WO2020230281A1 - Led display - Google Patents

Led display Download PDF

Info

Publication number
WO2020230281A1
WO2020230281A1 PCT/JP2019/019208 JP2019019208W WO2020230281A1 WO 2020230281 A1 WO2020230281 A1 WO 2020230281A1 JP 2019019208 W JP2019019208 W JP 2019019208W WO 2020230281 A1 WO2020230281 A1 WO 2020230281A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
brightness
leds
unit
led display
Prior art date
Application number
PCT/JP2019/019208
Other languages
French (fr)
Japanese (ja)
Inventor
遼 堀川
孝博 大岡
洋和 田口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/019208 priority Critical patent/WO2020230281A1/en
Publication of WO2020230281A1 publication Critical patent/WO2020230281A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present invention relates to an LED display device.
  • LED display devices equipped with light emitting diodes (LEDs: Light Emitting Diodes) are widely used for displaying advertisements outdoors and indoors.
  • LEDs Light Emitting Diodes
  • the LED display device has a pixel pitch of 3 mm or more and has been used as a large-scale outdoor display device.
  • the LED display device has a pixel pitch of 3 mm or more and has been used as a large-scale outdoor display device.
  • the miniaturization of LEDs the cost reduction of LEDs, and the narrowing of the pixel pitch of LED display devices, the viewing distance of LED display devices has become shorter, and LED display devices are used for indoor monitoring applications. The number of cases is increasing.
  • an LED display device having a narrow pixel pitch of 1.5 mm, 1.9 mm, etc. has been put on the market as an indoor display device.
  • the LED display device is used for displaying a personal computer image in a conference room, displaying a personal computer image for monitoring purposes, and the like.
  • the LED display device When the LED display device is used to display a personal computer image for surveillance purposes, the LED display device often displays a personal computer image close to a still image.
  • a large number of LEDs are arranged in a matrix on a substrate to form a display module.
  • a display unit is configured by combining a plurality of display modules. Further, a plurality of display units are arbitrarily combined to form a video display surface having a desired size.
  • the brightness of many LEDs is uniform.
  • the characteristics of many LEDs are not uniform. Therefore, when the same drive signal is supplied to a large number of LEDs, the brightness of the large number of LEDs is not uniform. Therefore, by adjusting the drive signals supplied to a large number of LEDs, the brightness of the large number of LEDs is made uniform. In this case, a large number of LEDs provided in the display unit or display module are turned on. Further, an image of the display unit or the display module is captured with a large number of LEDs turned on. In addition, the brightness of many LEDs is measured by the captured image. Further, the drive signal supplied to the residual LED is adjusted so that the brightness of the residual LED approaches the brightness of the LED having the lowest brightness.
  • the brightness of the LED decreases as the cumulative lighting time of the LED increases. Therefore, the cumulative lighting time of a large number of LEDs becomes non-uniform depending on the content of the image displayed on the LED display device. Therefore, depending on the content of the image displayed on the LED display device, the reduction rate of the brightness of many LEDs becomes non-uniform. As a result, as the usage time of the LED display device increases, the brightness and chromaticity of many LEDs provided in the LED display device become non-uniform. Therefore, a technique for solving this problem has been proposed.
  • a plurality of display LEDs are mounted on the front surface of a circuit board (paragraph 0015).
  • the reference LED is mounted on the back surface of the circuit board.
  • the circuit board drives a plurality of display LEDs and reference LEDs (paragraph 0015). Since a plurality of display LEDs can deteriorate over time, there is a need for a mechanism for performing color adjustment (paragraph 0015). Therefore, the output from the reference LED is detected (paragraph 0016). The output from the reference LED is required for the automatic color adjustment process (paragraph 0016).
  • Pixel defects can be eliminated by performing repairs by replacing the failed LED with a non-failed LED.
  • the LED display device has a narrow pixel pitch of about 1 mm, delicate and advanced technology is required to perform the repair. Repairs that require such delicate and sophisticated techniques are difficult to perform after the LED display device has been put into operation. For this reason, at present, even if only one LED contained in tens of thousands of LEDs fails, it has become mainstream to replace a module having tens of thousands of LEDs with a new module for repair. There is. Then, in order to carry out such repair, the power of the LED display device must be turned off or the screen of the LED display device must be hidden.
  • the LED device when the LED device is incorporated in the display system that is required to operate 24 hours a day, the power of the LED display device is turned off or the screen of the LED display device is hidden in order to eliminate the pixel defect. This means that the display must be stopped in order to eliminate the pixel defect. It leads to a great risk in the operation of the display system. This problem is especially noticeable when the display system is used for surveillance purposes.
  • An object to be solved by the present invention is to provide an LED display device capable of displaying an image in which pixel defects are inconspicuous and appear to have uniform brightness even when pixel defects occur.
  • the LED display device includes an LED display unit, a failure detection unit, a brightness correction unit, a correction coefficient calculation unit, and a drive unit.
  • the LED display unit includes a plurality of LEDs.
  • the plurality of LEDs are arranged in a matrix.
  • the failure detection unit detects the failure of each LED included in the plurality of LEDs.
  • the brightness correction unit corrects the video signal so that the brightness of two or more LEDs included in the plurality of LEDs becomes uniform. Further, the luminance correction unit corrects the video signal according to the luminance correction coefficient. The luminance correction unit outputs the corrected video signal.
  • the correction coefficient calculation unit when a failure of the first LED included in the plurality of LEDs is detected by the failure detection unit, the brightness of the second LED included in the plurality of LEDs, which is different from the first LED, changes.
  • the brightness correction coefficient is calculated so as to be performed.
  • the drive unit drives a plurality of LEDs according to the corrected video signal.
  • the video signal is corrected to make the brightness of the LED uniform. Further, when the first LED fails, the video signal is corrected to change the brightness of the second LED. Therefore, even if the first LED fails, it is possible to provide an LED display device capable of displaying an image having uniform brightness without conspicuous pixel defects caused by the failure of the first LED.
  • FIG. 5 is a plan view schematically illustrating an LED display unit including pixel defects provided in the LED display device of the first embodiment. It is a flowchart which shows the operation of the LED display device of Embodiments 1 and 2.
  • FIG. 1 is a block diagram illustrating a light emitting diode (LED) display device according to the first embodiment.
  • the LED display device 1 of the first embodiment has a video signal input terminal 101, a video signal processing unit 102, a brightness correction unit 103, a drive unit 104, an LED display unit 105, and a failure detection unit 106. , Correction coefficient calculation unit 107, external control communication terminal 108, external communication unit 109, microcomputer (microcomputer) 110, and memory 111.
  • the drive unit 104 and the failure detection unit 106 constitute the LED driver 120.
  • FIG. 2 is a plan view schematically showing an LED display unit provided in the LED display device of the first embodiment.
  • the LED display unit 105 includes a plurality of LEDs 130 arranged in a matrix.
  • a video signal is input to the video signal input terminal 101 shown in FIG. 1 from an external device such as a personal computer (PC).
  • PC personal computer
  • the video signal processing unit 102 processes the input video signal and outputs the processed video signal.
  • the processing performed by the video signal processing unit 102 includes video signal processing, selection processing, and the like.
  • Video signal processing includes gamma correction and the like.
  • the selection process includes a process of selecting a portion necessary for displaying an image by the LED display device 1 from the input video signal.
  • the LED display unit 105 displays a part of the video represented by the input video signal.
  • the LED display unit 105 displays the entire video represented by the input video signal.
  • the brightness correction unit 103 corrects the processed video signal according to the brightness correction coefficient, and outputs the corrected video signal. As a result, the brightness of the plurality of LEDs 130 is corrected according to the brightness correction coefficient, and the brightness of the image displayed on the LED display unit 105 is corrected according to the brightness correction coefficient.
  • the luminance correction unit 103 corrects the video signal according to the luminance correction coefficient by changing the signal level of the video signal according to the luminance correction coefficient.
  • the drive unit 104 drives a plurality of LEDs 130 according to the corrected video signal.
  • the light emission of the plurality of LEDs 130 is controlled according to the corrected video signal
  • the brightness of the plurality of LEDs 130 is controlled according to the corrected video signal.
  • the LED display unit 105 displays an image corresponding to the corrected image signal.
  • the drive unit 104 drives each LED 140 included in the plurality of LEDs 130 by pulse width modulation (PWM).
  • PWM pulse width modulation
  • Each LED 140 included in the plurality of LEDs 130 constitutes one pixel.
  • FIG. 3 is a plan view schematically illustrating one pixel provided in the LED display device of the first embodiment.
  • the LED display unit 105 displays a full-color image. Therefore, as shown in FIG. 3, each LED 140 constituting one pixel includes a red (R) LED 151, a green (G) LED 152, and a blue (B) LED 153. Each of the R LED 151, the G LED 152, and the B LED 153 constitutes a sub-pixel.
  • the LED display unit 105 may display a monochromatic image. In this case, each LED 140 may be composed of LEDs of one color.
  • the LED display unit 105 may be replaced with an LED display unit having a different structure.
  • the failure detection unit 106 illustrated in FIG. 1 detects a failure of each LED 140 included in the plurality of LEDs 130.
  • the failure detection unit 106 detects a failure in the short-circuit mode and the open mode of each LED 140 by monitoring the voltage and / or current supplied to each LED 140 while the drive unit 104 is driving each LED 140, for example. To do.
  • the correction coefficient calculation unit 107 calculates the brightness correction coefficient at the time of failure that constitutes the above-mentioned brightness correction coefficient.
  • the brightness correction coefficient at the time of failure is a brightness correction coefficient for correction that makes the pixel defects caused by the failure of each LED 140 inconspicuous.
  • a control signal is input to the external control communication terminal 108 from an external device such as a PC.
  • the input control signal includes a control signal for controlling the LED display device 1.
  • the external communication unit 109 receives the input control signal.
  • the microcomputer 110 receives the input control signal via the external control communication terminal 108 and the external communication unit 109. Further, the microcomputer 110 controls the brightness of the plurality of LEDs 130 by controlling the correction coefficient calculation unit 107. Further, the microcomputer 110 stores the luminance correction coefficient calculated by the correction coefficient calculation unit 107 in the memory 111.
  • each LED 140 included in the plurality of LEDs 130 is preferably controlled by a PWM method.
  • the drive unit 104 supplies each LED 140 with a drive signal having a duty ratio proportional to the signal level of each LED 140.
  • Each LED 140 lights up during the on period of the supplied drive signal. As a result, each LED 140 has a brightness proportional to the signal level of each LED 140.
  • FIG. 4 is a timing chart illustrating PWM drive performed in the LED display device of the first embodiment.
  • FIG. 4A is a diagram illustrating a waveform of a signal including a pulse repeatedly generated in a basic period of PWM drive.
  • FIG. 4B is a diagram illustrating a waveform of a drive signal having a duty ratio of 85%.
  • FIG. 4C is a diagram illustrating a waveform of a drive signal having a duty ratio of 80%.
  • the basic period shown in FIG. 4A is one frame period or less of the video signal.
  • the drive signal shown in FIG. 4B includes pulses that are repeatedly emitted in the basic period and have a pulse width of 85% of the basic period.
  • the drive signal shown in FIG. 4 (c) includes a pulse that is repeatedly emitted in the basic cycle and has a pulse width of 80% of the basic cycle.
  • the brightness of each LED 140 is different from each other.
  • the luminance correction unit 103 changes the signal level of the video signal according to the luminance correction coefficient
  • the drive unit 104 changes the duty ratio of the drive signal supplied to each LED 140 according to the signal level of each LED 140.
  • the brightness of the LED 140 can be changed according to the brightness correction coefficient.
  • the luminance correction unit 103 preferably corrects the video signal so that the luminance of the plurality of LEDs 130 becomes uniform.
  • FIG. 5 is a plan view schematically showing an LED display unit including pixel defects provided in the LED display device of the first embodiment.
  • the plurality of LEDs 130 are corrected to make the first LED 171 causing the pixel defect 160 and the pixel defect 160 inconspicuous.
  • the second LED 172 is an LED different from the first LED 171 and is, for example, an LED adjacent to the first LED 171.
  • the second LED 172 is an LED adjacent to the first LED 171
  • the second LED 172 is an LED arranged above the first LED 171 and an LED arranged below the first LED 171.
  • the LED is arranged at the lower left of the above, and the LED is arranged at the lower right of the first LED 171.
  • the brightness correction unit 103 corrects the video signal so that the brightness of the plurality of LEDs 130 becomes uniform. At that time, the luminance correction unit 103 corrects the video signal according to the luminance correction coefficient C for making the brightness of the LED uniform.
  • the failure detection unit 106 detects a failure of the first LED 171 included in the plurality of LEDs 130
  • the brightness correction unit 103 other than the first LED 171 and the second LED 172 included in the plurality of LEDs 130.
  • the video signal is corrected so that the brightness of the two or more LEDs 174 becomes uniform.
  • the brightness correction unit 103 corrects the first signal including the brightness of the two or more LEDs 174 included in the video signal according to the brightness correction coefficient C for correction to make the brightness of the LEDs uniform. ..
  • the brightness correction unit 103 corrects the video signal so that the brightness of the second LED 172 changes.
  • the brightness correction unit 103 corrects the video signal so that the brightness of the second LED 172 becomes high.
  • the luminance correction unit 103 makes the second signal, which indicates the luminance of the second LED 172, included in the video signal, according to the luminance correction coefficient C_t at the time of failure for correction for making the pixel defect 160 inconspicuous. to correct.
  • Correcting the video signal so that the brightness of the second LED 172 becomes high means that the brightness of the second LED 172 after the correction for making the pixel defect 160 inconspicuous is corrected to make the pixel defect 160 inconspicuous. It means that the video signal is corrected so as to be higher than the brightness of the second LED 172 before being performed, and the brightness of the second LED 172 after the correction for making the pixel defect 160 inconspicuous is the brightness of the LED. It means that the video signal is corrected so as to be higher than the target brightness of the second LED 172 when the correction is performed to make the image uniform.
  • Luminance correction coefficient C for correction to make the LED brightness uniform When the brightness correction coefficient C for the correction to make the brightness of the LEDs uniform is calculated, a plurality of LEDs 130 are turned on. In addition, images of the plurality of LEDs 130 are captured with the plurality of LEDs 130 turned on. In addition, the brightness of each LED 140 included in the plurality of LEDs 130 is measured from the captured image. Further, the brightness correction coefficient C for adjusting the drive signal supplied to the remaining LED so that the brightness of the remaining LED approaches the brightness of the LED having the lowest brightness is calculated.
  • the brightness correction coefficient C is the brightness correction coefficient Cr (uh, uv) of the R of the LED arranged at the horizontal pixel position uh and the vertical pixel position uv, the brightness correction coefficient Cg (uu, uv) of G, and the brightness correction coefficient of B.
  • the brightness correction coefficient Cr (uh, uv) of R, the brightness correction coefficient Cg (uh, uv) of G, and the brightness correction coefficient Cb (uh, uv) of B are the brightness values Yr (uh, uv) of R of the LED.
  • G brightness value Yg (uh, uv) and B brightness value Yb (uh, uv), and R target brightness value Yr_t, G target brightness value Yg_t, and B target brightness value Yb_t It is represented by 1), equation (2) and equation (3).
  • the horizontal pixel position uh is an integer of 0 or more and 5 or less.
  • the vertical pixel position uv is each of integers of 0 or more and 5 or less.
  • the target luminance values Yr_t, Yg_t and Yb_t are the LEDs arranged at the horizontal pixel position uh and the vertical pixel position uv according to the luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uh, uv). It is the brightness value of R, G and B of the LED when the signal indicating the brightness is corrected.
  • the luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uh, uv), and the target luminance values Yr_t, Yg_t and Yb_t are stored in the memory 111.
  • the stored luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uv, uv), and the target luminance values Yr_t, Yg_t and Yb_t are obtained after a plurality of LED display units 105 are arranged. It is used for the brightness correction calculation between the plurality of LED display units 105 at the time of initial installation.
  • the stored target luminance values Yr_t, Yg_t and Yb_t are set to be smaller than the luminance values of R, G and B of the LED having the lowest luminance, respectively. As a result, the video signal can be corrected so that the brightness of the plurality of LEDs 130 becomes uniform.
  • Luminance correction coefficient C_t at the time of failure for correction to make pixel defects inconspicuous is determined by the correction coefficient calculation unit 107 when the failure of the first LED 171 included in the plurality of LEDs 130 is detected by the failure detection unit 106. It is calculated.
  • the brightness correction coefficient C_t at the time of failure is calculated so that the brightness of the second LED 172 changes, for example, the brightness of the second LED 172 is calculated to be high.
  • the correction coefficient calculation unit 107 calculates the brightness correction factor ⁇ at the time of failure, and calculates the calculated brightness correction factor ⁇ at the time of failure of the LED. By multiplying the brightness correction coefficient C for the correction to make the brightness uniform, the brightness correction coefficient C_t at the time of failure is calculated.
  • the brightness correction coefficient C_t at the time of failure is the brightness correction coefficient Cr_t (uh, uv) at the time of failure of the LED R arranged at the horizontal pixel position uh and the vertical pixel position uv, and the brightness correction coefficient Cg_t (uu) at the time of failure of G. , Uv) and the brightness correction coefficient Cb_t (uh, uv) at the time of failure of B are included.
  • the luminance correction coefficient Cr_t (uh, uv) at the time of failure of R, the luminance correction coefficient Cg_t (uh, uv) at the time of failure of G, and the luminance correction coefficient Cb_t (uh, uv) at the time of failure of B are the above-mentioned R.
  • Luminance correction coefficient Cr (uh, uv), G brightness correction coefficient Cg (uh, uv), B brightness correction coefficient Cb (uu, uv), and brightness correction factor ⁇ r at the time of failure of R, at the time of failure of G It is expressed by the equations (4), (5) and (6) using the luminance correction factor ⁇ g and the luminance correction factor ⁇ b at the time of failure of B.
  • the horizontal pixel position uh is an integer of 0 or more and 5 or less.
  • the vertical pixel position uv is each of integers of 0 or more and 5 or less.
  • the brightness correction factors ⁇ r, ⁇ g and ⁇ b at the time of failure can take values within the range represented by the equations (7), (8) and (9).
  • the target luminance values Yr_t, Yg_t and Yb_t are set smaller than the luminance values of R, G and B of the LED having the lowest luminance, respectively. Therefore, the luminance correction coefficients Cr_t (uh, uv), Cg_t (uh, uv) and Cb_t (uh, uv) at the time of failure are represented by the equations (10), (11) and (12). Can be set to be larger than 1.
  • FIG. 6 is a flowchart showing the operation of the LED display device according to the first embodiment.
  • step S101 shown in FIG. 6 it is determined whether or not a failure of an arbitrary first LED 171 included in the plurality of LEDs 130 has been detected by the failure detection unit 106. If it is determined that the failure of the first LED 171 is detected, the following steps S102, S103 and S104 are sequentially executed. If it is determined that the failure of the first LED 171 has not been detected, step S101 is executed again without executing subsequent steps S102, S103 and S104.
  • step S102 the correction coefficient calculation unit 107 detects the coordinates of the failed first LED 171.
  • step S103 the correction coefficient calculation unit 107 calculates the brightness correction factor ⁇ at the time of failure used to correct the brightness of the second LED 172 adjacent to the failed first LED 171.
  • step S104 the luminance correction unit 103 corrects the video signal using the calculated luminance correction factor ⁇ at the time of failure.
  • the brightness correction unit 103 multiplies the calculated brightness correction factor ⁇ at the time of failure by the brightness correction coefficient C so that the brightness correction coefficient C_t at the time of failure is multiplied by the brightness of the second LED 172.
  • the second signal including the brightness of the second LED 172 included in the video signal is corrected.
  • FIG. 7 is a diagram showing an example of the luminance value distribution in the LED display unit provided in the LED display device of the first embodiment when correction for making pixel defects inconspicuous is not performed.
  • FIG. 8 is a diagram showing an example of the distribution of the luminance value in the LED display unit provided in the LED display device of the first embodiment when the correction for making the pixel defects inconspicuous is performed.
  • each LED 140 is superimposed on each LED 140 included in the plurality of LED 130s.
  • the failed first LED 171 has a brightness value of 0.
  • the third LED 173 other than the failed first LED 171 has a target luminance value 70.
  • the luminance correction factors ⁇ 1 and ⁇ 2 are larger than 1 ( ⁇ 1> 1 and ⁇ 2> 1). Further, the distance from the center of the first LED 171 to the LED 172b is longer than the distance from the center of the first LED 171 to the LED 172a. Therefore, the luminance correction factor ⁇ 2 is smaller than the luminance correction factor ⁇ 1 ( ⁇ 1> ⁇ 2). Therefore, the luminance correction factors ⁇ 1 and ⁇ 2 satisfy the relationship represented by ⁇ 1> ⁇ 2> 1. For example, the luminance correction factor ⁇ 1 is 1.1. The luminance correction factor ⁇ 2 is 1.05. In this case, for example, as shown in FIG. 8, the failed first LED 171 has a brightness value of 0.
  • the fourth LED 174 other than the failed first LED 171 and the second LED 172 adjacent to the first LED 171 has the same target luminance value 70 as the above-mentioned target luminance value 70.
  • the LED 172a included in the second LED 172 has a luminance value 77 obtained by multiplying the luminance value 70 by the luminance correction factor ⁇ 1.
  • the LED 172b included in the second LED 172 has a luminance value 74 obtained by multiplying the luminance value 70 by the luminance correction factor ⁇ 2.
  • the second LED 172 adjacent to the first luminance LED 171 having the luminance value 0 has a luminance value 77 or 74 higher than the target luminance value 70. Therefore, the pixel defect 160 caused by the first LED 171 is inconspicuous. As a result, pixel defect noise caused by the failure of the first LED 171 can be reduced, and an image appearing to have uniform brightness can be displayed on the LED display unit 105.
  • the LED display device 1 includes a brightness correction unit 103 and a failure detection unit 106. Therefore, the video signal is corrected to make the brightness of the LED uniform. Further, when the first LED 171 fails, the video signal is corrected to change the brightness of the second LED 172. Therefore, even if the first LED 171 fails, the LED display device 1 capable of displaying an image in which the pixel defect 160 caused by the failure of the first LED 171 is inconspicuous and appears to have uniform brightness is provided. be able to.
  • a correction for making the brightness of a plurality of LEDs 130 uniform a correction for compensating for a decrease in the brightness of each LED 140 due to aged deterioration, etc.
  • the above-mentioned correction that makes the pixel defect 160 inconspicuous can be used in combination.
  • the operation of the display system is interrupted, and the operation of the display system is interrupted while the failure occurs.
  • the LED display device is repaired. Therefore, in the present technology, for example, when a failure of the LED provided in the LED display device is detected, the operator of the display system is notified or warned of the failure of the LED.
  • the invention of the first embodiment is described even when the LED display device 1 fails when the LED display device 1 is incorporated in a display system such as a display system used for monitoring applications which is required to operate 24 hours a day. , It is based on the original idea that the operation of the display system can be continued.
  • FIG. 1 is also a diagram illustrating the LED display device of the second embodiment.
  • FIG. 2 is also a plan view schematically showing an LED display unit provided in the LED display device of the second embodiment.
  • FIG. 3 is also a plan view schematically showing one pixel provided in the LED display device of the second embodiment.
  • FIG. 4 is also a timing chart for explaining the PWM drive performed in the LED display device of the second embodiment.
  • FIG. 6 is also a flowchart showing the operation of the LED display device according to the second embodiment.
  • the LED display device 2 of the second embodiment is different from the LED display device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the LED display device 1 of the first embodiment is also adopted in the LED display device 2 of the second embodiment.
  • FIG. 9 is a diagram showing an example of the distribution of the luminance value in the LED display unit provided in the LED display device of the second embodiment when the correction for making the pixel defects inconspicuous is performed.
  • FIG. 10 is a diagram showing an example of the distribution of the luminance correction factor ⁇ in the LED display unit provided in the LED display device of the second embodiment when the correction for making the pixel defects inconspicuous is performed.
  • each LED 140 is superimposed on each LED 140 included in the plurality of LED 130s.
  • the brightness correction factor ⁇ used for correcting the brightness value of each LED 140 is superimposed on each LED 140.
  • the correction for making the pixel defect 160 inconspicuous in the LED display device 1 of the first embodiment is a correction performed when the first LED 171 including one LED fails, as shown in FIG. ..
  • the correction for making the pixel defect 160 inconspicuous in the LED display device 2 of the second embodiment includes two LEDs 171a and 171b that are close to each other as shown in FIGS. 9 and 10. This is a correction performed when the LED 171 of 1 fails.
  • the plurality of LEDs 130 make the first LED 171 and the pixel defect 160, which cause the pixel defect 160, inconspicuous, as shown in FIGS. 9 and 10, when the first LED 171 included in the plurality of LED 130 fails. Includes a second LED 172 that is subject to correction.
  • the brightness value of is corrected by using the brightness correction factor ⁇ 2.
  • the brightness value of the LED 172g arranged above, below, left or right of the LED 171a and above, below, left or right of the LED 171b is the product ⁇ 1 * ⁇ 1 of the brightness correction factor ⁇ 1 and the brightness correction factor ⁇ 1. Is corrected using. The correction is performed so that the brightness of the second LED 172 becomes high.
  • the luminance correction factors ⁇ 1 and ⁇ 2 are larger than 1 ( ⁇ 1> 1 and ⁇ 2> 1).
  • the distance from the center of the LED 171a to the LED 172e is longer than the distance from the center of the LED 171a to the LED 172c, and the distance from the center of the LED 171b to the LED 172f is longer than the distance from the center of the LED 171b to the LED 172d. Therefore, the luminance correction factor ⁇ 2 is smaller than the luminance correction factor ⁇ 1 ( ⁇ 1> ⁇ 2). Therefore, the luminance correction factors ⁇ 1 and ⁇ 2 satisfy the relationship represented by ⁇ 1> ⁇ 2> 1.
  • the luminance correction factor ⁇ 1 is 1.1.
  • the luminance correction factor ⁇ 2 is 1.05.
  • the failed first LED 171 has a brightness value of 0.
  • the failed first LED 171 and the LED 174 other than the second LED 172 adjacent to the first LED 171 have a target luminance value 70.
  • the LEDs 172h arranged above, below, left or right of one of the LEDs 171a and 171b have a brightness value 77 obtained by multiplying the brightness value 70 by the brightness correction factor ⁇ 1.
  • the LEDs 172e and 172f arranged at the upper left, upper right, lower left or lower right of one of the LEDs 171a and 171b have a luminance value 74 obtained by multiplying the luminance value 70 by the luminance correction factor ⁇ 2.
  • the LED 172g arranged above, below, left or right of the LED 171a and above, below, left or right of the LED 171b has a brightness value 70 and a product ⁇ 1 of the brightness correction factor ⁇ 1 and the brightness correction value ⁇ 1. It has a brightness value of 85 obtained by multiplying by * ⁇ 1.
  • the second LED 172 adjacent to the first LED 171 having the brightness value 0 has a brightness value 77, 74 or 85 higher than the target brightness value 70. Therefore, the pixel defect 160 caused by the first LED 171 having a brightness value of 0 is not conspicuous. As a result, pixel defect noise caused by the failure of the first LED 171 can be reduced, and an image appearing to have uniform brightness can be displayed on the LED display unit 105.
  • the pixel defect 160 caused by the failure of the first LED 171 is inconspicuous and the brightness is uniform as in the invention of the first embodiment. It is possible to provide an LED display device 2 capable of displaying an image that appears to be possessed.
  • the LED display device 2 in which the pixel defect 160 caused by the failure of the two LEDs 171a and 171b is inconspicuous even when the two LEDs 171a and 171b fail.
  • the second LED 172 to be corrected to make the pixel defect 160 inconspicuous is an LED adjacent to the failed first LED 171.
  • the second LED 172 may include an LED other than the LED adjacent to the failed first LED 171.
  • the second LED 172 may include a few LEDs away from the failed first LED 171.
  • the luminance correction factor ⁇ 1 used for correcting the luminance values of the LEDs 172a, 172c and 172d arranged above, below, left or right of the failed first LED 171 has failed.
  • the brightness correction factors ⁇ 2 used for correcting the brightness values of the LEDs 172b, 172e and 172f arranged at the upper left, upper right, lower left or lower right of the first LED 171 are different from each other.
  • the brightness correction factor ⁇ used for correcting the brightness value of the second LED 172 may be a brightness correction factor different from this.
  • the brightness correction factors used to correct the brightness value of the second LED 172 may all be the same.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
  • LED display device 103 brightness correction unit, 104 drive unit, 105 LED display unit, 106 failure detection unit, 107 correction coefficient calculation unit, 130 multiple LEDs, 140 each LED, 171 first LED, 172 second LED, 160 pixel defect.

Abstract

An LED display is provided which, even when pixel defects have occurred, can display video that appears to have uniform brightness without the pixel defects being conspicuous. This LED display is provided with an LED display unit, a failure detection unit, a brightness correction unit, a correction coefficient calculation unit, and a drive unit. The LED display unit is provided with a plurality of LEDs arranged in a matrix. The failure detection unit detects failures of the LEDs. The brightness correction unit corrects a video signal such that the brightness of 2 or more LEDs included in the plurality of LEDs becomes uniform. Further, the brightness correction unit corrects the video signal in accordance with the brightness correction coefficient. The brightness correction unit outputs the corrected video signal. The correction coefficient calculation unit calculates a brightness correction coefficient such that, if failure of a first LED has been detected by the failure detection unit, then the brightness of a second LED different from the first LED changes. The drive unit drives the plurality of LEDs in accordance with the corrected video signal.

Description

LED表示装置LED display device
 本発明は、LED表示装置に関する。 The present invention relates to an LED display device.
 発光ダイオード(LED:Light Emitting Diode)を備えるLED表示装置は、屋外及び屋内における広告表示等に広く使用される。 LED display devices equipped with light emitting diodes (LEDs: Light Emitting Diodes) are widely used for displaying advertisements outdoors and indoors.
 従来は、LED表示装置は、3mm以上の画素ピッチを有し、屋外用の大型表示装置として使用されていた。しかし、近年においては、LEDの小型化、LEDの低コスト化及びLED表示装置の狭画素ピッチ化に伴い、LED表示装置の視認距離が短くなっており、LED表示装置が屋内における監視用途に活用される事例も多くなってきている。 Conventionally, the LED display device has a pixel pitch of 3 mm or more and has been used as a large-scale outdoor display device. However, in recent years, with the miniaturization of LEDs, the cost reduction of LEDs, and the narrowing of the pixel pitch of LED display devices, the viewing distance of LED display devices has become shorter, and LED display devices are used for indoor monitoring applications. The number of cases is increasing.
 例えば、1.5mm、1.9mm等の狭画素ピッチを有するLED表示装置が屋内用の表示装置として市場に投入されている。当該LED表示装置は、会議室におけるパーソナルコンピューター画像の表示、監視用途のためのパーソナルコンピューター画像の表示等に使用される。当該LED表示装置が監視用途のためのパーソナルコンピューター画像の表示に使用される場合は、当該LED表示装置は、静止画に近いパーソナルコンピューター画像を表示することが多い。 For example, an LED display device having a narrow pixel pitch of 1.5 mm, 1.9 mm, etc. has been put on the market as an indoor display device. The LED display device is used for displaying a personal computer image in a conference room, displaying a personal computer image for monitoring purposes, and the like. When the LED display device is used to display a personal computer image for surveillance purposes, the LED display device often displays a personal computer image close to a still image.
 LED表示装置においては、多くの場合は、多数のLEDが基板上にマトリクス状に配置されて表示モジュールが構成される。また、複数の表示モジュールが組み合わされて表示ユニットが構成される。また、複数の表示ユニットが任意に組み合わされて所望の大きさを有する映像表示面が構成される。 In an LED display device, in many cases, a large number of LEDs are arranged in a matrix on a substrate to form a display module. In addition, a display unit is configured by combining a plurality of display modules. Further, a plurality of display units are arbitrarily combined to form a video display surface having a desired size.
 多数のLEDを備えるLED表示装置に均一な輝度を有する高品質の映像を表示させるためには、多数のLEDの輝度が均一であることが望まれる。しかし、多くの場合は、多数のLEDの特性は均一ではない。このため、多数のLEDに同じ駆動信号が供給された場合は、多数のLEDの輝度が均一にならない。そこで、多数のLEDに供給される駆動信号を調整することにより、多数のLEDの輝度を均一にすることが行われている。この場合は、表示ユニット又は表示モジュールに備えられる多数のLEDが点灯させられる。また、多数のLEDが点灯させられた状態で表示ユニット又は表示モジュールの画像が撮像される。また、撮像された画像により多数のLEDの輝度が計測される。また、最も低い輝度を有するLEDの輝度に残余のLEDの輝度が近づくように残余のLEDに供給される駆動信号が調整される。 In order to display a high-quality image having uniform brightness on an LED display device including a large number of LEDs, it is desired that the brightness of many LEDs is uniform. However, in many cases, the characteristics of many LEDs are not uniform. Therefore, when the same drive signal is supplied to a large number of LEDs, the brightness of the large number of LEDs is not uniform. Therefore, by adjusting the drive signals supplied to a large number of LEDs, the brightness of the large number of LEDs is made uniform. In this case, a large number of LEDs provided in the display unit or display module are turned on. Further, an image of the display unit or the display module is captured with a large number of LEDs turned on. In addition, the brightness of many LEDs is measured by the captured image. Further, the drive signal supplied to the residual LED is adjusted so that the brightness of the residual LED approaches the brightness of the LED having the lowest brightness.
 また、LEDの輝度は、LEDの累積点灯時間が長くなるにつれて低下する。このため、LED表示装置に表示される映像の内容によっては、多数のLEDの累積点灯時間が不均一になる。このため、LED表示装置に表示される映像の内容によっては、多数のLEDの輝度の低下率が不均一になる。その結果、LED表示装置の使用時間が長くなるにつれて、LED表示装置に備えられる多数のLEDの輝度及び色度が不均一になる。このため、この問題を解決するための技術が提案されている。 Also, the brightness of the LED decreases as the cumulative lighting time of the LED increases. Therefore, the cumulative lighting time of a large number of LEDs becomes non-uniform depending on the content of the image displayed on the LED display device. Therefore, depending on the content of the image displayed on the LED display device, the reduction rate of the brightness of many LEDs becomes non-uniform. As a result, as the usage time of the LED display device increases, the brightness and chromaticity of many LEDs provided in the LED display device become non-uniform. Therefore, a technique for solving this problem has been proposed.
 例えば、特許文献1に記載された技術においては、複数のディスプレイLEDが回路板の前面に実装される(段落0015)。また、基準LEDが回路板の背面に実装される。回路板は、複数のディスプレイLED及び基準LEDを駆動する(段落0015)。複数のディスプレイLEDは、時間とともに劣化し得るので、色彩調整を実行するための機構の必要性が存在する(段落0015)。このため、基準LEDからの出力が検知される(段落0016)。基準LEDからの出力は、自動色彩調整プロセスに必要である(段落0016)。 For example, in the technique described in Patent Document 1, a plurality of display LEDs are mounted on the front surface of a circuit board (paragraph 0015). In addition, the reference LED is mounted on the back surface of the circuit board. The circuit board drives a plurality of display LEDs and reference LEDs (paragraph 0015). Since a plurality of display LEDs can deteriorate over time, there is a need for a mechanism for performing color adjustment (paragraph 0015). Therefore, the output from the reference LED is detected (paragraph 0016). The output from the reference LED is required for the automatic color adjustment process (paragraph 0016).
特開2014-102484号公報Japanese Unexamined Patent Publication No. 2014-102484
 LED表示装置に備えられる多数のLEDに含まれるひとつのLEDが故障して点灯しなくなった場合は、画素欠点が生じる。画素欠点は、故障したLEDを故障していないLEDに交換する修理を行うことにより解消することができる。しかし、LED表示装置が1mm前後の狭画素ピッチを有する場合は、当該修理を行うためには、繊細で高度な技術が必要になる。そのような繊細で高度な技術が必要になる修理は、LED表示装置の運用が開始された後に行うことは困難である。このため、現状では、数万個のLEDに含まれるひとつのLEDが故障したにすぎない場合でも、数万個のLEDを備えるモジュールを新たなモジュールに交換する修理を行うことが主流になっている。そして、そのような修理を行うためには、LED表示装置の電源をオフにするか、又はLED表示装置の画面を非表示状態にしなければならない。 If one LED included in a large number of LEDs provided in an LED display device fails and does not light up, a pixel defect occurs. Pixel defects can be eliminated by performing repairs by replacing the failed LED with a non-failed LED. However, when the LED display device has a narrow pixel pitch of about 1 mm, delicate and advanced technology is required to perform the repair. Repairs that require such delicate and sophisticated techniques are difficult to perform after the LED display device has been put into operation. For this reason, at present, even if only one LED contained in tens of thousands of LEDs fails, it has become mainstream to replace a module having tens of thousands of LEDs with a new module for repair. There is. Then, in order to carry out such repair, the power of the LED display device must be turned off or the screen of the LED display device must be hidden.
 しかし、24時間稼働が求められる表示システムにLED装置が組み込まれている場合は、画素欠点を解消するためにLED表示装置の電源をオフにするか、又はLED表示装置の画面を非表示状態にすることは、画素欠点を解消するために表示を停止しなければならないことを意味する。それは、表示システムの運用上の大きなリスクを抱えることにつながる。この問題は、表示システムが監視用途に使用される場合に特に顕著になる。 However, when the LED device is incorporated in the display system that is required to operate 24 hours a day, the power of the LED display device is turned off or the screen of the LED display device is hidden in order to eliminate the pixel defect. This means that the display must be stopped in order to eliminate the pixel defect. It leads to a great risk in the operation of the display system. This problem is especially noticeable when the display system is used for surveillance purposes.
 本発明は、これらの問題に鑑みてなされた。本発明が解決しようとする課題は、画素欠点が生じた場合でも画素欠点が目立たず、均一な輝度を有するように見える映像を表示することができるLED表示装置を提供することである。 The present invention has been made in view of these problems. An object to be solved by the present invention is to provide an LED display device capable of displaying an image in which pixel defects are inconspicuous and appear to have uniform brightness even when pixel defects occur.
 LED表示装置は、LED表示部、故障検知部、輝度補正部、補正係数演算部及び駆動部を備える。 The LED display device includes an LED display unit, a failure detection unit, a brightness correction unit, a correction coefficient calculation unit, and a drive unit.
 LED表示部は、複数のLEDを備える。複数のLEDは、マトリクス状に配置される。 The LED display unit includes a plurality of LEDs. The plurality of LEDs are arranged in a matrix.
 故障検知部は、複数のLEDに含まれる各LEDの故障を検知する。 The failure detection unit detects the failure of each LED included in the plurality of LEDs.
 輝度補正部は、複数のLEDに含まれる2個以上のLEDの輝度が均一になるように映像信号を補正する。また、輝度補正部は、輝度補正係数にしたがって映像信号を補正する。輝度補正部は、補正された映像信号を出力する。 The brightness correction unit corrects the video signal so that the brightness of two or more LEDs included in the plurality of LEDs becomes uniform. Further, the luminance correction unit corrects the video signal according to the luminance correction coefficient. The luminance correction unit outputs the corrected video signal.
 補正係数演算部は、複数のLEDに含まれる第1のLEDの故障が故障検知部により検知された場合に、複数のLEDに含まれる、第1のLEDと異なる第2のLEDの輝度が変化するように輝度補正係数を演算する。 In the correction coefficient calculation unit, when a failure of the first LED included in the plurality of LEDs is detected by the failure detection unit, the brightness of the second LED included in the plurality of LEDs, which is different from the first LED, changes. The brightness correction coefficient is calculated so as to be performed.
 駆動部は、補正された映像信号にしたがって複数のLEDを駆動する。 The drive unit drives a plurality of LEDs according to the corrected video signal.
 本発明によれば、LEDの輝度を均一にする補正が映像信号に行われる。また、第1のLEDが故障した場合に第2のLEDの輝度が変化する補正が映像信号に行われる。このため、第1のLEDが故障した場合でも、第1のLEDの故障により生じる画素欠点が目立たず、均一な輝度を有する映像を表示することができるLED表示装置を提供することができる。 According to the present invention, the video signal is corrected to make the brightness of the LED uniform. Further, when the first LED fails, the video signal is corrected to change the brightness of the second LED. Therefore, even if the first LED fails, it is possible to provide an LED display device capable of displaying an image having uniform brightness without conspicuous pixel defects caused by the failure of the first LED.
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The purpose, features, aspects and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1及び2の発光ダイオード(LED:Light Emitting Diode)表示装置を図示するブロック図である。It is a block diagram which illustrates the light emitting diode (LED: Light Emitting Diode) display device of Embodiments 1 and 2. 実施の形態1及び2のLED表示装置に備えられるLED表示部を模式的に図示する平面図である。It is a top view which shows typically the LED display part provided in the LED display device of Embodiments 1 and 2. 実施の形態1及び2のLED表示装置に備えられるひとつの画素を模式的に図示する平面図である。It is a top view which schematically illustrates one pixel provided in the LED display device of Embodiments 1 and 2. 実施の形態1及び2のLED表示装置において行われるPWM駆動を説明するタイミングチャートである。It is a timing chart for explaining the PWM drive performed in the LED display device of Embodiments 1 and 2. 実施の形態1のLED表示装置に備えられる、画素欠点を含むLED表示部を模式的に図示する平面図である。FIG. 5 is a plan view schematically illustrating an LED display unit including pixel defects provided in the LED display device of the first embodiment. 実施の形態1及び2のLED表示装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the LED display device of Embodiments 1 and 2. 画素欠点を目立たなくする補正が行われない場合の、実施の形態1のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。It is a figure which shows the example of the distribution of the luminance value in the LED display part provided in the LED display device of Embodiment 1 when the correction which makes a pixel defect inconspicuous is not performed. 画素欠点を目立たなくする補正が行われる場合の、実施の形態1のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。It is a figure which shows the example of the distribution of the luminance value in the LED display part provided in the LED display device of Embodiment 1 when the correction which makes a pixel defect inconspicuous is performed. 画素欠点を目立たなくする補正が行われる場合の、実施の形態2のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。It is a figure which shows the example of the distribution of the luminance value in the LED display part provided in the LED display device of Embodiment 2 when the correction which makes a pixel defect inconspicuous is performed. 画素欠点を目立たなくする補正が行われる場合の、実施の形態2のLED表示装置に備えられるLED表示部における、輝度補正率θの分布の例を示す図である。It is a figure which shows the example of the distribution of the luminance correction factor θ in the LED display part provided in the LED display device of Embodiment 2 when the correction which makes a pixel defect inconspicuous is performed.
 1 実施の形態1
 1.1 LED表示装置
 図1は、実施の形態1の発光ダイオード(LED:Light Emitting Diode)表示装置を図示するブロック図である。
1 Embodiment 1
1.1 LED Display Device FIG. 1 is a block diagram illustrating a light emitting diode (LED) display device according to the first embodiment.
 実施の形態1のLED表示装置1は、図1に図示されるように、映像信号入力端子101、映像信号処理部102、輝度補正部103、駆動部104、LED表示部105、故障検知部106、補正係数演算部107、外部制御通信端子108、外部通信部109、マイクロコンピュータ(マイコン)110及びメモリ111を備える。駆動部104及び故障検知部106は、LEDドライバ120を構成する。 As shown in FIG. 1, the LED display device 1 of the first embodiment has a video signal input terminal 101, a video signal processing unit 102, a brightness correction unit 103, a drive unit 104, an LED display unit 105, and a failure detection unit 106. , Correction coefficient calculation unit 107, external control communication terminal 108, external communication unit 109, microcomputer (microcomputer) 110, and memory 111. The drive unit 104 and the failure detection unit 106 constitute the LED driver 120.
 図2は、実施の形態1のLED表示装置に備えられるLED表示部を模式的に図示する平面図である。 FIG. 2 is a plan view schematically showing an LED display unit provided in the LED display device of the first embodiment.
 LED表示部105は、図2に図示されるように、マトリクス状に配置される複数のLED130を備える。 As shown in FIG. 2, the LED display unit 105 includes a plurality of LEDs 130 arranged in a matrix.
 図1に図示される映像信号入力端子101には、パーソナルコンピュータ(PC)等の外部装置から映像信号が入力される。 A video signal is input to the video signal input terminal 101 shown in FIG. 1 from an external device such as a personal computer (PC).
 映像信号処理部102は、入力された映像信号を処理し、処理した映像信号を出力する。映像信号処理部102により行われる処理は、映像信号処理、選択処理等を含む。映像信号処理は、ガンマ補正等を含む。選択処理は、入力された映像信号からLED表示装置1による映像の表示に必要な部分を選択する処理等を含む。映像信号処理部102により行われる処理が選択処理を含む場合は、LED表示部105は、入力された映像信号により表現される映像の一部を表示する。映像信号処理部102により行われる処理が選択処理を含まない場合は、LED表示部105は、入力された映像信号により表現される映像の全体を表示する。 The video signal processing unit 102 processes the input video signal and outputs the processed video signal. The processing performed by the video signal processing unit 102 includes video signal processing, selection processing, and the like. Video signal processing includes gamma correction and the like. The selection process includes a process of selecting a portion necessary for displaying an image by the LED display device 1 from the input video signal. When the processing performed by the video signal processing unit 102 includes selection processing, the LED display unit 105 displays a part of the video represented by the input video signal. When the processing performed by the video signal processing unit 102 does not include the selection processing, the LED display unit 105 displays the entire video represented by the input video signal.
 輝度補正部103は、処理された映像信号を輝度補正係数にしたがって補正し、補正された映像信号を出力する。これにより、複数のLED130の輝度が輝度補正係数にしたがって補正され、LED表示部105に表示される映像の輝度が輝度補正係数にしたがって補正される。輝度補正部103は、映像信号の信号レベルを輝度補正係数にしたがって変更することにより、映像信号を輝度補正係数にしたがって補正する。 The brightness correction unit 103 corrects the processed video signal according to the brightness correction coefficient, and outputs the corrected video signal. As a result, the brightness of the plurality of LEDs 130 is corrected according to the brightness correction coefficient, and the brightness of the image displayed on the LED display unit 105 is corrected according to the brightness correction coefficient. The luminance correction unit 103 corrects the video signal according to the luminance correction coefficient by changing the signal level of the video signal according to the luminance correction coefficient.
 駆動部104は、補正された映像信号にしたがって複数のLED130を駆動する。これにより、複数のLED130の発光が補正された映像信号にしたがって制御され、複数のLED130の輝度が補正された映像信号にしたがって制御される。これにより、LED表示部105は、補正された映像信号に応じた映像を表示する。望ましくは、駆動部104は、複数のLED130に含まれる各LED140をパルス幅変調(PWM:Pulse Width Modulation)駆動する。 The drive unit 104 drives a plurality of LEDs 130 according to the corrected video signal. As a result, the light emission of the plurality of LEDs 130 is controlled according to the corrected video signal, and the brightness of the plurality of LEDs 130 is controlled according to the corrected video signal. As a result, the LED display unit 105 displays an image corresponding to the corrected image signal. Desirably, the drive unit 104 drives each LED 140 included in the plurality of LEDs 130 by pulse width modulation (PWM).
 複数のLED130に含まれる各LED140は、ひとつの画素を構成する。 Each LED 140 included in the plurality of LEDs 130 constitutes one pixel.
 図3は、実施の形態1のLED表示装置に備えられるひとつの画素を模式的に図示する平面図である。LED表示部105は、フルカラー映像を表示する。このため、ひとつの画素を構成する各LED140は、図3に図示されるように、赤色(R)のLED151、緑色(G)のLED152及び青色(B)のLED153を備える。RのLED151、GのLED152及びBのLED153の各々は、サブ画素を構成する。LED表示部105が単色映像を表示してもよい。この場合は、各LED140がひとつの色のLEDにより構成されてもよい。LED表示部105が別の構造を有するLED表示部に置き換えられてもよい。 FIG. 3 is a plan view schematically illustrating one pixel provided in the LED display device of the first embodiment. The LED display unit 105 displays a full-color image. Therefore, as shown in FIG. 3, each LED 140 constituting one pixel includes a red (R) LED 151, a green (G) LED 152, and a blue (B) LED 153. Each of the R LED 151, the G LED 152, and the B LED 153 constitutes a sub-pixel. The LED display unit 105 may display a monochromatic image. In this case, each LED 140 may be composed of LEDs of one color. The LED display unit 105 may be replaced with an LED display unit having a different structure.
 図1に図示される故障検知部106は、複数のLED130に含まれる各LED140の故障を検知する。故障検知部106は、例えば、駆動部104が各LED140を駆動している間に各LED140に供給される電圧及び/又は電流を監視することにより、各LED140の短絡モード及び開放モードの故障を検知する。 The failure detection unit 106 illustrated in FIG. 1 detects a failure of each LED 140 included in the plurality of LEDs 130. The failure detection unit 106 detects a failure in the short-circuit mode and the open mode of each LED 140 by monitoring the voltage and / or current supplied to each LED 140 while the drive unit 104 is driving each LED 140, for example. To do.
 補正係数演算部107は、故障検知部106により各LED140の故障が検知された場合に、上述した輝度補正係数を構成する故障時の輝度補正係数を演算する。故障時の輝度補正係数は、各LED140の故障により生じる画素欠点を目立たなくする補正のための輝度補正係数である。 When the failure detection unit 106 detects a failure of each LED 140, the correction coefficient calculation unit 107 calculates the brightness correction coefficient at the time of failure that constitutes the above-mentioned brightness correction coefficient. The brightness correction coefficient at the time of failure is a brightness correction coefficient for correction that makes the pixel defects caused by the failure of each LED 140 inconspicuous.
 外部制御通信端子108には、PC等の外部装置から制御信号が入力される。入力される制御信号は、LED表示装置1を制御するための制御信号を含む。 A control signal is input to the external control communication terminal 108 from an external device such as a PC. The input control signal includes a control signal for controlling the LED display device 1.
 外部通信部109は、入力された制御信号を受信する。 The external communication unit 109 receives the input control signal.
 マイコン110は、外部制御通信端子108及び外部通信部109を介して、入力された制御信号を受信する。また、マイコン110は、補正係数演算部107を制御することにより、複数のLED130の輝度を制御する。また、マイコン110は、補正係数演算部107により演算された輝度補正係数をメモリ111に記憶させる。 The microcomputer 110 receives the input control signal via the external control communication terminal 108 and the external communication unit 109. Further, the microcomputer 110 controls the brightness of the plurality of LEDs 130 by controlling the correction coefficient calculation unit 107. Further, the microcomputer 110 stores the luminance correction coefficient calculated by the correction coefficient calculation unit 107 in the memory 111.
 1.2 LEDの点灯の制御
 複数のLED130に含まれる各LED140の点灯は、望ましくは、PWM方式により制御される。この場合は、駆動部104は、各LED140の信号レベルに比例するDuty比を有する駆動信号を各LED140に供給する。各LED140は、供給された駆動信号のオン期間に点灯する。これにより、各LED140は、各LED140の信号レベルに比例する輝度を有する。
1.2 Control of LED lighting The lighting of each LED 140 included in the plurality of LEDs 130 is preferably controlled by a PWM method. In this case, the drive unit 104 supplies each LED 140 with a drive signal having a duty ratio proportional to the signal level of each LED 140. Each LED 140 lights up during the on period of the supplied drive signal. As a result, each LED 140 has a brightness proportional to the signal level of each LED 140.
 図4は、実施の形態1のLED表示装置において行われるPWM駆動を説明するタイミングチャートである。図4(a)は、PWM駆動の基本周期で繰り返し発せられるパルスを含む信号の波形を図示する図である。図4(b)は、85%のDuty比を有する駆動信号の波形を図示する図である。図4(c)は、80%のDuty比を有する駆動信号の波形を図示する図である。 FIG. 4 is a timing chart illustrating PWM drive performed in the LED display device of the first embodiment. FIG. 4A is a diagram illustrating a waveform of a signal including a pulse repeatedly generated in a basic period of PWM drive. FIG. 4B is a diagram illustrating a waveform of a drive signal having a duty ratio of 85%. FIG. 4C is a diagram illustrating a waveform of a drive signal having a duty ratio of 80%.
 図4(a)に示される基本周期は、映像信号の1フレーム期間以下である。図4(b)に示される駆動信号は、基本周期で繰り返し発せられ、基本周期の85%のパルス幅を有するパルスを含む。図4(c)に示される駆動信号は、基本周期で繰り返し発せられ、基本周期の80%のパルス幅を有するパルスを含む。図4(b)に示される駆動信号が複数のLED130に含まれる各LED140に供給された場合の各LED140の輝度と、図4(c)に示される駆動信号が各LED140に供給された場合の各LED140の輝度と、は互いに異なる。このため、輝度補正部103が映像信号の信号レベルを輝度補正係数にしたがって変更し、駆動部104が各LED140の信号レベルにしたがって各LED140に供給する駆動信号のDuty比を変更することにより、各LED140の輝度を輝度補正係数にしたがって変更することができる。 The basic period shown in FIG. 4A is one frame period or less of the video signal. The drive signal shown in FIG. 4B includes pulses that are repeatedly emitted in the basic period and have a pulse width of 85% of the basic period. The drive signal shown in FIG. 4 (c) includes a pulse that is repeatedly emitted in the basic cycle and has a pulse width of 80% of the basic cycle. The brightness of each LED 140 when the drive signal shown in FIG. 4 (b) is supplied to each LED 140 included in the plurality of LEDs 130, and the case where the drive signal shown in FIG. 4 (c) is supplied to each LED 140. The brightness of each LED 140 is different from each other. Therefore, the luminance correction unit 103 changes the signal level of the video signal according to the luminance correction coefficient, and the drive unit 104 changes the duty ratio of the drive signal supplied to each LED 140 according to the signal level of each LED 140. The brightness of the LED 140 can be changed according to the brightness correction coefficient.
 1.3 LEDの輝度を均一にする補正の必要性
 複数のLED130は、互いに異なる特性を有する。このため、複数のLED130は、互いに異なる輝度を有する。したがって、複数のLED130の輝度が均一になるように映像信号が補正されない場合は、LED表示部105に表示される映像にざらつき、輝度ムラ等が生じる。このため、輝度補正部103は、望ましくは、複数のLED130の輝度が均一になるように映像信号を補正する。
1.3 Necessity of correction to make the brightness of LEDs uniform The plurality of LEDs 130 have different characteristics from each other. Therefore, the plurality of LEDs 130 have different brightness from each other. Therefore, if the video signal is not corrected so that the brightness of the plurality of LEDs 130 becomes uniform, the video displayed on the LED display unit 105 becomes grainy and uneven brightness or the like occurs. Therefore, the luminance correction unit 103 preferably corrects the video signal so that the luminance of the plurality of LEDs 130 becomes uniform.
 1.4 LEDの故障の検出による補正の変化
 図5は、実施の形態1のLED表示装置に備えられる、画素欠点を含むLED表示部を模式的に図示する平面図である。
1.4 Change in correction due to detection of LED failure FIG. 5 is a plan view schematically showing an LED display unit including pixel defects provided in the LED display device of the first embodiment.
 複数のLED130は、複数のLED130に含まれる第1のLED171が故障した場合に、図5に図示されるように、画素欠点160を生じる第1のLED171、及び画素欠点160を目立たなくする補正の対象となる第2のLED172を含む。第2のLED172は、第1のLED171と異なるLEDであり、例えば、第1のLED171に隣接するLEDである。 As shown in FIG. 5, when the first LED 171 included in the plurality of LED 130s fails, the plurality of LEDs 130 are corrected to make the first LED 171 causing the pixel defect 160 and the pixel defect 160 inconspicuous. Includes a second LED 172 of interest. The second LED 172 is an LED different from the first LED 171 and is, for example, an LED adjacent to the first LED 171.
 第2のLED172が第1のLED171に隣接するLEDである場合は、第2のLED172は、第1のLED171の上に配置されるLED、第1のLED171の下に配置されるLED、第1のLED171の左に配置されるLED、第1のLED171の右に配置されるLED、第1のLED171の左上に配置されるLED、第1のLED171の右上に配置されるLED、第1のLED171の左下に配置されるLED、及び第1のLED171の右下に配置されるLEDを含む。 When the second LED 172 is an LED adjacent to the first LED 171, the second LED 172 is an LED arranged above the first LED 171 and an LED arranged below the first LED 171. LED arranged to the left of LED171, LED arranged to the right of the first LED171, LED arranged on the upper left of the first LED171, LED arranged on the upper right of the first LED171, first LED171. The LED is arranged at the lower left of the above, and the LED is arranged at the lower right of the first LED 171.
 輝度補正部103は、複数のLED130に含まれる各LED140の故障が故障検知部106により検知されていない場合は、複数のLED130の輝度が均一になるように映像信号を補正する。輝度補正部103は、その際に、LEDの輝度を均一にする補正のための輝度補正係数Cにしたがって映像信号を補正する。 When the failure of each LED 140 included in the plurality of LEDs 130 is not detected by the failure detection unit 106, the brightness correction unit 103 corrects the video signal so that the brightness of the plurality of LEDs 130 becomes uniform. At that time, the luminance correction unit 103 corrects the video signal according to the luminance correction coefficient C for making the brightness of the LED uniform.
 一方、輝度補正部103は、複数のLED130に含まれる第1のLED171の故障が故障検知部106により検知された場合は、複数のLED130に含まれる、第1のLED171及び第2のLED172以外の2個以上のLED174の輝度が均一になるように映像信号を補正する。輝度補正部103は、その際に、映像信号に含まれる、2個以上のLED174の輝度を示す第1の信号を、LEDの輝度を均一にする補正のための輝度補正係数Cにしたがって補正する。また、輝度補正部103は、第1のLED171の故障が故障検知部106により検知された場合は、第2のLED172の輝度が変化するように映像信号を補正する。例えば、輝度補正部103は、第1のLED171の故障が故障検知部106により検知された場合は、第2のLED172の輝度が高くなるように映像信号を補正する。輝度補正部103は、その際に、映像信号に含まれる、第2のLED172の輝度を示す第2の信号を、画素欠点160を目立たなくする補正のための故障時の輝度補正係数C_tにしたがって補正する。 On the other hand, when the failure detection unit 106 detects a failure of the first LED 171 included in the plurality of LEDs 130, the brightness correction unit 103 other than the first LED 171 and the second LED 172 included in the plurality of LEDs 130. The video signal is corrected so that the brightness of the two or more LEDs 174 becomes uniform. At that time, the brightness correction unit 103 corrects the first signal including the brightness of the two or more LEDs 174 included in the video signal according to the brightness correction coefficient C for correction to make the brightness of the LEDs uniform. .. Further, when the failure of the first LED 171 is detected by the failure detection unit 106, the brightness correction unit 103 corrects the video signal so that the brightness of the second LED 172 changes. For example, when the failure detection unit 106 detects a failure of the first LED 171, the brightness correction unit 103 corrects the video signal so that the brightness of the second LED 172 becomes high. At that time, the luminance correction unit 103 makes the second signal, which indicates the luminance of the second LED 172, included in the video signal, according to the luminance correction coefficient C_t at the time of failure for correction for making the pixel defect 160 inconspicuous. to correct.
 第2のLED172の輝度が高くなるように映像信号を補正することは、画素欠点160を目立たなくする補正が行われた後の第2のLED172の輝度が、画素欠点160を目立たなくする補正が行われる前の第2のLED172の輝度より高くなるように映像信号を補正することを意味し、画素欠点160を目立たなくする補正が行われた後の第2のLED172の輝度が、LEDの輝度を均一にする補正が行われる場合の第2のLED172の目標輝度より高くなるように映像信号を補正することを意味する。 Correcting the video signal so that the brightness of the second LED 172 becomes high means that the brightness of the second LED 172 after the correction for making the pixel defect 160 inconspicuous is corrected to make the pixel defect 160 inconspicuous. It means that the video signal is corrected so as to be higher than the brightness of the second LED 172 before being performed, and the brightness of the second LED 172 after the correction for making the pixel defect 160 inconspicuous is the brightness of the LED. It means that the video signal is corrected so as to be higher than the target brightness of the second LED 172 when the correction is performed to make the image uniform.
 1.5 LEDの輝度を均一にする補正のための輝度補正係数C
 LEDの輝度を均一にする補正のための輝度補正係数Cが演算される際には、複数のLED130が点灯させられる。また、複数のLED130が点灯させられた状態で複数のLED130の画像が撮像される。また、撮像された画像により複数のLED130に含まれる各LED140の輝度が計測される。また、最も低い輝度を有するLEDの輝度に残余のLEDの輝度が近づくように残余のLEDに供給される駆動信号を調整するための輝度補正係数Cが演算される。
1.5 Luminance correction coefficient C for correction to make the LED brightness uniform
When the brightness correction coefficient C for the correction to make the brightness of the LEDs uniform is calculated, a plurality of LEDs 130 are turned on. In addition, images of the plurality of LEDs 130 are captured with the plurality of LEDs 130 turned on. In addition, the brightness of each LED 140 included in the plurality of LEDs 130 is measured from the captured image. Further, the brightness correction coefficient C for adjusting the drive signal supplied to the remaining LED so that the brightness of the remaining LED approaches the brightness of the LED having the lowest brightness is calculated.
 輝度補正係数Cは、水平画素位置uh及び垂直画素位置uvに配置されるLEDのRの輝度補正係数Cr(uh,uv)、Gの輝度補正係数Cg(uh,uv)及びBの輝度補正係数Cb(uh,uv)を含む。Rの輝度補正係数Cr(uh,uv)、Gの輝度補正係数Cg(uh,uv)及びBの輝度補正係数Cb(uh,uv)は、当該LEDのRの輝度値Yr(uh,uv)、Gの輝度値Yg(uh,uv)及びBの輝度値Yb(uh,uv)、並びにRの目標輝度値Yr_t、Gの目標輝度値Yg_t及びBの目標輝度値Yb_tを用いて、式(1)、式(2)及び式(3)により表される。水平画素位置uhは、0以上5以下の整数の各々である。垂直画素位置uvは、0以上5以下の整数の各々である。 The brightness correction coefficient C is the brightness correction coefficient Cr (uh, uv) of the R of the LED arranged at the horizontal pixel position uh and the vertical pixel position uv, the brightness correction coefficient Cg (uu, uv) of G, and the brightness correction coefficient of B. Includes Cb (uh, uv). The brightness correction coefficient Cr (uh, uv) of R, the brightness correction coefficient Cg (uh, uv) of G, and the brightness correction coefficient Cb (uh, uv) of B are the brightness values Yr (uh, uv) of R of the LED. , G brightness value Yg (uh, uv) and B brightness value Yb (uh, uv), and R target brightness value Yr_t, G target brightness value Yg_t, and B target brightness value Yb_t. It is represented by 1), equation (2) and equation (3). The horizontal pixel position uh is an integer of 0 or more and 5 or less. The vertical pixel position uv is each of integers of 0 or more and 5 or less.
 Cr(uh,uv)=Yr_t/Yr(uh,uv)・・・(1)
 Cg(uh,uv)=Yg_t/Yg(uh,uv)・・・(2)
 Cb(uh,uv)=Yb_t/Yb(uh,uv)・・・(3)
Cr (uh, uv) = Yr_t / Yr (uh, uv) ... (1)
Cg (uh, uv) = Yg_t / Yg (uh, uv) ... (2)
Cb (uh, uv) = Yb_t / Yb (uh, uv) ... (3)
 目標輝度値Yr_t、Yg_t及びYb_tは、輝度補正係数Cr(uh,uv)、Cg(uh,uv)及びCb(uh,uv)にしたがって水平画素位置uh及び垂直画素位置uvに配置されるLEDの輝度を示す信号が補正された場合の、当該LEDのR、G及びBの輝度値である。 The target luminance values Yr_t, Yg_t and Yb_t are the LEDs arranged at the horizontal pixel position uh and the vertical pixel position uv according to the luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uh, uv). It is the brightness value of R, G and B of the LED when the signal indicating the brightness is corrected.
 輝度補正係数Cr(uh,uv)、Cg(uh,uv)及びCb(uh,uv)、並びに目標輝度値Yr_t、Yg_t及びYb_tは、メモリ111に記憶させられる。 The luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uh, uv), and the target luminance values Yr_t, Yg_t and Yb_t are stored in the memory 111.
 記憶させられた輝度補正係数Cr(uh,uv)、Cg(uh,uv)及びCb(uh,uv)、並びに目標輝度値Yr_t、Yg_t及びYb_tは、複数のLED表示部105が配列された後に行われる、初期設置時の複数のLED表示部105の間の輝度補正計算に用いられる。 The stored luminance correction coefficients Cr (uh, uv), Cg (uh, uv) and Cb (uv, uv), and the target luminance values Yr_t, Yg_t and Yb_t are obtained after a plurality of LED display units 105 are arranged. It is used for the brightness correction calculation between the plurality of LED display units 105 at the time of initial installation.
 記憶させられる目標輝度値Yr_t、Yg_t及びYb_tは、それぞれ最も低い輝度を有するLEDのR、G及びBの輝度値より小さく設定される。これにより、複数のLED130の輝度が均一になるように映像信号を補正することができる。 The stored target luminance values Yr_t, Yg_t and Yb_t are set to be smaller than the luminance values of R, G and B of the LED having the lowest luminance, respectively. As a result, the video signal can be corrected so that the brightness of the plurality of LEDs 130 becomes uniform.
 1.6 画素欠点を目立たなくする補正のための故障時の輝度補正係数C_t
 画素欠点160を目立たなくする補正のための故障時の輝度補正係数C_tは、複数のLED130に含まれる第1のLED171の故障が故障検知部106により検知された場合に、補正係数演算部107により演算される。故障時の輝度補正係数C_tは、第2のLED172の輝度が変化するように演算され、例えば、第2のLED172の輝度が高くなるように演算される。補正係数演算部107は、例えば、第1のLED171の故障が故障検知部106により検知された場合に、故障時の輝度補正率θを算出し、算出した故障時の輝度補正率θをLEDの輝度を均一にする補正のための輝度補正係数Cに乗じることにより、故障時の輝度補正係数C_tを演算する。
1.6 Luminance correction coefficient C_t at the time of failure for correction to make pixel defects inconspicuous
The brightness correction coefficient C_t at the time of failure for correction to make the pixel defect 160 inconspicuous is determined by the correction coefficient calculation unit 107 when the failure of the first LED 171 included in the plurality of LEDs 130 is detected by the failure detection unit 106. It is calculated. The brightness correction coefficient C_t at the time of failure is calculated so that the brightness of the second LED 172 changes, for example, the brightness of the second LED 172 is calculated to be high. For example, when the failure of the first LED 171 is detected by the failure detection unit 106, the correction coefficient calculation unit 107 calculates the brightness correction factor θ at the time of failure, and calculates the calculated brightness correction factor θ at the time of failure of the LED. By multiplying the brightness correction coefficient C for the correction to make the brightness uniform, the brightness correction coefficient C_t at the time of failure is calculated.
 故障時の輝度補正係数C_tは、水平画素位置uh及び垂直画素位置uvに配置されるLEDのRの故障時の輝度補正係数Cr_t(uh,uv)、Gの故障時の輝度補正係数Cg_t(uh,uv)及びBの故障時の輝度補正係数Cb_t(uh,uv)を含む。Rの故障時の輝度補正係数Cr_t(uh,uv)、Gの故障時の輝度補正係数Cg_t(uh,uv)及びBの故障時の輝度補正係数Cb_t(uh,uv)は、上述したRの輝度補正係数Cr(uh,uv)、Gの輝度補正係数Cg(uh,uv)及びBの輝度補正係数Cb(uh,uv)、並びにRの故障時の輝度補正率θr、Gの故障時の輝度補正率θg及びBの故障時の輝度補正率θbを用いて、式(4)、式(5)及び式(6)により表される。水平画素位置uhは、0以上5以下の整数の各々である。垂直画素位置uvは、0以上5以下の整数の各々である。 The brightness correction coefficient C_t at the time of failure is the brightness correction coefficient Cr_t (uh, uv) at the time of failure of the LED R arranged at the horizontal pixel position uh and the vertical pixel position uv, and the brightness correction coefficient Cg_t (uu) at the time of failure of G. , Uv) and the brightness correction coefficient Cb_t (uh, uv) at the time of failure of B are included. The luminance correction coefficient Cr_t (uh, uv) at the time of failure of R, the luminance correction coefficient Cg_t (uh, uv) at the time of failure of G, and the luminance correction coefficient Cb_t (uh, uv) at the time of failure of B are the above-mentioned R. Luminance correction coefficient Cr (uh, uv), G brightness correction coefficient Cg (uh, uv), B brightness correction coefficient Cb (uu, uv), and brightness correction factor θr at the time of failure of R, at the time of failure of G It is expressed by the equations (4), (5) and (6) using the luminance correction factor θg and the luminance correction factor θb at the time of failure of B. The horizontal pixel position uh is an integer of 0 or more and 5 or less. The vertical pixel position uv is each of integers of 0 or more and 5 or less.
 Cr_t(uh,uv)=Cr(uh,uv)×θr・・・(4)
 Cg_t(uh,uv)=Cg(uh,uv)×θg・・・(5)
 Cb_t(uh,uv)=Cb(uh,uv)×θb・・・(6)
Cr_t (uh, uv) = Cr (uh, uv) × θr ... (4)
Cg_t (uh, uv) = Cg (uh, uv) × θg ... (5)
Cb_t (uh, uv) = Cb (uh, uv) × θb ... (6)
 故障時の輝度補正率θr、θg及びθbは、式(7)、式(8)及び式(9)により表される範囲内の値をとりうる。 The brightness correction factors θr, θg and θb at the time of failure can take values within the range represented by the equations (7), (8) and (9).
 1≦θr<Cr(uh,uv)・・・(7)
 1≦θg<Cg(uh,uv)・・・(8)
 1≦θb<Cb(uh,uv)・・・(9)
1 ≦ θr <Cr (uh, uv) ・ ・ ・ (7)
1 ≦ θg <Cg (uh, uv) ・ ・ ・ (8)
1 ≦ θb <Cb (uh, uv) ・ ・ ・ (9)
 上述したように、目標輝度値Yr_t、Yg_t及びYb_tは、それぞれ最も低い輝度を有するLEDのR、G及びBの輝度値より小さく設定される。このため、故障時の輝度補正係数Cr_t(uh,uv)、Cg_t(uh,uv)及びCb_t(uh,uv)は、式(10)、式(11)及び式(12)により表されるように、1より大きく設定することができる。 As described above, the target luminance values Yr_t, Yg_t and Yb_t are set smaller than the luminance values of R, G and B of the LED having the lowest luminance, respectively. Therefore, the luminance correction coefficients Cr_t (uh, uv), Cg_t (uh, uv) and Cb_t (uh, uv) at the time of failure are represented by the equations (10), (11) and (12). Can be set to be larger than 1.
 Cr_t(uh,uv)>1・・・(10)
 Cg_t(uh,uv)>1・・・(11)
 Cb_t(uh,uv)>1・・・(12)
Cr_t (uh, uv)> 1 ... (10)
Cg_t (uh, uv)> 1 ... (11)
Cb_t (uh, uv)> 1 ... (12)
 1.7 LED表示装置の動作
 図6は、実施の形態1のLED表示装置の動作を示すフローチャートである。
1.7 Operation of LED Display Device FIG. 6 is a flowchart showing the operation of the LED display device according to the first embodiment.
 図6に示されるステップS101においては、複数のLED130に含まれる任意の第1のLED171の故障が故障検知部106により検知されたか否かが判定される。第1のLED171の故障が検知されたと判定された場合は、続くステップS102、S103及びS104が順次に実行される。第1のLED171の故障が検知されていないと判定された場合は、続くステップS102、S103及びS104が実行されることなく、再びステップS101が実行される。 In step S101 shown in FIG. 6, it is determined whether or not a failure of an arbitrary first LED 171 included in the plurality of LEDs 130 has been detected by the failure detection unit 106. If it is determined that the failure of the first LED 171 is detected, the following steps S102, S103 and S104 are sequentially executed. If it is determined that the failure of the first LED 171 has not been detected, step S101 is executed again without executing subsequent steps S102, S103 and S104.
 ステップS102においては、補正係数演算部107が、故障した第1のLED171の座標を検出する。 In step S102, the correction coefficient calculation unit 107 detects the coordinates of the failed first LED 171.
 ステップS103においては、補正係数演算部107が、故障した第1のLED171に隣接する第2のLED172の輝度を補正するために用いられる故障時の輝度補正率θを算出する。 In step S103, the correction coefficient calculation unit 107 calculates the brightness correction factor θ at the time of failure used to correct the brightness of the second LED 172 adjacent to the failed first LED 171.
 ステップS104においては、輝度補正部103が、算出した故障時の輝度補正率θを用いて映像信号を補正する。輝度補正部103は、その際に、算出した故障時の輝度補正率θを輝度補正係数Cに乗じて演算される故障時の輝度補正係数C_tが第2のLED172の輝度に乗じられるように、映像信号に含まれる、第2のLED172の輝度を示す第2の信号を補正する。 In step S104, the luminance correction unit 103 corrects the video signal using the calculated luminance correction factor θ at the time of failure. At that time, the brightness correction unit 103 multiplies the calculated brightness correction factor θ at the time of failure by the brightness correction coefficient C so that the brightness correction coefficient C_t at the time of failure is multiplied by the brightness of the second LED 172. The second signal including the brightness of the second LED 172 included in the video signal is corrected.
 1.8 輝度の分布の例
 図7は、画素欠点を目立たなくする補正が行われない場合の、実施の形態1のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。図8は、画素欠点を目立たなくする補正が行われる場合の、実施の形態1のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。
1.8 Example of Luminance Distribution FIG. 7 is a diagram showing an example of the luminance value distribution in the LED display unit provided in the LED display device of the first embodiment when correction for making pixel defects inconspicuous is not performed. Is. FIG. 8 is a diagram showing an example of the distribution of the luminance value in the LED display unit provided in the LED display device of the first embodiment when the correction for making the pixel defects inconspicuous is performed.
 図7及び図8の各図においては、複数のLED130に含まれる各LED140に、各LED140の輝度値が重ねて記されている。 In each of the figures of FIGS. 7 and 8, the brightness value of each LED 140 is superimposed on each LED 140 included in the plurality of LED 130s.
 画素欠点160を目立たなくする補正が行われない場合は、故障した第1のLED171以外の第3のLED173の輝度値が、輝度補正率θ=1を用いて補正される。この場合は、例えば図7に図示されるように、故障した第1のLED171が、輝度値0を有する。また、故障した第1のLED171以外の第3のLED173が、目標輝度値70を有する。 When the correction for making the pixel defect 160 inconspicuous is not performed, the brightness value of the third LED 173 other than the failed first LED 171 is corrected by using the brightness correction factor θ = 1. In this case, for example, as shown in FIG. 7, the failed first LED 171 has a brightness value of 0. Further, the third LED 173 other than the failed first LED 171 has a target luminance value 70.
 これに対して、画素欠点160を目立たなくする補正が行われる場合は、故障した第1のLED171、及び第1のLED171に隣接する第2のLED172以外の第4のLED174の輝度値が、輝度補正率θ=1を用いて補正される。また、第2のLED172に含まれ、第1のLED171の上、下、左又は右に配置されるLED172aの輝度値が、輝度補正率θ1を用いて補正される。また、第2のLED172に含まれ、第1のLED171の左上、右上、左下又は右下に配置されるLED172bの輝度値が、輝度補正率θ2を用いて補正される。補正は、第2のLED172の輝度が高くなるように行われる。このため、輝度補正率θ1及びθ2は、1より大きい(θ1>1及びθ2>1)。また、第1のLED171の中心からLED172bまでの距離は、第1のLED171の中心からLED172aまでの距離より長い。このため、輝度補正率θ2は、輝度補正率θ1より小さい(θ1>θ2)。したがって、輝度補正率θ1及びθ2は、θ1>θ2>1で表される関係を満たす。例えば、輝度補正率θ1は、1.1である。また、輝度補正率θ2は、1.05である。この場合は、例えば図8に図示されるように、故障した第1のLED171が、輝度値0を有する。また、故障した第1のLED171及び第1のLED171に隣接する第2のLED172以外の第4のLED174が、上述した目標輝度値70と同じ目標輝度値70を有する。また、第2のLED172に含まれるLED172aが、輝度値70に輝度補正率θ1を乗じることにより得られる輝度値77を有する。また、第2のLED172に含まれるLED172bが、輝度値70に輝度補正率θ2を乗じることにより得られる輝度値74を有する。 On the other hand, when the correction for making the pixel defect 160 inconspicuous is performed, the brightness values of the failed first LED 171 and the fourth LED 174 other than the second LED 172 adjacent to the first LED 171 are the brightness values. It is corrected using the correction factor θ = 1. Further, the brightness value of the LED 172a included in the second LED 172 and arranged above, below, left or right of the first LED 171 is corrected by using the brightness correction factor θ1. Further, the brightness value of the LED 172b included in the second LED 172 and arranged at the upper left, upper right, lower left or lower right of the first LED 171 is corrected by using the brightness correction factor θ2. The correction is performed so that the brightness of the second LED 172 becomes high. Therefore, the luminance correction factors θ1 and θ2 are larger than 1 (θ1> 1 and θ2> 1). Further, the distance from the center of the first LED 171 to the LED 172b is longer than the distance from the center of the first LED 171 to the LED 172a. Therefore, the luminance correction factor θ2 is smaller than the luminance correction factor θ1 (θ1> θ2). Therefore, the luminance correction factors θ1 and θ2 satisfy the relationship represented by θ1> θ2> 1. For example, the luminance correction factor θ1 is 1.1. The luminance correction factor θ2 is 1.05. In this case, for example, as shown in FIG. 8, the failed first LED 171 has a brightness value of 0. Further, the fourth LED 174 other than the failed first LED 171 and the second LED 172 adjacent to the first LED 171 has the same target luminance value 70 as the above-mentioned target luminance value 70. Further, the LED 172a included in the second LED 172 has a luminance value 77 obtained by multiplying the luminance value 70 by the luminance correction factor θ1. Further, the LED 172b included in the second LED 172 has a luminance value 74 obtained by multiplying the luminance value 70 by the luminance correction factor θ2.
 図8に図示される輝度値の分布によれば、輝度値0を有する第1のLED171に隣接する第2のLED172が、目標輝度値70より高い輝度値77又は74を有する。このため、第1のLED171により生じる画素欠点160が目立たない。これにより、第1のLED171の故障により生じる画素欠点ノイズを軽減することができ、均一な輝度を有するように見える映像をLED表示部105に表示させることができる。 According to the distribution of the luminance values illustrated in FIG. 8, the second LED 172 adjacent to the first luminance LED 171 having the luminance value 0 has a luminance value 77 or 74 higher than the target luminance value 70. Therefore, the pixel defect 160 caused by the first LED 171 is inconspicuous. As a result, pixel defect noise caused by the failure of the first LED 171 can be reduced, and an image appearing to have uniform brightness can be displayed on the LED display unit 105.
 1.9 実施の形態1の発明の効果
 実施の形態1の発明によれば、LED表示装置1が、輝度補正部103及び故障検知部106を備える。このため、LEDの輝度を均一にする補正が映像信号に行われる。また、第1のLED171が故障した場合に、第2のLED172の輝度が変化する補正が映像信号に行われる。このため、第1のLED171が故障した場合でも、第1のLED171の故障により生じる画素欠点160が目立たず、均一な輝度を有するように見える映像を表示することができるLED表示装置1を提供することができる。
1.9 Effect of the Invention of the First Embodiment According to the invention of the first embodiment, the LED display device 1 includes a brightness correction unit 103 and a failure detection unit 106. Therefore, the video signal is corrected to make the brightness of the LED uniform. Further, when the first LED 171 fails, the video signal is corrected to change the brightness of the second LED 172. Therefore, even if the first LED 171 fails, the LED display device 1 capable of displaying an image in which the pixel defect 160 caused by the failure of the first LED 171 is inconspicuous and appears to have uniform brightness is provided. be able to.
 また、実施の形態1の発明によれば、各LED140が故障していない場合に行われる複数のLED130の輝度を均一にする補正、経年劣化による各LED140の輝度の低下を補償する補正等と、上述した画素欠点160を目立たなくする補正と、を併用することができる。 Further, according to the invention of the first embodiment, a correction for making the brightness of a plurality of LEDs 130 uniform, a correction for compensating for a decrease in the brightness of each LED 140 due to aged deterioration, etc. The above-mentioned correction that makes the pixel defect 160 inconspicuous can be used in combination.
 実施の形態1の発明と対比される技術においては、表示システムに組み込まれたLED表示装置が故障した場合は、表示システムの運用が中断され、表示システムの運用が中断されている間に、故障したLED表示装置が修理される。このため、当該技術においては、例えば、LED表示装置に備えられるLEDの故障が検知された場合に、表示システムの運用者にLEDの故障が通知、警告等される。 In the technique contrasted with the invention of the first embodiment, when the LED display device incorporated in the display system fails, the operation of the display system is interrupted, and the operation of the display system is interrupted while the failure occurs. The LED display device is repaired. Therefore, in the present technology, for example, when a failure of the LED provided in the LED display device is detected, the operator of the display system is notified or warned of the failure of the LED.
 一方、実施の形態1の発明は、監視用途に使用される表示システム等の24時間稼働が求められる表示システムにLED表示装置1が組み込まれている場合等においてLED表示装置1が故障したときでも、表示システムの運用を継続することができるようにするという独自の着想に基づいてなされている。 On the other hand, the invention of the first embodiment is described even when the LED display device 1 fails when the LED display device 1 is incorporated in a display system such as a display system used for monitoring applications which is required to operate 24 hours a day. , It is based on the original idea that the operation of the display system can be continued.
 2 実施の形態2
 図1は、実施の形態2のLED表示装置を図示する図でもある。図2は、実施の形態2のLED表示装置に備えられるLED表示部を模式的に図示する平面図でもある。図3は、実施の形態2のLED表示装置に備えられるひとつの画素を模式的に図示する平面図でもある。図4は、実施の形態2のLED表示装置において行われるPWM駆動を説明するタイミングチャートでもある。図6は、実施の形態2のLED表示装置の動作を示すフローチャートでもある。
2 Embodiment 2
FIG. 1 is also a diagram illustrating the LED display device of the second embodiment. FIG. 2 is also a plan view schematically showing an LED display unit provided in the LED display device of the second embodiment. FIG. 3 is also a plan view schematically showing one pixel provided in the LED display device of the second embodiment. FIG. 4 is also a timing chart for explaining the PWM drive performed in the LED display device of the second embodiment. FIG. 6 is also a flowchart showing the operation of the LED display device according to the second embodiment.
 実施の形態2のLED表示装置2は、実施の形態1のLED表示装置1と主に下述する点で相違する。下述されない点については、実施の形態1のLED表示装置1において採用される構成と同様の構成が実施の形態2のLED表示装置2においても採用される。 The LED display device 2 of the second embodiment is different from the LED display device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the LED display device 1 of the first embodiment is also adopted in the LED display device 2 of the second embodiment.
 図9は、画素欠点を目立たなくする補正が行われる場合の、実施の形態2のLED表示装置に備えられるLED表示部における輝度値の分布の例を示す図である。図10は、画素欠点を目立たなくする補正が行われる場合の、実施の形態2のLED表示装置に備えられるLED表示部における、輝度補正率θの分布の例を示す図である。 FIG. 9 is a diagram showing an example of the distribution of the luminance value in the LED display unit provided in the LED display device of the second embodiment when the correction for making the pixel defects inconspicuous is performed. FIG. 10 is a diagram showing an example of the distribution of the luminance correction factor θ in the LED display unit provided in the LED display device of the second embodiment when the correction for making the pixel defects inconspicuous is performed.
 図9においては、複数のLED130に含まれる各LED140に、各LED140の輝度値が重ねて記されている。図10においては、各LED140に、各LED140の輝度値を補正するために用いられる輝度補正率θが重ねて記されている。 In FIG. 9, the brightness value of each LED 140 is superimposed on each LED 140 included in the plurality of LED 130s. In FIG. 10, the brightness correction factor θ used for correcting the brightness value of each LED 140 is superimposed on each LED 140.
 実施の形態1のLED表示装置1において行われる画素欠点160を目立たなくする補正は、図8に図示されるように、ひとつのLEDを含む第1のLED171が故障した場合に行われる補正である。これに対して、実施の形態2のLED表示装置2において行われる画素欠点160を目立たなくする補正は、図9及び図10に図示されるように、互いに近接するふたつのLED171a及び171bを含む第1のLED171が故障した場合に行われる補正である。 The correction for making the pixel defect 160 inconspicuous in the LED display device 1 of the first embodiment is a correction performed when the first LED 171 including one LED fails, as shown in FIG. .. On the other hand, the correction for making the pixel defect 160 inconspicuous in the LED display device 2 of the second embodiment includes two LEDs 171a and 171b that are close to each other as shown in FIGS. 9 and 10. This is a correction performed when the LED 171 of 1 fails.
 複数のLED130は、複数のLED130に含まれる第1のLED171が故障した場合に、図9及び図10に図示されるように、画素欠点160を生じる第1のLED171、及び画素欠点160を目立たなくする補正の対象となる第2のLED172を含む。 The plurality of LEDs 130 make the first LED 171 and the pixel defect 160, which cause the pixel defect 160, inconspicuous, as shown in FIGS. 9 and 10, when the first LED 171 included in the plurality of LED 130 fails. Includes a second LED 172 that is subject to correction.
 画素欠点160を目立たなくする補正が行われる場合は、故障した第1のLED171、及び第1のLED171に隣接する第2のLED172以外の第4のLED174の輝度値が、輝度補正率θ=1を用いて補正される。また、第2のLED172に含まれ、LED171aの上、下、左又は右に配置されるLED172c、並びに第2のLED172に含まれ、LED171bの上、下、左又は右に配置されるLED172dの輝度値が、輝度補正率θ1を用いて補正される。また、第2のLED172に含まれ、LED171aの左上、右上、左下又は右下に配置されるLED172e、並びに第2のLED172に含まれ、LED171bの左上、右上、左下又は右下に配置されるLED172fの輝度値が、輝度補正率θ2を用いて補正される。LED171aの上、下、左又は右に配置されるとともに、LED171bの上、下、左又は右に配置されるLED172gの輝度値は、輝度補正率θ1と輝度補正率θ1との積θ1*θ1を用いて補正される。補正は、第2のLED172の輝度が高くなるように行われる。このため、輝度補正率θ1及びθ2は、1より大きい(θ1>1及びθ2>1)。また、LED171aの中心からLED172eまでの距離は、LED171aの中心からLED172cまでの距離より長く、LED171bの中心からLED172fまでの距離は、LED171bの中心からLED172dまでの距離より長い。このため、輝度補正率θ2は、輝度補正率θ1より小さい(θ1>θ2)したがって、輝度補正率θ1及びθ2は、θ1>θ2>1で表される関係を満たす。例えば、輝度補正率θ1は、1.1である。また、輝度補正率θ2は、1.05である。この場合は、例えば図9に図示されるように、故障した第1のLED171が、輝度値0を有する。また、故障した第1のLED171、並びに第1のLED171に隣接する第2のLED172以外のLED174が、目標輝度値70を有する。また、LED171a及び171bの一方の上、下、左又は右に配置されるLED172hが、輝度値70に輝度補正率θ1を乗じることにより得られる輝度値77を有する。また、LED171a及び171bの一方の左上、右上、左下又は右下に配置されるLED172e及び172fが、輝度値70に輝度補正率θ2を乗じることにより得られる輝度値74を有する。また、LED171aの上、下、左又は右に配置されるとともに、LED171bの上、下、左又は右に配置されるLED172gが、輝度値70に輝度補正率θ1と輝度補正値θ1との積θ1*θ1を乗じることにより得られる輝度値85を有する。 When correction is performed to make the pixel defect 160 inconspicuous, the brightness values of the failed first LED 171 and the fourth LED 174 other than the second LED 172 adjacent to the first LED 171 have a brightness correction factor θ = 1. Is corrected using. Further, the brightness of the LED 172c included in the second LED 172 and arranged above, below, left or right of the LED 171a, and the brightness of the LED 172d included in the second LED 172 and arranged above, below, left or right of the LED 171b. The value is corrected using the luminance correction factor θ1. Further, the LED 172e included in the second LED 172 and arranged at the upper left, upper right, lower left or lower right of the LED 171a, and the LED 172f included in the second LED 172 and arranged at the upper left, upper right, lower left or lower right of the LED 171b. The brightness value of is corrected by using the brightness correction factor θ2. The brightness value of the LED 172g arranged above, below, left or right of the LED 171a and above, below, left or right of the LED 171b is the product θ1 * θ1 of the brightness correction factor θ1 and the brightness correction factor θ1. Is corrected using. The correction is performed so that the brightness of the second LED 172 becomes high. Therefore, the luminance correction factors θ1 and θ2 are larger than 1 (θ1> 1 and θ2> 1). The distance from the center of the LED 171a to the LED 172e is longer than the distance from the center of the LED 171a to the LED 172c, and the distance from the center of the LED 171b to the LED 172f is longer than the distance from the center of the LED 171b to the LED 172d. Therefore, the luminance correction factor θ2 is smaller than the luminance correction factor θ1 (θ1> θ2). Therefore, the luminance correction factors θ1 and θ2 satisfy the relationship represented by θ1> θ2> 1. For example, the luminance correction factor θ1 is 1.1. The luminance correction factor θ2 is 1.05. In this case, for example, as shown in FIG. 9, the failed first LED 171 has a brightness value of 0. Further, the failed first LED 171 and the LED 174 other than the second LED 172 adjacent to the first LED 171 have a target luminance value 70. Further, the LEDs 172h arranged above, below, left or right of one of the LEDs 171a and 171b have a brightness value 77 obtained by multiplying the brightness value 70 by the brightness correction factor θ1. Further, the LEDs 172e and 172f arranged at the upper left, upper right, lower left or lower right of one of the LEDs 171a and 171b have a luminance value 74 obtained by multiplying the luminance value 70 by the luminance correction factor θ2. Further, the LED 172g arranged above, below, left or right of the LED 171a and above, below, left or right of the LED 171b has a brightness value 70 and a product θ1 of the brightness correction factor θ1 and the brightness correction value θ1. It has a brightness value of 85 obtained by multiplying by * θ1.
 図9に図示される輝度値の分布によれば、輝度値0を有する第1のLED171に隣接する第2のLED172が、目標輝度値70より高い輝度値77、74又は85を有する。このため、輝度値0を有する第1のLED171により生じる画素欠点160が目立たない。これにより、第1のLED171の故障により生じる画素欠点ノイズを軽減することができ、均一な輝度を有するように見える映像をLED表示部105に表示させることができる。 According to the distribution of the brightness values illustrated in FIG. 9, the second LED 172 adjacent to the first LED 171 having the brightness value 0 has a brightness value 77, 74 or 85 higher than the target brightness value 70. Therefore, the pixel defect 160 caused by the first LED 171 having a brightness value of 0 is not conspicuous. As a result, pixel defect noise caused by the failure of the first LED 171 can be reduced, and an image appearing to have uniform brightness can be displayed on the LED display unit 105.
 2.1 実施の形態2の発明の効果
 実施の形態2の発明によれば、実施の形態1の発明と同様に、第1のLED171の故障により生じる画素欠点160が目立たず、均一な輝度を有するように見える映像を表示することができるLED表示装置2を提供することができる。
2.1 Effect of the Invention of the Second Embodiment According to the invention of the second embodiment, the pixel defect 160 caused by the failure of the first LED 171 is inconspicuous and the brightness is uniform as in the invention of the first embodiment. It is possible to provide an LED display device 2 capable of displaying an image that appears to be possessed.
 加えて、実施の形態2の発明によれば、ふたつのLED171a及び171bが故障した場合でも、ふたつのLED171a及び171bの故障により生じる画素欠点160が目立たないLED表示装置2を提供することができる。 In addition, according to the invention of the second embodiment, it is possible to provide the LED display device 2 in which the pixel defect 160 caused by the failure of the two LEDs 171a and 171b is inconspicuous even when the two LEDs 171a and 171b fail.
 3 変形例
 実施の形態1及び2においては、画素欠点160を目立たなくする補正の対象となる第2のLED172は、故障した第1のLED171に隣接するLEDである。しかし、第2のLED172が、故障した第1のLED171に隣接するLED以外のLEDを含んでもよい。例えば、第2のLED172が、故障した第1のLED171から数個離れたLEDを含んでもよい。
3 Modifications In the first and second embodiments, the second LED 172 to be corrected to make the pixel defect 160 inconspicuous is an LED adjacent to the failed first LED 171. However, the second LED 172 may include an LED other than the LED adjacent to the failed first LED 171. For example, the second LED 172 may include a few LEDs away from the failed first LED 171.
 実施の形態1及び2においては、故障した第1のLED171の上、下、左又は右に配置されるLED172a、172c及び172dの輝度値を補正するために用いられる輝度補正率θ1と、故障した第1のLED171の左上、右上、左下又は右下に配置されるLED172b、172e及び172fの輝度値を補正するために用いられる輝度補正率θ2とが、互いに異なる。第2のLED172の輝度値を補正するために用いられる輝度補正率θがこれとは異なる輝度補正率であってもよい。例えば、第2のLED172の輝度値を補正するために用いられる輝度補正率がすべて同じであってもよい。 In the first and second embodiments, the luminance correction factor θ1 used for correcting the luminance values of the LEDs 172a, 172c and 172d arranged above, below, left or right of the failed first LED 171 has failed. The brightness correction factors θ2 used for correcting the brightness values of the LEDs 172b, 172e and 172f arranged at the upper left, upper right, lower left or lower right of the first LED 171 are different from each other. The brightness correction factor θ used for correcting the brightness value of the second LED 172 may be a brightness correction factor different from this. For example, the brightness correction factors used to correct the brightness value of the second LED 172 may all be the same.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that, within the scope of the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all aspects and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention.
 1,2 LED表示装置、103 輝度補正部、104 駆動部、105 LED表示部、106 故障検知部、107 補正係数演算部、130 複数のLED、140 各LED、171 第1のLED、172 第2のLED、160 画素欠点。 1, 2, LED display device, 103 brightness correction unit, 104 drive unit, 105 LED display unit, 106 failure detection unit, 107 correction coefficient calculation unit, 130 multiple LEDs, 140 each LED, 171 first LED, 172 second LED, 160 pixel defect.

Claims (4)

  1.  マトリクス状に配置される複数のLED(130)を備えるLED表示部(105)と、
     前記複数のLED(130)に含まれる各LED(140)の故障を検知する故障検知部(106)と、
     前記複数のLED(130)に含まれる2個以上のLED(174)の輝度が均一になるように映像信号を補正し、輝度補正係数にしたがって前記映像信号を補正し、補正された映像信号を出力する輝度補正部(103)と、
     前記複数のLED(130)に含まれる第1のLED(171)の故障が前記故障検知部(106)により検知された場合に、前記複数のLED(130)に含まれる、前記第1のLED(171)と異なる第2のLED(172)の輝度が変化するように前記輝度補正係数を演算する補正係数演算部(107)と、
     前記補正された映像信号にしたがって前記複数のLED(130)を駆動する駆動部(104)と、
    を備えるLED表示装置(1,2)。
    An LED display unit (105) including a plurality of LEDs (130) arranged in a matrix, and
    A failure detection unit (106) for detecting a failure of each LED (140) included in the plurality of LEDs (130), and a failure detection unit (106).
    The video signal is corrected so that the brightness of the two or more LEDs (174) included in the plurality of LEDs (130) is uniform, the video signal is corrected according to the brightness correction coefficient, and the corrected video signal is obtained. The output brightness correction unit (103) and
    When a failure of the first LED (171) included in the plurality of LEDs (130) is detected by the failure detection unit (106), the first LED included in the plurality of LEDs (130). A correction coefficient calculation unit (107) that calculates the brightness correction coefficient so that the brightness of the second LED (172) different from (171) changes.
    A drive unit (104) that drives the plurality of LEDs (130) according to the corrected video signal, and
    LED display devices (1, 2).
  2.  前記第2のLED(172)は、前記第1のLED(171)に隣接するLEDを含む
    請求項1のLED表示装置(1,2)。
    The LED display device (1, 2) according to claim 1, wherein the second LED (172) includes an LED adjacent to the first LED (171).
  3.  前記補正係数演算部(107)は、前記第1のLED(171)の故障が前記故障検知部(106)により検知された場合に、前記第2のLED(172)の輝度が高くなるように前記輝度補正係数を演算する
    請求項1又は2のLED表示装置(1,2)。
    The correction coefficient calculation unit (107) increases the brightness of the second LED (172) when the failure of the first LED (171) is detected by the failure detection unit (106). The LED display device (1, 2) according to claim 1 or 2, which calculates the brightness correction coefficient.
  4.  前記2個以上のLED(174)は、前記複数のLED(130)に含まれる、前記第1のLED(171)及び前記第2のLED(172)以外のLEDであり、
     前記映像信号は、前記2個以上のLED(174)の輝度を示す第1の信号、及び前記第2のLED(172)の輝度を示す第2の信号を含み、
     前記輝度補正部(103)は、前記2個以上のLED(174)の輝度が均一になるように前記第1の信号を補正し、前記輝度補正係数にしたがって前記第2の信号を補正する
    請求項1から3までのいずれかのLED表示装置(1,2)。
    The two or more LEDs (174) are LEDs other than the first LED (171) and the second LED (172) included in the plurality of LEDs (130).
    The video signal includes a first signal indicating the brightness of the two or more LEDs (174) and a second signal indicating the brightness of the second LED (172).
    The brightness correction unit (103) corrects the first signal so that the brightness of the two or more LEDs (174) becomes uniform, and corrects the second signal according to the brightness correction coefficient. The LED display device (1, 2) according to any one of Items 1 to 3.
PCT/JP2019/019208 2019-05-15 2019-05-15 Led display WO2020230281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019208 WO2020230281A1 (en) 2019-05-15 2019-05-15 Led display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019208 WO2020230281A1 (en) 2019-05-15 2019-05-15 Led display

Publications (1)

Publication Number Publication Date
WO2020230281A1 true WO2020230281A1 (en) 2020-11-19

Family

ID=73289140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019208 WO2020230281A1 (en) 2019-05-15 2019-05-15 Led display

Country Status (1)

Country Link
WO (1) WO2020230281A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255101A (en) * 1999-03-09 2000-09-19 Fuji Xerox Co Ltd Image-forming system and image formation method
JP2009003092A (en) * 2007-06-20 2009-01-08 Hitachi Displays Ltd Image display device
JP2010197631A (en) * 2009-02-25 2010-09-09 Fujitsu Frontech Ltd Display device and display method
JP2011150002A (en) * 2010-01-19 2011-08-04 Mitsubishi Electric Corp Apparatus for control of large video display device
US20160078800A1 (en) * 2014-09-17 2016-03-17 Samsung Electronics Co., Ltd. Led display apparatus and led pixel error detection method thereof
US20180040271A1 (en) * 2016-08-03 2018-02-08 Samsung Electronics Co., Ltd. Display apparatus and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255101A (en) * 1999-03-09 2000-09-19 Fuji Xerox Co Ltd Image-forming system and image formation method
JP2009003092A (en) * 2007-06-20 2009-01-08 Hitachi Displays Ltd Image display device
JP2010197631A (en) * 2009-02-25 2010-09-09 Fujitsu Frontech Ltd Display device and display method
JP2011150002A (en) * 2010-01-19 2011-08-04 Mitsubishi Electric Corp Apparatus for control of large video display device
US20160078800A1 (en) * 2014-09-17 2016-03-17 Samsung Electronics Co., Ltd. Led display apparatus and led pixel error detection method thereof
US20180040271A1 (en) * 2016-08-03 2018-02-08 Samsung Electronics Co., Ltd. Display apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US8111223B2 (en) Method of local dimming, backlight assembly for performing the method and display apparatus having the backlight assembly
US7791572B2 (en) Flat display panel, picture quality controlling apparatus and method thereof
US7292024B2 (en) Defect mitigation in display panels
US8963800B2 (en) Multi-display device and image display device
WO2017061195A1 (en) Light-emitting diode display device
US8619010B2 (en) Image display device and image display method
WO2009110456A1 (en) Lighting device, and display device having the same
US9183797B2 (en) Display device and control method for display device
JP4882657B2 (en) Backlight control device, backlight control method, and liquid crystal display device
US8730277B2 (en) Driving device, driving method, image display device, television receiver, display monitor device, program and record medium
JP5113940B2 (en) Image processing apparatus and image display apparatus
JP5438217B2 (en) Display signal generator, display device, and image display method
JP2010262288A (en) Method for driving light source module
JP2012518206A (en) System and method for display backlight compensation
WO2011118275A1 (en) Display panel drive method, display panel drive circuit, display device
WO2011129124A1 (en) Display device
JP2006195312A (en) Printing phenomenon compensation method, natural light-emitting device and program
WO2020230281A1 (en) Led display
JP4887598B2 (en) Display device and display method
JP4894149B2 (en) Liquid crystal display
JP2015200806A (en) multi-screen display device
WO2020261409A1 (en) Display device and image display method
WO2013018822A1 (en) Image display device and image display method
JP2019211714A (en) Display device and brightness correction method
KR20080022851A (en) Apparatus and method for controlling luminance of display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP