WO2020230871A1 - Open-cell sponge, and puff for cosmetic - Google Patents

Open-cell sponge, and puff for cosmetic Download PDF

Info

Publication number
WO2020230871A1
WO2020230871A1 PCT/JP2020/019353 JP2020019353W WO2020230871A1 WO 2020230871 A1 WO2020230871 A1 WO 2020230871A1 JP 2020019353 W JP2020019353 W JP 2020019353W WO 2020230871 A1 WO2020230871 A1 WO 2020230871A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
continuously
sponge
polyester
mass
Prior art date
Application number
PCT/JP2020/019353
Other languages
French (fr)
Japanese (ja)
Inventor
祐典 岩口
松田 伸也
剛正 杉山
草川 公一
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to KR1020217036750A priority Critical patent/KR20220008270A/en
Priority to CN202080034962.2A priority patent/CN113811557B/en
Publication of WO2020230871A1 publication Critical patent/WO2020230871A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • A45D34/04Appliances specially adapted for applying liquid, e.g. using roller or ball
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4263Polycondensates having carboxylic or carbonic ester groups in the main chain containing carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0033Foam properties having integral skins

Definitions

  • This disclosure relates to continuously breathable sponges and cosmetic puffs.
  • the present invention relates to an open-cell sponge which is a foam formed by mechanical foaming and is characterized by a low water absorption rate.
  • the open-cell sponge which is one of the uses of this disclosure, relates to a cosmetic puff that does not allow the liquid foundation to penetrate excessively.
  • a non-reactive silicone-based water repellent material is kneaded into a polyurethane solution raw material, extruded, and then decompressed under heating to make a solvent.
  • a method of obtaining a foam by vaporizing see Patent Document 1.
  • a foam obtained by foaming a polyol composed of vegetable oil (castor oil type) and diphenylmethane diisocyanate type (MDI type) isocyanate by a water foaming method has also been proposed (see Patent Document 3).
  • a mechanical foam obtained by mechanical foaming mechanical floss method
  • a foam using a polyol having a high terminal primaryization rate has been proposed (see Patent Document 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-284923
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-89582
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-54164:
  • Patent Document 4 Patent No. 6106523
  • the foam of Patent Document 2 is water-foamed, the cells are rough and the skin feel is not good. Further, since the foam of Patent Document 3 is also water-foamed, it tends to become closed cells, and therefore the cells are intentionally roughened to form continuous bubbles, so that fine cells cannot be obtained and the skin feel is not good.
  • Patent Document 4 Although the mechanical foam of Patent Document 4 is mechanically foamed, it is mainly composed of polypropylene glycol, so that it is difficult to obtain fine cells and the liquid absorption rate is too high.
  • a foam having an appropriate liquid absorption rate and a high skin feel is useful for, for example, a cosmetic puff that suppresses the consumption of liquid foundation and requires a comfortable feeling when applying the foundation to the skin, and is desired.
  • the current situation is that there is.
  • an object of the present disclosure is to provide a continuously breathable sponge having an appropriate liquid absorption rate and a good skin feel, and a cosmetic puff.
  • FIG. 1 It is a schematic diagram which shows an example of the apparatus for carrying out the manufacturing method of the continuous ventilation type sponge which concerns on this embodiment. It is a figure which shows the degree of penetration of the liquid foundation of the continuous ventilation type sponge of Example 4. It is a figure which shows the degree of penetration of the kid foundation of the sponge of Comparative Example 7.
  • the continuously ventilated sponge (hereinafter, also simply referred to as “sponge”) according to the present embodiment is Polymer polyols containing 30% by mass or more and 100% by mass or less of polyester dimerate with respect to all polymer polyols, Diphenylmethane diisocyanate-based isocyanate (hereinafter, also referred to as "MDI-based isocyanate”) and Defoamer and With the catalyst It is composed of a mechanical foam having a composition containing.
  • the composition for forming the foam (hereinafter, also referred to as “urethane raw material liquid”) may contain other components in addition to the above components.
  • the continuously ventilated sponge according to the present embodiment has an appropriate liquid absorption rate and a good skin feel due to the above configuration.
  • the reason is presumed as follows. There is a correlation between the liquid absorption rate of the liquid foundation and the water absorption rate of water, and the performance of the liquid absorption rate can be expressed by the water absorption rate.
  • the mechanical foam obtained by mechanically foaming a polyester polyol dimerate in an amount of 30% by mass or more and 100% by mass or less based on the total polymer polyol and an MDI-based isocyanate using a foam stabilizer and a catalyst is a polyester dimerate.
  • a polyol By using a polyol, it becomes a fine continuously ventilated foam.
  • the obtained mechanical foam has a property of not excessively absorbing a liquid because the polyester polyol dimerate is hydrophobic in terms of molecular structure, in addition to being a fine continuous air-permeable type.
  • the continuously ventilated sponge according to the present embodiment will be a sponge having an appropriate liquid absorption rate and a good skin feel due to the above configuration. Further, the continuously ventilated sponge according to the present embodiment can secure mechanical properties such as required strength.
  • the continuously breathable sponge according to the present embodiment having such characteristics when applied as a cosmetic puff, it becomes a cosmetic puff that does not excessively absorb the liquid foundation in addition to a comfortable touch. As a result, the consumption of the liquid foundation is suppressed, and the feeling of applying the foundation to the skin is realized. In addition, since the strength is secured, durability is also realized.
  • polyester polyol dimer acid A As the polymer polyol, a polyester polyol dimer acid (hereinafter, also referred to as “polyester polyol dimer acid A”) is applied. All polyols may be polyester polyol A dimer acid, but polyester polyol dimerate A and a polymer polyol other than polyester polyol dimer acid (hereinafter, also referred to as “polymer polyol B”) are used in combination. You may. By using the polymer polyol B together with the polyester polyol A dimer acid, it is possible to add various functions to the sponge, such as lowering the density of the sponge, controlling the liquid absorption property, and improving the solvent resistance.
  • the polymer polyol means a polyol having a hydroxyl value (OHv) of 250 or less.
  • the hydroxyl value OHv of the polyol is a value measured by JIS K1557-1: 2007.
  • the dimer acid polyester polyol A examples include a polyester polyol obtained by condensing dimer acid and glycol.
  • the dimer acid polyester polyol A is a polyester polyol obtained by condensing dimer acid (b-1) and a low molecular weight diol (b-2), and when the number of functional groups is to be increased, a low molecular weight triol (low molecular weight triol) ( Examples thereof include polyester polyols obtained by further condensing b-3).
  • Dimeric acid (b-1) is a dibasic acid, which is obtained by binding two monobasic fatty acids in two molecules by a carbon-carbon covalent bond, and has a molecular weight relative to the pre-bonded monobasic fatty acid. Refers to a dibasic acid in which is twice as much.
  • a fatty acid having a fatty acid having about 18 carbon atoms is used as the monobasic fatty acid constituting the dimer acid.
  • Typical compounds of dimer acid include linoleic acid and dibasic acid obtained by heating oleic acid.
  • dimer acid monomeric acid, tribasic acid and polymerized acid other than dimer acid are contained as by-products.
  • polyester polyol A dimer acid it is preferable that the purity of the dimer acid is high, but these by-products may be mixed and used.
  • the low molecular weight diol (b-2) is not particularly limited as long as it is a low molecular weight compound and has two -OH groups.
  • the low molecular weight diol means a diol having two or more total carbon atoms and 2 to 10 carbon atoms existing between the two -OH groups, and may have 4 to 6 carbon atoms. More preferred. More specifically, as the low molecular weight diol (b-2), ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol and the like are preferably mentioned.
  • the low molecule in the low molecular weight triol (a-3) refers to one having 3 to 10 carbon atoms in the hydrocarbon group portion to which the three hydroxyl groups are bonded, as shown in the low molecular weight diol. More preferably, the number is 3-6.
  • the hydrocarbon group portion may be linear or may have a branched chain.
  • Specific examples of the low molecular weight triol (a-3) include glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 2-methylpropanetriol and the like.
  • the polyester polyol A dimer acid is preferably a polyol that is liquid at room temperature (25 ° C.) from the viewpoint of forming a fine continuously ventilated foam by mechanical foaming.
  • the viscosity of the polyester polyol dimerate at room temperature (25 ° C.) is preferably 2000 to 10000 mP ⁇ s.
  • the viscosity is a value measured by a B-type viscometer.
  • the hydroxyl value OHv of the polyester polyol dimerate A is preferably 20 to 180 mgKOH / g from the viewpoint of liquid absorption of the sponge and cell miniaturization.
  • the hydroxyl value OHv of the polyester polyol dimerate A is preferably 20 to 180 mgKOH / g from the viewpoint of liquid absorption of the sponge and cell miniaturization.
  • the hydroxyl value is 20 or less, the viscosity becomes high, it is difficult for gas to be mixed by mechanical foaming, and the foaming ratio does not increase, so that the density of the foam does not decrease. Further, when the hydroxyl value is 180 or more, the obtained foam becomes hard and the touch is deteriorated, which is not preferable.
  • 50 to 150 mgKOH / g is more preferable.
  • the hydroxyl value OHv of the polyol is a value measured by JIS K1557-1: 2007.
  • polymer polyol B examples include alkylene oxide-added polyether polyols, polylactone polyols, carboxylic acid ester polyols, and polycarbonate polyols.
  • the alkylene oxide-added polyether polyol is a low molecular weight alcohol (ethylene glycol, glycerin, trimethylolpropane, etc.) and an alkylene oxide (ethylene oxide, propylene oxide, a copolymer of ethylene oxide and propylene oxide, tetramethylene oxide, etc.). It is a compound obtained by addition polymerization of the above.
  • alkylene oxide-added polyether polyol include polypropylene glycol (PPG), polyethylene glycol (PEG), PPG and PEG copolymer, polytetramethylene ether glycol (PTMG), PTMG and PPG copolymer, and PTMG and PEG.
  • PPG polypropylene glycol
  • PEG polyethylene glycol
  • PPG polyethylene glycol
  • PPG and PEG copolymer polytetramethylene ether glycol
  • PTMG polytetramethylene ether glycol
  • PTMG PTMG and PPG copolymer
  • polylactone polyol examples include polycaprolactone diol, polyvalerolactone diol, and polycaprolactone triol.
  • carboxylic acid ester polyol examples include carboxylic acids (adipic acid, sebacic acid, phthalic acid, etc.) and glycols (ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 2-methylpropanediol, etc.). 3-Methylpentanediol, etc.) and a polyol can be exemplified by condensing with.
  • polycarbonate polyol examples include a polyol obtained by reacting glycol and alkylene carbonate, a polyol obtained by reacting glycol and diaryl carbonate, and a polyol obtained by reacting glycol and dialkyl carbonate.
  • alkylene oxide-added polyether polyols examples of high molecular weight polyols B from the viewpoints of high reactivity, liquid absorption, improvement of touch by refining cells, and high strength and elongation.
  • At least one selected from acid ester polyols is preferable, alkylene oxide-added polyether polyols are more preferable, polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMG) are more preferable, and polytetramethylene ether glycol (PTMG) is more preferable.
  • PPG polypropylene glycol
  • PTMG polytetramethylene ether glycol
  • PTMG polytetramethylene ether glycol
  • the number of functional groups f of the polymer polyol B is preferably 1.5 to 3.5 from the viewpoints of foaming property during mechanical foaming, strength of the obtained foam, enhancement of elongation, and resilience. Is preferably 2 to 3.
  • the hydroxyl value of the polymer polyol B is preferably 30 to 250, more preferably 30 to 220.
  • MDI-based isocyanate (diphenylmethane diisocyanate-based isocyanate C) is an isocyanate having a diphenylmethane diisocyanate skeleton.
  • MDI-based isocyanates examples include diphenylmethane diisocyanates (pure MDI) such as 4.4'-diphenylmethane diisocyanate (4.4'-MDI), 2.4'-MDI, and 2.2'-MDI, and crude MDI (cr-). MDI), carbodiimide-modified MDI, polyol-modified MDI and the like.
  • an isocyanate selected from the group consisting of diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, and polyol-modified diphenylmethane diisocyanate from the viewpoint of forming a fine continuously ventilated sponge.
  • examples of the polyol-modified isocyanate include ethylene glycol, propylene glycol, 1,3- or 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,10-decanediol, and the like having 2 to 2 to carbon atoms.
  • examples thereof include polyol-modified isocyanate in which MDI-based isocyanate is modified with 18 divalent alcohols; PPG-based glycol; PTGM-based glycol; polycarbonate-based glycol and the like.
  • aromatic isocyanates such as tolylene diisocyanate (TDI) used in the production of polyurethane foam, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), norbornene diisocyanate (NBDI), hydrogenated diphenylmethane diisocyanate (hydrogenated diphenylmethane diisocyanate)
  • TDI tolylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • NBDI norbornene diisocyanate
  • hydrogenated diphenylmethane diisocyanate hydrogenated diphenylmethane diisocyanate
  • An aliphatic isocyanate such as hydrogenated MDI), hydrogenated xylylene diphenylmethane diisocyanate (hydrogenated XDI), and cyclohexylene diisocyanate can also be used in combination.
  • the defoaming agent examples include well-known defoaming agents such as silicone compounds (copolymers of polydimethylsiloxane and polyoxyalkylene polyol) and fluorine-based compounds.
  • an (AB) n-type silicone-based defoaming agent sold as suitable for mechanical foaming can be preferably used.
  • the foam stabilizer may be used alone or in combination of two or more.
  • the catalyst examples include an organometallic compound catalyst, an amine catalyst and the like.
  • organometallic compound-based catalyst include tin-based, titanium-based, bismuth-based, copper-based, nickel-based and other organometallic catalysts, and examples thereof include organotin compounds such as stannous octylate and dibutyltin dilaurate. is there.
  • amine-based catalyst tertiary amines are preferable, and amine-based catalysts such as monoamines, diamines, triamines, cyclic amines, alcohol amines, and ether amines can be mentioned, and examples thereof include triethylenediamine, triethylamine, and n.
  • a temperature sensitive catalyst may be used in order to prevent curing from starting during mechanical stirring of the gas.
  • One type of catalyst may be used alone, or two or more types may be used in combination.
  • low molecular weight diols ethylene glycol, 1,4-butanediol, etc.
  • polyfunctional low molecular weight alcohols glycol, 1,4-butanediol, etc.
  • low molecular weight diols having branched chains polyols having an alicyclic structure, etc.
  • at least one selected from the group consisting of isocyanates having an alicyclic structure are polyols having a molecular weight of 300 or less (preferably 60 to 300).
  • Examples of other components include fillers.
  • Examples of the filler include one or more selected from the group consisting of an inorganic filler and an organic filler. By adding these fillers, the mechanically agitated bubbles become finer, and the fine bubbles are difficult to defoam and coalesce, so that a fine sponge can be easily obtained.
  • Examples of the inorganic filler include calcium carbonate, aluminum hydroxide, magnesium hydroxide, natural silica, synthetic silica, kaolin, clay, titanium oxide, barium sulfate, zinc carbonate, zinc oxide, glass beads, alumina beads, carbon and the like. In particular, calcium carbonate, aluminum hydroxide, and silica are effective for making fine cells.
  • organic filler examples include phenol beads, styrene beads, acrylic beads, resin balloons, silicone powder, fluorine powder, nylon powder, polyethylene powder and the like.
  • Other fillers include an organic-inorganic filler obtained by adding calcium carbonate to the surface of an acrylic balloon, and a POP (polymer-dispersed polyol) in which a submicron organic polymer (acrylonitrile or acrylonitrile / styrene copolymer, etc.) is dispersed in a polypropylene polyol. Can also be mentioned.
  • the gas used for mechanical foaming is indispensable, but as the foaming agent, water (distilled water, ion-exchanged water, ultrafiltered water, pure water, etc.), low boiling point organic A solvent (alkyl fluoride compound, alkyl chloride compound, etc.), liquefied carbon dioxide gas, etc. can also be used in combination.
  • water distilled water, ion-exchanged water, ultrafiltered water, pure water, etc.
  • low boiling point organic A solvent alkyl fluoride compound, alkyl chloride compound, etc.
  • liquefied carbon dioxide gas, etc. can also be used in combination.
  • Examples of other components include well-known additives such as flame retardants, antioxidants, colorants, ultraviolet absorbers, antibacterial agents, and antifungal agents, in addition to the above components.
  • polyester polyol A dimer acid and polymer polyol B- The content of the polyester dimer acid polyol A is 30% by mass or more and 100% by mass or less, preferably 40% by mass or more and 100% by mass or less, based on the total high molecular weight polyol.
  • the mass ratio of the polyester polyol A dimer acid and the polymer polyol B is preferably 30/70 to 90/10, preferably 30/70. -80/20 is more preferable, and 40/60 to 80/20 is even more preferable.
  • polyester polyol A dimerate and the mass ratio of polyester polyol dimerate A and polymer polyol B are controlled within the above ranges and mechanically foamed, a mechanical foam having a high foaming ratio and a lower hardness can be obtained. ..
  • the liquid absorption rate is appropriate and the skin feel is improved.
  • the ratio of the polymer polyol B is increased, the foaming ratio becomes high, the density becomes low, the feel can be maintained, and even if the viscosity of the liquid foundation changes, it can be suitably used, but the hydrophobicity decreases. Therefore, the liquid absorbency tends to be high, and the liquid tends to swell and decrease in strength. Therefore, from this viewpoint as well, it is preferable to control the mass ratio of the polyester polyol A dimerate and the polymer polyol B within the above range.
  • the content of the foam stabilizer is preferably 0.4 to 10 parts by mass, more preferably 3 to 5 parts by mass, based on 100 parts by mass of the polymer polyol.
  • the content of the filler (particularly, the inorganic filler) is preferably 5 to 50 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the polymer polyol from the viewpoint of cell miniaturization.
  • the continuously breathable sponge according to this embodiment may or may not have a self-skin layer. However, if it is desired to suppress impregnation and water absorption of water-based liquids such as cosmetic puffs for liquid foundations, it is preferable to have a self-skin layer.
  • the apparent density of the continuously ventilated sponge according to the present embodiment is 100 to 400 kg / m 3 from the viewpoints of mechanical strength, prevention of bottom contact during compression use, and operability, in addition to appropriate liquid absorption and improvement of skin feel. Is preferable, and 150 to 300 kg / m 3 is more preferable.
  • the tensile strength of the continuously venting sponge according to the present embodiment is preferably 0.1 MPa or more from the viewpoint of mechanical strength, prevention of bottom contact during compression use, and operability.
  • the tensile elongation of the continuously ventilated sponge according to the present embodiment is preferably 150% or more, more preferably 200% or more, from the viewpoint of mechanical strength and operability.
  • Tensile strength and elongation are measured in accordance with JIS K 6400-5 (2012).
  • the object to be measured is punched into a dumbbell No. 2 shape, a sample is obtained, and the thickness is measured.
  • the obtained sample is subjected to a speed of 200 mm / min with a "Tensilon universal material tester UCT-500" manufactured by Orion Tech Co., Ltd. Then, the strength and elongation at break of the sample are measured.
  • the tear strength of the continuously venting sponge according to the present embodiment is preferably 3 N / cm or more, more preferably 5 N / cm, from the viewpoint of mechanical strength.
  • the tear strength is a value measured according to JIS6400-5 (2012).
  • the 50% compression hardness of the continuously breathable sponge according to the present embodiment is preferably 50 kPa or less, more preferably 15 kPa or less, from the viewpoints of mechanical strength, prevention of bottom contact during compression use, and operability, in addition to improving the feel on the skin. More preferably, it is 10 kPa or less.
  • the 50% compressive hardness is measured according to JIS K6400-2 (2012). Specifically, a sample is punched from the measurement target to a size of 50 ⁇ 50 mm. When the thickness is 10 mm or less, the samples are obtained by laminating so as to be 10 mm or more. Then, using the "Tensilon Universal Material Testing Machine UCT-500" manufactured by Orion Tech Co., Ltd., 50% compression is performed on the sample thickness at a compression rate of 50 mm / min, and the 50% compression hardness is measured.
  • the water absorption rate of the continuously ventilated sponge according to the present embodiment is preferably 20% by mass or less, more preferably 15% by mass or less, and most preferably 12% by mass or less from the viewpoint of appropriate liquid absorption. preferable.
  • the average cell diameter of the continuously ventilated sponge according to the present embodiment is preferably 270 ⁇ m or less, more preferably 250 ⁇ m or less, still more preferably 200 ⁇ m or less, from the viewpoint of appropriate liquid absorption and improvement of skin feel, as well as mechanical strength. ..
  • the average cell diameter is calculated from 25 mm / number of cells by measuring the number of cells for each 25 mm length according to JIS K 6400-1 (2004) Annex 1. The average cell diameter is magnified and measured with an optical microscope.
  • the method for producing the continuously ventilated sponge according to the present embodiment is not particularly limited.
  • a method for producing a continuously ventilated sponge according to the present embodiment the following method can be mentioned.
  • a method for producing a continuously ventilated sponge which comprises a heating step of heating and curing a coating film on a continuous web to form a foam having a continuously ventilated structure.
  • the second continuous web (belt) is supplied to the coating film on the first continuous web (belt), and the coating film is sandwiched between the two continuous webs.
  • the step including the second continuous web supply step in which the heating step heats and cures the coating film in a state of being sandwiched between the two continuous webs, has many merits to form a foam having a continuous ventilation structure.
  • the coating film of the urethane raw material liquid is heat-cured to form a foam having a continuous ventilation structure while being sandwiched between two releasable continuous webs, the foam is sandwiched between the two continuous webs. Since it foams, the foaming agent does not scatter, so the foaming ratio increases (low density).
  • a thin and smooth skin layer is formed on both surfaces, and it is easy to obtain a foam (that is, sponge) with a continuous ventilation structure that has a high texture and is familiar to fingers (feels moist).
  • FIG. 1 is a schematic view of an example of an apparatus configuration for carrying out the method for manufacturing a continuously ventilated sponge according to the present embodiment.
  • the continuous ventilation type sponge manufacturing apparatus 100 includes a first web roll 14 that feeds out a first continuous web 14A, and a coating apparatus 12 that applies a urethane raw material liquid onto the first continuous web 14A.
  • a large-diameter roller 18 that guides the first continuous web 14A sent out from the first web roll 14 directly under the coating device 12, a second web roll 16 that sends out the second continuous web 16A, and a second continuous web 16A.
  • the guide roller 20 for guiding the urethane raw material liquid onto the coating film 10 on the first continuous web 14A and the urethane raw material liquid coating film 10 sandwiched between the two continuous webs 14A and 16A are guided to the heating device 22 and the heating device.
  • the urethane raw material liquid in which the raw material components are mixed and stirred is continuously applied onto the first continuous web 14A to form the coating film 10.
  • a resin film or a paper body is preferably used as the first continuous web 14.
  • the resin film is not particularly limited as long as it is not deformed by coating the urethane raw material liquid and heating in the heating process, but from the viewpoint of resistance to the urethane raw material liquid, heat resistance, etc., a film such as polyester, polypropylene, polymethylpentene, etc. Is preferable.
  • the surface of the resin film may be subjected to a corona discharge treatment, a plasma treatment, or the like to improve the adhesiveness with the urethane foam sheet.
  • a resin film having a releasable surface on which the coating film of the urethane raw material liquid is formed may be used so that the resin film can be easily peeled off.
  • a method of applying a silicone releasable agent to one side of the resin film a method of using a resin film having releasability such as polypropylene resin or polymethylpentene resin as it is, and a releasability property.
  • a method such as laminating a resin film on a polyester film or the like. It is also possible to enhance the design and texture by adding a matte finish or a grain pattern to the surface of the release film or the release paper.
  • the surface of glassine paper or woodfree paper is coated with polypropylene, or a silicone release agent or non-silicone release agent is further applied on the surface of the glassine paper or high-quality paper. Is used.
  • a resin film or a releasable resin film is preferable because the solidification rate of the foam is high and the thickness accuracy is high.
  • the coating device 12 for coating the urethane raw material liquid on the first continuous web 14A it is preferable to use a die coater, a roll coater, a knife coater, a comma coater, or the like.
  • the method of coating on top is also preferable.
  • the thickness of the coating film 10 may be determined according to the intended use of the foam (continuously ventilated sponge).
  • the second continuous web 16A is supplied to the coating film 10 on the first continuous web 14A, and the coating film 10 is sandwiched between the two continuous webs 14A and 16A.
  • the resin film or paper body exemplified in the description of the first continuous web 14A can be used.
  • at least one continuous web of the first continuous web 14A and the second continuous web 16A is in contact with the coating film 10. It is preferable to use a continuous web having a releasable surface.
  • the second continuous web 16A is continuously unwound from the second web roll 16 around which the second continuous web 16A is wound and covered with the coating film 10 on the first continuous web 14A.
  • the coating film 10 is sandwiched between the two continuous webs 14A and 16A.
  • the apparatus shown in FIG. 1 is configured such that the coating film 10 is sandwiched between two continuous webs 14A and 16A. However, after forming the coating film on the first continuous web 14A, the second continuous web You may proceed to the next heating step without covering with 16A.
  • the coating film 10 is conveyed into the heating device 22 in a state of being sandwiched between two continuous webs 14A and 16A and cured by heating.
  • the heating temperature for curing is preferably 80 to 120 ° C., and it is preferable to cure at a temperature in this range in 5 to 20 minutes.
  • an infrared heater, an electric heater, a gas combustion furnace, or the like can be used as the heating device 22.
  • the urethane foam sheet 30 foamed and cured by the heating step may be wound while the continuous webs 14A and 16A are in close contact with the urethane foam sheet 30, and when the continuous webs 14A and 16A are releasable webs, FIG. As shown in the above, the releasable web is peeled off from the urethane foam sheet 30 and wound around the recovery rollers 24 and 26 for recovery.
  • the collected continuous webs 14A and 16A can be reused as supply rolls 14 and 16.
  • a continuously ventilated sponge made of a urethane foam sheet (foam having a continuously ventilated structure) can be continuously manufactured.
  • a crushing treatment (a treatment of shearing and compressing the foam to increase the air permeability) may be performed if necessary. If the air permeability is kept low, the restoration speed will be slower, and if the air permeability is increased, the restoration speed will be faster, so the air permeability can be adjusted according to the application.
  • process is not limited to an independent process, as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. Included in this term.
  • the continuously breathable sponge includes cosmetic puffs, brassiere pads, sports clothing pads, body protection pads (head, knee or elbow pads, etc.), medical (fish eyes, etc.) pads, insoles, etc. It can be applied to supporters, waterproof sealants, liquid (chemicals, lotions, etc.) impregnated sheets, masks, packaging bags, etc.
  • the cosmetic puff according to the present embodiment has the continuously breathable sponge according to the present embodiment. As a result, the cosmetic puff according to the present embodiment is prevented from being excessively infiltrated with the liquid foundation. As a result, the consumption of liquid foundation is reduced. In addition, the liquid foundation is comfortable to wear.
  • the decorative puff according to the present embodiment may be a puff having a single layer structure of the continuously breathable sponge according to the present embodiment, or may be a multi-layer in which the continuously breathable sponge according to the present embodiment and another skin material are integrated. It may be a structural puff.
  • Foaming agent SZ1923 silicone-based foaming agent manufactured by Toray Dau
  • -Catalyst SO
  • Examples 2 to 15 Comparative Examples 1 to 7> A continuously ventilated sponge was obtained in the same manner as in Example 1 except that the type and amount of the material (the numerical values in the table are the number of copies) were changed according to the compositions of Tables 1 to 3. However, in Examples 13 and 14, under the same mechanical foaming conditions as in Example 1, a block-shaped sponge having a thickness of 50 ⁇ length 200 ⁇ width 200 mm was prepared and then sliced to a thickness of 8 mm without a self-skin layer. A continuously ventilated sponge was obtained. Further, in Comparative Examples 4 to 6 (water foaming), a continuously ventilated sponge was obtained as follows.
  • a surface obtained by applying the stirred urethane raw material liquid on a release film that has been released from the mold so that the thickness after curing is about 8.0 mm using a die coater, and then another release film is released from above. was put on the coating film so as to be in contact with the coating film of the urethane raw material liquid.
  • the coating film of the urethane raw material liquid was heat-cured in an oven under the conditions of a temperature of 80 ° C. ⁇ 3 minutes and 100 ° C. ⁇ 5 minutes while being sandwiched between two release films. Then, the films on both sides were peeled off to obtain a continuously breathable sponge having a thickness of about 8.0 mm. Further, as Comparative Examples 7 and 8, commercially available products were used.
  • the tactile index was quantified by multiplying the 50% compression hardness by the cell diameter. When the multiplied value is lower than 2, the feel is very good, when it is 2 to 3, it feels good, and when it is 3 to 4, it feels a little rough or stiff, and when it is 4 or more, it feels bad. There was a correlation with the evaluation.
  • the continuously ventilated sponge of the example has an appropriate liquid absorption rate and a better skin feel than the sponge of the comparative example.
  • the degree of penetration of the liquid foundation of the continuously ventilated sponge of Example 4 and the sponge of Comparative Example 7 is shown in FIGS. 2 and 3.
  • the continuously breathable sponge of Example 4 is moderately impregnated with the liquid foundation
  • the sponge of Comparative Example 7 is excessively impregnated with the liquid foundation as shown in FIG. You can see that it is embedded.
  • NBR puff NBR sponge manufactured by Yukigaya Chemical Co., Ltd.
  • pore agent extraction method PU based puff Ruby cell manufactured by Toyo Chemical Co., Ltd.
  • Coating film 10
  • Coating device 14 1st web roll 14A 1st continuous web 16 2nd web roll 16A 2nd continuous web 18
  • Heating device 24 1st recovery roll 26 2nd recovery roll 30
  • Continuous ventilation structure Foam (urethane foam sheet) 100 Continuous ventilation type sponge manufacturing equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is an open-cell sponge constituted of a mechanical foam of a composition comprising: a high polymer polyol including, with respect to the total high polymer polyol, 30-100 mass% of dimer acid polyester polyol; diphenylmethane diisocyanate-based isocyanate; a foam stabilizer; and a catalyst. In addition, provided is a puff for a cosmetic, the puff having said sponge.

Description

連続通気型スポンジ、および化粧用パフContinuously breathable sponge and cosmetic puff
 本開示は、連続通気型スポンジ、および化粧用パフに関する。特に機械発泡による発泡体で、吸水率の低いことを特徴とした連続気泡スポンジに関する。 This disclosure relates to continuously breathable sponges and cosmetic puffs. In particular, the present invention relates to an open-cell sponge which is a foam formed by mechanical foaming and is characterized by a low water absorption rate.
 本開示の一用途である連続気泡スポンジはリキッドファンデーションが過度に浸みこまない化粧品パフに関する。従来、化粧パフに用いられるポリウレタンスポンジにリキッドファンデーションを浸みこみ難くする方法として、反応性を持たないシリコーン系の撥水材をポリウレタン溶液原料に混錬し押出成形した後、加熱下減圧にして溶媒を気化させ発泡体を得る方法がある(特許文献1参照)。 The open-cell sponge, which is one of the uses of this disclosure, relates to a cosmetic puff that does not allow the liquid foundation to penetrate excessively. Conventionally, as a method of making it difficult for the liquid foundation to soak into the polyurethane sponge used for cosmetic puffs, a non-reactive silicone-based water repellent material is kneaded into a polyurethane solution raw material, extruded, and then decompressed under heating to make a solvent. There is a method of obtaining a foam by vaporizing (see Patent Document 1).
 一方、炭素数8以上のモノオールをイソシアナート化合物と反応させた末端イソシアナート基を有するプレポリマーを、ポリオール及び発泡剤としての水を用いて、スラブ発泡させた撥水性発泡体が提案されている(特許文献2参照)。 On the other hand, a water-repellent foam obtained by slab-foaming a prepolymer having a terminal isocyanate group obtained by reacting a monool having 8 or more carbon atoms with an isocyanate compound using a polyol and water as a foaming agent has been proposed. (See Patent Document 2).
 さらに、植物油(ひまし油系)からなるポリオールとジフェニルメタンジイソシアネート系(MDI系)イソシアナートを水発泡法で発泡させた発泡体も提案されている(特許文献3参照)。
 また、機械発泡(メカニカルフロス法)により得られる機械発泡体として、末端1級化率の高いポリオールを用いた発泡体が提案されている(特許文献4参照)
Further, a foam obtained by foaming a polyol composed of vegetable oil (castor oil type) and diphenylmethane diisocyanate type (MDI type) isocyanate by a water foaming method has also been proposed (see Patent Document 3).
Further, as a mechanical foam obtained by mechanical foaming (mechanical floss method), a foam using a polyol having a high terminal primaryization rate has been proposed (see Patent Document 4).
  特許文献1:特開平6-284923号公報
  特許文献2:特開2006-89582号公報
  特許文献3:特開2007-54164号公報
  :特許文献4:特許第6106523号
Patent Document 1: Japanese Patent Application Laid-Open No. 6-284923 Patent Document 2: Japanese Patent Application Laid-Open No. 2006-89582 Patent Document 3: Japanese Patent Application Laid-Open No. 2007-54164: Patent Document 4: Patent No. 6106523
 ここで、特許文献1の方法で得られる発泡体は、使用するシリコーン系撥水材は反応基を有していないため、化粧パフを洗剤で洗うことで容易に溶出するため発泡体の撥水性は速やかに消失してしまう。そのため、吸液率が高くなる。 Here, in the foam obtained by the method of Patent Document 1, since the silicone-based water-repellent material used does not have a reactive group, it is easily eluted by washing the cosmetic puff with a detergent, so that the foam is water-repellent. Disappears quickly. Therefore, the liquid absorption rate becomes high.
 また、特許文献2の発泡体は、水発泡であるためセルは荒く、肌感触は良いものではない。
 また、特許文献3の発泡体も、水発泡であるため、独立気泡になりやすいため、あえてセルを荒らして連泡化するため、微細セルは得られず、肌感触の良いものではない。
Further, since the foam of Patent Document 2 is water-foamed, the cells are rough and the skin feel is not good.
Further, since the foam of Patent Document 3 is also water-foamed, it tends to become closed cells, and therefore the cells are intentionally roughened to form continuous bubbles, so that fine cells cannot be obtained and the skin feel is not good.
 そして、特許文献4の機械発泡体は、機械発泡ではあるが、ポリプロピレングリコール主体となるため、微細なセルは得られにくく、吸液率が高すぎる。 Although the mechanical foam of Patent Document 4 is mechanically foamed, it is mainly composed of polypropylene glycol, so that it is difficult to obtain fine cells and the liquid absorption rate is too high.
 このように、従来の発泡体で構成されたスポンジは、適度な吸液率、かつ肌感触が良いものが存在していない。特に、適度な吸液率、かつ肌感触が高い発泡体は、例えば、リキッドファンデーションの消費量を抑え、ファンデーションを肌へ付ける際の付け心地が求められる化粧パフ等に有用であり、要望されているのが現状である。 As described above, there is no conventional sponge made of foam that has an appropriate liquid absorption rate and a good skin feel. In particular, a foam having an appropriate liquid absorption rate and a high skin feel is useful for, for example, a cosmetic puff that suppresses the consumption of liquid foundation and requires a comfortable feeling when applying the foundation to the skin, and is desired. The current situation is that there is.
 そこで、本開示の課題は、適度な吸液率、かつ肌感触が良い連続通気型スポンジ、および化粧用パフを提供することである。 Therefore, an object of the present disclosure is to provide a continuously breathable sponge having an appropriate liquid absorption rate and a good skin feel, and a cosmetic puff.
 上記課題は、以下の手段により解決される。 The above problem is solved by the following means.
[1]
 全高分子ポリオールに対して30質量%以上100質量%以下のダイマー酸ポリエステルポリオールを含む高分子ポリオールと、
 ジフェニルメタンジイソシアネート系のイソシアネートと、
 整泡剤と、
 触媒と、
 を含む組成物の機械発泡体で構成された連続通気型スポンジ。
[2]
 前記高分子ポリオールが、前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールを含む[1]に記載の連続通気型スポンジ。
[3]
 前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールが、アルキレンオキサイド付加ポリエーテルポリオール、ポリラクトンポリオール、カルボン酸エステルポリオールから選択される少なくとも1種である[2]に記載の連続通気型スポンジ。
[4]
 前記ダイマー酸ポリエステルポリオールと、前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールと、の質量比(ダイマー酸ポリエステルポリオール/ダイマー酸ポリエステルポリオール以外の高分子ポリオール)が、30/70~80/20である[2]又は[3]に記載の連続通気型スポンジ。
[5]
 吸水率が15%以下である[1]~[4]のいずれか1項に記載の連続通気型スポンジ。
[6]
 前記組成物が、前記高分子ポリオール100質量部に対して5~50質量部の無機フィラーを含む[1]~[5]のいずれか1項に記載の連続通気型スポンジ。
[7]
 自己スキン層を有する[1]~[6]のいずれか1項に記載の連続通気型スポンジ。
[8]
 [1]~[7]のいずれか1項に記載の連続通気型スポンジを有する化粧用パフ。
[1]
Polymer polyols containing 30% by mass or more and 100% by mass or less of polyester dimerate with respect to all polymer polyols,
Diphenylmethane diisocyanate-based isocyanate and
Defoamer and
With the catalyst
A continuously ventilated sponge composed of a mechanical foam of a composition containing.
[2]
The continuously breathable sponge according to [1], wherein the polymer polyol contains a polymer polyol other than the polyester polyol dimerate.
[3]
The continuously ventilated sponge according to [2], wherein the polymer polyol other than the dimer acid polyester polyol is at least one selected from an alkylene oxide-added polyether polyol, a polylactone polyol, and a carboxylic acid ester polyol.
[4]
The mass ratio (polyester polyol dimerate / polymer polyol other than polyester dimerate) of the polyester polyol dimerate to the polymer polyol other than the polyester dimerate is 30/70 to 80/20 [ 2] or the continuously ventilated sponge according to [3].
[5]
The continuously ventilated sponge according to any one of [1] to [4], which has a water absorption rate of 15% or less.
[6]
The continuously ventilated sponge according to any one of [1] to [5], wherein the composition contains 5 to 50 parts by mass of an inorganic filler with respect to 100 parts by mass of the polymer polyol.
[7]
The continuously breathable sponge according to any one of [1] to [6], which has a self-skin layer.
[8]
A cosmetic puff having the continuously breathable sponge according to any one of [1] to [7].
 本開示によれば、適度な吸液率、かつ肌感触が良い連続通気型スポンジ、および化粧用パフが提供できる。 According to the present disclosure, it is possible to provide a continuously breathable sponge having an appropriate liquid absorption rate and a good skin feel, and a cosmetic puff.
本実施形態に係る連続通気型スポンジの製造方法を実施するための装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus for carrying out the manufacturing method of the continuous ventilation type sponge which concerns on this embodiment. 実施例4の連続通気型スポンジの、リキッドファンデーションを浸み込み度合を示す図である。It is a figure which shows the degree of penetration of the liquid foundation of the continuous ventilation type sponge of Example 4. 比較例7のスポンジの、キッドファンデーションを浸み込み度合を示す図である。It is a figure which shows the degree of penetration of the kid foundation of the sponge of Comparative Example 7.
 以下、本開示の一例である実施形態について説明する。 Hereinafter, an embodiment which is an example of the present disclosure will be described.
(連続通気型スポンジ)
 本実施形態に係る連続通気型スポンジ(以下、単に「スポンジ」とも称する)は、
 全高分子ポリオールに対して30質量%以上100質量%以下のダイマー酸ポリエステルポリオールを含む高分子ポリオールと、
 ジフェニルメタンジイソシアネート系のイソシアネート(以下、「MDI系イソシアナート」とも称する)と、
 整泡剤と、
 触媒と、
 を含む組成物の機械発泡体で構成されている。
 なお、発泡体を形成するための組成物(以下「ウレタン原料液」とも)は、上記成分以外に、その他成分を含んでもよい。
(Continuous ventilation type sponge)
The continuously ventilated sponge (hereinafter, also simply referred to as “sponge”) according to the present embodiment is
Polymer polyols containing 30% by mass or more and 100% by mass or less of polyester dimerate with respect to all polymer polyols,
Diphenylmethane diisocyanate-based isocyanate (hereinafter, also referred to as "MDI-based isocyanate") and
Defoamer and
With the catalyst
It is composed of a mechanical foam having a composition containing.
The composition for forming the foam (hereinafter, also referred to as “urethane raw material liquid”) may contain other components in addition to the above components.
 本実施形態に係る連続通気型スポンジは、上記構成により、適度な吸液率、かつ肌感触が良いスポンジとなる。その理由は、次の通り推測される。なおリキッドファンデーションの吸液率と、水の吸水率とは相関があり、吸液率という性能は、吸水率で表すことが出来る。 The continuously ventilated sponge according to the present embodiment has an appropriate liquid absorption rate and a good skin feel due to the above configuration. The reason is presumed as follows. There is a correlation between the liquid absorption rate of the liquid foundation and the water absorption rate of water, and the performance of the liquid absorption rate can be expressed by the water absorption rate.
 全高分子ポリオールに対して30質量%以上100質量%以下のダイマー酸ポリエステルポリオールと、MDI系イソシアナートとを、整泡剤及び触媒を用いて機械発泡させて得られる機械発泡体は、ダイマー酸ポリエステルポリオールを用いることで微細な連続通気型の発泡体となる。そして、得られる機械発泡体は、微細な連続通気型となる上、ダイマー酸ポリエステルポリオールが分子構造上、疎水性のため、液体を過度に吸収しない性質を持つ。 The mechanical foam obtained by mechanically foaming a polyester polyol dimerate in an amount of 30% by mass or more and 100% by mass or less based on the total polymer polyol and an MDI-based isocyanate using a foam stabilizer and a catalyst is a polyester dimerate. By using a polyol, it becomes a fine continuously ventilated foam. The obtained mechanical foam has a property of not excessively absorbing a liquid because the polyester polyol dimerate is hydrophobic in terms of molecular structure, in addition to being a fine continuous air-permeable type.
 そのため、本実施形態に係る連続通気型スポンジは、上記構成により、適度な吸液率、かつ肌感触が良いスポンジとなると推測される。
 また、本実施形態に係る連続通気型スポンジは、必要とされる強度等の機械的特性も確保できる。
Therefore, it is presumed that the continuously ventilated sponge according to the present embodiment will be a sponge having an appropriate liquid absorption rate and a good skin feel due to the above configuration.
Further, the continuously ventilated sponge according to the present embodiment can secure mechanical properties such as required strength.
 そして、例えば、このような特性を持つ本実施形態に係る連続通気型スポンジを化粧用パフとして適用すると、心地良い肌触りに加え、リキッドファンデーションを過度に吸収しない化粧用パフとなる。それにより、リキッドファンデーションの消費量を抑え、ファンデーションを肌へ付ける際の付け心地が実現される。また、強度も確保されているため、耐久性も実現される。 Then, for example, when the continuously breathable sponge according to the present embodiment having such characteristics is applied as a cosmetic puff, it becomes a cosmetic puff that does not excessively absorb the liquid foundation in addition to a comfortable touch. As a result, the consumption of the liquid foundation is suppressed, and the feeling of applying the foundation to the skin is realized. In addition, since the strength is secured, durability is also realized.
 以下、本実施形態に係る連続通気型スポンジの詳細について説明する。 The details of the continuously ventilated sponge according to this embodiment will be described below.
(高分子ポリオール) (Polymer polyol)
 以下、本実施形態に係る連続通気型スポンジの詳細について説明する。 The details of the continuously ventilated sponge according to this embodiment will be described below.
 まず、ウレタン原料液の各成分について説明する。 First, each component of the urethane raw material liquid will be described.
(高分子ポリオール)
 高分子ポリオールとしては、ダイマー酸ポリエステルポリオール(以下、「ダイマー酸ポリエステルポリオールA」とも称する)が適用される。全ポリオールが、ダイマー酸ポリエステルポリオールAであってもよいが、ダイマー酸ポリエステルポリオールAと、ダイマー酸ポリエステルポリオール以外の高分子ポリオール(以下、「高分子ポリオールB]とも称する。)と、を併用してもよい。
 ダイマー酸ポリエステルポリオールAと共に、高分子ポリオールBを併用することで、スポンジの低密度化、吸液性の制御、耐溶剤性の向上など、スポンジに各機能を追加することを可能となる。
(Polymer polyol)
As the polymer polyol, a polyester polyol dimer acid (hereinafter, also referred to as “polyester polyol dimer acid A”) is applied. All polyols may be polyester polyol A dimer acid, but polyester polyol dimerate A and a polymer polyol other than polyester polyol dimer acid (hereinafter, also referred to as “polymer polyol B”) are used in combination. You may.
By using the polymer polyol B together with the polyester polyol A dimer acid, it is possible to add various functions to the sponge, such as lowering the density of the sponge, controlling the liquid absorption property, and improving the solvent resistance.
 ここで、高分子ポリオールとは、水酸基価(OHv)が250以下のポリオールを意味する。
 なお、ポリオールの水酸基価OHvは、JIS K1557-1:2007により測定した値である。
Here, the polymer polyol means a polyol having a hydroxyl value (OHv) of 250 or less.
The hydroxyl value OHv of the polyol is a value measured by JIS K1557-1: 2007.
-ダイマー酸ポリエステルポリオールA-
 ダイマー酸ポリエステルポリオールAとしては、ダイマー酸とグリコールとを縮合させたポリエステルポリオール等が挙げられる。
 具体的には、例えば、ダイマー酸ポリエステルポリオールAとしては、ダイマー酸(b-1)と低分子ジオール(b-2)とを縮合させたポリエステルポリオール、官能基数を上げたいときには、低分子トリオール(b-3)をさらに縮合させたポリエステルポリオール等が挙げられる。
-Polyester polyol dimer acid A-
Examples of the dimer acid polyester polyol A include a polyester polyol obtained by condensing dimer acid and glycol.
Specifically, for example, the dimer acid polyester polyol A is a polyester polyol obtained by condensing dimer acid (b-1) and a low molecular weight diol (b-2), and when the number of functional groups is to be increased, a low molecular weight triol (low molecular weight triol) ( Examples thereof include polyester polyols obtained by further condensing b-3).
 ダイマー酸(b-1)とは、二塩基性酸であって、二つの一塩基性脂肪酸が炭素-炭素共有結合により、二分子結合して得られる、結合前一塩基性脂肪酸に対して分子量が2倍である二塩基性酸を指す。通常は、ダイマー酸を構成する一塩基性脂肪酸として、炭素数が18前後の脂肪酸を有するものが使用される。ダイマー酸の代表的な化合物としては、リノール酸、オレイン酸を加熱することによって得られる二塩基酸が挙げられる。 Dimeric acid (b-1) is a dibasic acid, which is obtained by binding two monobasic fatty acids in two molecules by a carbon-carbon covalent bond, and has a molecular weight relative to the pre-bonded monobasic fatty acid. Refers to a dibasic acid in which is twice as much. Usually, as the monobasic fatty acid constituting the dimer acid, a fatty acid having a fatty acid having about 18 carbon atoms is used. Typical compounds of dimer acid include linoleic acid and dibasic acid obtained by heating oleic acid.
 通常、ダイマー酸の工業的製法では、ダイマー酸以外のモノマー酸、三塩基酸および重合酸が副成物として含まれている。ダイマー酸ポリエステルポリオールAの作製に際しては、ダイマー酸の純度が高い方が好ましいが、これらの副成物が混合された状態で使用されてもよい。 Normally, in the industrial production method of dimer acid, monomeric acid, tribasic acid and polymerized acid other than dimer acid are contained as by-products. When producing the polyester polyol A dimer acid, it is preferable that the purity of the dimer acid is high, but these by-products may be mixed and used.
 低分子ジオール(b-2)としては、低分子量の化合物であって、-OH基を二つ有する化合物であれば特に制限はなく使用される。低分子ジオールとは、全炭素数が2つ以上であり、且つ、2つの-OH基の間に存在する炭素数が2~10であるものを指し、炭素数が4~6であることがより好ましい。
 より具体的には、低分子ジオール(b-2)としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等が好適に挙げられる。
The low molecular weight diol (b-2) is not particularly limited as long as it is a low molecular weight compound and has two -OH groups. The low molecular weight diol means a diol having two or more total carbon atoms and 2 to 10 carbon atoms existing between the two -OH groups, and may have 4 to 6 carbon atoms. More preferred.
More specifically, as the low molecular weight diol (b-2), ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol and the like are preferably mentioned.
 低分子トリオール(a-3)における低分子とは、前記低分子ジオールにおいて示したのと同様に、3つの水酸基が結合する炭化水素基部分における炭素数が3~10であるものを指し、炭素数が3~6であることがより好ましい。炭化水素基部分は直鎖状であっても、分岐鎖を有するものであってもよい。
 低分子トリオール(a-3)としては、具体的には、例えば、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール、2-メチルプロパントリオール等が挙げられる。
The low molecule in the low molecular weight triol (a-3) refers to one having 3 to 10 carbon atoms in the hydrocarbon group portion to which the three hydroxyl groups are bonded, as shown in the low molecular weight diol. More preferably, the number is 3-6. The hydrocarbon group portion may be linear or may have a branched chain.
Specific examples of the low molecular weight triol (a-3) include glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 2-methylpropanetriol and the like.
 ダイマー酸ポリエステルポリオールAは、機械発泡により、微細な連続通気型の発泡体とする観点から、室温(25℃)で液状のポリオールであることが好ましい。
 具体的には、室温(25℃)での、ダイマー酸ポリエステルポリオールの粘度は、2000~10000mP・sが好ましい。
 なお、粘度は、B型粘度計により測定した値である。
The polyester polyol A dimer acid is preferably a polyol that is liquid at room temperature (25 ° C.) from the viewpoint of forming a fine continuously ventilated foam by mechanical foaming.
Specifically, the viscosity of the polyester polyol dimerate at room temperature (25 ° C.) is preferably 2000 to 10000 mP · s.
The viscosity is a value measured by a B-type viscometer.
 ダイマー酸ポリエステルポリオールAの水酸基価OHvは、スポンジの吸液性、セル微細化の観点から、20~180mgKOH/gが好ましい。水酸基価20以下では粘度が高くなり、機械発泡で気体を混入しがたく、発泡倍率が上がらないため、発泡体の密度が低下しない。また水酸基価180以上では得られる発泡体は硬くなり、触った感触が悪くなるため好ましくない。気体の混入しやすさと、得られる発泡体の柔らかさを考慮すると、50~150mgKOH/gがより好ましい。
 ポリオールの水酸基価OHvは、JIS K1557-1:2007により測定した値である。
The hydroxyl value OHv of the polyester polyol dimerate A is preferably 20 to 180 mgKOH / g from the viewpoint of liquid absorption of the sponge and cell miniaturization. When the hydroxyl value is 20 or less, the viscosity becomes high, it is difficult for gas to be mixed by mechanical foaming, and the foaming ratio does not increase, so that the density of the foam does not decrease. Further, when the hydroxyl value is 180 or more, the obtained foam becomes hard and the touch is deteriorated, which is not preferable. Considering the ease of mixing with gas and the softness of the obtained foam, 50 to 150 mgKOH / g is more preferable.
The hydroxyl value OHv of the polyol is a value measured by JIS K1557-1: 2007.
-高分子ポリオールB-
 高分子ポリオールBとしては、アルキレンオキサイド付加ポリエーテルポリオール、ポリラクトンポリオール、カルボン酸エステルポリオール、ポリカーボネートポリオール等が挙げられる。
-Polymer polyol B-
Examples of the polymer polyol B include alkylene oxide-added polyether polyols, polylactone polyols, carboxylic acid ester polyols, and polycarbonate polyols.
 アルキレンオキサイド付加ポリエーテルポリオールは、低分子アルコール(エチレングリコ-ル、グリセリン、トリメチロ-ルプロパン等)にアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドとの共重合物、テトラメチレンオキシド等)等を付加重合した化合物である。
 アルキレンオキサイド付加ポリエーテルポリオールとしては、ポリプロピレングリコール(PPG)、ポリエチレングリコール(PEG)、PPGとPEGの共重合物、ポリテトラメチレンエーテルグリコール(PTMG)、PTMGとPPGの共重合物、PTMGとPEGとの共重合物等が好ましいが、吸水率が低いことよりポリテトラメチレングリコール系が好ましい。
The alkylene oxide-added polyether polyol is a low molecular weight alcohol (ethylene glycol, glycerin, trimethylolpropane, etc.) and an alkylene oxide (ethylene oxide, propylene oxide, a copolymer of ethylene oxide and propylene oxide, tetramethylene oxide, etc.). It is a compound obtained by addition polymerization of the above.
Examples of the alkylene oxide-added polyether polyol include polypropylene glycol (PPG), polyethylene glycol (PEG), PPG and PEG copolymer, polytetramethylene ether glycol (PTMG), PTMG and PPG copolymer, and PTMG and PEG. However, a polytetramethylene glycol type is preferable because of its low water absorption rate.
 ポリラクトンポリオールとしては、ポリカプロラクトンジオール、ポリバレロラクトンジオール及びポリカプロラクトントリオール等が例示できる。
 カルボン酸エステルポリオールとしては、カルボン酸(アジピン酸、セバシン酸、フタル酸等)と、グリコール(エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、2-メチルプロパンジオール、3-メチルペンタンジオール等)と、を縮合させポリオールが例示できる。
 ポリカーボネートポリオールとしては、例えば、グリコールとアルキレンカーボネートとを反応させたポリオール、グリコールとジアリールカーボネートとを反応させたポリオール、グリコールとジアルキルカーボネートとを反応させたポリオール等が例示できる。
Examples of the polylactone polyol include polycaprolactone diol, polyvalerolactone diol, and polycaprolactone triol.
Examples of the carboxylic acid ester polyol include carboxylic acids (adipic acid, sebacic acid, phthalic acid, etc.) and glycols (ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 2-methylpropanediol, etc.). 3-Methylpentanediol, etc.) and a polyol can be exemplified by condensing with.
Examples of the polycarbonate polyol include a polyol obtained by reacting glycol and alkylene carbonate, a polyol obtained by reacting glycol and diaryl carbonate, and a polyol obtained by reacting glycol and dialkyl carbonate.
 これらの中でも、反応性が高く、吸液性及びセルの微細化による肌触り向上と共に、強度と伸びを高くする観点から、高分子ポリオールBとしては、アルキレンオキサイド付加ポリエーテルポリオール、ポリラクトンポリオール、アジピン酸エステルポリオールから選択される少なくとも1種が好ましく、アルキレンオキサイド付加ポリエーテルポリオールがより好ましく、ポリプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)がさらに好ましく、ポリテトラメチレンエーテルグリコール(PTMG)が特に好ましい。 Among these, alkylene oxide-added polyether polyols, polylactone polyols, and adipines are examples of high molecular weight polyols B from the viewpoints of high reactivity, liquid absorption, improvement of touch by refining cells, and high strength and elongation. At least one selected from acid ester polyols is preferable, alkylene oxide-added polyether polyols are more preferable, polypropylene glycol (PPG) and polytetramethylene ether glycol (PTMG) are more preferable, and polytetramethylene ether glycol (PTMG) is more preferable. Especially preferable.
 高分子ポリオールBの官能基数fは、機械発泡する際の起泡性と得られる発泡体の強度、伸びを高めることと復元性の観点から、から、1.5~3.5が好ましく、さらには2~3が好ましい。 The number of functional groups f of the polymer polyol B is preferably 1.5 to 3.5 from the viewpoints of foaming property during mechanical foaming, strength of the obtained foam, enhancement of elongation, and resilience. Is preferably 2 to 3.
 高分子ポリオールBの水酸基価は30~250が好ましく、より好ましくは30~220である。 The hydroxyl value of the polymer polyol B is preferably 30 to 250, more preferably 30 to 220.
(MDI系イソシアネート)
 MDI系イソシアネート(ジフェニルメタンジイソシアネート系のイソシアネートC)は、ジフェニルメタンジイソシアネート骨格を有するイソシアネートである。
(MDI-based isocyanate)
The MDI-based isocyanate (diphenylmethane diisocyanate-based isocyanate C) is an isocyanate having a diphenylmethane diisocyanate skeleton.
 MDI系イソシアネートとしては、4.4‘-ジフェニルメタンジイソシアネート(4.4’-MDI)、2.4’-MDI、2.2‘-MDI等のジフェニルメタンジイソシアネート(ピュアMDI)、粗製のMDI(cr-MDI)、カルボジイミド変性MDI、ポリオール変性MDIなどが挙げられる。
 特に、MDI系イソシアネートは、微細な連続通気型スポンジとする観点から、ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、及び、ポリオール変性ジフェニルメタンジイソシアネートよりなる群から選択されるイソシアネートを使用することが好ましい。
Examples of MDI-based isocyanates include diphenylmethane diisocyanates (pure MDI) such as 4.4'-diphenylmethane diisocyanate (4.4'-MDI), 2.4'-MDI, and 2.2'-MDI, and crude MDI (cr-). MDI), carbodiimide-modified MDI, polyol-modified MDI and the like.
In particular, as the MDI-based isocyanate, it is preferable to use an isocyanate selected from the group consisting of diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, and polyol-modified diphenylmethane diisocyanate from the viewpoint of forming a fine continuously ventilated sponge.
 ここで、ポリオール変性イソシアネートとしては、エチレングリコール、プロピレングリコール、1,3-又は1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール及び1,10-デカンジオール等の炭素数2~18の2価のアルコール;PPG系グリコール;PTGM系グリコール;ポリカーボネート系グリコール等でMDI系イソシアネートが変性されたポリオール変性イソシアネートが挙げられる。 Here, examples of the polyol-modified isocyanate include ethylene glycol, propylene glycol, 1,3- or 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,10-decanediol, and the like having 2 to 2 to carbon atoms. Examples thereof include polyol-modified isocyanate in which MDI-based isocyanate is modified with 18 divalent alcohols; PPG-based glycol; PTGM-based glycol; polycarbonate-based glycol and the like.
 MDI系イソシアネートと共に、ポリウレタンフォームの製造に使用されるトリレンジイソシアネート(TDI)などの芳香族系イソシアネート、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)、水添ジフェニルメタンジイソシアネート(水添MDI)、水添キシリレンジフェニルメタンジイソシアネート(水添XDI)、シクロヘキシレンジイソシアネートなどの脂肪族系イソシアネートも併用して使用することができる。 Along with MDI-based isocyanates, aromatic isocyanates such as tolylene diisocyanate (TDI) used in the production of polyurethane foam, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), norbornene diisocyanate (NBDI), hydrogenated diphenylmethane diisocyanate (hydrogenated diphenylmethane diisocyanate) An aliphatic isocyanate such as hydrogenated MDI), hydrogenated xylylene diphenylmethane diisocyanate (hydrogenated XDI), and cyclohexylene diisocyanate can also be used in combination.
(整泡剤)
 整泡剤としては、例えば、シリコーン系化合物(ポリジメチルシロキサンとポリオキシアルキレンポリオールの共重合体等)、フッ素系化合物等の周知の整泡剤が挙げられる。特に、機械発泡用に好適として販売されている(AB)n型シリコーン系整泡剤が好適に使用できる。整泡剤は、1種単独で使用してもよいし、2種以上併用してもよい。
(Foaming agent)
Examples of the defoaming agent include well-known defoaming agents such as silicone compounds (copolymers of polydimethylsiloxane and polyoxyalkylene polyol) and fluorine-based compounds. In particular, an (AB) n-type silicone-based defoaming agent sold as suitable for mechanical foaming can be preferably used. The foam stabilizer may be used alone or in combination of two or more.
(触媒)
 触媒としては、有機金属化合物系触媒、アミン系触媒等が挙げられる。
 有機金属化合物系触媒としては、錫系、チタン系、ビスマス系、銅系、ニッケル系等の有機金属系の触媒が挙げられ、例えば、有機スズ化合物のオクチル酸第1スズ、ジブチルチンジラウレートなどがある。
 アミン系触媒としては、3級アミン類が好ましく、モノアミン類、ジアミン類、トリアミン類、環状アミン類、アルコールアミン類、エーテルアミン類等のアミン系触媒が挙げられ、例えば、トリエチレンジアミン、トリエチルアミン、n-メチルモルホリン、n-エチルホルモリン、N,N,N’,N’-テトラメチルブタンジアミンなどがある。
触媒は気体を機械撹拌する間に硬化が始まるのを防ぐために、感温性触媒を用いてもよい。触媒は、1種単独して使用してもよいし、2種以上併用してもよい。
(catalyst)
Examples of the catalyst include an organometallic compound catalyst, an amine catalyst and the like.
Examples of the organometallic compound-based catalyst include tin-based, titanium-based, bismuth-based, copper-based, nickel-based and other organometallic catalysts, and examples thereof include organotin compounds such as stannous octylate and dibutyltin dilaurate. is there.
As the amine-based catalyst, tertiary amines are preferable, and amine-based catalysts such as monoamines, diamines, triamines, cyclic amines, alcohol amines, and ether amines can be mentioned, and examples thereof include triethylenediamine, triethylamine, and n. -Methylmorpholin, n-ethylformolin, N, N, N', N'-tetramethylbutanediamine and the like.
As the catalyst, a temperature sensitive catalyst may be used in order to prevent curing from starting during mechanical stirring of the gas. One type of catalyst may be used alone, or two or more types may be used in combination.
(その他成分)
 その他成分としては、次の添加剤が挙げられる。
(Other ingredients)
Examples of other components include the following additives.
 その他成分としては、低分子ジオール(エチレングリコール、1,4-ブタンジオール等)、多官能低分子アルコール(グリセリン、トリメチロールプロパン等)、分岐鎖を有する低分子ジオール、脂環構造を有するポリオール、及び脂環構造を有するイソシアネートよりなる群から選択される少なくとも1種が挙げられる。
 ここで、低分子ジオール、多官能低分子アルコールとは、分子量は300以下(好ましくは60~300)のポリオールである。
Other components include low molecular weight diols (ethylene glycol, 1,4-butanediol, etc.), polyfunctional low molecular weight alcohols (glycerin, trimethylolpropane, etc.), low molecular weight diols having branched chains, polyols having an alicyclic structure, etc. And at least one selected from the group consisting of isocyanates having an alicyclic structure.
Here, the low molecular weight diol and the polyfunctional low molecular weight alcohol are polyols having a molecular weight of 300 or less (preferably 60 to 300).
 その他成分としては、フィラーも挙げられる。
 フィラーとしては、無機フィラー、及び有機フィラーよりなる群から選択される1種以上が挙げられる。これらフィラーの添加により機械攪拌された泡が更に細かくなり、細かい気泡が消泡・合一しにくいため微細スポンジが得られやすい。
 無機フィラーとして、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、天然シリカ、合成シリカ、カオリン、クレー、酸化チタン、硫酸バリウム、炭酸亜鉛、酸化亜鉛、ガラスビーズ、アルミナビーズ、カーボン等が挙げられる。特に、炭酸カルシウム、水酸化アルミニウム、シリカ類が微細セル化に効果がある。
 有機フィラーとしては、フェノールビーズ、スチレンビーズ、アクリルビーズ、樹脂バルーン、シリコーンパウダー、フッ素パウダー、ナイロンパウダー、ポリエチレンパウダー等が挙げられる。
 フィラーとしては、その他、アクリルバルーン表面に炭酸カルシウムを添加処理した有機無機フィラー、ポリプロピレンポリオール中にサブミクロンの有機ポリマー(アクリロニトリル又はアクリロニトリル/スチレン共重合物等)を分散させたPOP(ポリマー分散ポリオール)も挙げられる。
Examples of other components include fillers.
Examples of the filler include one or more selected from the group consisting of an inorganic filler and an organic filler. By adding these fillers, the mechanically agitated bubbles become finer, and the fine bubbles are difficult to defoam and coalesce, so that a fine sponge can be easily obtained.
Examples of the inorganic filler include calcium carbonate, aluminum hydroxide, magnesium hydroxide, natural silica, synthetic silica, kaolin, clay, titanium oxide, barium sulfate, zinc carbonate, zinc oxide, glass beads, alumina beads, carbon and the like. In particular, calcium carbonate, aluminum hydroxide, and silica are effective for making fine cells.
Examples of the organic filler include phenol beads, styrene beads, acrylic beads, resin balloons, silicone powder, fluorine powder, nylon powder, polyethylene powder and the like.
Other fillers include an organic-inorganic filler obtained by adding calcium carbonate to the surface of an acrylic balloon, and a POP (polymer-dispersed polyol) in which a submicron organic polymer (acrylonitrile or acrylonitrile / styrene copolymer, etc.) is dispersed in a polypropylene polyol. Can also be mentioned.
 その他の成分としては、機械発泡に用いる気体(空気、窒素等)は必須であるが、発泡剤として、水(蒸留水、イオン交換水、限外濾過水、純水等)、低沸点の有機溶媒(フッ化アルキル化合物、塩化アルキル化合物等)、液化炭酸ガスなども併用することが出来る。 As other components, the gas used for mechanical foaming (air, nitrogen, etc.) is indispensable, but as the foaming agent, water (distilled water, ion-exchanged water, ultrafiltered water, pure water, etc.), low boiling point organic A solvent (alkyl fluoride compound, alkyl chloride compound, etc.), liquefied carbon dioxide gas, etc. can also be used in combination.
 その他の成分としては、上記成分以外に、難燃剤、酸化防止剤、着色剤、紫外線吸収剤、防菌剤、防カビ剤等の周知の添加剤が挙げられる。 Examples of other components include well-known additives such as flame retardants, antioxidants, colorants, ultraviolet absorbers, antibacterial agents, and antifungal agents, in addition to the above components.
(ウレタン原料液の各成分の含有量)
-ダイマー酸ポリエステルポリオールAと高分子ポリオールBとの含有量-
 ダイマー酸ポリエステルポリオールAの含有量は、全高分子ポリオールに対して30質量%以上100質量%以下であり、好ましくは、40質量%以上100質量%以下である。
(Content of each component of urethane raw material liquid)
-Contents of polyester polyol A dimer acid and polymer polyol B-
The content of the polyester dimer acid polyol A is 30% by mass or more and 100% by mass or less, preferably 40% by mass or more and 100% by mass or less, based on the total high molecular weight polyol.
 高分子ポリオールBを併用する場合、ダイマー酸ポリエステルポリオールAと、高分子ポリオールBと、の質量比(ダイマー酸ポリエステルポリオールA/ポリオールB)は、30/70~90/10が好ましく、30/70~80/20がより好ましく、40/60~80/20がさらにより好ましい。 When the polymer polyol B is used in combination, the mass ratio of the polyester polyol A dimer acid and the polymer polyol B (polyester polyol A / polyol B) is preferably 30/70 to 90/10, preferably 30/70. -80/20 is more preferable, and 40/60 to 80/20 is even more preferable.
 ダイマー酸ポリエステルポリオールAの含有量、ダイマー酸ポリエステルポリオールAと高分子ポリオールBとの質量比を上記範囲で制御して、機械発泡すると、発泡倍率が高く、さらに低硬度な機械発泡体が得られる。それにより、適度な吸液率、かつ肌感触が良くなる。
 なお、高分子ポリオールBの比率が高まると、発泡倍率は高く、低密度になり感触は維持でき、液状ファンデーションの粘度が変化しても好適に使用できるという特徴が出るが、疎水性が低下するため、吸液性が高くなり、膨潤して強度が低下する傾向がある。そのため、この観点からも、ダイマー酸ポリエステルポリオールAと高分子ポリオールBとの質量比を上記範囲で制御することがよい。
When the content of polyester polyol A dimerate and the mass ratio of polyester polyol dimerate A and polymer polyol B are controlled within the above ranges and mechanically foamed, a mechanical foam having a high foaming ratio and a lower hardness can be obtained. .. As a result, the liquid absorption rate is appropriate and the skin feel is improved.
When the ratio of the polymer polyol B is increased, the foaming ratio becomes high, the density becomes low, the feel can be maintained, and even if the viscosity of the liquid foundation changes, it can be suitably used, but the hydrophobicity decreases. Therefore, the liquid absorbency tends to be high, and the liquid tends to swell and decrease in strength. Therefore, from this viewpoint as well, it is preferable to control the mass ratio of the polyester polyol A dimerate and the polymer polyol B within the above range.
-整泡剤の含有量-
 整泡剤の含有量は、高分子ポリオール100質量部に対して、0.4~10質量部が好ましく、3~5質量部がより好ましい。
-Content of defoamer-
The content of the foam stabilizer is preferably 0.4 to 10 parts by mass, more preferably 3 to 5 parts by mass, based on 100 parts by mass of the polymer polyol.
-フィラーの含有量-
 フィラー(特に、無機フィラー)の含有量は、セル微細化の観点から、高分子ポリオール100質量部に対して5~50質量部が好ましく、10~30質量部がより好ましい。
-Filler content-
The content of the filler (particularly, the inorganic filler) is preferably 5 to 50 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the polymer polyol from the viewpoint of cell miniaturization.
(連続通気型スポンジの特性)
-自己スキン層-
 本実施形態に係る連続通気型スポンジは、自己スキン層を有していてもよいし、有していなくてもよい。ただし、リキッドファンデーション用の化粧用パフなど水系液体の含浸・吸水を抑えたい場合は、自己スキン層を有することがよい。
(Characteristics of continuous ventilation type sponge)
-Self-skin layer-
The continuously breathable sponge according to this embodiment may or may not have a self-skin layer. However, if it is desired to suppress impregnation and water absorption of water-based liquids such as cosmetic puffs for liquid foundations, it is preferable to have a self-skin layer.
-通気度-
 測定用サンプルの厚さをデジタル厚み計で測定する。フラジール型通気度試験機にサンプルをセットし、加圧抵抗器で傾斜型気圧計の数値が「5」を示すように調整し、その時の垂直型気圧計の圧力を読み取る。オリフィスの種類別換算表を用い、換算値を求める。次式により通気度を算出する。
式:AP=a×t
AP: 通気度(mL/cm/s)
a:換算値
t:厚さ(cm)
-Ventilation-
Measure the thickness of the measurement sample with a digital thickness gauge. Set the sample in the Frazier type air permeability tester, adjust the value of the inclined barometer so that it shows "5" with a pressurizing resistor, and read the pressure of the vertical barometer at that time. Use the conversion table for each type of orifice to obtain the conversion value. The air permeability is calculated by the following formula.
Formula: AP = a × t
AP: Air permeability (mL / cm 2 / s)
a: Converted value t: Thickness (cm)
-見掛け密度-
 本実施形態に係る連続通気型スポンジの見掛け密度は、適度な吸液性及び肌感触向上に加え、機械的強度、圧縮使用時の底当たり防止、操作性の観点から、100~400kg/mが好ましく、150~300kg/mがより好ましい。
-Apparent density-
The apparent density of the continuously ventilated sponge according to the present embodiment is 100 to 400 kg / m 3 from the viewpoints of mechanical strength, prevention of bottom contact during compression use, and operability, in addition to appropriate liquid absorption and improvement of skin feel. Is preferable, and 150 to 300 kg / m 3 is more preferable.
 見掛け密度は、次の方法により測定する。
 まず、測定対象(概寸:縦100mm×横100mm×厚さ測定値)のサンプルを23±3℃の環境に用意する。次に、精密天秤にて、サンプルの重量を1/100g精度で測定する。次に、デジタルゲージを使用し、直径Φ10mmの測定子を用い荷重約0.6Nにて、サンプルの厚さ寸法を1/100mm精度で9個所測定し、平均値を求める。サンプルの縦寸法及び横寸法は、デジタルノギスを用いて、それぞれ3箇所測定し、平均を求める。得られた各寸法から、サンプルの体積を算出する。そして、式:見かけ密度=重量/体積にて、見かけ密度を求める。
The apparent density is measured by the following method.
First, a sample to be measured (approximate size: length 100 mm × width 100 mm × thickness measurement value) is prepared in an environment of 23 ± 3 ° C. Next, the weight of the sample is measured with an accuracy of 1/100 g with a precision balance. Next, using a digital gauge and using a stylus having a diameter of Φ10 mm, the thickness of the sample is measured at 9 points with an accuracy of 1/100 mm under a load of about 0.6 N, and the average value is obtained. The vertical and horizontal dimensions of the sample are measured at three points using a digital caliper, and the average is calculated. The volume of the sample is calculated from each of the obtained dimensions. Then, the apparent density is obtained by the formula: apparent density = weight / volume.
-引張強さ・伸び-
 本実施形態に係る連続通気型スポンジの引張強さは、機械的強度、圧縮使用時の底当たり防止、操作性の観点から、0.1MPa以上が好ましい。
 本実施形態に係る連続通気型スポンジの引張伸びは、機械的強度、操作性の観点から、150%以上が好ましく、200%以上がより好ましい。
-Tensile strength / elongation-
The tensile strength of the continuously venting sponge according to the present embodiment is preferably 0.1 MPa or more from the viewpoint of mechanical strength, prevention of bottom contact during compression use, and operability.
The tensile elongation of the continuously ventilated sponge according to the present embodiment is preferably 150% or more, more preferably 200% or more, from the viewpoint of mechanical strength and operability.
 引張強度・伸びは、JIS K 6400-5(2012)に準拠して測定される。測定は、測定対象をダンベル2号形に打ち抜き、サンプルを得て、厚みを測る。得られたサンプルに対して、(株)オリオンテック製「テンシロン万能材料試験機UCT-500」にて,速度200mm/minで行う。そして、サンプル破断時の強度及び伸びを測定する。 Tensile strength and elongation are measured in accordance with JIS K 6400-5 (2012). In the measurement, the object to be measured is punched into a dumbbell No. 2 shape, a sample is obtained, and the thickness is measured. The obtained sample is subjected to a speed of 200 mm / min with a "Tensilon universal material tester UCT-500" manufactured by Orion Tech Co., Ltd. Then, the strength and elongation at break of the sample are measured.
-引裂強さ-
 本実施形態に係る連続通気型スポンジの引裂強さは、機械的強度の観点から、3N/cm以上が好ましく、5N/cmがより好ましい。
-Tear strength-
The tear strength of the continuously venting sponge according to the present embodiment is preferably 3 N / cm or more, more preferably 5 N / cm, from the viewpoint of mechanical strength.
 引裂強さは、JIS6400-5(2012)に準じて測定された値である。 The tear strength is a value measured according to JIS6400-5 (2012).
-50%圧縮硬度-
 本実施形態に係る連続通気型スポンジの50%圧縮硬度は、肌感触向上に加え、機械的強度、圧縮使用時の底当たり防止、操作性の観点から、50kPa以下が好ましく、15kPa以下がより好ましく、10kPa以下がより好ましい。
 50%圧縮硬度は、JIS K6400-2(2012年)に準じて測定する。
 具体的には、測定対象から、50×50mmのサイズに試料を打ち抜く。厚みが10mm以下の場合は10mm以上になるように積層して試料を得る。そして、(株)オリオンテック製「テンシロン万能材料試験機UCT-500」を用いて、圧縮速度50mm/minにてサンプル厚みに対して50%圧縮を行って、50%圧縮硬度を測定する。
-50% compression hardness-
The 50% compression hardness of the continuously breathable sponge according to the present embodiment is preferably 50 kPa or less, more preferably 15 kPa or less, from the viewpoints of mechanical strength, prevention of bottom contact during compression use, and operability, in addition to improving the feel on the skin. More preferably, it is 10 kPa or less.
The 50% compressive hardness is measured according to JIS K6400-2 (2012).
Specifically, a sample is punched from the measurement target to a size of 50 × 50 mm. When the thickness is 10 mm or less, the samples are obtained by laminating so as to be 10 mm or more. Then, using the "Tensilon Universal Material Testing Machine UCT-500" manufactured by Orion Tech Co., Ltd., 50% compression is performed on the sample thickness at a compression rate of 50 mm / min, and the 50% compression hardness is measured.
-吸水率-
 本実施形態に係る連続通気型スポンジの吸水率は、適度な吸液性の観点から、20質量%以下が好ましく、さらに好ましくは15質量%以下がより好ましく、最も好ましいのは12質量%以下が好ましい。
 吸水率は、次の通り、測定する。
 10cm角のサンプルを準備し、質量を1/100g単位まで測る。次に水槽に10cmの水をいれ、サンプルを10cmの深さに沈め、24時間放置する。24時間後、サンプル表面の水を拭き取り、サンプルの質量を1/100gまで測定する。その後次式にて吸液率を測定する。
 吸水液率(%)=(吸水後質量―吸液前質量)/吸水前質量×100
-Water absorption-
The water absorption rate of the continuously ventilated sponge according to the present embodiment is preferably 20% by mass or less, more preferably 15% by mass or less, and most preferably 12% by mass or less from the viewpoint of appropriate liquid absorption. preferable.
The water absorption rate is measured as follows.
Prepare a 10 cm square sample and measure the mass to 1/100 g unit. Next, put 10 cm of water in the water tank, submerge the sample to a depth of 10 cm, and leave it for 24 hours. After 24 hours, the water on the surface of the sample is wiped off, and the mass of the sample is measured to 1/100 g. After that, the liquid absorption rate is measured by the following formula.
Water absorption liquid ratio (%) = (mass after water absorption-mass before liquid absorption) / mass before water absorption x 100
-平均セル径-
 本実施形態に係る連続通気型スポンジの平均セル径は、適度な吸液性及び肌感触向上に加え、機械的強度の観点から、270μm以下が好ましく、250μm以下がより好ましく、200μm以下がさらに好ましい。
-Average cell diameter-
The average cell diameter of the continuously ventilated sponge according to the present embodiment is preferably 270 μm or less, more preferably 250 μm or less, still more preferably 200 μm or less, from the viewpoint of appropriate liquid absorption and improvement of skin feel, as well as mechanical strength. ..
 平均セル径は、JIS K 6400-1(2004)附属書1に準じて25mm長さ毎のセル数を測定し、25mm/セル数から算出する。なお、平均セル径は、光学顕微鏡にて拡大して計測する。 The average cell diameter is calculated from 25 mm / number of cells by measuring the number of cells for each 25 mm length according to JIS K 6400-1 (2004) Annex 1. The average cell diameter is magnified and measured with an optical microscope.
(連続通気型スポンジの製造方法)
 本実施形態に係る連続通気型スポンジの製造方法は、特に制限はない。例えば、本実施形態に係る連続通気型スポンジの製造方法としては、次の方法が挙げられる。
 オークスミキサーなどを用いて、ウレタン原料液を機械的に泡立て、泡立てられたウレタン原料液を第1の連続ウェブ(帯状体)上に連続的に塗布して塗布膜を形成する塗布工程と、第1の連続ウェブ上の塗布膜を加熱し硬化させて、連続通気構造の発泡体を形成する加熱工程と、を含む連続通気型スポンジの製造方法。
(Manufacturing method of continuous ventilation type sponge)
The method for producing the continuously ventilated sponge according to the present embodiment is not particularly limited. For example, as a method for producing a continuously ventilated sponge according to the present embodiment, the following method can be mentioned.
A coating process in which the urethane raw material liquid is mechanically foamed using an oak mixer or the like, and the foamed urethane raw material liquid is continuously applied onto the first continuous web (belt-shaped body) to form a coating film, and the first 1. A method for producing a continuously ventilated sponge, which comprises a heating step of heating and curing a coating film on a continuous web to form a foam having a continuously ventilated structure.
 一方、塗布工程の後、加熱工程の前に、第1の連続ウェブ(帯状体)上の塗布膜に第2の連続ウェブ(帯状体)を供給し、2枚の連続ウェブにより塗布膜を挟む第2連続ウェブ供給工程を含み、加熱工程は2枚の連続ウェブにより挟まれた状態で塗布膜を加熱し硬化させて、連続通気構造の発泡体を形成する工程は多数のメリットがある。
 特に、2枚の離形性の連続ウェブにより挟まれた状態で、ウレタン原料液の塗布膜を加熱硬化し、連続通気構造の発泡体を形成すると、2枚の連続ウェブに挟まれた状態で発泡するので、発泡剤の飛散が無いので発泡倍率が高まる(低密度になる)。また、両表面ともに薄く平滑なスキン層ができ、指へのなじみ(手感触がしっとり)がよく、質感が高い連続通気構造の発泡体(つまりスポンジ)が得られやすい事も大きな特徴である。
On the other hand, after the coating step and before the heating step, the second continuous web (belt) is supplied to the coating film on the first continuous web (belt), and the coating film is sandwiched between the two continuous webs. The step including the second continuous web supply step, in which the heating step heats and cures the coating film in a state of being sandwiched between the two continuous webs, has many merits to form a foam having a continuous ventilation structure.
In particular, when the coating film of the urethane raw material liquid is heat-cured to form a foam having a continuous ventilation structure while being sandwiched between two releasable continuous webs, the foam is sandwiched between the two continuous webs. Since it foams, the foaming agent does not scatter, so the foaming ratio increases (low density). In addition, a thin and smooth skin layer is formed on both surfaces, and it is easy to obtain a foam (that is, sponge) with a continuous ventilation structure that has a high texture and is familiar to fingers (feels moist).
 以下、この態様の連続通気型スポンジの製造方法について図面を参照しつつ説明する。 Hereinafter, a method for manufacturing a continuously ventilated sponge of this embodiment will be described with reference to the drawings.
 図1は、本実施形態に係る連続通気型スポンジの製造方法を実施するための装置構成の一例を概略図である。
 図1に示すように、連続通気型スポンジの製造装置100は、第1の連続ウェブ14Aを送り出す第1ウェブロール14と、ウレタン原料液を第1の連続ウェブ14A上に塗布する塗布装置12と、第1ウェブロール14から送り出された第1の連続ウェブ14Aを塗布装置12の直下に導く大径ローラ18と、第2の連続ウェブ16Aを送り出す第2ウェブロール16、第2の連続ウェブ16Aを第1の連続ウェブ14A上の塗布膜10上に導くガイドローラ20と、2枚の連続ウェブ14A,16Aの間に挟まれたウレタン原料液の塗布膜10を加熱装置22に導くとともに加熱装置22により加熱して硬化した発泡体(以下「発泡ウレタンシート」と称する)30を搬送する搬送ローラ28A,28Bと、発泡ウレタンシート30から剥離された各連続ウェブ14A,16Aを巻き上げて回収する回収ローラ24,26と、を備えている。
FIG. 1 is a schematic view of an example of an apparatus configuration for carrying out the method for manufacturing a continuously ventilated sponge according to the present embodiment.
As shown in FIG. 1, the continuous ventilation type sponge manufacturing apparatus 100 includes a first web roll 14 that feeds out a first continuous web 14A, and a coating apparatus 12 that applies a urethane raw material liquid onto the first continuous web 14A. , A large-diameter roller 18 that guides the first continuous web 14A sent out from the first web roll 14 directly under the coating device 12, a second web roll 16 that sends out the second continuous web 16A, and a second continuous web 16A. The guide roller 20 for guiding the urethane raw material liquid onto the coating film 10 on the first continuous web 14A and the urethane raw material liquid coating film 10 sandwiched between the two continuous webs 14A and 16A are guided to the heating device 22 and the heating device. Recovery by winding up and collecting the transport rollers 28A and 28B for transporting the foam (hereinafter referred to as "urethane foam sheet") 30 heated and cured by 22 and the continuous webs 14A and 16A peeled from the urethane foam sheet 30. It includes rollers 24 and 26.
-塗布工程-
 まず、原料成分を混合攪拌したウレタン原料液を第1の連続ウェブ14A上に連続的に塗布して塗布膜10を形成する。
-Applying process-
First, the urethane raw material liquid in which the raw material components are mixed and stirred is continuously applied onto the first continuous web 14A to form the coating film 10.
 第1の連続ウェブ14としては、例えば樹脂フィルムまたは紙体が好ましく用いられる。
 樹脂フィルムは、ウレタン原料液の塗布及び加熱工程での加熱によって変形しないものであれば特に限定されないが、ウレタン原料液に対する耐性、耐熱性などの観点から、ポリエステル、ポリプロピレン、ポリメチルペンテンなどのフィルムが好ましい。
 必要であれば、樹脂フィルムの表面にコロナ放電処理、プラズマ処理などを施して発泡ウレタンシートとの接着性を向上させてもよい。
As the first continuous web 14, for example, a resin film or a paper body is preferably used.
The resin film is not particularly limited as long as it is not deformed by coating the urethane raw material liquid and heating in the heating process, but from the viewpoint of resistance to the urethane raw material liquid, heat resistance, etc., a film such as polyester, polypropylene, polymethylpentene, etc. Is preferable.
If necessary, the surface of the resin film may be subjected to a corona discharge treatment, a plasma treatment, or the like to improve the adhesiveness with the urethane foam sheet.
 また、発泡ウレタンシートを製造した後、樹脂フィルムを剥がし易いようにウレタン原料液の塗布膜を形成する面が離型性を有する樹脂フィルムを用いてもよい。
 離型性を有する樹脂フィルムとしては、樹脂フィルムの片面にシリコーン離型剤を塗布する方法、ポリプロピレン樹脂やポリメチルペンテン樹脂などの離型性を有する樹脂フィルムをそのまま用いる方法、離型性を有する樹脂フィルムをポリエステルフィルム等にラミネートするなどの方法がある。また、離形フィルム又は紙体離型紙の表面をマット仕上げやシボ模様をつけて意匠性と質感を高める事も行える。
Further, after producing the urethane foam sheet, a resin film having a releasable surface on which the coating film of the urethane raw material liquid is formed may be used so that the resin film can be easily peeled off.
As the resin film having releasability, a method of applying a silicone releasable agent to one side of the resin film, a method of using a resin film having releasability such as polypropylene resin or polymethylpentene resin as it is, and a releasability property. There is a method such as laminating a resin film on a polyester film or the like. It is also possible to enhance the design and texture by adding a matte finish or a grain pattern to the surface of the release film or the release paper.
 第1の連続ウェブ14Aとして紙体を用いる場合は、グラシン紙や上質紙の表面をポリプロピレンでコートしたもの、あるいはその上から更にシリコーン離型剤や非シリコーン系離型剤などを塗布したものなどが用いられる。
 本開示で用いる第1の連続ウェブ14Aとしては樹脂フィルム又は離型性樹脂フィルムが、発泡体の固化速度が速く且つ厚み精度が高いため好ましい。
When a paper body is used as the first continuous web 14A, the surface of glassine paper or woodfree paper is coated with polypropylene, or a silicone release agent or non-silicone release agent is further applied on the surface of the glassine paper or high-quality paper. Is used.
As the first continuous web 14A used in the present disclosure, a resin film or a releasable resin film is preferable because the solidification rate of the foam is high and the thickness accuracy is high.
 第1の連続ウェブ14A上にウレタン原料液を塗布するための塗布装置12としては、ダイスコーター、ロールコーター、ナイフコーター、コンマコーターなどを用いることが好ましい。ウレタン原料液をミキシング装置で撹拌して吐出ノズルからトラバース(反復塗布)装置で吐出してロールコーター又はナイフコーターで薄塗りする方法や、ウレタン原料液を吐出ノズルからダイスコーターに導入して連続ウェブ上に塗工する方法も好ましい。 As the coating device 12 for coating the urethane raw material liquid on the first continuous web 14A, it is preferable to use a die coater, a roll coater, a knife coater, a comma coater, or the like. A method of stirring the urethane raw material liquid with a mixing device, discharging it from the discharge nozzle with a traverse (repeated coating) device, and applying a thin coat with a roll coater or knife coater, or introducing the urethane raw material liquid from the discharge nozzle to the die coater and continuously webing. The method of coating on top is also preferable.
 塗布膜10の厚みは目的とする発泡体(連続通気型スポンジ)の用途に応じて決めればよい。 The thickness of the coating film 10 may be determined according to the intended use of the foam (continuously ventilated sponge).
-第2連続ウェブ供給工程-
 第1の連続ウェブ14A上の塗布膜10に第2の連続ウェブ16Aを供給して2枚の連続ウェブ14A,16Aにより塗布膜10を挟み込む。
 第2の連続ウェブ16Aとしては、第1の連続ウェブ14Aの説明で例示した樹脂フィルム又は紙体を用いることができる。なお、加熱工程後、発泡ウレタンシート30の少なくとも片面の連続ウェブを剥離し易くする観点から、第1の連続ウェブ14A及び第2の連続ウェブ16Aの少なくとも一方の連続ウェブは、塗布膜10と接する面が離型性を有する連続ウェブを用いることが好ましい。
-Second continuous web supply process-
The second continuous web 16A is supplied to the coating film 10 on the first continuous web 14A, and the coating film 10 is sandwiched between the two continuous webs 14A and 16A.
As the second continuous web 16A, the resin film or paper body exemplified in the description of the first continuous web 14A can be used. From the viewpoint of facilitating peeling of the continuous webs on at least one side of the urethane foam sheet 30 after the heating step, at least one continuous web of the first continuous web 14A and the second continuous web 16A is in contact with the coating film 10. It is preferable to use a continuous web having a releasable surface.
 第2の連続ウェブ16Aを巻いた第2ウェブロール16から第2の連続ウェブ16Aを連続的に巻き出して第1の連続ウェブ14A上の塗布膜10に被せる。これにより塗布膜10は2枚の連続ウェブ14A,16Aにより挟まれた状態となる。 The second continuous web 16A is continuously unwound from the second web roll 16 around which the second continuous web 16A is wound and covered with the coating film 10 on the first continuous web 14A. As a result, the coating film 10 is sandwiched between the two continuous webs 14A and 16A.
 なお、図1に示す装置は2枚の連続ウェブ14A,16Aにより塗布膜10を挟むように構成されているが、第1の連続ウェブ14A上に塗布膜を形成した後、第2の連続ウェブ16Aを被せずに次の加熱工程に進んでもよい。 The apparatus shown in FIG. 1 is configured such that the coating film 10 is sandwiched between two continuous webs 14A and 16A. However, after forming the coating film on the first continuous web 14A, the second continuous web You may proceed to the next heating step without covering with 16A.
-加熱工程-
 塗布膜10は2枚の連続ウェブ14A,16Aで挟んだ状態で加熱装置22内に搬送され加熱により硬化される。
 硬化のための加熱温度は80~120℃が好ましく、この範囲の温度で5~20分で硬化することが好ましい。
 加熱装置22としては、赤外線ヒーター、電気ヒーター、ガス燃焼炉などを用いることができる。
-Heating process-
The coating film 10 is conveyed into the heating device 22 in a state of being sandwiched between two continuous webs 14A and 16A and cured by heating.
The heating temperature for curing is preferably 80 to 120 ° C., and it is preferable to cure at a temperature in this range in 5 to 20 minutes.
As the heating device 22, an infrared heater, an electric heater, a gas combustion furnace, or the like can be used.
-剥離工程-
 加熱工程により発泡硬化させた発泡ウレタンシート30を連続ウェブ14A,16Aが発泡ウレタンシート30に密着したまま巻き取ってもよいし、連続ウェブ14A,16Aが離型性ウェブである場合は、図1に示すように発泡ウレタンシート30から離型性ウェブを剥離して各回収ローラ24,26に巻き取って回収する。なお、回収した各連続ウェブ14A,16Aは供給ロール14,16として再利用することができる。
-Peeling process-
The urethane foam sheet 30 foamed and cured by the heating step may be wound while the continuous webs 14A and 16A are in close contact with the urethane foam sheet 30, and when the continuous webs 14A and 16A are releasable webs, FIG. As shown in the above, the releasable web is peeled off from the urethane foam sheet 30 and wound around the recovery rollers 24 and 26 for recovery. The collected continuous webs 14A and 16A can be reused as supply rolls 14 and 16.
 上記工程を経て、発泡ウレタンシート(連続通気構造の発泡体)からなる連続通気型スポンジを連続的に製造することができる。 Through the above steps, a continuously ventilated sponge made of a urethane foam sheet (foam having a continuously ventilated structure) can be continuously manufactured.
 なお、本実施形態に係る連続通気型スポンジが、低通気度になった場合は、必要であればクラッシング処理(発泡体をせん断圧縮して通気性を上げる処理)を実施してもよい。通気度を低いまま使えば復元速度が遅くなり、通気度を高めれば復元が早くなるので、用途に応じて通気性を調節することができる。 When the continuous ventilation type sponge according to the present embodiment has a low air permeability, a crushing treatment (a treatment of shearing and compressing the foam to increase the air permeability) may be performed if necessary. If the air permeability is kept low, the restoration speed will be slower, and if the air permeability is increased, the restoration speed will be faster, so the air permeability can be adjusted according to the application.
 本実施形態に係る連続通気型スポンジの製造方法は、上記以外に、スラブストック法、型内で成形するモールド法等の公知の方法が適用できる。 In addition to the above, known methods such as a slab stock method and a molding method for molding in a mold can be applied to the method for producing a continuously ventilated sponge according to the present embodiment.
 なお、本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されるのであれば、本用語に含まれる。 In addition, in this specification, the term "process" is not limited to an independent process, as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. Included in this term.
(連続通気型スポンジの用途)
 本実施形態に係る連続通気型スポンジは、化粧用パフ、ブラジャー用パッド、スポーツ衣料用パッド、身体保護パッド(頭、膝又は肘当て用パッド等)、医療用(魚の目用等)パッド、インソール、サポーター、止水シール材、液体(薬品、化粧水等)含浸シート、マスク、包袋等の用途に適用できる。
(Use of continuous ventilation type sponge)
The continuously breathable sponge according to the present embodiment includes cosmetic puffs, brassiere pads, sports clothing pads, body protection pads (head, knee or elbow pads, etc.), medical (fish eyes, etc.) pads, insoles, etc. It can be applied to supporters, waterproof sealants, liquid (chemicals, lotions, etc.) impregnated sheets, masks, packaging bags, etc.
(化粧用パフ)
 本実施形態に係る化粧用パフは、本実施形態に係る連続通気型スポンジを有する。それにより、本実施形態に係る化粧用パフは、リキッドファンデーションが過度に浸み込むことが抑えられる。それにより、リキッドファンデーションの消費量が低減される。それに加え、リキッドファンデーションの付け心地も良い。
(Cosmetic puff)
The cosmetic puff according to the present embodiment has the continuously breathable sponge according to the present embodiment. As a result, the cosmetic puff according to the present embodiment is prevented from being excessively infiltrated with the liquid foundation. As a result, the consumption of liquid foundation is reduced. In addition, the liquid foundation is comfortable to wear.
 本実施形態に係る化粧パフは、本実施形態に係る連続通気型スポンジの一層構造のパフであってもよいし、本実施形態に係る連続通気型スポンジと別の表皮材を一体化した複層構造パフであってもよい。 The decorative puff according to the present embodiment may be a puff having a single layer structure of the continuously breathable sponge according to the present embodiment, or may be a multi-layer in which the continuously breathable sponge according to the present embodiment and another skin material are integrated. It may be a structural puff.
 以下に実施例を挙げて本開示を具体的に説明するが、本開示はこれらの実施例に制限されるものではない。なお、以下において「部」は特に断りのない限り質量基準である。 The present disclosure will be specifically described with reference to Examples below, but the present disclosure is not limited to these Examples. In the following, "part" is based on mass unless otherwise specified.
<実施例1>
・高分子ポリオールA(ダイマー酸とジエチレングリコールから得られるポリエステルポリオール、日立化成社製、OHv=85、粘度5500mPa・s)100部
・整泡剤SZ1923(東レダウ社製シリコーン系整泡剤)5部、
・触媒SO(三菱ケミカル社製、スタナスオクテート)0.1部
 イソシアネート以外の上記ポリオール成分を配合した混合物を連続的にオークスミキサーに供給すると共に、窒素ガスを供給して機械発泡させつつ、オークスミキサーにイソシアネート(東ソー社製、カルボジイミド変性ジフェニルメタンジイソシアネート(カルボジイミド変性MDI)、NCO%=29)22.4部を添加し、ポリオール成分とイソシアネートと反応させながら吐出する。その際の原料総吐出量は250g/min、窒素ガスの吐出量は800cc/minとし、吐出した反応液を離型フィルム上に塗布し、70℃×5分、次いで100℃で10分間キュアし、約8mm厚さの連続通気型スポンジを得た。
<Example 1>
・ High molecular weight polyol A (polyester polyol obtained from dimer acid and diethylene glycol, manufactured by Hitachi Kasei Co., Ltd., OHv = 85, viscosity 5500 mPa · s) 100 parts ・ Foaming agent SZ1923 (silicone-based foaming agent manufactured by Toray Dau) 5 parts ,
-Catalyst SO (manufactured by Mitsubishi Chemical Co., Ltd., Stanasoctate) 0.1 part While continuously supplying a mixture containing the above polyol component other than isocyanate to the oak mixer, and supplying nitrogen gas to mechanically foam it. 22.4 parts of isocyanate (Carbodiimide-modified diphenylmethane diisocyanate (carbodiimide-modified MDI), NCO% = 29) manufactured by Tosoh Corporation is added to an oak mixer, and the polyol component is discharged while reacting with isocyanate. At that time, the total discharge amount of the raw material was 250 g / min, the discharge amount of nitrogen gas was 800 cc / min, the discharged reaction solution was applied on a release film, and cured at 70 ° C. × 5 minutes and then at 100 ° C. for 10 minutes. , A continuously ventilated sponge having a thickness of about 8 mm was obtained.
<実施例2~15、比較例1~7>
 表1~3の組成に従って、材料の種類および量(表中の数値は部数)を変更した以外は、実施例1と同様にして、連続通気型スポンジを得た。
 ただし、実施例13、14は、実施例1と同じ機械発泡の条件下、厚み50×縦200×横200mmのブロック状スポンジを作製した後、8mmの厚さにスライスし、自己スキン層の無い連続通気型スポンジを得た。
 また、比較例4~6(水発泡)は、次の通り、連続通気型スポンジを得た。撹拌したウレタン原料液を離型処理した離型フィルムの上にダイスコーターを用いて硬化後の厚みが約8.0mmになるように塗布し、上から別の離型フィルムを離型処理した面がウレタン原料液の塗布膜に接するように、塗布膜上に被せた。次に、オーブンで温度80℃×3分、100℃×5分の条件で、2枚の離型フィルムに挟んだ状態でウレタン原料液の塗布膜を加熱硬化した。その後、両面のフィルムを剥離して厚みが約8.0mmの連続通気型スポンジを得た。
 また、比較例7、8は、市販品を使用した。
<Examples 2 to 15, Comparative Examples 1 to 7>
A continuously ventilated sponge was obtained in the same manner as in Example 1 except that the type and amount of the material (the numerical values in the table are the number of copies) were changed according to the compositions of Tables 1 to 3.
However, in Examples 13 and 14, under the same mechanical foaming conditions as in Example 1, a block-shaped sponge having a thickness of 50 × length 200 × width 200 mm was prepared and then sliced to a thickness of 8 mm without a self-skin layer. A continuously ventilated sponge was obtained.
Further, in Comparative Examples 4 to 6 (water foaming), a continuously ventilated sponge was obtained as follows. A surface obtained by applying the stirred urethane raw material liquid on a release film that has been released from the mold so that the thickness after curing is about 8.0 mm using a die coater, and then another release film is released from above. Was put on the coating film so as to be in contact with the coating film of the urethane raw material liquid. Next, the coating film of the urethane raw material liquid was heat-cured in an oven under the conditions of a temperature of 80 ° C. × 3 minutes and 100 ° C. × 5 minutes while being sandwiched between two release films. Then, the films on both sides were peeled off to obtain a continuously breathable sponge having a thickness of about 8.0 mm.
Further, as Comparative Examples 7 and 8, commercially available products were used.
<物性測定>
 各例で得られた連続通気型スポンジの下記物性を、既述の方法に従って測定した。
・見掛け密度
・引張強さ
・引張伸び
・引裂強さ
・50%圧縮硬さ
・吸水率
・平均セル径
・通気度
<Measurement of physical properties>
The following physical properties of the continuously ventilated sponge obtained in each example were measured according to the method described above.
・ Apparent density ・ Tensile strength ・ Tensile elongation ・ Tear strength ・ 50% compression hardness ・ Water absorption rate ・ Average cell diameter ・ Air permeability
<評価>
 各例で得られた連続通気型スポンジに対して、次の評価を実施した。
-肌感触-
 肌感触について、5人の女性が化粧した際の肌感触を確認し、下記基準でモニタリング評価した。なお、評価は、5人中、最も多い評価を表中に示した。
A:肌感触が非常に良好
B:肌感触が良好
C:少しざらつき感やゴワゴワ感を感じて良くない肌感触
D:肌感触が悪い
<Evaluation>
The following evaluations were carried out on the continuously ventilated sponges obtained in each example.
-Skin feel-
Regarding the skin feel, we confirmed the skin feel when makeup was applied by five women, and monitored and evaluated it according to the following criteria. As for the evaluation, the most frequently evaluated among the five people is shown in the table.
A: Very good skin feel B: Good skin feel C: Not good with a slightly rough or rough feeling D: Poor skin feel
-感触指数-
 感触指数として、50%圧縮硬さとセル径を掛け合わせることで数値化した。掛け合わせた数値が2より低いと感触が非常に良好、2~3では良好、3~4では少しざらつき感やゴワゴワ感を感じて良くない感触、4以上では感触が悪いという上記肌感触のモニタリング評価と相関があった。
-Tactile index-
The tactile index was quantified by multiplying the 50% compression hardness by the cell diameter. When the multiplied value is lower than 2, the feel is very good, when it is 2 to 3, it feels good, and when it is 3 to 4, it feels a little rough or stiff, and when it is 4 or more, it feels bad. There was a correlation with the evaluation.
-総合評価-
 各例の連続通気型スポンジについて、下記基準で総合評価した。
A:肌感触が非常に優れ、吸水率が低いパフスポンジ
B:肌感触が優れ、吸水率が低いパフスポンジ
C:肌感触があまり良くなく、吸水率が高いパフスポンジ
D:肌感触が悪く、吸液性が高いパフスポンジ
-Comprehensive evaluation-
The continuously ventilated sponges of each example were comprehensively evaluated according to the following criteria.
A: Puff sponge with very good skin feel and low water absorption rate B: Puff sponge with excellent skin feel and low water absorption rate C: Puff sponge with poor skin feel and high water absorption rate D: Poor skin feel Highly absorbent puff sponge
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記結果から、実施例の連続通気型スポンジは、比較例のスポンジに比べ、適度な吸液率、かつ肌感触が良いことがわかる。
 ここで、実施例4の連続通気型スポンジおよび比較例7のスポンジの、リキッドファンデーションの浸み込み度合を図2及び図3に示す。
 図2に示すように、実施例4の連続通気型スポンジは適度にリキッドファンデーションの浸み込みでいるのに対して、図3に示すように、比較例7のスポンジは過度にリキッドファンデーションの浸み込みでいるのがわかる。
From the above results, it can be seen that the continuously ventilated sponge of the example has an appropriate liquid absorption rate and a better skin feel than the sponge of the comparative example.
Here, the degree of penetration of the liquid foundation of the continuously ventilated sponge of Example 4 and the sponge of Comparative Example 7 is shown in FIGS. 2 and 3.
As shown in FIG. 2, the continuously breathable sponge of Example 4 is moderately impregnated with the liquid foundation, whereas the sponge of Comparative Example 7 is excessively impregnated with the liquid foundation as shown in FIG. You can see that it is embedded.
 なお、表中に示す成分の詳細は、次の通りである。
-高分子ポリオールA-
・ダイマー酸ポリエステルポリオールA1:ダイマー酸とジエチレングリコールから得られるダイマー酸ポリエステルポリオール、日立化成社製、水酸基価OHv=85mgKOH/g、粘度(25℃)=5500mPa・s
・ダイマー酸ポリエステルポリオールA2:ダイマー酸とジエチレングリコールから得られるダイマー酸ポリエステルポリオール、日立化成社製、水酸基価OHv=150mgKOH/g、粘度(25℃)=2000mPa・s
・ダイマー酸ポリエステルポリオールA3:ダイマー酸とジエチレングリコールから得られるダイマー酸ポリエステルポリオール、日立化成社製、水酸基価OHv=70mgKOH/g、粘度(25℃)=10000mPa・s
The details of the components shown in the table are as follows.
-Polymer polyol A-
-Polyester polyol dimer acid A1: Polyester dimer acid polyol obtained from dimer acid and diethylene glycol, manufactured by Hitachi Chemical Co., Ltd., hydroxyl value OHv = 85 mgKOH / g, viscosity (25 ° C.) = 5500 mPa · s
-Polyester polyol dimer acid A2: Polyester dimer acid polyol obtained from dimer acid and diethylene glycol, manufactured by Hitachi Chemical Co., Ltd., hydroxyl value OHv = 150 mgKOH / g, viscosity (25 ° C.) = 2000 mPa · s
Polyester polyol dimer acid A3: Polyester dimer acid polyol obtained from dimer acid and diethylene glycol, manufactured by Hitachi Kasei Co., Ltd., hydroxyl value OHv = 70 mgKOH / g, viscosity (25 ° C.) = 10000 mPa · s
-ポリオールB-
・PTMG:ポリテトラメチレンエーテルグリコール、水酸基価OHv=133mgKOH/g、官能基数f=2
・PCL:ポリカプロラクトンジオール、水酸基価OHv=210.8mgKOH/g、官能基数f=2
・アジペート:アジピン酸エステルポリオール(アジピン酸と1,3ブタンジオールとを縮合させポリオール、水酸基価OHv=117mgKOH/g、官能基数f=2
・PPG:ポリプロピレングリコール、水酸基価OHv=112mgKOH/g、官能基数f=2、エチレンオキサイドのモル比率EO=0%、30%
-Polycarbonate B-
-PTMG: Polytetramethylene ether glycol, hydroxyl value OHv = 133 mgKOH / g, number of functional groups f = 2
-PCL: Polycaprolactone diol, hydroxyl value OHv = 210.8 mgKOH / g, number of functional groups f = 2
Adipate: Adipate ester polyol (polyoxide obtained by condensing adipic acid and 1,3 butanediol, hydroxyl value OHv = 117 mgKOH / g, number of functional groups f = 2
-PPG: Polypropylene glycol, hydroxyl value OHv = 112 mgKOH / g, number of functional groups f = 2, molar ratio of ethylene oxide EO = 0%, 30%
-フィラー-
・CaCO3:三共精粉社製 汎用炭酸カルシウム1級
・Al(OH)3:水酸化アルミニウム:昭和電工社製ハイジライトH10
-Filler-
・ CaCO3: General-purpose calcium carbonate first grade manufactured by Sankyo Seiko Co., Ltd. ・ Al (OH) 3: Aluminum hydroxide: Heidilite H10 manufactured by Showa Denko Co., Ltd.
-整泡剤-
SZ1923: SZ-1923、東レダウ社製、シリコーン系整泡剤
-Foaming agent-
SZ1923: SZ-1923, manufactured by Toray Dow, silicone-based defoaming agent
-触媒-
・スタナスオクテート: 金属触媒、SO(三菱ケミカル社製、スタナスオクテート)
・Dabco 33Lv: アミン触媒、Dabco 33Lv (エアープロダクツジャパン株式会社製)
-catalyst-
・ Stanas octate: Metal catalyst, SO (manufactured by Mitsubishi Chemical Corporation, Stanas octate)
-Dabco 33Lv: Amine catalyst, Dabco 33Lv (manufactured by Air Products Japan Co., Ltd.)
-イソシアネート-
・カルボジイミド変性MDI: 東ソー社製、カルボジイミド変性ジフェニルメタンジイソシアネート、NCO%=29
-Isocyanate-
-Carbodiimide-modified MDI: Tosoh, carbodiimide-modified diphenylmethane diisocyanate, NCO% = 29
-市販品-
・市販NBR系パフ: 雪谷化学社製NBRスポンジ
・市販気孔剤抽出法PU系パフ:東洋化学社製ルビーセル
-Commercial goods-
・ Commercially available NBR puff: NBR sponge manufactured by Yukigaya Chemical Co., Ltd. ・ Commercially available pore agent extraction method PU based puff: Ruby cell manufactured by Toyo Chemical Co., Ltd.
 符号の説明は、以下の通りである。
10 塗布膜
12 塗布装置
14 第1ウェブロール
14A 第1の連続ウェブ
16 第2ウェブロール
16A 第2の連続ウェブ
18 大径ローラ
22 加熱装置
24 第1回収ロール
26 第2回収ロール
30 連続通気構造の発泡体(発泡ウレタンシート)
100 連続通気型スポンジの製造装置
The description of the reference numerals is as follows.
10 Coating film 12 Coating device 14 1st web roll 14A 1st continuous web 16 2nd web roll 16A 2nd continuous web 18 Large diameter roller 22 Heating device 24 1st recovery roll 26 2nd recovery roll 30 Continuous ventilation structure Foam (urethane foam sheet)
100 Continuous ventilation type sponge manufacturing equipment
 なお、日本国特許出願第2019-091336の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2019-091336 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  全高分子ポリオールに対して30質量%以上100質量%以下のダイマー酸ポリエステルポリオールを含む高分子ポリオールと、
     ジフェニルメタンジイソシアネート系のイソシアネートと、
     整泡剤と、
     触媒と、
     を含む組成物の機械発泡体で構成された連続通気型スポンジ。
    Polymer polyols containing 30% by mass or more and 100% by mass or less of polyester dimerate with respect to all polymer polyols,
    Diphenylmethane diisocyanate-based isocyanate and
    Defoamer and
    With the catalyst
    A continuously ventilated sponge composed of a mechanical foam of a composition containing.
  2.  前記高分子ポリオールが、前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールを含む請求項1に記載の連続通気型スポンジ。 The continuously breathable sponge according to claim 1, wherein the polymer polyol contains a polymer polyol other than the polyester polyol dimerate.
  3.  前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールが、アルキレンオキサイド付加ポリエーテルポリオール、ポリラクトンポリオール、カルボン酸エステルポリオールから選択される少なくとも1種である請求項2に記載の連続通気型スポンジ。 The continuously ventilated sponge according to claim 2, wherein the polymer polyol other than the dimer acid polyester polyol is at least one selected from an alkylene oxide-added polyether polyol, a polylactone polyol, and a carboxylic acid ester polyol.
  4.  前記ダイマー酸ポリエステルポリオールと、前記ダイマー酸ポリエステルポリオール以外の高分子ポリオールと、の質量比(ダイマー酸ポリエステルポリオール/ダイマー酸ポリエステルポリオール以外の高分子ポリオール)が、30/70~80/20である請求項2又は請求項3に記載の連続通気型スポンジ。 A claim that the mass ratio (polyester polyol dimerate / polymer polyol other than polyester dimerate) of the polyester polyol dimerate to a polymer polyol other than the polyester dimerate is 30/70 to 80/20. The continuously ventilated sponge according to claim 2 or 3.
  5.  吸水率が15%以下である請求項1~請求項4のいずれか1項に記載の連続通気型スポンジ。 The continuously ventilated sponge according to any one of claims 1 to 4, wherein the water absorption rate is 15% or less.
  6.  前記組成物が、前記高分子ポリオール100質量部に対して5~50質量部の無機フィラーを含む請求項1~請求項5のいずれか1項に記載の連続通気型スポンジ。 The continuously breathable sponge according to any one of claims 1 to 5, wherein the composition contains 5 to 50 parts by mass of an inorganic filler with respect to 100 parts by mass of the polymer polyol.
  7.  自己スキン層を有する請求項1~請求項6のいずれか1項に記載の連続通気型スポンジ。 The continuously ventilated sponge according to any one of claims 1 to 6, which has a self-skin layer.
  8.  請求項1~請求項7のいずれか1項に記載の連続通気型スポンジを有する化粧用パフ。 A cosmetic puff having the continuously breathable sponge according to any one of claims 1 to 7.
PCT/JP2020/019353 2019-05-14 2020-05-14 Open-cell sponge, and puff for cosmetic WO2020230871A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217036750A KR20220008270A (en) 2019-05-14 2020-05-14 Continuously Breathable Sponge, and Cosmetic Puff
CN202080034962.2A CN113811557B (en) 2019-05-14 2020-05-14 Cosmetic powder puff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-091336 2019-05-14
JP2019091336A JP2020186309A (en) 2019-05-14 2019-05-14 Open cell-structured sponge and cosmetic puff

Publications (1)

Publication Number Publication Date
WO2020230871A1 true WO2020230871A1 (en) 2020-11-19

Family

ID=73223429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019353 WO2020230871A1 (en) 2019-05-14 2020-05-14 Open-cell sponge, and puff for cosmetic

Country Status (4)

Country Link
JP (3) JP2020186309A (en)
KR (1) KR20220008270A (en)
CN (1) CN113811557B (en)
WO (1) WO2020230871A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117750A (en) * 2004-10-20 2006-05-11 Nippon Polyurethane Ind Co Ltd Method for producing polyurethane foam
JP2006117751A (en) * 2004-10-20 2006-05-11 Nippon Polyurethane Ind Co Ltd Method for producing polyurethane foam
JP2011236346A (en) * 2010-05-11 2011-11-24 Nitto Denko Corp Method of manufacturing polyester sheet
JP2012057060A (en) * 2010-09-09 2012-03-22 Bridgestone Corp Polyurethane foam
JP2018513898A (en) * 2015-04-13 2018-05-31 エルジー ハウスホールド アンド ヘルスケア リミテッド Flexible polyurethane foam using hydrocarbon polyol and cosmetic containing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035502A (en) 1984-04-27 1985-02-23 Tamao Morita Band engaging means
JPH07114725B2 (en) 1993-03-31 1995-12-13 株式会社コーセー Makeup sponge puff
JP2001294640A (en) 2000-04-11 2001-10-23 Bridgestone Corp Heat-accumulating mechanical froth type polyurethane foam and method for producing the same
JP4803571B2 (en) 2004-09-24 2011-10-26 株式会社イノアックコーポレーション Polyurethane foam and method for producing the same
JP4772423B2 (en) 2005-08-23 2011-09-14 株式会社イノアックコーポレーション Cosmetic puff
WO2008097570A2 (en) * 2007-02-06 2008-08-14 World Properties, Inc. Conductive polymer foams, method of manufacture, and uses thereof
EP2239287A1 (en) 2009-04-08 2010-10-13 Recticel Process for preparing a flexible polyurethane foam
CN102942673B (en) * 2012-11-19 2014-06-04 山东一诺威聚氨酯股份有限公司 Composition for preparing sponge powder puff and preparation method of composition
JP6106523B2 (en) * 2013-05-17 2017-04-05 株式会社東洋クオリティワン Method for producing polyurethane foam for cosmetic application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117750A (en) * 2004-10-20 2006-05-11 Nippon Polyurethane Ind Co Ltd Method for producing polyurethane foam
JP2006117751A (en) * 2004-10-20 2006-05-11 Nippon Polyurethane Ind Co Ltd Method for producing polyurethane foam
JP2011236346A (en) * 2010-05-11 2011-11-24 Nitto Denko Corp Method of manufacturing polyester sheet
JP2012057060A (en) * 2010-09-09 2012-03-22 Bridgestone Corp Polyurethane foam
JP2018513898A (en) * 2015-04-13 2018-05-31 エルジー ハウスホールド アンド ヘルスケア リミテッド Flexible polyurethane foam using hydrocarbon polyol and cosmetic containing the same

Also Published As

Publication number Publication date
JP7439370B2 (en) 2024-02-28
KR20220008270A (en) 2022-01-20
CN113811557A (en) 2021-12-17
JP2023021161A (en) 2023-02-09
JP2020186309A (en) 2020-11-19
JP2023021162A (en) 2023-02-09
CN113811557B (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US6803495B2 (en) Polyurethane foam composition and method of manufacture thereof
EP2174968B1 (en) Shape formable polyurethane foam product having shape memory properties, method of using the same and cushion material to be worn on human body
EP1167019B1 (en) Composite polyurethane foams and method of manufacture thereof
TWI293962B (en) Polyurethane-polyurea dispersions
JP5230987B2 (en) Soft polyurethane foam for skin material integrated foam molding
JP5465660B2 (en) Solventless polyurethaneurea foam sheet, method for producing the same, and synthetic leather
TW201345942A (en) Method for producing coated polyurethane foam, coated polyurethane foam, clothing material, brassiere pad and brassiere cup
KR101908934B1 (en) Puff for make-up and manufacturing method thereof
WO2020230871A1 (en) Open-cell sponge, and puff for cosmetic
TW201408837A (en) Urethane resin composition, leather-like sheet, and laminate
JP2017123907A (en) Puff for cosmetic coating
JP6901894B2 (en) Urethane synthetic leather, urethane synthetic leather manufacturing method, cosmetic puffs, and members with synthetic leather
JP2024052429A (en) Easily washable continuous ventilation type sponge and easily washable cosmetic puff
WO2022137875A1 (en) Sheet and production method for sheet
JP6991730B2 (en) Flooring material
JP2022100615A (en) Sheet and method for manufacturing the same
JP4758135B2 (en) Water-absorbent molded body and method for producing the same
WO2012086776A1 (en) Process for production of expanded urethane sheet
WO2024011580A1 (en) Multi-layer synthetic leather products
EP3858614A1 (en) Porous layer structure and method for producing same
JP6838687B2 (en) Urethane resin composition and synthetic leather
TW202340294A (en) Method for producing polyurethane foam sheet and method for producing synthetic leather
JP2020007675A (en) Synthetic leather with good feeling and touch and extremely excellent abrasion resistance, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805840

Country of ref document: EP

Kind code of ref document: A1