voltage sag amplitude on the line and the residual voltage equation function f |f(pmax)| by using the golden section search method;
S504:求得p max后判断|f(p max)|和U th的大小,若|f(p max)|小于U th,则整条线路包含于暂降域中,返回步骤S501继续执行;若|f(p max)|大于U th,则按照LINE i值为1的临界点求取方法,求取临界点。 S504: After obtaining p max , judge the size of |f(p max )| and U th . If |f(p max )| is less than U th , then the entire line is included in the sag domain, and return to step S501 to continue execution; If |f(p max )| is greater than U th , the critical point is determined according to the critical point determination method where the LINE i value is 1.
参见图1,其中,步骤S502中,若LINE i的值为1,求取临界点的步骤为: Referring to Fig. 1, in step S502, if the value of LINE i is 1, the steps for obtaining the critical point are:
S5021:使用p=0、p=0.5和p=1三点进行样条插值,获得残余电压方程函数为
Figure PCTCN2019097841-appb-000036
定义U th=f(p i),式中,x 1、x 2、x 3为函数的系数,p i函数对应的自变量,此时p i分别取p i=0、p i=0.5和p i=1;
S5021: Use the three points p=0, p=0.5, and p=1 to perform spline interpolation, and obtain the residual voltage equation function as
Figure PCTCN2019097841-appb-000036
Define U th =f(p i ), where x 1 , x 2 , and x 3 are the coefficients of the function, and the independent variable corresponding to the p i function. At this time, p i is taken as p i =0, p i =0.5 and p i =1;
S5022:计算|f(0.5)|,步骤S5021所述的三点依次对应线路首节点短路电压幅值、线路尾节点短路电压幅值和|f(0.5)|,求得残余电压方程函数在0≤p ic≤1上的根p icS5022: Calculate |f(0.5)|. The three points described in step S5021 correspond to the short-circuit voltage amplitude of the first node of the line, the short-circuit voltage amplitude of the tail node of the line and |f(0.5)|, and the residual voltage equation function is calculated as 0 The root p ic on ≤p ic ≤1;
S5023:使用所述残余电压方程的根来定义迭代初值,确定临界点附近的两个迭代初值,取[p ic,p ic+Δp]或[p ic-Δp,p ic],△p=0.01为正割迭代的初值点p from和p end,求出临界点;迭代的过程如下: S5023: Use the root of the residual voltage equation to define the initial iteration value, determine the two initial iteration values near the critical point, take [p ic ,p ic +Δp] or [p ic -Δp,p ic ], △p= 0.01 is the initial value points p from and p end of the secant iteration to find the critical point; the iteration process is as follows:
p new=p end-[f(p end)-U th](p end-p from)/[|f(p end)|-|f(p from)|] p new = p end -[f(p end )-U th ](p end -p from )/[|f(p end )|-|f(p from )|]
p from=p end p from = p end
p end=p new p end = p new
其中,p from、p end为迭代的两个初值点;p new为临界点的新迭代值;f(p end)表示点p end的残压幅值;f(p from)表示点p from的残压幅值;U th表示节点m所带负荷的电压耐受能力; Among them, p from and p end are the two initial value points of the iteration; p new is the new iteration value of the critical point; f(p end ) represents the residual pressure amplitude of the point p end ; f(p from ) represents the point p from The residual voltage amplitude; U th represents the voltage withstand capability of the load carried by node m;
收敛条件为:The convergence conditions are:
||f(p new)|-U th|<tol ||f(p new )|-U th |<tol
其中,tol为收敛精度;p new、U th均与前文所述含义一致。 Among them, tol is the accuracy of convergence; both p new and U th have the same meaning as described above.
S5024:利用牛顿法,得出准确临界点精确值。S5024: Use Newton's method to obtain accurate critical point values.
步骤S503所述的计算线路上电压暂降幅值最大值点p max以及残余电压方程 函数f的|f(pmax)|黄金分割搜索法的步骤如下,流程示意如图5所示: The steps of the |f(pmax)|golden section search method for calculating the maximum point p max of the voltage sag amplitude on the line and the residual voltage equation function f described in step S503 are as follows, and the flowchart is shown in Figure 5:
S5031:根据黄金分割点
Figure PCTCN2019097841-appb-000037
定义两个初值点p 1、p 2,两个初值点的表达式为:
S5031: According to the golden ratio point
Figure PCTCN2019097841-appb-000037
Define two initial value points p 1 , p 2 , the expression of the two initial value points is:
Figure PCTCN2019097841-appb-000038
Figure PCTCN2019097841-appb-000038
Figure PCTCN2019097841-appb-000039
Figure PCTCN2019097841-appb-000039
S5032:计算p 1、p 2对应的残压方程函数值|f(p 1)|及|f(p 2)|; S5032: Calculate the residual pressure equation function values corresponding to p 1 and p 2 |f(p 1 )| and |f(p 2 )|;
S5033:判断|f(p 1)|是否大于等于|f(p 2)|,若|f(p 1)|≥|f(p 2)|,则执行以下赋值迭代: S5033: Determine whether |f(p 1 )| is greater than or equal to |f(p 2 )|, if |f(p 1 )|≥|f(p 2 )|, perform the following assignment iteration:
p b=p 2 p b = p 2
p 2=p 1p 2 =p 1 ;
Figure PCTCN2019097841-appb-000040
Figure PCTCN2019097841-appb-000040
若|f(p 1)|<|f(p 2)|,则执行以下赋值迭代: If |f(p 1 )|<|f(p 2 )|, then perform the following assignment iteration:
p a=p 1 p a = p 1
p 1=p 2p 1 =p 2 ;
Figure PCTCN2019097841-appb-000041
Figure PCTCN2019097841-appb-000041
S5033:判断|p b-p a|≤ε是否成立,ε表示计算设定精度;若|p b-p a|≤ε成立,则利用当前p 1、p 2,计算最大值点P max:P max=(p b+p a)/2及对应的残压方程函数值|f(P max)|。 S5033: Determine whether |p b -p a |≤ε holds, ε represents the calculation setting accuracy; if |p b -p a |≤ε holds, use current p 1 and p 2 to calculate the maximum point P max : P max =(p b +p a )/2 and the corresponding residual pressure equation function value |f(P max )|.
S6:判断是否已遍历所有线路及是否已遍历全部所述不确定空间,若是则输出暂降域识别结果;若未遍历所有线路,则返回步骤S4执行下一条线路计算;若已遍历所有线路,但未遍历全部所述不确定空间,则令U th取不确定区间的上界限U max,返回步骤S4继续执行计算; S6: Determine whether all the lines have been traversed and whether all the uncertain spaces have been traversed, if yes, output the sag domain recognition result; if not all the lines have been traversed, return to step S4 to perform the next line calculation; if all the lines have been traversed, But without traversing all the uncertain spaces, let U th take the upper limit U max of the uncertain interval, and return to step S4 to continue the calculation;
S7:统计两次计算,获得U min对应的暂降域1和U max对应的暂降域2,得到最终的暂降域识别结果。 S7: Count two calculations, obtain sag domain 1 corresponding to U min and sag domain 2 corresponding to U max , and obtain the final sag domain identification result.
依据本发明提出的方法计算如图2所示的IEEE30节点系统的电压暂降域,选取母线20为敏感负荷接入母线节点,故障类型为单相接地故障,本实用新型包含除单相接地故障之外其余故障类型对应的电压暂降域识别,在本具体实施例中不再赘述,敏感负荷电压耐受曲线的不确定空间的上界限U max取0.8,下界限U min取0.7,其中U min对应的计算值为暂降域1,U max对应的计算值为暂降域2, 计算结果如表1所示: According to the method proposed by the present invention, the voltage sag domain of the IEEE 30-node system as shown in Figure 2 is calculated, and the bus 20 is selected as the sensitive load connected to the bus node, and the fault type is a single-phase grounding fault. The voltage sag domain identification corresponding to other fault types will not be repeated in this specific embodiment. The upper limit U max of the uncertainty space of the sensitive load voltage tolerance curve is 0.8, and the lower limit U min is 0.7, where U The calculated value corresponding to min is sag domain 1, and the calculated value corresponding to U max is sag domain 2. The calculation results are shown in Table 1:
表1Table 1
Figure PCTCN2019097841-appb-000042
Figure PCTCN2019097841-appb-000042
Figure PCTCN2019097841-appb-000043
Figure PCTCN2019097841-appb-000043
如表1所示,表1中第一列的内容表示线路的首端编号,第二列的内容表示线路的末端编号;第三列的内容表示U min对应的计算所得临界点的个数,第四列的内容表示与U max对应的计算所得临界点的个数,其中,0表示该段线路不包含在暂降域中;1表示该段线路有一个临界点;2表示该段线路有两个临界点;3表示该段线路完全包含于暂降域中;第五列至第八列的内容表示表前第一列与第二列所指定的线路,在暂降域1和暂降域2中的包含情况,若临界点个数为0,即起点终点数值均为0,该段线路不包含在暂降域中;若临界点个数为1,即起点终点数值为[0,x]或[x,1],此时读取结果如图6所示,其中x为线路首端至临界点的距离与总长度的标幺值表示,虚线部分表示暂降域,起点终点数值为[0,x]时,线路长度0至x的部分属于暂降域;起点终点数值为[x,1]时,线路长度x至1的部分属于暂降域。 As shown in Table 1, the content in the first column of Table 1 represents the line number at the beginning, the content in the second column represents the line end number; the content in the third column represents the number of calculated critical points corresponding to U min , The content in the fourth column represents the number of calculated critical points corresponding to U max , where 0 means that this section of line is not included in the sag domain; 1 means that this section of line has a critical point; 2 means that this section of line has Two critical points; 3 means that the line is completely contained in the sag zone; the contents of the fifth to eighth columns indicate the lines specified in the first and second columns of the table, in the sag zone 1 and sag The inclusion situation in domain 2. If the number of critical points is 0, that is, the start and end values are all 0, this section of the line is not included in the sag domain; if the number of critical points is 1, that is, the start and end values are [0, x] or [x,1], the reading result is shown in Figure 6, where x is the unit value of the distance from the beginning of the line to the critical point and the total length, the dotted line represents the sag zone, the start and end values When it is [0,x], the part of the line length from 0 to x belongs to the sag domain; when the start and end value is [x,1], the part of the line length from x to 1 belongs to the sag domain.
若临界点个数为2,起点终点数值为[x1,x2],此时读取结果如图7所示,其中x1为线路首端至第一个临界点的距离与总长度的标幺值表示,x2为线路首端至第二个临界点的距离与总长度的标幺值表示,虚线部分表示暂降域,起点终点数值为[x1,x2]即有两个临界点时,线路长度0至x1和x2至1的部分属于暂降域。If the number of critical points is 2, and the starting point and ending point are [x1, x2], the reading result is shown in Figure 7, where x1 is the unit value of the distance from the beginning of the line to the first critical point and the total length Indicates that x2 is the unit value of the distance from the first end of the line to the second critical point and the total length. The dotted line represents the sag zone. The start and end values are [x1, x2], that is, when there are two critical points, the line length The part from 0 to x1 and from x2 to 1 belongs to the sag domain.
若临界点个数为3,此时整条线路都在暂降域中,起点数值为0,终点数值为1,即整条线路属于暂降域。If the number of critical points is 3, then the entire line is in the sag domain, the starting point value is 0, and the end point value is 1, that is, the entire line belongs to the sag domain.
图8表示IEEE30节点系统考虑敏感负荷耐受能力不确定性区间上下界限的暂降域结果示意图,参见图8,所得暂降域由区间U min对应暂降域1和U max对应暂降域2组成,实线对应耐受能力下界限U min计算所得的暂降域1边界,虚线对应耐受能力上界U max计算所得的暂降域2边界,虚线以外的部分的单相接地故障不会导致敏感负荷接入母线20发生电压暂降事件,实线以内的部分的单相接地故障会导致母线20发生电压暂降事件,即暂降域1边界以内的发生的暂降一定会使敏感负荷受到影响,暂降域2边界以外的部分发生的暂降一定不会对敏感负荷造成影响,而在两个边界中间的部分属于不确定性区域,即不一定会对敏感负荷造成影响。 Figure 8 shows the schematic diagram of the sag region results of the IEEE30 node system considering the upper and lower bounds of the uncertainty interval of the sensitive load tolerance. See Figure 8. The resulting sag region is from the interval U min to sag domain 1 and U max to sag domain 2 The solid line corresponds to the boundary of sag zone 1 calculated from the lower limit of withstand capability U min , and the dashed line corresponds to the boundary of sag zone 2 calculated from the upper limit of withstand capability U max . Single-phase grounding faults outside the dashed line will not A voltage sag event occurs when the sensitive load is connected to the bus 20. A single-phase ground fault within the solid line will cause a voltage sag event on the bus 20, that is, the sag within the boundary of the sag domain 1 will definitely cause the sensitive load Affected, the sag that occurs outside the boundary of the sag zone 2 will definitely not affect the sensitive load, and the part in the middle of the two boundaries is an area of uncertainty, that is, it will not necessarily affect the sensitive load.
相同或相似的标号对应相同或相似的部件;The same or similar reference numbers correspond to the same or similar parts;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;The description of the positional relationship in the drawings is only for illustrative purposes, and cannot be understood as a limitation of the patent;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are merely examples to clearly illustrate the present invention, and are not intended to limit the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is unnecessary and impossible to list all the implementation methods here. Any modification, equivalent replacement and improvement made within the spirit and principle of the present invention shall be included in the protection scope of the claims of the present invention.

Claims (9)

  1. 一种考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,所述方法包括如下步骤:A method for identifying the sag region considering the uncertainty of load sensitivity, characterized in that the method includes the following steps:
    S1:对系统进行潮流计算,获得短路故障前系统各节点正常运行时的电压幅值U prefS1: Calculate the power flow of the system to obtain the voltage amplitude U pref during normal operation of each node of the system before the short-circuit fault;
    S2:设置短路故障节点K及敏感负荷接入节点m,计算K点与m点之间零序、正序、负序转移阻抗及K点的输入阻抗、故障前电压幅值;S2: Set the short-circuit fault node K and the sensitive load access node m, calculate the zero sequence, positive sequence, and negative sequence transfer impedance between point K and point m, and the input impedance of point K and the voltage amplitude before the fault;
    S3:根据故障前系统各节点电压幅值及故障点K的输入阻抗,计算各母线残余电压幅值U magS3: Calculate the residual voltage amplitude U mag of each bus according to the voltage amplitude of each node of the system before the fault and the input impedance of the fault point K;
    S4:通过已知电压耐受能力曲线图不确定区间的变化范围,获得电压耐受能力曲线不确定区间的上界限U max和下界限U min,并结合各母线故障残余电压幅值U mag,形成判别矩阵BUS和LINE; S4: Obtain the upper limit U max and the lower limit U min of the uncertainty interval of the voltage withstand capability curve by knowing the variation range of the uncertainty interval of the voltage withstand capability curve, combined with the residual voltage amplitude U mag of each busbar fault, Form the discriminant matrix BUS and LINE;
    S5:令节点m所带负荷的电压耐受值U th取不确定区间的下界限值U min,根据判别矩阵LINE的值,计算线路的临界点,确定该线路在暂降域中的包含情况; S5: Let the voltage tolerance value U th of the load carried by node m take the lower limit value U min of the uncertainty interval, calculate the critical point of the line according to the value of the discriminant matrix LINE, and determine the inclusion of the line in the sag domain ;
    S6:判断是否已遍历系统所有线路及是否已遍历全部所述不确定空间,若是则输出暂降域识别结果;若未遍历所有线路,则返回步骤S4进行下一条线路识别计算;若已遍历所有线路,但未遍历全部所述不确定空间,则令U th取不确定区间的上界限U max,返回步骤S4继续执行计算; S6: Judge whether all lines of the system have been traversed and all the uncertain spaces have been traversed, if yes, output the sag domain recognition result; if not all lines have been traversed, return to step S4 for the next line recognition calculation; if all lines have been traversed Line, but has not traversed all the uncertain spaces, let U th take the upper limit U max of the uncertain interval, and return to step S4 to continue the calculation;
    S7:统计两次计算,获得U min对应的暂降域1和U max对应的暂降域2,得到最终的暂降域识别结果。 S7: Count two calculations, obtain sag domain 1 corresponding to U min and sag domain 2 corresponding to U max , and obtain the final sag domain identification result.
  2. 根据权利要求1所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S2所述的故障节点K与敏感负荷接入节点m之间的各序转移阻抗为:The method for identifying the sag domain considering the uncertainty of load sensitivity according to claim 1, wherein the sequence transfer impedance between the faulty node K and the sensitive load access node m in step S2 is:
    Z mK,0=Z mF,0+p(Z mT,0-Z mF,0) Z mK,0 =Z mF,0 +p(Z mT,0 -Z mF,0 )
    Z mK,1=Z mF,1+p(Z mT,1-Z mF,1) Z mK,1 =Z mF,1 +p(Z mT,1 -Z mF,1 )
    Z mK,2=Z mF,2+p(Z mT,2-Z mF,2) Z mK,2 =Z mF,2 +p(Z mT,2 -Z mF,2 )
    其中,Z mK,0、Z mK,1、Z mK,2为故障节点K与敏感负荷接入节点m之间的各序转移阻抗,其中,Z mK,0为零序转移阻抗,Z mK,1为正序转移阻抗,Z mK,2为负序转移阻抗;Z mF,0、Z mF,1、Z mF,2为敏感负荷节点m首端母线节点F和负荷点m 之间的各序转移阻抗,其中Z mF,0为零序转移阻抗,Z mF,1为正序转移阻抗,Z mF,2为负序转移阻抗;Z mT,0、Z mT,1、Z mT,2为敏感负荷节点m尾端母线节点T和负荷点m之间的各序转移阻抗,其中,Z mT,0为零序转移阻抗,Z mT,1为正序转移阻抗,Z mT,2为负序转移阻抗;p是故障点K到母线首端节点F的距离标幺值表示; Among them, Z mK,0 , Z mK,1 , Z mK,2 are the sequence transfer impedances between the faulty node K and the sensitive load access node m, where Z mK,0 is the zero sequence transfer impedance, Z mK, 1 is the positive sequence transfer impedance, Z mK, 2 is the negative sequence transfer impedance; Z mF,0 , Z mF,1 , Z mF, 2 are the sequences between the first-end bus node F of the sensitive load node m and the load point m Transfer impedance, where Z mF,0 is zero sequence transfer impedance, Z mF,1 is positive sequence transfer impedance, Z mF,2 is negative sequence transfer impedance; Z mT,0 , Z mT,1 , Z mT,2 are sensitive Each sequence transfer impedance between load node m tail bus node T and load point m, where Z mT,0 is zero sequence transfer impedance, Z mT,1 is positive sequence transfer impedance, Z mT,2 is negative sequence transfer Impedance; p is the unit value of the distance from the fault point K to the bus head node F;
    故障节点K的输入阻抗为:The input impedance of the fault node K is:
    Z KK,0=p 2(Z FF,0+Z TT,0-2Z FT,0-Z C,0)+p[Z C,0-2(Z FF,0-Z TT,0)]+Z FF,0 Z KK,0 =p 2 (Z FF,0 +Z TT,0 -2Z FT,0 -Z C,0 )+p[Z C,0 -2(Z FF,0 -Z TT,0 )]+ Z FF, 0
    Z KK,1=p 2(Z FF,1+Z TT,1-2Z FT,1-Z C,1)+p[Z C,1-2(Z FF,1-Z TT,1)]+Z FF,1 Z KK,1 =p 2 (Z FF,1 +Z TT,1 -2Z FT,1 -Z C,1 )+p[Z C,1 -2(Z FF,1 -Z TT,1 )]+ Z FF, 1
    Z KK,2=p 2(Z FF,2+Z TT,2-2Z FT,2-Z C,2)+p[Z C,2-2(Z FF,2-Z TT,2)]+Z FF,2 Z KK,2 =p 2 (Z FF,2 +Z TT,2 -2Z FT,2 -Z C,2 )+p[Z C,2 -2(Z FF,2 -Z TT,2 )]+ Z FF,2
    式中,Z KK,0、Z KK,1、Z KK,2为故障节点K的各序输入阻抗,其中,Z KK,0为零序阻抗,Z KK,1为正序输入阻抗,Z KK,2为负序输入阻抗;Z FF,1、Z FF,2Z FF,0、Z FF,1、Z FF,2为故障点k的首端母线节点F的输入阻抗,其中,Z FF,0为零序输入阻抗,Z FF,1为正序输入阻抗,Z FF,2为负序输入阻抗;Z TT,0、Z TT,1、Z TT,2为尾端母线节点T的各序输入阻抗,其中,Z TT,0为零序输入阻抗,Z TT,1为正序输入阻抗,Z TT,2为负序输入阻抗;Z C,0、Z C,1、Z C,2为线路FT上的各序阻抗,其中,Z C,0为零序阻抗,Z C,1为正序阻抗,Z C,2为负序阻抗,p与前文所述含义一致; In the formula, Z KK,0 , Z KK,1 , Z KK,2 are the sequence input impedances of the faulty node K, where Z KK,0 is the zero sequence impedance, Z KK,1 is the positive sequence input impedance, and Z KK ,2 is the negative sequence input impedance; Z FF,1 , Z FF,2 Z FF,0 , Z FF,1 , Z FF,2 is the input impedance of the first bus node F at the fault point k, where Z FF, 0 is the zero sequence input impedance, Z FF,1 is the positive sequence input impedance, Z FF,2 is the negative sequence input impedance; Z TT,0 , Z TT,1 , Z TT,2 are the sequences of the tail bus node T Input impedance, where Z TT,0 is zero sequence input impedance, Z TT,1 is positive sequence input impedance, Z TT,2 is negative sequence input impedance; Z C,0 , Z C,1 , Z C,2 are The sequence impedances on the line FT, where Z C,0 is the zero sequence impedance, Z C,1 is the positive sequence impedance, Z C,2 is the negative sequence impedance, and p has the same meaning as described above;
    K节点发生短路故障前的电压幅值表示为:The voltage amplitude before short-circuit fault occurs at node K is expressed as:
    U K,pref=U F,pref+p(U T,pref-U F,pref) U K,pref =U F,pref +p(U T,pref -U F,pref )
    其中,U K,pref表示K节点发生短路故障前的电压;U F,pref表示故障前母线节点F的节点电压幅值;U T,pref表示故障前母线节点T的节点电压幅值;p与前文所述含义一致。 Among them, U K,pref represents the voltage before the short-circuit fault occurs at node K; U F,pref represents the node voltage amplitude of the bus node F before the fault; U T,pref represents the node voltage amplitude of the bus node T before the fault; p and The meaning mentioned above is the same.
  3. 根据权利要求1所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S3所述的母线故障残余电压幅值U magThe method for identifying the sag region considering the uncertainty of load sensitivity according to claim 1, wherein the residual voltage amplitude U mag of the busbar fault in step S3:
    Figure PCTCN2019097841-appb-100001
    Figure PCTCN2019097841-appb-100001
    Figure PCTCN2019097841-appb-100002
    Figure PCTCN2019097841-appb-100002
    Figure PCTCN2019097841-appb-100003
    Figure PCTCN2019097841-appb-100003
    Figure PCTCN2019097841-appb-100004
    Figure PCTCN2019097841-appb-100004
    其中,U mag表示母线故障残余电压幅值;
    Figure PCTCN2019097841-appb-100005
    为K点发生故障时母线m的各相电压幅值,
    Figure PCTCN2019097841-appb-100006
    表示A相电压幅值,
    Figure PCTCN2019097841-appb-100007
    表示B相电压幅值,
    Figure PCTCN2019097841-appb-100008
    表示C相电压幅值;U A,m,pref为m点故障前A相电压幅值;a表示旋转因子e j120°
    Figure PCTCN2019097841-appb-100009
    表示母线节点K发生故障时m点的电压幅值。
    Among them, U mag represents the residual voltage amplitude of the bus fault;
    Figure PCTCN2019097841-appb-100005
    Is the voltage amplitude of each phase of bus m when a fault occurs at point K,
    Figure PCTCN2019097841-appb-100006
    Indicates the voltage amplitude of phase A,
    Figure PCTCN2019097841-appb-100007
    Indicates the amplitude of phase B voltage,
    Figure PCTCN2019097841-appb-100008
    It represents the voltage amplitude of phase C; U A,m,pref is the voltage amplitude of phase A before the fault at point m; a represents the rotation factor e j120° ;
    Figure PCTCN2019097841-appb-100009
    Represents the voltage amplitude at point m when the bus node K fails.
  4. 根据权利要求1所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S4所述的敏感负荷电压暂降耐受能力不确定性曲线对应的不确定性区间的上限与下限分别为U max和U min,判别矩阵BUS和LINE形成如下: The method for identifying the sag region considering the uncertainty of load sensitivity according to claim 1, wherein the upper limit of the uncertainty interval corresponding to the uncertainty curve of the voltage sag tolerance of the sensitive load in step S4 The lower limits are U max and U min respectively , and the discriminant matrices BUS and LINE are formed as follows:
    Figure PCTCN2019097841-appb-100010
    Figure PCTCN2019097841-appb-100010
    Figure PCTCN2019097841-appb-100011
    Figure PCTCN2019097841-appb-100011
    Figure PCTCN2019097841-appb-100012
    Figure PCTCN2019097841-appb-100012
    其中,U th表示节点m所带负荷的电压耐受能力;ΔU mag,n表示母线残余电压幅值U mag与电压耐受能力U th的差值;对于i∈(1,…,n),ΔU mag,i的值小于等于零时,BUS i取1,表示该母线i包含于暂降域中;ΔU mag,i的值大于零时,BUS i取0,表示该母线i不包含于暂降域中;LINE值为线路的暂降域判别参数,LINE i值为0,表示母线i不在暂降域中;LINE i值为1,表示母线i中包含一个临界点,LINE i值为2,表示母线i上有两个临界点;
    Figure PCTCN2019097841-appb-100013
    为线路i两端的母线F的暂降域判别参数;
    Figure PCTCN2019097841-appb-100014
    为母线T的暂降域判别参数,其中之一取值为1时,则LINE i取1,表示线路有一个临界点;两者都取0时,则LINE i取值为0,表示该条线路无临界点;两者都取1,则LINE i取值2,表示线路有两个临界点。
    Among them, U th represents the voltage withstand capability of the load carried by node m; ΔU mag,n represents the difference between the bus residual voltage amplitude U mag and the voltage withstand capability U th ; for i∈(1,...,n), When the value of ΔU mag,i is less than or equal to zero, BUS i takes 1, which means that the bus i is included in the sag domain; when the value of ΔU mag,i is greater than zero, BUS i takes 0, which means that the bus i is not included in the sag domain. The LINE value is the sag domain discrimination parameter of the line. The value of LINE i is 0, which means that bus i is not in the sag domain; the value of LINE i is 1, which means that the bus i contains a critical point, and the value of LINE i is 2. Indicates that there are two critical points on the bus i;
    Figure PCTCN2019097841-appb-100013
    Is the sag zone discrimination parameter of bus F at both ends of line i;
    Figure PCTCN2019097841-appb-100014
    Is the sag zone discrimination parameter of bus T. When one of them is set to 1, LINE i is set to 1, which means that the line has a critical point; when both are set to 0, LINE i is set to be 0, which means the line The line has no critical points; if both are 1, then LINE i takes the value 2, which means the line has two critical points.
  5. 根据权利要求1所述的考虑负荷敏感度不确定性的暂降域识别方法,其特 征在于,步骤S4所述的敏感负荷电压暂降耐受能力不确定性曲线的上界限U max表示免疫区与不确定区的分界线;下界限U min表示不确定区与失效区的分界线。 The method for identifying the sag region considering the uncertainty of load sensitivity according to claim 1, wherein the upper limit U max of the uncertainty curve of the sensitive load voltage sag tolerance in step S4 represents the immune region The boundary between the uncertainty zone and the uncertainty zone; the lower limit U min represents the boundary between the uncertainty zone and the failure zone.
  6. 根据权利要求1所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S5的过程为:The method for identifying the sag zone considering the uncertainty of load sensitivity according to claim 1, wherein the process of step S5 is:
    S501:判断LINE i的值是否为0,若LINE i的值为0,表示母线i位于暂降域外,则进行下一条线路判断;若LINE i的值不为0,利用三次样条插值法获得电压暂降幅值曲线,并执行步骤S502; S501: determining whether the value of the LINE i 0, if the value of the LINE i 0, i indicates the bus dips located outside, the next line is performed is determined; the value of the LINE if i is not 0, obtained by cubic spline interpolation Voltage sag amplitude curve, and execute step S502;
    S502:判断LINE i的值是否为1,若LINE i的值为1,求取临界点;LINE i的值不为1,执行步骤S503; S502: Determine whether the value of LINE i is 1, if the value of LINE i is 1, find the critical point; if the value of LINE i is not 1, go to step S503;
    S503:利用黄金分割搜索法计算线路上电压暂降幅值最大值点p max以及残余电压方程函数f的|f(pmax)|; S503: Calculate the maximum point p max of the voltage sag amplitude on the line and the residual voltage equation function f |f(pmax)| by using the golden section search method;
    S504:求得p max后判断|f(p max)|和U th的大小,若|f(p max)|小于U th,则整条线路包含于暂降域中,返回步骤S501继续执行;若|f(p max)|大于U th,则按照LINE i值为1的临界点求取方法,求取临界点。 S504: After obtaining p max , judge the size of |f(p max )| and U th . If |f(p max )| is less than U th , then the entire line is included in the sag domain, and return to step S501 to continue execution; If |f(p max )| is greater than U th , the critical point is determined according to the critical point determination method where the LINE i value is 1.
  7. 根据权利要求6所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S502中,若LINE i的值为1,求取临界点的方法为: The method for identifying the sag region considering the uncertainty of load sensitivity according to claim 6, wherein, in step S502, if the value of LINE i is 1, the method for obtaining the critical point is:
    S5021:使用p=0、p=0.5和p=1三点进行样条插值,获得残余电压方程函数为
    Figure PCTCN2019097841-appb-100015
    定义U th=f(p i),式中,x 1、x 2、x 3为函数的系数,p i函数对应的自变量,此时p i分别取p i=0、p i=0.5和p i=1;
    S5021: Use the three points p=0, p=0.5, and p=1 to perform spline interpolation, and obtain the residual voltage equation function as
    Figure PCTCN2019097841-appb-100015
    Define U th =f(p i ), where x 1 , x 2 , and x 3 are the coefficients of the function, and the independent variable corresponding to the p i function. At this time, p i is taken as p i =0, p i =0.5 and p i =1;
    S5022:计算|f(0.5)|,步骤S5021所述的三点依次对应线路首节点短路电压幅值、线路尾节点短路电压幅值和|f(0.5)|,求得残余电压方程函数在0≤p ic≤1上的根p icS5022: Calculate |f(0.5)|. The three points described in step S5021 correspond to the short-circuit voltage amplitude of the first node of the line, the short-circuit voltage amplitude of the tail node of the line and |f(0.5)|, and the residual voltage equation function is calculated as 0 The root p ic on ≤p ic ≤1;
    S5023:使用所述残余电压方程的根来定义迭代初值,确定临界点附近的两个迭代初值,取[p ic,p ic+Δp]或[p ic-Δp,p ic],△p=0.01为正割迭代的初值点p from和p end,求出临界点;迭代的过程如下: S5023: Use the root of the residual voltage equation to define the initial iteration value, determine the two initial iteration values near the critical point, take [p ic ,p ic +Δp] or [p ic -Δp,p ic ], △p= 0.01 is the initial value points p from and p end of the secant iteration to find the critical point; the iteration process is as follows:
    p new=p end-[f(p end)-U th](p end-p from)/[|f(p end)|-|f(p from)|] p new = p end -[f(p end )-U th ](p end -p from )/[|f(p end )|-|f(p from )|]
    p from=p end p from = p end
    p end=p new p end = p new
    其中,p from、p end为迭代的两个初值点;p new为临界点的新迭代值;f(p end) 表示点p end的残压幅值;f(p from)表示点p from的残压幅值;U th表示节点m所带负荷的电压耐受能力; Among them, p from and p end are the two initial points of the iteration; p new is the new iteration value of the critical point; f(p end ) represents the residual pressure amplitude of the point p end ; f(p from ) represents the point p from The residual voltage amplitude; U th represents the voltage tolerance of the load carried by node m;
    收敛条件为:The convergence conditions are:
    ||f(p new)|-U th|<tol ||f(p new )|-U th |<tol
    其中,tol为收敛精度;p new、U th均与前文所述含义一致。 Among them, tol is the accuracy of convergence; both p new and U th have the same meaning as described above.
    S5024:利用牛顿法,得出准确临界点精确值。S5024: Use Newton's method to obtain accurate critical point values.
  8. 根据权利要求6所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S503所述的计算线路上电压暂降幅值最大值点p max以及残余电压方程函数f的|f(pmax)|黄金分割搜索法的步骤如下: The method for identifying the sag region considering the uncertainty of load sensitivity according to claim 6, characterized in that in step S503, the value of the maximum point p max of the voltage sag amplitude on the calculation line and the residual voltage equation function f f(pmax)|The steps of golden section search method are as follows:
    S5031:根据黄金分割点
    Figure PCTCN2019097841-appb-100016
    定义两个初值点p 1、p 2,两个初值点的表达式为:
    S5031: According to the golden ratio point
    Figure PCTCN2019097841-appb-100016
    Define two initial value points p 1 , p 2 , the expression of the two initial value points is:
    Figure PCTCN2019097841-appb-100017
    Figure PCTCN2019097841-appb-100017
    S5032:计算p 1、p 2对应的残压方程函数值|f(p 1)|及|f(p 2)|; S5032: Calculate the residual pressure equation function values corresponding to p 1 and p 2 |f(p 1 )| and |f(p 2 )|;
    S5033:判断|f(p 1)|是否大于等于|f(p 2)|,若|f(p 1)|≥|f(p 2)|,则执行以下赋值迭代: S5033: Determine whether |f(p 1 )| is greater than or equal to |f(p 2 )|, if |f(p 1 )|≥|f(p 2 )|, perform the following assignment iteration:
    Figure PCTCN2019097841-appb-100018
    Figure PCTCN2019097841-appb-100018
    若|f(p 1)|<|f(p 2)|,则执行以下赋值迭代: If |f(p 1 )|<|f(p 2 )|, then perform the following assignment iteration:
    Figure PCTCN2019097841-appb-100019
    Figure PCTCN2019097841-appb-100019
    S5033:判断|p b-p a|≤ε是否成立,ε表示计算设定精度;若|p b-p a|≤ε成立,则利用当前p 1、p 2,计算最大值点P max:P max=(p b+p a)/2及对应的残压方程函数值|f(P max)|。 S5033: Determine whether |p b -p a |≤ε holds, ε represents the calculation setting accuracy; if |p b -p a |≤ε holds, use current p 1 and p 2 to calculate the maximum point P max : P max =(p b +p a )/2 and the corresponding residual pressure equation function value |f(P max )|.
  9. 根据权利要求6所述的考虑负荷敏感度不确定性的暂降域识别方法,其特征在于,步骤S504所述的按照LINE i值为1的临界点求取方法为: The method for identifying the sag region considering the uncertainty of load sensitivity according to claim 6, wherein the method of obtaining the critical point according to the LINE i value of 1 in step S504 is:
    S5041:使用p=0、p=p max和p=1三点进行样条插值,获得残余电压方程函数为
    Figure PCTCN2019097841-appb-100020
    定义U th=f(p i),式中,x 1、x 2、x 3为函数的系数,p i函数对应的自变量,此时p i分别取p i=0、p i=p max和p i=1;
    S5041: Use the three points p=0, p=p max and p=1 to perform spline interpolation, and obtain the residual voltage equation function as
    Figure PCTCN2019097841-appb-100020
    Define U th =f(p i ), where x 1 , x 2 , and x 3 are the coefficients of the function, and the independent variable corresponding to the p i function. At this time, p i is taken as p i = 0 and p i = p max And p i = 1;
    S5042:计算|f(p max)|,步骤S5042所述的三点依次对应线路首节点短路电压幅值、线路尾节点短路电压幅值和|f(p max)|,求得残余电压方程函数在0≤p ic≤1上的根p icS5042: Calculate |f(p max )|, the three points described in step S5042 correspond to the short-circuit voltage amplitude of the first node of the line, the short-circuit voltage amplitude of the tail node of the line, and |f(p max )| to obtain the residual voltage equation function The root p ic on 0≤p ic ≤1;
    S5043:使用所述残余电压方程的根来定义迭代初值,确定临界点附近的两个迭代初值,取[p ic,p ic+Δp]或[p ic-Δp,p ic],△p=0.01为正割迭代的初值点p from和p end,求出临界点;迭代的过程如下: S5043: Use the root of the residual voltage equation to define the initial iteration value, determine the two initial iteration values near the critical point, take [p ic ,p ic +Δp] or [p ic -Δp,p ic ], △p= 0.01 is the initial value points p from and p end of the secant iteration to find the critical point; the iteration process is as follows:
    p new=p end-[f(p end)-U th](p end-p from)/[|f(p end)|-|f(p from)|] p new = p end -[f(p end )-U th ](p end -p from )/[|f(p end )|-|f(p from )|]
    p from=p end p from = p end
    p end=p new p end = p new
    其中,p from、p end为迭代的两个初值点;p new为临界点的新迭代值;f(p end)表示点p end的残压幅值;f(p from)表示点p from的残压幅值;U th表示节点m所带负荷的电压耐受能力; Among them, p from and p end are the two initial value points of the iteration; p new is the new iteration value of the critical point; f(p end ) represents the residual pressure amplitude of the point p end ; f(p from ) represents the point p from The residual voltage amplitude; U th represents the voltage withstand capability of the load carried by node m;
    收敛条件为:The convergence conditions are:
    ||f(p new)|-U th|<tol ||f(p new )|-U th |<tol
    其中,tol为收敛精度,p new、U th均与前文所述含义一致。 Among them, tol is the convergence accuracy, and both p new and U th have the same meaning as described above.
    S5043:利用牛顿法求得|f(p max)|大于U th时临界点的精确值。 S5043: Use Newton's method to obtain the exact value of the critical point when |f(p max )| is greater than U th .
PCT/CN2019/097841 2019-05-22 2019-07-26 Sag domain recognition method considering uncertainty of load sensitivity WO2020232824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910431542.7A CN110082643B (en) 2019-05-22 2019-05-22 Sag domain identification method considering load sensitivity uncertainty
CN201910431542.7 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020232824A1 true WO2020232824A1 (en) 2020-11-26

Family

ID=67421438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097841 WO2020232824A1 (en) 2019-05-22 2019-07-26 Sag domain recognition method considering uncertainty of load sensitivity

Country Status (2)

Country Link
CN (1) CN110082643B (en)
WO (1) WO2020232824A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803423A (en) * 2021-03-04 2021-05-14 中国石油大学(华东) Optimized distribution method and system for voltage sag treatment device of power distribution network in oil field area
CN113468758A (en) * 2021-07-19 2021-10-01 国网冀北电力有限公司 Multi-objective optimization configuration method for sag monitoring device considering economic loss risk of user
CN113848421A (en) * 2021-09-15 2021-12-28 国网安徽省电力有限公司电力科学研究院 Voltage sag acquisition method and device considering transformer impedance voltage sag
CN115483706A (en) * 2022-10-11 2022-12-16 中国南方电网有限责任公司 Short-circuit current calculation method and device considering new energy low-voltage crossing influence

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532731B (en) * 2019-09-16 2023-05-23 国网陕西省电力公司电力科学研究院 Rapid calculation method for voltage sag concave domain
CN110672951B (en) * 2019-10-10 2021-08-03 国网电力科学研究院(武汉)能效测评有限公司 Method and device for identifying voltage fragile region of power distribution network
CN110890754B (en) * 2019-12-04 2020-07-31 四川大学 Distributed power supply and sensitive user combined site selection method considering voltage sag
CN110880744B (en) * 2019-12-09 2021-02-19 国网江苏省电力有限公司镇江供电分公司 Line disconnection protection method for comparing voltage amplitude difference of two side lines of line
CN111007357B (en) * 2019-12-18 2021-12-24 广东电网有限责任公司 Sag domain identification method considering load voltage sag tolerance capacity curve
CN113985210B (en) * 2021-11-01 2023-12-05 南京工程学院 Voltage sag domain calculation method considering voltage sag amplitude and duration
CN116613716B (en) * 2023-07-20 2023-12-05 国网江西省电力有限公司电力科学研究院 Voltage sag control method and system based on fault domain

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376403A (en) * 2014-10-30 2015-02-25 广东电网有限责任公司东莞供电局 Substation sag sensitivity grading method based on subordinate user industrial features
US20150340084A1 (en) * 2011-07-22 2015-11-26 Texas Instruments Incorporated Array Power Supply-Based Screening of Static Random Access Memory Cells for Bias Temperature Instability
CN106324320A (en) * 2016-08-11 2017-01-11 国网浙江省电力公司宁波供电公司 Curve fitting method for duration of multiple voltage sags, and voltage sag severity assessment method
CN107886187A (en) * 2017-10-18 2018-04-06 中国南方电网有限责任公司电网技术研究中心 Consider the distribution network planning method of load-sensitive classification and its probability loss
CN109298244A (en) * 2018-12-04 2019-02-01 广东电网有限责任公司 A kind of temporary drop area recognition method considering fault impedance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608493B (en) * 2011-01-25 2014-02-26 华北电力科学研究院有限责任公司 Method and device for positioning voltage sag source
CN109635928B (en) * 2018-12-06 2023-05-30 华北电力大学 Voltage sag reason identification method based on deep learning model fusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340084A1 (en) * 2011-07-22 2015-11-26 Texas Instruments Incorporated Array Power Supply-Based Screening of Static Random Access Memory Cells for Bias Temperature Instability
CN104376403A (en) * 2014-10-30 2015-02-25 广东电网有限责任公司东莞供电局 Substation sag sensitivity grading method based on subordinate user industrial features
CN106324320A (en) * 2016-08-11 2017-01-11 国网浙江省电力公司宁波供电公司 Curve fitting method for duration of multiple voltage sags, and voltage sag severity assessment method
CN107886187A (en) * 2017-10-18 2018-04-06 中国南方电网有限责任公司电网技术研究中心 Consider the distribution network planning method of load-sensitive classification and its probability loss
CN109298244A (en) * 2018-12-04 2019-02-01 广东电网有限责任公司 A kind of temporary drop area recognition method considering fault impedance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马明 等 (MA, MING ET AL.): "一种基于临界点法的电压暂降域混合识别方法 (A voltage sag domain hybrid identification method based on critical-point method)", 供用电 (DISTRIBUTION & UTILIZATION), no. 04, 30 April 2019 (2019-04-30), ISSN: 1006-6357, DOI: 20200119142137X *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803423A (en) * 2021-03-04 2021-05-14 中国石油大学(华东) Optimized distribution method and system for voltage sag treatment device of power distribution network in oil field area
CN112803423B (en) * 2021-03-04 2024-01-12 中国石油大学(华东) Method and system for optimizing and distributing voltage sag management device of power distribution network in oil field area
CN113468758A (en) * 2021-07-19 2021-10-01 国网冀北电力有限公司 Multi-objective optimization configuration method for sag monitoring device considering economic loss risk of user
CN113468758B (en) * 2021-07-19 2024-02-23 国网冀北电力有限公司 Multi-objective optimal configuration method for sag monitoring device considering economic loss risk of user
CN113848421A (en) * 2021-09-15 2021-12-28 国网安徽省电力有限公司电力科学研究院 Voltage sag acquisition method and device considering transformer impedance voltage sag
CN113848421B (en) * 2021-09-15 2024-04-19 国网安徽省电力有限公司电力科学研究院 Voltage sag acquisition method and device considering transformer impedance voltage drop
CN115483706A (en) * 2022-10-11 2022-12-16 中国南方电网有限责任公司 Short-circuit current calculation method and device considering new energy low-voltage crossing influence
CN115483706B (en) * 2022-10-11 2024-04-16 中国南方电网有限责任公司 Short-circuit current calculation method and device considering new energy low-voltage crossing influence

Also Published As

Publication number Publication date
CN110082643B (en) 2020-07-14
CN110082643A (en) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020232824A1 (en) Sag domain recognition method considering uncertainty of load sensitivity
CN105474523B (en) System, method and apparatus and the visible computer readable medium reconfigured for distribution network
WO2015047520A1 (en) Electrical power grid monitoring apparatus, articles of manufacture, and methods of monitoring equipment of an electrical power grid
AU2019348020B9 (en) Secure distributed state estimation for networked microgrids
US20140244189A1 (en) System For Achieving Real-Time Monitoring and State Estimation in Power Distribution Networks
WO2018233294A1 (en) Method for determining fault type of high voltage direct current transmission line
CN107679289B (en) Dynamic reactive power compensation configuration method for reducing multi-feed-in direct current commutation failure risk
CN104951990A (en) Data processing method and equipment for power grid
AU2019352596B2 (en) Decentralized false data mitigation for nested microgrids
CN107832959B (en) Voltage stability evaluation method considering load characteristics and power supply constraints
CN109829246B (en) Line parameter identification method based on parameter comprehensive suspicion
CN104076246A (en) Determining method for power distribution network single-phase earth fault contingency set
CN113708500A (en) Low-voltage electricity utilization abnormity monitoring system and method
Ghaedi et al. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors
CN113985210B (en) Voltage sag domain calculation method considering voltage sag amplitude and duration
CN106646106A (en) Power grid fault detection method based on change point detection technology
Sadeghi et al. A general index for voltage stability assessment of power system
CN106529805B (en) Generator importance-based power generation system reliability evaluation method
CN116888848A (en) Power grid topology determination
CN104578008B (en) A kind of zero-sequence direction component faulty action preventing method
Kotsonias et al. Performance investigation of a monitoring scheme for low voltage grids with a single grounded neutral
CN113468758B (en) Multi-objective optimal configuration method for sag monitoring device considering economic loss risk of user
WO2020154846A1 (en) Linear asymmetry method for branch disconnection-type static safety inspection of alternating current power network
CN117574107A (en) Voltage sag and depression domain identification method and system based on critical point method
Pan et al. State estimation based fault analysis and diagnosis in a receiving-end transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19929843

Country of ref document: EP

Kind code of ref document: A1