WO2020230495A1 - Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using motor control device and motor control method - Google Patents

Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using motor control device and motor control method Download PDF

Info

Publication number
WO2020230495A1
WO2020230495A1 PCT/JP2020/016181 JP2020016181W WO2020230495A1 WO 2020230495 A1 WO2020230495 A1 WO 2020230495A1 JP 2020016181 W JP2020016181 W JP 2020016181W WO 2020230495 A1 WO2020230495 A1 WO 2020230495A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
period
rotation angle
output
Prior art date
Application number
PCT/JP2020/016181
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 泰三
山崎 勝
淳史 山中
肇 寺崎
健司 有賀
猿渡 匡行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112020002001.0T priority Critical patent/DE112020002001T5/en
Priority to CN202080036355.XA priority patent/CN113840981B/en
Publication of WO2020230495A1 publication Critical patent/WO2020230495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a motor control device and a motor control method, and a variable valve timing control device and a variable valve timing control method using these.
  • a DC motor is used to use a DC power supply.
  • DC commutator motors that use brush commutators have been the mainstream, but with the development of power electronics in recent years, brushless DC motors are becoming widespread.
  • the brushless DC motor detects the magnetic pole position by a rotation angle sensor such as a hall sensor or an encoder, and controls the voltage applied to the motor coil based on the detected rotation angle.
  • Patent Document 1 is an example of such a motor control technique.
  • Patent Document 1 includes a main control unit including three Hall sensors, and has a V-phase signal rise, a W signal rise, a U-phase signal fall, or a U-phase signal rise, and a W signal fall. , A technique for switching an operation mode by detecting a rise of a V-phase signal is disclosed.
  • variable valve timing control device that controls the motor controls the valve opening or closing timing by changing the rotation angle of the motor corresponding to the rotation angle of the engine. While the engine is running, the motor is required to accelerate and decelerate in order to respond to the required operation, for example, fluctuations in engine torque. Therefore, depending on the conditions, the rotation direction of the motor may change from forward rotation to reverse rotation, or from reverse rotation to forward rotation. In this case, for example, when the technique described in Patent Document 1 is used for variable valve timing control, the velocity information is obtained from the pulse signal interval of the rotation angle sensor, so that the pulse signal interval is used at the switching point in the rotation direction.
  • An object of the present invention is a motor control device and a motor control method capable of appropriately controlling a motor while ensuring speed calculation accuracy even when the motor frequently switches between normal rotation and reverse rotation, and a variable valve using these. It is an object of the present invention to provide a timing control device and a variable valve timing control method.
  • the present invention includes a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor, and the rotation speed of the motor based on the three-phase signal and the command signal.
  • the present invention is a motor control method including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor, and controls the rotation speed output of the motor based on the three-phase signal and the command signal.
  • the period in which the three-phase signal output from the rotation angle sensor is output over the three phases in the order of rising, falling, and rising is set as the first period, and the third period output from the rotation angle sensor.
  • the phase signal is output over three phases in the order of falling, rising, and falling as the second period, and the output of the rotation angle sensor is in the first period or the second period, ,
  • the motor is controlled so as to update the rotation speed output of the motor.
  • a motor control device and a motor control method capable of appropriately controlling a motor while ensuring speed calculation accuracy even when the motor frequently switches between normal rotation and reverse rotation, and a variable valve using these.
  • a timing control device and a variable valve timing control method can be provided.
  • the motor control device is particularly applied to an application that requires high speed response, and the motor is a brushless DC motor.
  • the motor is a brushless DC motor.
  • a variable valve timing control device that controls valve timing in an internal combustion engine engine using a motor and an electric power steering device that assists steering operation with a motor are assumed.
  • a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor
  • the first period is the period in which the signals are output in the order of falling, falling, and rising
  • the three-phase signal output from the rotation angle sensor is output in the order of falling, rising, and falling over the three phases.
  • the period is defined as the second period, and when the output of the rotation angle sensor is in the first period or the second period, the rotation speed output of the motor is controlled to be updated.
  • the rotation speed output calculated by the rotation angle sensor pulse signal interval detection for the case where the rotation direction of the motor changes and the period until the motor rotation is settled by the configuration as described above.
  • the case where the calculation is accurate can be selected as the rotation speed.
  • the influence of the speed calculation error in the region where the forward rotation and the reverse rotation change and the speed unstable region due to insufficient shaft rigidity can be eliminated.
  • a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor is provided, and among the three-phase signals output from the rotation angle sensor, a specific phase
  • the period from the time when only the signal changes two or more times to the detection of the signal change of the phase other than the specific phase is defined as the third period, and when the output of the rotation angle sensor is in the third period, the motor
  • the rotation speed output of the motor is retained at the previous rotation speed output, and the rotation speed output of the motor is updated at the end of the third period.
  • a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor is provided, and among the three-phase signals output from the rotation angle sensor, a specific phase The period from the time when only the signal changes twice or more to the detection of the signal change of the phase other than the specific phase is defined as the third period, and when the output of the rotation angle sensor is in the third period, the motor The rotation speed output of the motor is set to 0, and the rotation speed output of the motor is updated at the end of the third period.
  • variable valve timing control including an intake side electric valve timing control motor and an exhaust side electric valve timing control motor that rotationally drive the side camshaft and the exhaust side camshaft, the intake side electric valve timing control motor and the exhaust side electric
  • the valve timing control motor is characterized by being controlled by the motor control described in the above embodiment.
  • valve timing of the engine is adjusted by using the motor driven by the above-mentioned motor control device, so that the motor can secure the speed calculation accuracy even when the forward rotation and the reverse rotation are frequently switched. Appropriate control is possible, which contributes to reduced fuel consumption and cleaner exhaust.
  • FIG. 1 is a block diagram showing a motor drive system according to the first embodiment of the present invention.
  • an inverter for driving a three-phase motor is used as the power conversion device, and a brushless DC motor is used as the motor 10 to be controlled.
  • the torque generated from the motor 10 is transmitted to the motor shaft 11.
  • the motor 10 determines the timing at which a voltage is applied to each winding by the rotation angle sensor 12.
  • an absolute encoder, a resolver, or the like can be used, but in this figure, an example of a Hall IC will be described.
  • the Hall IC outputs the magnetic flux direction as a digital signal.
  • the wiring connected to the motor 10 is a three-phase wiring 13, and an AC voltage from the power conversion device 14 is applied to the wiring 13.
  • the power conversion device 14 converts a DC voltage into an AC voltage by turning on / off the switching element 15 to create an AC voltage applied to the wiring 13.
  • the current detector 16 (DC current detector) measures the current flowing in or out of the power converter 14. Generally, a shunt resistor is inserted between the ground point and the negative electrode side connection terminal of the switching element 15, and the current is detected by measuring the voltage across the shunt resistor.
  • the switching element 15 is turned ON / OFF by the gate voltage 18 created by the gate driver 17.
  • the gate driver 17 amplifies the gate signal 19 that determines the ON / OFF timing of the switching element 15 and converts it into a voltage and a current that enable the switching element 15 to operate.
  • the motor control device 20 receives a command signal 21 from a higher-level control system such as an electronic control unit (ECU), and creates a gate signal 19 for operating the motor 10 so as to follow the command signal 21.
  • the motor control device 20 uses the rotation angle sensor signal 22 and the DC current signal 23 as other inputs.
  • the rotation angle sensor signal 22 is the output of the rotation angle sensor 12, and signals for three phases of U phase, V phase, and W phase are output. In this embodiment, these three-phase signals are defined as three-phase signals.
  • the direct current signal 23 is the output of the current detector 16.
  • FIG. 2 is a control block diagram of the motor control device 20 according to the first embodiment of the present invention.
  • the command signal 21 received by the motor control device 20 is a torque command.
  • the command signal 21 is input to the compensation means 24.
  • the compensation means 24 receives the command signal 21 and the torque estimate value 25 as inputs, controls so that the deviation between the command signal 21 and the torque estimate value 25 becomes small, and outputs the torque command signal 26.
  • means such as PID control are used.
  • the torque estimation means 27 estimates the torque estimation value 25 from the DC current signal 23.
  • the generated torque is substantially proportional to the DC current, so that the torque estimation value 25 can be estimated from the DC current signal 23.
  • the rotation angle sensor signal 22 is input to the motor speed estimation means 28, and the motor speed estimation value 29 is output.
  • the motor speed estimation value 29 is used for various purposes such as construction of a speed control system, correction of counter electromotive voltage, and improvement of accuracy of rotation angle, but here, for simplification, only the counter electromotive voltage estimation means 30 is shown.
  • the brushless DC motor motor 10
  • the counter electromotive voltage estimation means 30 calculates the counter electromotive voltage estimation value 31. When the advance angle control is not performed, the counter electromotive voltage is simply proportional to the motor rotation speed.
  • the torque command signal 26 and the counter electromotive voltage estimated value 31 are sent to the phase voltage conversion means 32, and the phase voltage applied to each phase of the motor 10 is calculated. Since the power conversion device 14 changes the phase voltage by changing the duty ratio of switching, the duty ratio signal 33 is output here. For example, when the duty ratio is 1, a direct current voltage (VDC) is applied as the phase voltage, when the duty ratio is 0, 0 is applied, and when the duty ratio is 0.5, half of the direct current voltage (VDC / 2) is applied. Will be done.
  • the duty ratio signal 33, the torque direction signal 34, and the rotation angle sensor signal 22 created in this manner are input to the gate signal creating means 35, and the gate signal 19 adjusted so that the motor 10 generates a desired torque is generated. Output.
  • FIG. 3 is a control block diagram of the motor speed estimation means 28 according to the first embodiment of the present invention.
  • the rotation angle sensor signal 22 input to the motor speed estimation means 28 is input to the change event detecting means 41, the first period determining means 42, and the second period determining means 43.
  • the change event detecting means 41 generates an event detecting signal 44 when the rotation angle sensor signal 22 changes.
  • the event detection signal 44 is often mounted on the microcomputer as an interrupt activation.
  • the first period determination means 42 and the second period determination means 43 store the state of the rotation angle sensor signal 22 and collate it with a preset change pattern.
  • rotation angle sensor signal 22 There are two types of rotation angle sensor signal 22, high level and low level.
  • the rotation angle sensor signal 22 changes from low level to high level, and the rotation angle sensor signal 22 changes from high level to low level. Is called a fall.
  • the rotation angle sensor signal 22 (three-phase signal) output from the rotation angle sensor 12 detects changes in rising, falling, and rising in order, and the change is U-phase.
  • This is a pattern covering all phases (3 phases) of, V phase, and W phase.
  • the rotation angle sensor signal 22 (three-phase signal) output from the rotation angle sensor 12 detects changes in falling, rising, and falling in order, and the changes are U-phase and V-phase. , It is a pattern over all phases (3 phases) of W phase.
  • the timing diagrams of the first period and the second period will be described later in FIG.
  • the outputs of the first period determining means 42 and the second period determining means 43 are sent to the OR means 45, and when either the first period or the second period is satisfied, the speed calculation described later is performed.
  • the event detection signal 44 operates the elapsed time calculation means 46.
  • the elapsed time calculation means 46 inputs the FRC current value 48 generated from the FRC (free running counter) 47, and calculates the difference from the FRC previous value 50 recorded in the FRC previous value storage means 49. This is equivalent to the time interval of the event detection signal 44.
  • the FRC current value 48 is sent to the FRC previous value storage means 49, and the FRC previous value 50 is updated.
  • the speed calculation means 51 estimates the motor speed by calculating the reciprocal of the time interval calculated by the elapsed time calculation means 46. Since the speed calculation means 51 cannot always calculate the motor speed, the speed calculation means 51 includes an estimation speed selection means 52.
  • the estimated speed selection means 52 selects whether to use the previous value of the speed or forcibly set the motor estimated speed to 0 (zero).
  • the estimated speed selection means 52 uses the estimated speed selection means 52 to store the value of the speed previous value storage means 53 or The zero velocity setting means 54 is selected as the estimated velocity 55.
  • the output of the speed calculation means 51 is selected as the output of the estimated speed 55.
  • FIG. 4 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the first embodiment of the present invention.
  • the rotation angle sensor 12 is a Hall IC and is a digital signal output.
  • the elapsed time calculation means 46 acquires the time when the rotation angle sensor 12 of any phase changes.
  • the Hall ICs are arranged so as to be offset by 120 degrees in each phase, and an event detection signal 44 is generated every 60 degrees of the motor rotation angle.
  • the motor will be a three-phase two-pole machine, and the effects of reduction gears will not be considered. As a result, the mechanical angle and the electric angle become equal, and the conversion can be omitted.
  • clockwise is defined as forward rotation
  • counterclockwise rotation is defined as reverse rotation.
  • each phase is clockwise as U phase, V phase, and W phase
  • the U phase Hall IC is arranged at a position 60 degrees behind the motor coil U phase
  • the V phase is located 60 degrees behind the motor coil V phase.
  • the Hall IC is arranged
  • the W-phase Hall IC is arranged at a position 60 degrees behind the W-phase of the motor coil.
  • 22a is a U-phase Hall IC
  • 22b is a V-phase Hall IC
  • 22c is a W-phase Hall IC.
  • Halls ICs 22a to 22c are arranged between the windings of the motor 10 as shown in the figure.
  • 61a, 61b, 61c, 61d, 61e are the times at the moment when the hall ICs 22a to 22c change
  • 62a, 62b, 62c, 62d, 62e are the times when the motor 10 is rotating at times 61a, 61b, 61c, 61d, 61e. is there.
  • the condition that the speed calculation means 51 can calculate a reliable estimated speed is that the elapsed time calculation means 46 can correctly acquire the time required for the motor 10 to rotate 60 degrees.
  • the elapsed time calculating means 46 monitors changes in the hall ICs 22a to 22c and observes the time interval. Therefore, when the forward rotation and the reverse rotation are switched, the elapsed time calculating means 46 measures the time required for 60 degree rotation. As a result, the speed calculation means 51 outputs a speed calculation result different from the actual one.
  • FIG. 4 it is assumed that the motor 10 is rotating in the positive direction until time 61a.
  • clockwise is defined as the positive direction.
  • the motor 10 rotates in the reverse direction under the influence of an external force or the like during the period from time 61a to time 61b, and the output of the W-phase hall IC 22c changes again at time 61b.
  • the motor 10 returns to normal rotation during the period from time 61b to time 61c, and the output of the W-phase hall IC 22c changes at time 61c. After that, the forward rotation continues at time 61d and time 61e.
  • the output rise of the W-phase hall IC22c, the output fall of the V-phase hall IC22b, and the output rise of the U-phase hall IC22a are observed. That is, by observing the rising and falling patterns of the outputs of the hall ICs 22a to 22c, it is possible to determine whether the speed calculation means 51 is operating in the forward direction or the reverse direction in a stable manner. It becomes a judgment standard.
  • the time interval 63 indicated by the arrow is calculated by the elapsed time calculation means 46. Further, at the speed calculation selection time 64 indicated by ⁇ , the estimated speed selection means 52 selects the result calculated by the speed calculation means 51.
  • the pattern in which the outputs of the hall ICs 22a to 22c change in the order of rising, falling, and rising, and the outputs of all the hall ICs 22a to 22c change is defined as the first period. Further, the pattern in which the outputs of the hall ICs 22a to 22c change in the order of falling, rising, and falling, and the outputs of all the hall ICs 22a to 22c change is defined as the second period.
  • the arrow indicated by the number 65 is the first period
  • the arrow indicated by the number 66 is the second period.
  • the speed calculation selection time 64 is displayed when the first period 65 or the second period 66 is detected.
  • the result of the speed calculation means 51 obtained from the time interval from time 61a to time 61b and the time interval from time 61b to time 61c for which the time required for the motor 10 to rotate 60 degrees cannot be obtained can be obtained. It is possible to determine not to adopt.
  • the rotation speed output of the motor 10 is held at the rotation speed output at the time of renewal.
  • the result of the speed calculation means 51 obtained from the time interval from the time 61c to the time 61d is not adopted either. This is because when an unexpected reversal occurs during normal rotation, it is expected that a large external force is applied, and during that period, at the time interval from time 61c to time 61d due to the influence of shaft twist and backlash. There is a concern that the output accuracy of the elapsed time calculation means 46 may deteriorate. In this embodiment, since the output of the speed calculation means 51 is not adopted even in the period from the time 61c to the time 61d, it is particularly suitable for an application in which it is difficult to secure the rigidity.
  • the flowchart is started by detecting the event detection signal 44.
  • S101 is a process of acquiring a counter, and stores the current value of FRC47 in the variable cnt.
  • S102 is an output acquisition process for the hall ICs 22a to 22c.
  • the acquired outputs of the Hall ICs 22a to 22c identify the changed phase by the changing phase specifying process S103.
  • the changing phase writing process S104 writes out the changing phase information to the variable phs.
  • the counter acquisition process S101, the output acquisition process S102 of the hall ICs 22a to 22c, the changing phase specifying process S103, and the changing phase writing process S104 are executed in parallel with the event detection signal 44 as a trigger.
  • the counter previous value acquisition process S105 reads the counter information acquired by the previous event detection signal 44 as the variable cnt_z.
  • S106 is a time interval acquisition process, and the difference between the variables cnt and cnt_z is calculated and stored in the variable t60.
  • t60 means the time required for the motor 10 to rotate at an electric angle of 60 degrees. Since FRC47 is represented by a limited number of bits, it is cleared to 0 at regular intervals. Therefore, depending on the cnt acquisition timing, cnt_z> cnt may occur.
  • the time interval determination process S107 determines whether or not cnt_z> cnt by looking at the sign of the variable t60. When the variable t60 is negative, the constant CMAX + 1 preset by the time interval correction process S108 is added. This gives the correct time interval.
  • CMAX is the maximum value of FRC. For example, if the FRC is 16 bits, the CMAX is 65535. If the variable t60 is positive, the variable t60 is adopted as it is as the time interval.
  • S109 is a velocity calculation process, and the reciprocal of the variable t60 is multiplied by 2 ⁇ ( ⁇ is the pi) and divided by 6 to obtain the electric angle temporary velocity spd_tmp. Multiplying by 2 ⁇ is to convert the unit system to rad / s, and dividing by 6 is to convert to the speed per rotation.
  • S110 is the counter previous value update process, and the acquired counter information cnt is substituted into the counter previous value cnt_z.
  • the processes from process S101 to process S110 are mainly performed by the elapsed time calculation means 46, the FRC previous value storage means 49, and the speed calculation means 51.
  • S111 is a phase information acquisition process, and reads the changing phase phs, the previous changing phase phs_z, and the previous last changing phase phs_z2.
  • the variable phs is written out in the change phase writing process S104.
  • S112 is a first period determination process, and determines whether or not the change phase phs, the previous change phase phs_z, and the previous two change phase phs_z2 correspond to the above-mentioned first period. If it does not correspond to the first period, the subsequent second period determination process S113 is performed to determine whether or not it corresponds to the above-mentioned second period. If any of the determinations in S112 and S113 is Y, the electric angular velocity spd_tmp calculated in the velocity calculation process S109 is adopted as the electric angular velocity spd.
  • the speed comparison process S115 determines whether the speed is high or low.
  • the electric angular velocity spd is set to the electric angular velocity previous value spd_z by the velocity previous value setting process S116.
  • the electric angular velocity spd is set to 0 by the zero velocity setting process S117.
  • This electric angular velocity spd is an estimated velocity 55.
  • the rotation speed output of the motor is set to 0.
  • S119 is a phase information update process, in which the previous change phase phs_z is substituted for the previous change phase phs_z2, and the previous change phase phs is substituted for the previous change phase phs_z.
  • S111 to S119 are processes performed by the first period determination means 42, the second period determination means 43, the OR means 45, the estimated speed selection means 52, the speed previous value storage means 53, and the zero speed setting means 54.
  • the rotation speed output of the motor is controlled to be updated when the output of the rotation angle sensor is in the first period or the second period, the motor frequently switches between normal rotation and reverse rotation. Even in this case, the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
  • FIG. 6 is a control block diagram of the motor speed estimation means 28 according to the second embodiment of the present invention. Since the configurations of the motor control device 20 and the motor drive system are the same as those in FIG. 1, detailed description thereof will be omitted.
  • the difference in FIG. 3 in the first embodiment is that the third period determination means 56 is provided instead of the first period determination means 42, the second period determination means 43, and the OR means 45.
  • the third period is defined as the period from the time when only the signal of the specific phase of the three-phase signal changes two or more times to the detection of the change of the phase other than the specific phase.
  • FIG. 7 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the second embodiment of the present invention.
  • the third period is a period from time 61b to time 61d.
  • the speed calculation selection time 64 is different from that of FIG. 4, and is also applicable at the time 61d.
  • FIG. 4 shows that the result of the speed calculation means 51 obtained from the time interval from time 61a to time 61b and the time interval from time 61b to time 61c for which the time required for the motor 10 to rotate 60 degrees cannot be obtained is not adopted. The same is true. However, the result of the speed calculation means 51 obtained from the time interval between the time 61c and the time 61d is adopted as the speed calculation result.
  • the speed detection error is sufficiently small, for example, when sufficient rigidity is secured for the rotating shaft of the motor 10 or when a high-resolution sensor can be used. Therefore, in the case of hardware that satisfies the above conditions, the second embodiment can be used.
  • the speed information can be updated even at the time 61d by using the determination based on the third period, which is effective in improving the responsiveness.
  • FIGS. 7 and 4 The difference between FIGS. 7 and 4 is that the execution and stop of the speed calculation are judged by the presence or absence of the third period 67. From the start of the third period 67 to immediately before the end of the third period 67, the stored value of the speed previous value storage means 53 or the zero speed setting means 54 is selected as the estimated speed 55. When the value of the zero speed setting means 54 is selected, the rotational speed output of the motor 10 becomes 0. The speed calculation means 51 continues to operate even in the third period 67, and updates the estimated speed 55 immediately after the end of the third period 67. If the third period 67 is not detected, the estimated speed 55 adopts the result of the speed calculation means 51 as usual.
  • the follow chart in the second embodiment is described because it only replaces the first period determination process S112 and the second period determination process S113 with the third period determination process in the flowchart of the first embodiment shown in FIG. Is omitted.
  • the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
  • FIG. 8 is a control block diagram of the motor speed estimation means 28 according to the third embodiment of the present invention. Since the configurations of the motor control device 20 and the motor drive system are the same as those in FIG. 1, detailed description thereof will be omitted. Further, for the sake of simplification of the description, the rotation angle sensor 12 will be described below as a Hall IC.
  • the U phase change event generating means 71a, the V phase changing event generating means 71b, and the W phase changing event generating means 71c as the phase change event generating means of each phase monitor the change of the rotation angle signal of each layer to see if there is any change. Notify.
  • the U-phase hall IC 22a output is input to the U-phase change event generating means 71a.
  • the U-phase change event generating means 71a constantly monitors the output of the Hall IC 22a and generates an event detection signal 44 when a change is detected.
  • it is generally realized by generating an interrupt by changing the digital I / O input. If it has a sufficient processing function, it may be configured to constantly monitor by polling.
  • the V phase and the W phase which includes a V phase change event generating means 71b for monitoring the Hall IC 22b output and a W phase change event generating means 71c for monitoring the Hall IC 22c output.
  • the V-phase event detection signal 44b is generated from the V-phase change event generation means 71b
  • the W-phase event detection signal 44c is generated from the W-phase change event generation means 71c.
  • the three-phase rotation angle sensor signal 22 is input to the U-phase update permission means 72a, and determines whether to use or ignore the U-phase change event.
  • the U-phase update permission means 72a operates as follows, for example. ⁇ If the phase that changed immediately before is V phase or W phase, set (permit) U phase update permission flag. ⁇ If the phase that changed immediately before is U phase, clear the U phase update permission flag. (Not permitted)
  • a method based on the state transition may be used without depending on the flag.
  • V phase and the W phase are provided.
  • the U-phase event detection signal 44a operates the U-phase change time storage means 73a.
  • the U-phase change time storage means 73a stores the FRC current value 48 (current time) obtained from the free running counter 47 when the U-phase update permission means 72a permits update as the time when the U-phase changes.
  • the U-phase change time storage means 73a does not operate.
  • the V phase and the W phase and the V phase change time storage means 73b and the W phase change time storage means 73c are provided.
  • the U-phase change time storage means 73a, the V-phase change time storage means 73b, and the W-phase change time storage means 73c (phase change time storage means) store the change time of the rotation angle signal for each phase. Then, the U-phase change time storage means 73a, the V-phase change time storage means 73b, and the W-phase change time storage means 73c (phase change time storage means) are transmitted to the elapsed time calculation means 46 after the respective processing is completed, and the operation is performed. Start.
  • the elapsed time calculation means 46 includes a U-phase change time stored by the U-phase change time storage means 73a, a V-phase change time stored by the V-phase change time storage means 73b, and a W-phase change stored by the W-phase change time storage means 73c. Enter the time and calculate the difference between the two most recent change times. The obtained difference in change time is transmitted to the speed calculation means 51.
  • the speed calculation means 51 calculates the speed from the difference in change time (difference between the latest two change times) of the rotation angle signals of each phase output from the phase change time storage means of each phase in the three phases. Since the difference between the two most recent change times means the occurrence interval of the event detection signal 44, the velocity information can be obtained by calculating the reciprocal.
  • FIG. 9 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the third embodiment of the present invention.
  • the fact that the W phase update prohibited section 68 is provided is different from FIG. 7 in the second embodiment.
  • V-phase update permitting means 72c permits the operation of the V-phase change time storage means 73b, and the V-phase change time storage means 73b operates.
  • the elapsed time calculation means 46 and the speed calculation means 51 operate.
  • the V-phase update permission means 72b clears the W-phase update permission flag, and the change of the V-phase is not permitted.
  • the W phase update permission means 72c sets the W phase update permission flag, and is in a state of permitting the change of the W phase.
  • the rotation speed output of the motor can be updated at time 61d, which is effective in improving the responsiveness.
  • FIG. 10 is a flowchart showing the operation of the motor speed estimation means 28 according to the third embodiment of the present invention.
  • the elapsed time calculation means 46 and the speed calculation means 51 are omitted because they are exactly the same as the processes after S106 in the flowchart shown in FIG.
  • S121a is a monitoring process for the U-phase hall IC 22a, and monitors changes in the U-phase hall IC 22a by means such as interruption. If there is no change, it is continuously monitored, and if there is a change, the process proceeds to the U-phase update determination process S122a. If the U-phase update permission means 72a permits the update, the process proceeds to the next process, and if the update is prohibited, the process returns to the process S121a. Since the update determination method of the U-phase update permission means 72a is described in the explanation of FIG. 8, the description is omitted.
  • S123a is a pulse direction acquisition process for acquiring the changing direction of the U-phase Hall IC 22a.
  • the variable name indicating the pulse direction is described as "pls_dir”.
  • S101a is a counter acquisition process
  • S105a is a counter previous value acquisition process, and the same process as the flowchart shown in FIG. 5 is performed.
  • S124a is an information update process, and updates the variable of the U phase change time storage means 73a.
  • the current changing phase is described as “phs”
  • the previous changing phase is described as “phs_z”.
  • the previous value of the variable "pls_dir” described in the process S123a is described as “pls_dir_z”.
  • the variables updated here are provided to determine the rotation direction of the motor 10.
  • the motor control device 20 in this embodiment is intended for an application in which the forward and reverse rotations of the motor are frequently repeated, and it is often important to determine the rotation direction in the upper control system, so variables are used. There is. By the combination of these variables, the rotation direction of the motor is easily determined, for example, as shown in the table shown in FIG.
  • FIG. 11 is a diagram showing the relationship between the changing phase and the rotation direction according to the third embodiment of the present invention.
  • the variables “phs” and “phs_z” representing the changing phase are described as character types, and the variables “pls_dir” and “pls_dir_z” representing the pulse direction are described with the rising edge being +1 and the falling edge being -1.
  • the process S125a represents the process of the U-phase change time storage means 73a.
  • the process S126 is a coupling process, and when any of the process related to the U phase, the process related to the V phase, and the process related to the W phase is completed, the branched processing flows are combined and the process proceeds to the subsequent process. Note that the motor control is designed with care so that each branch is not performed at the same time, so all consideration regarding memory contention processing and interrupt priority between each branch flow is omitted. did.
  • the change time information is ignored, so that the motor frequently switches between normal rotation and reverse rotation. In this case as well, the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
  • the examples of the motor control device 20 according to the present invention have been described above.
  • the present invention is a motor control device of a type in which the time interval of the rotation angle sensor 12 is used for speed detection, and still another embodiment of the embodiment is possible.
  • the rotation angle sensor 12 is not limited to the Hall IC, and can be similarly applied to, for example, an encoder pulse signal.
  • a general incremental encoder pulse has two phases, A phase and B phase, but it can be similarly realized by omitting the W phase in the examples shown in FIGS. 6 and 8, for example.
  • the speed is calculated using the time interval measured every 60 degrees of the motor rotation angle, but even if another speed detection method is used The invention can be applied.
  • the six time interval information from the fall of the W phase to the next fall may be used. This is a method of measuring the time required for 360 rotations every 60 degrees of the motor rotation angle, and this can also be applied by changing the speed calculation means 51.
  • the speed calculation means 51 is used. Cannot be implemented. In this case, for example, when information cannot be obtained for a certain period of time or longer, it is advisable to use a coping method such as setting the speed to 0 (zero).
  • this embodiment at the moment when the forward rotation and the reverse rotation are switched, the situation where the time interval of the rotation angle sensor signal 22 does not correspond to the rotation speed is detected and dealt with, so that the normal rotation and the reverse rotation are switched.
  • the speed calculation error can be reduced even in the situation. Therefore, this embodiment is particularly suitable for an application in which forward rotation and reverse rotation are repeated.
  • FIG. 12 is a cross-sectional view of the variable valve timing control device according to the fourth embodiment of the present invention.
  • the engine 201 is provided with an intake side electric valve timing control device 10a and an exhaust side electric valve timing control device 10b.
  • the crankshaft 202 of the engine is connected to a piston in the cylinder and converts the reciprocating motion of the piston into a rotary motion.
  • the intake cam 204a and the exhaust cam 204b are connected to the intake side cam shaft 203a and the exhaust side cam shaft 203b, respectively.
  • the intake side electric valve timing control device 10a has an intake side electric valve timing control motor attached to the engine 201 and an intake side phase changer attached to the intake side camshaft 203a.
  • the intake side phase changer has a timing chain or a timing belt to transmit the rotational force of the crankshaft 202, and has a reduction mechanism (not shown) to rotate the intake side electric valve timing control motor. It is possible to decelerate and change the rotation phases of the intake side camshaft 203a and the crankshaft 202.
  • the exhaust side electric valve timing control device 10b has an exhaust side electric valve timing control motor attached to the engine 201 and an exhaust side phase changer attached to the exhaust side camshaft 203b. Like the intake side phase changer, the exhaust side phase changer also has a timing chain or timing belt to transmit the rotational force of the crankshaft 202, and has a reduction mechanism (not shown) on the exhaust side. The rotation of the electric valve timing control motor can be decelerated to change the rotation phases of the exhaust side camshaft 203b and the crankshaft 202.
  • the intake cam 204a opens the intake valve 206a by pushing the intake valve stem end 205a.
  • the intake cam 204a rotates to a position where the intake valve stem end 205a is not pushed, the intake valve 206a is closed by the intake valve spring 207a.
  • the exhaust cam 204b opens the exhaust valve 206b by pushing the exhaust valve stem end 205b.
  • the exhaust cam 204b rotates to a position where the exhaust valve stem end 205b is not pushed, the exhaust valve 206b is closed by the exhaust valve spring 207b.
  • the variable valve timing control device shown in FIG. 12 is a system called a rotation-synchronized type, and the intake-side camshaft 203a and the exhaust-side camshaft 203b are normally controlled to rotate in synchronization with the crankshaft 202.
  • the "synchronous state” means that the camshaft makes one rotation with respect to two rotations of the crankshaft, and the valve opening start angle and the valve opening end angle are always the same crankshaft angle.
  • variable valve timing control device In such a variable valve timing control device, the rotation speed of the electric valve timing control motor on the intake side is increased from the synchronous state, and when the desired valve opening start angle is reached, the synchronous state is restored to accelerate the intake timing. be able to. This is called “advance angle”. Further, the intake timing can be delayed by slowing down the rotation speed of the intake side electric valve timing control motor from the synchronous state and returning to the synchronous state again when the desired valve opening start angle is reached. This is called “retard”.
  • the exhaust valve can be controlled in exactly the same way.
  • FIG. 13 is a diagram showing the operation of the variable valve timing control device according to the fourth embodiment of the present invention.
  • 211 is a graph of engine speed
  • 212 is a graph of valve phase angle
  • 213 is a graph of motor speed.
  • the engine speed is assumed to be constant
  • the valve phase angle 212 is set to a phase angle of 0 degrees when the camshaft angle with respect to the crankshaft angle in the normal operating state.
  • a motor that opens and closes a valve is provided at least one of intake and exhaust.
  • the motor speed increases once at t1 and then decreases to the synchronous speed at t2.
  • the valve phase angle can be changed to the reclamation angle. From this state, the valve phase angle can be changed to the re-lagging angle by lowering the motor speed at t3 and increasing it to the synchronous speed again at t4.
  • the motor speed is lowered from t3 to t4, but at this time, the synchronous speed determined from the engine speed and the request response up to the re-delay angle are used. In a situation where the motor rotation speed switches from normal rotation to reverse rotation.
  • variable valve timing control device In the conventional motor speed calculation method, there is a large calculation error when switching from forward rotation to reverse rotation.
  • the upper control system often has a high gain in order to ensure high responsiveness, and therefore a calculation error may greatly deteriorate the control performance.
  • the intake side electric valve timing control device 10a and the exhaust side electric valve timing control device 10b are controlled by the motor control devices described in the first to third embodiments from the normal rotation. Since the calculation error at the time of switching to reverse rotation can be reduced, it is possible to provide a variable valve timing control device with improved responsiveness.
  • FIG. 14 is a schematic view of the electric power steering device according to the fifth embodiment of the present invention.
  • the electric power steering device assists the steering operation by the driving force of the motor.
  • the steering shaft 222 is connected to the steering wheel 221.
  • the motor 10 that is the drive source of the electric power steering device is connected to the motor shaft 11.
  • the motor shaft 11 is connected to the steering shaft 222 by the power combining means 223, and the power of the motor 10 is combined with the steering shaft 222 by the power combining means 223.
  • the combined power steering shaft 222 is coupled to the steering gear mechanism 224.
  • the steering gear mechanism 224 is attached to the knuckle arm 225 and changes the direction of the wheels 226.
  • the electric power steering device is always in a state of receiving the resistance of the road surface. Further, since the driver repeats the adjustment in small steps so as to correct the road surface resistance by the steering wheel, the motor 10 is in a state of repeating forward rotation and reverse rotation.
  • the motor control device described in the first to third embodiments to the electric power steering device, for example, when the steering wheel 221 rotates in a direction opposite to the direction intended by the driver in off-road driving (so-called). Even in the "kicked" state), the effect of being able to realize control that reduces the torque that bounces off the driver can be obtained. Further, when electric airplanes become widespread, the same effect can be expected with electric ladder control for aircraft.
  • th 3 period determination means 61a, 61b, 61c, 61d, 61e ... time, 63 ... time interval, 64 ... speed calculation selection time, 65 ... first period, 66 ... second period, 67 ... third period, 68 ... phase Update prohibited section, 71a ... U phase change event generating means, 71b ... V phase changing event generating means, 71c ... W phase changing event generating means, 72a ... U phase update permitting means, 72b ... V phase updating permitting means, 72c ... W Phase update permission means, 73a ... U phase change time storage means, 73b ... V phase change time storage means, 73c ... W phase change time storage means, 201 ... engine, 202 ...
  • crank shaft 203a ... intake side cam shaft, 203b ... Exhaust side cam shaft, 204a ... Intake cam, 204b ... Exhaust cam, 205a ... Intake valve stem end, 205b ... Exhaust valve stem end, 206a ... Intake valve, 206b ... Exhaust valve, 207a ... Intake valve spring, 207b ... Exhaust valve spring , 212 ... Valve phase angle, 221 ... Steering wheel, 222 ... Steering shaft, 223 ... Power synthesis means, 224 ... Steering gear mechanism, 225 ... Knuckle arm, 226 ... Wheel

Abstract

The present invention addresses the problem of appropriately controlling a motor by ensuring speed calculation accuracy even when the motor is frequently switched between forward rotation and backward rotation. The present invention is provided with: a rotational angle sensor 12 that outputs a three-phase signal for detecting the rotational angle of a motor 10; and a motor control device 20 that controls a rotational speed output of the motor 10 on the basis of the three-phase signal and a command signal 21. The invention is further provided with a first period determination means 42 for determining a first period where the three-phase signal outputted from the rotational angle sensor 12 is outputted in an order of rising, falling, and rising over three phases, and a second period determination means 43 for determining a second period where the three-phase signal outputted from the rotational angle sensor 12 is outputted in an order of falling, rising, and falling over the three phases. When the output of the rotational angle sensor 12 is in the first or second period, control is performed so as to update the rotational speed output of the motor 10.

Description

モータ制御装置およびモータ制御方法、並びにこれらを用いた可変バルブタイミング制御装置及び可変バルブタイミング制御方法Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using these
 本発明はモータ制御装置およびモータ制御方法、並びにこれらを用いた可変バルブタイミング制御装置及び可変バルブタイミング制御方法に関する。 The present invention relates to a motor control device and a motor control method, and a variable valve timing control device and a variable valve timing control method using these.
 自動車等に搭載されている内燃機関においては、燃費の向上、排気の清浄化が求められている。そのための一手段として、エンジンの補機の電動化が進められている。これまでエンジンを直接の動力源として駆動していた部分を電動化することにより、制御応答性の向上や、摩擦などの機械的損失の低減が期待できる。例えば、エンジンの動力で油圧ポンプを駆動して動作するパワーステアリングは電動化が進展しており、さらには可変バルブタイミング装置のようにエンジン燃焼制御にかかわる部分についても電動化が検討されている。 Internal combustion engines installed in automobiles, etc. are required to improve fuel efficiency and clean exhaust gas. As one means for that purpose, electrification of engine auxiliary equipment is being promoted. By electrifying the part that has been driven by the engine as a direct power source, it is expected that the control response will be improved and the mechanical loss such as friction will be reduced. For example, power steering, which operates by driving a hydraulic pump with the power of an engine, is being electrified, and further, electrification is being considered for parts related to engine combustion control, such as a variable valve timing device.
 電動化に用いるモータとしては様々なものがあるが、自動車では直流電源を使用するために直流モータが用いられる。従来はブラシ整流子を用いる直流整流子モータが主流であったが、近年のパワーエレクトロニクスの発展に伴い、ブラシレス直流モータが普及しつつある。ブラシレス直流モータは磁極位置をホールセンサやエンコーダといった回転角センサによって検出し、検出した回転角に基づきモータコイルに印加する電圧を制御する。
このようなモータ制御技術の一例として、例えば特許文献1がある。
There are various types of motors used for electrification, but in automobiles, a DC motor is used to use a DC power supply. Conventionally, DC commutator motors that use brush commutators have been the mainstream, but with the development of power electronics in recent years, brushless DC motors are becoming widespread. The brushless DC motor detects the magnetic pole position by a rotation angle sensor such as a hall sensor or an encoder, and controls the voltage applied to the motor coil based on the detected rotation angle.
Patent Document 1 is an example of such a motor control technique.
 特許文献1には、3個のホールセンサを備えた主制御部を備え、V相信号の立上り、W信号の立上り、U相信号の立下り、もしくはU相信号の立上り、W信号の立下り、V相信号の立上りを検出して運転モードを切り替える技術が開示されている。 Patent Document 1 includes a main control unit including three Hall sensors, and has a V-phase signal rise, a W signal rise, a U-phase signal fall, or a U-phase signal rise, and a W signal fall. , A technique for switching an operation mode by detecting a rise of a V-phase signal is disclosed.
特開2005-261957号公報Japanese Unexamined Patent Publication No. 2005-261957
 エンジンにおけるバルブタイミングをモータによって可変制御する場合、モータの回転軸に取り付けられたカムはバルブを開閉するように動作する。モータを制御する可変バルブタイミング制御装置は、エンジンの回転角に対応するモータの回転角を変化させることによって開弁または閉弁タイミングを制御する。エンジンの運転中は、要求される動作、例えばエンジントルクの変動に対応するため、モータは加速、減速することが求められる。このため、条件によってはモータの回転方向が正回転から逆回転へ、また逆回転から正回転に替わる場合がある。この場合、例えば特許文献1に記載の技術を可変バルブタイミング制御に用いた場合、回転角センサのパルス信号の間隔から速度情報を得ているため、回転方向の切り替わり点においてはパルス信号の間隔と速度とが対応しない期間が発生する。そのため回転方向の切り替わり点付近では速度が過大と判定される期間が存在してしまう可能性がある。可変バルブタイミング制御装置にあってはモータを適切に制御することが必要であることから高応答性が要求され、上位制御系でのゲインは一般に高く設定される。しかしながら、前記のような過大速度が存在する場合、安定性確保の観点からゲインを高くできず、速度演算精度が低下しモータを適切に制御することが困難であった。 When the valve timing in the engine is variably controlled by the motor, the cam attached to the rotating shaft of the motor operates to open and close the valve. The variable valve timing control device that controls the motor controls the valve opening or closing timing by changing the rotation angle of the motor corresponding to the rotation angle of the engine. While the engine is running, the motor is required to accelerate and decelerate in order to respond to the required operation, for example, fluctuations in engine torque. Therefore, depending on the conditions, the rotation direction of the motor may change from forward rotation to reverse rotation, or from reverse rotation to forward rotation. In this case, for example, when the technique described in Patent Document 1 is used for variable valve timing control, the velocity information is obtained from the pulse signal interval of the rotation angle sensor, so that the pulse signal interval is used at the switching point in the rotation direction. There will be a period when the speed does not correspond. Therefore, there may be a period in which the speed is determined to be excessive near the switching point in the rotation direction. Since it is necessary to appropriately control the motor in the variable valve timing control device, high responsiveness is required, and the gain in the upper control system is generally set high. However, when the excessive speed as described above exists, the gain cannot be increased from the viewpoint of ensuring stability, the speed calculation accuracy is lowered, and it is difficult to control the motor appropriately.
 本発明の目的は、モータが正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することができるモータ制御装置およびモータ制御方法、並びにこれらを用いた可変バルブタイミング制御装置及び可変バルブタイミング制御方法を提供することにある。 An object of the present invention is a motor control device and a motor control method capable of appropriately controlling a motor while ensuring speed calculation accuracy even when the motor frequently switches between normal rotation and reverse rotation, and a variable valve using these. It is an object of the present invention to provide a timing control device and a variable valve timing control method.
 上記目的を達成するために本発明は、一例として、モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御装置であって、前記回転角センサから出力される前記3相信号が、3相に渡って立上り、立下り、立上りの順で出力される第1期間を判定する第1期間判定手段と、前記回転角センサから出力される前記3相信号が、3相に渡って立下り、立上り、立下りの順で出力される第2期間を判定する第2期間判定手段と、を備え、前記回転角センサの出力が前記第1期間または前記第2期間にある場合には、前記モータの回転速度出力を更新するように制御することを特徴とする。 In order to achieve the above object, as an example, the present invention includes a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor, and the rotation speed of the motor based on the three-phase signal and the command signal. A first period of a motor control device that controls the output, in which the three-phase signal output from the rotation angle sensor is output in the order of rising, falling, and rising over the three phases. A period determination means, a second period determination means for determining a second period in which the three-phase signal output from the rotation angle sensor is output in the order of falling, rising, and falling over the three phases. When the output of the rotation angle sensor is in the first period or the second period, it is characterized in that the rotation speed output of the motor is controlled to be updated.
 また本発明は、モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御方法であって、前記回転角センサから出力される前記3相信号が、3相に渡って立上り、立下り、立上りの順で出力される期間を第1期間とし、前記回転角センサから出力される前記3相信号が、3相に渡って立下り、立上り、立下りの順で出力される期間を第2期間とし、前記回転角センサの出力が前記第1期間または前記第2期間にある場合には、前記モータの回転速度出力を更新するように制御することを特徴とする。 The present invention is a motor control method including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor, and controls the rotation speed output of the motor based on the three-phase signal and the command signal. The period in which the three-phase signal output from the rotation angle sensor is output over the three phases in the order of rising, falling, and rising is set as the first period, and the third period output from the rotation angle sensor. When the phase signal is output over three phases in the order of falling, rising, and falling as the second period, and the output of the rotation angle sensor is in the first period or the second period, , The motor is controlled so as to update the rotation speed output of the motor.
 本発明によれば、モータが正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することができるモータ制御装置およびモータ制御方法、並びにこれらを用いた可変バルブタイミング制御装置及び可変バルブタイミング制御方法を提供することができる。 According to the present invention, a motor control device and a motor control method capable of appropriately controlling a motor while ensuring speed calculation accuracy even when the motor frequently switches between normal rotation and reverse rotation, and a variable valve using these. A timing control device and a variable valve timing control method can be provided.
本発明の第1実施例に係るモータ駆動システム示すブロック図である。It is a block diagram which shows the motor drive system which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係るモータ制御装置20の制御ブロック図である。It is a control block diagram of the motor control device 20 which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係るモータ速度推定手段28の制御ブロック図である。It is a control block diagram of the motor speed estimation means 28 which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係るモータ速度推定手段28の動作の一例を示す図である。It is a figure which shows an example of the operation of the motor speed estimation means 28 which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係るモータ速度推定手段28の動作を示すフローチャートである。It is a flowchart which shows the operation of the motor speed estimation means 28 which concerns on 1st Embodiment of this invention. 本発明の第2実施例に係るモータ速度推定手段28の制御ブロック図である。It is a control block diagram of the motor speed estimation means 28 which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係るモータ速度推定手段28の動作の一例を示す図である。It is a figure which shows an example of the operation of the motor speed estimation means 28 which concerns on 2nd Embodiment of this invention. 本発明の第3実施例に係るモータ速度推定手段28の制御ブロック図である。It is a control block diagram of the motor speed estimation means 28 which concerns on 3rd Embodiment of this invention. 本発明の第3実施例に係るモータ速度推定手段28の動作の一例を示す図である。It is a figure which shows an example of the operation of the motor speed estimation means 28 which concerns on 3rd Example of this invention. 本発明の第3実施例に係るモータ速度推定手段28の動作を示すフローチャートである。It is a flowchart which shows the operation of the motor speed estimation means 28 which concerns on 3rd Embodiment of this invention. 本発明の第3実施例に係る変化相と回転方向の関係を示す図である。It is a figure which shows the relationship between the changing phase and the rotation direction which concerns on 3rd Example of this invention. 本発明の第4実施例に係る可変バルブタイミング制御装置の断面図である。It is sectional drawing of the variable valve timing control device which concerns on 4th Embodiment of this invention. 本発明の第4実施例に係る可変バルブタイミング制御装置の動作を示す図である。It is a figure which shows the operation of the variable valve timing control device which concerns on 4th Embodiment of this invention. 本発明の第5実施例に係る電動パワーステアリング装置の概略図である。It is the schematic of the electric power steering apparatus which concerns on 5th Embodiment of this invention.
 本発明の実施形態によるモータ制御装置は、特に速度の高応答性を求められるアプリケーションに適用され、モータとしてはブラシレス直流モータを対象とする。主な応用例としては,内燃機関エンジンにおけるバルブタイミングをモータを用いて制御する可変バルブタイミング制御装置、ステアリング操作をモータで補助する電動パワーステアリング装置を想定している。 The motor control device according to the embodiment of the present invention is particularly applied to an application that requires high speed response, and the motor is a brushless DC motor. As main application examples, a variable valve timing control device that controls valve timing in an internal combustion engine engine using a motor and an electric power steering device that assists steering operation with a motor are assumed.
 本発明の実施形態では、モータの回転角を検出するための3相信号を出力する回転角センサを備えており、前記回転角センサから出力される前記3相信号が、3相に渡って立上り、立下り、立上りの順で出力される期間を第1期間とし、前記回転角センサから出力される前記3相信号が、3相に渡って立下り、立上り、立下りの順で出力される期間を第2期間とし、前記回転角センサの出力が前記第1期間または前記第2期間にある場合には、前記モータの回転速度出力を更新するように制御することを特徴とする。本実施の形態では、上記のように構成することにより、モータの回転方向が変化した場合と、モータ回転が静定するまでの期間について、回転角センサパルス信号間隔検出によって計算される回転速度出力演算が正確な場合を回転速度として選択することができる。これによって、正転と逆転が変化する領域と、軸剛性不足などに伴う速度不安定領域における速度演算誤差の影響を排除できる。 In the embodiment of the present invention, a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor is provided, and the three-phase signal output from the rotation angle sensor rises over three phases. The first period is the period in which the signals are output in the order of falling, falling, and rising, and the three-phase signal output from the rotation angle sensor is output in the order of falling, rising, and falling over the three phases. The period is defined as the second period, and when the output of the rotation angle sensor is in the first period or the second period, the rotation speed output of the motor is controlled to be updated. In the present embodiment, the rotation speed output calculated by the rotation angle sensor pulse signal interval detection for the case where the rotation direction of the motor changes and the period until the motor rotation is settled by the configuration as described above. The case where the calculation is accurate can be selected as the rotation speed. As a result, the influence of the speed calculation error in the region where the forward rotation and the reverse rotation change and the speed unstable region due to insufficient shaft rigidity can be eliminated.
 また、本発明の実施形態では、モータの回転角を検出するための3相信号を出力する回転角センサを備えており、前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの期間を第3期間とし、前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を前回の回転速度出力に保持し、前記第3期間終了時に前記モータの回転速度出力を更新するようにしたことを特徴とする。 Further, in the embodiment of the present invention, a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor is provided, and among the three-phase signals output from the rotation angle sensor, a specific phase The period from the time when only the signal changes two or more times to the detection of the signal change of the phase other than the specific phase is defined as the third period, and when the output of the rotation angle sensor is in the third period, the motor The rotation speed output of the motor is retained at the previous rotation speed output, and the rotation speed output of the motor is updated at the end of the third period.
 また、本発明の実施形態では、モータの回転角を検出するための3相信号を出力する回転角センサを備えており、前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの期間を第3期間とし、前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を0とし、前記第3期間終了時に前記モータの回転速度出力を更新することを特徴とする。 Further, in the embodiment of the present invention, a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of the motor is provided, and among the three-phase signals output from the rotation angle sensor, a specific phase The period from the time when only the signal changes twice or more to the detection of the signal change of the phase other than the specific phase is defined as the third period, and when the output of the rotation angle sensor is in the third period, the motor The rotation speed output of the motor is set to 0, and the rotation speed output of the motor is updated at the end of the third period.
 さらに、本発明の実施形態では、吸気バルブ及び排気バルブをそれぞれ開閉する吸気カム及び排気カムと、前記吸気カム及び前記排気カムにそれぞれ連結された吸気側カム軸及び排気側カム軸と、前記吸気側カム軸及び前記排気側カム軸を回転駆動する吸気側電動バルブタイミング制御モータ及び排気側電動バルブタイミング制御モータを備えた可変バルブタイミング制御において、前記吸気側電動バルブタイミング制御モータ及び前記排気側電動バルブタイミング制御モータは、上記の実施形態に記載のモータ制御によって制御されることを特徴とする。 Further, in the embodiment of the present invention, the intake cam and the exhaust cam that open and close the intake valve and the exhaust valve, respectively, the intake cam shaft and the exhaust side cam shaft connected to the intake cam and the exhaust cam, respectively, and the intake. In variable valve timing control including an intake side electric valve timing control motor and an exhaust side electric valve timing control motor that rotationally drive the side camshaft and the exhaust side camshaft, the intake side electric valve timing control motor and the exhaust side electric The valve timing control motor is characterized by being controlled by the motor control described in the above embodiment.
 本発明の実施形態では、上記のモータ制御装置によって駆動されるモータを用いてエンジンのバルブタイミングを調整することによって、正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することが可能となり、燃費低減、排気のクリーン化に貢献する。 In the embodiment of the present invention, the valve timing of the engine is adjusted by using the motor driven by the above-mentioned motor control device, so that the motor can secure the speed calculation accuracy even when the forward rotation and the reverse rotation are frequently switched. Appropriate control is possible, which contributes to reduced fuel consumption and cleaner exhaust.
 上記実施形態を具体化する実施例について、以下説明する。 An embodiment embodying the above embodiment will be described below.
 図1は本発明の第1実施例に係るモータ駆動システム示すブロック図である。本実施例では電力変換装置として三相モータ駆動用のインバータを用いており、制御対象となるモータ10は、ブラシレス直流モータを用いている。モータ10から発生したトルクはモータシャフト11に伝達される。モータ10は、各巻線に電圧をかけるタイミングを回転角センサ12によって判断する。回転角センサ12としては、アブソリュートエンコーダやレゾルバなどが利用可能であるが、本図ではホールICの例を用いて説明する。ホールICは磁束方向をデジタル信号として出力するものである。モータ10に接続される配線は三相の配線13であり、配線13には電力変換装置14からの交流電圧が印加される。電力変換装置14はスイッチング素子15をON/OFFさせることにより直流電圧を交流電圧に変換して配線13に印加される交流電圧を作成する。 FIG. 1 is a block diagram showing a motor drive system according to the first embodiment of the present invention. In this embodiment, an inverter for driving a three-phase motor is used as the power conversion device, and a brushless DC motor is used as the motor 10 to be controlled. The torque generated from the motor 10 is transmitted to the motor shaft 11. The motor 10 determines the timing at which a voltage is applied to each winding by the rotation angle sensor 12. As the rotation angle sensor 12, an absolute encoder, a resolver, or the like can be used, but in this figure, an example of a Hall IC will be described. The Hall IC outputs the magnetic flux direction as a digital signal. The wiring connected to the motor 10 is a three-phase wiring 13, and an AC voltage from the power conversion device 14 is applied to the wiring 13. The power conversion device 14 converts a DC voltage into an AC voltage by turning on / off the switching element 15 to create an AC voltage applied to the wiring 13.
 電流検出器16(直流電流検出器)は、電力変換装置14に流入または流出する電流を測定する。一般的にはシャント抵抗を接地点とスイッチング素子15の負極側接続端子の間に挿入し、シャント抵抗の両端電圧を測定することにより電流を検出する。スイッチング素子15はゲートドライバ17によって作成されるゲート電圧18によってON/OFFされる。ゲートドライバ17はスイッチング素子15のON/OFFタイミングを決定するゲート信号19を増幅し、スイッチング素子15が動作可能となる電圧および電流に変換する。 The current detector 16 (DC current detector) measures the current flowing in or out of the power converter 14. Generally, a shunt resistor is inserted between the ground point and the negative electrode side connection terminal of the switching element 15, and the current is detected by measuring the voltage across the shunt resistor. The switching element 15 is turned ON / OFF by the gate voltage 18 created by the gate driver 17. The gate driver 17 amplifies the gate signal 19 that determines the ON / OFF timing of the switching element 15 and converts it into a voltage and a current that enable the switching element 15 to operate.
 モータ制御装置20は、電子制御ユニット(ECU)等の上位制御系からの指令信号21を受信し、この指令信号21に追従するようにモータ10を動作させるためのゲート信号19を作成する。モータ制御装置20は、その他の入力として回転角センサ信号22や直流電流信号23を利用する。回転角センサ信号22は回転角センサ12の出力であり、U相,V相,W相の3相分の信号が出力される。本実施例ではこれら3相分の信号を3相信号と定義する。直流電流信号23は電流検出器16の出力である。 The motor control device 20 receives a command signal 21 from a higher-level control system such as an electronic control unit (ECU), and creates a gate signal 19 for operating the motor 10 so as to follow the command signal 21. The motor control device 20 uses the rotation angle sensor signal 22 and the DC current signal 23 as other inputs. The rotation angle sensor signal 22 is the output of the rotation angle sensor 12, and signals for three phases of U phase, V phase, and W phase are output. In this embodiment, these three-phase signals are defined as three-phase signals. The direct current signal 23 is the output of the current detector 16.
 次にモータ駆動システムの構成の一部であるモータ制御装置20の構成について説明する。図2は本発明の第1実施例に係るモータ制御装置20の制御ブロック図である。本実施例ではモータ制御装置20が受信する指令信号21はトルク指令とする。 Next, the configuration of the motor control device 20, which is a part of the configuration of the motor drive system, will be described. FIG. 2 is a control block diagram of the motor control device 20 according to the first embodiment of the present invention. In this embodiment, the command signal 21 received by the motor control device 20 is a torque command.
 指令信号21は補償手段24に入力される。補償手段24は指令信号21とトルク推定値25を入力とし、指令信号21とトルク推定値25の偏差が小さくなるように制御を行い、トルク指令信号26を出力する。具体的にはPID制御などの手段を用いる。トルク推定手段27は、直流電流信号23からトルク推定値25を推定する。本実施例の対象とするブラシレス直流モータでは、発生トルクが直流電流にほぼ比例するため、直流電流信号23からトルク推定値25を推定できる。 The command signal 21 is input to the compensation means 24. The compensation means 24 receives the command signal 21 and the torque estimate value 25 as inputs, controls so that the deviation between the command signal 21 and the torque estimate value 25 becomes small, and outputs the torque command signal 26. Specifically, means such as PID control are used. The torque estimation means 27 estimates the torque estimation value 25 from the DC current signal 23. In the brushless DC motor that is the target of this embodiment, the generated torque is substantially proportional to the DC current, so that the torque estimation value 25 can be estimated from the DC current signal 23.
 回転角センサ信号22はモータ速度推定手段28に入力され、モータ速度推定値29を出力する。モータ速度推定値29はたとえば速度制御系の構築、逆起電圧の補正、回転角度の精度向上などさまざまな目的で用いられるが、ここでは簡素化のため逆起電圧推定手段30のみ図示した。ブラシレス直流モータ(モータ10)では、回転速度が上昇するに従い、モータ内部の起電力によりトルク発生に用いることができる電圧が低下する。逆起電圧推定手段30は逆起電圧推定値31を計算する。進角制御などを行わない場合、単純には逆起電圧はモータ回転速度に比例する。 The rotation angle sensor signal 22 is input to the motor speed estimation means 28, and the motor speed estimation value 29 is output. The motor speed estimation value 29 is used for various purposes such as construction of a speed control system, correction of counter electromotive voltage, and improvement of accuracy of rotation angle, but here, for simplification, only the counter electromotive voltage estimation means 30 is shown. In the brushless DC motor (motor 10), as the rotation speed increases, the voltage that can be used for torque generation decreases due to the electromotive force inside the motor. The counter electromotive voltage estimation means 30 calculates the counter electromotive voltage estimation value 31. When the advance angle control is not performed, the counter electromotive voltage is simply proportional to the motor rotation speed.
 トルク指令信号26と逆起電圧推定値31は相電圧変換手段32に送られ、モータ10の各相に印加する相電圧を計算する。電力変換装置14はスイッチングのデューティ比を変化させることにより相電圧を変化させるため、ここではデューティ比信号33を出力する。たとえばデューティ比が1のとき、相電圧としては直流電圧(VDC)が印加され、デューティ比が0のときは0、デューティ比が0.5のときは直流電圧の半分(VDC/2)が印加される。このようにして作成されたデューティ比信号33、トルク方向信号34、回転角センサ信号22はゲート信号作成手段35に入力され、モータ10が所望のトルクを発生するように調整されたゲート信号19を出力する。 The torque command signal 26 and the counter electromotive voltage estimated value 31 are sent to the phase voltage conversion means 32, and the phase voltage applied to each phase of the motor 10 is calculated. Since the power conversion device 14 changes the phase voltage by changing the duty ratio of switching, the duty ratio signal 33 is output here. For example, when the duty ratio is 1, a direct current voltage (VDC) is applied as the phase voltage, when the duty ratio is 0, 0 is applied, and when the duty ratio is 0.5, half of the direct current voltage (VDC / 2) is applied. Will be done. The duty ratio signal 33, the torque direction signal 34, and the rotation angle sensor signal 22 created in this manner are input to the gate signal creating means 35, and the gate signal 19 adjusted so that the motor 10 generates a desired torque is generated. Output.
 次にモータ制御装置20の構成の一部を成すモータ速度推定手段28の構成について説明する。図3は本発明の第1実施例に係るモータ速度推定手段28の制御ブロック図である。 Next, the configuration of the motor speed estimation means 28, which forms a part of the configuration of the motor control device 20, will be described. FIG. 3 is a control block diagram of the motor speed estimation means 28 according to the first embodiment of the present invention.
 モータ速度推定手段28に入力された回転角センサ信号22は、変化イベント検出手段41、第1期間判定手段42、第2期間判定手段43に入力される。変化イベント検出手段41は、回転角センサ信号22が変化したときにイベント検出信号44を発生する。通常、イベント検出信号44は割込の起動としてマイコンに実装されることが多い。イベント検出信号44が発生した際、第1期間判定手段42、第2期間判定手段43は、回転角センサ信号22の状態を記憶し、あらかじめ設定した変化パターンと照合する。 The rotation angle sensor signal 22 input to the motor speed estimation means 28 is input to the change event detecting means 41, the first period determining means 42, and the second period determining means 43. The change event detecting means 41 generates an event detecting signal 44 when the rotation angle sensor signal 22 changes. Usually, the event detection signal 44 is often mounted on the microcomputer as an interrupt activation. When the event detection signal 44 is generated, the first period determination means 42 and the second period determination means 43 store the state of the rotation angle sensor signal 22 and collate it with a preset change pattern.
 回転角センサ信号22は、ハイレベルとローレベルの2種類あり、回転角センサ信号22がローレベルからハイレベルに変化することを立上り、回転角センサ信号22がハイレベルからローレベルに変化することを立下りと称する。 There are two types of rotation angle sensor signal 22, high level and low level. The rotation angle sensor signal 22 changes from low level to high level, and the rotation angle sensor signal 22 changes from high level to low level. Is called a fall.
 本実施例において、第1期間とは、回転角センサ12から出力される回転角センサ信号22(3相信号)が、立上り、立下り、立上りの変化を順に検出し、かつ前記変化がU相,V相,W相の全相(3相)に渡っているパターンである。 In this embodiment, in the first period, the rotation angle sensor signal 22 (three-phase signal) output from the rotation angle sensor 12 detects changes in rising, falling, and rising in order, and the change is U-phase. This is a pattern covering all phases (3 phases) of, V phase, and W phase.
 また第2期間とは、回転角センサ12から出力される回転角センサ信号22(3相信号)が、立下り、立上り、立下りの変化を順に検出し、かつ前記変化がU相,V相,W相の全相(3相)に渡っているパターンである。第1期間と第2期間のタイミング図については、図4にて後述する。 In the second period, the rotation angle sensor signal 22 (three-phase signal) output from the rotation angle sensor 12 detects changes in falling, rising, and falling in order, and the changes are U-phase and V-phase. , It is a pattern over all phases (3 phases) of W phase. The timing diagrams of the first period and the second period will be described later in FIG.
 第1期間判定手段42と第2期間判定手段43の出力は論理和手段45に送られ、第1期間、第2期間の何れかを満足するときに後述する速度演算を実施する。 The outputs of the first period determining means 42 and the second period determining means 43 are sent to the OR means 45, and when either the first period or the second period is satisfied, the speed calculation described later is performed.
 また、イベント検出信号44は、経過時間演算手段46を動作させる。経過時間演算手段46はFRC(フリーランニングカウンタ)47から発生するFRC現在値48を入力し、FRC前回値記憶手段49に記録されたFRC前回値50との差分を計算する。これは、イベント検出信号44の時間間隔と等価である。前記差分の計算後、FRC現在値48をFRC前回値記憶手段49に送出し、FRC前回値50を更新する。速度演算手段51は、経過時間演算手段46で計算された時間間隔の逆数を計算することによってモータ速度を推定する。速度演算手段51は常にモータ速度を演算できないため、推定速度選択手段52を備えている。例えば、モータ速度が0(ゼロ)の場合にはイベント検出信号44は発生しないため、そのような場合には別の手法により何らかのモータ速度推定値を出力する必要がある。本実施例では、モータ速度が演算できない場合には速度の前回値を使用するか、または強制的にモータ推定速度を0(ゼロ)にするかを推定速度選択手段52が選択する。 Further, the event detection signal 44 operates the elapsed time calculation means 46. The elapsed time calculation means 46 inputs the FRC current value 48 generated from the FRC (free running counter) 47, and calculates the difference from the FRC previous value 50 recorded in the FRC previous value storage means 49. This is equivalent to the time interval of the event detection signal 44. After the calculation of the difference, the FRC current value 48 is sent to the FRC previous value storage means 49, and the FRC previous value 50 is updated. The speed calculation means 51 estimates the motor speed by calculating the reciprocal of the time interval calculated by the elapsed time calculation means 46. Since the speed calculation means 51 cannot always calculate the motor speed, the speed calculation means 51 includes an estimation speed selection means 52. For example, when the motor speed is 0 (zero), the event detection signal 44 does not occur. In such a case, it is necessary to output some motor speed estimate by another method. In this embodiment, when the motor speed cannot be calculated, the estimated speed selection means 52 selects whether to use the previous value of the speed or forcibly set the motor estimated speed to 0 (zero).
 本実施例において、回転角センサ12の挙動が第1期間判定手段42と第2期間判定手段43の双方に該当しない場合には、推定速度選択手段52によって速度前回値記憶手段53の記憶値または零速度設定手段54が推定速度55として選択される。回転角センサ12の挙動が第1期間判定手段42と第2期間判定手段43の何れかに該当する場合には、速度演算手段51の出力が推定速度55の出力として選択される。 In this embodiment, when the behavior of the rotation angle sensor 12 does not correspond to both the first period determination means 42 and the second period determination means 43, the estimated speed selection means 52 uses the estimated speed selection means 52 to store the value of the speed previous value storage means 53 or The zero velocity setting means 54 is selected as the estimated velocity 55. When the behavior of the rotation angle sensor 12 corresponds to either the first period determination means 42 or the second period determination means 43, the output of the speed calculation means 51 is selected as the output of the estimated speed 55.
 次に図4を用いて、モータ速度推定手段28の動作について説明する。図4は本発明の第1実施例に係るモータ速度推定手段28の動作の一例を示す図である。なお、説明の簡単化のため、以下を仮定する。
・回転角センサ12はホールICであり、デジタル信号出力である。
・経過時間演算手段46は何れかの相の回転角センサ12が変化したときに時刻を取得する。
・ホールICは各相120度ずつずらして配置されており、モータ回転角60度ごとにイベント検出信号44が発生する。
・モータは三相2極機とし、減速機などの影響を考慮しない。これにより機械角と電気角とが等しくなり、換算を省略できる。
・モータ回転方向は時計回りを正転、反時計まわりを逆転と定義する。
Next, the operation of the motor speed estimation means 28 will be described with reference to FIG. FIG. 4 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the first embodiment of the present invention. For the sake of simplicity, the following is assumed.
The rotation angle sensor 12 is a Hall IC and is a digital signal output.
The elapsed time calculation means 46 acquires the time when the rotation angle sensor 12 of any phase changes.
The Hall ICs are arranged so as to be offset by 120 degrees in each phase, and an event detection signal 44 is generated every 60 degrees of the motor rotation angle.
-The motor will be a three-phase two-pole machine, and the effects of reduction gears will not be considered. As a result, the mechanical angle and the electric angle become equal, and the conversion can be omitted.
-For the motor rotation direction, clockwise is defined as forward rotation and counterclockwise rotation is defined as reverse rotation.
 また、各相は時計回りにU相,V相,W相とし、モータコイルU相から60度遅れた位置にU相ホールICを配置し、モータコイルV相から60度遅れた位置にV相ホールICを配置し、モータコイルW相から60度遅れた位置にW相ホールICを配置する。 Further, each phase is clockwise as U phase, V phase, and W phase, and the U phase Hall IC is arranged at a position 60 degrees behind the motor coil U phase, and the V phase is located 60 degrees behind the motor coil V phase. The Hall IC is arranged, and the W-phase Hall IC is arranged at a position 60 degrees behind the W-phase of the motor coil.
 図4において、22aはU相ホールICであり、22bはV相ホールICであり、22cはW相ホールICである。ホールIC22a~22cはモータ10の各巻線間に図のように配置される。61a、61b、61c、61d、61eはホールIC22a~22cが変化した瞬間の時刻であり、62a、62b、62c、62d、62eは時刻61a、61b、61c、61d、61eにおけるモータ10の回転状態である。 In FIG. 4, 22a is a U-phase Hall IC, 22b is a V-phase Hall IC, and 22c is a W-phase Hall IC. Halls ICs 22a to 22c are arranged between the windings of the motor 10 as shown in the figure. 61a, 61b, 61c, 61d, 61e are the times at the moment when the hall ICs 22a to 22c change, and 62a, 62b, 62c, 62d, 62e are the times when the motor 10 is rotating at times 61a, 61b, 61c, 61d, 61e. is there.
 速度演算手段51が信頼できる推定速度を計算できる条件は、モータ10が60度回転するのにかかる時間を経過時間演算手段46が正しく取得できている場合である。経過時間演算手段46はホールIC22a~22cの変化を監視し、その時間間隔を見るため、正回転と逆回転が切り替わる場合には、経過時間演算手段46は60度回転にかかる時間を測定しておらず、その結果、速度演算手段51は実際とは異なる速度演算結果を出力する。 The condition that the speed calculation means 51 can calculate a reliable estimated speed is that the elapsed time calculation means 46 can correctly acquire the time required for the motor 10 to rotate 60 degrees. The elapsed time calculating means 46 monitors changes in the hall ICs 22a to 22c and observes the time interval. Therefore, when the forward rotation and the reverse rotation are switched, the elapsed time calculating means 46 measures the time required for 60 degree rotation. As a result, the speed calculation means 51 outputs a speed calculation result different from the actual one.
 図4において、モータ10は時刻61aまでは正方向に回転しているとする。ここでは時計回りを正方向と定義した。時刻61aにW相ホールIC22cの出力が変化した後、時刻61aから時刻61bの期間にモータ10が外力などの影響を受けて逆回転し、時刻61bにおいてW相ホールIC22cの出力が再度変化する。時刻61bから時刻61cの期間にモータ10が正回転に復帰し、時刻61cにおいてW相ホールIC22cの出力が変化する。その後、時刻61d、時刻61eと正方向回転が継続する。正方向回転が継続している期間61c、61d、61eでは、W相ホールIC22cの出力立上り、V相ホールIC22b出力立下り、U相ホールIC22aの出力立上りを観測する。すなわち、ホールIC22a~22cの出力の立上り、立下りパターンを観測することで、安定して正方向回転しているか、逆方向回転しているかを判断でき、速度演算手段51を動作させるかどうかの判断基準となる。 In FIG. 4, it is assumed that the motor 10 is rotating in the positive direction until time 61a. Here, clockwise is defined as the positive direction. After the output of the W-phase hall IC 22c changes at time 61a, the motor 10 rotates in the reverse direction under the influence of an external force or the like during the period from time 61a to time 61b, and the output of the W-phase hall IC 22c changes again at time 61b. The motor 10 returns to normal rotation during the period from time 61b to time 61c, and the output of the W-phase hall IC 22c changes at time 61c. After that, the forward rotation continues at time 61d and time 61e. During the periods 61c, 61d, and 61e during which the forward rotation continues, the output rise of the W-phase hall IC22c, the output fall of the V-phase hall IC22b, and the output rise of the U-phase hall IC22a are observed. That is, by observing the rising and falling patterns of the outputs of the hall ICs 22a to 22c, it is possible to determine whether the speed calculation means 51 is operating in the forward direction or the reverse direction in a stable manner. It becomes a judgment standard.
 矢印で示した時間間隔63は、経過時間演算手段46で計算される。また、△で示した速度演算選択時刻64は、速度演算手段51で計算した結果を推定速度選択手段52が選択するものである。 The time interval 63 indicated by the arrow is calculated by the elapsed time calculation means 46. Further, at the speed calculation selection time 64 indicated by Δ, the estimated speed selection means 52 selects the result calculated by the speed calculation means 51.
 ここではホールIC22a~22cの出力が立上り、立下り、立上りと順に変化し、かつ全てのホールIC22a~22c出力が変化するパターンを第1期間とする。また、ホールIC22a~22cの出力が立下り、立上り、立下りと順に変化し、かつ全てのホールIC22a~22c出力が変化するパターンを第2期間とする。 Here, the pattern in which the outputs of the hall ICs 22a to 22c change in the order of rising, falling, and rising, and the outputs of all the hall ICs 22a to 22c change is defined as the first period. Further, the pattern in which the outputs of the hall ICs 22a to 22c change in the order of falling, rising, and falling, and the outputs of all the hall ICs 22a to 22c change is defined as the second period.
 図4においては、付番65によって示される矢印が第1期間であり、付番66によって示される矢印が第2期間である。ブラシレスDCモータにおいて、正常に正方向回転または逆方向回転している場合には、ホールIC22a~22cが正常に連続動作している限り、第1期間65または第2期間66が観測される。回転角センサ信号22の出力が第1期間65または第2期間66にある場合には、速度演算手段51の結果を採用し、モータ10の回転速度出力を更新するようにする。 In FIG. 4, the arrow indicated by the number 65 is the first period, and the arrow indicated by the number 66 is the second period. When the brushless DC motor is normally rotating in the forward direction or the reverse direction, the first period 65 or the second period 66 is observed as long as the hall ICs 22a to 22c are normally continuously operating. When the output of the rotation angle sensor signal 22 is in the first period 65 or the second period 66, the result of the speed calculation means 51 is adopted to update the rotation speed output of the motor 10.
 図4では第1期間65または第2期間66が検出されているときに速度演算選択時刻64を表示している。このようにすることで、モータ10が60度回転するのにかかる時間を取得できていない時刻61aから時刻61bの時間間隔および時刻61bから時刻61cの時間間隔から得られる速度演算手段51の結果を採用しないという判定が可能となる。そして、回転角センサ信号22の出力が第1期間65または第2期間66以外にある場合には、モータ10の回転速度出力を更新時の回転速度出力に保持するようにする。 In FIG. 4, the speed calculation selection time 64 is displayed when the first period 65 or the second period 66 is detected. By doing so, the result of the speed calculation means 51 obtained from the time interval from time 61a to time 61b and the time interval from time 61b to time 61c for which the time required for the motor 10 to rotate 60 degrees cannot be obtained can be obtained. It is possible to determine not to adopt. Then, when the output of the rotation angle sensor signal 22 is other than the first period 65 or the second period 66, the rotation speed output of the motor 10 is held at the rotation speed output at the time of renewal.
 また、図4においては時刻61cから時刻61dの時間間隔から得られる速度演算手段51の結果も採用しない。これは、正転中に予期しない逆転が発生するような場合、大きな外力が加わっていることが予想され、その期間においては軸ねじれやバックラッシュなどの影響により時刻61cから時刻61dの時間間隔において経過時間演算手段46の出力精度が悪化することが懸念される。本実施例においては時刻61cから時刻61dの期間においても速度演算手段51の出力を採用しないため、特に剛性の確保が難しいアプリケーションに好適である。 Further, in FIG. 4, the result of the speed calculation means 51 obtained from the time interval from the time 61c to the time 61d is not adopted either. This is because when an unexpected reversal occurs during normal rotation, it is expected that a large external force is applied, and during that period, at the time interval from time 61c to time 61d due to the influence of shaft twist and backlash. There is a concern that the output accuracy of the elapsed time calculation means 46 may deteriorate. In this embodiment, since the output of the speed calculation means 51 is not adopted even in the period from the time 61c to the time 61d, it is particularly suitable for an application in which it is difficult to secure the rigidity.
 また、高応答性を確保するためにハイゲイン特性を有する制御系に好適である。ハイゲイン制御系の場合、速度推定誤差が大きいと、指令に対する偏差も大きいと判断し、大トルクを発生させて追従しようとする。その結果消費電力が増加する。また、安定性の確保も困難であるが、本実施例はこのようにハイゲイン制御系に伴う課題を容易に解決できる。 It is also suitable for control systems with high gain characteristics to ensure high responsiveness. In the case of a high gain control system, if the speed estimation error is large, it is determined that the deviation from the command is also large, and a large torque is generated to try to follow. As a result, power consumption increases. In addition, although it is difficult to ensure stability, this embodiment can easily solve the problems associated with the high gain control system.
 次にモータ速度推定手段28の動作について説明する。図5は本発明の第1実施例に係るモータ速度推定手段28の動作を示すフローチャートである。 Next, the operation of the motor speed estimation means 28 will be described. FIG. 5 is a flowchart showing the operation of the motor speed estimation means 28 according to the first embodiment of the present invention.
 図5において、フローチャートはイベント検出信号44を検出することによって開始される。S101はカウンタを取得する処理であり、FRC47の現在値を変数cntに格納する。S102はホールIC22a~22cの出力取得処理である。取得されたホールIC22a~22cの出力は変化相特定処理S103によって変化のあった相を特定する。そして、変化相書出処理S104により、変数phsに変化相情報を書き出す。変数phsは、相を特定できれば整数値(U相=1、V相=2、W相=3など)でも文字(U相=’u’、V相=’V’、W相=’W’など)でもよい。カウンタ取得処理S101およびホールIC22a~22cの出力取得処理S102、変化相特定処理S103ならびに変化相書出処理S104は、イベント検出信号44をトリガとして並列実行される。 In FIG. 5, the flowchart is started by detecting the event detection signal 44. S101 is a process of acquiring a counter, and stores the current value of FRC47 in the variable cnt. S102 is an output acquisition process for the hall ICs 22a to 22c. The acquired outputs of the Hall ICs 22a to 22c identify the changed phase by the changing phase specifying process S103. Then, the changing phase writing process S104 writes out the changing phase information to the variable phs. The variable phs can be an integer value (U phase = 1, V phase = 2, W phase = 3, etc.) or a character (U phase ='u', V phase ='V', W phase ='W' if the phase can be specified. Etc.). The counter acquisition process S101, the output acquisition process S102 of the hall ICs 22a to 22c, the changing phase specifying process S103, and the changing phase writing process S104 are executed in parallel with the event detection signal 44 as a trigger.
 カウンタ前回値取得処理S105は、前回のイベント検出信号44によって取得したカウンタ情報を変数cnt_zとして読み出す。S106は時間間隔取得処理であり、変数cntとcnt_zの差分を計算して変数t60に格納する。t60はモータ10が電気角60度回転するために要する時間を意味する。FRC47は限定されたbitで表されるため、一定時間ごとに0にクリアされる。そのためcnt取得タイミングによってはcnt_z>cntとなる場合が存在する。 The counter previous value acquisition process S105 reads the counter information acquired by the previous event detection signal 44 as the variable cnt_z. S106 is a time interval acquisition process, and the difference between the variables cnt and cnt_z is calculated and stored in the variable t60. t60 means the time required for the motor 10 to rotate at an electric angle of 60 degrees. Since FRC47 is represented by a limited number of bits, it is cleared to 0 at regular intervals. Therefore, depending on the cnt acquisition timing, cnt_z> cnt may occur.
 時間間隔判定処理S107は、変数t60の正負を見てcnt_z>cntかどうかを判定する。
変数t60が負の場合、時間間隔補正処理S108によってあらかじめ設定した定数CMAX+1を足す。これにより正しい時間間隔を得る。なお、CMAXはFRCの最大値である。たとえば、FRCが16bitの場合、CMAXは65535である。変数t60が正の場合、変数t60をそのまま時間間隔として採用する。
The time interval determination process S107 determines whether or not cnt_z> cnt by looking at the sign of the variable t60.
When the variable t60 is negative, the constant CMAX + 1 preset by the time interval correction process S108 is added. This gives the correct time interval. CMAX is the maximum value of FRC. For example, if the FRC is 16 bits, the CMAX is 65535. If the variable t60 is positive, the variable t60 is adopted as it is as the time interval.
 S109は速度演算処理であり、変数t60の逆数に2π(πは円周率)をかけ、6で割ることによって電気角仮速度spd_tmpを得る。2πをかけるのは、単位系をrad/sに変換するためであり、6で割るのは一回転あたりの速度に換算するためである。S110はカウンタ前回値更新処理であり、カウンタ前回値cnt_zに取得したカウンタ情報cntを代入する。処理S101から処理S110までが、主に経過時間演算手段46、FRC前回値記憶手段49、速度演算手段51で行う処理となる。 S109 is a velocity calculation process, and the reciprocal of the variable t60 is multiplied by 2π (π is the pi) and divided by 6 to obtain the electric angle temporary velocity spd_tmp. Multiplying by 2π is to convert the unit system to rad / s, and dividing by 6 is to convert to the speed per rotation. S110 is the counter previous value update process, and the acquired counter information cnt is substituted into the counter previous value cnt_z. The processes from process S101 to process S110 are mainly performed by the elapsed time calculation means 46, the FRC previous value storage means 49, and the speed calculation means 51.
 S111は相情報取得処理であり、変化相phs、前回変化相phs_z、前々回変化相phs_z2を読み込む。変数phsは変化相書出処理S104で書き出されている。S112は第1期間判定処理であり、変化相phs、前回変化相phs_z、前々回変化相phs_z2が前述の第1期間に該当するかどうかを判定する。第1期間に該当しない場合、続く第2期間判定処理S113を行い、前述の第2期間に該当するかどうかを判定する。S112、S113の何れかの判定がYであれば、速度演算処理S109で計算した電気角仮速度spd_tmpを電気角速度spdとして採用する。 S111 is a phase information acquisition process, and reads the changing phase phs, the previous changing phase phs_z, and the previous last changing phase phs_z2. The variable phs is written out in the change phase writing process S104. S112 is a first period determination process, and determines whether or not the change phase phs, the previous change phase phs_z, and the previous two change phase phs_z2 correspond to the above-mentioned first period. If it does not correspond to the first period, the subsequent second period determination process S113 is performed to determine whether or not it corresponds to the above-mentioned second period. If any of the determinations in S112 and S113 is Y, the electric angular velocity spd_tmp calculated in the velocity calculation process S109 is adopted as the electric angular velocity spd.
 第1期間でも第2期間でもない場合、速度比較処理S115により、高速か低速かを判定する。定数THが速度閾値であり、速度閾値THより変数spd_tmpが大きい場合、速度前回値設定処理S116により電気角速度spdを電気角速度前回値spd_zに設定する。また、速度閾値THより変数spd_tmpが小さい場合、零速度設定処理S117により電気角速度spdを0に設定する。この電気角速度spdが推定速度55である。ここでは、回転角センサの出力が第1期間または第2期間以外にある場合には、モータの回転速度出力を0とする。 If it is neither the first period nor the second period, the speed comparison process S115 determines whether the speed is high or low. When the constant TH is the velocity threshold value and the variable spd_tmp is larger than the velocity threshold value TH, the electric angular velocity spd is set to the electric angular velocity previous value spd_z by the velocity previous value setting process S116. When the variable spd_tmp is smaller than the velocity threshold TH, the electric angular velocity spd is set to 0 by the zero velocity setting process S117. This electric angular velocity spd is an estimated velocity 55. Here, when the output of the rotation angle sensor is other than the first period or the second period, the rotation speed output of the motor is set to 0.
 S119は相情報更新処理であり、前々回変化相phs_z2に前回変化相phs_zを代入し、前回変化相phs_zに変化相phsを代入する。S111からS119が第1期間判定手段42、第2期間判定手段43、論理和手段45、推定速度選択手段52、速度前回値記憶手段53、零速度設定手段54で行う処理となる。 S119 is a phase information update process, in which the previous change phase phs_z is substituted for the previous change phase phs_z2, and the previous change phase phs is substituted for the previous change phase phs_z. S111 to S119 are processes performed by the first period determination means 42, the second period determination means 43, the OR means 45, the estimated speed selection means 52, the speed previous value storage means 53, and the zero speed setting means 54.
 本実施例によれば、回転角センサの出力が第1期間または第2期間にある場合にモータの回転速度出力を更新するように制御しているので、モータが正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することができる。 According to this embodiment, since the rotation speed output of the motor is controlled to be updated when the output of the rotation angle sensor is in the first period or the second period, the motor frequently switches between normal rotation and reverse rotation. Even in this case, the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
 次に第2実施例について説明する。図6は本発明の第2実施例に係るモータ速度推定手段28の制御ブロック図である。モータ制御装置20及びモータ駆動システムの構成については図1と同様であるので、詳細な説明は省略する。 Next, the second embodiment will be described. FIG. 6 is a control block diagram of the motor speed estimation means 28 according to the second embodiment of the present invention. Since the configurations of the motor control device 20 and the motor drive system are the same as those in FIG. 1, detailed description thereof will be omitted.
 第1実施例における図3の違いは、第1期間判定手段42、第2期間判定手段43、及び論理和手段45の代わりに第3期間判定手段56を設けたことにある。第3期間とは、3相信号の特定相の信号のみが2回以上変化した時点から特定相以外の相の変化を検出するまでの期間であると定義する。 The difference in FIG. 3 in the first embodiment is that the third period determination means 56 is provided instead of the first period determination means 42, the second period determination means 43, and the OR means 45. The third period is defined as the period from the time when only the signal of the specific phase of the three-phase signal changes two or more times to the detection of the change of the phase other than the specific phase.
 図7は本発明の第2実施例に係るモータ速度推定手段28の動作の一例を示す図である。図7において第3期間は時刻61bから時刻61dの期間である。速度演算選択時刻64は図4とは異なり、時刻61dの時も該当している。モータ10が60度回転するのにかかる時間を取得できていない時刻61aから時刻61bの時間間隔および時刻61bから時刻61cの時間間隔から得られる速度演算手段51の結果を採用しないことは図4と同様である。しかし時刻61cと時刻61dの時間間隔から得られる速度演算手段51の結果は速度演算結果として採用する。 FIG. 7 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the second embodiment of the present invention. In FIG. 7, the third period is a period from time 61b to time 61d. The speed calculation selection time 64 is different from that of FIG. 4, and is also applicable at the time 61d. FIG. 4 shows that the result of the speed calculation means 51 obtained from the time interval from time 61a to time 61b and the time interval from time 61b to time 61c for which the time required for the motor 10 to rotate 60 degrees cannot be obtained is not adopted. The same is true. However, the result of the speed calculation means 51 obtained from the time interval between the time 61c and the time 61d is adopted as the speed calculation result.
 時刻61cと時刻61dの期間は、例えばモータ10の回転シャフト等に十分な剛性が確保されている場合や、高分解能のセンサを利用できる場合には速度検出誤差は十分小さい。したがって前記の条件を満足するハードウェアの場合には第2実施例を利用できる。 During the period of time 61c and time 61d, the speed detection error is sufficiently small, for example, when sufficient rigidity is secured for the rotating shaft of the motor 10 or when a high-resolution sensor can be used. Therefore, in the case of hardware that satisfies the above conditions, the second embodiment can be used.
 第2実施例では、第3期間による判定を用いることにより、時刻61dにおいても速度情報を更新することが可能になり、応答性向上に効果的である。 In the second embodiment, the speed information can be updated even at the time 61d by using the determination based on the third period, which is effective in improving the responsiveness.
 次に速度の演算方法について説明する。なお、説明の簡単化のため、図4で用いた回転角センサ12やモータ10に関する仮定をそのまま適用する。 Next, the speed calculation method will be explained. For the sake of simplification of the explanation, the assumptions regarding the rotation angle sensor 12 and the motor 10 used in FIG. 4 are applied as they are.
 図7と図4の相違は、速度演算の実行と停止を第3期間67の有無によって判断することである。第3期間67の開始時から第3期間67の終了直前までは推定速度55として、速度前回値記憶手段53の記憶値または零速度設定手段54を選択する。零速度設定手段54の値が選択された場合、モータ10の回転速度出力は0となる。速度演算手段51は第3期間67においても動作を継続し、第3期間67の終了直後に推定速度55を更新する。第3期間67が検出されない場合には推定速度55は速度演算手段51の結果を通常通り採用する。 The difference between FIGS. 7 and 4 is that the execution and stop of the speed calculation are judged by the presence or absence of the third period 67. From the start of the third period 67 to immediately before the end of the third period 67, the stored value of the speed previous value storage means 53 or the zero speed setting means 54 is selected as the estimated speed 55. When the value of the zero speed setting means 54 is selected, the rotational speed output of the motor 10 becomes 0. The speed calculation means 51 continues to operate even in the third period 67, and updates the estimated speed 55 immediately after the end of the third period 67. If the third period 67 is not detected, the estimated speed 55 adopts the result of the speed calculation means 51 as usual.
 なお、第2実施例におけるフォローチャートは、図5に示す第1実施例のフローチャートにおいて第1期間判定処理S112、及び第2期間判定処理S113を第3期間判定処理に置き換えるだけであるため、記載を省略する。 The follow chart in the second embodiment is described because it only replaces the first period determination process S112 and the second period determination process S113 with the third period determination process in the flowchart of the first embodiment shown in FIG. Is omitted.
 第2実施例によれば、モータが正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することができる。 According to the second embodiment, even when the motor frequently switches between normal rotation and reverse rotation, the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
 次に第3実施例について説明する。図8は本発明の第3実施例に係るモータ速度推定手段28の制御ブロック図である。モータ制御装置20及びモータ駆動システムの構成については図1と同様であるので、詳細な説明は省略する。また、説明の簡略化のため、以降回転角センサ12はホールICであるとして説明する。 Next, the third embodiment will be described. FIG. 8 is a control block diagram of the motor speed estimation means 28 according to the third embodiment of the present invention. Since the configurations of the motor control device 20 and the motor drive system are the same as those in FIG. 1, detailed description thereof will be omitted. Further, for the sake of simplification of the description, the rotation angle sensor 12 will be described below as a Hall IC.
 各相の相変化イベント発生手段としてのU相変化イベント発生手段71a,V相変化イベント発生手段71b,W相変化イベント発生手段71cは、それぞれ各層の回転角信号の変化を監視して変化の有無を通知する。 The U phase change event generating means 71a, the V phase changing event generating means 71b, and the W phase changing event generating means 71c as the phase change event generating means of each phase monitor the change of the rotation angle signal of each layer to see if there is any change. Notify.
 図8において、入力された3相の回転角センサ信号22のうちU相ホールIC22a出力はU相変化イベント発生手段71aに入力される。U相変化イベント発生手段71aはホールIC22a出力を常に監視し、変化が検出されたときにイベント検出信号44を発生する。組込マイコンで実装する場合には、一般的にデジタルI/O入力変化によって割込を発生させることで実現される。十分な処理機能を有する場合にはポーリングにより常に監視する構成としても差し支えない。V相、W相についても同様であり、ホールIC22b出力を監視するV相変化イベント発生手段71b、ホールIC22c出力を監視するW相変化イベント発生手段71cを有する。また、V相変化イベント発生手段71bからはV相イベント検出信号44bが発生し、W相変化イベント発生手段71cからはW相イベント検出信号44cが発生する。 In FIG. 8, of the three-phase rotation angle sensor signals 22 input, the U-phase hall IC 22a output is input to the U-phase change event generating means 71a. The U-phase change event generating means 71a constantly monitors the output of the Hall IC 22a and generates an event detection signal 44 when a change is detected. When mounting with an embedded microcomputer, it is generally realized by generating an interrupt by changing the digital I / O input. If it has a sufficient processing function, it may be configured to constantly monitor by polling. The same applies to the V phase and the W phase, which includes a V phase change event generating means 71b for monitoring the Hall IC 22b output and a W phase change event generating means 71c for monitoring the Hall IC 22c output. Further, the V-phase event detection signal 44b is generated from the V-phase change event generation means 71b, and the W-phase event detection signal 44c is generated from the W-phase change event generation means 71c.
 3相の回転角センサ信号22はU相更新許可手段72aに入力され、前記U相変化イベントを使用するか、無視するかを決定する。組込マイコンで実装する場合には、一般にフラグとして実現される。この場合、U相更新許可手段72aは例えば以下のように動作する。
・直前に変化があった相がV相またはW相の場合、U相更新許可フラグを立てる(許可する)・直前に変化があった相がU相の場合、U相更新許可フラグをクリアする(許可しない)なお、実現に当たってはフラグに拠らず、例えば状態遷移に基づく方法を用いても差し支えない。
The three-phase rotation angle sensor signal 22 is input to the U-phase update permission means 72a, and determines whether to use or ignore the U-phase change event. When mounted on an embedded microcomputer, it is generally realized as a flag. In this case, the U-phase update permission means 72a operates as follows, for example.
・ If the phase that changed immediately before is V phase or W phase, set (permit) U phase update permission flag. ・ If the phase that changed immediately before is U phase, clear the U phase update permission flag. (Not permitted) In addition, in the realization, a method based on the state transition may be used without depending on the flag.
 V相、W相についても全く同様であり、V相更新許可手段72b、W相更新許可手段72cを有する。 The same applies to the V phase and the W phase, and the V phase update permitting means 72b and the W phase update permitting means 72c are provided.
 U相イベント検出信号44aはU相変化時刻記憶手段73aを動作させる。U相変化時刻記憶手段73aは、U相更新許可手段72aが更新を許可している場合にフリーランニングカウンタ47から得られるFRC現在値48(現在時刻)をU相が変化した時刻として記憶する。U相更新許可手段72aが更新を禁止している場合には、U相変化時刻記憶手段73aは動作しない。V相、W相についても全く同様であり、V相変化時刻記憶手段73b、W相変化時刻記憶手段73cを有する。 The U-phase event detection signal 44a operates the U-phase change time storage means 73a. The U-phase change time storage means 73a stores the FRC current value 48 (current time) obtained from the free running counter 47 when the U-phase update permission means 72a permits update as the time when the U-phase changes. When the U-phase update permitting means 72a prohibits the update, the U-phase change time storage means 73a does not operate. The same applies to the V phase and the W phase, and the V phase change time storage means 73b and the W phase change time storage means 73c are provided.
 U相変化時刻記憶手段73a、V相変化時刻記憶手段73b、W相変化時刻記憶手段73c(相変化時刻記憶手段)は、回転角信号の変化時刻を相毎に記憶する。そして、U相変化時刻記憶手段73a、V相変化時刻記憶手段73b、W相変化時刻記憶手段73c(相変化時刻記憶手段)はそれぞれの処理終了後、経過時間演算手段46に送信され、動作を開始する。 The U-phase change time storage means 73a, the V-phase change time storage means 73b, and the W-phase change time storage means 73c (phase change time storage means) store the change time of the rotation angle signal for each phase. Then, the U-phase change time storage means 73a, the V-phase change time storage means 73b, and the W-phase change time storage means 73c (phase change time storage means) are transmitted to the elapsed time calculation means 46 after the respective processing is completed, and the operation is performed. Start.
 経過時間演算手段46は、U相変化時刻記憶手段73aが記憶したU相変化時刻、V相変化時刻記憶手段73bが記憶したV相変化時刻、W相変化時刻記憶手段73cが記憶したW相変化時刻を入力し、直近2つの変化時刻の差を計算する。得られた変化時刻の差は速度演算手段51に送信される。速度演算手段51は、3相における各相の相変化時刻記憶手段から出力された各相の回転角信号の変化時刻の差分(直近2つの変化時刻の差分)から速度を演算する。直近2つの変化時刻の差はイベント検出信号44の発生間隔を意味するため、逆数を計算することによって速度情報が得られる。 The elapsed time calculation means 46 includes a U-phase change time stored by the U-phase change time storage means 73a, a V-phase change time stored by the V-phase change time storage means 73b, and a W-phase change stored by the W-phase change time storage means 73c. Enter the time and calculate the difference between the two most recent change times. The obtained difference in change time is transmitted to the speed calculation means 51. The speed calculation means 51 calculates the speed from the difference in change time (difference between the latest two change times) of the rotation angle signals of each phase output from the phase change time storage means of each phase in the three phases. Since the difference between the two most recent change times means the occurrence interval of the event detection signal 44, the velocity information can be obtained by calculating the reciprocal.
 図9は本発明の第3実施例に係るモータ速度推定手段28の動作の一例を示す図である。図9においては、W相更新禁止区間68を有することが第2実施例における図7との相違である。 FIG. 9 is a diagram showing an example of the operation of the motor speed estimation means 28 according to the third embodiment of the present invention. In FIG. 9, the fact that the W phase update prohibited section 68 is provided is different from FIG. 7 in the second embodiment.
 時刻61aにおいてW相ホールIC22cの出力変化が観測される。直前の回転角センサ信号22の変化はU相であるため、この時点ではW相更新許可手段72cは許可状態であり、W相変化時刻記憶手段73cが動作する。それと同時に経過時間演算手段46および速度演算手段51が動作する。なお、経過時間演算手段46、速度演算手段51の動作後、W相更新許可手段72cはW相更新許可フラグをクリアし、W相の変化を許可しない状態となる。 At time 61a, a change in the output of the W-phase hall IC22c is observed. Since the change of the rotation angle sensor signal 22 immediately before is the U phase, the W phase update permission means 72c is in the permission state at this point, and the W phase change time storage means 73c operates. At the same time, the elapsed time calculation means 46 and the speed calculation means 51 operate. After the operation of the elapsed time calculation means 46 and the speed calculation means 51, the W phase update permission means 72c clears the W phase update permission flag, and the change of the W phase is not permitted.
 時刻61bにおいて、外力などの影響でモータ10が逆回転されるとW相ホールIC22cの出力は再度変化する。しかしこの時点ではW相更新許可手段72cはW相変化時刻記憶手段73cの動作を許可しないため、時刻61bにおける変化時刻情報は読み飛ばされる。すなわち、他の相が変化する前に、同相が連続して変化した場合は、変化時刻情報は無視する。時刻61cにおいてモータ10は正回転に復帰するが、この際も同様にW相更新許可手段72cはW相変化時刻記憶手段73cの動作を許可しないため、時刻61cにおける変化時刻情報は読み飛ばされる。すなわち、相変化時刻記憶手段は、相変化イベント発生手段が1つの相における回転角信号の変化を検出後、他の相における回転角信号の変化を検出した場合にモータ10の回転速度出力が更新される。 At time 61b, when the motor 10 is rotated in the reverse direction due to the influence of an external force or the like, the output of the W-phase hall IC 22c changes again. However, at this point, since the W phase update permission means 72c does not allow the operation of the W phase change time storage means 73c, the change time information at the time 61b is skipped. That is, if the in-phase changes continuously before the other phases change, the change time information is ignored. At time 61c, the motor 10 returns to normal rotation, but similarly, since the W phase update permission means 72c does not allow the operation of the W phase change time storage means 73c, the change time information at time 61c is skipped. That is, in the phase change time storage means, the rotation speed output of the motor 10 is updated when the phase change event generating means detects the change in the rotation angle signal in one phase and then detects the change in the rotation angle signal in the other phase. Will be done.
 時刻61dにおいて、V相ホールIC22bの変化が観測される。この時点でV相更新許可手段72cはV相変化時刻記憶手段73bの動作を許可し、V相変化時刻記憶手段73bが動作する。それと同時に経過時間演算手段46および速度演算手段51が動作する。なお、経過時間演算手段46、速度演算手段51の動作後、V相更新許可手段72bはW相更新許可フラグをクリアし、V相の変化を許可しない状態となる。同時にW相更新許可手段72cはW相更新許可フラグをセットし、W相の変化を許可する状態となる。 At time 61d, a change in the V-phase hall IC22b is observed. At this point, the V-phase update permitting means 72c permits the operation of the V-phase change time storage means 73b, and the V-phase change time storage means 73b operates. At the same time, the elapsed time calculation means 46 and the speed calculation means 51 operate. After the operation of the elapsed time calculation means 46 and the speed calculation means 51, the V-phase update permission means 72b clears the W-phase update permission flag, and the change of the V-phase is not permitted. At the same time, the W phase update permission means 72c sets the W phase update permission flag, and is in a state of permitting the change of the W phase.
 図9に示した実施例の場合も図7で示した実施例と全く同様に、時刻61dにおいてもモータの回転速度出力を更新することが可能になり、応答性向上に効果的である。 In the case of the embodiment shown in FIG. 9, just like the embodiment shown in FIG. 7, the rotation speed output of the motor can be updated at time 61d, which is effective in improving the responsiveness.
 図10は本発明の第3実施例に係るモータ速度推定手段28の動作を示すフローチャートである。なお、経過時間演算手段46、速度演算手段51については図5に示すフローチャートにおけるS106以降の処理と全く同様であるため記載を省略している。 FIG. 10 is a flowchart showing the operation of the motor speed estimation means 28 according to the third embodiment of the present invention. The elapsed time calculation means 46 and the speed calculation means 51 are omitted because they are exactly the same as the processes after S106 in the flowchart shown in FIG.
 図10において、U相ホールIC22a、V相ホールIC22b、W相ホールIC22cは同時並行的に監視されるため、処理開始後、処理フローを3つに分岐させている。左からそれぞれU相に関する処理、V相に関する処理、W相に関する処理であり、各相とも処理は同様であるため、説明は最も左側に位置する処理フロー(末尾が’a’)について説明する。 In FIG. 10, since the U-phase hall IC22a, the V-phase hall IC22b, and the W-phase hall IC22c are monitored in parallel, the processing flow is branched into three after the processing is started. From the left, processing related to the U phase, processing related to the V phase, and processing related to the W phase, and the processing is the same for each phase, so the description describes the processing flow located on the leftmost side (the end is'a').
 S121aはU相ホールIC22aの監視処理であり、割込などの手段によってU相ホールIC22aの変化を監視する。変化がない場合には引き続き監視し、変化があった場合にはU相更新判定処理S122aに移行する。U相更新許可手段72aが更新を許可していれば次の処理に進み、禁止していれば再度処理S121aに戻る。U相更新許可手段72aの更新判定方法については図8の説明文中で記載したので記載を省略する。 S121a is a monitoring process for the U-phase hall IC 22a, and monitors changes in the U-phase hall IC 22a by means such as interruption. If there is no change, it is continuously monitored, and if there is a change, the process proceeds to the U-phase update determination process S122a. If the U-phase update permission means 72a permits the update, the process proceeds to the next process, and if the update is prohibited, the process returns to the process S121a. Since the update determination method of the U-phase update permission means 72a is described in the explanation of FIG. 8, the description is omitted.
 S123aはU相ホールIC22aの変化方向を取得するパルス方向取得処理である。
ここではパルス方向を表す変数名を「pls_dir」と記載している。S101aはカウンタ取得処理、S105aはカウンタ前回値取得処理であり、図5記載のフローチャートと同様の処理を行う。
S123a is a pulse direction acquisition process for acquiring the changing direction of the U-phase Hall IC 22a.
Here, the variable name indicating the pulse direction is described as "pls_dir". S101a is a counter acquisition process, S105a is a counter previous value acquisition process, and the same process as the flowchart shown in FIG. 5 is performed.
 S124aは情報更新処理であり、U相変化時刻記憶手段73aの変数を更新する。ここでは現時点における変化相を「phs」、前回の変化相を「phs_z」と記載した。また、処理S123aで説明した変数「pls_dir」の前回値を「pls_dir_z」と記載した。ここで更新される変数は、モータ10の回転方向を判定するために設けたものである。 S124a is an information update process, and updates the variable of the U phase change time storage means 73a. Here, the current changing phase is described as "phs", and the previous changing phase is described as "phs_z". Further, the previous value of the variable "pls_dir" described in the process S123a is described as "pls_dir_z". The variables updated here are provided to determine the rotation direction of the motor 10.
 本実施例におけるモータ制御装置20は、モータの正転、逆転を頻繁に繰り返すアプリケーションを対象としており、上位制御系において回転方向を判断することが重要となることが多いために変数が用いられている。これらの変数の組み合わせによって、モータの回転方向は例えば図11に示した表のように容易に決定される。 The motor control device 20 in this embodiment is intended for an application in which the forward and reverse rotations of the motor are frequently repeated, and it is often important to determine the rotation direction in the upper control system, so variables are used. There is. By the combination of these variables, the rotation direction of the motor is easily determined, for example, as shown in the table shown in FIG.
 図11は本発明の第3実施例に係る変化相と回転方向の関係を示す図である。なお、ここで変化相を表す変数「phs」「phs_z」は文字型とし、パルス方向を表す変数「pls_dir」「pls_dir_z」は立ち上がりを+1、立下りを-1として記載している。 FIG. 11 is a diagram showing the relationship between the changing phase and the rotation direction according to the third embodiment of the present invention. Here, the variables “phs” and “phs_z” representing the changing phase are described as character types, and the variables “pls_dir” and “pls_dir_z” representing the pulse direction are described with the rising edge being +1 and the falling edge being -1.
 図10において、処理S125aはU相変化時刻記憶手段73aの処理を表したものである。処理S126は結合処理であり、U相に関する処理、V相に関する処理、W相に関する処理の何れかが終了すると分岐されていた処理フローを結合し、後段の処理に移行する。なお、モータ制御においてはそれぞれの分岐が同時に行われることがないように留意して設計されているため、各分岐フロー間でのメモリ競合処理や割込優先順位などに関する配慮はすべて省略して記載した。 In FIG. 10, the process S125a represents the process of the U-phase change time storage means 73a. The process S126 is a coupling process, and when any of the process related to the U phase, the process related to the V phase, and the process related to the W phase is completed, the branched processing flows are combined and the process proceeds to the subsequent process. Note that the motor control is designed with care so that each branch is not performed at the same time, so all consideration regarding memory contention processing and interrupt priority between each branch flow is omitted. did.
 第3実施例によれば、他の相が変化する前に、同相が連続して変化した場合は、変化時刻情報は無視するようにしているので、モータが正転と逆転が頻繁に切り替わる場合においても速度演算精度を確保してモータを適切に制御することができる。 According to the third embodiment, if the in-phase changes continuously before the other phases change, the change time information is ignored, so that the motor frequently switches between normal rotation and reverse rotation. In this case as well, the speed calculation accuracy can be ensured and the motor can be appropriately controlled.
 以上本発明に係るモータ制御装置20の実施例について説明した。本発明は回転角センサ12の時間間隔を速度検出に用いる形式のモータ制御装置にあって、さらに別の形態の実施例が可能である。たとえば、回転角センサ12はホールICに限定されるものではなく、例えばエンコーダパルス信号においても同様に適用できる。一般のインクリメンタルエンコーダパルスはA相、B相の2相であるが、例えば図6、図8で示した実施例においてW相を省略することで同様に実現できる。また、各実施例の説明では、説明の簡素化のため、モータ回転角60度毎に計測される時間間隔を用いて速度を計算しているが、別の速度検出手法を用いた場合でも本発明を適用することができる。例えばU相の立ち上がりから次の立ち上りまで、U相の立ち下がりから次の立ち下りまで、V相の立ち上がりから次の立ち上りまで、V相の立ち下がりから次の立ち下りまで、W相の立ち上がりから次の立ち上りまで、W相の立ち下がりから次の立ち下りまでの6つの時間間隔情報を用いるようにしても良い。これはモータ回転角60度毎に360回転にかかる時間を計測する手法であるが、これについても速度演算手段51の変更によって適用することができる。 The examples of the motor control device 20 according to the present invention have been described above. The present invention is a motor control device of a type in which the time interval of the rotation angle sensor 12 is used for speed detection, and still another embodiment of the embodiment is possible. For example, the rotation angle sensor 12 is not limited to the Hall IC, and can be similarly applied to, for example, an encoder pulse signal. A general incremental encoder pulse has two phases, A phase and B phase, but it can be similarly realized by omitting the W phase in the examples shown in FIGS. 6 and 8, for example. Further, in the description of each embodiment, for the sake of simplification of the description, the speed is calculated using the time interval measured every 60 degrees of the motor rotation angle, but even if another speed detection method is used The invention can be applied. For example, from the rise of the U phase to the next rise, from the fall of the U phase to the next fall, from the rise of the V phase to the next rise, from the fall of the V phase to the next fall, from the rise of the W phase. Until the next rise, the six time interval information from the fall of the W phase to the next fall may be used. This is a method of measuring the time required for 360 rotations every 60 degrees of the motor rotation angle, and this can also be applied by changing the speed calculation means 51.
 なお、回転角センサ信号22の出力の時間間隔を速度検出に用いる場合、モータが完全に停止しているときには回転角センサ信号22の情報を得ることができないため、厳密には速度演算手段51を実施することができない。この場合については例えば一定時間以上情報が得られない場合には、速度を0(ゼロ)とするなどといった対処手法を用いるようにすると良い。 When the time interval of the output of the rotation angle sensor signal 22 is used for speed detection, the information of the rotation angle sensor signal 22 cannot be obtained when the motor is completely stopped. Therefore, strictly speaking, the speed calculation means 51 is used. Cannot be implemented. In this case, for example, when information cannot be obtained for a certain period of time or longer, it is advisable to use a coping method such as setting the speed to 0 (zero).
 本実施例によれば、正転と逆転が切り替わる瞬間において、回転角センサ信号22の時間間隔が回転速度とが対応しない状況を検出し、対処するようにしているので、正転と逆転が切り替わる状況にあっても速度計算誤差を小さくすることができる。そのため、本実施例は、特に正転と逆転を繰り返すアプリケーションに好適である。 According to this embodiment, at the moment when the forward rotation and the reverse rotation are switched, the situation where the time interval of the rotation angle sensor signal 22 does not correspond to the rotation speed is detected and dealt with, so that the normal rotation and the reverse rotation are switched. The speed calculation error can be reduced even in the situation. Therefore, this embodiment is particularly suitable for an application in which forward rotation and reverse rotation are repeated.
 次に本発明の第4実施例について説明する。第4実施例では、第1実施例から第3実施例で説明したモータ制御装置を可変バルブタイミング制御装置に適用した例を説明する。
図12は本発明の第4実施例に係る可変バルブタイミング制御装置の断面図である。
Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, an example in which the motor control device described in the first to third embodiments is applied to the variable valve timing control device will be described.
FIG. 12 is a cross-sectional view of the variable valve timing control device according to the fourth embodiment of the present invention.
 エンジン201には、吸気側電動バルブタイミング制御装置10aと、排気側電動バルブタイミング制御装置10bが備えられている。エンジンのクランク軸202はシリンダ内のピストンに連結され、ピストンの往復運動を回転運動に変換している。 The engine 201 is provided with an intake side electric valve timing control device 10a and an exhaust side electric valve timing control device 10b. The crankshaft 202 of the engine is connected to a piston in the cylinder and converts the reciprocating motion of the piston into a rotary motion.
 吸気側カム軸203a及び排気側カム軸203bには、それぞれ吸気カム204a及び排気カム204bが連結されている。 The intake cam 204a and the exhaust cam 204b are connected to the intake side cam shaft 203a and the exhaust side cam shaft 203b, respectively.
 吸気側電動バルブタイミング制御装置10aは、エンジン201に取り付けられた吸気側電動バルブタイミング制御モータと、吸気側カム軸203aに取り付けられた吸気側位相変更器を有する。吸気側位相変更器はタイミングチェーン又はタイミングベルトによってクランク軸202の回転力が伝達するようになっており、かつ、減速機構(図示せず)を有し、吸気側電動バルブタイミング制御モータの回転を減速して吸気側カム軸203aとクランク軸202の回転位相を変更可能になっている。 The intake side electric valve timing control device 10a has an intake side electric valve timing control motor attached to the engine 201 and an intake side phase changer attached to the intake side camshaft 203a. The intake side phase changer has a timing chain or a timing belt to transmit the rotational force of the crankshaft 202, and has a reduction mechanism (not shown) to rotate the intake side electric valve timing control motor. It is possible to decelerate and change the rotation phases of the intake side camshaft 203a and the crankshaft 202.
 排気側電動バルブタイミング制御装置10bは、エンジン201に取り付けられた排気側電動バルブタイミング制御モータと、排気側カム軸203bに取り付けられた排気側位相変更器を有する。排気側位相変更器も吸気側位相変更器と同様にタイミングチェーン又はタイミングベルトによってクランク軸202の回転力が伝達するようになっており、かつ、減速機構(図示せず)を有し、排気側電動バルブタイミング制御モータの回転を減速して排気側カム軸203bとクランク軸202の回転位相を変更可能になっている。 The exhaust side electric valve timing control device 10b has an exhaust side electric valve timing control motor attached to the engine 201 and an exhaust side phase changer attached to the exhaust side camshaft 203b. Like the intake side phase changer, the exhaust side phase changer also has a timing chain or timing belt to transmit the rotational force of the crankshaft 202, and has a reduction mechanism (not shown) on the exhaust side. The rotation of the electric valve timing control motor can be decelerated to change the rotation phases of the exhaust side camshaft 203b and the crankshaft 202.
 吸気カム204aは、吸気バルブステムエンド205aを押すことにより吸気バルブ206aを開弁する。吸気カム204aが吸気バルブステムエンド205aを押さない位置に回転した時、吸気バルブスプリング207aによって吸気バルブ206aは閉弁する。
排気側にあっても全く同様に、排気カム204bは排気バルブステムエンド205bを押すことにより排気バルブ206bを開弁する。排気カム204bが排気バルブステムエンド205bを押さない位置に回転した時、排気バルブスプリング207bによって排気バルブ206bは閉弁する。
The intake cam 204a opens the intake valve 206a by pushing the intake valve stem end 205a. When the intake cam 204a rotates to a position where the intake valve stem end 205a is not pushed, the intake valve 206a is closed by the intake valve spring 207a.
Even on the exhaust side, the exhaust cam 204b opens the exhaust valve 206b by pushing the exhaust valve stem end 205b. When the exhaust cam 204b rotates to a position where the exhaust valve stem end 205b is not pushed, the exhaust valve 206b is closed by the exhaust valve spring 207b.
 図12に示した可変バルブタイミング制御装置は回転同期型と呼ばれる方式であって、吸気側カム軸203a及び排気側カム軸203bは、通常クランク軸202と同期して回転するように制御される。なお、4ストローク内燃機関の場合、「同期状態」とは、クランク軸2回転に対してカム軸が1回転し、かつ開弁開始角度と開弁終了角度が常に同じクランク軸角度となることと定義する。 The variable valve timing control device shown in FIG. 12 is a system called a rotation-synchronized type, and the intake-side camshaft 203a and the exhaust-side camshaft 203b are normally controlled to rotate in synchronization with the crankshaft 202. In the case of a 4-stroke internal combustion engine, the "synchronous state" means that the camshaft makes one rotation with respect to two rotations of the crankshaft, and the valve opening start angle and the valve opening end angle are always the same crankshaft angle. Define.
 このような可変バルブタイミング制御装置では、同期状態から吸気側電動バルブタイミング制御モータの回転数を速くし、所望の開弁開始角度となったところで再度同期状態に復帰することで、吸気タイミングを早めることができる。これを「進角」とする。また、同期状態から吸気側電動バルブタイミング制御モータの回転数を遅くし、所望の開弁開始角度となったところで再度同期状態に復帰することで、吸気タイミングを遅らせることができる。これを「遅角」とする。排気弁についても全く同様に制御できる。 In such a variable valve timing control device, the rotation speed of the electric valve timing control motor on the intake side is increased from the synchronous state, and when the desired valve opening start angle is reached, the synchronous state is restored to accelerate the intake timing. be able to. This is called "advance angle". Further, the intake timing can be delayed by slowing down the rotation speed of the intake side electric valve timing control motor from the synchronous state and returning to the synchronous state again when the desired valve opening start angle is reached. This is called "retard". The exhaust valve can be controlled in exactly the same way.
 次に可変バルブタイミング制御装置の動作について図13にて説明する。図13は本発明の第4実施例に係る可変バルブタイミング制御装置の動作を示す図である。 Next, the operation of the variable valve timing control device will be described with reference to FIG. FIG. 13 is a diagram showing the operation of the variable valve timing control device according to the fourth embodiment of the present invention.
 ここではエンジンが許容する最も大きな遅角(再遅角)から最も大きな進角(再進角)を経て、再遅角に復帰する動作を例示した。横軸は時間である。211はエンジン回転数のグラフ、212はバルブ位相角のグラフ、213はモータ速度のグラフである。なお、本実施例において、エンジン回転数は一定であるとし、バルブ位相角212は通常運転状態におけるクランク軸角度に対するカム軸角度であるとき位相角0度としている。また、吸気側、排気側で全く同様であるため、以降吸気、排気は区別しない。本実施例では、吸気、排気の少なくとも一方にバルブを開閉するモータを備えている。 Here, the operation of returning to the re-laxing angle from the largest retarding angle (re-laxing angle) allowed by the engine, passing through the largest advancing angle (re-advancing angle) is illustrated. The horizontal axis is time. 211 is a graph of engine speed, 212 is a graph of valve phase angle, and 213 is a graph of motor speed. In this embodiment, the engine speed is assumed to be constant, and the valve phase angle 212 is set to a phase angle of 0 degrees when the camshaft angle with respect to the crankshaft angle in the normal operating state. Moreover, since the intake side and the exhaust side are exactly the same, the intake and the exhaust are not distinguished thereafter. In this embodiment, a motor that opens and closes a valve is provided at least one of intake and exhaust.
 再遅角から再進角に変更する場合、モータ速度はt1において一旦上昇し、その後t2において同期速度まで下がる。これによりバルブ位相角を再進角に変更できる。この状態からt3においてモータ速度を下げ、再度t4において同期速度まで上げることでバルブ位相角を再遅角に変更できる。進角側から遅角側に変更する場合には、t3からt4においてモータ速度を下げることになるが、この時、エンジン回転数から決定される同期速度と再遅角に至るまでの要求応答によってはモータ回転速度が正転から逆転に切り替わる状況が発生する。従来のモータ速度計算手法では正転から逆転に切り替わるところにおける計算誤差が大きい。可変バルブタイミング制御装置では、高応答性を確保するために上位制御系がハイゲインとなっていることが多く、そのために計算誤差が制御性能を大きく悪化させる場合がある。 When changing from a re-delay angle to a re-advance angle, the motor speed increases once at t1 and then decreases to the synchronous speed at t2. As a result, the valve phase angle can be changed to the reclamation angle. From this state, the valve phase angle can be changed to the re-lagging angle by lowering the motor speed at t3 and increasing it to the synchronous speed again at t4. When changing from the advance side to the retard side, the motor speed is lowered from t3 to t4, but at this time, the synchronous speed determined from the engine speed and the request response up to the re-delay angle are used. In a situation where the motor rotation speed switches from normal rotation to reverse rotation. In the conventional motor speed calculation method, there is a large calculation error when switching from forward rotation to reverse rotation. In the variable valve timing control device, the upper control system often has a high gain in order to ensure high responsiveness, and therefore a calculation error may greatly deteriorate the control performance.
 そこで、第4実施例では、第1実施例から第3実施例に説明したモータ制御装置によって吸気側電動バルブタイミング制御装置10a、排気側電動バルブタイミング制御装置10bを制御することにより、正転から逆転に切り替わるところでの計算誤差を低減できるため、応答性を高めた可変バルブタイミング制御装置を提供することができる。 Therefore, in the fourth embodiment, the intake side electric valve timing control device 10a and the exhaust side electric valve timing control device 10b are controlled by the motor control devices described in the first to third embodiments from the normal rotation. Since the calculation error at the time of switching to reverse rotation can be reduced, it is possible to provide a variable valve timing control device with improved responsiveness.
 次に本発明の第5実施例について説明する。第5実施例では、第1実施例から第3実施例で説明したモータ制御装置を電動パワーステアリング装置に適用した例を説明する。図14は本発明の第5実施例に係る電動パワーステアリング装置の概略図である。電動パワーステアリング装置は、モータの駆動力によってステアリング操作を補助する。 Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, an example in which the motor control device described in the first to third embodiments is applied to the electric power steering device will be described. FIG. 14 is a schematic view of the electric power steering device according to the fifth embodiment of the present invention. The electric power steering device assists the steering operation by the driving force of the motor.
 ステアリングホイール221にはステアリングシャフト222が連結されている。電動パワーステアリング装置の駆動源となるモータ10はモータシャフト11に連結されている。モータシャフト11は、動力合成手段223にてステアリングシャフト222と接続され、動力合成手段223にてモータ10の動力がステアリングシャフト222に合成される。動力が合成されたステアリングシャフト222はステアリングギア機構224と結合される。ステアリングギア機構224はナックルアーム225に取り付けられ、車輪226の方向を変化させる。 The steering shaft 222 is connected to the steering wheel 221. The motor 10 that is the drive source of the electric power steering device is connected to the motor shaft 11. The motor shaft 11 is connected to the steering shaft 222 by the power combining means 223, and the power of the motor 10 is combined with the steering shaft 222 by the power combining means 223. The combined power steering shaft 222 is coupled to the steering gear mechanism 224. The steering gear mechanism 224 is attached to the knuckle arm 225 and changes the direction of the wheels 226.
 電動パワーステアリング装置にあっては、路面の抵抗を常に受ける状態にある。また運転者はステアリングホイールによって路面抵抗を補正するように小刻みに調整を繰り返すため、モータ10は正転と逆転を繰り返す状態となる。電動パワーステアリング装置に第1実施例~第3実施例で説明したモータ制御装置を適用することにより、例えばオフロード走行において運転者の意図した方向と逆方向にステアリングホイール221が回転した場合(いわゆる「蹴られ」状態)においても、運転者に跳ね返るトルクを低減する制御を実現することができるという効果が得られる。また、電動飛行機の普及した場合には、航空機用の電動ラダー制御でも同様の効果が期待できる。 The electric power steering device is always in a state of receiving the resistance of the road surface. Further, since the driver repeats the adjustment in small steps so as to correct the road surface resistance by the steering wheel, the motor 10 is in a state of repeating forward rotation and reverse rotation. By applying the motor control device described in the first to third embodiments to the electric power steering device, for example, when the steering wheel 221 rotates in a direction opposite to the direction intended by the driver in off-road driving (so-called). Even in the "kicked" state), the effect of being able to realize control that reduces the torque that bounces off the driver can be obtained. Further, when electric airplanes become widespread, the same effect can be expected with electric ladder control for aircraft.
 10…モータ、10a…吸気側電動バルブタイミング制御装置、10b…排気側電動バルブタイミング制御装置、11…モータシャフト、12…回転角センサ、13…配線、14…電力変換装置、15…スイッチング素子、16…電流検出器、17…ゲートドライバ、18…ゲート電圧、19…ゲート信号、20…モータ制御装置、21…指令信号、22…回転角センサ信号、23…直流電流信号、24…補償手段、25…トルク推定値、26…トルク指令信号、27…トルク推定手段、28…モータ速度推定手段、29…モータ速度推定値、30…逆起電圧推定手段、31…逆起電圧推定値、32…相電圧変換手段、33…デューティ比信号、34…トルク方向信号、35…ゲート信号作成手段、41…変化イベント検出手段、42…第1期間判定手段、43…第2期間判定手段、44…イベント検出信号、44a…U相イベント検出信号、44b…V相イベント検出信号、44c…W相イベント検出信号、45…論理和手段、46…経過時間演算手段、47…フリーランニングカウンタ、48…FRC現在値、49…前回値記憶手段、50…前回値、51…速度演算手段、52…推定速度選択手段、53…速度前回値記憶手段、54…零速度設定手段、55…推定速度、56…第3期間判定手段、61a,61b,61c,61d,61e…時刻、63…時間間隔、64…速度演算選択時刻、65…第1期間、66…第2期間、67…第3期間、68…相更新禁止区間、71a…U相変化イベント発生手段、71b…V相変化イベント発生手段、71c…W相変化イベント発生手段、72a…U相更新許可手段、72b…V相更新許可手段、72c…W相更新許可手段、73a…U相変化時刻記憶手段、73b…V相変化時刻記憶手段、73c…W相変化時刻記憶手段、201…エンジン、202…クランク軸、203a…吸気側カム軸、203b…排気側カム軸、204a…吸気カム、204b…排気カム、205a…吸気バルブステムエンド、205b…排気バルブステムエンド、206a…吸気バルブ、206b…排気バルブ、207a…吸気バルブスプリング、207b…排気バルブスプリング、212…バルブ位相角、221…ステアリングホイール、222…ステアリングシャフト、223…動力合成手段、224…ステアリングギア機構、225…ナックルアーム、226…車輪 10 ... motor, 10a ... intake side electric valve timing control device, 10b ... exhaust side electric valve timing control device, 11 ... motor shaft, 12 ... rotation angle sensor, 13 ... wiring, 14 ... power conversion device, 15 ... switching element, 16 ... current detector, 17 ... gate driver, 18 ... gate voltage, 19 ... gate signal, 20 ... motor control device, 21 ... command signal, 22 ... rotation angle sensor signal, 23 ... DC current signal, 24 ... compensation means, 25 ... Torque estimation value, 26 ... Torque command signal, 27 ... Torque estimation means, 28 ... Motor speed estimation means, 29 ... Motor speed estimation value, 30 ... Countercurrent voltage estimation means, 31 ... Countercurrent voltage estimation value, 32 ... Phase voltage conversion means, 33 ... duty ratio signal, 34 ... torque direction signal, 35 ... gate signal creating means, 41 ... change event detecting means, 42 ... first period determining means, 43 ... second period determining means, 44 ... event Detection signal, 44a ... U-phase event detection signal, 44b ... V-phase event detection signal, 44c ... W-phase event detection signal, 45 ... logical sum means, 46 ... elapsed time calculation means, 47 ... free running counter, 48 ... FRC current Value, 49 ... previous value storage means, 50 ... previous value, 51 ... speed calculation means, 52 ... estimated speed selection means, 53 ... speed previous value storage means, 54 ... zero speed setting means, 55 ... estimated speed, 56 ... th 3 period determination means, 61a, 61b, 61c, 61d, 61e ... time, 63 ... time interval, 64 ... speed calculation selection time, 65 ... first period, 66 ... second period, 67 ... third period, 68 ... phase Update prohibited section, 71a ... U phase change event generating means, 71b ... V phase changing event generating means, 71c ... W phase changing event generating means, 72a ... U phase update permitting means, 72b ... V phase updating permitting means, 72c ... W Phase update permission means, 73a ... U phase change time storage means, 73b ... V phase change time storage means, 73c ... W phase change time storage means, 201 ... engine, 202 ... crank shaft, 203a ... intake side cam shaft, 203b ... Exhaust side cam shaft, 204a ... Intake cam, 204b ... Exhaust cam, 205a ... Intake valve stem end, 205b ... Exhaust valve stem end, 206a ... Intake valve, 206b ... Exhaust valve, 207a ... Intake valve spring, 207b ... Exhaust valve spring , 212 ... Valve phase angle, 221 ... Steering wheel, 222 ... Steering shaft, 223 ... Power synthesis means, 224 ... Steering gear mechanism, 225 ... Knuckle arm, 226 ... Wheel

Claims (13)

  1.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御装置であって、
     前記回転角センサから出力される前記3相信号が、3相に渡って立上り、立下り、立上りの順で出力される第1期間を判定する第1期間判定手段と、
     前記回転角センサから出力される前記3相信号が、3相に渡って立下り、立上り、立下りの順で出力される第2期間を判定する第2期間判定手段と、を備え、
     前記回転角センサの出力が前記第1期間または前記第2期間にある場合には、前記モータの回転速度出力を更新するように制御することを特徴とするモータ制御装置。
    A motor control device including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controlling the rotation speed output of the motor based on the three-phase signal and a command signal.
    A first period determining means for determining a first period in which the three-phase signal output from the rotation angle sensor is output in the order of rising, falling, and rising over the three phases.
    A second period determining means for determining a second period in which the three-phase signal output from the rotation angle sensor is output in the order of falling, rising, and falling over the three phases is provided.
    A motor control device characterized in that when the output of the rotation angle sensor is in the first period or the second period, the rotation speed output of the motor is controlled to be updated.
  2.  請求項1に記載のモータ制御装置であって、
     前記回転角センサの出力が前記第1期間もしくは前記第2期間以外にある場合には、前記モータの回転速度出力を前回値とする速度前回値記憶手段を備えていることを特徴とするモータ制御装置。
    The motor control device according to claim 1.
    When the output of the rotation angle sensor is outside the first period or the second period, the motor control is provided with a speed previous value storage means for which the rotation speed output of the motor is the previous value. apparatus.
  3.  請求項1記載のモータ制御装置であって、
     前記第1期間または前記第2期間以外にある場合には、前記モータの回転速度出力を0とする零速度設定手段を備えたことを特徴とするモータ制御装置。
    The motor control device according to claim 1.
    A motor control device including a zero speed setting means for setting the rotational speed output of the motor to 0 when it is in a period other than the first period or the second period.
  4.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御装置であって、
     前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの第3期間を判定する第3期間判定手段を備え、
     前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を前回の回転速度出力に保持し、前記第3期間終了時に前記モータの回転速度出力を更新することを特徴とするモータ制御装置。
    A motor control device including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controlling the rotation speed output of the motor based on the three-phase signal and a command signal.
    A third period for determining a third period from the time when only the signal of the specific phase changes two or more times to the detection of the signal change of the phase other than the specific phase among the three-phase signals output from the rotation angle sensor. Equipped with a period determination means
    When the output of the rotation angle sensor is in the third period, the rotation speed output of the motor is held at the previous rotation speed output, and the rotation speed output of the motor is updated at the end of the third period. A featured motor control device.
  5.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御装置であって、
     前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの第3期間を判定する第3期間判定手段を備え、
     前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を0とし、前記第3期間終了時に前記モータの回転速度出力を更新することを特徴とするモータ制御装置。
    A motor control device including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controlling the rotation speed output of the motor based on the three-phase signal and a command signal.
    A third period for determining a third period from the time when only the signal of the specific phase changes two or more times to the detection of the signal change of the phase other than the specific phase among the three-phase signals output from the rotation angle sensor. Equipped with a period determination means
    When the output of the rotation angle sensor is in the third period, the rotation speed output of the motor is set to 0, and the rotation speed output of the motor is updated at the end of the third period. ..
  6.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御装置であって、
     3相における各相の回転角信号の変化を監視して変化の有無を通知する相変化イベント発生手段と、前記モータの回転角信号の変化時刻を相毎に記憶する相変化時刻記憶手段と、
     前記相変化時刻記憶手段から出力された各相における前記回転角信号の変化時刻の差分から速度を演算する速度演算手段と、を備え、
     前記相変化時刻記憶手段は、前記相変化イベント発生手段が1つの相における回転角信号の変化を検出後、他の相における回転角信号の変化を検出した場合に前記モータの回転速度出力が更新されることを特徴とするモータ制御装置。
    A motor control device including a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controlling the rotation speed output of the motor based on the three-phase signal and a command signal.
    A phase change event generating means that monitors a change in the rotation angle signal of each phase in the three phases and notifies the presence or absence of the change, a phase change time storage means that stores the change time of the rotation angle signal of the motor for each phase,
    A speed calculation means for calculating the speed from the difference in the change time of the rotation angle signal in each phase output from the phase change time storage means is provided.
    In the phase change time storage means, the rotation speed output of the motor is updated when the phase change event generating means detects a change in the rotation angle signal in one phase and then detects a change in the rotation angle signal in another phase. A motor control device characterized by being
  7.  吸気バルブ及び排気バルブをそれぞれ開閉する吸気カム及び排気カムと、前記吸気カム及び前記排気カムにそれぞれ連結された吸気側カム軸及び排気側カム軸と、前記吸気側カム軸及び前記排気側カム軸を回転駆動する吸気側電動バルブタイミング制御モータ及び排気側電動バルブタイミング制御モータを備えた可変バルブタイミング制御装置において、
     前記吸気側電動バルブタイミング制御モータ及び前記排気側電動バルブタイミング制御モータは、請求項1乃至6の何れか1項に記載のモータ制御装置によって制御されることを特徴とする可変バルブタイミング制御装置。
    An intake cam and an exhaust cam that open and close the intake valve and the exhaust valve, respectively, an intake side cam shaft and an exhaust side cam shaft connected to the intake cam and the exhaust cam, and the intake side cam shaft and the exhaust side cam shaft, respectively. In a variable valve timing control device equipped with an intake side electric valve timing control motor and an exhaust side electric valve timing control motor
    The variable valve timing control device, wherein the intake side electric valve timing control motor and the exhaust side electric valve timing control motor are controlled by the motor control device according to any one of claims 1 to 6.
  8.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御方法であって、
     前記回転角センサから出力される前記3相信号が、3相に渡って立上り、立下り、立上りの順で出力される期間を第1期間とし、
     前記回転角センサから出力される前記3相信号が、3相に渡って立下り、立上り、立下りの順で出力される期間を第2期間とし、
     前記回転角センサの出力が前記第1期間または前記第2期間にある場合には、前記モータの回転速度出力を更新するように制御することを特徴とするモータ制御方法。
    A motor control method that includes a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controls the rotation speed output of the motor based on the three-phase signal and a command signal.
    The period in which the three-phase signal output from the rotation angle sensor is output over the three phases in the order of rising, falling, and rising is defined as the first period.
    The period in which the three-phase signal output from the rotation angle sensor is output over the three phases in the order of falling, rising, and falling is defined as the second period.
    A motor control method, characterized in that when the output of the rotation angle sensor is in the first period or the second period, the rotation speed output of the motor is controlled to be updated.
  9.  請求項8に記載のモータ制御方法であって、
     前記回転角センサの出力が前記第1期間もしくは前記第2期間以外にある場合には、前記モータの回転速度出力を更新時の回転速度出力に保持することを特徴とするモータ制御方法。
    The motor control method according to claim 8.
    A motor control method, characterized in that, when the output of the rotation angle sensor is outside the first period or the second period, the rotation speed output of the motor is held at the rotation speed output at the time of renewal.
  10.  請求項8記載のモータ制御方法であって、
     前記第1期間または前記第2期間以外にある場合には、前記モータの回転速度出力を0とすることを特徴とするモータ制御方法。
    The motor control method according to claim 8.
    A motor control method, characterized in that the rotation speed output of the motor is set to 0 when the period is other than the first period or the second period.
  11.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御方法であって、
     前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの期間を第3期間とし、
     前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を前回の回転速度出力に保持し、前記第3期間終了時に前記モータの回転速度出力を更新することを特徴とするモータ制御方法。
    A motor control method that includes a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controls the rotation speed output of the motor based on the three-phase signal and a command signal.
    Of the three-phase signals output from the rotation angle sensor, the period from the time when only the signal of the specific phase changes twice or more to the detection of the signal change of the phase other than the specific phase is defined as the third period.
    When the output of the rotation angle sensor is in the third period, the rotation speed output of the motor is held at the previous rotation speed output, and the rotation speed output of the motor is updated at the end of the third period. A featured motor control method.
  12.  モータの回転角を検出するための3相信号を出力する回転角センサを備え、前記3相信号と指令信号に基づいて前記モータの回転速度出力を制御するモータ制御方法であって、
     前記回転角センサから出力される前記3相信号のうち、特定相の信号のみが2回以上変化した時点から前記特定相以外の相の信号変化を検出するまでの期間を第3期間とし、
     前記回転角センサの出力が前記第3期間にある場合には、前記モータの回転速度出力を0とし、前記第3期間終了時に前記モータの回転速度出力を更新することを特徴とするモータ制御方法。
    A motor control method that includes a rotation angle sensor that outputs a three-phase signal for detecting the rotation angle of a motor, and controls the rotation speed output of the motor based on the three-phase signal and a command signal.
    Of the three-phase signals output from the rotation angle sensor, the period from the time when only the signal of the specific phase changes twice or more to the detection of the signal change of the phase other than the specific phase is defined as the third period.
    When the output of the rotation angle sensor is in the third period, the rotation speed output of the motor is set to 0, and the rotation speed output of the motor is updated at the end of the third period. ..
  13.  吸気バルブ及び排気バルブをそれぞれ開閉する吸気カム及び排気カムと、前記吸気カム及び前記排気カムにそれぞれ連結された吸気側カム軸及び排気側カム軸と、前記吸気側カム軸及び前記排気側カム軸を回転駆動する吸気側電動バルブタイミング制御モータ及び排気側電動バルブタイミング制御モータを備えた可変バルブタイミング制御方法において、
     前記吸気側電動バルブタイミング制御モータ及び前記排気側電動バルブタイミング制御モータは、請求項8乃至12の何れか1項に記載のモータ制御方法によって制御されることを特徴とする可変バルブタイミング制御方法。
    An intake cam and an exhaust cam that open and close the intake valve and the exhaust valve, respectively, an intake side cam shaft and an exhaust side cam shaft connected to the intake cam and the exhaust cam, and the intake side cam shaft and the exhaust side cam shaft, respectively. In a variable valve timing control method equipped with an intake side electric valve timing control motor and an exhaust side electric valve timing control motor
    A variable valve timing control method, wherein the intake side electric valve timing control motor and the exhaust side electric valve timing control motor are controlled by the motor control method according to any one of claims 8 to 12.
PCT/JP2020/016181 2019-05-16 2020-04-10 Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using motor control device and motor control method WO2020230495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020002001.0T DE112020002001T5 (en) 2019-05-16 2020-04-10 Engine control apparatus and engine control method, and variable valve timing control apparatus and variable valve timing control method using the same
CN202080036355.XA CN113840981B (en) 2019-05-16 2020-04-10 Motor control device, motor control method, variable valve timing control device, variable valve timing control method, and variable valve timing control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092756A JP2020188618A (en) 2019-05-16 2019-05-16 Motor controller and motor control method, and variable valve timing controller and variable valve timing control method using the same
JP2019-092756 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230495A1 true WO2020230495A1 (en) 2020-11-19

Family

ID=73223341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016181 WO2020230495A1 (en) 2019-05-16 2020-04-10 Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using motor control device and motor control method

Country Status (4)

Country Link
JP (1) JP2020188618A (en)
CN (1) CN113840981B (en)
DE (1) DE112020002001T5 (en)
WO (1) WO2020230495A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035720A1 (en) * 2010-09-15 2012-03-22 パナソニック株式会社 Motor drive device
JP2013046547A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Motor control device
JP2016146729A (en) * 2015-02-09 2016-08-12 株式会社デンソー Motor controller

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1289185C (en) * 1985-09-16 1991-09-17 Gerald David Duncan Electronic motor controls, laundry machines including such controls and/or methods of operating such controls
JPH066995A (en) * 1992-06-17 1994-01-14 Mita Ind Co Ltd Motor controller
JP3250356B2 (en) * 1994-01-14 2002-01-28 株式会社デンソー Rotational position detector
JP4258448B2 (en) * 2004-07-20 2009-04-30 トヨタ自動車株式会社 Reverse rotation detection device for internal combustion engine
JP2005261957A (en) 2005-04-08 2005-09-29 Sharp Corp Inverter washing machine
JP4736815B2 (en) * 2006-01-16 2011-07-27 株式会社安川電機 Inverter control device and motor start method.
JP5015974B2 (en) * 2009-02-04 2012-09-05 日立オートモティブシステムズ株式会社 Control device for variable valve mechanism
JP5165705B2 (en) * 2010-01-28 2013-03-21 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP6678136B2 (en) * 2017-07-21 2020-04-08 ミネベアミツミ株式会社 Motor drive control device and motor drive control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035720A1 (en) * 2010-09-15 2012-03-22 パナソニック株式会社 Motor drive device
JP2013046547A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Motor control device
JP2016146729A (en) * 2015-02-09 2016-08-12 株式会社デンソー Motor controller

Also Published As

Publication number Publication date
DE112020002001T5 (en) 2022-01-27
CN113840981B (en) 2023-09-05
JP2020188618A (en) 2020-11-19
CN113840981A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
US7005814B2 (en) Motor control apparatus having current supply phase correction
US7667427B2 (en) Motor control apparatus
JP4999395B2 (en) Control device for range switching mechanism
JP4952653B2 (en) Valve timing adjustment device
JP5789952B2 (en) Motor control device
US6992451B2 (en) Motor control apparatus operable in fail-safe mode
US20060197489A1 (en) Motor control apparatus
JP2007336611A (en) Control device of synchronous motor
JP3886042B2 (en) Motor control device
JP2009281538A (en) Control device of automatic transmission
JP3849864B2 (en) Motor control device
WO2020230495A1 (en) Motor control device and motor control method, and variable valve timing control device and variable valve timing control method using motor control device and motor control method
JP5104983B2 (en) Valve timing adjustment device
JP3871130B2 (en) Motor control device
WO2019150440A1 (en) Drive control system, motor, and method for controlling drive control system
JP2009248749A (en) Control unit of electric power steering device
JP3888940B2 (en) Motor control device
JP2011247391A (en) Range switching control device
JP3849627B2 (en) Motor control device
JP3800532B2 (en) Motor control device
JP3888278B2 (en) Motor control device
JP2012100462A (en) Motor control device
JP7287330B2 (en) motor controller
JP3077443B2 (en) Valve opening and closing control device
JP7230674B2 (en) motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20805681

Country of ref document: EP

Kind code of ref document: A1