WO2020230768A1 - Leaning vehicle equipped with control device having at least one function among fcw, eba, and aeb - Google Patents

Leaning vehicle equipped with control device having at least one function among fcw, eba, and aeb Download PDF

Info

Publication number
WO2020230768A1
WO2020230768A1 PCT/JP2020/018877 JP2020018877W WO2020230768A1 WO 2020230768 A1 WO2020230768 A1 WO 2020230768A1 JP 2020018877 W JP2020018877 W JP 2020018877W WO 2020230768 A1 WO2020230768 A1 WO 2020230768A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
obstacle
eba
control device
lean vehicle
Prior art date
Application number
PCT/JP2020/018877
Other languages
French (fr)
Japanese (ja)
Inventor
星美 鳥越
小林 寛
知昭 岸
里沙 安川
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2020230768A1 publication Critical patent/WO2020230768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J27/00Safety equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention is provided on a lean body frame that inclines to the right of the vehicle when turning right and to the left of the vehicle when turning right, and corresponds to an obstacle acquired based on the relationship between the obstacle and the own vehicle.
  • the present invention relates to a leaning vehicle equipped with a control device having at least one function of FCW, EBA and AEB that operates based on a margin of operation.
  • FCW is an abbreviation for Forward Collision Warning.
  • EBA is an abbreviation for Emergency Brake Assist.
  • AEB is an abbreviation for Autonomous Emergency Braking.
  • a lean vehicle having a control device having at least one of FCW, EBA and AEB functions has been proposed, which operates based on the margin corresponding to the obstacle acquired based on the relationship between the obstacle and the own vehicle. ..
  • the lean vehicle described in Patent Document 1 is provided on a lean body frame that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning right, and is acquired based on the relationship between an obstacle and the own vehicle. It is equipped with a control device having an FCW function that operates based on a margin corresponding to an obstacle.
  • Patent Document 1 describes that the minimum lateral offset between the two-wheeled vehicle and the obstacle is taken into consideration in order to deal with the obstacle.
  • the minimum lateral offset is described as the lateral offset with respect to the central axis of the preceding vehicle. Further, it is stated that if the vehicle travels on the left outer contour line or the right outer contour line of the preceding vehicle, no further lateral offset is required. In other words, a technique for dealing with obstacles is shown by focusing on the distance between the central axis of the preceding vehicle and the outer contour line of the preceding vehicle. (See FIG. 1 and paragraphs 0009 and 0010 of Patent Document 1).
  • the present invention is a lean vehicle that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left, and is a control device having at least one of the conventionally proposed functions of FCW, EBA, and AEB. It is an object of the present invention to provide a lean vehicle equipped with a control device having at least one function of FCW, EBA and AEB that operates based on a technical idea different from the technical idea.
  • a lean vehicle provided with a control device having at least one of FCW, EBA and AEB has the following configuration.
  • the lean vehicle is mounted on a lean body frame that tilts to the right of the vehicle when turning right and to the left of the vehicle when turning left, based on the margin acquired based on the relationship between the obstacle and the vehicle. It includes a control device having at least one function of operating FCW, EBA and AEB.
  • a lean vehicle equipped with a control device having at least one function of FCW, EBA and AEB is a physical quantity related to a vehicle width which is a left-right length of the lean vehicle that changes when the lean vehicle turns right or left. It is equipped with a lean vehicle width detection sensor for detecting.
  • the control device having at least one function of FCW, EBA and AEB acquires the physical quantity related to the width of the lean vehicle based on the signal detected by the lean vehicle width detection sensor.
  • the control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. It operates so that the distance in the left-right direction of the obstacle, which is the distance between the two, is the following relational expression (1).
  • Relational expression (1) When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate.
  • the minimum value of the lateral distance between obstacles ⁇ the lean vehicle is the first.
  • the control device having at least one of FCW, EBA, and AEB does not operate.
  • Obstacle The minimum value of the left-right distance. However, in the relational expression (1), the obstacle is It is placed inward in the radial direction of the circle.
  • a lean vehicle including a control device having at least one of FCW, EBA, and AEB may have the following configuration.
  • the control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. It operates so that the distance in the left-right direction of the obstacle, which is the distance of Relational expression (2): When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one function of FCW, EBA, and AEB does not operate.
  • the control device When turning on a circle with the first radius at the vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. Obstacle The minimum value of the left-right distance. However, in the relational expression (2), the obstacle is It is placed outside the radial direction of the circle.
  • a lean vehicle including a control device having at least one of FCW, EBA, and AEB may have the following configuration.
  • the control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle.
  • the obstacle is operated so that the lateral distance of the obstacle, which is the distance between the two, is at least one of the following relational expressions (3) and (4).
  • the control device having at least one function of FCW, EBA and AEB does not operate.
  • the obstacle is arranged inward in the radial direction of the circle.
  • a lean vehicle including a control device having at least one of FCW, EBA, and AEB may have the following configuration.
  • the control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle.
  • the obstacle is operated so that the left-right distance of the obstacle is at least one of the following relational expressions (5) and (6).
  • the minimum value of the lateral distance between obstacles ⁇ lean When the vehicle turns on the circle of the first radius at the second vehicle speed faster than the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle. In (6), the obstacle is arranged outside the radial direction of the circle.
  • FCW, EBA and AEB focus on the lateral distance between the central axis of the preceding vehicle and the outer contour of the preceding vehicle" and “in the region to be activated". It is based on the technical idea of "focusing”.
  • a control device having at least one function of FCW, EBA, and AEB according to an embodiment of the present invention is described as "a lateral distance between a grounding point of a lean vehicle and an obstacle based on a changing vehicle width of the lean vehicle. It is based on the technical idea of "focusing on the non-operating region” and “focusing on the non-operating region”, and is different from the conventionally proposed control device having at least one function of FCW, EBA and AEB.
  • the lean vehicle is a vehicle provided with a lean vehicle body frame that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left. Includes at least one front wheel and at least one rear wheel.
  • the lean vehicle may have two front wheels and one rear wheel or two rear wheels.
  • the lean vehicle may have one front wheel and two rear wheels or two rear wheels.
  • the front wheels may be steering wheels or the rear wheels may be steering wheels.
  • the lean vehicle is equipped with a drive source.
  • the drive source may be an engine, an electrically powered motor, or a hybrid drive source having both.
  • the lean body frame is a member that mainly receives stress in a lean vehicle.
  • the lean body frame may be a combination of a plurality of parts, or may be integrally molded.
  • the "margin acquired based on the relationship between obstacles and own vehicle" in the present invention and the embodiment is the margin when dealing with the obstacle.
  • the margin is acquired based on, for example, the relative speed between the obstacle and the own vehicle.
  • the margin is information such as numerical values and strength of analog signals.
  • When the margin is higher than the standard it means that there is a margin compared to the standard.
  • the standard may be set in advance according to various lean vehicles. Further, it may be corrected or learned based on the signals acquired by various sensors.
  • the margin may be information that directly indicates the margin or information that indirectly indicates the margin, for example, information that correlates with the margin. Acquiring the margin means to directly acquire the information indicating the margin or indirectly to acquire the information indicating the margin.
  • the lean vehicle width detection sensor in the present invention and the embodiment detects a physical quantity related to the vehicle width, which is the left-right length of the lean vehicle that changes when the lean vehicle turns right or left. It is a sensor for.
  • the width of the lean vehicle itself does not change. However, the lean vehicle tilts to the right of the vehicle when turning right and to the left of the vehicle when turning left. Therefore, the width of the lean vehicle, which is the length in the left-right direction, changes by inclining in the left-right direction.
  • the physical quantity related to the vehicle width which is the length of the lean vehicle in the left-right direction, is the physical quantity related to the lean angle of the lean vehicle.
  • a lean vehicle width detection sensor is a sensor such as an IMU (Inertial Measurement Unit), a GPS (Global Positioning System), or a camera for acquiring from an image.
  • a lean vehicle width detection sensor is a sensor such as an IMU (Inertial Measurement Unit), a GPS (Global Positioning System), or a camera for acquiring from an image.
  • the physical quantity related to the vehicle width which is the length in the left-right direction of the lean vehicle, is indirectly the information indicating the physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle.
  • Information indicating a physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle for example, information correlating with the physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle may be used.
  • Acquiring the physical quantity related to the width of the lean vehicle, which is the length in the left-right direction of the lean vehicle means information indicating the physical quantity related to the width of the lean vehicle, which is the length in the left-right direction of the lean vehicle, or indirectly, the lean vehicle. It means to acquire information indicating a physical quantity related to the vehicle width, which is the length in the left-right direction.
  • the physical quantity related to the vehicle width which is the length of the lean vehicle in the left-right direction in the present invention and the embodiment, is, for example, the length between the grounding point of the wheel and the right end of the lean vehicle or the rider, and the grounding point of the wheel. It may be information that directly or indirectly indicates the length between the left end of the lean vehicle or the rider, or the length between the right end and the left end of the lean vehicle or the rider. As the width of the vehicle changes, so do these lengths. In a lean vehicle, by including the concept of the grounding point of the wheel in the physical quantity related to the vehicle width, it becomes easy to obtain the distance in the left-right direction of the obstacle between the obstacle and the grounding point of the wheel.
  • the lean vehicle may or may not acquire the obstacle left-right distance.
  • Including the concept of the wheel contact point in the physical quantity related to the vehicle width means that the information directly or indirectly indicated by the physical quantity related to the vehicle width includes the information about the contact point.
  • the lean angle in the present invention and the embodiment is the tilt angle of the lean vehicle in the left-right direction of the lean vehicle with respect to the vertical direction.
  • the tilt angle of the lean vehicle in the left-right direction of the lean vehicle with respect to the vertical is the tilt angle of the lean vehicle body frame in the left-right direction of the lean vehicle with respect to the vertical.
  • the lean angle is zero, the lean vehicle is in an upright state in the left-right direction of the lean vehicle.
  • the state in which the absolute value of the lean angle decreases is a state in which the lean vehicle transitions from a state in which the lean vehicle is tilted in the left-right direction to an upright state.
  • the state in which the absolute value of the lean angle increases is a state in which the lean vehicle transitions from an upright state to a state in which the lean vehicle is tilted in the left-right direction.
  • the time change rate of the lean angle at this time is the lean angular velocity.
  • the time change rate of the lean angular velocity is the lean angular acceleration.
  • the lean angular velocity or lean angular acceleration is indirectly correlated with information indicating lean angular velocity or lean angular acceleration, for example, lean angular velocity or lean angular acceleration, even if the information directly indicates lean angular velocity or lean angular acceleration. It may be relevant information.
  • Acquiring lean angular velocity or lean angular acceleration means directly acquiring information indicating lean angular velocity or lean angular acceleration or indirectly obtaining information indicating lean angular velocity or lean angular acceleration.
  • the obstacle left-right distance which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle.
  • the obstacle left-right distance is the left-right distance between the grounding point of the lean vehicle wheels and the left edge of the obstacle. is there.
  • the obstacle left-right distance is between the grounding point of the lean vehicle wheels and the right edge of the obstacle in the left-right direction of the lean vehicle. Is the distance.
  • the obstacle left-right distance is the contact point of the lean vehicle wheel in the left-right direction of the lean vehicle and the obstacle. The distance between the outer edges of an object (the outer edge of the circle in the radial direction).
  • the obstacle left-right distance is the contact point of the lean vehicle wheel in the left-right direction of the lean vehicle and the obstacle.
  • the distance between the inner edges of an object (the inner edge of the circle in the radial direction).
  • the left-right direction of the lean vehicle may be the radial direction of the circle.
  • the obstacle left-right distance may be a radial distance passing through the lean vehicle.
  • the obstacle left-right distance may be a radial distance passing through the edge of the obstacle.
  • the lateral distance of the obstacle is the circle that is concentric with the circle on which the lean vehicle travels, passes through the edge of the obstacle, and has a radius closest to the first radius. It may be the difference between the radius and the first radius.
  • the lateral distance of the obstacle is the radius of the circle that is concentric with the circle on which the lean vehicle travels, passes through the edge of the obstacle, and has a radius closest to the second radius.
  • the difference from the second radius may be used.
  • the left-right direction of the lean vehicle in the present invention and the embodiment is a direction parallel to the road surface or a horizontal direction regardless of the lean angle of the lean vehicle.
  • the left-right direction of the lean vehicle may be, for example, a direction orthogonal to the traveling direction of the lean vehicle, or may be a left-right direction of the lane in which the lean vehicle travels.
  • the traveling direction of the lean vehicle may be acquired from, for example, the traveling locus of the lean vehicle.
  • the direction of travel of the lean vehicle may include, for example, the future direction of travel of the lean vehicle estimated during travel.
  • the obstacle left-right distance may be, for example, a distance in a straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the lean vehicle, or a distance in the straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the obstacle. There may be.
  • the left-right distance of the obstacle may be, for example, the left-right distance of the lane passing through the lean vehicle, or the left-right distance of the lane passing through the obstacle.
  • the distance between the two obstacles in the left-right direction at the time of turning in each of the above-mentioned relational expressions (3) to (6) is the distance in the same definition.
  • the obstacle left-right distance between the obstacle and the line is gradually reduced from the obstacle left-right distance where the controller having at least one function of FCW, EBA and AEB does not operate, and at least one of FCW, EBA and AEB.
  • the limit obstacle left-right distance that does not operate is the minimum value of the obstacle left-right distance that the control device having at least one function of FCW, EBA, and AEB does not operate.
  • Obstacle left-right distance when the lean vehicle turns on the circle is the radius of the circle that is concentric with the circle that the lean vehicle travels and is closest to the circle that the lean vehicle travels through the edge of the obstacle and the lean vehicle. Is the difference from the radius of the circle on which.
  • the obstacle lateral distance is the radial distance passing through the lean vehicle and the straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the lean vehicle. It can be seen that the relational expression (1) holds even when the distance of the above or the distance in the direction of the straight line perpendicular to the traveling direction of the lean vehicle and passing through the obstacle is used.
  • the first vehicle speed, the second vehicle speed, the first radius, and the second radius may be determined by assuming an actual usage scene of a lean vehicle.
  • the minimum value of the obstacle left-right distance in which the control device having at least one function of FCW, EBA and AEB does not operate may be designed.
  • FCW the operating state can be grasped by confirming "notify” and “not notify”.
  • AEB the operating state can be grasped by confirming that "the braking force is automatically generated when there is no braking operation” and "the braking force is not automatically generated when there is no braking operation”.
  • the EBA "when the distance between the lean vehicle and the obstacle in the front-rear direction of the lean vehicle is the first distance and the brake operator is operated to the first operation amount, an assist braking force is generated.”
  • the operating state can be grasped by confirming that "the assist braking force is not generated when the brake operator is operated by the first operation amount at the first distance.”
  • the rider travels on the drawn line with a lean vehicle from a position where the obstacle is away from the front of the vehicle to a position where the obstacle is away from the rear of the vehicle at a predetermined speed, and the distance to the obstacle. However, it is sufficient to operate the brake operator by the first operation amount at the first distance.
  • the control device having at least one function of FCW, EBA, and AEB acquires the obstacle left-right distance between the obstacle and the grounding point of the wheel. It doesn't matter if it is or not.
  • the control device having at least one function of FCW, EBA and AEB of the present invention may or may not acquire the obstacle left-right distance between the obstacle and the grounding point of the wheel.
  • Control device having at least one function of FCW, EBA and AEB The control device having at least one function of FCW, EBA and AEB in the present invention and the embodiment is, for example, a control device having an EBA function.
  • the EBA function is a function that controls the assist braking force based on the brake operation of the rider.
  • the assist braking force is a braking force that is increased or decreased by the control of a control device having an EBA function among the braking forces.
  • the control device having at least one function of FCW, EBA and AEB is, for example, a control device having an AEB function.
  • the control device having the AEB function is a function of automatically controlling the braking force without depending on the brake operation of the rider.
  • the control device having at least one function of FCW, EBA and AEB is, for example, a control device having an FCW function for notifying the rider.
  • a control device having an EBA function and a control device having an AEB function a control device having an EBA function and a control device having an FCW function
  • a control device having an AEB function and a control device having an FCW function a control device having an FCW function
  • a control device having an EBA function, a control device having an AEB function, and a control device having an FCW function may be combined.
  • the control device having the AEB function has a function of controlling the assist braking force
  • the control device having the AEB function can be regarded as the control device having the EBA function.
  • control device having at least one function of FCW, EBA and AEB "operates” means “notifies” in FCW, “generates assist braking force” in EBA, and “generates assist braking force” in AEB. It automatically generates braking force. " When a control device having at least one of FCW, EBA, and AEB functions is “operated”, it means “performing a process that the rider can understand” rather than “operating the program”.
  • a control device having at least one function of FCW, EBA and AEB “does not operate”, it means “does not notify” in FCW, “does not generate assist braking force” in EBA, and “does not generate assist braking force” in AEB. It does not automatically generate braking force.
  • a controller having at least one of the functions of FCW, EBA and AEB “does not work” means “does not perform any process known to the rider”.
  • the control device having at least one function of FCW, EBA and AEB “does not operate” the program operates even if the program of the control device having at least one function of FCW, EBA and AEB is operating. It doesn't have to be.
  • Control device does not work can be replaced with "Control device does not perform any process that the rider can see”.
  • the control device is activated can be replaced with "the control device performs a process that the rider can understand”.
  • the control device having the EBA function in the present invention and the embodiment is a control device having a function of controlling the assist braking force.
  • the control device having the EBA function may have other functions.
  • the control device having the function of the antilock braking system (ABS) has the function of controlling the assist braking force
  • the control device having the ABS function can be regarded as the control device having the EBA function.
  • the control device having the EBA function in the present invention and the embodiment is acquired based on the brake, the sensor related to the amount of change in the traveling direction necessary for acquiring the amount of change in the traveling direction, and the relationship between the obstacle and the own vehicle.
  • the traveling direction change amount related sensor is, for example, an IMU (Inertial Measurement Unit), a GPS (Global Positioning System), a camera for acquiring from an image, a handle angle sensor for detecting a handle angle, and the like.
  • Margin-related sensors include, for example, a camera that captures the front of a lean vehicle, millimeter-wave radar, lidar, or a combination thereof.
  • Examples of the brake operation amount related sensor include an angle sensor that detects the rotation angle of the brake operator, a hydraulic pressure sensor that detects the hydraulic pressure generated by the brake operator, and the like.
  • the type of each sensor is not limited as long as it satisfies the above-mentioned functions.
  • the brake has a function of receiving an electric signal from a control device having an EBA function and generating a braking force.
  • the type of brake is not limited as long as it satisfies the above functions.
  • the control device having the EBA function may be electrically connected to a sensor other than the above. Further, the control device having an EBA function may be controlled based on a signal acquired from a sensor other than the above.
  • the control device having an EBA function may have an ABS function. In that case, the control device having the EBA function may be electrically connected to a sensor capable of detecting the slip state of the wheel.
  • the control device having the EBA function may, for example, control the braking force of only the front wheels.
  • the control device having the EBA function may, for example, control the braking force of only the rear wheels.
  • the control device having the EBA function may, for example, control both the braking force of the front wheels and the braking force of the rear wheels.
  • the control device having the EBA function may, for example, control the total braking force of the front wheels and the rear wheels.
  • the control device having at least one function of EBA and AEB may control, for example, a mechanically connected brake in which a brake operator and a brake are mechanically connected.
  • the control device having at least one function of EBA and AEB may control, for example, an electrically connected brake in which the brake operator and the brake are electrically connected without being mechanically connected.
  • the control device having at least one function of EBA and AEB may control, for example, a brake having both a mechanical connection and an electrical connection.
  • the notification device in the present invention and the embodiment is a device for notifying the rider.
  • the notifying device notifies at least one of visual, auditory, tactile and olfactory sensations.
  • the notification device may notify, for example, a combination of two or more of visual, auditory, tactile, and olfactory senses.
  • the acquired physical quantity related to the width of the lean vehicle may be used for control as follows.
  • the physical quantity related to the width of the lean vehicle may be acquired before the margin is acquired, and the margin may be acquired based on the physical quantity.
  • the control may be such that the acquired margin is corrected based on the physical quantity related to the width of the acquired lean vehicle.
  • the control device having at least one function of FCW, EBA and AEB operates so as to have the relational expression based on the acquired physical quantity related to the width of the lean vehicle.
  • the specific control form and method are not limited to a specific form and method.
  • the front-rear interlocking brake may be a control target.
  • the front-rear interlocking brake is a brake that first generates braking force with the rear wheel brake when the front wheel brake operator or rear wheel brake operator is operated, and then generates braking force with both the front wheel brake and the rear wheel brake. is there.
  • controlling the braking force in the present invention and the embodiment means “controlling the brake so that the braking force is obtained”.
  • a type of brake in which the braking force changes depending on the hydraulic pressure
  • the rotation angle of the lever is controlled.
  • the target to be specifically controlled may be changed according to the type of brake.
  • control based on A in the present invention and the embodiment is not limited to A as the information used for control.
  • Controlling based on A includes the case of including information other than A and controlling based on information other than A and A.
  • At least one (one) of a plurality of options in this invention and embodiment includes all combinations considered from a plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options. For example, at least one of A, B, and C may be A only, B only, C only, A, B, and A and C. It may be, B and C, or A, B and C.
  • the present invention may have a plurality of these components if the number of certain components is not clearly specified in the claims and is displayed in the singular when translated into English. Further, the present invention may have only one of these components.
  • connection, connection and support includes not only direct mounting, connection, connection and support, but also indirect mounting, connection, connection and support.
  • connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term “favorable” in the present invention and embodiments is non-exclusive. "Preferable” means “preferable, but not limited to”. In the present specification, the configuration described as “favorable” exhibits at least the above-mentioned effect obtained by the configuration of claim 1. Further, in the present specification, the term “may” is non-exclusive. “May” means “may, but is not limited to this.” In the present specification, the configuration described as “may” exerts at least the above-mentioned effect obtained by the configuration of claim 1.
  • U is the upward direction of the lean vehicle
  • D is the downward direction of the lean vehicle
  • L is the left direction of the lean vehicle
  • R is the right direction of the lean vehicle
  • F is the front direction of the lean vehicle
  • Re is the lean vehicle. Indicates the backward direction.
  • the lean vehicle 1001 includes a control device 1011 having at least one function of FCW, EBA, and AEB mounted on a lean vehicle body frame 1002 that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left. ..
  • the control device 1011 having at least one function of FCW, EBA and AEB operates based on the margin acquired based on the relationship between the obstacle 2001 and the own vehicle 1001.
  • the lean vehicle 1001 provided with the control device 1011 having at least one function of FCW, EBA and AEB is a vehicle width which is a left-right length of the lean vehicle 1001 which changes when the lean vehicle 1001 turns right or left.
  • a lean vehicle width detection sensor 1012 for detecting physical quantities DCVW and DSVW related to the above is provided.
  • the control device 1011 having at least one function of FCW, EBA, and AEB acquires physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 based on the signal detected by the lean vehicle width detection sensor 1012.
  • the control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DCVW and DSVW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (1).
  • Relational expression (1) When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin ⁇ lean.
  • the control device 1011 When the vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate.
  • the obstacle 2001 is arranged inward in the radial direction of the circle.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end of the lean vehicle 1001.
  • the physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 of the first embodiment are not limited to this.
  • the length DCVW between the ground contact point of the wheel when the lean vehicle 1001 turns left on the circle and the left end (the inner end in the radial direction of the circle) of the lean vehicle 1001 is when the lean vehicle 1001 runs on a straight line.
  • the length between the grounding point of the wheels and the left edge of the lean vehicle 1001 is greater than the DSVW.
  • the control device 1011 having at least one function of FCW, EBA, and AEB of the second embodiment has the following configurations in addition to the configurations of the first embodiment.
  • the control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 in the left-right direction of the lean vehicle 1001 based on the physical quantities DCVW, DCSVW and DSVW related to the width of the lean vehicle 1001 acquired. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of the lean vehicle 1001, is the following relational expression (2).
  • Relational expression (2) When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin ⁇ lean When the vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value DCLRmin of the distance in the left-right direction of the obstacle. However, in the relational expression (2), the obstacle 2001 is arranged outside in the radial direction of the circle.
  • the minimum value of the distance in the left-right direction of the obstacle DSLRmin the lean vehicle 1001 When turning on a circle with a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate.
  • the minimum value of the distance in the left-right direction of the obstacle DSLRmin> The lean vehicle 1001 When turning on a circle with a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DCVW, DCSVW, and DSVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end of the lean vehicle 1001.
  • the physical quantities DCVW, DCSVW, and DSVW related to the width of the lean vehicle 1001 of the second embodiment are not limited to this.
  • the lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle is larger than the lean angle of the lean vehicle 1001 when the lean vehicle 1001 travels on a straight line.
  • the length DCVW and DCSVW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001 are such that the lean vehicle 1001 is on a straight line.
  • the length between the ground contact point of the wheel and the left end of the lean vehicle 1001 when traveling is smaller than the DSVW.
  • the control device 1011 having at least one function of FCW, EBA, and AEB of the third embodiment has the following configurations in addition to the configurations of the first embodiment or the second embodiment.
  • the control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW and DC2VW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (3).
  • Relational expression (3) Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1.
  • Minimum value DC1LRmin ⁇ An obstacle in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1.
  • Minimum value of lateral distance DC2LRmin However, in the relational expression (3), the obstacle 2001 is arranged inward in the radial direction of the circle.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end (inner end in the radial direction of the circle) of the lean vehicle 1001.
  • the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 of the third embodiment are not limited to this.
  • the lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle with a second radius r2 smaller than the first radius r1 at the first vehicle speed V1 is such that the lean vehicle 1001 is on the circle with the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1, the ground contact point of the wheels and the left end of the lean vehicle 1001 (the inner end in the radial direction of the circle).
  • the length DC2VW between the lean vehicle 1001 is larger than the length DC1VW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001.
  • the control device 1011 having at least one function of FCW, EBA and AEB of the fourth embodiment has the following configurations in addition to the configurations of the first embodiment, the second embodiment or the third embodiment.
  • the control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW and DC2VW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (4).
  • Relational expression (4) Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1.
  • Minimum value of lateral distance DC2LRmin However, in the relational expression (4), the obstacle 2001 is arranged inward in the radial direction of the circle.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end (the inner end in the radial direction of the circle) of the lean vehicle 1001.
  • the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 of the fourth embodiment are not limited to this.
  • the lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2, which is faster than the first vehicle speed V1, is that the lean vehicle 1001 is on the circle of the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on the circle with the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1, the ground contact point of the wheels and the left end of the lean vehicle 1001 (the inner end in the radial direction of the circle).
  • the length DC2VW between the lean vehicle 1001 is larger than the length DC1VW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001.
  • the control device 1011 having at least one function of FCW, EBA and AEB of the fifth embodiment has the following configurations in addition to the configurations of the first embodiment, the second embodiment, the third embodiment or the fourth embodiment. To be equipped.
  • the control device 1011 having at least one function of FCW, EBA, and AEB is based on the acquired physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001, and the obstacle 2001 in the left-right direction of the lean vehicle 1001.
  • the obstacle left-right distance which is the distance between the grounding points of the wheels of the lean vehicle 1001
  • Relational expression (5) Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1.
  • Minimum value DC1LRmin Lean Obstacle in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1.
  • Minimum value of lateral distance DC2LRmin However, in the relational expression (5), the obstacle 2001 is arranged outside in the radial direction of the circle.
  • the following two patterns are shown for the minimum value DC2LRmin of the lateral distance.
  • Pattern 3 When the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA and AEB does not operate.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001.
  • the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 of the fifth embodiment are not limited to this.
  • the lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle with a second radius r2 smaller than the first radius r1 at the first vehicle speed V1 is such that the lean vehicle 1001 is on the circle with the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1, the ground contact point of the wheels and the right end of the lean vehicle 1001 (the outer end in the radial direction of the circle).
  • the lengths between DC2VW and DC2SVW are larger than the length DC1VW between the ground contact point of the wheels when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001. ..
  • the control device 1011 having at least one function of FCW, EBA, and AEB of the sixth embodiment is provided in addition to the configurations of the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, or the fifth embodiment. It has the following configuration.
  • the control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW, DC2VW and DC2SVW related to the width of the lean vehicle 1001 acquired.
  • Relational expression (6) Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1.
  • Minimum value DC1LRmin Lean Obstacle that the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1.
  • Minimum value of lateral distance DC2LRmin However, in the relational expression (6), the obstacle 2001 is arranged outside in the radial direction of the circle.
  • the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1.
  • the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001.
  • the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 of the sixth embodiment are not limited to this.
  • the lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2, which is faster than the first vehicle speed V1, is that the lean vehicle 1001 is on the circle of the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on the circle with the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1, the ground contact point of the wheels and the right end of the lean vehicle 1001 (the outer end in the radial direction of the circle).
  • the lengths between DC2VW and DC2SVW are larger than the length DC1VW between the ground contact point of the wheels when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001. ..
  • the control device 1011 having at least one function of FCW, EBA and AEB according to the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment or the sixth embodiment has an EBA function.
  • the control device 1011 has, and may be configured as follows.
  • the control device 1011 having an EBA function is based on the relationship between the front braking device, the rear braking device, the lean angle-related physical quantity detecting device required for acquiring at least one of the lean angular velocity and the lean angular acceleration, the obstacle 2001, and the own vehicle 1001.
  • the control device 1011 having an EBA function is electrically connected to the engine unit.
  • the control device 1011 having the EBA function may or may not be electrically connected to the yaw angle-related physical quantity detecting device required for acquiring at least one of the yaw angular velocity and the yaw angular acceleration.
  • the front brake device is an example of a brake.
  • the rear braking device is an example of a brake.
  • the lean angle-related physical quantity detector is an example of a lean angle-related sensor.
  • the forward detection device is an example of a margin-related sensor.
  • the brake operation state detection unit is an example of a brake operation amount related sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

According to the present invention, a control device 1011 having at least one function among FCW, EBA, and AEB acquires a physical quantity related to the vehicle width of a leaning vehicle 1001 on the basis of a signal detected by a vehicle width detection sensor 1012 of a leaning vehicle. The control device 1011, having at least one function among FCW, EBA, and AEB, operates, on the basis of the acquired physical quantity related to the vehicle width of the leaning vehicle 1001, such that an obstacle lateral direction distance has the following relationship: the obstacle lateral direction distance is the distance between an obstacle 2001 in the lateral direction of the leaning vehicle 1001 and the ground contact points of the wheels of the leaning vehicle 1001. A minimum value DSLRmin of an obstacle lateral distance, in which the control device 1011 having at least one function among FCW, EBA, and AEB does not operate when the leaning vehicle 1001 travels in a straight line at a first vehicle speed V1, is smaller than a minimum value DCLRmin of an obstacle lateral distance in which the control device 1011 having at least one function among FCW, EBA, and AEB does not operate when the leaning vehicle 1001 turns in a circle of a first radius r1 at the first vehicle speed V1. However, the obstacle 2001 is disposed inward in the radial direction of the circle.

Description

FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両Lean vehicle with control device having at least one function of FCW, EBA and AEB
 本発明は、右旋回時に車両右方向に傾斜し、右旋回時に車両左方向に傾斜するリーン車体フレームに設けられ、障害物と自車との関係に基づいて取得された障害物に対応する余裕度に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両(Leaning Vehicle)に関する。なお、FCWは、Forward Collision Warningの略語である。EBAは、Emergency Brake Assistの略語である。AEBは、Autonomous Emergency Brakingの略語である。 The present invention is provided on a lean body frame that inclines to the right of the vehicle when turning right and to the left of the vehicle when turning right, and corresponds to an obstacle acquired based on the relationship between the obstacle and the own vehicle. The present invention relates to a leaning vehicle equipped with a control device having at least one function of FCW, EBA and AEB that operates based on a margin of operation. FCW is an abbreviation for Forward Collision Warning. EBA is an abbreviation for Emergency Brake Assist. AEB is an abbreviation for Autonomous Emergency Braking.
 障害物と自車との関係に基づいて取得された障害物に対応する余裕度に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両が提案されている。特許文献1に記載のリーン車両は、右旋回時に車両右方向に傾斜し、右旋回時に車両左方向に傾斜するリーン車体フレームに設けられ、障害物と自車との関係に基づいて取得された障害物に対応する余裕度に基づいて作動するFCW機能を有する制御装置を備えている。
 特許文献1には、障害物に対応するために、二輪車と障害物との最小側方オフセットを考慮することが記載されている。より具体的には、最小側方オフセットとは、先行車両の中央軸線に対する側方のオフセットであると記載されている。更に、先行車両の左外側輪郭線上または右外側輪郭線上を走行すれば、それ以上の側方オフセットは必要ないと記載されている。言い換えれば、先行車両の中央軸線と先行車両の外側輪郭線の間の距離に着目して障害物に対応する技術が示されている。(特許文献1の図1および段落0009、0010参照)
A lean vehicle having a control device having at least one of FCW, EBA and AEB functions has been proposed, which operates based on the margin corresponding to the obstacle acquired based on the relationship between the obstacle and the own vehicle. .. The lean vehicle described in Patent Document 1 is provided on a lean body frame that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning right, and is acquired based on the relationship between an obstacle and the own vehicle. It is equipped with a control device having an FCW function that operates based on a margin corresponding to an obstacle.
Patent Document 1 describes that the minimum lateral offset between the two-wheeled vehicle and the obstacle is taken into consideration in order to deal with the obstacle. More specifically, the minimum lateral offset is described as the lateral offset with respect to the central axis of the preceding vehicle. Further, it is stated that if the vehicle travels on the left outer contour line or the right outer contour line of the preceding vehicle, no further lateral offset is required. In other words, a technique for dealing with obstacles is shown by focusing on the distance between the central axis of the preceding vehicle and the outer contour line of the preceding vehicle. (See FIG. 1 and paragraphs 0009 and 0010 of Patent Document 1).
特開2009-116882号JP-A-2009-116882
 特許文献1に記載されたFCW機能を有する制御装置の技術思想とは異なる技術思想に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両が求められている。 There is a demand for a lean vehicle having a control device having at least one of FCW, EBA, and AEB that operates based on a technical concept different from the technical concept of the control device having the FCW function described in Patent Document 1. ..
 本発明は、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車両であって、従来提案されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置の技術思想とは異なる技術思想に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両を提供することを目的とする。 The present invention is a lean vehicle that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left, and is a control device having at least one of the conventionally proposed functions of FCW, EBA, and AEB. It is an object of the present invention to provide a lean vehicle equipped with a control device having at least one function of FCW, EBA and AEB that operates based on a technical idea different from the technical idea.
 本発明の一実施形態に係るFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、以下の構成を有する。
 リーン車両は、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車体フレームに搭載され、障害物と自車との関係に基づいて取得された余裕度に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、リーン車両が右旋回または左旋回した時に変化するリーン車両の左右方向の長さである車幅に関連する物理量を検出するためのリーン車両車幅検出センサを備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、リーン車両車幅検出センサで検出された信号に基づいてリーン車両の車幅に関連する物理量を取得する。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、取得されたリーン車両の車幅に関連する物理量に基づいて、リーン車両の左右方向における障害物とリーン車両の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(1)になるように作動する。
 関係式(1):リーン車両が第1車速で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値<リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、関係式(1)において、障害物は、円の半径方向の内方に配置される。
A lean vehicle provided with a control device having at least one of FCW, EBA and AEB according to an embodiment of the present invention has the following configuration.
The lean vehicle is mounted on a lean body frame that tilts to the right of the vehicle when turning right and to the left of the vehicle when turning left, based on the margin acquired based on the relationship between the obstacle and the vehicle. It includes a control device having at least one function of operating FCW, EBA and AEB. A lean vehicle equipped with a control device having at least one function of FCW, EBA and AEB is a physical quantity related to a vehicle width which is a left-right length of the lean vehicle that changes when the lean vehicle turns right or left. It is equipped with a lean vehicle width detection sensor for detecting. The control device having at least one function of FCW, EBA and AEB acquires the physical quantity related to the width of the lean vehicle based on the signal detected by the lean vehicle width detection sensor. The control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. It operates so that the distance in the left-right direction of the obstacle, which is the distance between the two, is the following relational expression (1).
Relational expression (1): When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. The minimum value of the lateral distance between obstacles <the lean vehicle is the first. When turning on a circle with the first radius at the vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. Obstacle The minimum value of the left-right distance. However, in the relational expression (1), the obstacle is It is placed inward in the radial direction of the circle.
 本発明の一実施形態に係るFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、以下の構成を有していても良い。
 FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、取得されたリーン車両の車幅に関連する物理量に基づいて、リーン車両の左右方向における障害物とリーン車両の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(2)になるように作動する。
 関係式(2):リーン車両が第1車速で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値≧リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、関係式(2)において、障害物は、円の半径方向の外方に配置される。
A lean vehicle including a control device having at least one of FCW, EBA, and AEB according to an embodiment of the present invention may have the following configuration.
The control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. It operates so that the distance in the left-right direction of the obstacle, which is the distance of
Relational expression (2): When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one function of FCW, EBA, and AEB does not operate. When turning on a circle with the first radius at the vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. Obstacle The minimum value of the left-right distance. However, in the relational expression (2), the obstacle is It is placed outside the radial direction of the circle.
 本発明の一実施形態に係るFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、以下の構成を有していても良い。
 FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、取得されたリーン車両の車幅に関連する物理量に基づいて、リーン車両の左右方向における障害物とリーン車両の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(3)および関係式(4)の少なくとも1つになるように作動する。
 関係式(3):リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値<リーン車両が第1車速で第1半径より小さい第2半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、障害物は、円の半径方向の内方に配置される。
 関係式(4):リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値<リーン車両が第1車速より速い第2車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、関係式(4)において、障害物は、円の半径方向の内方に配置される。
A lean vehicle including a control device having at least one of FCW, EBA, and AEB according to an embodiment of the present invention may have the following configuration.
The control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. The obstacle is operated so that the lateral distance of the obstacle, which is the distance between the two, is at least one of the following relational expressions (3) and (4).
Relational expression (3): When the lean vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle <lean. When the vehicle turns on a circle with a second radius smaller than the first radius at the first vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. Obstacles Minimum value of lateral distance However, obstacles Is placed inward in the radial direction of the circle.
Relational expression (4): When the lean vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle <lean. When the vehicle turns on the circle of the first radius at the second vehicle speed faster than the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle. In (4), the obstacle is arranged inward in the radial direction of the circle.
 本発明の一実施形態に係るFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、以下の構成を有していても良い。
 FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、取得されたリーン車両の車幅に関連する物理量に基づいて、リーン車両の左右方向における障害物とリーン車両の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(5)および関係式(6)の少なくとも1つになるように作動する。
 関係式(5):リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値≧リーン車両が第1車速で第1半径より小さい第2半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、関係式(5)において、障害物は、円の半径方向の外方に配置される。
 関係式(6):リーン車両が第1車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値≧リーン車両が第1車速より速い第2車速で第1半径の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値
 ただし、関係式(6)において、障害物は、円の半径方向の外方に配置される。
A lean vehicle including a control device having at least one of FCW, EBA, and AEB according to an embodiment of the present invention may have the following configuration.
The control device having at least one function of FCW, EBA and AEB is between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle based on the acquired physical quantity related to the width of the lean vehicle. The obstacle is operated so that the left-right distance of the obstacle is at least one of the following relational expressions (5) and (6).
Relational expression (5): When the lean vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the lateral distance between obstacles ≧ lean When the vehicle turns on a circle with a second radius smaller than the first radius at the first vehicle speed, the control device having at least one of FCW, EBA, and AEB does not operate. The minimum value of the lateral distance in the left-right direction. In (5), the obstacle is arranged outside the radial direction of the circle.
Relational expression (6): When the lean vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the lateral distance between obstacles ≥ lean When the vehicle turns on the circle of the first radius at the second vehicle speed faster than the first vehicle speed, the control device having at least one function of FCW, EBA and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle. In (6), the obstacle is arranged outside the radial direction of the circle.

 従来提案されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、「先行車両の中央軸線と先行車両の外側輪郭線の間の左右方向距離に着目する」および「作動させる領域に着目する」という技術思想に基づいている。本発明の一実施形態に係るFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、「リーン車両の変化する車幅に基づいてリーン車両の接地点と障害物との間の左右方向距離に着目する」および「作動させない領域に着目する」という技術思想に基づいており、従来提案されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置と異なる。
 従って、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車両であって、従来提案されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置の技術思想とは異なる技術思想に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両を提供することができる。 

Conventionally proposed control devices having at least one function of FCW, EBA and AEB "focus on the lateral distance between the central axis of the preceding vehicle and the outer contour of the preceding vehicle" and "in the region to be activated". It is based on the technical idea of "focusing". A control device having at least one function of FCW, EBA, and AEB according to an embodiment of the present invention is described as "a lateral distance between a grounding point of a lean vehicle and an obstacle based on a changing vehicle width of the lean vehicle. It is based on the technical idea of "focusing on the non-operating region" and "focusing on the non-operating region", and is different from the conventionally proposed control device having at least one function of FCW, EBA and AEB.
Therefore, it is a lean vehicle that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left, and is a technical concept of a control device having at least one function of FCW, EBA, and AEB that has been conventionally proposed. It is possible to provide a lean vehicle equipped with a control device having at least one function of FCW, EBA and AEB operating based on a technical concept different from that of the above.
[リーン車両]
 なお、本発明および実施の形態におけるリーン車両は、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車体フレームを備えた車両である。少なくとも1つの前輪と少なくとも1つの後輪を含む。リーン車両は、2つの前輪と1つの後輪または2つの後輪を備えていても良い。リーン車両は、1つの前輪と2つの後輪または2つの後輪を備えていても良い。リーン車両は、前輪が操舵輪であっても、後輪が操舵輪であっても良い。なお、リーン車両は、駆動源を備えている。駆動源は、エンジンであっても、電気で動くモータであっても、両方を備えたハイブリッド駆動源であっても良い。リーン車体フレームは、リーン車両において応力を主に受ける部材である。リーン車体フレームは、複数の部品を組み合わせたものであっても良く、一体成型されていても良い。
[Lean vehicle]
The lean vehicle according to the present invention and the embodiment is a vehicle provided with a lean vehicle body frame that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left. Includes at least one front wheel and at least one rear wheel. The lean vehicle may have two front wheels and one rear wheel or two rear wheels. The lean vehicle may have one front wheel and two rear wheels or two rear wheels. In a lean vehicle, the front wheels may be steering wheels or the rear wheels may be steering wheels. The lean vehicle is equipped with a drive source. The drive source may be an engine, an electrically powered motor, or a hybrid drive source having both. The lean body frame is a member that mainly receives stress in a lean vehicle. The lean body frame may be a combination of a plurality of parts, or may be integrally molded.
[障害物と自車との関係に基づいて取得された余裕度]
 なお、本発明および実施の形態における「障害物と自車との関係に基づいて取得された余裕度」とは、障害物に対応する際の余裕度である。余裕度は、例えば、障害物と自車との相対速度などに基づいて取得される。余裕度は、数値、アナログ信号の強弱などの情報である。余裕度が基準より高いとは、基準と比較して余裕があることを意味する。なお、基準は、各種リーン車両に合わせて事前に設定されても良い。また、各種センサで取得した信号に基づいて補正または学習されても良い。なお、余裕度は、直接的に余裕度を示す情報であっても、間接的に余裕度を示す情報、例えば、余裕度に相関関係のある情報であっても良い。余裕度を取得するとは、直接的に余裕度を示す情報または間接的に余裕度を示す情報を取得することを意味する。
[Margin acquired based on the relationship between obstacles and own vehicle]
The "margin acquired based on the relationship between the obstacle and the own vehicle" in the present invention and the embodiment is the margin when dealing with the obstacle. The margin is acquired based on, for example, the relative speed between the obstacle and the own vehicle. The margin is information such as numerical values and strength of analog signals. When the margin is higher than the standard, it means that there is a margin compared to the standard. The standard may be set in advance according to various lean vehicles. Further, it may be corrected or learned based on the signals acquired by various sensors. The margin may be information that directly indicates the margin or information that indirectly indicates the margin, for example, information that correlates with the margin. Acquiring the margin means to directly acquire the information indicating the margin or indirectly to acquire the information indicating the margin.
[リーン車両車幅検出センサ]
 なお、本発明および実施の形態におけるリーン車両車幅検出センサとは、リーン車両が右旋回または左旋回した時に変化するリーン車両の左右方向の長さである車幅に関連する物理量を検出するためのセンサである。リーン車両そのものの車幅は、変化しない。しかしながら、リーン車両は、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜する。そのため、リーン車両の左右方向の長さである車幅は、左右方向に傾斜することで変化する。例えば、リーン車両の左右方向の長さである車幅に関連する物理量とは、リーン車両のリーン角に関連する物理量である。例えば、IMU(慣性計測装置)、GPS(グローバル・ポジショニング・システム)、画像から取得するためのカメラなどのセンサから取得できる物理量である。例えば、リーン車両車幅検出センサは、IMU(慣性計測装置)、GPS(グローバル・ポジショニング・システム)、画像から取得するためのカメラなどのセンサである。なお、リーン車両の左右方向の長さである車幅に関連する物理量は、直接的にリーン車両の左右方向の長さである車幅に関連する物理量を示す情報であっても、間接的にリーン車両の左右方向の長さである車幅に関連する物理量を示す情報、例えば、リーン車両の左右方向の長さである車幅に関連する物理量に相関関係のある情報であっても良い。リーン車両の左右方向の長さである車幅に関連する物理量を取得するとは、直接的にリーン車両の左右方向の長さである車幅に関連する物理量を示す情報または間接的にリーン車両の左右方向の長さである車幅に関連する物理量を示す情報を取得することを意味する。なお、本発明および実施の形態におけるリーン車両の左右方向の長さである車幅に関連する物理量は、例えば、車輪の接地点とリーン車両またはライダーの右端の間の長さ、車輪の接地点とリーン車両またはライダーの左端の間の長さ、または、リーン車両またはライダーの右端と左端の間の長さを直接的または間接的に示す情報であっても良い。車幅が変化する時、これらの長さも変化する。なお、リーン車両においては、車幅に関連する物理量に車輪の接地点の概念を含めることで、障害物と車輪の接地点との間の障害物左右方向距離が取得しやすくなる。なお、リーン車両は、障害物左右方向距離を取得しても良く、取得しなくても良い。また、車幅に関連する物理量に車輪の接地点の概念を含めるとは、車幅に関連する物理量によって直接的または間接的に示される情報に接地点に関する情報が含まれることを意味する。リーン車両が右旋回または左旋回した時に変化するリーン車両の左右方向の長さである車幅に関連する物理量を検出するためのセンサの信号に基づいて接地点の位置関係を直接的、間接的または推測により取得できる。
[Lean vehicle width detection sensor]
The lean vehicle width detection sensor in the present invention and the embodiment detects a physical quantity related to the vehicle width, which is the left-right length of the lean vehicle that changes when the lean vehicle turns right or left. It is a sensor for. The width of the lean vehicle itself does not change. However, the lean vehicle tilts to the right of the vehicle when turning right and to the left of the vehicle when turning left. Therefore, the width of the lean vehicle, which is the length in the left-right direction, changes by inclining in the left-right direction. For example, the physical quantity related to the vehicle width, which is the length of the lean vehicle in the left-right direction, is the physical quantity related to the lean angle of the lean vehicle. For example, it is a physical quantity that can be acquired from a sensor such as an IMU (Inertial Measurement Unit), GPS (Global Positioning System), or a camera for acquiring from an image. For example, a lean vehicle width detection sensor is a sensor such as an IMU (Inertial Measurement Unit), a GPS (Global Positioning System), or a camera for acquiring from an image. It should be noted that the physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle, is indirectly the information indicating the physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle. Information indicating a physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle, for example, information correlating with the physical quantity related to the vehicle width, which is the length in the left-right direction of the lean vehicle may be used. Acquiring the physical quantity related to the width of the lean vehicle, which is the length in the left-right direction of the lean vehicle, means information indicating the physical quantity related to the width of the lean vehicle, which is the length in the left-right direction of the lean vehicle, or indirectly, the lean vehicle. It means to acquire information indicating a physical quantity related to the vehicle width, which is the length in the left-right direction. The physical quantity related to the vehicle width, which is the length of the lean vehicle in the left-right direction in the present invention and the embodiment, is, for example, the length between the grounding point of the wheel and the right end of the lean vehicle or the rider, and the grounding point of the wheel. It may be information that directly or indirectly indicates the length between the left end of the lean vehicle or the rider, or the length between the right end and the left end of the lean vehicle or the rider. As the width of the vehicle changes, so do these lengths. In a lean vehicle, by including the concept of the grounding point of the wheel in the physical quantity related to the vehicle width, it becomes easy to obtain the distance in the left-right direction of the obstacle between the obstacle and the grounding point of the wheel. The lean vehicle may or may not acquire the obstacle left-right distance. Including the concept of the wheel contact point in the physical quantity related to the vehicle width means that the information directly or indirectly indicated by the physical quantity related to the vehicle width includes the information about the contact point. Direct or indirect positional relationship of the ground contact point based on the signal of the sensor for detecting the physical quantity related to the vehicle width, which is the lateral length of the lean vehicle that changes when the lean vehicle turns right or left. Can be obtained by target or guess.
[リーン角]
 なお、本発明および実施の形態におけるリーン角とは、鉛直に対するリーン車両の左右方向のリーン車両の傾斜角度である。鉛直に対するリーン車両の左右方向のリーン車両の傾斜角度とは、鉛直に対するリーン車両の左右方向のリーン車体フレームの傾斜角度である。リーン角がゼロとは、リーン車両の左右方向においてリーン車両が直立状態である。リーン角の絶対値が減少する状態とは、リーン車両がリーン車両の左右方向に傾斜した状態から直立状態に遷移する状態である。リーン角の絶対値が増加する状態とは、リーン車両が直立状態からリーン車両の左右方向に傾斜した状態に遷移する状態である。この時のリーン角の時間変化率は、リーン角速度である。また、リーン角速度の時間変化率は、リーン角加速度である。なお、リーン角速度またはリーン角加速度は、直接的にリーン角速度またはリーン角加速度を示す情報であっても、間接的にリーン角速度またはリーン角加速度を示す情報、例えば、リーン角速度またはリーン角加速度に相関関係のある情報であっても良い。リーン角速度またはリーン角加速度を取得するとは、直接的にリーン角速度またはリーン角加速度を示す情報または間接的にリーン角速度またはリーン角加速度を示す情報を取得することを意味する。
[Lean angle]
The lean angle in the present invention and the embodiment is the tilt angle of the lean vehicle in the left-right direction of the lean vehicle with respect to the vertical direction. The tilt angle of the lean vehicle in the left-right direction of the lean vehicle with respect to the vertical is the tilt angle of the lean vehicle body frame in the left-right direction of the lean vehicle with respect to the vertical. When the lean angle is zero, the lean vehicle is in an upright state in the left-right direction of the lean vehicle. The state in which the absolute value of the lean angle decreases is a state in which the lean vehicle transitions from a state in which the lean vehicle is tilted in the left-right direction to an upright state. The state in which the absolute value of the lean angle increases is a state in which the lean vehicle transitions from an upright state to a state in which the lean vehicle is tilted in the left-right direction. The time change rate of the lean angle at this time is the lean angular velocity. The time change rate of the lean angular velocity is the lean angular acceleration. Note that the lean angular velocity or lean angular acceleration is indirectly correlated with information indicating lean angular velocity or lean angular acceleration, for example, lean angular velocity or lean angular acceleration, even if the information directly indicates lean angular velocity or lean angular acceleration. It may be relevant information. Acquiring lean angular velocity or lean angular acceleration means directly acquiring information indicating lean angular velocity or lean angular acceleration or indirectly obtaining information indicating lean angular velocity or lean angular acceleration.
[障害物とリーン車両の車輪の接地点の間の障害物左右方向距離]
 なお、本発明および実施の形態においてリーン車両の左右方向における障害物とリーン車両の車輪の接地点の間の距離である障害物左右方向距離は、以下のように定義される。リーン車両が直線上を走行時において、障害物がリーン車両の右方に存在する場合、障害物左右方向距離は、リーン車両の車輪の接地点と障害物の左端の間の左右方向の距離である。リーン車両が直線上を走行時において、障害物がリーン車両の左方に存在する場合、障害物左右方向距離は、リーン車両の左右方向におけるリーン車両の車輪の接地点と障害物の右端の間の距離である。リーン車両が円上を旋回時において、障害物がリーン車両の円の半径方向の内方に存在する場合、障害物左右方向距離は、リーン車両の左右方向におけるリーン車両の車輪の接地点と障害物の外端(円の半径方向の外方の端)の間の距離である。リーン車両が円上を旋回時において、障害物がリーン車両の円の半径方向の外方に存在する場合、障害物左右方向距離は、リーン車両の左右方向におけるリーン車両の車輪の接地点と障害物の内端(円の半径方向の内方の端)の間の距離である。リーン車両が円上を旋回時、リーン車両の左右方向は円の半径方向であっても良い。リーン車両が円上を旋回時、障害物左右方向距離は、リーン車両を通る半径方向の距離であっても良い。リーン車両が円上を旋回時、障害物左右方向距離は、障害物の端を通る半径方向の距離であっても良い。例えば、リーン車両が第1半径の円上を旋回する場合、障害物左右方向距離は、リーン車両が走行する円と同心であって障害物の端を通り半径が第1半径に最も近い円の半径と、第1半径との差であっても良い。リーン車両が第2半径の円上を旋回する場合、障害物左右方向距離は、リーン車両が走行する円と同心であって障害物の端を通り半径が第2半径に最も近い円の半径と、第2半径との差であっても良い。なお、リーン車両の左右方向において車輪の接地点は2か所以上存在する場合がある。しかしながら、障害物左右方向距離を測定するための接地点は、いずれか1つを選択しても良い。または、最右端と最左端の中央を接地点と仮定しても良い。本発明および実施の形態におけるリーン車両の左右方向は、リーン車両のリーン角に関わらず、路面に平行な方向または水平方向である。リーン車両の左右方向は、例えば、リーン車両の進行方向に直交する方向でも良く、リーン車両が走行するレーンの左右方向でも良い。リーン車両の進行方向は、例えば、リーン車両の走行軌跡から取得されても良い。リーン車両の進行方向は、例えば、走行中に推定されたリーン車両の将来の進行方向を含んでいても良い。障害物左右方向距離は、例えば、リーン車両の進行方向に直交しリーン車両を通る直線の方向の距離であっても良く、リーン車両の進行方向に直交し障害物を通る直線の方向の距離であっても良い。障害物左右方向距離は、例えば、リーン車両を通るレーンの左右方向の距離であっても良く、障害物を通るレーンの左右方向の距離であっても良い。上述した関係式(3)~(6)のそれぞれにおける2つの旋回時の障害物左右方向距離は、同じ定義の方向の距離とする。
[Obstacle left-right distance between the obstacle and the grounding point of the lean vehicle wheel]
In the present invention and the embodiment, the obstacle left-right distance, which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle, is defined as follows. When the lean vehicle is traveling on a straight line and the obstacle is to the right of the lean vehicle, the obstacle left-right distance is the left-right distance between the grounding point of the lean vehicle wheels and the left edge of the obstacle. is there. When the lean vehicle is traveling on a straight line, if the obstacle is to the left of the lean vehicle, the obstacle left-right distance is between the grounding point of the lean vehicle wheels and the right edge of the obstacle in the left-right direction of the lean vehicle. Is the distance. When the lean vehicle is turning on the circle, if the obstacle is inside the radial direction of the lean vehicle circle, the obstacle left-right distance is the contact point of the lean vehicle wheel in the left-right direction of the lean vehicle and the obstacle. The distance between the outer edges of an object (the outer edge of the circle in the radial direction). When the lean vehicle is turning on the circle, if the obstacle is outside the radial direction of the lean vehicle circle, the obstacle left-right distance is the contact point of the lean vehicle wheel in the left-right direction of the lean vehicle and the obstacle. The distance between the inner edges of an object (the inner edge of the circle in the radial direction). When the lean vehicle turns on the circle, the left-right direction of the lean vehicle may be the radial direction of the circle. When the lean vehicle turns on a circle, the obstacle left-right distance may be a radial distance passing through the lean vehicle. When the lean vehicle turns on a circle, the obstacle left-right distance may be a radial distance passing through the edge of the obstacle. For example, when a lean vehicle turns on a circle with a first radius, the lateral distance of the obstacle is the circle that is concentric with the circle on which the lean vehicle travels, passes through the edge of the obstacle, and has a radius closest to the first radius. It may be the difference between the radius and the first radius. When the lean vehicle turns on a circle with a second radius, the lateral distance of the obstacle is the radius of the circle that is concentric with the circle on which the lean vehicle travels, passes through the edge of the obstacle, and has a radius closest to the second radius. , The difference from the second radius may be used. In addition, there may be two or more ground contact points of the wheels in the left-right direction of the lean vehicle. However, any one of the grounding points for measuring the lateral distance of the obstacle may be selected. Alternatively, it may be assumed that the center of the rightmost and leftmost ends is the grounding point. The left-right direction of the lean vehicle in the present invention and the embodiment is a direction parallel to the road surface or a horizontal direction regardless of the lean angle of the lean vehicle. The left-right direction of the lean vehicle may be, for example, a direction orthogonal to the traveling direction of the lean vehicle, or may be a left-right direction of the lane in which the lean vehicle travels. The traveling direction of the lean vehicle may be acquired from, for example, the traveling locus of the lean vehicle. The direction of travel of the lean vehicle may include, for example, the future direction of travel of the lean vehicle estimated during travel. The obstacle left-right distance may be, for example, a distance in a straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the lean vehicle, or a distance in the straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the obstacle. There may be. The left-right distance of the obstacle may be, for example, the left-right distance of the lane passing through the lean vehicle, or the left-right distance of the lane passing through the obstacle. The distance between the two obstacles in the left-right direction at the time of turning in each of the above-mentioned relational expressions (3) to (6) is the distance in the same definition.
[関係式(1)~(6)を確認する方法]
 なお、本発明および実施の形態において、上述した関係式(1)~(6)は、以下のように確認することができる。使用するリーン車両、テストするライダーを同一とする。障害物としては、自動車の後面を模した動かないダミーを用いる。舗装された路面に直線と円の線を描く。ライダーは、描かれた線上をリーン車両で障害物が車両前方に離れた位置から障害物が車両後方に離れた位置まで所定の速度で走行する。障害物と線の間の障害物左右方向距離をFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離から徐々に減少させ、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置の作動状況をチェックする。作動しない限界の障害物左右方向距離がFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値である。リーン車両が円上を旋回する時の障害物左右方向距離は、リーン車両が走行する円と同心であって障害物の端を通りリーン車両が走行する円に最も近い円の半径と、リーン車両が走行する円の半径との差とする。障害物左右方向距離により関係式(1)が成立することがわかれば、障害物左右方向距離として、リーン車両を通る半径方向の距離、リーン車両の進行方向に直交しリーン車両を通る直線の方向の距離、または、リーン車両の進行方向に直交し障害物を通る直線の方向の距離を用いた場合であっても、関係式(1)が成立することがわかる。上述の関係式(2)~(6)についても同じである。なお、第1車速、第2車速、第1半径、第2半径は、実際のリーン車両の利用シーンを想定して定めて良い。また、リーン車両の種類、形式などに応じて、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない障害物左右方向距離の最小値を設計しても良い。なお、FCWにおいては「報知する」と「報知しない」を確認することで作動状態を把握できる。AEBにおいては「ブレーキ操作がない状態において自動で制動力を発生する」と「ブレーキ操作がない状態において自動で制動力を発生しない」を確認することで作動状態を把握できる。EBAにおいては「リーン車両の前後方向におけるリーン車両と障害物と間の距離が第1距離でブレーキ操作子が第1操作量に操作された時に、アシスト制動力を発生する」と「障害物との距離が第1距離でブレーキ操作子を第1操作量だけ操作した時に、アシスト制動力を発生しない」を確認することで作動状態を把握できる。EBAを確認する際は、ライダーは、描かれた線上をリーン車両で障害物が車両前方に離れた位置から障害物が車両後方に離れた位置まで所定の速度で走行し、障害物との距離が第1距離でブレーキ操作子を第1操作量だけ操作すれば良い。なお、他にも半径、車速以外の走行条件を合わせることが好ましい。なお、上述した関係式(1)~(6)は、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が、障害物と車輪の接地点との間の障害物左右方向距離を取得するか否かは問わない。本発明のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が、障害物と車輪の接地点との間の障害物左右方向距離を取得しても良く取得しなくても良い。
[Method of confirming relational expressions (1) to (6)]
In the present invention and the embodiments, the above-mentioned relational expressions (1) to (6) can be confirmed as follows. The lean vehicle to be used and the rider to be tested are the same. As an obstacle, a non-moving dummy that imitates the rear surface of an automobile is used. Draw straight and circular lines on the paved road surface. The rider travels on the drawn line at a predetermined speed from a position where the obstacle is away from the front of the vehicle to a position where the obstacle is away from the rear of the vehicle with a lean vehicle. The obstacle left-right distance between the obstacle and the line is gradually reduced from the obstacle left-right distance where the controller having at least one function of FCW, EBA and AEB does not operate, and at least one of FCW, EBA and AEB. Check the operating status of the functional control device. The limit obstacle left-right distance that does not operate is the minimum value of the obstacle left-right distance that the control device having at least one function of FCW, EBA, and AEB does not operate. Obstacle left-right distance when the lean vehicle turns on the circle is the radius of the circle that is concentric with the circle that the lean vehicle travels and is closest to the circle that the lean vehicle travels through the edge of the obstacle and the lean vehicle. Is the difference from the radius of the circle on which. If it is found that the relational expression (1) holds by the obstacle lateral distance, the obstacle lateral distance is the radial distance passing through the lean vehicle and the straight line direction orthogonal to the traveling direction of the lean vehicle and passing through the lean vehicle. It can be seen that the relational expression (1) holds even when the distance of the above or the distance in the direction of the straight line perpendicular to the traveling direction of the lean vehicle and passing through the obstacle is used. The same applies to the above-mentioned relational expressions (2) to (6). The first vehicle speed, the second vehicle speed, the first radius, and the second radius may be determined by assuming an actual usage scene of a lean vehicle. Further, depending on the type and type of the lean vehicle, the minimum value of the obstacle left-right distance in which the control device having at least one function of FCW, EBA and AEB does not operate may be designed. In FCW, the operating state can be grasped by confirming "notify" and "not notify". In the AEB, the operating state can be grasped by confirming that "the braking force is automatically generated when there is no braking operation" and "the braking force is not automatically generated when there is no braking operation". In the EBA, "when the distance between the lean vehicle and the obstacle in the front-rear direction of the lean vehicle is the first distance and the brake operator is operated to the first operation amount, an assist braking force is generated." The operating state can be grasped by confirming that "the assist braking force is not generated when the brake operator is operated by the first operation amount at the first distance." When checking the EBA, the rider travels on the drawn line with a lean vehicle from a position where the obstacle is away from the front of the vehicle to a position where the obstacle is away from the rear of the vehicle at a predetermined speed, and the distance to the obstacle. However, it is sufficient to operate the brake operator by the first operation amount at the first distance. In addition, it is preferable to match driving conditions other than radius and vehicle speed. In the above-mentioned relational expressions (1) to (6), the control device having at least one function of FCW, EBA, and AEB acquires the obstacle left-right distance between the obstacle and the grounding point of the wheel. It doesn't matter if it is or not. The control device having at least one function of FCW, EBA and AEB of the present invention may or may not acquire the obstacle left-right distance between the obstacle and the grounding point of the wheel.
[FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置]
 なお、本発明および実施の形態におけるFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、EBA機能を有する制御装置である。EBA機能は、ライダーのブレーキ操作に基づいてアシスト制動力を制御する機能である。アシスト制動力とは、制動力の内、EBA機能を有する制御装置の制御によって増加または減少される制動力である。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、AEB機能を有する制御装置である。AEB機能を有する制御装置は、ライダーのブレーキ操作に依存せず自動で制動力を制御する機能である。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、ライダーに報知するためのFCW機能を有する制御装置である。なお、各々機能は異なるが、EBA機能を有する制御装置とAEB機能を有する制御装置、EBA機能を有する制御装置とFCW機能を有する制御装置、AEB機能を有する制御装置とFCW機能を有する制御装置、EBA機能を有する制御装置とAEB機能を有する制御装置とFCW機能を有する制御装置、を組み合わせても良い。例えば、AEB機能を有する制御装置がアシスト制動力を制御する機能を備えている場合、AEB機能を有する制御装置はEBA機能を有する制御装置とみなせる。なお、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が「作動する」とは、FCWにおいては「報知する」こと、EBAにおいては「アシスト制動力を発生する」こと、AEBにおいては「自動で制動力を発生する」ことである。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が「作動する」とは、「プログラムが動作する」ではなく、「ライダーに分かる処理を行う」ことである。したがって、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が「作動しない」とは、FCWにおいては「報知しない」こと、EBAにおいては「アシスト制動力を発生しない」こと、AEBにおいては「自動で制動力を発生しない」ことである。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が「作動しない」とは、「ライダーに分かる処理を行わない」ことである。なお、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が「作動しない」時、FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置のプログラムは動作していても、プログラムが動作していなくても良い。「制御装置が作動しない」は、「制御装置がライダーに分かる処理を行わない」に置き換えることができる。「制御装置が作動する」は、「制御装置がライダーに分かる処理を行う」に置き換えることができる。
[Control device having at least one function of FCW, EBA and AEB]
The control device having at least one function of FCW, EBA and AEB in the present invention and the embodiment is, for example, a control device having an EBA function. The EBA function is a function that controls the assist braking force based on the brake operation of the rider. The assist braking force is a braking force that is increased or decreased by the control of a control device having an EBA function among the braking forces. The control device having at least one function of FCW, EBA and AEB is, for example, a control device having an AEB function. The control device having the AEB function is a function of automatically controlling the braking force without depending on the brake operation of the rider. The control device having at least one function of FCW, EBA and AEB is, for example, a control device having an FCW function for notifying the rider. Although each function is different, a control device having an EBA function and a control device having an AEB function, a control device having an EBA function and a control device having an FCW function, a control device having an AEB function and a control device having an FCW function, A control device having an EBA function, a control device having an AEB function, and a control device having an FCW function may be combined. For example, when the control device having the AEB function has a function of controlling the assist braking force, the control device having the AEB function can be regarded as the control device having the EBA function. It should be noted that the control device having at least one function of FCW, EBA and AEB "operates" means "notifies" in FCW, "generates assist braking force" in EBA, and "generates assist braking force" in AEB. It automatically generates braking force. " When a control device having at least one of FCW, EBA, and AEB functions is "operated", it means "performing a process that the rider can understand" rather than "operating the program". Therefore, when a control device having at least one function of FCW, EBA and AEB "does not operate", it means "does not notify" in FCW, "does not generate assist braking force" in EBA, and "does not generate assist braking force" in AEB. It does not automatically generate braking force. " A controller having at least one of the functions of FCW, EBA and AEB "does not work" means "does not perform any process known to the rider". When the control device having at least one function of FCW, EBA and AEB "does not operate", the program operates even if the program of the control device having at least one function of FCW, EBA and AEB is operating. It doesn't have to be. "Control device does not work" can be replaced with "Control device does not perform any process that the rider can see". "The control device is activated" can be replaced with "the control device performs a process that the rider can understand".
[EBA機能を有する制御装置]
 なお、本発明および実施の形態におけるEBA機能を有する制御装置は、アシスト制動力を制御する機能を備えた制御装置のことである。EBA機能を有する制御装置は、他の機能を備えていても良い。例えば、アンチロック・ブレーキ・システム(ABS)の機能を有する制御装置がアシスト制動力を制御する機能を備えている場合、ABS機能を有する制御装置はEBA機能を有する制御装置とみなせる。なお、本発明および実施の形態におけるEBA機能を有する制御装置は、ブレーキ、進行方向の変化量の取得に必要な進行方向変化量関連センサ、障害物と自車との関係に基づいて取得される余裕度の取得に必要な余裕度関連センサ、およびブレーキ操作子の操作量の取得に必要なブレーキ操作量関連センサなどに電気的に接続される。進行方向変化量関連センサは、例えば、IMU(慣性計測装置)、GPS(グローバル・ポジショニング・システム)、画像から取得するためのカメラ、ハンドル角を検出するハンドル角センサなどである。余裕度関連センサは、例えば、リーン車両の前方を撮像するカメラ、ミリ波レーダー、LIDAR、またはそれらいずれかの組合せなどがある。ブレーキ操作量関連センサは、例えば、ブレーキ操作子の回転角度を検出する角度センサ、ブレーキ操作子によって発生する液圧を検出する液圧センサなどがある。各センサは、前記機能を満たせば、その形式が限定されることはない。なお、ブレーキは、EBA機能を有する制御装置から電気信号を受けて制動力を発生する機能を有する。ブレーキは、前記機能を満たせば、その形式が限定されることはない。なお、EBA機能を有する制御装置は、上記以外のセンサに電気的に接続されていても良い。また、EBA機能を有する制御装置は、上記以外のセンサから取得された信号に基づいて制御しても良い。なお、EBA機能を有する制御装置は、ABS機能を備えていても良い。その場合、EBA機能を有する制御装置は、車輪のスリップ状態を検出可能なセンサに電気的に接続されていても良い。なお、EBA機能を有する制御装置は、例えば、前輪のみの制動力を制御対象としていても良い。EBA機能を有する制御装置は、例えば、後輪のみの制動力を制御対象としていても良い。EBA機能を有する制御装置は、例えば、前輪の制動力および後輪の制動力の両方を制御対象としていても良い。EBA機能を有する制御装置は、例えば、前輪および後輪の合計の制動力を制御対象としていても良い。なお、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、ブレーキ操作子とブレーキが機械的に接続された機械的接続ブレーキを制御対象としても良い。EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、ブレーキ操作子とブレーキが機械的に接続されず電気的に接続される電気的接続ブレーキを制御対象としても良い。EBAおよびAEBの少なくとも1つの機能を有する制御装置は、例えば、機械的接続と電気的接続の両方を備えたブレーキを制御対象としても良い。
[Control device with EBA function]
The control device having the EBA function in the present invention and the embodiment is a control device having a function of controlling the assist braking force. The control device having the EBA function may have other functions. For example, when the control device having the function of the antilock braking system (ABS) has the function of controlling the assist braking force, the control device having the ABS function can be regarded as the control device having the EBA function. The control device having the EBA function in the present invention and the embodiment is acquired based on the brake, the sensor related to the amount of change in the traveling direction necessary for acquiring the amount of change in the traveling direction, and the relationship between the obstacle and the own vehicle. It is electrically connected to the margin-related sensor required to acquire the margin and the brake operation amount-related sensor required to acquire the operation amount of the brake operator. The traveling direction change amount related sensor is, for example, an IMU (Inertial Measurement Unit), a GPS (Global Positioning System), a camera for acquiring from an image, a handle angle sensor for detecting a handle angle, and the like. Margin-related sensors include, for example, a camera that captures the front of a lean vehicle, millimeter-wave radar, lidar, or a combination thereof. Examples of the brake operation amount related sensor include an angle sensor that detects the rotation angle of the brake operator, a hydraulic pressure sensor that detects the hydraulic pressure generated by the brake operator, and the like. The type of each sensor is not limited as long as it satisfies the above-mentioned functions. The brake has a function of receiving an electric signal from a control device having an EBA function and generating a braking force. The type of brake is not limited as long as it satisfies the above functions. The control device having the EBA function may be electrically connected to a sensor other than the above. Further, the control device having an EBA function may be controlled based on a signal acquired from a sensor other than the above. The control device having an EBA function may have an ABS function. In that case, the control device having the EBA function may be electrically connected to a sensor capable of detecting the slip state of the wheel. The control device having the EBA function may, for example, control the braking force of only the front wheels. The control device having the EBA function may, for example, control the braking force of only the rear wheels. The control device having the EBA function may, for example, control both the braking force of the front wheels and the braking force of the rear wheels. The control device having the EBA function may, for example, control the total braking force of the front wheels and the rear wheels. The control device having at least one function of EBA and AEB may control, for example, a mechanically connected brake in which a brake operator and a brake are mechanically connected. The control device having at least one function of EBA and AEB may control, for example, an electrically connected brake in which the brake operator and the brake are electrically connected without being mechanically connected. The control device having at least one function of EBA and AEB may control, for example, a brake having both a mechanical connection and an electrical connection.
[報知装置]
 なお、本発明および実施の形態における報知装置は、ライダーに報知するための装置である。報知装置は、視覚、聴覚、触覚および臭覚の少なくとも1つに対して報知する。報知装置は、例えば、視覚、聴覚、触覚および臭覚の2つ以上を組合せて報知しても良い。
[Notification device]
The notification device in the present invention and the embodiment is a device for notifying the rider. The notifying device notifies at least one of visual, auditory, tactile and olfactory sensations. The notification device may notify, for example, a combination of two or more of visual, auditory, tactile, and olfactory senses.
[取得された前記リーン車両の車幅に関連する物理量の制御への利用方法]
 なお、本発明および実施の形態において、取得された前記リーン車両の車幅に関連する物理量は、以下のように制御に利用しても良い。例えば、余裕度を取得する前に前記リーン車両の車幅に関連する物理量を取得し、それに基づいて余裕度を取得しても良い。また、例えば、取得された余裕度を取得された前記リーン車両の車幅に関連する物理量に基づいて補正などを行う制御であっても良い。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、取得された前記リーン車両の車幅に関連する物理量に基づいて、前記関係式になるように作動する。その具体的な制御形式、方法は特定の形式、方法に限定されない。
[How to use the acquired physical quantity related to the width of the lean vehicle]
In the present invention and the embodiment, the acquired physical quantity related to the width of the lean vehicle may be used for control as follows. For example, the physical quantity related to the width of the lean vehicle may be acquired before the margin is acquired, and the margin may be acquired based on the physical quantity. Further, for example, the control may be such that the acquired margin is corrected based on the physical quantity related to the width of the acquired lean vehicle. The control device having at least one function of FCW, EBA and AEB operates so as to have the relational expression based on the acquired physical quantity related to the width of the lean vehicle. The specific control form and method are not limited to a specific form and method.
[前後連動ブレーキへの適用]
 なお、本発明および実施の形態におけるFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、EBAおよびAEBの少なくとも一方の機能を有する場合、前後連動ブレーキを制御対象としても良い。前後連動ブレーキとは、前輪ブレーキ操作子または後輪ブレーキ操作子を操作すると、初めに後輪ブレーキで制動力を発生させ、その後、前輪ブレーキと後輪ブレーキの両方に制動力を発生させるブレーキである。
[Application to front-rear interlocking brakes]
When the control device having at least one function of FCW, EBA and AEB in the present invention and the embodiment has at least one function of EBA and AEB, the front-rear interlocking brake may be a control target. The front-rear interlocking brake is a brake that first generates braking force with the rear wheel brake when the front wheel brake operator or rear wheel brake operator is operated, and then generates braking force with both the front wheel brake and the rear wheel brake. is there.
[具体的な手段]
 なお、本発明および実施の形態におけるFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置またはそれを備えたリーン車両のハード構成の詳細については、本明細書に記述していない。本発明および実施の形態における特徴は、制御に関する技術であるため、本発明および実施の形態に記載されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、特許文献1に記載されているEBA機能を有する制御装置または他の公知文献に記載されているFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置またはそれを備えたリーン車両のハード構成を用いて実施できることは、当業者であれば理解できる。
[Specific means]
The details of the hardware configuration of the control device having at least one function of FCW, EBA and AEB in the present invention and the embodiment or the lean vehicle provided with the control device are not described in the present specification. Since a feature of the present invention and embodiments is a technique relating to control, a lean vehicle equipped with a control device having at least one of FCW, EBA and AEB described in the present invention and embodiments is patented. Using a control device having an EBA function described in Document 1 or a control device having at least one function of FCW, EBA and AEB described in other publicly known documents, or a hardware configuration of a lean vehicle equipped therewith. Those skilled in the art can understand what can be done.
[制動力を制御する]
 なお、本発明および実施の形態における「制動力を制御する」とは、「制動力が得られるようにブレーキを制御する」ことを意味する。例えば、液圧で制動力が変わる形式のブレーキの場合、液圧を制御することを意味する。例えば、レバーの回転角度で制動力が変わる形式のドラム式ブレーキの場合、レバーの回転角度を制御することを意味する。ブレーキの形式に合わせて具体的に制御する対象を変えれば良い。
[Control braking force]
In addition, "controlling the braking force" in the present invention and the embodiment means "controlling the brake so that the braking force is obtained". For example, in the case of a type of brake in which the braking force changes depending on the hydraulic pressure, it means that the hydraulic pressure is controlled. For example, in the case of a drum type brake in which the braking force changes depending on the rotation angle of the lever, it means that the rotation angle of the lever is controlled. The target to be specifically controlled may be changed according to the type of brake.
[Aに基づいて制御する]
 なお、本発明および実施の形態における「Aに基づいて制御する」とは、制御に使用される情報がAだけに限定されない。「Aに基づいて制御する」とは、A以外の情報を含み、AとA以外の情報に基づいて制御する」場合を含む。
[Control based on A]
In addition, "control based on A" in the present invention and the embodiment is not limited to A as the information used for control. "Controlling based on A" includes the case of including information other than A and controlling based on information other than A and A.
[その他]
 なお、本発明および実施の形態における「複数の選択肢のうちの少なくとも1つ(一方)」とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであっても良く、複数の選択肢の全てであっても良い。例えば、AとBとCの少なくとも1つとは、Aのみであっても良く、Bのみであっても良く、Cのみであっても良く、AとBであっても良く、AとCであっても良く、BとCであっても良く、AとBとCであっても良い。
[Other]
In addition, "at least one (one) of a plurality of options" in this invention and embodiment includes all combinations considered from a plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options. For example, at least one of A, B, and C may be A only, B only, C only, A, B, and A and C. It may be, B and C, or A, B and C.
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有しても良い。また本発明は、この構成要素を1つだけ有しても良い。 The present invention may have a plurality of these components if the number of certain components is not clearly specified in the claims and is displayed in the singular when translated into English. Further, the present invention may have only one of these components.
 なお、本発明および実施の形態において「含む(including)、有する(comprising)、備える(having)およびこれらの派生語」は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。 In addition, in the present invention and the embodiment, "including, comprising, having and derivative words thereof" includes additional items in addition to the listed items and their equivalents. Is intended to be used.
 なお、本発明および実施の形態において「取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語」は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。 Note that the terms "mounted, connected, coupled, and supported" are used in a broad sense in the present invention and embodiments. Specifically, it includes not only direct mounting, connection, connection and support, but also indirect mounting, connection, connection and support. Moreover, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
 他に定義されない限り、本明細書および請求範囲で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless otherwise defined, all terms used herein and in the claims (including technical and scientific terms) have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meanings consistent with their meaning in the context of the relevant technology and the present disclosure, and are idealized or over-formed. It is not interpreted in a logical sense.
 なお、本発明および実施の形態において「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「しても良い」という用語は非排他的なものである。「しても良い」は、「しても良いがこれに限定されるものではない」という意味である。本明細書において、「しても良い」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。 Note that the term "favorable" in the present invention and embodiments is non-exclusive. "Preferable" means "preferable, but not limited to". In the present specification, the configuration described as "favorable" exhibits at least the above-mentioned effect obtained by the configuration of claim 1. Further, in the present specification, the term "may" is non-exclusive. "May" means "may, but is not limited to this." In the present specification, the configuration described as "may" exerts at least the above-mentioned effect obtained by the configuration of claim 1.
 なお、本発明および実施の形態においては、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する実施形態および変更例を適宜組み合わせて実施することができる。 It should be noted that the present invention and the embodiments do not limit the combination of the above-mentioned preferable configurations. Prior to discussing embodiments of the invention in detail, it should be understood that the invention is not limited to the details of component configuration and arrangement described in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than the embodiments described later. The present invention is also possible in embodiments in which various modifications are made to the embodiments described later. In addition, the present invention can be implemented by appropriately combining embodiments and modifications described later.
本発明の第1実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of 1st Embodiment of this invention. 本発明の第2実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of the 2nd Embodiment of this invention. 本発明の第3実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of the 3rd Embodiment of this invention. 本発明の第4実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of 4th Embodiment of this invention. 本発明の第5実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of the 5th Embodiment of this invention. 本発明の第6実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of 6th Embodiment of this invention. 本発明の第7実施形態のリーン車両の概要を説明する図である。It is a figure explaining the outline of the lean vehicle of 7th Embodiment of this invention.
[方向の定義]
 図の中において、Uはリーン車両の上方向、Dはリーン車両の下方向、Lはリーン車両の左方向、Rはリーン車両の右方向、Fはリーン車両の前方向、Reはリーン車両の後方向を示す。
[Definition of direction]
In the figure, U is the upward direction of the lean vehicle, D is the downward direction of the lean vehicle, L is the left direction of the lean vehicle, R is the right direction of the lean vehicle, F is the front direction of the lean vehicle, and Re is the lean vehicle. Indicates the backward direction.
[第1実施形態]
 以下、本発明の第1実施形態のリーン車両1001について図1を参照しつつ説明する。リーン車両1001は、右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車体フレーム1002に搭載されるFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、障害物2001と自車1001との関係に基づいて取得された余裕度に基づいて作動する。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011を備えたリーン車両1001は、リーン車両1001が右旋回または左旋回した時に変化するリーン車両1001の左右方向の長さである車幅に関連する物理量DCVW、DSVWを検出するためのリーン車両車幅検出センサ1012を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、リーン車両車幅検出センサ1012で検出された信号に基づいてリーン車両1001の車幅に関連する物理量DCVW、DSVWを取得する。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DCVW、DSVWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(1)になるように作動する。
 関係式(1):リーン車両1001が第1車速V1で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DSLRmin<リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DCLRmin
 ただし、関係式(1)において、障害物2001は、円の半径方向の内方に配置される。
[First Embodiment]
Hereinafter, the lean vehicle 1001 according to the first embodiment of the present invention will be described with reference to FIG. The lean vehicle 1001 includes a control device 1011 having at least one function of FCW, EBA, and AEB mounted on a lean vehicle body frame 1002 that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left. .. The control device 1011 having at least one function of FCW, EBA and AEB operates based on the margin acquired based on the relationship between the obstacle 2001 and the own vehicle 1001. The lean vehicle 1001 provided with the control device 1011 having at least one function of FCW, EBA and AEB is a vehicle width which is a left-right length of the lean vehicle 1001 which changes when the lean vehicle 1001 turns right or left. A lean vehicle width detection sensor 1012 for detecting physical quantities DCVW and DSVW related to the above is provided. The control device 1011 having at least one function of FCW, EBA, and AEB acquires physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 based on the signal detected by the lean vehicle width detection sensor 1012. The control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DCVW and DSVW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (1).
Relational expression (1): When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin <lean. When the vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value DCLRmin of the distance in the left-right direction of the obstacle.
However, in the relational expression (1), the obstacle 2001 is arranged inward in the radial direction of the circle.
 図1において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図1において、リーン車両1001の車幅に関連する物理量DCVW、DSVWは、車輪の接地点とリーン車両1001の左端の間の長さである。第1実施形態のリーン車両1001の車幅に関連する物理量DCVW、DSVWは、これに限らない。リーン車両1001が円上を左旋回時の車輪の接地点とリーン車両1001の左端(円の半径方向の内方の端)の間の長さDCVWは、リーン車両1001が直線上を走行時の車輪の接地点とリーン車両1001の左端の間の長さDSVWよりも大きい。 In FIG. 1, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 1, the physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end of the lean vehicle 1001. The physical quantities DCVW and DSVW related to the width of the lean vehicle 1001 of the first embodiment are not limited to this. The length DCVW between the ground contact point of the wheel when the lean vehicle 1001 turns left on the circle and the left end (the inner end in the radial direction of the circle) of the lean vehicle 1001 is when the lean vehicle 1001 runs on a straight line. The length between the grounding point of the wheels and the left edge of the lean vehicle 1001 is greater than the DSVW.
[第2実施形態]
 以下、本発明の第2実施形態のリーン車両1001について図2を参照しつつ説明する。第2実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、第1実施形態の構成に加えて、以下の構成を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DCVW、DCSVW、DSVWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(2)になるように作動する。
 関係式(2):リーン車両1001が第1車速V1で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DSLRmin≧リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DCLRmin
 ただし、関係式(2)において、障害物2001は、円の半径方向の外方に配置される。
[Second Embodiment]
Hereinafter, the lean vehicle 1001 according to the second embodiment of the present invention will be described with reference to FIG. The control device 1011 having at least one function of FCW, EBA, and AEB of the second embodiment has the following configurations in addition to the configurations of the first embodiment. The control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 in the left-right direction of the lean vehicle 1001 based on the physical quantities DCVW, DCSVW and DSVW related to the width of the lean vehicle 1001 acquired. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of the lean vehicle 1001, is the following relational expression (2).
Relational expression (2): When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin ≧ lean When the vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value DCLRmin of the distance in the left-right direction of the obstacle.
However, in the relational expression (2), the obstacle 2001 is arranged outside in the radial direction of the circle.
 図2では、リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DCLRminについて、以下の2つのパターンの図を示している。
 パターン1:リーン車両1001が第1車速V1で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DSLRmin=リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DCLRmin
 パターン2:リーン車両1001が第1車速V1で直線上を走行時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DSLRmin>リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DCLRmin
In FIG. 2, when the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the minimum value of the obstacle lateral distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The following two patterns are shown for DCLRmin.
Pattern 1: When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin = the lean vehicle 1001 When turning on a circle with a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value DCLRmin of the distance in the left-right direction of the obstacle.
Pattern 2: When the lean vehicle 1001 travels on a straight line at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value of the distance in the left-right direction of the obstacle DSLRmin> The lean vehicle 1001 When turning on a circle with a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA, and AEB does not operate. The minimum value DCLRmin of the distance in the left-right direction of the obstacle.
 図2において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図2において、リーン車両1001の車幅に関連する物理量DCVW、DCSVW、DSVWは、車輪の接地点とリーン車両1001の右端の間の長さである。第2実施形態のリーン車両1001の車幅に関連する物理量DCVW、DCSVW、DSVWは、これに限らない。リーン車両1001が円上を旋回時のリーン車両1001のリーン角は、リーン車両1001が直線上を走行時のリーン車両1001のリーン角よりも大きい。そのため、リーン車両1001が円上を左旋回時の車輪の接地点とリーン車両1001の右端(円の半径方向の外方の端)の間の長さDCVW、DCSVWは、リーン車両1001が直線上を走行時の車輪の接地点とリーン車両1001の左端の間の長さDSVWよりも小さい。 In FIG. 2, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 2, the physical quantities DCVW, DCSVW, and DSVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end of the lean vehicle 1001. The physical quantities DCVW, DCSVW, and DSVW related to the width of the lean vehicle 1001 of the second embodiment are not limited to this. The lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle is larger than the lean angle of the lean vehicle 1001 when the lean vehicle 1001 travels on a straight line. Therefore, the length DCVW and DCSVW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001 are such that the lean vehicle 1001 is on a straight line. The length between the ground contact point of the wheel and the left end of the lean vehicle 1001 when traveling is smaller than the DSVW.
[第3実施形態]
 以下、本発明の第3実施形態のリーン車両1001について図3を参照しつつ説明する。第3実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、第1実施形態または第2実施形態の構成に加えて、以下の構成を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DC1VW、DC2VWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(3)になるように作動する。
 関係式(3):リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin<リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 ただし、関係式(3)において、障害物2001は、円の半径方向の内方に配置される。
[Third Embodiment]
Hereinafter, the lean vehicle 1001 according to the third embodiment of the present invention will be described with reference to FIG. The control device 1011 having at least one function of FCW, EBA, and AEB of the third embodiment has the following configurations in addition to the configurations of the first embodiment or the second embodiment. The control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW and DC2VW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (3).
Relational expression (3): Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1. Minimum value DC1LRmin <An obstacle in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1. Minimum value of lateral distance DC2LRmin
However, in the relational expression (3), the obstacle 2001 is arranged inward in the radial direction of the circle.
 図3において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図3において、リーン車両1001の車幅に関連する物理量DC1VW、DC2VWは、車輪の接地点とリーン車両1001の左端(円の半径方向の内方の端)の間の長さである。第3実施形態のリーン車両1001の車幅に関連する物理量DC1VW、DC2VWは、これに限らない。リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のリーン車両1001のリーン角は、リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のリーン車両1001のリーン角よりも大きい。そのため、リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を左旋回時の車輪の接地点とリーン車両1001の左端(円の半径方向の内方の端)の間の長さDC2VWは、リーン車両1001が第1車速V1で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の左端の間の長さDC1VWよりも大きい。 In FIG. 3, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 3, the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end (inner end in the radial direction of the circle) of the lean vehicle 1001. The physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 of the third embodiment are not limited to this. The lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle with a second radius r2 smaller than the first radius r1 at the first vehicle speed V1 is such that the lean vehicle 1001 is on the circle with the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1, the ground contact point of the wheels and the left end of the lean vehicle 1001 (the inner end in the radial direction of the circle). The length DC2VW between the lean vehicle 1001 is larger than the length DC1VW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001.
[第4実施形態]
 以下、本発明の第4実施形態のリーン車両1001について図4を参照しつつ説明する。第4実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、第1実施形態、第2実施形態または第3実施形態の構成に加えて、以下の構成を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DC1VW、DC2VWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(4)になるように作動する。
 関係式(4):リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin<リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 ただし、関係式(4)において、障害物2001は、円の半径方向の内方に配置される。
[Fourth Embodiment]
Hereinafter, the lean vehicle 1001 according to the fourth embodiment of the present invention will be described with reference to FIG. The control device 1011 having at least one function of FCW, EBA and AEB of the fourth embodiment has the following configurations in addition to the configurations of the first embodiment, the second embodiment or the third embodiment. The control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 and a lean vehicle in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW and DC2VW related to the acquired width of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of 1001, becomes the following relational expression (4).
Relational expression (4): Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1. Minimum value DC1LRmin <An obstacle in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a second vehicle speed V2 faster than the first vehicle speed V1. Minimum value of lateral distance DC2LRmin
However, in the relational expression (4), the obstacle 2001 is arranged inward in the radial direction of the circle.
 図4において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図4において、リーン車両1001の車幅に関連する物理量DC1VW、DC2VWは、車輪の接地点とリーン車両1001の左端(円の半径方向の内方の端)の間の長さである。第4実施形態のリーン車両1001の車幅に関連する物理量DC1VW、DC2VWは、これに限らない。リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のリーン車両1001のリーン角は、リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のリーン車両1001のリーン角よりも大きい。そのため、リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の左端(円の半径方向の内方の端)の間の長さDC2VWは、リーン車両1001が第1車速V1で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の左端の間の長さDC1VWよりも大きい。 In FIG. 4, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 4, the physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the left end (the inner end in the radial direction of the circle) of the lean vehicle 1001. The physical quantities DC1VW and DC2VW related to the width of the lean vehicle 1001 of the fourth embodiment are not limited to this. The lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2, which is faster than the first vehicle speed V1, is that the lean vehicle 1001 is on the circle of the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on the circle with the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1, the ground contact point of the wheels and the left end of the lean vehicle 1001 (the inner end in the radial direction of the circle). The length DC2VW between the lean vehicle 1001 is larger than the length DC1VW between the grounding point of the wheel when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001.
[第5実施形態]
 以下、本発明の第5実施形態のリーン車両1001について図5を参照しつつ説明する。第5実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、第1実施形態、第2実施形態、第3実施形態または第4実施形態の構成に加えて、以下の構成を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(5)になるように作動する。
 関係式(5):リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin≧リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 ただし、関係式(5)において、障害物2001は、円の半径方向の外方に配置される。
[Fifth Embodiment]
Hereinafter, the lean vehicle 1001 according to the fifth embodiment of the present invention will be described with reference to FIG. The control device 1011 having at least one function of FCW, EBA and AEB of the fifth embodiment has the following configurations in addition to the configurations of the first embodiment, the second embodiment, the third embodiment or the fourth embodiment. To be equipped. The control device 1011 having at least one function of FCW, EBA, and AEB is based on the acquired physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001, and the obstacle 2001 in the left-right direction of the lean vehicle 1001. It operates so that the obstacle left-right distance, which is the distance between the grounding points of the wheels of the lean vehicle 1001, is the following relational expression (5).
Relational expression (5): Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1. Minimum value DC1LRmin ≧ Lean Obstacle in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1. Minimum value of lateral distance DC2LRmin
However, in the relational expression (5), the obstacle 2001 is arranged outside in the radial direction of the circle.
 図5では、リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRminについて、以下の2つのパターンの図を示している。
 パターン3:リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin=リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 パターン4:リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin>リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
In FIG. 5, an obstacle in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1. The following two patterns are shown for the minimum value DC2LRmin of the lateral distance.
Pattern 3: When the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA and AEB does not operate. The minimum value DC1LRmin of the distance in the left-right direction of the obstacle. = Obstacle left-right distance at which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1. Minimum value of DC2LRmin
Pattern 4: When the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA and AEB does not operate. The minimum value DC1LRmin of the distance in the left-right direction of the obstacle. > Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1. Minimum value of DC2LRmin
 図5において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図5において、リーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWは、車輪の接地点とリーン車両1001の右端(円の半径方向の外方の端)の間の長さである。第5実施形態のリーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWは、これに限らない。リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を旋回時のリーン車両1001のリーン角は、リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のリーン車両1001のリーン角よりも大きい。そのため、リーン車両1001が第1車速V1で第1半径r1より小さい第2半径r2の円上を左旋回時の車輪の接地点とリーン車両1001の右端(円の半径方向の外方の端)の間の長さDC2VW、DC2SVWは、リーン車両1001が第1車速V1で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の左端の間の長さDC1VWよりも大きい。 In FIG. 5, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 5, the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001. The physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 of the fifth embodiment are not limited to this. The lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on a circle with a second radius r2 smaller than the first radius r1 at the first vehicle speed V1 is such that the lean vehicle 1001 is on the circle with the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on a circle having a second radius r2 smaller than the first radius r1 at the first vehicle speed V1, the ground contact point of the wheels and the right end of the lean vehicle 1001 (the outer end in the radial direction of the circle). The lengths between DC2VW and DC2SVW are larger than the length DC1VW between the ground contact point of the wheels when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001. ..
[第6実施形態]
 以下、本発明の第6実施形態のリーン車両1001について図6を参照しつつ説明する。第6実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、第1実施形態、第2実施形態、第3実施形態、第4実施形態または第5実施形態の構成に加えて、以下の構成を備える。FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、取得されたリーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWに基づいて、リーン車両1001の左右方向における障害物2001とリーン車両1001の車輪の接地点の間の障害物左右方向距離が以下の関係式(6)になるように作動する。
 関係式(6):リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin≧リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 ただし、関係式(6)において、障害物2001は、円の半径方向の外方に配置される。
[Sixth Embodiment]
Hereinafter, the lean vehicle 1001 according to the sixth embodiment of the present invention will be described with reference to FIG. The control device 1011 having at least one function of FCW, EBA, and AEB of the sixth embodiment is provided in addition to the configurations of the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, or the fifth embodiment. It has the following configuration. The control device 1011 having at least one function of FCW, EBA and AEB is an obstacle 2001 in the left-right direction of the lean vehicle 1001 based on the physical quantities DC1VW, DC2VW and DC2SVW related to the width of the lean vehicle 1001 acquired. It operates so that the distance between the grounding points of the wheels of the lean vehicle 1001 in the left-right direction of the obstacle becomes the following relational expression (6).
Relational expression (6): Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a first vehicle speed V1. Minimum value DC1LRmin ≧ Lean Obstacle that the control device 1011 having at least one function of FCW, EBA and AEB does not operate when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1. Minimum value of lateral distance DC2LRmin
However, in the relational expression (6), the obstacle 2001 is arranged outside in the radial direction of the circle.
 図6では、リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRminについて、以下の2つのパターンの図を示している。
 パターン5:リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin=リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
 パターン6:リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC1LRmin>リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011が作動しない障害物左右方向距離の最小値DC2LRmin
In FIG. 6, an obstacle in which the control device 1011 having at least one of FCW, EBA, and AEB functions when the lean vehicle 1001 turns on a circle having a first radius r1 at a second vehicle speed V2 faster than the first vehicle speed V1 does not operate. The following two patterns are shown for the minimum value DC2LRmin of the lateral distance.
Pattern 5: When the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA and AEB does not operate. The minimum value DC1LRmin of the distance in the left-right direction of the obstacle. = Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a second vehicle speed V2 faster than the first vehicle speed V1. Minimum value of DC2LRmin
Pattern 6: When the lean vehicle 1001 turns on a circle having a first radius r1 at the first vehicle speed V1, the control device 1011 having at least one function of FCW, EBA and AEB does not operate. The minimum value DC1LRmin of the distance in the left-right direction of the obstacle. > Obstacle left-right distance in which the control device 1011 having at least one function of FCW, EBA, and AEB does not operate when the lean vehicle 1001 turns on a circle having a first radius r1 at a second vehicle speed V2 faster than the first vehicle speed V1. Minimum value of DC2LRmin
 図6において、リーン車両1001は第1半径r1の円上を車両左方向に旋回している。図6において、リーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWは、車輪の接地点とリーン車両1001の右端(円の半径方向の外方の端)の間の長さである。第6実施形態のリーン車両1001の車幅に関連する物理量DC1VW、DC2VW、DC2SVWは、これに限らない。リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を旋回時のリーン車両1001のリーン角は、リーン車両1001が第1車速V1で第1半径r1の円上を旋回時のリーン車両1001のリーン角よりも大きい。そのため、リーン車両1001が第1車速V1より速い第2車速V2で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の右端(円の半径方向の外方の端)の間の長さDC2VW、DC2SVWは、リーン車両1001が第1車速V1で第1半径r1の円上を左旋回時の車輪の接地点とリーン車両1001の左端の間の長さDC1VWよりも大きい。 In FIG. 6, the lean vehicle 1001 is turning to the left of the vehicle on a circle having a first radius r1. In FIG. 6, the physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 are the lengths between the ground contact point of the wheels and the right end (the outer end in the radial direction of the circle) of the lean vehicle 1001. The physical quantities DC1VW, DC2VW, and DC2SVW related to the width of the lean vehicle 1001 of the sixth embodiment are not limited to this. The lean angle of the lean vehicle 1001 when the lean vehicle 1001 turns on the circle of the first radius r1 at the second vehicle speed V2, which is faster than the first vehicle speed V1, is that the lean vehicle 1001 is on the circle of the first radius r1 at the first vehicle speed V1. Is larger than the lean angle of the lean vehicle 1001 when turning. Therefore, when the lean vehicle 1001 turns left on the circle with the first radius r1 at the second vehicle speed V2 faster than the first vehicle speed V1, the ground contact point of the wheels and the right end of the lean vehicle 1001 (the outer end in the radial direction of the circle). The lengths between DC2VW and DC2SVW are larger than the length DC1VW between the ground contact point of the wheels when the lean vehicle 1001 turns left on the circle of the first radius r1 at the first vehicle speed V1 and the left end of the lean vehicle 1001. ..
[第7実施形態]
 以下、本発明の第7実施形態のリーン車両について図7を参照しつつ説明する。第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態または第6実施形態のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置1011は、EBA機能を有する制御装置1011であり、以下のように構成されていても良い。EBA機能を有する制御装置1011は、前ブレーキ装置、後ブレーキ装置、リーン角速度およびリーン角加速度の少なくとも一方の取得に必要なリーン角関連物理量検出装置、障害物2001と自車1001との関係に基づいて取得される余裕度の判定に必要な前方検出装置、およびブレーキ操作子の操作量の取得に必要なブレーキ操作状態検出部に電気的に接続される。EBA機能を有する制御装置1011は、エンジンユニットに電気的に接続される。EBA機能を有する制御装置1011は、ヨー角速度およびヨー角加速度の少なくとも一方の取得に必要なヨー角関連物理量検出装置に電気的に接続されても良く、接続されなくても良い。
 なお、前ブレーキ装置は、ブレーキの一例である。後ブレーキ装置は、ブレーキの一例である。リーン角関連物理量検出装置は、リーン角関連センサの一例である。前方検出装置は、余裕度関連センサの一例である。ブレーキ操作状態検出部は、ブレーキ操作量関連センサの一例である。
[7th Embodiment]
Hereinafter, the lean vehicle according to the seventh embodiment of the present invention will be described with reference to FIG. 7. The control device 1011 having at least one function of FCW, EBA and AEB according to the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment or the sixth embodiment has an EBA function. The control device 1011 has, and may be configured as follows. The control device 1011 having an EBA function is based on the relationship between the front braking device, the rear braking device, the lean angle-related physical quantity detecting device required for acquiring at least one of the lean angular velocity and the lean angular acceleration, the obstacle 2001, and the own vehicle 1001. It is electrically connected to the front detection device required to determine the margin to be acquired and the brake operation state detection unit required to acquire the operation amount of the brake operator. The control device 1011 having an EBA function is electrically connected to the engine unit. The control device 1011 having the EBA function may or may not be electrically connected to the yaw angle-related physical quantity detecting device required for acquiring at least one of the yaw angular velocity and the yaw angular acceleration.
The front brake device is an example of a brake. The rear braking device is an example of a brake. The lean angle-related physical quantity detector is an example of a lean angle-related sensor. The forward detection device is an example of a margin-related sensor. The brake operation state detection unit is an example of a brake operation amount related sensor.
1001 リーン車両(自車)
1002 リーン車体フレーム
2001 障害物
1011 FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置
1012 リーン車両車幅検出センサ
1001 Lean vehicle (own vehicle)
1002 Lean body frame 2001 Obstacle 1011 Control device with at least one function of FCW, EBA and AEB 1012 Lean vehicle width detection sensor

Claims (4)

  1.  右旋回時に車両右方向に傾斜し、左旋回時に車両左方向に傾斜するリーン車体フレームに搭載され、障害物と自車との関係に基づいて取得された余裕度に基づいて作動するFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両であって、
     前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両は、
      前記リーン車両が右旋回または左旋回した時に変化する前記リーン車両の左右方向の長さである車幅に関連する物理量を検出するためのリーン車両車幅検出センサを備え、
     前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、
      前記リーン車両車幅検出センサで検出された信号に基づいて前記リーン車両の車幅に関連する物理量を取得し、
      取得された前記リーン車両の車幅に関連する物理量に基づいて、前記リーン車両の左右方向における前記障害物と前記リーン車両の車輪の接地点の間の距離である障害物左右方向距離が以下の関係式(1)になるように作動する、ことを特徴とするFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両。
     関係式(1):前記リーン車両が第1車速で直線上を走行時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値<前記リーン車両が前記第1車速で第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(1)において、前記障害物は、前記円の半径方向の内方に配置される。
    FCW, which is mounted on a lean body frame that tilts to the right of the vehicle when turning right and tilts to the left of the vehicle when turning left, and operates based on the margin acquired based on the relationship between the obstacle and the vehicle. A lean vehicle equipped with a control device having at least one function of EBA and AEB.
    The lean vehicle equipped with the control device having at least one function of FCW, EBA and AEB
    A lean vehicle width detection sensor for detecting a physical quantity related to a vehicle width which is a left-right length of the lean vehicle that changes when the lean vehicle turns right or left is provided.
    The control device having at least one function of FCW, EBA and AEB is
    Based on the signal detected by the lean vehicle width detection sensor, the physical quantity related to the width of the lean vehicle is acquired.
    Based on the acquired physical quantity related to the width of the lean vehicle, the obstacle left-right distance, which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheels of the lean vehicle, is as follows. A lean vehicle including a control device having at least one function of FCW, EBA, and AEB, which operates so as to have the relational expression (1).
    Relational expression (1): When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one of the FCW, EBA, and AEB functions does not operate. The minimum value of the obstacle left-right distance <the lean When the vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one of the FCW, EBA, and AEB functions does not operate. The minimum value of the distance in the left-right direction of the obstacle. In 1), the obstacle is arranged inward in the radial direction of the circle.
  2. 前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、
      取得された前記リーン車両の車幅に関連する物理量に基づいて、前記リーン車両の左右方向における前記障害物と前記リーン車両の前記車輪の前記接地点の間の距離である前記障害物左右方向距離が以下の関係式(2)になるように作動する、ことを特徴とする請求項1に記載のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両。
     関係式(2):前記リーン車両が第1車速で直線上を走行時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値≧前記リーン車両が前記第1車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(2)において、前記障害物は、前記円の半径方向の外方に配置される。
    The control device having at least one function of FCW, EBA and AEB is
    The obstacle left-right distance, which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheel of the lean vehicle, based on the acquired physical quantity related to the width of the lean vehicle. The lean vehicle including the control device having at least one function of FCW, EBA and AEB according to claim 1, wherein the vehicle operates so as to have the following relational expression (2).
    Relational expression (2): When the lean vehicle travels on a straight line at the first vehicle speed, the control device having at least one of the FCW, EBA, and AEB functions does not operate. When the vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one of the FCW, EBA, and AEB functions does not operate. The minimum value of the distance in the left-right direction of the obstacle. In (2), the obstacle is arranged outside the circle in the radial direction.
  3. 前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、
      取得された前記リーン車両の車幅に関連する物理量に基づいて、前記リーン車両の左右方向における前記障害物と前記リーン車両の前記車輪の前記接地点の間の距離である障害物左右方向距離が以下の関係式(3)および関係式(4)の少なくとも1つになるように作動する、ことを特徴とする請求項1または2に記載のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両。
     関係式(3):前記リーン車両が前記第1車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値<前記リーン車両が前記第1車速で前記第1半径より小さい第2半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(3)において、前記障害物は、前記円の半径方向の内方に配置される。
     関係式(4):前記リーン車両が前記第1車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値<前記リーン車両が前記第1車速より速い第2車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(4)において、前記障害物は、前記円の半径方向の内方に配置される。
    The control device having at least one function of FCW, EBA and AEB is
    Based on the acquired physical quantity related to the width of the lean vehicle, the obstacle left-right distance, which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheel of the lean vehicle, is The control having at least one function of FCW, EBA and AEB according to claim 1 or 2, which operates so as to be at least one of the following relational expressions (3) and (4). Lean vehicle with equipment.
    Relational expression (3): The obstacle left-right distance in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on the circle of the first radius at the first vehicle speed. Minimum value <The obstacle in which the control device having at least one function of the FCW, EBA, and AEB does not operate when the lean vehicle turns on a circle having a second radius smaller than the first radius at the first vehicle speed. Minimum value of distance in the left-right direction However, in the relational expression (3), the obstacle is arranged inward in the radial direction of the circle.
    Relational expression (4): The obstacle left-right distance in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on the circle of the first radius at the first vehicle speed. Minimum value <The obstacle in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on a circle of the first radius at a second vehicle speed faster than the first vehicle speed. Minimum value of distance in the left-right direction However, in the relational expression (4), the obstacle is arranged inward in the radial direction of the circle.
  4. 前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置は、
      取得された前記リーン車両の車幅に関連する物理量に基づいて、前記リーン車両の左右方向における前記障害物と前記リーン車両の前記車輪の前記接地点の間の距離である障害物左右方向距離が以下の関係式(5)および関係式(6)の少なくとも1つになるように作動する、ことを特徴とする請求項1~3のいずれか1つに記載のFCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置を備えたリーン車両。
     関係式(5):前記リーン車両が前記第1車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値≧前記リーン車両が前記第1車速で前記第1半径より小さい第2半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(5)において、前記障害物は、前記円の半径方向の外方に配置される。
     関係式(6):前記リーン車両が前記第1車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値≧前記リーン車両が前記第1車速より速い第2車速で前記第1半径の円上を旋回時の前記FCW、EBAおよびAEBの少なくとも1つの機能を有する制御装置が作動しない前記障害物左右方向距離の最小値
     ただし、前記関係式(6)において、前記障害物は、前記円の半径方向の外方に配置される。
    The control device having at least one function of FCW, EBA and AEB is
    Based on the acquired physical quantity related to the width of the lean vehicle, the obstacle left-right distance, which is the distance between the obstacle in the left-right direction of the lean vehicle and the ground contact point of the wheel of the lean vehicle, is At least one of FCW, EBA and AEB according to any one of claims 1 to 3, which operates so as to be at least one of the following relational expressions (5) and (6). A lean vehicle with a control device that has two functions.
    Relational expression (5): When the lean vehicle turns on the circle of the first radius at the first vehicle speed, the control device having at least one function of FCW, EBA, and AEB does not operate. ≧ The obstacle in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on a circle having a second radius smaller than the first radius at the first vehicle speed. Minimum value of distance in the left-right direction However, in the relational expression (5), the obstacle is arranged outside in the radial direction of the circle.
    Relational expression (6): The obstacle left-right distance in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on the circle of the first radius at the first vehicle speed. ≧ The obstacle in which the control device having at least one function of FCW, EBA and AEB does not operate when the lean vehicle turns on a circle of the first radius at a second vehicle speed faster than the first vehicle speed. Minimum value of distance in the left-right direction However, in the relational expression (6), the obstacle is arranged outside the radial direction of the circle.
PCT/JP2020/018877 2019-05-10 2020-05-11 Leaning vehicle equipped with control device having at least one function among fcw, eba, and aeb WO2020230768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019089838 2019-05-10
JP2019-089838 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020230768A1 true WO2020230768A1 (en) 2020-11-19

Family

ID=73288962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018877 WO2020230768A1 (en) 2019-05-10 2020-05-11 Leaning vehicle equipped with control device having at least one function among fcw, eba, and aeb

Country Status (1)

Country Link
WO (1) WO2020230768A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095089A (en) * 2015-11-23 2017-06-01 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングConti Temic microelectronic GmbH Driver assistant device, and driver support method when power vehicle capable of inclining sideways is steered in curve area using driver assistant device
JP2018081363A (en) * 2016-11-14 2018-05-24 スズキ株式会社 Driving support device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095089A (en) * 2015-11-23 2017-06-01 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングConti Temic microelectronic GmbH Driver assistant device, and driver support method when power vehicle capable of inclining sideways is steered in curve area using driver assistant device
JP2018081363A (en) * 2016-11-14 2018-05-24 スズキ株式会社 Driving support device

Similar Documents

Publication Publication Date Title
US9751562B2 (en) Park exit assist system
EP2902271B1 (en) Parking assistance device, and parking assistance method and program
JP6316411B2 (en) Image recognition apparatus and control method thereof
WO2018220912A1 (en) Periphery monitoring device
JP6569362B2 (en) Parking assistance device
JP4319928B2 (en) Vehicle state detection system and vehicle state detection method
JP2010076539A (en) Vehicle deviation prevention device
JP2010188976A (en) Drive operation supporting device, automobile, and drive operation support method
JPWO2019111139A1 (en) Control device and control method to control the behavior of the motorcycle
EP4071021A1 (en) Rider assistance system and control method for rider assistance system
JP5790401B2 (en) Vehicle travel support device
CN112955356A (en) Parking assistance device and parking assistance method
JP2016078738A (en) On-vehicle display apparatus
JP2006213197A (en) Traveling support device for vehicle
WO2020230768A1 (en) Leaning vehicle equipped with control device having at least one function among fcw, eba, and aeb
JP4333484B2 (en) Road parameter calculation device and vehicle behavior control device
WO2020230769A1 (en) Leanable vehicle equipped with rider assistance control device for obstacles
JP2008007026A (en) Air pressure reduction detection device, air pressure reduction detection program and air pressure reduction detection method
TWI755869B (en) Inclined vehicle with FCW control
WO2020230764A1 (en) Leaning vehicle equipped with brake assist control device
WO2020230765A1 (en) LEANING VEHICLE EQUIPPED WITH Autonomous Emergency Braking (AEB) CONTROL DEVICE
KR101245100B1 (en) Smart cruise control system and control method thereof
WO2020230770A1 (en) Leaning vehicle equipped with brake assist control device
WO2015174943A1 (en) A system for keeping and tracking lane
WO2020230767A1 (en) Leaning vehicle comprising brake assist control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP