WO2020231089A1 - Induced pluripotent stem cells of alzheimer's disease patient with mutation (v715m) in amyloid precursor protein - Google Patents

Induced pluripotent stem cells of alzheimer's disease patient with mutation (v715m) in amyloid precursor protein Download PDF

Info

Publication number
WO2020231089A1
WO2020231089A1 PCT/KR2020/006056 KR2020006056W WO2020231089A1 WO 2020231089 A1 WO2020231089 A1 WO 2020231089A1 KR 2020006056 W KR2020006056 W KR 2020006056W WO 2020231089 A1 WO2020231089 A1 WO 2020231089A1
Authority
WO
WIPO (PCT)
Prior art keywords
alzheimer
stem cell
app
mitochondrial
induced pluripotent
Prior art date
Application number
PCT/KR2020/006056
Other languages
French (fr)
Korean (ko)
Inventor
송지환
이령
Original Assignee
주식회사 아이피에스바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이피에스바이오 filed Critical 주식회사 아이피에스바이오
Publication of WO2020231089A1 publication Critical patent/WO2020231089A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • Alzheimer's disease is the most common degenerative brain disease that causes dementia, and was first reported in 1907 by Dr. Alois Alzheimer, a German psychiatrist. Alzheimer's disease is characterized by a very slow onset and gradual progression. In the beginning, they mainly show problems with the memory of recent events, but as they progress, they are accompanied by other abnormalities in other cognitive functions such as language and judgment, and eventually all functions of daily life are lost.
  • Alzheimer's disease is a family member of Alzheimer's disease if there is a mutation in the amyloid precursor protein gene (located on chromosome 21), prisenilin 1 gene (located on chromosome 14), and prisenilin 2 gene (located on chromosome 1). Although known, they are all only involved in the onset of premature (early) Alzheimer's disease, which occurs in the 40s to 50s, and is not related to the onset of most late-stage (old) Alzheimer's.
  • Alzheimer's disease In the case of Alzheimer's disease, existing animal models have an inherent limitation in that it is difficult to reproduce the pathophysiological symptoms directly related to Alzheimer's disease, so the development of treatments or treatments using existing animal models is limited. That is, in most cases, the symptoms of Alzheimer's disease in humans do not appear even in a mouse model having the same gene mutation as those of Alzheimer's disease patients.
  • iPSCs induced pluripotent stem cells
  • induced pluripotent stem cells having characteristics that can be used for screening of new drugs, high biosimilarity, and pathological characteristics of Alzheimer's disease are required.
  • One aspect relates to induced pluripotent stem cells dedifferentiated from human PBMCs containing an APP mutant gene with a V715M substitution.
  • Another aspect relates to a nerve cell obtained by differentiating the stem cell into a nerve cell.
  • Another aspect is a stem cell line containing an APP mutant gene having a V715M substitution comprising the step of introducing a vector expressing a dedifferentiation factor into a PDMC containing an APP mutant gene having a V715M substitution isolated from the blood of an Alzheimer's patient. It relates to a method of manufacturing.
  • Another aspect is a method of screening for a drug effective for preventing or treating Alzheimer's disease, comprising the steps of: contacting the nerve cells with a test substance;
  • the “APP mutant gene” may be any mutant gene in which a normal gene and one or more bases are substituted for an amyloid precursor protein (amyloid ( ⁇ )beta protein, aka A ⁇ ) gene, and the mutant gene is 2 It may be a mutant gene in which at least two bases are continuously or discontinuously substituted, deleted, or added, and the 715th amino acid from the N-terminal of APP is substituted from Val to Met.
  • amyloid precursor protein amyloid ( ⁇ )beta protein, aka A ⁇
  • the mutant gene is 2 It may be a mutant gene in which at least two bases are continuously or discontinuously substituted, deleted, or added, and the 715th amino acid from the N-terminal of APP is substituted from Val to Met.
  • vector refers to a plasmid, viral vector, or other medium known in the art capable of inserting a nucleic acid encoding a structural gene and expressing the nucleic acid in a host cell.
  • the viral vector include, but are not limited to, retroviral vectors, adenovirus vectors, Herpes virus vectors, abipox virus vectors, and lentiviral vectors.
  • a method using Sendai virus is preferred.
  • the Sendai virus vector is constructed so that all of the viral genes have been removed or altered so that a non-viral protein is produced in the infected cells by the viral vector.
  • the main advantages of Sendai virus vectors for gene therapy are that they deliver large amounts of genes into cloned cells, accurately insert the transferred genes into cellular DNA, and do not cause continuous infection after gene transfection.
  • the “vector” or “expression vector” can be introduced into cells by a method known in the art. For example, but not limited thereto, transient transfection, microinjection, transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE dextran Transfection using (DEAE Dextran-mediated transfection), transfection using polybrene (polybrene-mediated transfection), electroporation, gene gun, and other known methods for introducing nucleic acids into cells Can be introduced into cells for production of transgenic animals.
  • the “nerve cell” or “neuron” refers to the structure and functional unit of the nervous system in the human body, and is preferably a neuron or a neuron in the brain.
  • Another aspect relates to a nerve cell obtained by differentiating the induced pluripotent stem cell into a nerve cell.
  • Another aspect is a stem cell line containing an APP mutant gene having a V715M substitution comprising the step of introducing a vector expressing a dedifferentiation factor into a PDMC containing an APP mutant gene having a V715M substitution isolated from the blood of an Alzheimer's patient. It relates to a method of manufacturing.
  • Another aspect is a method of screening for a drug effective for preventing or treating Alzheimer's disease, comprising the steps of: contacting the nerve cells with a test substance;
  • the time for floating culture of the PBMC may vary depending on the growth rate of cells, and it takes 4 hours in the present invention.
  • treatment refers to, or includes alleviation, inhibition of progression, or prevention of a disease, disorder or condition, or one or more symptoms thereof.
  • administering is used interchangeably and in a method or route that results in at least partial localization of a patch or composition according to one embodiment to a desired site. It may mean the placement of a patch or composition according to an embodiment into an individual by.
  • the prophylactic and therapeutic candidate substance is, for example, a test compound or a test composition, a small molecule compound, an antibody, or an antisense nucleotide.
  • antisense nucleotide short interfering RNA (siRNA), short hairpin RNA (shRNA), nucleic acids, proteins, peptides, other extracts or natural products.
  • the number and combination of markers selected for confirming the formation of dedifferentiated stem cells are not specifically limited, and various combinations may be selected and used.
  • the level of expression of the biomarkers at the mRNA or protein level it is possible to confirm whether or not dedifferentiated stem cells are formed.
  • the nucleic acid sequence and protein sequence of the markers of the present invention are already known, detection of a marker for diagnosis can be usefully detected by using an agent capable of measuring mRNA or protein level based on the known sequence. .
  • the detection of the marker protein is performed by contacting a sample with an antibody that specifically recognizes the protein and measuring its antigen-antibody complex formation. The amount of antigen-antibody complex formation can be quantitatively measured through the size of the signal of the detection label.
  • the detection label may be selected from the group consisting of enzymes, fluorescent substances, ligands, luminescent substances, microparticles, redox molecules and radioactive isotopes, but is not limited thereto.
  • Known assay methods for measuring protein levels include Western blot, ELISA, radioimmunoassay, radioimmunodiffusion method, octeroni immune diffusion method, rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, Competitive or non-competitive analysis methods such as precipitin reaction, gel diffusion presipitin reaction, aggregation assay, fluorescence immunoassay, protein A immunoassay, FACS, protein chip, etc.
  • ELISA is a direct sandwich ELISA using another labeled antibody that recognizes an antigen in a complex of an antibody and an antigen attached to a solid support, and reacts with another antibody that recognizes an antigen in a complex of an antibody and an antigen attached to a solid support. It includes a variety of ELISA methods such as indirect sandwich ELISA using a labeled secondary antibody that recognizes this antibody after being prepared.
  • T1 is an MR image showing general cortical atrophy including the left temporal lobe
  • FBB-PET is a result of increased amyloid absorption in the cerebral cortex and bilateral acinar.
  • Figure 2 is a family tree of the APP-V715M cell line. Patients indicated by arrows are the result of autosomal dominant genetic patterns.
  • 3 is an expression result of undifferentiated markers such as OCT4, SOX2, Nanog, SSEA4, and Tra-1-81 in APP-V715M patients in which iPSC cell lines were established.
  • Figure 4 is an immunocytochemical analysis result showing the differentiation ability of iPSC cell lines forming three embryonic layers (triderm) including ectoderm (TUJ1, green), mesoderm (SMA, green), and endoderm (AFP, red). . Scale bar: 100 ⁇ m.
  • FIG. 5 is a result showing genomic DNA sequence indicating the presence of a heterozygous V715M mutation (from GTG to ATG) in the APP gene of the APP-V715M iPSC cell line.
  • FIG. 7 shows the results of chromosomal karyotyping of the APP-V715M iPSC cell line.
  • Figure 8 is the results of in vivo teratoma analysis showing the formation of all three embryonic layers: Tuj1-positive neurons (ectoderm), cartilage (mesoderm, mesoderm) and intestinal epithelium (endoderm, endoderm).
  • FIG. 10 is an immunocytochemical analysis result showing the expression of A ⁇ precipitates anti-stained with Tuj1 (green) and DAPI (blue) using an antibody against A ⁇ 42 (red) at 10 weeks of neuronal differentiation.
  • Four figures (from left) are the z-stack image results of A ⁇ 42 positive A ⁇ deposits (marked by arrows) in APP-V715M iPSC-derived neurons.
  • FIG. 11 is a result of measuring the expression levels of A ⁇ 42 and A ⁇ 40 in TBS insoluble / SDS soluble cells in a total of 1 ⁇ g of protein using ELISA in differentiated neurons at 10 weeks.
  • AT8 phosphorylated tau protein
  • MAP2 green
  • DAPI blue
  • 14 and 15 are Western blot analysis results showing an increase in AT8 and a ratio of AT8 / Tau5 in APP-V715M iPSC-derived neurons (scale bar: 10 ⁇ m).
  • 16 is a representative chymograph result for mitochondrial movement.
  • 17 is an average result of an anterograde speed and a retrograde speed.
  • Example 1 Manufacturing process of induced pluripotent stem cells
  • MNCs Monocytes
  • PBMCs peripheral-derived mononuclear cells
  • SeVdp Sendai virus vector
  • OCT3/4, SOX2, cMYC, KLF4 Sendai virus vector
  • Became Three or more individual clones were picked for iPSC generation and the best growing clone was selected for further analysis.
  • the selected clones are cultured for 4 weeks to form an induced pluripotent stem cell colony.
  • Example 2 teratoma formation and analysis of induced pluripotent stem cells
  • Genotyping of the APP-V715M single nucleotide mutation was performed by DNA sequencing (Cosmo Genetech, Korea).
  • the APP gene was amplified by PCR using the following primers (forward primer: TTC AAG GTG TTC TTT GCA GA; reverse primer: CAT AGT CTT AAT TCC CAC TTG G).
  • forward primer TTC AAG GTG TTC TTT GCA GA
  • reverse primer CAT AGT CTT AAT TCC CAC TTG G
  • teratoma formation undifferentiated iPSCs were harvested and implanted subcutaneously in NOG mice. The teratoma was incised and separated at 12 weeks after injection, and then fixed with 4% paraformaldehyde (PFA). The tissue embedded in paraffin was cut and stained with hematoxylin / eosin to observe whether or not tridermal (ectoderm, endoderm, mesoderm) tissue was formed.
  • the patient (indicated by an arrow) developed dementia in an autosomal dominant pattern.
  • iPSC cell lines were constructed from AD patients with the APP-V715M mutation based on Examples 1 and 2. As shown in FIG. 3, the iPSC cell line with the APP-V715M mutation shows typical expression of induced pluripotent stem cell markers, and includes OCT4, SOX2, SSEA4 and TRA-1-81. The differentiation ability of the iPSC cell line was evaluated using in vitro embryoid body formation and in vitro teratoma test, and as shown in Figs. 4 and 8, the expression of trigerm-specific markers was shown.
  • the genotype of the established iPSC cell line was confirmed by a conventional sequencing analysis method.
  • the SeVdp vector was not inserted into the established iPSC cell line, and as shown in FIG. 7, all of the karyotypes of chromosomes were normal.
  • CM culture medium
  • a ⁇ 40 and A ⁇ 42 expression levels were measured extracellularly and intracellularly. As shown in FIG. 9, no significant difference in the A ⁇ 40 expression was found, but neurons differentiated from APP-V715M iPSC showed a dramatic increase of more than 2 times in the A ⁇ 42 expression level after 10 weeks of differentiation. In addition, the ratio of A ⁇ 42 / A ⁇ 40 was increased more than 2 times in the group differentiated from APP-V715M iPSC compared to the control group.
  • iPSC-derived neurons were stained with A ⁇ 42 antibody at the neuron differentiation stage of 10 weeks. As shown in FIG. 10, the confocal microscopy image showed an increase in extracellular A ⁇ 42 precipitate in neurons differentiated from APP-V715M iPSC compared to the control.
  • TBS insoluble/SDS soluble fraction was extracted.
  • the expression levels of A ⁇ 42 and A ⁇ 40 in TBS insoluble/SDS soluble cells were measured using ELISA at 10 weeks of differentiation in a total of 1 ⁇ g of protein. Expression amount and the ratio of A ⁇ 42 / A ⁇ 40 in FIG as intracellular A ⁇ 42 shown in 11 is significantly increased in APP-V715M iPSC-derived neurons.
  • the amount of expression of a specific protein is quantitatively measured using the Western blot method.
  • the protein was separated on a polyacrylamide gel by electrophoresis, and transferred to a PVDF (polyvinylidene difluoride) filter. After that, after binding with the antibody (primary antibody) of the protein to be measured, a band is formed using a secondary antibody that reacts with this antibody. Based on the size marker for measuring the molecular weight of the protein, the band located at the molecular weight size of the protein to be viewed is quantified.
  • the amount of expression is measured by labeling a specific protein expressed with a fluorescent substance using an immunocytochemical analysis method. After binding the cells immobilized with 4% PFA with the primary antibody of the protein to be measured, the expression level of the protein to be viewed is observed using a secondary antibody to which a fluorescent substance reacting with this antibody is attached. It is possible to know whether a specific protein is present in the experiment group compared to the control group, and furthermore, it is possible to check whether the protein is present in a specific part of the cell.
  • a ⁇ peptides can induce tangle of nerve fibers composed of aggregated hyper-phosphorylated tau proteins.
  • the Tau protein is usually present in a soluble form in the axon of mature neurons.
  • tau protein is abnormally accumulated in dendrite and cell bodies in AD.
  • immunocytochemical analysis was performed using an antibody against AT8 (phosphorylated at Ser202 / Thr205). As shown in FIG. 13, the APP-V715M iPSC-derived neurons showed a significant increase in AT8 expression in neurite and soma when compared with the control group.
  • Mito-tracker Ds-Red
  • Live cells were imaged using a Leica TCSSP5II confocal microscope.
  • Neurons differentiated for 10 weeks were cultured with Mito-tracker red (Thermo-Fisher Cat.M7512) for 15 minutes to perform live cell imaging (LCI) analysis.
  • the cells were maintained at 37 °C and 5% CO2 / 95% O 2 (Live Cell Instrument, Seoul, Korea) was supplied during imaging. Slow image recording lasted up to 4 minutes 30 seconds at 2 second intervals.
  • Mitochondrial chymographs were analyzed using KymographClear, a set of imageJ macro tools capable of generating chymographs from image sequences. Quantitative analysis of mitochondrial velocity was performed using KymographDirect.
  • the anterior velocity and the posterior velocity were significantly decreased in APP-V715M iPSC-derived neurons compared to the control group.
  • mitochondrial fusion and fission-related proteins including mitochondria fusion-related proteins Mfn1 (membrane protein mitofusin 1), Mfn2 (membrane protein mitofusin 2), and mitochondria fission-related proteins DRP1 (dyinamine-related protein 1) and Fis1 (mitochondrial fission 1 protein).
  • Mfn1 mitochondria fusion-related proteins
  • Mfn2 membrane protein mitofusin 2
  • DRP1 diinamine-related protein 1 protein 1
  • Fis1 mitochondrial fission 1 protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to: screening for Alzheimer's-related diseases by using induced pluripotent stem cells with a mutation in an amyloid precursor protein (val715met) derived from blood cells; a personalized therapeutic agent; and a preparation method therefor.

Description

아밀로이드 전구체 단백질 돌연변이(V715M)를 갖는 알츠하이머병 환자의 유도만능 줄기세포Induced pluripotent stem cells of Alzheimer's disease patients with amyloid precursor protein mutation (V715M)
피부세포보다 채취가 용이한 혈액세포를 이용하여, 한국인 특유의 아밀로이드 전구체 단백질 돌연변이인 V715M 치환을 갖는 APP 돌연변이체 유전자를 포함하는 인간 PBMC로부터 역분화된 유도만능 줄기세포를 제공한다.Using blood cells that are easier to collect than skin cells, it provides an induced pluripotent stem cell dedifferentiated from human PBMC containing an APP mutant gene having V715M substitution, which is a Korean specific amyloid precursor protein mutation.
알츠하이머병은 치매를 일으키는 가장 흔한 퇴행성 뇌질환으로, 1907년 독일의 정신과 의사인 알로이스 알츠하이머 (Alois Alzheimer) 박사에 의해 최초로 보고되었다. 알츠하이머병은 매우 서서히 발병하여 점진적으로 진행되는 경과가 특징적이다. 초기에는 주로 최근 일에 대한 기억력에서 문제를 보이다가 진행하면서 언어기능이나 판단력 등 다른 여러 인지기능의 이상을 동반하게 되다가 결국에는 모든 일상 생활 기능을 상실하게 된다.Alzheimer's disease is the most common degenerative brain disease that causes dementia, and was first reported in 1907 by Dr. Alois Alzheimer, a German psychiatrist. Alzheimer's disease is characterized by a very slow onset and gradual progression. In the beginning, they mainly show problems with the memory of recent events, but as they progress, they are accompanied by other abnormalities in other cognitive functions such as language and judgment, and eventually all functions of daily life are lost.
유전적인 요인이 전체 알츠하이머병 발병의 10% 미만을 차지하는 것으로 보고되었는데, 직계 가족 중 이 병을 앓은 사람이 있는 경우 그렇지 않은 사람보다 발병 위험이 높아진다.Genetic factors have been reported to account for less than 10% of all Alzheimer's incidences, and people with immediate family members who have it have a higher risk of developing it than those who do not.
아밀로이드 전구 단백질 유전자(염색체 21번에 위치), 프리세닐린 1 유전자 (염색체 14번에 위치), 프리세닐린 2 유전자(염색체 1번에 위치) 등에 돌연변이가 있는 경우 가족적으로 알츠하이머병이 발병하는 것으로 알려져 있으나 이들은 모두 40~50대에 발병하는 조발성(초로기) 알츠하이머병의 발병에만 관여하며 대부분의 만발성(노년기) 알츠하이머병의 발병과는 무관하다.Alzheimer's disease is a family member of Alzheimer's disease if there is a mutation in the amyloid precursor protein gene (located on chromosome 21), prisenilin 1 gene (located on chromosome 14), and prisenilin 2 gene (located on chromosome 1). Although known, they are all only involved in the onset of premature (early) Alzheimer's disease, which occurs in the 40s to 50s, and is not related to the onset of most late-stage (old) Alzheimer's.
알츠하이머병의 경우, 기존 동물모델에서는 알츠하이머병과 직접 관련된 병태생리학적 증상을 재현하기 어렵다는 본질적인 한계를 갖고 있기 때문에 기존에 구축된 동물 모델을 이용한 치료제나 치료법 개발이 제한적이다. 즉, 알츠하이머병 환자가 가지는 것과 동일한 유전자 돌연변이를 가지는 mouse 모델임에도 인간에게서 나타나는 알츠하이머병 증상이 나타나지 않는 경우가 대부분이다.In the case of Alzheimer's disease, existing animal models have an inherent limitation in that it is difficult to reproduce the pathophysiological symptoms directly related to Alzheimer's disease, so the development of treatments or treatments using existing animal models is limited. That is, in most cases, the symptoms of Alzheimer's disease in humans do not appear even in a mouse model having the same gene mutation as those of Alzheimer's disease patients.
알츠하이머병 환자의 피부세포를 역분화 유도하여 유도만능줄기세포 (iPSC)를 만든 후에, 다시 신경세포로 분화시켜 특성을 조사한 결과 환자 개개인이 갖는 알츠하이머병의 병리학적 마커를 측정할 수 있으며, 이 수치를 정상인들과 비교해 보았을 때 통계학적으로 유의적인 차이를 나타낼 수 있다는 연구 결과가 보고된 바가 있다(Inoue et al.,2013; Israel et al., 2012). 이러한 iPSC 기반 연구모델은 병리학적 바이오마커를 억제시키는 치료제의 효능 검증 및 각 환자에 맞는 맞춤형 치료제 탐색을 위한 좋은 연구 모델로 사용될 수 있을 것으로 기대되고 있다.After inducing dedifferentiation of skin cells of Alzheimer's disease patients to make induced pluripotent stem cells (iPSCs), they were differentiated into neurons again to investigate their characteristics. As a result, the pathological markers of Alzheimer's disease of each patient can be measured. There has been a report of research results showing statistically significant differences when compared with normal subjects (Inoue et al., 2013; Israel et al., 2012). This iPSC-based research model is expected to be used as a good research model for verifying the efficacy of therapeutic agents that inhibit pathological biomarkers and searching for customized therapeutics tailored to each patient.
따라서 알츠하이머병의 병리학적 특징, 높은 생체 유사성 및 신약 스크리닝에 이용될 수 있는 특성을 가지는 유도만능줄기세포에 대한 연구 및 개발이 요구되고 있다.Therefore, research and development of induced pluripotent stem cells having characteristics that can be used for screening of new drugs, high biosimilarity, and pathological characteristics of Alzheimer's disease are required.
일 양상은 V715M 치환을 갖는 APP 돌연변이체 유전자를 포함하는 인간 PBMC로부터 역분화된 유도만능 줄기세포에 관한 것이다.One aspect relates to induced pluripotent stem cells dedifferentiated from human PBMCs containing an APP mutant gene with a V715M substitution.
다른 양상은 상기 줄기세포를 신경세포로 분화시켜 얻어진 신경세포에 관한 것이다.Another aspect relates to a nerve cell obtained by differentiating the stem cell into a nerve cell.
다른 양상은 알츠하이머 환자의 혈액으로부터 분리된 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 PDMC에 역분화 인자를 발현하는 벡터를 도입하는 단계를 포함하는 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 줄기세포주를 제조하는 방법에 관한 것이다.Another aspect is a stem cell line containing an APP mutant gene having a V715M substitution comprising the step of introducing a vector expressing a dedifferentiation factor into a PDMC containing an APP mutant gene having a V715M substitution isolated from the blood of an Alzheimer's patient. It relates to a method of manufacturing.
다른 양상은 알츠하이머 질환을 예방 또는 치료하는데 효과적인 약물을 스크리닝하는 방법으로서, 상기 신경세포를 시험 물질과 접촉시키는 단계;Another aspect is a method of screening for a drug effective for preventing or treating Alzheimer's disease, comprising the steps of: contacting the nerve cells with a test substance;
상기 접촉된 신경세포의 Aβ 발현양, 인산화 타우 단백질 발현양, 미토콘드리아 운동성 및 미토콘드리아 분열과 융합의 불균형 중 하나 이상을 측정하는 단계;Measuring at least one of Aβ expression amount, phosphorylated tau protein expression amount, mitochondrial motility, and imbalance between mitochondrial division and fusion in the contacted neuron;
상기 측정된 결과를 상기 시험 물질과 접촉되지 않은 상기 신경세포로부터 측정된 결과와 비교하는 단계; 를 포함하는 약물 스크리닝 방법에 관한 것이다.Comparing the measured results with the measured results from the nerve cells not in contact with the test substance; It relates to a drug screening method comprising a.
본 명세서에서 “APP 돌연변이 유전자”는 아밀로이드 전구체 단백질(amyloid (β)beta protein, 일명 Aβ) 유전자에 정상 유전자와 1개 이상의 염기가 치환된 것인 임의의 돌연변이 유전자일 수 있고, 상기 돌연변이 유전자는 2개 이상의 염기가 연속적 또는 비연속적으로 치환, 결실 또는 부가된 것인 돌연변이 유전자일 수 있으며, APP의 N 말단으로부터 715번째 아미노산이 Val에서 Met으로 치환되는 것을 포함한다.In the present specification, the “APP mutant gene” may be any mutant gene in which a normal gene and one or more bases are substituted for an amyloid precursor protein (amyloid (β)beta protein, aka Aβ) gene, and the mutant gene is 2 It may be a mutant gene in which at least two bases are continuously or discontinuously substituted, deleted, or added, and the 715th amino acid from the N-terminal of APP is substituted from Val to Met.
본 명세서에서 “벡터” 또는 “발현벡터”라 함은, 구조유전자를 암호화하는 핵산이 삽입될 수 있고, 숙주 세포 내에서 상기 핵산을 발현할 수 있는 당 분야에 공지된 플라스미드, 바이러스 벡터 또는 기타 매개체를 의미한다. 바람직하게는 바이러스 벡터일 수 있다. 상기 바이러스 벡터로는, 이에 제한되지는 않으나, 리트로바이러스 벡터, 아데노바이러스 벡터, 허피스 바이러스 벡터, 아비폭스바이러스 벡터, 렌티바이러스 벡터 등이 있다. 특히, 센다이바이러스를 이용하는 방법이 바람직하다. 상기 센다이바이러스 벡터는 바이러스 유전자가 모두 제거되었거나 또는 변경되어 비-바이러스 단백질이 바이러스 벡터에 의해 감염된 세포 내에서 만들어지도록 제작된 것이다. 유전자 요법을 위한 센다이바이러스 벡터의 주요 장점은 다량의 유전자를 복제세포 내에 전달하고, 세포 DNA 내로 전달된 유전자를 정확하게 삽입시키며, 유전자 형질 감염 후 연속적인 감염이 유발되지 않는 것이다.In the present specification, "vector" or "expression vector" refers to a plasmid, viral vector, or other medium known in the art capable of inserting a nucleic acid encoding a structural gene and expressing the nucleic acid in a host cell. Means. Preferably, it may be a viral vector. Examples of the viral vector include, but are not limited to, retroviral vectors, adenovirus vectors, Herpes virus vectors, abipox virus vectors, and lentiviral vectors. In particular, a method using Sendai virus is preferred. The Sendai virus vector is constructed so that all of the viral genes have been removed or altered so that a non-viral protein is produced in the infected cells by the viral vector. The main advantages of Sendai virus vectors for gene therapy are that they deliver large amounts of genes into cloned cells, accurately insert the transferred genes into cellular DNA, and do not cause continuous infection after gene transfection.
상기 “벡터” 또는 “발현벡터”는 당 업계에 공지된 방법으로 세포 내에 도입할 수 있다. 예를 들어, 이에 한정되지는 않으나, 일시적 형질감염(transient transfection), 미세주사, 형질도입(transduction), 세포융합, 칼슘 포스페이트 침전법, 리포좀을 이용한 형질감염(liposome-mediated transfection), DEAE 덱스트란을 이용한 형질감염(DEAE Dextran-mediated transfection), 폴리브렌을 이용한 형질감염(polybrene-mediated transfection), 전기침공법(electroporation), 유전자 총(gene gun) 및 세포 내로 핵산을 유입시키기 위한 다른 공지의 방법에 의해 형질전환 동물 제작을 위한 세포 내로 도입할 수 있다.The “vector” or “expression vector” can be introduced into cells by a method known in the art. For example, but not limited thereto, transient transfection, microinjection, transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE dextran Transfection using (DEAE Dextran-mediated transfection), transfection using polybrene (polybrene-mediated transfection), electroporation, gene gun, and other known methods for introducing nucleic acids into cells Can be introduced into cells for production of transgenic animals.
상기 “신경세포” 또는 “뉴런”은 인체 내 신경계의 구조 및 기능단위를 의미하며, 바람직하게는 뇌 내의 신경세포 또는 뉴런이다.The “nerve cell” or “neuron” refers to the structure and functional unit of the nervous system in the human body, and is preferably a neuron or a neuron in the brain.
다른 양상은 상기 유도만능 줄기세포를 신경세포로 분화시켜 얻어진 신경 세포에 관한 것이다.Another aspect relates to a nerve cell obtained by differentiating the induced pluripotent stem cell into a nerve cell.
다른 양상은 알츠하이머 환자의 혈액으로부터 분리된 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 PDMC에 역분화 인자를 발현하는 벡터를 도입하는 단계를 포함하는 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 줄기세포주를 제조하는 방법에 관한 것이다.Another aspect is a stem cell line containing an APP mutant gene having a V715M substitution comprising the step of introducing a vector expressing a dedifferentiation factor into a PDMC containing an APP mutant gene having a V715M substitution isolated from the blood of an Alzheimer's patient. It relates to a method of manufacturing.
다른 양상은 알츠하이머 질환을 예방 또는 치료하는데 효과적인 약물을 스크리닝하는 방법으로서, 상기 신경세포를 시험 물질과 접촉시키는 단계;Another aspect is a method of screening for a drug effective for preventing or treating Alzheimer's disease, comprising the steps of: contacting the nerve cells with a test substance;
상기 접촉된 신경세포의 Aβ 발현양, 인산화 타우 단백질 발현양, 미토콘드리아 운동성 및 미토콘드리아 분열과 융합의 불균형 중 하나 이상을 측정하는 단계;Measuring at least one of Aβ expression amount, phosphorylated tau protein expression amount, mitochondrial motility, and imbalance between mitochondrial division and fusion in the contacted neuron;
상기 측정된 결과를 상기 시험 물질과 접촉되지 않은 상기 신경세포로부터 측정된 결과와 비교하는 단계; 를 포함하는 약물 스크리닝 방법에 관한 것이다.Comparing the measured results with the measured results from the nerve cells not in contact with the test substance; It relates to a drug screening method comprising a.
상기 PBMC를 부유 배양하는 시간은 세포의 성장 속도에 따라 변동할 수 있으며, 본 발명에 있어서 4시간이 소요된다.The time for floating culture of the PBMC may vary depending on the growth rate of cells, and it takes 4 hours in the present invention.
용어, "치료"는 질환, 장애 또는 병태, 또는 그의 하나 이상의 증상의 경감, 진행 억제 또는 예방을 지칭하거나, 그를 포함한다.The term “treatment” refers to, or includes alleviation, inhibition of progression, or prevention of a disease, disorder or condition, or one or more symptoms thereof.
용어, "투여하는," "도포하는", "도입하는" 및 "이식하는"은 상호교환적으로 사용되고 일 구체예에 따른 패치 또는 조성물의 원하는 부위로의 적어도 부분적 국소화를 초래하는 방법 또는 경로에 의한 개체내로의 일 구체예에 따른 패치 또는 조성물의 배치를 의미할 수 있다.The terms “administering,” “applying”, “introducing” and “implanting” are used interchangeably and in a method or route that results in at least partial localization of a patch or composition according to one embodiment to a desired site. It may mean the placement of a patch or composition according to an embodiment into an individual by.
상기 알츠하이머 모델 세포주에 알츠하이머 예방 및 치료제 후보물질을 투여하는 단계에 있어서, 예방 및 치료제 후보물질은, 예를 들면, 피검 화합물 또는 피검 조성물은 저분자 화합물(small molecule compound), 항체(antibody), 안티센스 뉴클레오티드(antisense nucleotide), 작은 간섭 RNA(short interfering RNA, siRNA), 짧은 헤어핀 RNA(short hairpin RNA, shRNA), 핵산(nucleic acid), 단백질, 펩티드, 기타 추출물 또는 천연물을 포함할 수 있다.In the step of administering an Alzheimer's prophylactic and therapeutic candidate substance to the Alzheimer's model cell line, the prophylactic and therapeutic candidate substance is, for example, a test compound or a test composition, a small molecule compound, an antibody, or an antisense nucleotide. (antisense nucleotide), short interfering RNA (siRNA), short hairpin RNA (shRNA), nucleic acids, proteins, peptides, other extracts or natural products.
상기 말초 혈액 유래 단핵 세포가 유도만능 줄기세포로 역분화 되었는지 검증하는 마커에 있어서 Raf-1, FAK1, MEK-1, RAD51, RAD52, GADD45 GAMMA, NF-kB p52, Rb2, Oct3, Klf4 바람직하게는 SOX2, SSEA4 및 TRA-1-81를 포함한다.Raf-1, FAK1, MEK-1, RAD51, RAD52, GADD45 GAMMA, NF-kB p52, Rb2, Oct3, Klf4 in the markers for verifying whether the peripheral blood-derived mononuclear cells are dedifferentiated into induced pluripotent stem cells. SOX2, SSEA4 and TRA-1-81.
일 구체예로서, 역분화 줄기세포 형성을 확인하기 위하여 선택되는 마커의 수와 조합을 특정하게 제한하지 않고, 다양한 조합을 선택하여 사용할 수 있다. 상기 바이오마커들의 발현 정도를 mRNA 또는 단백질 수준에서 측정함으로써 역분화 줄기세포 형성 여부를 확인할 수 있다. 본 발명의 마커들의 핵산 서열 및 단백질 서열은 이미 공지되어 있으므로, 진단을 위한 마커 검출은 공지된 서열을 바탕으로, mRNA 또는 단백질 수준을 측정할 수 있는 제제를 이용하여 마커를 유용하게 검출할 수 있다. 상기 마커 단백질의 검출은 상기 단백질에 특이적으로 인지하는 항체를 시료에 접촉하여 이의 항원-항체 복합체형성을 측정하여 수행된다. 항원-항체 복합체의 형성량은 검출 라벨의 시그널의 크기를 통해서 정량적으로 측정 가능하다. 이러한 검출 라벨은 효소, 형광물, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사선 동위원소로 이루어진 군 중에서 선택할 수 있으며, 반드시 이로 제한되는 것은 아니다. 단백질 수준을 측정하기 위한 공지된 분석 방법으로는, 웨스턴 블롯, ELISA, 방사선면역분석, 방사 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 조직면역 염색, 면역침전 분석법, 보체 고정 분석법, 프리시피틴 반응, 겔 확산 프리시피틴 반응, 응집 분석법, 형광 면역분석법, 단백질 A 면역분석법, FACS, 단백질칩 등과 같은 경쟁 또는 비경쟁 분석 방법을 이용할 수 있으나, 이로 제한되는 것은 아니고, 임의의 방법에 의해 수행될 수 있다. 상기에서 ELISA는 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 표지된 또 다른 항체를 이용하는 직접적 샌드위치 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 또 다른 항체와 반응시킨 후 이 항체를 인지하는 표지된 2차 항체를 이용하는 간접적 샌드위치 ELISA 등의 다양한 ELISA 방법을 포함한다.As a specific example, the number and combination of markers selected for confirming the formation of dedifferentiated stem cells are not specifically limited, and various combinations may be selected and used. By measuring the level of expression of the biomarkers at the mRNA or protein level, it is possible to confirm whether or not dedifferentiated stem cells are formed. Since the nucleic acid sequence and protein sequence of the markers of the present invention are already known, detection of a marker for diagnosis can be usefully detected by using an agent capable of measuring mRNA or protein level based on the known sequence. . The detection of the marker protein is performed by contacting a sample with an antibody that specifically recognizes the protein and measuring its antigen-antibody complex formation. The amount of antigen-antibody complex formation can be quantitatively measured through the size of the signal of the detection label. The detection label may be selected from the group consisting of enzymes, fluorescent substances, ligands, luminescent substances, microparticles, redox molecules and radioactive isotopes, but is not limited thereto. Known assay methods for measuring protein levels include Western blot, ELISA, radioimmunoassay, radioimmunodiffusion method, octeroni immune diffusion method, rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, Competitive or non-competitive analysis methods such as precipitin reaction, gel diffusion presipitin reaction, aggregation assay, fluorescence immunoassay, protein A immunoassay, FACS, protein chip, etc. may be used, but are not limited thereto. Can be done by In the above, ELISA is a direct sandwich ELISA using another labeled antibody that recognizes an antigen in a complex of an antibody and an antigen attached to a solid support, and reacts with another antibody that recognizes an antigen in a complex of an antibody and an antigen attached to a solid support. It includes a variety of ELISA methods such as indirect sandwich ELISA using a labeled secondary antibody that recognizes this antibody after being prepared.
피부세포보다 채취가 용이한 혈액세포를 이용하여, 한국인 특유의 아밀로이드 전구체 단백질 돌연변이를 가진 알츠하이머 환자의 유도만능 줄기세포를 이용함으로써, 환자 개인별 질환 특성에 맞는 맞춤 치료제와 그 치료제를 스크리닝하는 방법을 제공한다.By using blood cells that are easier to collect than skin cells, and using induced pluripotent stem cells of Alzheimer's patients with mutations in the amyloid precursor protein unique to Koreans, we provide customized treatments tailored to the characteristics of each patient's disease and a method of screening the treatment. do.
도 1은, T1은 좌측 측두엽을 포함하여 일반적인 대뇌 피질 위축이 나타난 MR 영상이며 FBB-PET는 대뇌 피질과 양측 선조종에서 증가된 아밀로이드 흡수율 결과이다.1, T1 is an MR image showing general cortical atrophy including the left temporal lobe, and FBB-PET is a result of increased amyloid absorption in the cerebral cortex and bilateral acinar.
도 2는 APP-V715M 세포주의 가계도이다. 화살표로 표시된 환자는 상염색체 우성 유전 패턴 결과이다.Figure 2 is a family tree of the APP-V715M cell line. Patients indicated by arrows are the result of autosomal dominant genetic patterns.
도 3은 iPSC 세포주를 확립시킨 APP-V715M 환자의 OCT4, SOX2, Nanog, SSEA4, Tra-1-81과 같은 미분화 마커의 발현 결과이다.3 is an expression result of undifferentiated markers such as OCT4, SOX2, Nanog, SSEA4, and Tra-1-81 in APP-V715M patients in which iPSC cell lines were established.
도 4는 외배엽 (TUJ1, 녹색), 중배엽 (SMA, 녹색), 및 내배엽 (AFP, 적색)을 포함하는 3 개의 배아층(삼배엽)을 형성하는 iPSC 세포주의 분화능을 보여주는 면역세포 화학적 분석 결과이다. 스케일 바: 100μm.Figure 4 is an immunocytochemical analysis result showing the differentiation ability of iPSC cell lines forming three embryonic layers (triderm) including ectoderm (TUJ1, green), mesoderm (SMA, green), and endoderm (AFP, red). . Scale bar: 100 μm.
도 5는 APP-V715M iPSC 세포주의 APP 유전자에서 이형 접합체 V715M 돌연변이 (GTG에서 ATG 로의)의 존재를 나타내는 게놈 DNA 서열을 나타낸 결과이다.5 is a result showing genomic DNA sequence indicating the presence of a heterozygous V715M mutation (from GTG to ATG) in the APP gene of the APP-V715M iPSC cell line.
도 6은 세포내 잔존하는 센다이 바이러스 벡터가 없음을 보여주는 역전사 PCR 분석 결과이다.6 is a result of reverse transcription PCR analysis showing that there is no Sendai virus vector remaining in the cell.
도 7은 APP-V715M iPSC 세포주의 염색체 핵형 분석 결과이다.7 shows the results of chromosomal karyotyping of the APP-V715M iPSC cell line.
도 8은 모든 세 가지 배아 층의 형성을 보여주는 생체 내 테라토마 분석 결과이다: Tuj1- 양성 뉴런(외배엽, ectoderm), 연골(중배엽, mesoderm) 및 장 상피(내배엽, endoderm).Figure 8 is the results of in vivo teratoma analysis showing the formation of all three embryonic layers: Tuj1-positive neurons (ectoderm), cartilage (mesoderm, mesoderm) and intestinal epithelium (endoderm, endoderm).
도 9는 iPSC 유래 뉴런에서 배양 된 세포 외 Aβ42 및 Aβ40 발현양을 ELISA로 검출한 결과이다.9 is a result of detection of the expression levels of extracellular Aβ 42 and Aβ 40 cultured in iPSC-derived neurons by ELISA.
도 10은 신경 세포 분화 10 주째에 Aβ42(적색)에 대한 항체를 사용하여 Tuj1(녹색) 및 DAPI(청색)로 항 염색 된 Aβ 침전물의 발현을 보여주는 면역세포화학적 분석 결과이다.  네 개의 그림(왼쪽부터)은 APP-V715M iPSC 유래 뉴런에서 Aβ42 양성 Aβ 침착물(화살표로 표시)의 z- 스택 이미지 결과이다.10 is an immunocytochemical analysis result showing the expression of Aβ precipitates anti-stained with Tuj1 (green) and DAPI (blue) using an antibody against Aβ 42 (red) at 10 weeks of neuronal differentiation. Four figures (from left) are the z-stack image results of Aβ 42 positive Aβ deposits (marked by arrows) in APP-V715M iPSC-derived neurons.
도 11은 10주차 분화된 뉴런에서 ELISA를 사용하여 총 1μg의 단백질에서 TBS 불용성 / SDS 가용성 세포 내 Aβ42 및 Aβ40 발현양을 측정한 결과이다.11 is a result of measuring the expression levels of Aβ 42 and Aβ 40 in TBS insoluble / SDS soluble cells in a total of 1 μg of protein using ELISA in differentiated neurons at 10 weeks.
도 12는 신경세포 분화 10 주째에 iPSC 유래 뉴런에서 DAPI(청색)로 반대 염색된 AT8(인산화 타우 단백질)(적색) 및 MAP2 (녹색)의 발현을 나타내는 면역세포화학적 분석 결과이며, AT8(인산화 타우 단백질)의 발현은 소마(soma, 체세포)와 신경 돌기(neuritis)에서 나타났다.12 is an immunocytochemical analysis result showing the expression of AT8 (phosphorylated tau protein) (red) and MAP2 (green) stained with DAPI (blue) in iPSC-derived neurons at 10 weeks of neuronal differentiation, AT8 (phosphorylated tau Protein) was expressed in soma (somatic cells) and neuritis.
도 13은 MAP2 양성 세포에 대해 정상화시킨 면역세포화학 분석의 정량화 결과이다.13 is a result of quantification of immunocytochemical analysis normalized to MAP2-positive cells.
도 14 및 15는 APP-V715M iPSC 유래 뉴런에서 AT8의 증가 및 AT8 / Tau5의 비율을 보여주는 웨스턴 블롯 분석 결과이다(스케일 바: 10μm).14 and 15 are Western blot analysis results showing an increase in AT8 and a ratio of AT8 / Tau5 in APP-V715M iPSC-derived neurons (scale bar: 10 μm).
도 16은 미토콘드리아 운동에 대한 대표적인 키모그래프 결과이다.16 is a representative chymograph result for mitochondrial movement.
도 17은 전방(anterograde) 속도와 후방(retrograde) 속도의 평균 결과이다.17 is an average result of an anterograde speed and a retrograde speed.
도 18은 네 가지 독립적인 단백질의 대표적인 웨스턴 블롯 이미지 결과이다.18 is a representative Western blot image result of four independent proteins.
도 19는 미토콘드리아 융합(Mfn1 및 Mfn2) 및 분열(DRP1 및 Fis1)과 관련된 단백질의 정량화 결과이다.19 is a result of quantification of proteins related to mitochondrial fusion (Mfn1 and Mfn2) and division (DRP1 and Fis1).
실시예 1: 유도만능 줄기세포의 제조과정Example 1: Manufacturing process of induced pluripotent stem cells
Ficoll-Paque ™ PLUS 방법 (GE Healthcare, USA)을 이용하여 APP-V715M 환자의 말초 혈액으로부터 단핵 세포(MNCs)를 신선하게 분리 하였다. 분리된 말초 유래 단핵 세포(PBMCs)는 4일간 단핵구 배양액에 부유 배양된 후, 4가지 재프로그래밍 인자(OCT3/4, SOX2, cMYC, KLF4)를 발현하는 센다이 바이러스 벡터 (SeVdp)를 사용하여 역분화되었다.  iPSC 생성을 위해 3개 이상의 개별 클론을 골라 내고 추가 분석을 위해 가장 잘 성장하는 클론을 선택했다. 상기 선별된 클론을 4주간 배양하여 유도만능 줄기세포 콜로니를 형성한다.Monocytes (MNCs) were freshly isolated from peripheral blood of APP-V715M patients using the Ficoll-Paque™ PLUS method (GE Healthcare, USA). The isolated peripheral-derived mononuclear cells (PBMCs) were suspended in monocyte culture for 4 days and then dedifferentiated using Sendai virus vector (SeVdp) expressing four reprogramming factors (OCT3/4, SOX2, cMYC, KLF4). Became. Three or more individual clones were picked for iPSC generation and the best growing clone was selected for further analysis. The selected clones are cultured for 4 weeks to form an induced pluripotent stem cell colony.
실시예 2: 유도만능 줄기세포의 테라토마 형성 및 분석Example 2: teratoma formation and analysis of induced pluripotent stem cells
APP-V715M 단일 뉴클레오타이드 돌연변이의 유전자형 결정은 DNA 시퀀싱(Cosmo Genetech, Korea)에 의해 수행되었다. APP 유전자는 하기 프라이머(정방향 프라이머: TTC AAG GTG TTC TTT GCA GA; 역방향 프라이머: CAT AGT CTT AAT TCC CAC TTG G)를 사용하여 PCR로 증폭시켰다. 테라토마 형성을 위해, 미분화 된 iPSC를 수확하여 NOG 마우스에 피하 이식하였다. 테라토마를 주사 후 12 주차에 절개, 분리한 후 4 % 파라포름알데히드(PFA)로 고정시켰다. 파라핀에 임베딩한 조직을 절단하여 헤마톡실린 / 에오신으로 염색하여 삼배엽(외배엽, 내배엽, 중배엽) 조직을 형성되었는지 여부를 관찰하였다.Genotyping of the APP-V715M single nucleotide mutation was performed by DNA sequencing (Cosmo Genetech, Korea). The APP gene was amplified by PCR using the following primers (forward primer: TTC AAG GTG TTC TTT GCA GA; reverse primer: CAT AGT CTT AAT TCC CAC TTG G). For teratoma formation, undifferentiated iPSCs were harvested and implanted subcutaneously in NOG mice. The teratoma was incised and separated at 12 weeks after injection, and then fixed with 4% paraformaldehyde (PFA). The tissue embedded in paraffin was cut and stained with hematoxylin / eosin to observe whether or not tridermal (ectoderm, endoderm, mesoderm) tissue was formed.
실험예 1: APP-V715M 돌연변이를 가진 알츠하이머 환자(Alzheimer's disease, AD)의 MRI 및 가계도 특성Experimental Example 1: MRI and pedigree characteristics of Alzheimer's disease (AD) patients with APP-V715M mutation
APP 돌연변이 (Exon17; c.2143G> A; p.V715M)를 가진 54세의 남자를 대상으로 삼았다. 환자는 운동성과 강직성을 나타내었고 구두 명령을 이해하지 못했다.A 54-year-old male with an APP mutation (Exon17; c.2143G> A; p.V715M) was enrolled. The patient showed mobility and rigidity and did not understand verbal commands.
도 2에 나타난 바와 같이 환자는(화살표로 표시됨) 상염색체 우성 패턴으로 치매가 발병하였다.As shown in Fig. 2, the patient (indicated by an arrow) developed dementia in an autosomal dominant pattern.
도 1에 나타난 바와 같이 촬영한 MRI에서 대뇌 피질 위축을 보이고 18F-Florbetaben amyloid PET(18FBB-PET)에서 양측의 선조체와 연관 피질에 상당한 아밀로이드 축적을 보였다.As shown in FIG. 1,   taken MRI showed cortical atrophy, and 18F-Florbetaben amyloid PET (18FBB-PET) showed significant amyloid accumulation in both striatum and associated cortex.
실험예 2: APP-V715M 돌연변이가 있는 AD 환자에서 얻어진 iPSC 의 검증 마커 확인Experimental Example 2: Confirmation of the validation marker of iPSC obtained in AD patients with APP-V715M mutation
AD 환자에서 얻어진 iPSC가 AD의 병리학적 특징을 잘 나타내는지에 대해 알아보기 위해 하기 실험을 실시하였다. APP-V715M 돌연변이를 가진 환자의 병리학적 특징을 조사하기 위해, 실시예 1 및 2에 기하여 APP-V715M 돌연변이를 지닌 AD 환자로부터 iPSC 세포주를 제작했다. 도 3에 나타난 바와 같이 APP-V715M 돌연변이가 있는 iPSC 세포주는 유도만능 줄기세포 마커의 전형적인 발현을 보이며, OCT4, SOX2, SSEA4 및 TRA-1-81을 포함한다. iPSC 세포주의 분화능은 생체 외 배아체 형성 및 생체 외 테라토마 검사를 사용하여 평가하였으며, 도 4 및 8에 나타난 바와 같이 삼배엽 특이적 마커 발현이 나타났다.The following experiment was conducted to find out whether iPSCs obtained in AD patients well represent pathological features of AD. In order to investigate the pathological characteristics of patients with the APP-V715M mutation, iPSC cell lines were constructed from AD patients with the APP-V715M mutation based on Examples 1 and 2. As shown in FIG. 3, the iPSC cell line with the APP-V715M mutation shows typical expression of induced pluripotent stem cell markers, and includes OCT4, SOX2, SSEA4 and TRA-1-81. The differentiation ability of the iPSC cell line was evaluated using in vitro embryoid body formation and in vitro teratoma test, and as shown in Figs. 4 and 8, the expression of trigerm-specific markers was shown.
도 5에 나타난 바와 같이 확립된 iPSC 세포주의 유전형을 통상적인 시퀀싱 분석 방법으로 확인하였다.  도 6에 나타난 바와 같이 SeVdp 벡터는 확립되어진 iPSC 세포주에 삽입되지 않았으며, 도 7에 나타난 바와 같이 염색체의 핵형은 모두 정상이었다.As shown in Fig. 5, the genotype of the established iPSC cell line was confirmed by a conventional sequencing analysis method. As shown in FIG. 6, the SeVdp vector was not inserted into the established iPSC cell line, and as shown in FIG. 7, all of the karyotypes of chromosomes were normal.
실험예 3: APP-V715M iPSC 유래 뉴런의 Aβ 및 p-tau 증가 여부Experimental Example 3: Whether APP-V715M iPSC-derived neurons increase Aβ and p-tau
세포 차원에서 APP-V715M 돌연변이를 갖는 환자의 APP-V715M iPSC 유래 뉴런에서 아밀로이드 발현양을 조사하기 위해, 하기 실험을 실시했다. 세포외 아밀로이드 -β 발현양은 사용된 배양액(CM)를 사용하여 측정하였는데, 이는 분화 10 주에서 마지막 배지를 교체시킨 후 48 시간에 배양된 신경세포(1 × 105)로부터 수집 하였다. 세포 내 아밀로이드는 10주간 분화된 뉴런의 총 1μg 단백질에서 측정되었다.In order to investigate the amount of amyloid expression in APP-V715M iPSC-derived neurons of patients with the APP-V715M mutation at the cellular level, the following experiment was conducted. The amount of extracellular amyloid-β expression was measured using the culture medium (CM) used, which was collected from neurons (1 × 10 5 ) cultured 48 hours after the last medium was replaced at 10 weeks of differentiation. Intracellular amyloid was measured in a total of 1 μg protein of neurons differentiated for 10 weeks.
40 및 Aβ42 발현양을 세포 외 및 세포 내에서 측정 하였다. 도 9에 나타난 바와 같이 Aβ40 발현양의 유의한 차이는 발견되지 않았으나 APP-V715M iPSC에서 분화된 뉴런은 10주간의 분화 후 Aβ42 발현양에서 2배 이상의 극적인 증가를 나타냈다.  또한 Aβ42 / Aβ40의 비율이 APP-V715M iPSC에서 분화시킨 그룹에서, 대조군에 비교하여 2배 이상 증가되었다.40 and Aβ 42 expression levels were measured extracellularly and intracellularly. As shown in FIG. 9, no significant difference in the Aβ 40 expression was found, but neurons differentiated from APP-V715M iPSC showed a dramatic increase of more than 2 times in the Aβ 42 expression level after 10 weeks of differentiation. In addition, the ratio of Aβ 42 / Aβ 40 was increased more than 2 times in the group differentiated from APP-V715M iPSC compared to the control group.
 Aβ 침전물을 검출하기 위해 iPSC 유래 뉴런을 10 주간의 신경 분화 단계에서 Aβ42 항체로 염색 하였다. 도 10에 나타난 바와 같이 공초점 현미경 이미지는 대조군과 비교하여 APP-V715M iPSC로부터 분화시킨 뉴런에서 세포 외 Aβ42 침전물의 증가를 나타내었다.To detect Aβ precipitates, iPSC-derived neurons were stained with Aβ 42 antibody at the neuron differentiation stage of 10 weeks. As shown in FIG. 10, the confocal microscopy image showed an increase in extracellular Aβ 42 precipitate in neurons differentiated from APP-V715M iPSC compared to the control.
또한 TBS 불용성 / SDS 가용 분획을 추출했다. TBS 불용성 / SDS 가용성 세포 내 Aβ42 및 Aβ40 발현양은 총 1μg의 단백질에서 10 주간의 분화에서 ELISA를 사용하여 측정되었다. 도 11에 나타난 바와 같이 세포 내 Aβ42의 발현양과 Aβ42 / Aβ40의 비율은 APP-V715M iPSC 유래 뉴런에서 유의하게 증가 하였다.In addition, the TBS insoluble/SDS soluble fraction was extracted. The expression levels of Aβ 42 and Aβ 40 in TBS insoluble/SDS soluble cells were measured using ELISA at 10 weeks of differentiation in a total of 1 μg of protein. Expression amount and the ratio of Aβ 42 / Aβ 40 in FIG as intracellular Aβ 42 shown in 11 is significantly increased in APP-V715M iPSC-derived neurons.
웨스턴 블롯 방법을 이용하여 특정 단백질의 발현양을 정량적으로 측정한다. 단백질을 폴리아크릴아미드(Polyacrylamide) 젤에서 전기영동을 이용하여 분리하고, PVDF(polyvinylidene difluoride) 필터에 옮긴다. 그 후 측정하고자 하는 단백질의 항체(1차 항체)와 결합시킨 후 이 항체와 반응하는 2차 항체를 이용하여 밴드를 형상화한다. 단백질의 분자량을 측정하기 위한 크기의 마커(size marker)를 기준으로, 보고자 하는 단백질의 분자량 크기에 위치한 밴드를 정량한다.The amount of expression of a specific protein is quantitatively measured using the Western blot method. The protein was separated on a polyacrylamide gel by electrophoresis, and transferred to a PVDF (polyvinylidene difluoride) filter. After that, after binding with the antibody (primary antibody) of the protein to be measured, a band is formed using a secondary antibody that reacts with this antibody. Based on the size marker for measuring the molecular weight of the protein, the band located at the molecular weight size of the protein to be viewed is quantified.
면역세포화학적 분석 방법을 이용하여 발현하는 특정 단백질을 형광물질로 표지하여 발현양을 측정한다. 4% PFA로 고정시킨 세포를 측정하고자 하는 단백질의 1차 항체와 결합시킨 후 이 항체와 반응하는 형광물질이 붙어 있는 2차 항체를 이용하여 보고자 하는 단백질의 발현양을 관찰한다. 특정 단백질이 대조군과 비교하여 실험군에 존재하는 지 여부를 알 수 있고 더 나아가서 세포 내 어떤 특정 부위에 그 단백질이 존재하는 지도 확인 할 수 있다.The amount of expression is measured by labeling a specific protein expressed with a fluorescent substance using an immunocytochemical analysis method. After binding the cells immobilized with 4% PFA with the primary antibody of the protein to be measured, the expression level of the protein to be viewed is observed using a secondary antibody to which a fluorescent substance reacting with this antibody is attached. It is possible to know whether a specific protein is present in the experiment group compared to the control group, and furthermore, it is possible to check whether the protein is present in a specific part of the cell.
 Aβ 펩타이드의 증가 및 축적이 응집된 과인산화된 타우 단백질(hyper-phosphorylated tau)로 구성된 신경 섬유의 얽힘(tangle)을 유도 할 수 있다는 것이 최근 in vitro 실험에서 증명되었다.  Tau 단백질은 일반적으로 성숙한 뉴런의 축색 돌기에서 가용성 형태로 존재한다. 그러나, 과인산화되면 tau 단백질은 AD에서 수상 돌기와 세포체에 비정상적으로 축적된다.  APP-V715M iPSC 유래 뉴런에서 인산화 타우 단백질 발현양을 조사하기 위해, AT8에 대한 항체(Ser202 / Thr205에서 인산화 됨)를 사용하여 면역세포화학 분석을 수행하였다. 도 13에 나타난 바와 같이 APP-V715M iPSC 유래 뉴런이 신경 돌기 및 소마에서 대조군과 비교할 시 AT8 발현의 유의한 증가를 나타내었다.It has been demonstrated in recent in vitro experiments that the increase and accumulation of Aβ peptides can induce tangle of nerve fibers composed of aggregated hyper-phosphorylated tau proteins. The Tau protein is usually present in a soluble form in the axon of mature neurons. However, when hyperphosphorylated, tau protein is abnormally accumulated in dendrite and cell bodies in AD. In order to investigate the expression level of phosphorylated tau protein in APP-V715M iPSC-derived neurons, immunocytochemical analysis was performed using an antibody against AT8 (phosphorylated at Ser202 / Thr205). As shown in FIG. 13, the  APP-V715M iPSC-derived neurons showed a significant increase in AT8 expression in neurite and soma when compared with the control group.
또한, 도 14 및 15에 나타난 바와 같이 AT8 단백질 발현양을 측정하기 위해 웨스턴 블랏을 수행하여 APP-V715M iPSC- 유래 뉴런에서 인산화 타우 단백질 발현양의 증가를 나타냈다. APP-V715M iPSC 유래 뉴런이 세포 외 및 세포 내 Aβ 발현양 및 인산화 타우 단백질 발현양이 모두 유의적인 증가를 나타냄을 입증하였다.In addition, as shown in Figs. 14 and 15, Western blot was performed to measure the amount of AT8 protein expression, indicating an increase in the amount of phosphorylated tau protein in APP-V715M iPSC-derived neurons. It was demonstrated that APP-V715M iPSC-derived neurons showed significant increases in both extracellular and intracellular Aβ expression levels and phosphorylated tau protein expression levels.
실험예 4: 미토콘드리아 운동 장애 및 APP-V715M iPSC 유래 뉴런에서 미토콘드리아 융합 및 분열의 불균형 관찰Experimental Example 4: Mitochondrial motility disorder and imbalance observation of mitochondrial fusion and division in neurons derived from APP-V715M iPSC
미토콘드리아 운동을 조사하기 위해, 10 주간의 연속적인 분화에서 Mito-tracker (Ds-Red)를 사용하여 살아있는 세포의 영상 분석을 수행했다. 살아있는 세포는 Leica TCSSP5II 공초점 현미경을 사용하여 이미징되었다. 10주간 분화된 뉴런을 Mito-tracker red (Thermo-Fisher Cat.M7512)와 함께 15분 동안 배양하여 생세포 영상(LCI) 분석을 실시했다. 세포를 37 ℃로 유지하고 영상화 중에 5 % CO2 / 95 % O2 (Live Cell Instrument, Seoul, Korea)를 공급 받았다. 저속 이미지 기록은 2초 간격으로 4분 30초까지 지속되었다. 미토콘드리아 키모그래프 (Kymograph)는 이미지 시퀀스에서 키모그래프를 생성할 수 있는 imageJ 매크로 도구 세트인 KymographClear를 사용하여 분석되었다. 미토콘드리아 속도의 정량 분석은 KymographDirect를 사용하여 수행되었다.To investigate mitochondrial movement, imaging analysis of live cells was performed using a Mito-tracker (Ds-Red) at 10 weeks of continuous differentiation. Live cells were imaged using a Leica TCSSP5II confocal microscope. Neurons differentiated for 10 weeks were cultured with Mito-tracker red (Thermo-Fisher Cat.M7512) for 15 minutes to perform live cell imaging (LCI) analysis. The cells were maintained at 37 °C and 5% CO2 / 95% O 2 (Live Cell Instrument, Seoul, Korea) was supplied during imaging. Slow image recording lasted up to 4 minutes 30 seconds at 2 second intervals. Mitochondrial chymographs were analyzed using KymographClear, a set of imageJ macro tools capable of generating chymographs from image sequences. Quantitative analysis of mitochondrial velocity was performed using KymographDirect.
도17에 나타난 바와 같이 전방 속도와 후방 속도는 대조군과 비교하여 APP-V715M iPSC 유래 뉴런에서 유의하게 감소 하였다.As shown in Fig. 17, the anterior velocity and the posterior velocity were significantly decreased in APP-V715M iPSC-derived neurons compared to the control group.
또한 mitochondria 융합 관련 단백질 Mfn1(막 단백질 mitofusin 1), Mfn2(막 단백질 mitofusin 2) 및 mitochondria 핵분열 관련 단백질 DRP1(다이나민 관련 단백질 1) 및 Fis1(미토콘드리아 분열 1 단백질)을 포함하는 미토콘드리아 융합 및 핵분열 관련 단백질의 발현 양상을 조사하였다. 특히, DRP1 발현양은 대조군과 비교하여 APP-V715M iPSC- 유도 뉴런에서 유의하게 증가 하였다. 이는 높은 발현양의 Aβ와 인산화 타우 단백질이 미토콘드리아 수송을 방해할 수 있다는 것을 강력히 시사한다. 아마도 APP-V715M iPSC 유래 뉴런에서 미토콘드리아 융합과 분열의 균형이 손상되었기 때문일 수 있다.  도 18 및 19에 나타난 바와 같이 웨스턴 블롯 분석 결과, 분열 관련 마커(DRP1 및 Fis1)가 증가하는 것으로 나타났으며, 융합 관련 마커(Mfn1 및 Mfn2)는 APP-V715M iPSC 유래 뉴런에서 현저히 감소하였다.In addition, mitochondrial fusion and fission-related proteins, including mitochondria fusion-related proteins Mfn1 (membrane protein mitofusin 1), Mfn2 (membrane protein mitofusin 2), and mitochondria fission-related proteins DRP1 (dyinamine-related protein 1) and Fis1 (mitochondrial fission 1 protein). The expression pattern of was investigated. In particular, the amount of DRP1 expression was significantly increased in APP-V715M iPSC-induced neurons compared to the control group. This strongly suggests that high expression levels of Aβ and phosphorylated tau proteins can interfere with mitochondrial transport. This may be due to the impaired balance of mitochondrial fusion and division in APP-V715M iPSC-derived neurons. As a result of Western blot analysis as shown in FIGS. 18 and 19, it was found that the cleavage-related markers (DRP1 and Fis1) were increased, and the fusion-related markers (Mfn1 and Mfn2) were significantly decreased in the APP-V715M iPSC-derived neurons.

Claims (14)

  1. V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 인간 PBMC로부터 역분화된 유도만능 줄기세포.Induced pluripotent stem cells dedifferentiated from human PBMCs containing an APP mutant gene with a V715M substitution.
  2. 청구항 1에 있어서, 상기 역분화는 상기 PBMC에 역분화 인자를 발현하는 벡터를 도입하는 단계를 포함하는 것인 줄기세포.The stem cell of claim 1, wherein the dedifferentiation comprises introducing a vector expressing a dedifferentiation factor into the PBMC.
  3. 청구항 2에 있어서, 상기 벡터는 OCT3/4, SOX2, cMYC 및 KLF4를 발현하는 센다이 바이러스 벡터인 것인 줄기세포.The stem cell of claim 2, wherein the vector is a Sendai virus vector expressing OCT3/4, SOX2, cMYC and KLF4.
  4. 청구항 1에 있어서, 상기 줄기세포는 OCT4, SOX2, SSEA4 및 TRA-1-81를 발현하는 것인 줄기세포.The stem cell of claim 1, wherein the stem cell expresses OCT4, SOX2, SSEA4 and TRA-1-81.
  5. 청구항 1 내지 4 중 어느 한 항의 줄기세포를 신경세포로 분화시켜 얻어진 신경 세포.A nerve cell obtained by differentiating the stem cell of any one of claims 1 to 4 into a nerve cell.
  6. 청구항 5에 있어서, 상기 분화는 신경전구체 단계를 포함하는 방법에 의하여 이루어진 것인 신경 세포.The neuron according to claim 5, wherein the differentiation is made by a method comprising a neuroprecursor step.
  7. 청구항 5에 있어서, V715M 치환을 갖는 APP 돌연변이체 유전자를 발현하는 것인 신경세포.The neuron according to claim 5, which expresses an APP mutant gene having a V715M substitution.
  8. 청구항 5에 있어서, 높은 발현양의 아밀로이드 베타, 높은 발현양의 인산화된 타우, 미토콘드리아 운동 장애 및 미토콘드리아 분열과 융합의 불균형을 갖는 것인 신경세포.The neuron according to claim 5, which has a high expression amount of amyloid beta, a high expression amount of phosphorylated tau, mitochondrial dyskinesia, and an imbalance of mitochondrial division and fusion.
  9. 알츠하이머 환자의 혈액으로부터 분리된 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 PDMC에 역분화 인자를 발현하는 벡터를 도입하는 단계를 포함하는 V715M 치환을 갖는 APP 돌연변이체 유전자를 함유하는 줄기세포주를 제조하는 방법. To prepare a stem cell line containing an APP mutant gene having a V715M substitution comprising the step of introducing a vector expressing a dedifferentiation factor into PDMC containing an APP mutant gene having a V715M substitution isolated from the blood of Alzheimer's patients. Way.
  10. 청구항 9에 있어서, 상기 벡터는 OCT3/4, SOX2, cMYC, 및 KLF4 를 발현하는 센다이 바이러스 벡터인 것인 방법.The method of claim 9, wherein the vector is a Sendai virus vector expressing OCT3/4, SOX2, cMYC, and KLF4.
  11. 청구항 9에 있어서, 상기 역분화가 유도된 말초 유래 단핵 세포에서 OCT4, SOX2, SSEA4 및 TRA-1-81의 발현을 확인하여 유도만능 줄기세포를 선별하는 단계를 포함하는 것인 방법.The method according to claim 9, comprising the step of selecting an induced pluripotent stem cell by checking the expression of OCT4, SOX2, SSEA4, and TRA-1-81 in the peripheral-derived mononuclear cells in which the dedifferentiation is induced.
  12. 청구항 9의 얻어진 유도만능 줄기세포로부터 신경세포를 분화시키는 단계를 포함하는 V715M 치환을 갖는 APP 돌연변이체를 발현하는 신경세포를 제조하는 방법.A method for producing a neuron expressing an APP mutant having a V715M substitution comprising the step of differentiating a neuron from the induced pluripotent stem cell of claim 9.
  13. 알츠하이머 질환을 예방 또는 치료하는데 효과적인 약물을 스크리닝하는 방법으로서,As a method of screening for drugs effective in preventing or treating Alzheimer's disease,
    청구항 5의 신경세포를 시험 물질과 접촉시키는 단계;Contacting the nerve cell of claim 5 with a test substance;
    상기 접촉된 신경세포의 Aβ 발현양, 인산화 타우 단백질 발현양, 미토콘드리아 운동성 및 미토콘드리아 분열과 융합의 불균형 중 하나 이상을 측정하는 단계;Measuring at least one of Aβ expression amount, phosphorylated tau protein expression amount, mitochondrial motility, and imbalance between mitochondrial division and fusion in the contacted neuron;
    상기 측정된 결과를 상기 시험 물질과 접촉되지 않은 청구항 5의 신경세포로부터 측정된 결과와 비교하는 단계;를 포함하는 방법. Comprising the step of comparing the measured result with the measured result from the nerve cell of claim 5 not in contact with the test substance.
  14. 청구항 13에 있어서, 상기 Aβ 발현양의 감소, 인산화 타우 단백질 발현양의 감소, 미토콘드리아 운동성의 증가 및 미토콘드리아 융합과 분열 불균형 감소 중 하나 이상의 측정 결과가 나타나는 경우, 상기 시험 물질을 알츠하이머 질환을 예방 또는 치료하는데 효과적인 약물로서 선택하는 단계를 더 포함하는 것인 방법.The method of claim 13, wherein when one or more of the measurement results of a decrease in the Aβ expression level, a decrease in the phosphorylated tau protein expression level, an increase in mitochondrial motility, and a decrease in mitochondrial fusion and division imbalance appear, the test substance is used to prevent or treat Alzheimer's disease. The method further comprising the step of selecting as an effective drug.
PCT/KR2020/006056 2019-05-10 2020-05-07 Induced pluripotent stem cells of alzheimer's disease patient with mutation (v715m) in amyloid precursor protein WO2020231089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0055163 2019-05-10
KR1020190055163A KR102203861B1 (en) 2019-05-10 2019-05-10 Induced pluripotent stem cells having amyloid precursor protein mutants(v715m) derived from Alzheimer's disease patients

Publications (1)

Publication Number Publication Date
WO2020231089A1 true WO2020231089A1 (en) 2020-11-19

Family

ID=73289686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006056 WO2020231089A1 (en) 2019-05-10 2020-05-07 Induced pluripotent stem cells of alzheimer's disease patient with mutation (v715m) in amyloid precursor protein

Country Status (2)

Country Link
KR (1) KR102203861B1 (en)
WO (1) WO2020231089A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133598A (en) * 2012-05-29 2013-12-09 차의과학대학교 산학협력단 Screening method for candidate drugs for huntington's disease using induced pluripotent stem cells derived from huntington's disease patients
KR20140125682A (en) * 2013-04-19 2014-10-29 차의과학대학교 산학협력단 Pharmaceutical composition for the treatment of stroke comprising neural precursor cells derived from human induced pluripotent stem cells
KR20180033062A (en) * 2016-09-23 2018-04-02 사회복지법인 삼성생명공익재단 Method of screening for patient-specific stem cell treating agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133598A (en) * 2012-05-29 2013-12-09 차의과학대학교 산학협력단 Screening method for candidate drugs for huntington's disease using induced pluripotent stem cells derived from huntington's disease patients
KR20140125682A (en) * 2013-04-19 2014-10-29 차의과학대학교 산학협력단 Pharmaceutical composition for the treatment of stroke comprising neural precursor cells derived from human induced pluripotent stem cells
KR20180033062A (en) * 2016-09-23 2018-04-02 사회복지법인 삼성생명공익재단 Method of screening for patient-specific stem cell treating agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUNENARI ITOH, KAWAGOE SHIHO, OKANO HIROTAKA JAMES, NAKAGAWA HIDEMI: "Integration-free T cell -derived human induced pluripotent stem cells (iPSCs) from a patient with lymphedema-distichiasis syndrome (LDS) carrying an insertion-deletion complex mutation in the FOXC2 gene", STEM CELL RESEARCH, vol. 16, no. 3, 1 May 2016 (2016-05-01), pages 611 - 613, XP055760965, ISSN: 1873-5061, DOI: 10.1016/j.scr.2016.03.004 *
SONG, JIHWAN; LI, LING; KIM, HEE JIN; CHANG, JONG WOOK; AND NA, DUK L: "W-1152 Generation and phenotype characterization of ad patient-specific IPSC lines", ISSCR 2017 ANNUAL MEETING, INTERNATIONAL SOCIETY FOR STEM CELL RESEARCH, 14-17 JUNE, BOSTON , 2017, pages 132, XP009524683, DOI: W-1152 *

Also Published As

Publication number Publication date
KR20200129962A (en) 2020-11-18
KR102203861B1 (en) 2021-01-15

Similar Documents

Publication Publication Date Title
Song et al. Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis
Guo et al. Expression of pax6 and sox2 in adult olfactory epithelium
Fernández et al. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis
Park et al. Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells
Proietti et al. Activation of skeletal muscle–resident glial cells upon nerve injury
Mukherjee-Clavin et al. Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder
Nayler et al. Human iPSC-derived cerebellar neurons from a patient with ataxia-telangiectasia reveal disrupted gene regulatory networks
KR102087294B1 (en) A method for preparing the Parkinson's disease model comprising 3D intestinal organoid and 3D neuro ectodermal sphere, and use thereof
KR102187148B1 (en) Methods for providing information on the diagnosis of sporadic Parkinson's disease and drug screening methods
Mancinelli et al. The Transcription Regulator Patz1 Is Essential for Neural Stem Cell Maintenance and Proliferation
Turrero García et al. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production
WO2020231089A1 (en) Induced pluripotent stem cells of alzheimer's disease patient with mutation (v715m) in amyloid precursor protein
Chanas‐Sacré et al. Identification of PSF, the polypyrimidine tract‐binding protein–associated splicing factor, as a developmentally regulated neuronal protein
KR20010071601A (en) Ependymal neural stem cells and method for their isolation
WO2022222974A1 (en) Method for quality control and enrichment of human dopaminergic neural precursor cells
Mazuir et al. Oligodendrocyte secreted factors shape hippocampal GABAergic neuron transcriptome and physiology
Li et al. Ap4s1 truncation leads to axonal defects in a zebrafish model of spastic paraplegia 52
KR20220024104A (en) Autologous cell replacement therapy for Parkinson's disease
KR102203860B1 (en) Induced pluripotent stem cells having presenilin protein mutants(E120K) derived from Alzheimer's disease patients
CN114672462B (en) Alzheimer disease model and establishment method and application thereof
Gancheva et al. Effect of Octamer-Binding Transcription Factor 4 Overexpression on the Neural Induction of Human Dental Pulp Stem Cells
Cirnaru et al. Transcriptional and epigenetic characterization of early striosomes identifies foxf2 and olig2 as factors required for development of striatal compartmentation and neuronal phenotypic differentiation
Sasserath et al. An Induced Pluripotent Stem Cell‐Derived Neuromuscular Junction Platform for Study of the NGLY1‐Congenital Disorder of Deglycosylation
WO2021251513A1 (en) Composition for inducing direct cross differentiation of somatic cell into motor neuron, and method for using same
WO2022255532A1 (en) Method for evaluating arrhythmia risk of drug, using human pluripotent stem cell-derived cardiomyocyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805629

Country of ref document: EP

Kind code of ref document: A1