WO2020230802A1 - Method for producing 4-oxopyrrolidine-3-carboxamide derivatives - Google Patents

Method for producing 4-oxopyrrolidine-3-carboxamide derivatives Download PDF

Info

Publication number
WO2020230802A1
WO2020230802A1 PCT/JP2020/019047 JP2020019047W WO2020230802A1 WO 2020230802 A1 WO2020230802 A1 WO 2020230802A1 JP 2020019047 W JP2020019047 W JP 2020019047W WO 2020230802 A1 WO2020230802 A1 WO 2020230802A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
alkali metal
production method
compound represented
Prior art date
Application number
PCT/JP2020/019047
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 三好
貴博 神田
秀孝 小松
Original Assignee
杏林製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杏林製薬株式会社 filed Critical 杏林製薬株式会社
Priority to JP2021519448A priority Critical patent/JPWO2020230802A1/ja
Priority to CN202080029336.4A priority patent/CN113727968A/en
Publication of WO2020230802A1 publication Critical patent/WO2020230802A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a pyrrolidine derivative, which can be used as an intermediate for producing an antibacterial agent effective against resistant bacteria.
  • Patent Document 1 describes 4-, which is an intermediate for producing an optically active substance of (3R, 4S) -3-alkylaminomethyl-4-fluoropyrrolidin, which is useful as a drug manufacturing intermediate, or an enantiomer thereof.
  • a method for producing an oxopyrrolidine-3-carboxylic acid amide derivative is disclosed.
  • Patent Document 1 The manufacturing method disclosed in Patent Document 1 has a large number of processes and has problems in industrial production. Therefore, an object of the present invention is to provide a novel method for producing a pyrrolidine derivative having a smaller number of steps.
  • the present inventors have diligently studied the above-mentioned problems and found that a pyrrolidine derivative can be efficiently synthesized by continuously performing the Azamichael reaction and Dieckmann cyclization, and arrived at the present invention.
  • Equation (1) [In formula (1), PG 1 represents a protecting group for an amino group, R 1 is a hydrogen atom, an alkyl group of C1 to C6 which may be substituted, or a cycloalkyl group of C3 to C8 which may be substituted. Represents. ] Is a method for producing a 4-oxopyrrolidine-3-carboxylic acid amide derivative. Process A: Equation (2) [In the formula (2), PG 1 represents the above-mentioned one, and R 2 represents an alkyl group of C1 to C6. ] And formula (3) [In equation (3), R 1 represents the above-mentioned one.
  • R 1 represents a hydrogen atom, an optionally substituted alkyl group of C1 to C6 or an optionally substituted cycloalkyl group of C3 to C8.
  • R 1 represents a hydrogen atom, an optionally substituted alkyl group of C1 to C6 or an optionally substituted cycloalkyl group of C3 to C8.
  • the production method according to [1], wherein the compound represented by the formula (2) obtained in the step C and the compound represented by the formula (3) obtained in the step B are subjected to the step A.
  • step A The production method according to [1] or [2], wherein in step A, the base is a hydride of an alkali metal.
  • step A The production method according to [1] or [2], wherein the base is an alkali metal amide in step A.
  • step A the solvent is cyclic ethers.
  • step A the reaction temperature is 40 to 50 ° C.
  • Amino-protecting group represented by PG 1 is aralkoxycarbonyl group, a functional group represented by R 1 is a cyclopropyl group, A process according to any one of [1] to [7].
  • step A the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide, and the solvent is cyclic ethers.
  • step A any of [1] to [3], wherein the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide, the solvent is cyclic ethers, and the reaction temperature is 40 to 50 ° C.
  • the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide
  • the solvent is cyclic ethers
  • the reaction temperature is 40-50 ° C
  • the protection of the amino group represented by PG 1 is protected.
  • group is aralkoxycarbonyl group
  • a functional group represented by R 1 is a cyclopropyl group, a process according to any one of [1] to [3].
  • the pyrrolidine derivative represented by the formula (1) can be obtained in a shorter process.
  • PG 1 represents a protecting group for an amino group.
  • R 1 represents a hydrogen atom, an alkyl group of C1 to C6 which may be substituted, or a cycloalkyl group of C3 to C8 which may be substituted.
  • R 2 represents an alkyl group of C1 to C6, and is preferably an alkyl group of C1 to C4.
  • X represents a leaving group and is preferably a halogen atom.
  • Cn to Cm shown in the present specification means n to m carbon atoms, and n and m are independent natural numbers, and m is a larger number than n.
  • C1 to C6 means 1 to 6 carbon atoms.
  • protecting group for an amino group shown in the present specification is not particularly limited as long as it is a protecting group generally known as a protecting group for an amino group, and is, for example, an aralkyl such as a benzyl group and a paramethoxybenzyl group.
  • an aralkylcarbonyl group or an alkoxycarbonyl group is preferable as a protecting group for the amino group, an aralkoxycarbonyl group is more preferable, and a benzyloxycarbonyl group is further preferable.
  • the “optionally substituted alkyl groups C1 to C6” referred to herein are halogen atoms, hydroxyl groups, cyano groups, C1 to C6 alkoxy groups, optionally substituted aryloxy groups, C1.
  • Good C4-C9 cyclic amino groups formylamino groups, C1-C6 alkylcarbonylamino groups, C1-C6 alkoxycarbonylamino groups, C1-C6 alkylsulfonylamino groups and optionally substituted arylsulfonylamino groups It means an alkyl group of C1 to C6 having the same or different 1 to 5 substituents selected from the group consisting of, or an unsubstituted alkyl group of C1 to C6.
  • alkyl group of C1 to C6 means a linear or branched alkyl group.
  • alkyl group of C1 to C6 include methyl group, ethyl group, propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropan-1-yl group, tert-butyl group and 1-ethyl.
  • Propyl group, 2-ethylpropyl group, butyl group, hexyl group and the like can be mentioned.
  • an ethyl group or a tert-butyl group is preferable as the alkyl group of C1 to C6.
  • the "optionally substituted cycloalkyl group of C3 to C8" referred to herein is a halogen atom, a hydroxyl group, a cyano group, an alkoxy group of C1 to C6, or an optionally substituted aryloxy group. , C1-C6 alkylcarbonyl groups, C1-C6 alkoxycarbonyl groups, C1-C6 alkylthio groups, amino groups, mono- or di-substituted C1-C6 alkylamino groups, including 1-3 heteroatoms.
  • Cyclic amino groups of C4 to C9, formylamino groups, alkylcarbonylamino groups of C1 to C6, alkoxycarbonylamino groups of C1 to C6, alkylsulfonylamino groups of C1 to C6 and optionally substituted arylsulfonyl It means a C3 to C8 cycloalkyl group having the same or different 1 to 5 substituents selected from the group consisting of amino groups, or an unsubstituted C3 to C8 cycloalkyl group.
  • cycloalkyl group of C3 to C8 means an alkyl group having a cycloalkyl ring.
  • examples of the cycloalkyl group of C3 to C8 include a cyclopropyl group, a cyclopropylmethyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
  • the cycloalkyl group of C3 to C8 is preferably a cyclopropyl group.
  • alkoxy group of C1 to C6 examples include a methoxy group, an ethoxy group, a butoxy group and a hexyloxy group.
  • aryloxy group consists of a halogen atom, a hydroxyl group, a cyano group, a nitro group, an alkyl group of C1 to C6, an alkoxy group of C1 to C6 and an alkylthio group of C1 to C6. It means an aryloxy group having the same or different 1 to 5 substituents selected from the group, or an unsubstituted aryloxy group.
  • aryloxy group examples include a phenoxy group and a naphthyloxy group.
  • alkylcarbonyl group of C1 to C6 examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group and a hexanoyl group.
  • alkoxycarbonyl group of C1 to C6 examples include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  • alkylthio groups of C1 to C6 include methylthio group, ethylthio group, propylthio group and isopropylthio group.
  • the above-mentioned "mono or di-substituted alkylamino group of C1 to C6” refers to a halogen atom, a hydroxyl group, a cyano group, an alkoxy group of C1 to C6, an alkylthio group of C1 to C6, an amino group, and 1 to 3 groups. From C4-C9 cyclic amino groups, formylamino groups, C1-C6 alkylcarbonylamino groups, C1-C6 alkylsulfonylamino groups and optionally substituted arylsulfonylamino groups, which may contain heteroatoms, and the like. It means an alkylamino group of C1 to C6 having 1 to 2 substituents selected from the group.
  • alkylamino group of C1 to C6 examples include methylamino group, ethylamino group, n-propylamino group, n-butylamino group, sec-butylamino group, n-pentylamino group and n-.
  • a hexylamino group and the like can be mentioned.
  • cyclic amino group of C4 to C9 which may contain 1 to 3 heteroatoms
  • the cyclic amino group of C4 to C9 include an aziridyl group, a pyrrolidyl group, a piperidyl group, a morpholic group, an oxazolyl group, an azabicycloheptyl group and an azabicyclooctyl group.
  • alkylcarbonylamino group of C1 to C6 examples include an acetylamino group, a propionylamino group and a butyrylamino group.
  • alkoxycarbonylamino group of C1 to C6 examples include a methoxycarbonylamino group, an ethoxycarbonylamino group, a tert-butoxycarbonylamino group, a hexyloxycarbonylamino group and the like.
  • alkylsulfonylamino group of C1 to C6 examples include a methylsulfonylamino group and an ethylsulfonylamino group.
  • arylsulfonylamino group is derived from a halogen atom, a hydroxyl group, a cyano group, a nitro group, an alkyl group of C1 to C6, an alkoxy group of C1 to C6 and an alkylthio group of C1 to C6. It means an arylsulfonylamino group having the same or different 1 to 5 substituents selected from the group, or an unsubstituted arylsulfonylamino group.
  • arylsulfonylamino group examples include a phenylsulfonylamino group, a 4-methylphenylsulfonylamino group and a naphthylsulfonylamino group.
  • alkyl group of C1 to C4" shown in the present specification means a linear or branched alkyl group.
  • Examples of the "alkyl groups C1 to C4" include methyl group, ethyl group, propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropan-1-yl group, tert-butyl group and butyl. Group etc. can be mentioned. Among these, a methyl group or an ethyl group is preferable as the alkyl group of C1 to C4, and an ethyl group is more preferable.
  • alkali metal examples include lithium, sodium and potassium.
  • Examples of the “leaving group” shown in the present specification include a halogen atom, a p-toluenesulfonyloxy group, and a methanesulfonyloxy group.
  • a halogen atom is preferable as a leaving group.
  • halogen atom examples include an iodine atom, a bromine atom, a chlorine atom, and a fluorine atom. Among these, a chlorine atom is preferable as the halogen atom.
  • cyclic ethers examples include 1,4-dioxane, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran and the like. Among these, tetrahydrofuran is preferable as the cyclic ethers.
  • the reaction of step C is a step of introducing a protecting group into the compound represented by the formula (4) to obtain the compound represented by the formula (2).
  • a protecting group for example, Theodra W. et al. Green & Peter G. M. The methods described in Wuts, "Greene's Protective Groups in Organic Synthesis", future edition, Wiley-Interscience, 2006 can be mentioned.
  • benzyl chloroformate a base, and a solvent can be used for production.
  • the amount of benzyl chloroformate is not particularly limited with respect to the compound represented by the formula (4), but is usually preferably 1 to 5 equivalents, more preferably 1 to 2 equivalents, and most preferably 1.05 equivalents. ..
  • the base may be any base that does not inhibit the reaction, and examples thereof include sodium hydrogencarbonate. Usually, 1 to 5 equivalents are preferable, more preferably 2 to 3 equivalents, and most preferably 2.2 equivalents. is there.
  • the solvent examples include esters such as ethyl acetate, butyl acetate and isopropyl acetate, 1,4-dioxane, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tert-butylmethyl ether (TBME) and dimethoxy.
  • esters such as ethyl acetate, butyl acetate and isopropyl acetate
  • 1,4-dioxane tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tert-butylmethyl ether (TBME) and dimethoxy.
  • Examples include ethers such as ethane (DME) and jiglime, water, and mixtures thereof.
  • the reaction temperature is usually preferably in the range of ⁇ 20 ° C. to the boiling point of the solvent to be used, more preferably in the range of 0 ° C
  • Step B is a step of condensing the compound represented by the formula (5) and the amine compound represented by the formula (6) in the presence of a base to obtain the compound represented by the formula (3).
  • condensation reaction commonly used condensation conditions can be used.
  • the amount of the amine represented by the formula (6) is not particularly limited, but is usually preferably 1 to 3 equivalents, more preferably 1.0 to 1.5 equivalents, relative to the compound represented by the formula (5). Is.
  • the base may be any base that does not inhibit the reaction, such as triethylamine, trimethylamine, tripropylamine, diisopropylethylamine, pyridine, dimethylaniline, N-methylmorpholine, N-methylpyrrolidin, and 4-dimethylaminopyridine.
  • Organic bases can be mentioned.
  • N-methylmorpholine, N-methylpyrrolidine or triethylamine is preferable, and triethylamine is more preferable.
  • a solvent for the reaction in step B It is usually preferable to use a solvent for the reaction in step B.
  • the solvent include esters such as ethyl acetate and butyl acetate, aromatic compounds such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, 1,4-dioxane and tetrahydrofuran (THF).
  • Cyclic ethers such as 2-methyltetratetra (2-MeTHF), tetrahydropyran, ethers such as tert-butylmethyl ether (TBME), dimethoxyethane (DME) and diglime, dichloromethane, chloroform, carbon tetrachloride and 1,2 Examples thereof include halogenated hydrocarbons such as dichloroethane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide and N-methylpyrrolidone, and mixtures thereof.
  • 2-MeTHF 2-methyltetratetra
  • ethers such as tert-butylmethyl ether (TBME), dimethoxyethane (DME) and diglime
  • dichloromethane chloroform
  • carbon tetrachloride 1,2 Examples thereof include halogenated hydrocarbons such as dichloroethane
  • esters such as ethyl acetate and butyl acetate, mixed solvents of tetrahydrofuran, tetrahydrofuran and N, N-dimethylformamide, or 2-methyltetrahydrofuran and N, N-dimethyl are preferable solvents to be used in step B.
  • a mixed solvent with formamide is preferable, and ethyl acetate is more preferable.
  • the reaction temperature in step B is usually preferably in the range of ⁇ 20 ° C. to the boiling point of the solvent to be used, more preferably in the range of 0 ° C. to the boiling point of the solvent, and further preferably in the range of 0 to 10 ° C.
  • step A is carried out by treating the compound represented by the formula (2) and the compound represented by the formula (3) with at least one base selected from an alkali metal amide, an alkali metal hydride and an alkali metal alkoxide. , A step of obtaining a 4-oxopyrrolidine-3-carboxylic acid amide derivative represented by the formula (1).
  • Alkaline metal amide is a compound in which hydrogen atoms of amines are replaced with metal atoms.
  • alkali metal amide examples include lithium amide, sodium amide, potassium amide, lithium diethylamide, lithium diisopropylamide, lithium cyclohexylisopropylamide, lithium tetramethylpiperidide, lithium hexamethyldisilazide (LHMDS), and sodium hexamethyldi.
  • LHMDS lithium hexamethyldisilazide
  • KHMDS potassium hexamethyldisilazide
  • lithium hexamethyldisilazide sodium hexamethyldisilazide or potassium hexamethyldisilazide is preferable, and potassium hexamethyldisilazide is more preferable.
  • alkali metal alkoxide is a compound in which the hydroxyl groups of alcohols are replaced with alkali metals.
  • alkali metal alkoxide examples include sodium methoxide (NaOMe), sodium ethoxide (NaOEt), potassium ethoxide (KOEt), sodium tert-butoxide (tBuONa), potassium tert-butoxide (tBuOK), and lithium tert-butoxide (tBuOK).
  • tBuOLi sodium tert-pentoxide (C 2 H 5 C (CH 3 ) 2 ONa) and potassium tert-pentoxide (C 2 H 5 C (CH 3 ) 2 OK) and the like.
  • alkali metal alkoxide potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide is preferable, and potassium tert-butoxide is more preferable.
  • alkali metal hydride examples include lithium hydride, sodium hydride, potassium hydride and the like.
  • the amount of the base used is not particularly limited, but is usually preferably 1 to 4 equivalents, more preferably 1 to 1.5 equivalents, relative to the compound represented by the formula (2).
  • the reaction temperature in step A is usually preferably in the range of ⁇ 20 to 100 ° C., more preferably 30 to 65 ° C., and even more preferably 40 to 50 ° C.
  • a solvent for the reaction in step A It is usually preferable to use a solvent for the reaction in step A.
  • the solvent include alcohols such as methanol, ethanol, 2-propanol, tert-butyl alcohol, 2-methoxyethanol, ethylene glycol and diethylene glycol, esters such as ethyl acetate and butyl acetate, and benzene, toluene and xylene.
  • Aromatic compounds such as hexane, heptane and cyclohexane, cyclic ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahexyl, ethers such as tert-butylmethyl ether, dimethoxyethane and diglime, dichloromethane , Hydrocarbons such as chloroform, carbon tetrachloride and 1,2-dichloroethane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide and N-methylpyrrolidone. Classes, and mixtures thereof.
  • hydrocarbons such as hexane, heptane and cyclohexane
  • cyclic ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahexyl
  • ethers such
  • N N-dimethylformamide, tetrahydrofuran or toluene is preferable, and tetrahydrofuran is more preferable.
  • the pyrrolidine derivative can be obtained in a shorter process.
  • the method of this embodiment has a better yield than the method described in Patent Document 1, does not require the use of expensive reagents, and has less by-products in the reaction. Therefore, the method of this embodiment is more suitable for industrial production of the pyrrolidine derivative represented by the formula (1).
  • the 4-oxopyrrolidine-3-carboxylic acid amide derivative obtained by the method of the present embodiment is useful as a pharmaceutical manufacturing intermediate by known methods (Patent No. 5844739 and WO 2007/102567). It can be converted to an optically active form of 3R, 4S) -3-alkylaminomethyl-4-fluoropyrrolidine or an enantiomer thereof.
  • double amount means the amount (mL) of solvent relative to the mass (g) of the substrate.
  • reaction solution was cooled to room temperature and the organic layer was separated.
  • a 10% sodium chloride solution 200 mL was added to the organic layer, the organic layer was separated, and then concentrated under reduced pressure.
  • Ethyl acetate 150 mL was added to the concentrated residue to dissolve it, and the mixture was concentrated under reduced pressure to obtain 91.5 g of the title compound as a colorless oil.
  • Step B Production of N-Cyclopropylacrylamide Cyclopropylamine (39.9 mL, 473 mmol) and triethylamine (71.9 mL, 516 mmol) were added to ethyl acetate (300 mL). After cooling, a solution of acryloyl chloride (34.7 mL, 430 mmol) / ethyl acetate (75.0 mL) was added dropwise at an internal temperature of 10 ° C. or lower, and the mixture was stirred at an internal temperature of 10 ° C. or lower for 1 hour.
  • Step A Preparation of benzyl 3- (Cyclopropyl Carbamoyl) -4-oxopyrrolidine-1-carboxylate N-Carbobenzoxiglysin methyl (91.5 g) synthesized in tetrahydrofuran (200 mL) by step C and N- synthesized by step B. Cyclopropylacrylamide (52.6 g) was added. After heating, a tetrahydrofuran solution of potassium tert-butoxide (1.0 mol / L, 394 mL, 394 mmol) was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 2.5 hours.
  • potassium tert-butoxide 1.0 mol / L, 394 mL, 394 mmol
  • the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, and the remaining 1 mol / L hydrochloric acid and water (250 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C. After heating and stirring at an internal temperature of 30 ° C. to 35 ° C. for 30 minutes, the mixture was cooled and stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. The precipitated crystals were collected by filtration and washed with water (500 mL) to obtain 165 g of wet crystals of the title compound.
  • Example 2 Preparation of benzyl 3- (Cyclopropylcarbamoyl) -4-oxopyrrolidine-1-carboxylate N-carbobenzoxicglycine methyl (93.9 g) synthesized in tetrahydrofuran (300 mL) according to Step C of Example 1 and Example 1 N-cyclopropylacrylamide (52.5 g) synthesized in step B of the above step B was added. After heating, a tetrahydrofuran solution (21%, 211 g) of potassium tert-butoxide was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 2.5 hours.
  • the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, and the remaining 1 mol / L hydrochloric acid and water (250 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C. After heating and stirring at an internal temperature of 30 ° C. to 35 ° C. for 30 minutes, the mixture was cooled and stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. The precipitated crystals were collected by filtration and washed with water (500 mL) to obtain 154 g of wet crystals of the title compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

[Problem] To provide a novel method for producing pyrrolidine derivatives in fewer steps. [Solution] A method for producing 4-oxopyrrolidine-3-carboxamide derivatives represented by formula (1), wherein the method includes a step A for obtaining a 4-oxopyrrolidine-3-carboxamide derivative represented by formula (1) by treating a compound represented by formula (2) and a compound represented by formula (3) by at least one base selected from alkali metal alkoxides, alkali metal hydrides, and alkali metal amides in a solvent.

Description

4-オキソピロリジン-3-カルボン酸アミド誘導体の製造方法Method for producing 4-oxopyrrolidine-3-carboxylic acid amide derivative
 本発明は、耐性菌に対しても有効な抗菌剤の製造中間体として利用可能である、ピロリジン誘導体の製造方法に関する。 The present invention relates to a method for producing a pyrrolidine derivative, which can be used as an intermediate for producing an antibacterial agent effective against resistant bacteria.
 特許文献1には、医薬品製造中間体として有用な(3R,4S)-3-アルキルアミノメチル-4-フルオロピロリジンの光学活性体またはその鏡像異性体を製造するための中間体である、4-オキソピロリジン-3-カルボン酸アミド誘導体の製造方法が開示されている。 Patent Document 1 describes 4-, which is an intermediate for producing an optically active substance of (3R, 4S) -3-alkylaminomethyl-4-fluoropyrrolidin, which is useful as a drug manufacturing intermediate, or an enantiomer thereof. A method for producing an oxopyrrolidine-3-carboxylic acid amide derivative is disclosed.
特許第5844739号公報Japanese Patent No. 5844739
 特許文献1で開示されている製造方法は工程数が多く、工業的な生産においては課題がある。そこで、本発明は、工程数のより少ないピロリジン誘導体の新規な製造方法を提供することを目的とする。 The manufacturing method disclosed in Patent Document 1 has a large number of processes and has problems in industrial production. Therefore, an object of the present invention is to provide a novel method for producing a pyrrolidine derivative having a smaller number of steps.
 本発明者らは、上記の課題について鋭意検討を行い、アザマイケル反応及びディークマン環化を連続的に行なうことで効率的にピロリジン誘導体を合成できることを見出し、本発明に到達した。 The present inventors have diligently studied the above-mentioned problems and found that a pyrrolidine derivative can be efficiently synthesized by continuously performing the Azamichael reaction and Dieckmann cyclization, and arrived at the present invention.
 本発明の要旨は以下の通りである。
[1]
 式(1)
Figure JPOXMLDOC01-appb-C000007
[式(1)中、PGはアミノ基の保護基を表し、Rは水素原子、置換されていてもよいC1~C6のアルキル基または置換されていてもよいC3~C8のシクロアルキル基を表す。]で示される4-オキソピロリジン-3-カルボン酸アミド誘導体の製造方法であって、
工程A:式(2)
Figure JPOXMLDOC01-appb-C000008
[式(2)中、PGは前述したものを表し、Rは、C1~C6のアルキル基を表す。]で示される化合物と式(3)
Figure JPOXMLDOC01-appb-C000009
[式(3)中、Rは前述したものを表す。]で示される化合物を、溶媒中、アルカリ金属アルコキシド、アルカリ金属の水素化物およびアルカリ金属アミドから選ばれる少なくとも1種の塩基で処理することにより、式(1)で示される4-オキソピロリジン-3-カルボン酸アミド誘導体を得ることを含む、前記製造方法。
[2]
 工程C:式(4)
Figure JPOXMLDOC01-appb-C000010
[式(4)中、Rは、C1~C6のアルキル基を表す。]で示される化合物またはその塩のアミノ基を、保護基で保護することにより式(2)で示される化合物を取得し、
工程B:式(5)
Figure JPOXMLDOC01-appb-C000011
[式(5)中、Xは脱離基を表す。]で示される化合物と式(6)
Figure JPOXMLDOC01-appb-C000012
[式(6)中、Rは水素原子、置換されていてもよいC1~C6のアルキル基または置換されていてもよいC3~C8のシクロアルキル基を表す。]で示されるアミン化合物を、縮合することにより、式(3)で示される化合物を得ることをさらに含み、
 工程Cで得られた式(2)で示される化合物と工程Bで得られた式(3)で示される化合物を工程Aに供する、[1]に記載の製造方法。
[3]
  工程Aにおいて、塩基がカリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドである、[1]または[2]に記載の製造方法。
[4]
  工程Aにおいて、塩基がアルカリ金属の水素化物である、[1]または[2]に記載の製造方法。 
[5]
  工程Aにおいて、塩基がアルカリ金属アミドである、[1]または[2]に記載の製造方法。
[6]
  工程Aにおいて、溶媒が環状エーテル類である、[1]乃至[5]のいずれか1に記載の製造方法。 
[7]
  工程Aにおいて、反応温度が40乃至50℃である、[1]乃至[6]のいずれか1に記載の製造方法。 
[8]
  PGで示されるアミノ基の保護基がアラルコキシカルボニル基であり、Rで示される官能基がシクロプロピル基である、[1]乃至[7]のいずれか1に記載の製造方法。
[9]
  工程Aにおいて、塩基がカリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドであり、溶媒が環状エーテル類である、[1]乃至[3]のいずれか1に記載の製造方法。 
[10]
  工程Aにおいて、塩基がカリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドであり、溶媒が環状エーテル類であり、反応温度が40乃至50℃である、[1]乃至[3]のいずれか1に記載の製造方法。 
[11]
  工程Aにおいて、塩基がカリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドであり、溶媒が環状エーテル類であり、反応温度が40乃至50℃であり、PGで示されるアミノ基の保護基がアラルコキシカルボニル基であり、Rで示される官能基がシクロプロピル基である、[1]乃至[3]のいずれか1に記載の製造方法。
The gist of the present invention is as follows.
[1]
Equation (1)
Figure JPOXMLDOC01-appb-C000007
[In formula (1), PG 1 represents a protecting group for an amino group, R 1 is a hydrogen atom, an alkyl group of C1 to C6 which may be substituted, or a cycloalkyl group of C3 to C8 which may be substituted. Represents. ] Is a method for producing a 4-oxopyrrolidine-3-carboxylic acid amide derivative.
Process A: Equation (2)
Figure JPOXMLDOC01-appb-C000008
[In the formula (2), PG 1 represents the above-mentioned one, and R 2 represents an alkyl group of C1 to C6. ] And formula (3)
Figure JPOXMLDOC01-appb-C000009
[In equation (3), R 1 represents the above-mentioned one. ] Is treated with at least one base selected from alkali metal alkoxides, alkali metal hydrides and alkali metal amides in a solvent, thereby treating 4-oxopyrrolidine-3 represented by the formula (1). -The production method comprising obtaining a carboxylic acid amide derivative.
[2]
Process C: Equation (4)
Figure JPOXMLDOC01-appb-C000010
[In formula (4), R 2 represents an alkyl group of C1 to C6. ], The amino group of the compound represented by the above or a salt thereof is protected with a protecting group to obtain the compound represented by the formula (2).
Process B: Equation (5)
Figure JPOXMLDOC01-appb-C000011
[In formula (5), X represents a leaving group. ] And formula (6)
Figure JPOXMLDOC01-appb-C000012
[In formula (6), R 1 represents a hydrogen atom, an optionally substituted alkyl group of C1 to C6 or an optionally substituted cycloalkyl group of C3 to C8. ] Is further condensed to obtain the compound represented by the formula (3).
The production method according to [1], wherein the compound represented by the formula (2) obtained in the step C and the compound represented by the formula (3) obtained in the step B are subjected to the step A.
[3]
The production method according to [1] or [2], wherein in step A, the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide.
[4]
The production method according to [1] or [2], wherein in step A, the base is a hydride of an alkali metal.
[5]
The production method according to [1] or [2], wherein the base is an alkali metal amide in step A.
[6]
The production method according to any one of [1] to [5], wherein in step A, the solvent is cyclic ethers.
[7]
The production method according to any one of [1] to [6], wherein in step A, the reaction temperature is 40 to 50 ° C.
[8]
Amino-protecting group represented by PG 1 is aralkoxycarbonyl group, a functional group represented by R 1 is a cyclopropyl group, A process according to any one of [1] to [7].
[9]
The production method according to any one of [1] to [3], wherein in step A, the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide, and the solvent is cyclic ethers.
[10]
In step A, any of [1] to [3], wherein the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide, the solvent is cyclic ethers, and the reaction temperature is 40 to 50 ° C. The manufacturing method according to 1.
[11]
In step A, the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide, the solvent is cyclic ethers, the reaction temperature is 40-50 ° C, and the protection of the amino group represented by PG 1 is protected. group is aralkoxycarbonyl group, a functional group represented by R 1 is a cyclopropyl group, a process according to any one of [1] to [3].
 本発明によれば、式(1)で表されるピロリジン誘導体をより短工程で得ることができる。 According to the present invention, the pyrrolidine derivative represented by the formula (1) can be obtained in a shorter process.
 以下、本発明の実施形態の1つについて詳細に説明する。 Hereinafter, one of the embodiments of the present invention will be described in detail.
  本実施形態の製造方法をスキーム1に表す。 
Figure JPOXMLDOC01-appb-I000013
The manufacturing method of this embodiment is shown in Scheme 1.
Figure JPOXMLDOC01-appb-I000013
 式(1)~(6)中、PGは、アミノ基の保護基を表す。式(1)~(6)中、Rは、水素原子、置換されていてもよいC1~C6のアルキル基または置換されていてもよいC3~C8のシクロアルキル基を表す。式(1)~(6)中、Rは、C1~C6のアルキル基を表し、C1~C4のアルキル基であることが好ましい。式(1)~(6)中、Xは脱離基を表し、ハロゲン原子であることが好ましい。
 本明細書に示される「Cn~Cm」とは、炭素数n~m個を意味し、nおよびmはそれぞれ独立した自然数であり、nよりmの方が大きい数字である。例えば、「C1~C6」とは、炭素数1~6個を意味する。
In formulas (1) to (6), PG 1 represents a protecting group for an amino group. In formulas (1) to (6), R 1 represents a hydrogen atom, an alkyl group of C1 to C6 which may be substituted, or a cycloalkyl group of C3 to C8 which may be substituted. In formulas (1) to (6), R 2 represents an alkyl group of C1 to C6, and is preferably an alkyl group of C1 to C4. In the formulas (1) to (6), X represents a leaving group and is preferably a halogen atom.
"Cn to Cm" shown in the present specification means n to m carbon atoms, and n and m are independent natural numbers, and m is a larger number than n. For example, "C1 to C6" means 1 to 6 carbon atoms.
 本明細書中に示される「アミノ基の保護基」とは、アミノ基の保護基として通常知られている保護基であれば特に制限はなく、例えば、ベンジル基およびパラメトキシベンジル基などのアラルキル基、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルオキシカルボニル基、イソブチルオキシカルボニル基およびtert-ブチルオキシカルボニル基などのアルコキシカルボニル基、ベンジルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基およびp-ニトロベンジルオキシカルボニル基などのアラルコキシカルボニル基、メトキシメチル基、メトキシエトキシメチル基、1-(エトキシ)エチル基、メトキシイソプロピル基などの1-(アルコキシ)アルキル基、アセチル基、トリフルオロアセチル基、プロピオニル基、ブチリル基、ピバロイル基、ベンゾイル基およびメチルベンゾイル基などのアシル基等が挙げられる。  The "protecting group for an amino group" shown in the present specification is not particularly limited as long as it is a protecting group generally known as a protecting group for an amino group, and is, for example, an aralkyl such as a benzyl group and a paramethoxybenzyl group. Group, methoxycarbonyl group, ethoxycarbonyl group, propyloxycarbonyl group, isopropyloxycarbonyl group, butyloxycarbonyl group, alkoxycarbonyl group such as isobutyloxycarbonyl group and tert-butyloxycarbonyl group, benzyloxycarbonyl group, p-methoxy Aralkoxycarbonyl groups such as benzyloxycarbonyl and p-nitrobenzyloxycarbonyl groups, methoxymethyl groups, methoxyethoxymethyl groups, 1- (ethoxy) ethyl groups, 1- (alkoxy) alkyl groups such as methoxyisopropyl groups, Examples thereof include acyl groups such as acetyl groups, trifluoroacetyl groups, propionyl groups, butyryl groups, pivaloyl groups, benzoyl groups and methylbenzoyl groups.
  これらの中でも、アミノ基の保護基としてアラルコキシカルボニル基またはアルコキシカルボニル基が好ましく、アラルコキシカルボニル基がより好ましく、ベンジルオキシカルボニル基が更に好ましい。 Among these, an aralkylcarbonyl group or an alkoxycarbonyl group is preferable as a protecting group for the amino group, an aralkoxycarbonyl group is more preferable, and a benzyloxycarbonyl group is further preferable.
  本明細書中に示される「置換されてもよいC1~C6のアルキル基」とは、ハロゲン原子、ヒドロキシル基、シアノ基、C1~C6のアルコキシ基、置換されていてもよいアリールオキシ基、C1~C6のアルキルカルボニル基、C1~C6のアルコキシカルボニル基、C1~C6のアルキルチオ基、アミノ基、モノまたはジ置換のC1~C6のアルキルアミノ基、1~3個のヘテロ原子を含んでいてもよいC4~C9の環状アミノ基、ホルミルアミノ基、C1~C6のアルキルカルボニルアミノ基、C1~C6のアルコキシカルボニルアミノ基、C1~C6のアルキルスルホニルアミノ基および置換されていてもよいアリールスルホニルアミノ基からなる群から選ばれる同一または異なった1~5個の置換基を有するC1~C6のアルキル基、または無置換のC1~C6のアルキル基を意味する。 The “optionally substituted alkyl groups C1 to C6” referred to herein are halogen atoms, hydroxyl groups, cyano groups, C1 to C6 alkoxy groups, optionally substituted aryloxy groups, C1. Alkylcarbonyl group of ~ C6, alkoxycarbonyl group of C1 ~ C6, alkylthio group of C1 ~ C6, amino group, mono or di-substituted alkylamino group of C1 ~ C6, even if it contains 1 ~ 3 heteroatoms. Good C4-C9 cyclic amino groups, formylamino groups, C1-C6 alkylcarbonylamino groups, C1-C6 alkoxycarbonylamino groups, C1-C6 alkylsulfonylamino groups and optionally substituted arylsulfonylamino groups It means an alkyl group of C1 to C6 having the same or different 1 to 5 substituents selected from the group consisting of, or an unsubstituted alkyl group of C1 to C6.
  上述の「C1~C6のアルキル基」とは、直鎖または分岐したアルキル基を意味する。C1~C6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、1-メチルエチル基、1-メチルプロピル基、2-メチルプロパン-1-イル基、tert-ブチル基、1-エチルプロピル基、2-エチルプロピル基、ブチル基、およびヘキシル基などを挙げることができる。これらの中でも、C1~C6のアルキル基としてエチル基またはtert-ブチル基が好ましい。 The above-mentioned "alkyl group of C1 to C6" means a linear or branched alkyl group. Examples of the alkyl group of C1 to C6 include methyl group, ethyl group, propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropan-1-yl group, tert-butyl group and 1-ethyl. Propyl group, 2-ethylpropyl group, butyl group, hexyl group and the like can be mentioned. Among these, an ethyl group or a tert-butyl group is preferable as the alkyl group of C1 to C6.
  本明細書中に示される「置換されていてもよいC3~C8のシクロアルキル基」とは、ハロゲン原子、ヒドロキシル基、シアノ基、C1~C6のアルコキシ基、置換されていてもよいアリールオキシ基、C1~C6のアルキルカルボニル基、C1~C6のアルコキシカルボニル基、C1~C6のアルキルチオ基、アミノ基、モノまたはジ置換のC1~C6のアルキルアミノ基、1~3個のヘテロ原子を含んでいてもよいC4~C9の環状アミノ基、ホルミルアミノ基、C1~C6のアルキルカルボニルアミノ基、C1~C6のアルコキシカルボニルアミノ基、C1~C6のアルキルスルホニルアミノ基および置換されていてもよいアリールスルホニルアミノ基からなる群から選ばれる同一または異なった1~5個の置換基を有するC3~C8のシクロアルキル基、または無置換のC3~C8のシクロアルキル基を意味する。 The "optionally substituted cycloalkyl group of C3 to C8" referred to herein is a halogen atom, a hydroxyl group, a cyano group, an alkoxy group of C1 to C6, or an optionally substituted aryloxy group. , C1-C6 alkylcarbonyl groups, C1-C6 alkoxycarbonyl groups, C1-C6 alkylthio groups, amino groups, mono- or di-substituted C1-C6 alkylamino groups, including 1-3 heteroatoms. Cyclic amino groups of C4 to C9, formylamino groups, alkylcarbonylamino groups of C1 to C6, alkoxycarbonylamino groups of C1 to C6, alkylsulfonylamino groups of C1 to C6 and optionally substituted arylsulfonyl It means a C3 to C8 cycloalkyl group having the same or different 1 to 5 substituents selected from the group consisting of amino groups, or an unsubstituted C3 to C8 cycloalkyl group.
  上述の「C3~C8のシクロアルキル基」とは、シクロアルキル環を有するアルキル基を意味する。C3~C8のシクロアルキル基としては、例えば、シクロプロピル基、シクロプロピルメチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基などを挙げることができる。C3~C8のシクロアルキル基として、好ましくはシクロプロピル基である。 The above-mentioned "cycloalkyl group of C3 to C8" means an alkyl group having a cycloalkyl ring. Examples of the cycloalkyl group of C3 to C8 include a cyclopropyl group, a cyclopropylmethyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group. The cycloalkyl group of C3 to C8 is preferably a cyclopropyl group.
  上述の「C1~C6のアルコキシ基」としては、例えば、メトキシ基、エトキシ基、ブトキシ基およびヘキシロキシ基などを挙げることができる。 Examples of the above-mentioned "alkoxy group of C1 to C6" include a methoxy group, an ethoxy group, a butoxy group and a hexyloxy group.
  上述の「置換されていてもよいアリールオキシ基」とは、ハロゲン原子、ヒドロキシル基、シアノ基、ニトロ基、C1~C6のアルキル基、C1~C6のアルコキシ基およびC1~C6のアルキルチオ基からなる群から選ばれる同一または異なった1~5個の置換基を有するアリールオキシ基、または無置換のアリールオキシ基を意味する。 The above-mentioned "optionally substituted aryloxy group" consists of a halogen atom, a hydroxyl group, a cyano group, a nitro group, an alkyl group of C1 to C6, an alkoxy group of C1 to C6 and an alkylthio group of C1 to C6. It means an aryloxy group having the same or different 1 to 5 substituents selected from the group, or an unsubstituted aryloxy group.
  上述の「アリールオキシ基」としては、例えば、フェノキシ基およびナフチルオキシ基などを挙げることができる。 Examples of the above-mentioned "aryloxy group" include a phenoxy group and a naphthyloxy group.
  上述の「C1~C6のアルキルカルボニル基」としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基およびヘキサノイル基などを挙げることができる。 Examples of the above-mentioned "alkylcarbonyl group of C1 to C6" include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group and a hexanoyl group.
  上述の「C1~C6のアルコキシカルボニル基」としては、例えば、メトキシカルボニル基、エトキシカルボニル基およびtert-ブトキシカルボニル基などを挙げることができる。 Examples of the above-mentioned "alkoxycarbonyl group of C1 to C6" include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  上述の「C1~C6のアルキルチオ基」としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基およびイソプロピルチオ基などを挙げることができる。 Examples of the above-mentioned "alkylthio groups of C1 to C6" include methylthio group, ethylthio group, propylthio group and isopropylthio group.
  上述の「モノまたはジ置換のC1~C6のアルキルアミノ基」とは、ハロゲン原子、ヒドロキシル基、シアノ基、C1~C6のアルコキシ基、C1~C6のアルキルチオ基、アミノ基、1~3個のヘテロ原子を含んでいてもよいC4~C9の環状アミノ基、ホルミルアミノ基、C1~C6のアルキルカルボニルアミノ基、C1~C6のアルキルスルホニルアミノ基および置換されていてもよいアリールスルホニルアミノ基などからなる群から選ばれる1~2個の置換基を有するC1~C6のアルキルアミノ基を意味する。 The above-mentioned "mono or di-substituted alkylamino group of C1 to C6" refers to a halogen atom, a hydroxyl group, a cyano group, an alkoxy group of C1 to C6, an alkylthio group of C1 to C6, an amino group, and 1 to 3 groups. From C4-C9 cyclic amino groups, formylamino groups, C1-C6 alkylcarbonylamino groups, C1-C6 alkylsulfonylamino groups and optionally substituted arylsulfonylamino groups, which may contain heteroatoms, and the like. It means an alkylamino group of C1 to C6 having 1 to 2 substituents selected from the group.
  上述の「C1~C6のアルキルアミノ基」としては、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、n-ブチルアミノ基、sec-ブチルアミノ基、n-ペンチルアミノ基およびn-ヘキシルアミノ基などが挙げられる。 Examples of the above-mentioned "alkylamino group of C1 to C6" include methylamino group, ethylamino group, n-propylamino group, n-butylamino group, sec-butylamino group, n-pentylamino group and n-. A hexylamino group and the like can be mentioned.
  上述の「1~3個のヘテロ原子を含んでいてもよいC4~C9の環状アミノ基」とは、環内に1以上3以下の窒素原子を含有し、また環内に酸素原子、硫黄原子が窒素原子との合計で3以下となる範囲で存在していてもよい環状アミノ基を意味する。C4~C9の環状アミノ基としては、例えば、アジリジル基、ピロリジル基、ピペリジル基、モルホリル基、オキサゾリル基、アザビシクロヘプチル基およびアザビシクロオクチル基などを挙げることができる。 The above-mentioned "cyclic amino group of C4 to C9 which may contain 1 to 3 heteroatoms" contains 1 or more and 3 or less nitrogen atoms in the ring, and oxygen atom and sulfur atom in the ring. Means a cyclic amino group that may be present in the range of 3 or less in total with the nitrogen atom. Examples of the cyclic amino group of C4 to C9 include an aziridyl group, a pyrrolidyl group, a piperidyl group, a morpholic group, an oxazolyl group, an azabicycloheptyl group and an azabicyclooctyl group.
  上述の「C1~C6のアルキルカルボニルアミノ基」としては、例えば、アセチルアミノ基、プロピオニルアミノ基およびブチリルアミノ基などが挙げられる。 Examples of the above-mentioned "alkylcarbonylamino group of C1 to C6" include an acetylamino group, a propionylamino group and a butyrylamino group.
  上述の「C1~C6のアルコキシカルボニルアミノ基」としては、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基およびヘキシルオキシカルボニルアミノ基などが挙げられる。 Examples of the above-mentioned "alkoxycarbonylamino group of C1 to C6" include a methoxycarbonylamino group, an ethoxycarbonylamino group, a tert-butoxycarbonylamino group, a hexyloxycarbonylamino group and the like.
  上述の「C1~C6のアルキルスルホニルアミノ基」としては、例えば、メチルスルホニルアミノ基およびエチルスルホニルアミノ基などが挙げられる。 Examples of the above-mentioned "alkylsulfonylamino group of C1 to C6" include a methylsulfonylamino group and an ethylsulfonylamino group.
  上述の「置換されていてもよいアリールスルホニルアミノ基」とは、ハロゲン原子、ヒドロキシル基、シアノ基、ニトロ基、C1~C6のアルキル基、C1~C6のアルコキシ基およびC1~C6のアルキルチオ基からなる群から選ばれる同一または異なった1~5個の置換基を有するアリールスルホニルアミノ基、または無置換のアリールスルホニルアミノ基を意味する。 The above-mentioned "optionally substituted arylsulfonylamino group" is derived from a halogen atom, a hydroxyl group, a cyano group, a nitro group, an alkyl group of C1 to C6, an alkoxy group of C1 to C6 and an alkylthio group of C1 to C6. It means an arylsulfonylamino group having the same or different 1 to 5 substituents selected from the group, or an unsubstituted arylsulfonylamino group.
  上述の「アリールスルホニルアミノ基」としては、例えば、フェニルスルホニルアミノ基、4ーメチルフェニルスルホニルアミノ基およびナフチルスルホニルアミノ基などが挙げられる。 Examples of the above-mentioned "arylsulfonylamino group" include a phenylsulfonylamino group, a 4-methylphenylsulfonylamino group and a naphthylsulfonylamino group.
  本明細書中に示される「C1~C4のアルキル基」とは、直鎖または分岐したアルキル基を意味する。「C1~C4のアルキル基」としては、例えば、メチル基、エチル基、プロピル基、1-メチルエチル基、1-メチルプロピル基、2-メチルプロパン-1-イル基、tert-ブチル基およびブチル基などが挙げられる。これらの中でも、C1~C4のアルキル基としてメチル基またはエチル基が好ましく、より好ましくはエチル基である。 The "alkyl group of C1 to C4" shown in the present specification means a linear or branched alkyl group. Examples of the "alkyl groups C1 to C4" include methyl group, ethyl group, propyl group, 1-methylethyl group, 1-methylpropyl group, 2-methylpropan-1-yl group, tert-butyl group and butyl. Group etc. can be mentioned. Among these, a methyl group or an ethyl group is preferable as the alkyl group of C1 to C4, and an ethyl group is more preferable.
  本明細書中に示される「アルカリ金属」としては、例えば、リチウム、ナトリウムおよびカリウムなどが挙げられる。 Examples of the "alkali metal" shown in the present specification include lithium, sodium and potassium.
  本明細書中に示される「脱離基」としては、例えば、ハロゲン原子、p-トルエンスルホニルオキシ基、およびメタンスルホニルオキシ基などが挙げられる。これらの中でも、脱離基としてハロゲン原子が好ましい。 Examples of the “leaving group” shown in the present specification include a halogen atom, a p-toluenesulfonyloxy group, and a methanesulfonyloxy group. Among these, a halogen atom is preferable as a leaving group.
  本明細書中に示される「ハロゲン原子」としては、ヨウ素原子、臭素原子、塩素原子、およびフッ素原子が挙げられる。これらの中でも、ハロゲン原子として塩素原子が好ましい。 Examples of the "halogen atom" shown in the present specification include an iodine atom, a bromine atom, a chlorine atom, and a fluorine atom. Among these, a chlorine atom is preferable as the halogen atom.
  本明細書中に示される「環状エーテル類」としては1,4-ジオキサン、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、およびテトラヒドロピラン等が挙げられる。これらの中でも、環状エーテル類としてテトラヒドロフランが好ましい。 Examples of the "cyclic ethers" shown in the present specification include 1,4-dioxane, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran and the like. Among these, tetrahydrofuran is preferable as the cyclic ethers.
  工程Cの反応は、式(4)で表される化合物に保護基を導入し、式(2)で表される化合物を得る工程である。
 工程Cの反応で、用いられる保護基の種類、導入に関しては、例えば、Theodra W. Green & Peter G. M. Wuts著編、「Greene’s Protective Groups in Organic Synthesis」、fourth edition、Wiley-Interscience、2006年に記載の方法を挙げることができる。
The reaction of step C is a step of introducing a protecting group into the compound represented by the formula (4) to obtain the compound represented by the formula (2).
Regarding the type and introduction of the protecting group used in the reaction of step C, for example, Theodra W. et al. Green & Peter G. M. The methods described in Wuts, "Greene's Protective Groups in Organic Synthesis", future edition, Wiley-Interscience, 2006 can be mentioned.
  これらの中でも、ベンジルオキシカルボニル基による保護が好ましく、その場合は、クロロギ酸ベンジル、塩基、溶媒を用いて製造することができる。式(4)で示される化合物に対しクロロギ酸ベンジルの量は特に制限されないが、通常、1~5等量が好ましく、より好ましくは1~2当量であり、最も好ましくは1.05当量である。塩基としては、反応を阻害しないものであればよく、例えば炭酸水素ナトリウムが挙げられ、通常、1~5等量が好ましく、より好ましくは2~3当量であり、最も好ましくは2.2当量である。溶媒としては、例えば、酢酸エチル、酢酸ブチルおよび酢酸イソプロピルなどのエステル類、1,4-ジオキサン、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、tert-ブチルメチルエーテル(TBME)、ジメトキシエタン(DME)およびジグライム等のエーテル類、水、およびこれらの混合物が挙げられる。反応温度は、通常、-20℃から使用する溶媒の沸点の範囲であることが好ましく、より好ましくは0℃~溶媒の沸点の範囲であり、更に好ましくは30~50℃である。 Among these, protection with a benzyloxycarbonyl group is preferable, in which case benzyl chloroformate, a base, and a solvent can be used for production. The amount of benzyl chloroformate is not particularly limited with respect to the compound represented by the formula (4), but is usually preferably 1 to 5 equivalents, more preferably 1 to 2 equivalents, and most preferably 1.05 equivalents. .. The base may be any base that does not inhibit the reaction, and examples thereof include sodium hydrogencarbonate. Usually, 1 to 5 equivalents are preferable, more preferably 2 to 3 equivalents, and most preferably 2.2 equivalents. is there. Examples of the solvent include esters such as ethyl acetate, butyl acetate and isopropyl acetate, 1,4-dioxane, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tert-butylmethyl ether (TBME) and dimethoxy. Examples include ethers such as ethane (DME) and jiglime, water, and mixtures thereof. The reaction temperature is usually preferably in the range of −20 ° C. to the boiling point of the solvent to be used, more preferably in the range of 0 ° C. to the boiling point of the solvent, and further preferably in the range of 30 to 50 ° C.
  工程Bは式(5)で示される化合物と式(6)で示されるアミン化合物を、塩基存在下で縮合し、式(3)で示される化合物を得る工程である。縮合反応は一般的に用いられる縮合条件を用いることができる。 Step B is a step of condensing the compound represented by the formula (5) and the amine compound represented by the formula (6) in the presence of a base to obtain the compound represented by the formula (3). For the condensation reaction, commonly used condensation conditions can be used.
  式(6)で示されるアミンの使用量としては、特に限定されないが、式(5)で示される化合物に対し、通常、1~3当量が好ましく、より好ましくは1.0~1.5当量である。 The amount of the amine represented by the formula (6) is not particularly limited, but is usually preferably 1 to 3 equivalents, more preferably 1.0 to 1.5 equivalents, relative to the compound represented by the formula (5). Is.
  塩基としては、反応を阻害しないものであればよく、例えば、トリエチルアミン、トリメチルアミン、トリプロピルアミン、ジイソプロピルエチルアミン、ピリジン、ジメチルアニリン、N-メチルモルホリン、N-メチルピロリジン、および4-ジメチルアミノピリジンのような有機塩基が挙げられる。 The base may be any base that does not inhibit the reaction, such as triethylamine, trimethylamine, tripropylamine, diisopropylethylamine, pyridine, dimethylaniline, N-methylmorpholine, N-methylpyrrolidin, and 4-dimethylaminopyridine. Organic bases can be mentioned.
  これらの中でも、工程Bの塩基として、N-メチルモルホリン、N-メチルピロリジンまたはトリエチルアミンが好ましく、トリエチルアミンがより好ましい。 Among these, as the base of step B, N-methylmorpholine, N-methylpyrrolidine or triethylamine is preferable, and triethylamine is more preferable.
  工程Bの反応は、通常、溶媒を用いることが好ましい。溶媒としては、例えば、酢酸エチル、酢酸ブチルなどのエステル類、ベンゼン、トルエン、キシレン等の芳香族化合物類、ヘキサン、ヘプタンおよびシクロヘキサン等の炭化水素類、1,4-ジオキサン、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピランなどの環状エーテル類、tert-ブチルメチルエーテル(TBME)、ジメトキシエタン(DME)およびジグライム等のエーテル類、ジクロロメタン、クロロホルム、四塩化炭素および1,2-ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミドおよびN-メチルピロリドン等のアミド類、およびこれらの混合物が挙げられる。 It is usually preferable to use a solvent for the reaction in step B. Examples of the solvent include esters such as ethyl acetate and butyl acetate, aromatic compounds such as benzene, toluene and xylene, hydrocarbons such as hexane, heptane and cyclohexane, 1,4-dioxane and tetrahydrofuran (THF). Cyclic ethers such as 2-methyltetratetra (2-MeTHF), tetrahydropyran, ethers such as tert-butylmethyl ether (TBME), dimethoxyethane (DME) and diglime, dichloromethane, chloroform, carbon tetrachloride and 1,2 Examples thereof include halogenated hydrocarbons such as dichloroethane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide and N-methylpyrrolidone, and mixtures thereof.
  これらの中でも、工程Bにおいて用いることが好ましい溶媒として、酢酸エチル、酢酸ブチルなどのエステル類、テトラヒドロフラン、テトラヒドロフランとN,N-ジメチルホルムアミドとの混合溶媒、または2-メチルテトラヒドロフランとN,N-ジメチルホルムアミドとの混合溶媒が好ましく、より好ましくは酢酸エチルである。 Among these, esters such as ethyl acetate and butyl acetate, mixed solvents of tetrahydrofuran, tetrahydrofuran and N, N-dimethylformamide, or 2-methyltetrahydrofuran and N, N-dimethyl are preferable solvents to be used in step B. A mixed solvent with formamide is preferable, and ethyl acetate is more preferable.
  工程Bの反応温度は、通常、-20℃から使用する溶媒の沸点の範囲であることが好ましく、より好ましくは0℃~溶媒の沸点の範囲であり、更に好ましくは0~10℃である。 The reaction temperature in step B is usually preferably in the range of −20 ° C. to the boiling point of the solvent to be used, more preferably in the range of 0 ° C. to the boiling point of the solvent, and further preferably in the range of 0 to 10 ° C.
  工程Aの反応は式(2)で示される化合物と式(3)で示される化合物を、アルカリ金属アミド、アルカリ金属の水素化物およびアルカリ金属アルコキシドから選ばれる少なくとも1種の塩基で処理することにより、式(1)で示される4-オキソピロリジン-3-カルボン酸アミド誘導体を得る工程である。 The reaction of step A is carried out by treating the compound represented by the formula (2) and the compound represented by the formula (3) with at least one base selected from an alkali metal amide, an alkali metal hydride and an alkali metal alkoxide. , A step of obtaining a 4-oxopyrrolidine-3-carboxylic acid amide derivative represented by the formula (1).
  「アルカリ金属アミド」とは、アミン類の水素原子を金属原子に置き換えた化合物である。アルカリ金属アミドとしては、例えば、リチウムアミド、ナトリウムアミド、カリウムアミド、リチウムジエチルアミド、リチウムジイソプロピルアミド、リチウムシクロヘキシルイソプロピルアミド、リチウムテトラメチルピペリジド、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムヘキサメチルジシラジド(NaHMDS)およびカリウムヘキサメチルジシラジド(KHMDS)が挙げられる。これらの中でも、アルカリ金属アミドとして、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジドまたはカリウムヘキサメチルジシラジドが好ましく、より好ましくはカリウムヘキサメチルジシラジドである。 "Alkaline metal amide" is a compound in which hydrogen atoms of amines are replaced with metal atoms. Examples of the alkali metal amide include lithium amide, sodium amide, potassium amide, lithium diethylamide, lithium diisopropylamide, lithium cyclohexylisopropylamide, lithium tetramethylpiperidide, lithium hexamethyldisilazide (LHMDS), and sodium hexamethyldi. Examples thereof include silazide (NaHMDS) and potassium hexamethyldisilazide (KHMDS). Among these, as the alkali metal amide, lithium hexamethyldisilazide, sodium hexamethyldisilazide or potassium hexamethyldisilazide is preferable, and potassium hexamethyldisilazide is more preferable.
  「アルカリ金属アルコキシド」とは、アルコール類の水酸基をアルカリ金属で置換した化合物である。アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド(NaOMe)、ナトリウムエトキシド(NaOEt)、カリウムエトキシド(KOEt)、ナトリウムtert-ブトキシド(tBuONa)、カリウムtert-ブトキシド(tBuOK)、リチウムtert-ブトキシド(tBuOLi)、ナトリウムtert-ペントキシド(CC(CHONa)およびカリウムtert-ペントキシド(CC(CHOK)などが挙げられる。 The "alkali metal alkoxide" is a compound in which the hydroxyl groups of alcohols are replaced with alkali metals. Examples of the alkali metal alkoxide include sodium methoxide (NaOMe), sodium ethoxide (NaOEt), potassium ethoxide (KOEt), sodium tert-butoxide (tBuONa), potassium tert-butoxide (tBuOK), and lithium tert-butoxide (tBuOK). tBuOLi), sodium tert-pentoxide (C 2 H 5 C (CH 3 ) 2 ONa) and potassium tert-pentoxide (C 2 H 5 C (CH 3 ) 2 OK) and the like.
  これらの中でも、アルカリ金属アルコキシドとして、カリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドが好ましく、より好ましくはカリウムtert-ブトキシドである。 Among these, as the alkali metal alkoxide, potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide is preferable, and potassium tert-butoxide is more preferable.
  「アルカリ金属の水素化物」としては、例えば、水素化リチウム、水素化ナトリウムおよび水素化カリウムなどが挙げられる。 Examples of the “alkali metal hydride” include lithium hydride, sodium hydride, potassium hydride and the like.
  塩基の使用量としては、特に限定されないが、式(2)で示される化合物に対し、通常、1~4当量であることが好ましく、より好ましくは1~1.5当量である。 The amount of the base used is not particularly limited, but is usually preferably 1 to 4 equivalents, more preferably 1 to 1.5 equivalents, relative to the compound represented by the formula (2).
  工程Aの反応温度は通常、-20~100℃の範囲であることが好ましく、より好ましくは30~65℃であり、更に好ましくは40~50℃である。 The reaction temperature in step A is usually preferably in the range of −20 to 100 ° C., more preferably 30 to 65 ° C., and even more preferably 40 to 50 ° C.
  工程Aの反応は通常、溶媒を用いることが好ましい。溶媒としては、例えば、メタノール、エタノール、2-プロパノール、tert-ブチルアルコール、2-メトキシエタノール、エチレングリコールおよびジエチレングリコールなどのアルコール類、酢酸エチル、酢酸ブチルなどのエステル類、ベンゼン、トルエンおよびキシレン等の芳香族化合物類、ヘキサン、ヘプタンおよびシクロヘキサン等の炭化水素類、1,4-ジオキサン、テトラヒドロフランおよび2-メチルテトラヒドロフラン等の環状エーテル類、tert-ブチルメチルエーテル、ジメトキシエタンおよびジグライム等のエーテル類、ジクロロメタン、クロロホルム、四塩化炭素および1,2-ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミドおよびN-メチルピロリドン等のアミド類、およびこれらの混合物が挙げられる。 It is usually preferable to use a solvent for the reaction in step A. Examples of the solvent include alcohols such as methanol, ethanol, 2-propanol, tert-butyl alcohol, 2-methoxyethanol, ethylene glycol and diethylene glycol, esters such as ethyl acetate and butyl acetate, and benzene, toluene and xylene. Aromatic compounds, hydrocarbons such as hexane, heptane and cyclohexane, cyclic ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahexyl, ethers such as tert-butylmethyl ether, dimethoxyethane and diglime, dichloromethane , Hydrocarbons such as chloroform, carbon tetrachloride and 1,2-dichloroethane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide and N-methylpyrrolidone. Classes, and mixtures thereof.
  これらの中でも、工程Aにおいて用いることが好ましい溶媒として、N,N-ジメチルホルムアミド、テトラヒドロフランまたはトルエンが好ましく、より好ましくはテトラヒドロフランである。 Among these, as a solvent preferably used in step A, N, N-dimethylformamide, tetrahydrofuran or toluene is preferable, and tetrahydrofuran is more preferable.
 以上、本実施形態によれば、ピロリジン誘導体をより短工程で得ることができる。
 また、本実施形態の方法は、特許文献1に記載の方法と比較して、収率がよりよく、高価な試薬を用いる必要がないほか、反応における副生成物が少ない。そのため、本実施形態の方法は、式(1)で表されるピロリジン誘導体の工業的な製造により適している。
As described above, according to the present embodiment, the pyrrolidine derivative can be obtained in a shorter process.
In addition, the method of this embodiment has a better yield than the method described in Patent Document 1, does not require the use of expensive reagents, and has less by-products in the reaction. Therefore, the method of this embodiment is more suitable for industrial production of the pyrrolidine derivative represented by the formula (1).
  本実施形態の方法により得られる4-オキソピロリジン-3-カルボン酸アミド誘導体は、公知の方法(特許第5844739号公報、及び国際公開第2007/102567号)により、医薬品製造中間体として有用な(3R,4S)-3-アルキルアミノメチル-4-フルオロピロリジンの光学活性体またはその鏡像異性体に変換できる。 The 4-oxopyrrolidine-3-carboxylic acid amide derivative obtained by the method of the present embodiment is useful as a pharmaceutical manufacturing intermediate by known methods (Patent No. 5844739 and WO 2007/102567). It can be converted to an optically active form of 3R, 4S) -3-alkylaminomethyl-4-fluoropyrrolidine or an enantiomer thereof.
  したがって、本実施形態によれば、(3R,4S)-3-アルキルアミノメチル-4-フルオロピロリジンの光学活性体またはその鏡像異性体の工業的な製造により適した方法が提供されることになる。 Therefore, according to the present embodiment, a more suitable method for industrial production of an optically active substance of (3R, 4S) -3-alkylaminomethyl-4-fluoropyrrolidine or an enantiomer thereof will be provided. ..
 以下に実施例を表して本発明を更に詳細に説明するが、これら実施例によって本発明の範囲が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited by these examples.
  実施例、参考例および比較例において、「倍量」とは基質の質量(g)に対する溶媒の量(mL)を意味する。 In Examples, Reference and Comparative Examples, “double amount” means the amount (mL) of solvent relative to the mass (g) of the substrate.
(実施例1)
[工程C]
N-カルボベンゾキシグリシンメチルの製造
 グリシンエチルエステル塩酸塩(50.0g,358mmol)に水(200mL)を投入して溶解し、室温で炭酸水素ナトリウム(66.2g,376mmol)をゆっくり加えた後、酢酸エチル(200mL)を投入した。室温でクロロギ酸ベンジル(53.0mL,376mmol)を滴下し、加熱後、内温45℃~50℃で2時間撹拌した。
(Example 1)
[Step C]
Production of N-Carbobenzoxylglycine Methyl After adding water (200 mL) to glycine ethyl ester hydrochloride (50.0 g, 358 mmol) to dissolve it, and slowly adding sodium hydrogen carbonate (66.2 g, 376 mmol) at room temperature. , Ethyl acetate (200 mL) was added. Benzyl chloroformate (53.0 mL, 376 mmol) was added dropwise at room temperature, and after heating, the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 2 hours.
 反応液を室温に冷却し、有機層を分取した。有機層に10%塩化ナトリウム溶液(200mL)を加え、有機層を分取後、減圧濃縮した。濃縮残留物に酢酸エチル(150mL)を投入して溶解後、減圧濃縮し、無色油状物の表題化合物を91.5g得た。 The reaction solution was cooled to room temperature and the organic layer was separated. A 10% sodium chloride solution (200 mL) was added to the organic layer, the organic layer was separated, and then concentrated under reduced pressure. Ethyl acetate (150 mL) was added to the concentrated residue to dissolve it, and the mixture was concentrated under reduced pressure to obtain 91.5 g of the title compound as a colorless oil.
[工程B]
N-シクロプロピルアクリルアミドの製造
 酢酸エチル(300mL)にシクロプロピルアミン(39.9mL,473mmol)及びトリエチルアミン(71.9mL,516mmol)を投入した。冷却し,内温10℃以下でアクリロイルクロリド(34.7mL,430mmol)/酢酸エチル(75.0mL)溶液を滴下後、内温10℃以下で1時間撹拌した。
[Step B]
Production of N-Cyclopropylacrylamide Cyclopropylamine (39.9 mL, 473 mmol) and triethylamine (71.9 mL, 516 mmol) were added to ethyl acetate (300 mL). After cooling, a solution of acryloyl chloride (34.7 mL, 430 mmol) / ethyl acetate (75.0 mL) was added dropwise at an internal temperature of 10 ° C. or lower, and the mixture was stirred at an internal temperature of 10 ° C. or lower for 1 hour.
 不溶物をろ別し、酢酸エチル(200mL)で洗浄後、ろ液及び洗浄液を減圧濃縮し、黄色油状物の表題化合物を52.6g得た。 The insoluble material was filtered off, washed with ethyl acetate (200 mL), and the filtrate and washing liquid were concentrated under reduced pressure to obtain 52.6 g of the title compound as a yellow oil.
[工程A]
3-(シクロプロピルカルバモイル)-4-オキソピロリジン-1-カルボン酸ベンジルの製造
 テトラヒドロフラン(200mL)に工程Cにより合成したN-カルボベンゾキシグリシンメチル(91.5g)及び工程Bにより合成したN-シクロプロピルアクリルアミド(52.6g)を投入した。加熱し、内温45℃~50℃でカリウムtert-ブトキシドのテトラヒドロフラン溶液(1.0mol/L,394mL,394mmol)を滴下後、内温45℃~50℃で2.5時間撹拌した。
[Step A]
Preparation of benzyl 3- (Cyclopropyl Carbamoyl) -4-oxopyrrolidine-1-carboxylate N-Carbobenzoxiglysin methyl (91.5 g) synthesized in tetrahydrofuran (200 mL) by step C and N- synthesized by step B. Cyclopropylacrylamide (52.6 g) was added. After heating, a tetrahydrofuran solution of potassium tert-butoxide (1.0 mol / L, 394 mL, 394 mmol) was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 2.5 hours.
 反応液を冷却した後、内温0℃~10℃で水(350mL)及びトルエン(350mL)をそれぞれ滴下し、内温0℃~10℃で30分間撹拌した。内温0℃~10℃で水層を分取後,水層に内温0℃~10℃で2-プロパノール(250mL)を滴下した。内温0℃~10℃で1mol/L塩酸(350mL)を滴下し、溶液が白濁したら、滴下を中断した。晶析を確認後、内温0℃~10℃で30分間撹拌し、内温0℃~10℃で残りの1mol/L塩酸および水(250mL)をそれぞれ滴下した。加熱し、内温30℃~35℃で30分間撹拌した後、冷却し、内温0℃~10℃で30分間撹拌した。析出した結晶をろ取し、水(500mL)で洗浄後、表題化合物の湿潤晶を165g得た。 After cooling the reaction solution, water (350 mL) and toluene (350 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C., and the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. After separating the aqueous layer at an internal temperature of 0 ° C. to 10 ° C., 2-propanol (250 mL) was added dropwise to the aqueous layer at an internal temperature of 0 ° C. to 10 ° C. 1 mol / L hydrochloric acid (350 mL) was added dropwise at an internal temperature of 0 ° C. to 10 ° C., and when the solution became cloudy, the addition was interrupted. After confirming crystallization, the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, and the remaining 1 mol / L hydrochloric acid and water (250 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C. After heating and stirring at an internal temperature of 30 ° C. to 35 ° C. for 30 minutes, the mixture was cooled and stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. The precipitated crystals were collected by filtration and washed with water (500 mL) to obtain 165 g of wet crystals of the title compound.
 メタノール(300mL)/水(1.10L)混液に表題化合物の湿潤粗結晶を投入後、加熱し、内温45℃~50℃で1時間撹拌した。冷却し、内温0℃~10℃で30分間撹拌した後、結晶をろ取し、水(500mL)で洗浄した。50℃で減圧乾燥し、白色粉末の表題化合物を81.0g(収率74.8%)得た。
 EI-MS m/z:413(M).
 H-NMR(400MHz,CDCl)δ:0.50-0.59(2H,m),0.75-0.86(2H,m),2.70-2.77(1H,m),3.41(1H,brs),3.89(1H,d,J=19.9Hz),4.04(1H,d,J=19.5Hz),4.17-4.27(2H,m),5.15-5.18(2H,m),6.62-6.69(1H,m),7.31-7.38(5H,m).
Wet crude crystals of the title compound were added to a mixed solution of methanol (300 mL) / water (1.10 L), heated, and stirred at an internal temperature of 45 ° C. to 50 ° C. for 1 hour. After cooling and stirring at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, the crystals were collected by filtration and washed with water (500 mL). The mixture was dried under reduced pressure at 50 ° C. to obtain 81.0 g (yield 74.8%) of the title compound as a white powder.
EI-MS m / z: 413 (M + ).
1 1 H-NMR (400 MHz, CDCl 3 ) δ: 0.50-0.59 (2H, m), 0.75-0.86 (2H, m), 2.70-2.77 (1H, m) , 3.41 (1H, brass), 3.89 (1H, d, J = 19.9Hz), 4.04 (1H, d, J = 19.5Hz), 4.17-4.27 (2H, m), 5.15-5.18 (2H, m), 6.62-6.69 (1H, m), 7.31-7.38 (5H, m).
(実施例2)
3-(シクロプロピルカルバモイル)-4-オキソピロリジン-1-カルボン酸ベンジルの製造
 テトラヒドロフラン(300mL)に実施例1の工程Cにより合成したN-カルボベンゾキシグリシンメチル(93.9g)及び実施例1の工程Bにより合成したN-シクロプロピルアクリルアミド(52.5g)を投入した。加熱し、内温45℃~50℃でカリウムtert-ブトキシドのテトラヒドロフラン溶液(21%,211g)を滴下後、内温45℃~50℃で2.5時間撹拌した。
(Example 2)
Preparation of benzyl 3- (Cyclopropylcarbamoyl) -4-oxopyrrolidine-1-carboxylate N-carbobenzoxicglycine methyl (93.9 g) synthesized in tetrahydrofuran (300 mL) according to Step C of Example 1 and Example 1 N-cyclopropylacrylamide (52.5 g) synthesized in step B of the above step B was added. After heating, a tetrahydrofuran solution (21%, 211 g) of potassium tert-butoxide was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 2.5 hours.
 反応液を冷却した後、内温0℃~10℃で水(350mL)及びトルエン(350mL)をそれぞれ滴下し、内温0℃~10℃で30分間撹拌した。内温0℃~10℃で水層を分取後,水層に内温0℃~10℃で2-プロパノール(250mL)を滴下した。内温0℃~10℃で1mol/L塩酸(350mL)を滴下し、溶液が白濁したら、滴下を中断した。晶析を確認後、内温0℃~10℃で30分間撹拌し、内温0℃~10℃で残りの1mol/L塩酸および水(250mL)をそれぞれ滴下した。加熱し、内温30℃~35℃で30分間撹拌した後、冷却し、内温0℃~10℃で30分間撹拌した。析出した結晶をろ取し、水(500mL)で洗浄後、表題化合物の湿潤晶を154g得た。 After cooling the reaction solution, water (350 mL) and toluene (350 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C., and the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. After separating the aqueous layer at an internal temperature of 0 ° C. to 10 ° C., 2-propanol (250 mL) was added dropwise to the aqueous layer at an internal temperature of 0 ° C. to 10 ° C. 1 mol / L hydrochloric acid (350 mL) was added dropwise at an internal temperature of 0 ° C. to 10 ° C., and when the solution became cloudy, the addition was interrupted. After confirming crystallization, the mixture was stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, and the remaining 1 mol / L hydrochloric acid and water (250 mL) were added dropwise at an internal temperature of 0 ° C. to 10 ° C. After heating and stirring at an internal temperature of 30 ° C. to 35 ° C. for 30 minutes, the mixture was cooled and stirred at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes. The precipitated crystals were collected by filtration and washed with water (500 mL) to obtain 154 g of wet crystals of the title compound.
 メタノール(300mL)に表題化合物の湿潤粗結晶を投入後、加熱溶解させた。内温45℃~50℃で水(1.10L)を滴下し、溶液が白濁したら、滴下を中断した。晶析を確認後、内温45℃~50℃で30分間撹拌し、内温45℃~50℃で残りの水を滴下後、内温45℃~50℃で30分間撹拌した。冷却し、内温0℃~10℃で30分間撹拌した後、結晶をろ取し、水(500mL)で洗浄した。50℃で減圧乾燥し、白色粉末の表題化合物を81.0g(収率71.5%)得た。 Wet crude crystals of the title compound were added to methanol (300 mL) and then dissolved by heating. Water (1.10 L) was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and when the solution became cloudy, the addition was interrupted. After confirming crystallization, the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 30 minutes, the remaining water was added dropwise at an internal temperature of 45 ° C. to 50 ° C., and the mixture was stirred at an internal temperature of 45 ° C. to 50 ° C. for 30 minutes. After cooling and stirring at an internal temperature of 0 ° C. to 10 ° C. for 30 minutes, the crystals were collected by filtration and washed with water (500 mL). The mixture was dried under reduced pressure at 50 ° C. to obtain 81.0 g (yield 71.5%) of the title compound as a white powder.
 本実施形態によれば、ピロリジン誘導体を短工程で収率よく提供することが可能であり、産業上有用である。 According to this embodiment, it is possible to provide a pyrrolidine derivative in a short process with a high yield, which is industrially useful.

Claims (8)

  1.  式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、PGはアミノ基の保護基を表し、Rは水素原子、置換されていてもよいC1~C6のアルキル基または置換されていてもよいC3~C8のシクロアルキル基を表す。]で示される4-オキソピロリジン-3-カルボン酸アミド誘導体の製造方法であって、
    工程A:式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、PGは前述したものを表し、Rは、C1~C6のアルキル基を表す。]で示される化合物と式(3)
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rは前述したものを表す。]で示される化合物を、溶媒中、アルカリ金属アルコキシド、アルカリ金属の水素化物およびアルカリ金属アミドから選ばれる少なくとも1種の塩基で処理することにより、式(1)で示される4-オキソピロリジン-3-カルボン酸アミド誘導体を得ることを含む、前記製造方法。
    Equation (1)
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), PG 1 represents a protecting group for an amino group, R 1 is a hydrogen atom, an alkyl group of C1 to C6 which may be substituted, or a cycloalkyl group of C3 to C8 which may be substituted. Represents. ] Is a method for producing a 4-oxopyrrolidine-3-carboxylic acid amide derivative.
    Process A: Equation (2)
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), PG 1 represents the above-mentioned one, and R 2 represents an alkyl group of C1 to C6. ] And formula (3)
    Figure JPOXMLDOC01-appb-C000003
    [In equation (3), R 1 represents the above-mentioned one. ] Is treated with at least one base selected from alkali metal alkoxides, alkali metal hydrides and alkali metal amides in a solvent, thereby treating 4-oxopyrrolidine-3 represented by the formula (1). -The production method comprising obtaining a carboxylic acid amide derivative.
  2.  工程C:式(4)
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、Rは、C1~C6のアルキル基を表す。]で示される化合物またはその塩のアミノ基を、保護基で保護することにより式(2)で示される化合物を取得し、
    工程B:式(5)
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、Xは脱離基を表す。]で示される化合物と式(6)
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、Rは水素原子、置換されていてもよいC1~C6のアルキル基または置換されていてもよいC3~C8のシクロアルキル基を表す。]で示されるアミン化合物を、縮合することにより、式(3)で示される化合物を得ることをさらに含み、
     工程Cで得られた式(2)で示される化合物と工程Bで得られた式(3)で示される化合物を工程Aに供する、請求項1に記載の製造方法。
    Process C: Equation (4)
    Figure JPOXMLDOC01-appb-C000004
    [In formula (4), R 2 represents an alkyl group of C1 to C6. ], The amino group of the compound represented by the above or a salt thereof is protected with a protecting group to obtain the compound represented by the formula (2).
    Process B: Equation (5)
    Figure JPOXMLDOC01-appb-C000005
    [In formula (5), X represents a leaving group. ] And formula (6)
    Figure JPOXMLDOC01-appb-C000006
    [In formula (6), R 1 represents a hydrogen atom, an optionally substituted alkyl group of C1 to C6 or an optionally substituted cycloalkyl group of C3 to C8. ] Is further condensed to obtain the compound represented by the formula (3).
    The production method according to claim 1, wherein the compound represented by the formula (2) obtained in the step C and the compound represented by the formula (3) obtained in the step B are subjected to the step A.
  3.   工程Aにおいて、塩基がカリウムtert-ブトキシド、ナトリウムtert-ペントキシドまたはカリウムtert-ペントキシドである、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein in step A, the base is potassium tert-butoxide, sodium tert-pentoxide or potassium tert-pentoxide.
  4.   工程Aにおいて、塩基がアルカリ金属の水素化物である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein in step A, the base is a hydride of an alkali metal.
  5.   工程Aにおいて、塩基がアルカリ金属アミドである、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein in step A, the base is an alkali metal amide.
  6.   工程Aにおいて、溶媒が環状エーテル類である、請求項1乃至5のいずれか1に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein in step A, the solvent is cyclic ethers.
  7.   工程Aにおいて、反応温度が40乃至50℃である、請求項1乃至6のいずれか1に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein in step A, the reaction temperature is 40 to 50 ° C.
  8.   PGで示されるアミノ基の保護基がアラルコキシカルボニル基であり、Rで示される官能基がシクロプロピル基である、請求項1乃至7のいずれか1に記載の製造方法。 Amino-protecting group represented by PG 1 is aralkoxycarbonyl group, a functional group represented by R 1 is a cyclopropyl group, A process according to any one of claims 1 to 7.
PCT/JP2020/019047 2019-05-14 2020-05-13 Method for producing 4-oxopyrrolidine-3-carboxamide derivatives WO2020230802A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021519448A JPWO2020230802A1 (en) 2019-05-14 2020-05-13
CN202080029336.4A CN113727968A (en) 2019-05-14 2020-05-13 Process for preparing 4-oxopyrrolidine-3-carboxamide derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019091100 2019-05-14
JP2019-091100 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020230802A1 true WO2020230802A1 (en) 2020-11-19

Family

ID=73288868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019047 WO2020230802A1 (en) 2019-05-14 2020-05-13 Method for producing 4-oxopyrrolidine-3-carboxamide derivatives

Country Status (3)

Country Link
JP (1) JPWO2020230802A1 (en)
CN (1) CN113727968A (en)
WO (1) WO2020230802A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060194A (en) * 1960-03-29 1962-10-23 American Cyanamid Co 4-cyano-3-oxo-pyrrolidine carboxylates
JP2006503106A (en) * 2002-09-17 2006-01-26 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー Heterocyclic substituted piperazine for treating schizophrenia
WO2012057093A1 (en) * 2010-10-25 2012-05-03 杏林製薬株式会社 Method for producing 3,4-disubstituted pyrrolidine derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701072A (en) * 2002-09-17 2005-11-23 沃纳-兰伯特公司 Heterocyclic substituted piperazines for the treatment of schizophrenia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060194A (en) * 1960-03-29 1962-10-23 American Cyanamid Co 4-cyano-3-oxo-pyrrolidine carboxylates
JP2006503106A (en) * 2002-09-17 2006-01-26 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー Heterocyclic substituted piperazine for treating schizophrenia
WO2012057093A1 (en) * 2010-10-25 2012-05-03 杏林製薬株式会社 Method for producing 3,4-disubstituted pyrrolidine derivative

Also Published As

Publication number Publication date
CN113727968A (en) 2021-11-30
JPWO2020230802A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
KR102630456B1 (en) Method of manufacturing brivaracetam
US7429613B2 (en) Process for the preparation of atorvastatin and intermediates
JP5548129B2 (en) Asymmetric organic catalyst
WO2020230802A1 (en) Method for producing 4-oxopyrrolidine-3-carboxamide derivatives
KR100980379B1 (en) Process for the preparation of optically active 5-hydroxy-3-oxoheptanoate derivatives
JPWO2006123767A1 (en) Preparation of asymmetric tetrasubstituted carbon atom-containing compounds
NO317984B1 (en) Process for the preparation of enantiomerically pure N-methyl-N - [(1S or 1R) -1-phenyl-2 - ((3S or 3R) -3-hydroxypyrrolidin-1-yl) ethyl] -2,2-diphenylacetamide, using of the (1S, 3S) enantiomer to prepare a pharmaceutical composition
US7842818B2 (en) Process for preparation of tetrasubstituted 5-azaspiro[2.4]- heptane derivatives and optically active intermediates thereof
JP5932641B2 (en) Process for producing 3-substituted-4-fluoropyrrolidine derivatives
US7994344B2 (en) Intermediates for the production of optically active cyclopropylamine derivatives and process for the production of the intermediates
JP5844739B2 (en) Method for producing 3,4-disubstituted pyrrolidine derivatives
CA2786646A1 (en) Method for producing 3,4-disubstituted pyrrolidine derivative and production intermediate thereof
EP2448916B1 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivatives
EP2560952B1 (en) Production of atorvastatin low in lactone impurities
NO20024046L (en) Process for the preparation of quinolone carboxylic acids and their intermediates
KR100896087B1 (en) Synthetic method of optically pure 2-methylpyrrolidine and the salt thereof
KR100424393B1 (en) Process for the preparation of oxiracetam
JP2005120067A (en) Optically active cyclopropylamine derivative and method for producing the same
JP2001288167A (en) Method for producing pyrrole-2-carboxylic acid derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805065

Country of ref document: EP

Kind code of ref document: A1