WO2020230222A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2020230222A1
WO2020230222A1 PCT/JP2019/018841 JP2019018841W WO2020230222A1 WO 2020230222 A1 WO2020230222 A1 WO 2020230222A1 JP 2019018841 W JP2019018841 W JP 2019018841W WO 2020230222 A1 WO2020230222 A1 WO 2020230222A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
entity
pdcp
unit
data unit
Prior art date
Application number
PCT/JP2019/018841
Other languages
French (fr)
Japanese (ja)
Inventor
徹 内野
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/018841 priority Critical patent/WO2020230222A1/en
Publication of WO2020230222A1 publication Critical patent/WO2020230222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a communication device that supports duplicate transmission control of data units.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5th generation mobile communication system for the purpose of further speeding up LTE.
  • Specifications also called 5G, New Radio (NR) or Next Generation (NG) are also underway.
  • Non-Patent Document 1 PDCP duplication is a control for duplicate transmission of packets (data units) at the packet data convergence protocol layer (PDCP).
  • one PDCP entity is associated with a plurality of wireless link control layer entities (RLC entities), and the duplicated data unit is transmitted via different component carriers (CC) or serving cells.
  • CC component carriers
  • the mapping between the logical channel (LCH) and the CC (which may be a serving cell, the same applies hereinafter) is set so that the original data unit and the duplicated data unit are not transmitted via the same CC (the same applies hereinafter).
  • Non-Patent Document 2 is set so that the original data unit and the duplicated data unit are not transmitted via the same CC (the same applies hereinafter).
  • the number of RLC entities associated with PDCP entities is 3 or more (that is, the number of data units that can be duplicated is 2 or more).
  • Non-Patent Document 3 a configuration in which the number of RLC entities associated with PDCP entities differs between downlink (DL) and uplink (UL) is also being examined. It is relatively easy to increase the number of CCs in DL, but increasing the number of CCs in UL is a result of considering that there are many implementation issues.
  • PDCP Packet Data Convergence Protocol
  • MAC Medium Access Control
  • the feedback information (RLC status report) via UL is the RLC data PDU for the transmission of the data unit (RLC data PDU) via DL. It will be returned to the sender.
  • the number of RLC entities associated with PDCP entities in DL is greater than the number of RLC entities associated with PDCP entities in UL, in other words, the number of CCs in DL is greater than the number of CCs in UL.
  • the following conditions can occur.
  • CC LCH
  • RLC status report cannot be returned.
  • the present invention has been made in view of such a situation, and even when the duplication control (PDCP duplication) of the data unit is extended, the response such as feedback information for the transmission of the data unit is surely returned.
  • the purpose is to provide a possible communication device.
  • One aspect of the present invention is a communication device (for example, UE200), which receives a first data unit (RLC data PDU 320) via a first entity of a wireless link control layer and also receives the wireless link control layer.
  • the receiving unit (RLC processing unit 230) that receives the second data unit and the feedback information (RLC status report) for the received second data unit are controlled by wireless links other than the second entity. It includes a transmission unit (RLC processing unit 230) that transmits using the radio resource associated with the first entity of the layer.
  • One aspect of the present invention is a communication device (for example, UE200), which receives a first data unit (PDCP PDU 310) via a first entity of the wireless link control layer and a first of the wireless link control layer.
  • the receiving unit (RLC processing unit 230) that receives the second data unit (RLC data PDU 320) to which the first data unit is duplicated and the feedback information for the received second data unit are transmitted via the two entities.
  • a control unit (control unit 250) that handles the wireless link used for transmission of the second data unit as a one-way link (um-Uni-Directional-DL) that does not require transmission of the feedback information when there is no capable wireless link. And.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a main protocol stack, a logical channel, and a component carrier in the wireless communication system 10.
  • FIG. 3 is a functional block configuration diagram of the UE 200.
  • FIG. 4 is a functional block configuration diagram of the gNB 100.
  • FIG. 5 is a diagram showing a setting example of Asymmetric PDCP duplication.
  • FIG. 6 is a diagram showing an operation flow (operation example 1) of the UE 200 when Asymmetric PDCP duplication is set.
  • FIG. 7 is a diagram showing a state of transmission / reception of RLC data PDU and RLC status report by gNB100 and UE200 according to the operation example 1.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a main protocol stack, a logical channel, and a component carrier in the wireless communication system 10.
  • FIG. 3 is a functional
  • FIG. 8 is a diagram showing an operation flow (operation example 2) of the UE 200 when Asymmetric PDCP duplication is set.
  • FIG. 9 is a diagram showing a state of transmission / reception of RLC data PDU and RLC status report by gNB100 and UE200 according to the operation example 2.
  • FIG. 10 is a diagram showing an example of the hardware configuration of gNB100, gNB101 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G (NR).
  • the wireless communication system 10 includes the Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and the user terminal 200 (hereinafter, UE200).
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 user terminal 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100) and a radio base station 110 (hereinafter, gNB101).
  • gNB100 radio base station 100
  • gNB101 radio base station 110
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 and gNB101 are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100 (gNB101) and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC).
  • CA carrier aggregation
  • DC dual connectivity
  • gNB100 (gNB101) and UE200 may be generically referred to as communication devices.
  • PDCP duplication can be executed.
  • Packet duplication because it can be interpreted as a replication of packets handled by PDCP.
  • FIG. 2 shows a configuration example of a main protocol stack, a logical channel, and a component carrier in the wireless communication system 10.
  • the wireless communication system 10 corresponds to the extended control of PDCP duplication studied in Release 16 of 3GPP.
  • PDCP PDU 310 The data unit (PDCP PDU 310) replicated by the PDCP entity is sent and received via different serving cells (which may be referred to as different CCs).
  • CA-based and DC-based are defined as architectures that realize such PDCP duplication.
  • the primary RLC entity and the secondary RLC entity receive the duplicated PDCP PDU 310 from the PDCP entity, and receive the RLC data PDU 320 including the PDCP PDU 310 from the medium access control layer entity (MAC entity) and the physical channel (LCH #). It is transmitted via A to #C) and each CC (CC # 1 to # 3).
  • MAC entity medium access control layer entity
  • LCH # physical channel
  • PDCP duplication can be dynamically turned ON / OFF (Activate / Deactivate) according to the instructions from the network (specifically, gNB100, gNB101).
  • PDCP duplication is deactivated, PDCP PDU 310 is transmitted only by the primary RLC entity (for example, RLC corresponding to LCH # A in FIG. 2).
  • LCH logical channel
  • LCH CC
  • CC CC
  • LCH restriction LCH restriction
  • FIG. 3 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a wireless communication unit 210, a MAC processing unit 220, an RLC processing unit 230, a PDCP processing unit 240, a control unit 250, and a user IF unit 260.
  • the UE 200 also executes processing of other layers such as a radio resource control layer (RRC) and a service data adaptation protocol (SDAP) layer.
  • RRC radio resource control layer
  • SDAP service data adaptation protocol
  • the wireless communication unit 210 executes wireless communication with gNB100 (and gNB101, the same applies hereinafter). Specifically, the wireless communication unit 210 executes wireless communication with the gNB 100 according to the 5G specifications. As mentioned above, UE200 can support Massive MIMO, Carrier Aggregation (CA), Dual Connectivity (DC), and the like.
  • Massive MIMO Massive MIMO
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • the wireless communication unit 210 generally corresponds to the physical layer (PHY / L1), and has coding / decoding, modulation / demodulation, multi-antenna mapping, and other general physical layer functions.
  • the wireless communication unit 210 (physical layer) provides a service to the MAC processing unit 120 in the form of a transport channel.
  • the MAC processing unit 220 executes processing in the medium access control (MAC) layer.
  • the MAC processing unit 220 has logical channel (LCH) multiplexing, hybrid ARQ retransmission, and scheduling and scheduling-related functions.
  • LCH logical channel
  • the MAC processing unit 220 provides a service to the RLC processing unit 130 in the form of LCH.
  • the header structure of the MAC layer in 5G (NR) has been modified to support lower latency processing more efficiently than LTE.
  • the RLC processing unit 230 executes processing in the wireless link control layer (RLC).
  • RLC is responsible for the split and retransmission process.
  • the RLC processing unit 230 provides a service to the PDCP processing unit 240 in the form of an RLC channel.
  • One RLC entity is set for each RLC channel (that is, for each radio bearer (RAB)) set in the device (UE200).
  • RAB radio bearer
  • RLC processing unit 230 does not support sequential distribution of data to higher layers compared to LTE. This is intended to reduce the delay.
  • the RLC processing unit 230 supports the PDCP duplication described above in cooperation with the PDCP processing unit 240. Specifically, the RLC processing unit 230 receives the RLC data PDU 320 (first data unit) via any RLC entity (first entity) of the wireless link control layer, and also receives the RLC data PDU 320 (first data unit) of the wireless link control layer. Receives RLC data PDU 320 (second data unit) via another RLC entity (second entity).
  • the RLC processing unit 230 gNB100 (first data unit) the RLC data PDU 320 (first data unit) including the PDCP PDU 310 via any RLC entity (first entity) of the wireless link control layer. Received from the destination communication device).
  • the RLC processing unit 230 receives RLC data in which the RLC data PDU 320 (first data unit) including the original PDCP PDU 310 is duplicated via any RLC entity (second entity) in the wireless link control layer. Receive PDU 320 (second data unit) from gNB100.
  • the RLC processing unit 230 constitutes a receiving unit.
  • the RLC processing unit 230 transmits the feedback information for the received RLC data PDU 320 using the radio resource associated with the RLC entity other than the RLC entity (second entity).
  • the RLC processing unit 230 constitutes a transmission unit.
  • the RLC processing unit 230 transmits feedback information via any RLC entity (first entity) of the wireless link control layer selected by the control unit 250.
  • the RLC processing unit 230 operates as an RLC-Acknowledged Mode (AM), and a response indicating the reception status (status) of the received RLC data PDU 320 via the RLC entity selected by the control unit 250.
  • RLC status report is sent as feedback information.
  • the feedback information is not limited to the RLC status report, and may be an RLC control PDU containing the same information as the RLC status report or the RLC status report.
  • the PDCP processing unit 240 executes processing in the packet data convergence protocol layer (PDCP).
  • PDCP performs IP header compression, encryption, and integrity protection.
  • the PDCP processing unit 240 also executes data unit retransmission, ordered distribution, and duplicate deletion when the UE 200 executes a handover.
  • the PDCP processing unit 240 provides a data unit routing and replication function in the case of a split bearer in DC.
  • One PDCP entity is configured for each wireless bearer configured on the device (UE200).
  • the PDCP processing unit 240 supports PDCP duplication.
  • PDCP duplication is specified in 3GPP TS38.323.
  • the sending PDCP entity can behave as follows:
  • the PDCP processing unit 240 enables PDCP duplication based on the control of the control unit 250 (the same applies hereinafter).
  • SRB Signaling Radio Bearer
  • DRB DataRadioBearer
  • PDCP replication is enabled.
  • the PDCP processing unit 240 invalidates PDCP replication.
  • the sending PDCP entity can operate as follows. Specifically, if one of the two related AM (Acknowledged Mode) RLC entities confirms that the PDCP PDU 310 (specifically, PDCP data PDU) has been successfully delivered, it is duplicated. Instruct other AMRLC entities to discard PDCP data PDUs.
  • AM Acknowledged Mode
  • PDCP processing unit 240 instructs the secondary RLC entity to discard all duplicate PDCP data PDUs.
  • the control unit 250 controls the operations of the wireless communication unit 210, the MAC processing unit 220, the RLC processing unit 230, and the PDCP processing unit 240.
  • control unit 250 is a radio resource capable of transmitting the RLC status report (feedback information) to the RLC data PDU 320 (second data unit) duplicated by the PDCP duplication received by the RLC processing unit 230 to the gNB 100. If there is no, select an RLC entity (first entity) other than the RLC entity (second entity) that received the duplicated RLC data PDU 320.
  • the logical channel (LCH) and CC to prevent the original data unit (PDCP PDU 310) and the duplicated data unit (PDCP PDU 310) from being transmitted via the same CC. Since the mapping (LCH restriction) with the serving cell) is set, if the number of RLC entities (may be secondary RLC entities) associated by PDCP duplication is in the downlink> uplink status, the RLC status report is sent. There can be no available RLC entities, i.e. LCH / CC.
  • the control unit 250 excludes the application of the restriction by the LCH restriction so that the RLC status report can be transmitted via the RLC entity other than the RLC entity that received the duplicated RLC data PDU 320.
  • Instruct RLC processing unit 230 That is, the control unit 250 is used for transmitting the RLC data PDU 320 including the original PDCP PDU 310 (first data unit) and the RLC data PDU 320 (second data unit) in which the original PDCP PDU 310 is duplicated.
  • LCH restriction mapping constraint
  • the RLC processing unit 230 receives the duplicated RLC data PDU 320 by excluding the application of the mapping constraint (LCH restriction).
  • the RLC status report is transmitted using the radio resource associated with the RLC entity (first entity) other than the RLC entity (second entity).
  • the original PDCP PDU 310 and the duplicated PDCP PDU 310 may have some differences in the header information, but the actual contents of the PDU (SDU) are the same, and the original and the duplicate ( It should be noted that (copy) is only a difference for convenience of explanation. Further, in the present embodiment, as described above, the PDCP duplication is in the Deactivate state, that is, the RLC entity that sends and receives only the original PDCP PDU 310 is called the primary RLC entity.
  • the above-mentioned radio resource is specifically at least one of CC, serving cell, uplink carrier (carrier) or BWP (BandWidth Part, band information).
  • the RLC processing unit 230 receives the duplicated RLC data PDU if there is no component carrier, serving cell, carrier or bandwidth information capable of transmitting feedback information.
  • the RLC status report is transmitted using the radio resource associated with the RLC entity (first entity) other than the RLC entity (second entity) that received 320.
  • the maximum bandwidth per carrier is 100MHz at frequencies below 6GHz and 400MHz above that, which is significantly larger than LTE.
  • BWP is supported so that a user terminal that supports a bandwidth smaller than the bandwidth can communicate with the carrier operated with such a wide bandwidth using the carrier.
  • the gNB100 sets the BWP information (bandwidth, frequency position, subcarrier interval) that the UE200 should use for communication in the UE200 using the signaling of the upper layer (RRC). It is also possible to set different BWP information for each user terminal. BWP information can be modified by higher layer signaling or L1 signaling.
  • control unit 250 has a wireless link (uplink) capable of transmitting the RLC status report (feedback information) to the RLC data PDU 320 (second data unit) duplicated by the PDCP duplication received by the RLC processing unit 230 to the gNB 100. If not, the duplicated wireless link (downlink) used for transmission of the RLC data PDU 320 may be treated as a one-way link that does not require transmission of the RLC status report.
  • control unit 250 may handle the downlink used for transmitting the duplicated RLC data PDU 320 as um-Uni-Directional-DL. More specifically, the control unit 250 operates the RLC processing unit 230 as RLC-UM (Unacknowledged Mode) instead of RLC-AM, and sets it as um-Uni-Directional-DL that does not require transmission of RLC status report. To do.
  • RLC-UM Unacknowledged Mode
  • the RLC processing unit 230 In um-Uni-Directional-DL, the RLC processing unit 230 only receives downlinks and does not provide feedback on uplinks.
  • the control unit 250 handles the downlink used for transmission of the duplicated RLC data PDU 320 as um-Uni-Directional-DL
  • the original data unit (PDCP PDU 310) and the duplicated data unit The setting of the mapping related to the logical channel (LCH) used for the transmission of (PDCP PDU 310) may be omitted.
  • the user IF unit 260 provides an interface for UE200 users. Specifically, the user IF unit 260 is realized by hardware and software that realize various types of input / output. The hardware configuration of UE200 will be described later.
  • FIG. 4 is a functional block configuration diagram of the gNB 100.
  • the gNB 101 also has a similar functional block configuration.
  • the gNB100 includes a wireless communication unit 110, a MAC processing unit 120, an RLC processing unit 130, a PDCP processing unit 140, a control unit 150, and a network IF unit 160.
  • the wireless communication unit 110 executes wireless communication with the UE 200. Specifically, the wireless communication unit 110 executes wireless communication with the UE 200 according to the 5G specifications. Like UE200, gNB100 can support Massive MIMO, Carrier Aggregation (CA), Dual Connectivity (DC), and so on.
  • Massive MIMO Massive MIMO
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • the functions of the MAC processing unit 120, RLC processing unit 130, and PDCP processing unit 140 are the same as those of the UE200 MAC processing unit 220, RLC processing unit 230, and PDCP processing unit 240, although the uplink and downlink are reversed.
  • the control unit 150 controls the operations of the wireless communication unit 110, the MAC processing unit 120, the RLC processing unit 130, and the PDCP processing unit 140.
  • the function of the control unit 150 is the same as that of the control unit 250 of the UE 200, although the uplink and the downlink are reversed.
  • the network IF unit 160 provides a NW interface for connecting to the NG-RAN20 (and 5GC). Specifically, the network IF unit 160 provides an interface with gNB101 (X2, Xn, etc.) and an interface with 5GC (N2, N3, etc.).
  • gNB100 when an asymmetric number of PDCP duplication (hereinafter referred to as Asymmetric PDCP duplication, but the term is not limited to this) is set between the downlink (DL) and the uplink (UL). And the operation of UE200 will be described.
  • Asymmetric PDCP duplication hereinafter referred to as Asymmetric PDCP duplication, but the term is not limited to this
  • FIG. 5 shows a setting example of Asymmetric PDCP duplication.
  • four RLC entities associated with one PDCP entity are set in both gNB100 and UE200.
  • DL is set for each RLC entity, that is, 4 DLs are set, but UL is set for only 3 RLC entities, that is, 3 ULs are set. It is asymmetrical between DL and UL.
  • the number of DLs and ULs may be read as the number of CCs.
  • DL and UL are 4: 3, but if they are asymmetric, the ratio of DL and UL is not particularly limited. Further, an example in which the RLC data PDU is transmitted in the DL will be described below, but the same operation can be performed when the RLC data PDU is transmitted in the UL.
  • RLC-AM defines feedback information sent and received via UL for RLC data PDU transmitted via DL, specifically, RLC status report (3GPP TS38). See .322).
  • FIG. 6 shows the operation flow (operation example 1) of the UE 200 when Asymmetric PDCP duplication is set.
  • FIG. 7 shows the transmission / reception status of the RLC data PDU and the RLC status report by the gNB100 and UE200 according to the operation example 1.
  • UE200 operates so that RLC status report can be returned for all RLC data PDUs even when Asymmetric PDCP duplication is set.
  • the RLC status report may be an RLC control PDU.
  • the UE 200 receives the duplicated RLC data PDU 320 (see FIG. 5) (S10). Specifically, the UE 200 receives RLC data PDUs via four RLC entities (one primary RLC entity and three secondary RLC entities).
  • UE200 has a CC, serving cell, UL carrier or BWP capable of transmitting RLC status report (RLC control PDU, the same applies hereinafter) in the corresponding RLC entity, specifically, the RLC entity that received the RLC data PDU. Is determined (S20).
  • RLC control PDU RLC status report
  • UE200 may be determined to have no CC, serving cell, UL carrier or BWP if any of the following applies.
  • -No CC serving cell, UL carrier or BWP to be mapped-No CC, serving cell, UL carrier or BWP in Activated state-UL time alignment is established (that is, the TA timer of the TAG to which it belongs is running)
  • No CC Serving Cell, UL Carrier or BWP • Received instructions from the network that there is no CC, Serving Cell, UL Carrier or BWP (eg IE such as "UL absence” or "Asym config" by RRC layer signaling When applied to LCH (or RLC bearer))
  • the UE 200 may simply determine whether or not the UL associated with the RLC entity that received the RLC data PDU is set.
  • the CC, serving cell, UL carrier or BWP used for transmitting the RLC status report may be determined based on any of the following criteria.
  • UE200 decides not to apply the mapping constraint between LCH and CC (serving cell), specifically the above-mentioned LCH restriction, when there is no CC, serving cell, UL carrier and BWP capable of transmitting RLC status report. (S40).
  • the UE200 may realize such a decision by deactivating PDCP duplication. This is because it is stipulated that when PDCP duplication is deactivated, the above-mentioned mapping is automatically deactivated (see 3GPP TS38.300).
  • PDCP duplication deactivation may be explicitly instructed by the network to UE200 (for example, RRC or MAC layer signaling). Alternatively, the UE 200 may execute it implicitly without such explicit instruction. At this time, the UE 200 may be determined to be inactivated based on the setting of the mapping between LCH and CC. The network (gNB100 side) must deactivate PDCP duplication.
  • the UE200 uses at least one of the CC, serving cell, UL carrier and BWP associated with another RLC entity, that is, an RLC entity that is different from the RLC entity that received the RLC data PDU, to set the RLC status report to gNB100.
  • Send (S50).
  • the RLC status report is any RLC entity (or LCH, LCH,). Identification information that identifies whether it corresponds to CC) may be given.
  • the identifier of the RLC entity, the identifier of the RLC bearer, the identifier of the LCH ID, the identifier of the DL serving cell, and the like can be mentioned.
  • the four RLC entities are operating in AM, but only DL is set and UL is not set between RLC entity 105 and RLC entity 205.
  • the RLC entity 205 cannot directly return the RLC status report for the RLC data PDU sent from the RLC entity 105 to the RLC entity 105.
  • the UE200 corresponds to the UL (specifically, CC, serving cell, UL carrier, BWP) associated with other RLC entities via the MAC entity (not shown in FIG. 7, see FIG. 2).
  • the RLC status report (see the alternate long and short dash line in the figure).
  • the RLC status report for the RLC data PDU sent from the RLC entity 105 is returned to the gNB 100 even in the state of Asymmetric PDCP duplication.
  • the configuration of up to four RLC entities for duplicate bearers per UE200 is preferably supported by multiple RLC-Bearer Configs with the same radio bearer ID.
  • the configuration of up to four RLC entities for replicated bearers per cell group is preferably supported by multiple RLC-Bearer Configs with the same radio bearer ID.
  • the RRC preferably sets whether or not each RLC bearer is used for uplink replication, and when PDCP duplication is activated, PDCP will be applied to all RLC bearers for which replication is configured. It is preferable to transmit the duplicated data unit (PDCP PDU).
  • PDCP PDU duplicated data unit
  • FIG. 8 shows the operation flow (operation example 2) of the UE 200 when Asymmetric PDCP duplication is set.
  • FIG. 9 shows the transmission / reception status of the RLC data PDU and the RLC status report by the gNB100 and UE200 according to the operation example 2.
  • the downlink (DL) to which RLC data PDU was sent is a one-way link that does not require sending RLC status report. Avoid sending RLC status report by treating it as (um-Uni-Directional-DL).
  • the UE 200 receives the duplicated RLC data PDU 320 (see FIG. 5) (S110). Specifically, the UE 200 receives the RLC data PDU 320 via four RLC entities (one primary RLC entity and three secondary RLC entities) as in the operation example 1.
  • the UE200 determines whether or not there is a UL capable of transmitting the RLC status report returned in response to the reception of the RLC data PDU (S120). Specifically, the UE 200 determines whether the UL (CC, serving cell, UL carrier or BWP) associated with the RLC entity that received the RLC data PDU is set.
  • the UL CC, serving cell, UL carrier or BWP
  • the UE200 sends the RLC status report to the gNB100 via the UL (S130).
  • UE200 decides to use um-Uni-Directional-DL when there is no UL that can send RLC status report (S140).
  • Um-Uni-Directional-DL is specified in 3GPP TS38.322, etc.
  • the UE200 In um-Uni-Directional-DL, the UE200 only receives RLC data PDUs via DL and does not send feedback information via UL, that is, RLC status report.
  • the RLC entity 205 when the UE200 decides to use um-Uni-Directional-DL, the RLC entity 205 operates as Unacknowledged Mode (UM) instead of Acknowledged Mode (AM).
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • RLC entity 105 also acts as a UM.
  • UE200 has decided to use um-Uni-Directional-DL, and DL only CC / Cell / Carrier composed of DLs for which the corresponding valid UL (UL CC, UL carrier, UL serving cell) is not set. If is set, the mapping settings for the logical channel (LCH), specifically the mapping between the LCH and the serving cell, may be omitted.
  • LCH logical channel
  • UE200 is a DL only Cell that does not have a corresponding valid UL (UL CC, UL carrier, UL serving cell) set when um-Uni-Directional-DL is set for the RLC bearer with PDCP duplication set. / CC / Carrier may implicitly recognize that it is associated with the RLC bearer.
  • um-Uni-Directional-DL may be realized by modeling to disable (disable, omit, suppress) the RLC status report for the RLC entity of AM.
  • the UE 200 is other than the RLC entity that received the RLC data PDU 320 if there is no CC, serving cell, UL carrier and BWP capable of sending an RLC status report to the gNB 100 for the RLC data PDU 320 replicated by PDCP duplication. Select the RLC entity for. In addition, UE200 sends an RLC status report for the RLC data PDU 320 to gNB100 via the selected RLC entity.
  • the RLC status report for the RLC data PDU can be reliably returned. That is, according to UE200, even when PDCP duplication is extended and Asymmetric PDCP duplication is set, it is possible to reliably return a response such as feedback information for the transmission of RLC data PDU.
  • the UE 200 selects an RLC entity other than the RLC entity that received the RLC data PDU 320 based on the presence or absence of at least one of CC, serving cell, UL carrier or BWP capable of transmitting the RLC status report to the gNB 100. You can decide whether or not to do it. Therefore, the UE200 can determine whether or not the RLC status report can be transmitted from multiple aspects. As a result, it is possible to more reliably return a response such as feedback information to the transmission of the RLC data PDU.
  • the UE 200 can select an RLC entity other than the RLC entity that received the duplicated RLC data PDU 320 by excluding the application of the mapping constraint (LCH restriction) regarding LCH. Therefore, it is possible to send feedback information when Asymmetric PDCP duplication is set while utilizing the existing UE200 operation without defining a new operation.
  • LCH restriction mapping constraint
  • the UE 200 when there is no uplink that can be transmitted to the RLC status report gNB100 for the RLC data PDU 320 replicated by PDCP duplication, the UE 200 transmits the downlink used for transmitting the RLC data PDU 320 to the RLC status report. Can be treated as unnecessary um-Uni-Directional-DL. Therefore, even if Asymmetric PDCP duplication is set, it is possible to avoid sending RLC status report by changing to UM for RLC entities that cannot send RLC status report. As a result, even when Asymmetric PDCP duplication is set, it is possible to reliably return a response such as feedback information that can be transmitted while avoiding a state in which the RLC status report cannot be transmitted normally and terminates abnormally.
  • the UE 200 when the UE 200 treats the downlink used for transmitting the duplicated RLC data PDU 320 as um-Uni-Directional-DL, the UE 200 has the original data unit (PDCP PDU 310) and the duplicated data. You can omit the mapping settings for the logical channel (LCH) used to transmit the unit. Therefore, unnecessary operations in the UE 200 can be reduced, which can contribute to the performance improvement of the UE 200.
  • PDCP PDU 310 the original data unit
  • LCH logical channel
  • the operation of the UE200 has been mainly described, but the gNB100 (and gNB101) can also perform an operation corresponding to Asymmetric PDCP duplication in the same manner as the UE200.
  • Asymmetric PDCP duplication may be set (that is, the state of DC) across a plurality of gNBs.
  • Asymmetric PDCP duplication may be set using a plurality of UEs.
  • the PDCP entity may be arranged in any UE, and a plurality of RLC entities may be arranged so as to be distributed and straddled in different UEs.
  • a device belonging to Time Sensitive Networking (TSN) may be connected to the plurality of UEs, or a relationship such as a master unit and a slave unit may be used.
  • TSN Time Sensitive Networking
  • the UE200 may notify the network that it has the capability to support Asymmetric PDCP duplication. For example, for each band combination, each band, each CC, and each resource block (RB) type (Signalling Radio Bearer (SRB), Data Radio Bearer (DRB)), the presence or absence of the ability or the number of RLC entities that can be supported is notified. You may. The notification may be independent of DL and UL.
  • RB resource block
  • SRB Signal Radio Bearer
  • DRB Data Radio Bearer
  • the notification may be independent of DL and UL.
  • UE200 may apply the above-mentioned support for Asymmetric PDCP duplication only to a specific bearer. This makes it easy to implement the function corresponding to Asymmetric PDCP duplication of UE200. For example, only DRBs or SRBs, or only bearers that have a specific identifier or are associated with quality of service (QoS).
  • QoS quality of service
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIGS. 3 and 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), RandomAccessMemory (RAM), and the like. May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a photomagnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5 th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark))
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®
  • other systems that utilize suitable systems and at least next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100, 101 gNB 105 RLC entity 110 Wireless communication unit 120 MAC processing unit 130 RLC processing unit 140 PDCP processing unit 150 Control unit 160 Network IF unit 200 UE 205 RLC entity 210 Wireless communication unit 220 MAC processing unit 230 RLC processing unit 240 PDCP processing unit 250 Control unit 260 User IF unit 310 PDCP PDU 320 RLC data PDU 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A UE (200) receives an RLC data PDU that includes a PDCP PDU from a gNB (100) via an RLC entity and also receives an RLC data PDU in which the PDCP PDU is replicated from the gNB (100) via an RLC entity (205). The UE 200 selects an RLC entity other than the RLC entity (205) and transmits an RLC status report via the selected RLC entity.

Description

通信装置Communication device
 本発明は、データユニットの重複送信制御に対応した通信装置に関する。 The present invention relates to a communication device that supports duplicate transmission control of data units.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。 The 3rd Generation Partnership Project (3GPP) is a specification of Long Term Evolution (LTE), LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and 5th generation mobile communication system for the purpose of further speeding up LTE. Specifications (also called 5G, New Radio (NR) or Next Generation (NG)) are also underway.
 5Gでは、Ultra-Reliable and Low Latency Communications(URLCC)のような高い信頼性が必要な通信を実現するため、データパケット及び/または制御信号の冗長化、二重(重複)送信による手法が検討されている。例えば、周波数ダイバーシチを用いて信頼性を向上するPDCP duplicationが規定されている(非特許文献1)。PDCP duplicationは、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)でのパケット(データユニット)の重複送信制御である。 In 5G, in order to realize communication that requires high reliability such as Ultra-Reliable and Low Latency Communications (URLCC), a method of redundant data packets and / or control signals and double (duplicate) transmission is being studied. ing. For example, PDCP duplication that improves reliability by using frequency diversity is defined (Non-Patent Document 1). PDCP duplication is a control for duplicate transmission of packets (data units) at the packet data convergence protocol layer (PDCP).
 具体的には、PDCP duplicationでは、一つのPDCPエンティティに複数の無線リンク制御レイヤのエンティティ(RLCエンティティ)を関連付け、複製されたデータユニットが異なるコンポーネントキャリア(CC)またはサービングセルを介して送信される。また、オリジナルのデータユニットと、複製されたデータユニットとが、同一のCCを介して送信されないように、論理チャネル(LCH)とCC(サービングセルでもよい、以下同)とのマッピングが設定される(非特許文献2)。 Specifically, in PDCP duplication, one PDCP entity is associated with a plurality of wireless link control layer entities (RLC entities), and the duplicated data unit is transmitted via different component carriers (CC) or serving cells. In addition, the mapping between the logical channel (LCH) and the CC (which may be a serving cell, the same applies hereinafter) is set so that the original data unit and the duplicated data unit are not transmitted via the same CC (the same applies hereinafter). Non-Patent Document 2).
 また、3GPPのRelease 16の仕様では、PDCP duplicationの拡張制御が検討されている。具体的には、PDCPエンティティに関連付けられるRLCエンティティの数を3以上とする(つまり、複製できるデータユニット数を2つ以上とする)ことが検討されている。 Also, in the 3GPP Release 16 specifications, extended control of PDCP duplication is being considered. Specifically, it is being considered that the number of RLC entities associated with PDCP entities is 3 or more (that is, the number of data units that can be duplicated is 2 or more).
 さらに、このような検討に際して、PDCPエンティティに関連付けられるRLCエンティティの数が、ダウンリンク(DL)とアップリンク(UL)とにおいて異なる構成も検討されている(非特許文献3)。DLのCC数を増やすことは比較的容易であるが、ULのCC数を増やすことは実装上課題が多いことに配慮した結果である。 Furthermore, in such an examination, a configuration in which the number of RLC entities associated with PDCP entities differs between downlink (DL) and uplink (UL) is also being examined (Non-Patent Document 3). It is relatively easy to increase the number of CCs in DL, but increasing the number of CCs in UL is a result of considering that there are many implementation issues.
 しかしながら、上述したようなPDCPエンティティに関連付けられるRLCエンティティの数が、DLとULとにおいて異なる構成が適用される場合、次のような問題がある。 However, when the number of RLC entities associated with PDCP entities as described above is different between DL and UL, there are the following problems.
 具体的には、RLC-Acknowledged Mode (AM)の場合、例えば、DLを介したデータユニット(RLC data PDU)の送信に対して、ULを介したフィードバック情報(RLC status report)がRLC data PDUの送信元に返送される。 Specifically, in the case of RLC-Acknowledged Mode (AM), for example, the feedback information (RLC status report) via UL is the RLC data PDU for the transmission of the data unit (RLC data PDU) via DL. It will be returned to the sender.
 このため、例えば、DLにおいてPDCPエンティティに関連付けられるRLCエンティティの数が、ULにおいてPDCPエンティティに関連付けられるRLCエンティティの数よりも多い、言い換えると、DLのCC数が、ULのCC数よりも多い場合、次のような状態が発生し得る。 So, for example, if the number of RLC entities associated with PDCP entities in DL is greater than the number of RLC entities associated with PDCP entities in UL, in other words, the number of CCs in DL is greater than the number of CCs in UL. , The following conditions can occur.
 具体的には、上述したLCHとCCとのマッピング上の制約があるため、何れか下り方向のCC(LCH)を介して送信されたRLC data PDUに対するRLC status reportを返送するための上り方向のCC(LCH)が存在しない状態となり、RLC status reportを返送できない。 Specifically, due to the above-mentioned restrictions on the mapping between LCH and CC, the upstream direction for returning the RLC status report for the RLC data PDU transmitted via either the downstream CC (LCH). CC (LCH) does not exist and RLC status report cannot be returned.
 そこで、本発明は、このような状況に鑑みてなされたものであり、データユニットの重複送信制御(PDCP duplication)が拡張された場合でも、確実にデータユニットの送信に対するフィードバック情報などの応答を返送し得る通信装置の提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and even when the duplication control (PDCP duplication) of the data unit is extended, the response such as feedback information for the transmission of the data unit is surely returned. The purpose is to provide a possible communication device.
 本発明の一態様は、通信装置(例えば、UE200)であって、無線リンク制御レイヤの第1エンティティを介して、第1データユニット(RLC data PDU 320)を受信するとともに、前記無線リンク制御レイヤの第2エンティティを介して、第2データユニットを受信する受信部(RLC処理部230)と、受信した前記第2データユニットに対するフィードバック情報(RLC status report)を前記第2エンティティ以外の無線リンク制御レイヤの第1エンティティに関連付けられた無線リソースを用いて送信する送信部(RLC処理部230)とを備える。 One aspect of the present invention is a communication device (for example, UE200), which receives a first data unit (RLC data PDU 320) via a first entity of a wireless link control layer and also receives the wireless link control layer. The receiving unit (RLC processing unit 230) that receives the second data unit and the feedback information (RLC status report) for the received second data unit are controlled by wireless links other than the second entity. It includes a transmission unit (RLC processing unit 230) that transmits using the radio resource associated with the first entity of the layer.
 本発明の一態様は、通信装置(例えば、UE200)であって、無線リンク制御レイヤの第1エンティティを介して、第1データユニット(PDCP PDU 310)を受信するととともに、無線リンク制御レイヤの第2エンティティを介して、前記第1データユニットが複製された第2データユニット(RLC data PDU 320)を受信する受信部(RLC処理部230)と、受信した前記第2データユニットに対するフィードバック情報を送信できる無線リンクがない場合、前記第2データユニットの送信に用いられる無線リンクを、前記フィードバック情報の送信が不要な片方向リンク(um-Uni-Directional-DL)として取り扱う制御部(制御部250)とを備える。 One aspect of the present invention is a communication device (for example, UE200), which receives a first data unit (PDCP PDU 310) via a first entity of the wireless link control layer and a first of the wireless link control layer. The receiving unit (RLC processing unit 230) that receives the second data unit (RLC data PDU 320) to which the first data unit is duplicated and the feedback information for the received second data unit are transmitted via the two entities. A control unit (control unit 250) that handles the wireless link used for transmission of the second data unit as a one-way link (um-Uni-Directional-DL) that does not require transmission of the feedback information when there is no capable wireless link. And.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10における主要なプロトコルスタック、論理チャネル及びコンポーネントキャリアの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a main protocol stack, a logical channel, and a component carrier in the wireless communication system 10. 図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the UE 200. 図4は、gNB100の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the gNB 100. 図5は、Asymmetric PDCP duplicationの設定例を示す図である。FIG. 5 is a diagram showing a setting example of Asymmetric PDCP duplication. 図6は、Asymmetric PDCP duplicationが設定された場合におけるUE200の動作フロー(動作例1)を示す図である。FIG. 6 is a diagram showing an operation flow (operation example 1) of the UE 200 when Asymmetric PDCP duplication is set. 図7は、動作例1に従ったgNB100及びUE200によるRLC data PDUとRLC status reportの送受信の状態を示す図である。FIG. 7 is a diagram showing a state of transmission / reception of RLC data PDU and RLC status report by gNB100 and UE200 according to the operation example 1. 図8は、Asymmetric PDCP duplicationが設定された場合におけるUE200の動作フロー(動作例2)を示す図である。FIG. 8 is a diagram showing an operation flow (operation example 2) of the UE 200 when Asymmetric PDCP duplication is set. 図9は、動作例2に従ったgNB100及びUE200によるRLC data PDUとRLC status reportの送受信の状態を示す図である。FIG. 9 is a diagram showing a state of transmission / reception of RLC data PDU and RLC status report by gNB100 and UE200 according to the operation example 2. 図10は、gNB100、gNB101及びUE200のハードウェア構成の一例を示す図である。FIG. 10 is a diagram showing an example of the hardware configuration of gNB100, gNB101 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G(NR)に従った無線通信システムである。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G (NR).
 図1に示すように、無線通信システム10は、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及びユーザ端末200(以下、UE200)を含む。 As shown in FIG. 1, the wireless communication system 10 includes the Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and the user terminal 200 (hereinafter, UE200).
 NG-RAN20は、無線基地局100(以下、gNB100)及び無線基地局110(以下、gNB101)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100 (hereinafter, gNB100) and a radio base station 110 (hereinafter, gNB101). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100及びgNB101は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100(gNB101)及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN NodeとUEとの間においてコンポーネントキャリアを同時送信するデュアルコネクティビティ(DC)などに対応することができる。本実施形態において、gNB100(gNB101)及びUE200は、通信装置と概括的に呼称してもよい。 GNB100 and gNB101 are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G. The gNB100 (gNB101) and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC). , And dual connectivity (DC), which simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs, can be supported. In this embodiment, gNB100 (gNB101) and UE200 may be generically referred to as communication devices.
 また、本実施形態では、URLCCのような高い信頼性が必要な通信の要求条件を満たすため、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)でのパケット(データユニット)の重複送信制御であるPDCP duplicationを実行できる。なお、PDCP duplicationは、実質的にPDCPにおいて取り扱われるパケットの複製と解釈できるため、Packet duplicationと呼ばれてもよい。 Further, in the present embodiment, in order to satisfy the communication requirements such as URLCC that require high reliability, duplicate transmission control of packets (data units) at the packet data convergence protocol layer (PDCP) is performed. PDCP duplication can be executed. Note that PDCP duplication may be called Packet duplication because it can be interpreted as a replication of packets handled by PDCP.
 図2は、無線通信システム10における主要なプロトコルスタック、論理チャネル及びコンポーネントキャリアの構成例を示す。 FIG. 2 shows a configuration example of a main protocol stack, a logical channel, and a component carrier in the wireless communication system 10.
 図2に示すように、本実施形態に係る無線通信システム10は、3GPPのRelease 16において検討されているPDCP duplicationの拡張制御に対応する。 As shown in FIG. 2, the wireless communication system 10 according to the present embodiment corresponds to the extended control of PDCP duplication studied in Release 16 of 3GPP.
 まず、3GPPのRelease 15では、1つのPDCPエンティティに複数のRLCエンティティを関連付けることが可能だが、2つのRLCエンティティまでに制限されている。PDCPエンティティによって複製されたデータユニット(PDCP PDU 310)は、異なるサービングセル(異なるCCと表現されてもよい)を介して送受信される。このようなPDCP duplicationを実現するアーキテクチャとして、CAベース及びDCベースが規定されている。 First, in 3GPP Release 15, it is possible to associate multiple RLC entities with one PDCP entity, but it is limited to two RLC entities. The data unit (PDCP PDU 310) replicated by the PDCP entity is sent and received via different serving cells (which may be referred to as different CCs). CA-based and DC-based are defined as architectures that realize such PDCP duplication.
 プライマリRLCエンティティ及びセカンダリRLCエンティティは、複製されたPDCP PDU 310をPDCPエンティティから受け取り、当該PDCP PDU 310を含むRLC data PDU 320を、媒体アクセス制御レイヤのエンティティ(MACエンティティ)、各理チャネル(LCH #A~#C)及び各CC(CC #1~#3)を介して送信する。 The primary RLC entity and the secondary RLC entity receive the duplicated PDCP PDU 310 from the PDCP entity, and receive the RLC data PDU 320 including the PDCP PDU 310 from the medium access control layer entity (MAC entity) and the physical channel (LCH #). It is transmitted via A to #C) and each CC (CC # 1 to # 3).
 PDCP duplicationは、ネットワーク(具体的には、gNB100, gNB101)からの指示に従ってダイナミックにON/OFF(Activate/Deactivate)できる。PDCP duplicationのDeactivate時には、プライマリRLCエンティティ(例えば、図2のLCH #Aと対応するRLC)のみによって、PDCP PDU 310が送信される。 PDCP duplication can be dynamically turned ON / OFF (Activate / Deactivate) according to the instructions from the network (specifically, gNB100, gNB101). When PDCP duplication is deactivated, PDCP PDU 310 is transmitted only by the primary RLC entity (for example, RLC corresponding to LCH # A in FIG. 2).
 また、PDCP duplicationでは、オリジナルのデータユニット(PDCP PDU 310)と、複製されたデータユニット(PDCP PDU 310)とが、同一のCCを介して送信されないように、論理チャネル(LCH)と、CC(サービングセル)とのマッピングが設定される。このようなマッピングは、3GPP TS38.300及びTS38.321において規定されており、LCH restrictionなどとも呼ばれる。 In PDCP duplication, the logical channel (LCH) and CC (LCH) and CC (to prevent the original data unit (PDCP PDU 310) and the replicated data unit (PDCP PDU 310) from being transmitted via the same CC. Mapping with the serving cell) is set. Such mapping is specified in 3GPP TS38.300 and TS38.321, and is also called LCH restriction.
 3GPPのRelease 16では、このようなPDCP duplicationが拡張され、3つ以上のRLCエンティティの設定(つまり、2つ以上のセカンダリRLCエンティティの設定)が許容される。3つ以上のRLCエンティティのサポートは、DCベースにおいて要求が高いが、CAベースでも少なくとも3つ以上のRLCエンティティをサポートすることが望ましい。 In 3GPP Release 16, such PDCP duplication is extended to allow the setting of three or more RLC entities (that is, the setting of two or more secondary RLC entities). Support for three or more RLC entities is demanding on a DC basis, but it is desirable to support at least three RLC entities on a CA basis as well.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。説明の便宜上、UE200の機能ブロック構成から説明する。
(2) Functional Block Configuration of Wireless Communication System Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of gNB100 and UE200 will be described. For convenience of explanation, the functional block configuration of UE200 will be described first.
 (2.1)UE200
 図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線通信部210、MAC処理部220、RLC処理部230、PDCP処理部240、制御部250及びユーザIF部260を備える。なお、UE200は、図示されていないが、無線リソース制御レイヤ(RRC)及びService Data Adaptation Protocol(SDAP)レイヤなど、他のレイヤの処理も実行する。
(2.1) UE200
FIG. 3 is a functional block configuration diagram of the UE 200. As shown in FIG. 3, the UE 200 includes a wireless communication unit 210, a MAC processing unit 220, an RLC processing unit 230, a PDCP processing unit 240, a control unit 250, and a user IF unit 260. Although not shown, the UE 200 also executes processing of other layers such as a radio resource control layer (RRC) and a service data adaptation protocol (SDAP) layer.
 無線通信部210は、gNB100(及びgNB101、以下同)との無線通信を実行する。具体的には、無線通信部210は、5Gの仕様に従ってgNB100との無線通信を実行する。上述したように、UE200は、Massive MIMO、キャリアアグリゲーション(CA)、及びデュアルコネクティビティ(DC)などに対応することができる。 The wireless communication unit 210 executes wireless communication with gNB100 (and gNB101, the same applies hereinafter). Specifically, the wireless communication unit 210 executes wireless communication with the gNB 100 according to the 5G specifications. As mentioned above, UE200 can support Massive MIMO, Carrier Aggregation (CA), Dual Connectivity (DC), and the like.
 無線通信部210は、物理層(PHY/L1)と概ね対応しており、符号化/復号化、変調/復調、マルチアンテナマッピング、及びその他の一般的な物理層の機能を有する。無線通信部210(物理層)は、トランスポートチャネルの形によってMAC処理部120にサービスを提供する。 The wireless communication unit 210 generally corresponds to the physical layer (PHY / L1), and has coding / decoding, modulation / demodulation, multi-antenna mapping, and other general physical layer functions. The wireless communication unit 210 (physical layer) provides a service to the MAC processing unit 120 in the form of a transport channel.
 MAC処理部220は、媒体アクセス制御(MAC)レイヤにおける処理を実行する。MAC処理部220は、論理チャネル(LCH)の多重化、ハイブリッドARQ再送信、ならびにスケジューリング及びスケジューリング関連機能を有する。 The MAC processing unit 220 executes processing in the medium access control (MAC) layer. The MAC processing unit 220 has logical channel (LCH) multiplexing, hybrid ARQ retransmission, and scheduling and scheduling-related functions.
 スケジューリング関連機能は、アップリンク及びダウンリンクの両方に対して提供される。MAC処理部220は、LCHの形態によってRLC処理部130にサービスを提供する。5G(NR)におけるMACレイヤのヘッダ構造は、LTEよりも低レイテンシ処理をさらに効率的にサポートできるように変更されている。 Scheduling related functions are provided for both uplinks and downlinks. The MAC processing unit 220 provides a service to the RLC processing unit 130 in the form of LCH. The header structure of the MAC layer in 5G (NR) has been modified to support lower latency processing more efficiently than LTE.
 RLC処理部230は、無線リンク制御レイヤ(RLC)における処理を実行する。RLCは、分割及び再送信処理を担当する。 The RLC processing unit 230 executes processing in the wireless link control layer (RLC). RLC is responsible for the split and retransmission process.
 具体的には、RLC処理部230は、RLCチャネルの形態によってPDCP処理部240にサービスを提供する。デバイス(UE200)に設定されたRLCチャネル毎(つまり、無線ベアラ(RAB)毎)に1つのRLCエンティティが設定される。 Specifically, the RLC processing unit 230 provides a service to the PDCP processing unit 240 in the form of an RLC channel. One RLC entity is set for each RLC channel (that is, for each radio bearer (RAB)) set in the device (UE200).
 RLC処理部230は、LTEと比較すると、より上位レイヤへのデータの順次配信をサポートしていない。これにより、遅延の減少を図っている。 RLC processing unit 230 does not support sequential distribution of data to higher layers compared to LTE. This is intended to reduce the delay.
 RLC処理部230は、PDCP処理部240と連携して、上述したPDCP duplicationをサポートする。具体的には、RLC処理部230は、無線リンク制御レイヤの何れかのRLCエンティティ(第1エンティティ)を介して、RLC data PDU 320(第1データユニット)を受信するとともに、無線リンク制御レイヤの他のRLCエンティティ(第2エンティティ)を介して、RLC data PDU 320(第2データユニット)を受信する。 The RLC processing unit 230 supports the PDCP duplication described above in cooperation with the PDCP processing unit 240. Specifically, the RLC processing unit 230 receives the RLC data PDU 320 (first data unit) via any RLC entity (first entity) of the wireless link control layer, and also receives the RLC data PDU 320 (first data unit) of the wireless link control layer. Receives RLC data PDU 320 (second data unit) via another RLC entity (second entity).
 より具体的には、RLC処理部230は、無線リンク制御レイヤの何れかのRLCエンティティ(第1エンティティ)を介して、PDCP PDU 310が含まれるRLC data PDU 320(第1データユニット)をgNB100(宛先通信装置)から受信する。 More specifically, the RLC processing unit 230 gNB100 (first data unit) the RLC data PDU 320 (first data unit) including the PDCP PDU 310 via any RLC entity (first entity) of the wireless link control layer. Received from the destination communication device).
 さらに、RLC処理部230は、無線リンク制御レイヤの何れかのRLCエンティティ(第2エンティティ)を介して、オリジナルのPDCP PDU 310を含むRLC data PDU 320(第1データユニット)が複製されたRLC data PDU 320(第2データユニット)をgNB100から受信する。本実施形態において、RLC処理部230は、受信部を構成する。 Further, the RLC processing unit 230 receives RLC data in which the RLC data PDU 320 (first data unit) including the original PDCP PDU 310 is duplicated via any RLC entity (second entity) in the wireless link control layer. Receive PDU 320 (second data unit) from gNB100. In the present embodiment, the RLC processing unit 230 constitutes a receiving unit.
 また、RLC処理部230は、受信したRLC data PDU 320に対するフィードバック情報を当該RLCエンティティ(第2エンティティ)以外のRLCエンティティに関連付けられた無線リソースを用いて送信する。本実施形態において、RLC処理部230は、送信部を構成する。 Further, the RLC processing unit 230 transmits the feedback information for the received RLC data PDU 320 using the radio resource associated with the RLC entity other than the RLC entity (second entity). In the present embodiment, the RLC processing unit 230 constitutes a transmission unit.
 具体的には、RLC処理部230は、制御部250によって選択された無線リンク制御レイヤの何れかのRLCエンティティ(第1エンティティ)を介してフィードバック情報を送信する。 Specifically, the RLC processing unit 230 transmits feedback information via any RLC entity (first entity) of the wireless link control layer selected by the control unit 250.
 具体的には、RLC処理部230は、RLC-Acknowledged Mode (AM)として動作し、制御部250によって選択されたRLCエンティティを介して、受信したRLC data PDU 320の受信状態(status)を示す応答であるRLC status reportをフィードバック情報として送信する。なお、フィードバック情報は、RLC status reportに限定されず、RLC status reportまたはRLC status reportと同様の情報を含むRLC control PDUであってもよい。 Specifically, the RLC processing unit 230 operates as an RLC-Acknowledged Mode (AM), and a response indicating the reception status (status) of the received RLC data PDU 320 via the RLC entity selected by the control unit 250. RLC status report is sent as feedback information. The feedback information is not limited to the RLC status report, and may be an RLC control PDU containing the same information as the RLC status report or the RLC status report.
 PDCP処理部240は、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)における処理を実行する。PDCPは、IPヘッダの圧縮、暗号化、及び完全性保護を実行する。 The PDCP processing unit 240 executes processing in the packet data convergence protocol layer (PDCP). PDCP performs IP header compression, encryption, and integrity protection.
 PDCP処理部240は、UE200がハンドオーバーを実行する場合、データユニットの再送信、順序どおりの配信、及び重複削除も実行する。 The PDCP processing unit 240 also executes data unit retransmission, ordered distribution, and duplicate deletion when the UE 200 executes a handover.
 また、PDCP処理部240は、DCにおけるスプリットベアラの場合、データユニットのルーティング及び複製機能を提供する。デバイス(UE200)に設定された無線ベアラごとに1つのPDCPエンティティが設定される。 Further, the PDCP processing unit 240 provides a data unit routing and replication function in the case of a split bearer in DC. One PDCP entity is configured for each wireless bearer configured on the device (UE200).
 さらに、PDCP処理部240は、PDCP duplicationをサポートする。PDCP duplicationは、3GPP TS38.323において規定されている。pdcp-Duplicationによって設定されたPDCPエンティティの場合、送信側PDCPエンティティは、次のように動作できる。 Furthermore, the PDCP processing unit 240 supports PDCP duplication. PDCP duplication is specified in 3GPP TS38.323. For PDCP entities configured by pdcp-Duplication, the sending PDCP entity can behave as follows:
 具体的には、Signalling Radio Bearer(SRB)の場合、PDCP処理部240は、制御部250の制御に基づいて(以下同)、PDCPの複製を有効とする。 Specifically, in the case of Signaling Radio Bearer (SRB), the PDCP processing unit 240 enables PDCP duplication based on the control of the control unit 250 (the same applies hereinafter).
 また、Data Radio Bearer(DRB)の場合であって、PDCP複製のアクティブ化が指示されている場合、PDCP複製を有効にする。一方、PDCP複製の無効化が指示されている場合、PDCP処理部240は、PDCP複製を無効にする。 Also, in the case of DataRadioBearer (DRB), if PDCP replication is instructed to be activated, PDCP replication is enabled. On the other hand, when the invalidation of PDCP replication is instructed, the PDCP processing unit 240 invalidates PDCP replication.
 さらに、pdcp-Duplicationで設定されたPDCPエンティティの場合、送信側PDCPエンティティは次のように動作できる。具体的には、関連する2つのAM (Acknowledged Mode) RLCエンティティのうちの1つによって、PDCP PDU 310(具体的には、PDCP data PDU)の配信が成功したことが確認された場合、重複したPDCP data PDUを破棄するように他のAM RLCエンティティに指示する。 Furthermore, in the case of PDCP entity set by pdcp-Duplication, the sending PDCP entity can operate as follows. Specifically, if one of the two related AM (Acknowledged Mode) RLC entities confirms that the PDCP PDU 310 (specifically, PDCP data PDU) has been successfully delivered, it is duplicated. Instruct other AMRLC entities to discard PDCP data PDUs.
 一方、PDCP複製の無効化が指示されている場合、PDCP処理部240は、すべての重複したPDCP data PDUを破棄するようにセカンダリRLCエンティティに指示する。 On the other hand, if PDCP replication is instructed to be disabled, PDCP processing unit 240 instructs the secondary RLC entity to discard all duplicate PDCP data PDUs.
 制御部250は、無線通信部210、MAC処理部220、RLC処理部230及びPDCP処理部240の動作を制御する。 The control unit 250 controls the operations of the wireless communication unit 210, the MAC processing unit 220, the RLC processing unit 230, and the PDCP processing unit 240.
 特に、本実施形態では、制御部250は、RLC処理部230が受信したPDCP duplicationによって複製されたRLC data PDU 320(第2データユニット)に対するRLC status report(フィードバック情報)をgNB100に送信できる無線リソースがない場合、複製された当該RLC data PDU 320を受信したRLCエンティティ(第2エンティティ)以外のRLCエンティティ(第1エンティティ)を選択する。 In particular, in the present embodiment, the control unit 250 is a radio resource capable of transmitting the RLC status report (feedback information) to the RLC data PDU 320 (second data unit) duplicated by the PDCP duplication received by the RLC processing unit 230 to the gNB 100. If there is no, select an RLC entity (first entity) other than the RLC entity (second entity) that received the duplicated RLC data PDU 320.
 つまり、PDCP duplicationでは、オリジナルのデータユニット(PDCP PDU 310)と、複製されたデータユニット(PDCP PDU 310)とが、同一のCCを介して送信されないように、論理チャネル(LCH)と、CC(サービングセル)とのマッピング(LCH restriction)が設定されるため、PDCP duplicationによって関連付けられるRLCエンティティ(セカンダリRLCエンティティとしてもよい)の数が、ダウンリンク>アップリンクの状態となる場合、RLC status report送信に用い得るRLCエンティティ、つまり、LCH/CCが存在しない状態となり得る。 In other words, in PDCP duplication, the logical channel (LCH) and CC (to prevent the original data unit (PDCP PDU 310) and the duplicated data unit (PDCP PDU 310) from being transmitted via the same CC. Since the mapping (LCH restriction) with the serving cell) is set, if the number of RLC entities (may be secondary RLC entities) associated by PDCP duplication is in the downlink> uplink status, the RLC status report is sent. There can be no available RLC entities, i.e. LCH / CC.
 このような場合、制御部250は、LCH restrictionによる制約の適用を除外し、複製された当該RLC data PDU 320を受信したRLCエンティティ以外の他のRLCエンティティを介してRLC status reportを送信できるようにRLC処理部230に指示する。つまり、制御部250は、オリジナルのPDCP PDU 310(第1データユニット)を含むRLC data PDU 320、及びオリジナルのPDCP PDU 310が複製されたRLC data PDU 320(第2データユニット)の送信に用いられるLCHに関するマッピング制約(LCH restriction)の適用が除外されることによって、複製された当該RLC data PDU 320を受信したRLCエンティティ(第2エンティティ)以外のRLCエンティティを選択する。 In such a case, the control unit 250 excludes the application of the restriction by the LCH restriction so that the RLC status report can be transmitted via the RLC entity other than the RLC entity that received the duplicated RLC data PDU 320. Instruct RLC processing unit 230. That is, the control unit 250 is used for transmitting the RLC data PDU 320 including the original PDCP PDU 310 (first data unit) and the RLC data PDU 320 (second data unit) in which the original PDCP PDU 310 is duplicated. By excluding the application of the mapping constraint (LCH restriction) regarding LCH, an RLC entity other than the RLC entity (second entity) that received the duplicated RLC data PDU 320 is selected.
 つまり、制御部250がこのようなRLCエンティティを選択すると、RLC処理部230は、当該マッピング制約(LCH restriction)の適用の適用が除外されることによって、複製された当該RLC data PDU 320を受信したRLCエンティティ(第2エンティティ)以外のRLCエンティティ(第1エンティティ)に関連付けられた無線リソースを用いてRLC status reportを送信する。 That is, when the control unit 250 selects such an RLC entity, the RLC processing unit 230 receives the duplicated RLC data PDU 320 by excluding the application of the mapping constraint (LCH restriction). The RLC status report is transmitted using the radio resource associated with the RLC entity (first entity) other than the RLC entity (second entity).
 なお、オリジナルのPDCP PDU 310と複製されたPDCP PDU 310とは、ヘッダ情報に一部相違する部分があってもよいが、実質的なPDU(SDU)の内容は同一であり、オリジナルと複製(コピー)とは、説明の便宜上での相違でしかない点に留意されたい。また、本実施形態では、上述したように、PDCP duplicationがDeactivate状態、つまり、オリジナルのPDCP PDU 310のみを送受信するRLCエンティティをプライマリRLCエンティティと呼んでいる。 The original PDCP PDU 310 and the duplicated PDCP PDU 310 may have some differences in the header information, but the actual contents of the PDU (SDU) are the same, and the original and the duplicate ( It should be noted that (copy) is only a difference for convenience of explanation. Further, in the present embodiment, as described above, the PDCP duplication is in the Deactivate state, that is, the RLC entity that sends and receives only the original PDCP PDU 310 is called the primary RLC entity.
 また、上述した無線リソースとは、具体的には、CC、サービングセル、アップリンクキャリア(キャリア)またはBWP(BandWidth Part、帯域情報)の少なくとも何れかである。 Further, the above-mentioned radio resource is specifically at least one of CC, serving cell, uplink carrier (carrier) or BWP (BandWidth Part, band information).
 つまり、制御部250がこのようなRLCエンティティを選択すると、RLC処理部230は、フィードバック情報を送信できるコンポーネントキャリア、サービングセル、キャリアまたは帯域情報の少なくとも何れかがない場合、複製された当該RLC data PDU 320を受信したRLCエンティティ(第2エンティティ)以外のRLCエンティティ(第1エンティティ)に関連付けられた無線リソースを用いてRLC status reportを送信する。 That is, when the control unit 250 selects such an RLC entity, the RLC processing unit 230 receives the duplicated RLC data PDU if there is no component carrier, serving cell, carrier or bandwidth information capable of transmitting feedback information. The RLC status report is transmitted using the radio resource associated with the RLC entity (first entity) other than the RLC entity (second entity) that received 320.
 5Gでは、1キャリア当りの帯域幅の最大値が6GHz以下の周波数においては100MHz、それ以上では400MHzと、LTEと比べて大幅に大きい。このように広い帯域幅で運用されるキャリアに対し、当該帯域幅よりも小さい帯域幅しかサポートしていないユーザ端末が当該キャリアを用いて通信できるようにするため、BWPがサポートされる。 In 5G, the maximum bandwidth per carrier is 100MHz at frequencies below 6GHz and 400MHz above that, which is significantly larger than LTE. BWP is supported so that a user terminal that supports a bandwidth smaller than the bandwidth can communicate with the carrier operated with such a wide bandwidth using the carrier.
 gNB100は、UE200が通信に用いるべきBWP情報(帯域幅,周波数位置,サブキャリア間隔)を、上位レイヤ(RRC)のシグナリングを用いてUE200に設定する。ユーザ端末毎に異なるBWP情報を設定することも可能である。BWP情報は、上位レイヤのシグナリングまたはL1シグナリングによって変更することができる。 The gNB100 sets the BWP information (bandwidth, frequency position, subcarrier interval) that the UE200 should use for communication in the UE200 using the signaling of the upper layer (RRC). It is also possible to set different BWP information for each user terminal. BWP information can be modified by higher layer signaling or L1 signaling.
 また、制御部250は、RLC処理部230が受信したPDCP duplicationによって複製されたRLC data PDU 320(第2データユニット)に対するRLC status report(フィードバック情報)をgNB100に送信できる無線リンク(アップリンク)がない場合、複製された当該RLC data PDU 320の送信に用いられる無線リンク(ダウンリンク)を、RLC status reportの送信が不要な片方向リンクとして取り扱ってもよい。 In addition, the control unit 250 has a wireless link (uplink) capable of transmitting the RLC status report (feedback information) to the RLC data PDU 320 (second data unit) duplicated by the PDCP duplication received by the RLC processing unit 230 to the gNB 100. If not, the duplicated wireless link (downlink) used for transmission of the RLC data PDU 320 may be treated as a one-way link that does not require transmission of the RLC status report.
 具体的には、制御部250は、複製された当該RLC data PDU 320の送信に用いられるダウンリンクをum-Uni-Directional-DLとして取り扱ってもよい。より具体的には、制御部250は、RLC処理部230をRLC-AMではなく、RLC-UM(Unacknowledged Mode)として動作させ、RLC status reportの送信が不要なum-Uni-Directional-DLとして設定する。 Specifically, the control unit 250 may handle the downlink used for transmitting the duplicated RLC data PDU 320 as um-Uni-Directional-DL. More specifically, the control unit 250 operates the RLC processing unit 230 as RLC-UM (Unacknowledged Mode) instead of RLC-AM, and sets it as um-Uni-Directional-DL that does not require transmission of RLC status report. To do.
 um-Uni-Directional-DLは、RLC処理部230はダウンリンクの受信のみ実行し、アップリンクでのフィードバックを実行しない。 In um-Uni-Directional-DL, the RLC processing unit 230 only receives downlinks and does not provide feedback on uplinks.
 また、制御部250は、複製された当該RLC data PDU 320の送信に用いられるダウンリンクをum-Uni-Directional-DLとして取り扱う場合、オリジナルのデータユニット(PDCP PDU 310)、及び複製されたデータユニット(PDCP PDU 310)の送信に用いられる論理チャネル(LCH)に関するマッピングの設定を省略してもよい。 In addition, when the control unit 250 handles the downlink used for transmission of the duplicated RLC data PDU 320 as um-Uni-Directional-DL, the original data unit (PDCP PDU 310) and the duplicated data unit The setting of the mapping related to the logical channel (LCH) used for the transmission of (PDCP PDU 310) may be omitted.
 ユーザIF部260は、UE200のユーザに対するインターフェースを提供する。具体的には、ユーザIF部260は、各種の入出力を実現するハードウェア及びソフトウェアによって実現される。なお、UE200のハードウェア構成については、後述する。 The user IF unit 260 provides an interface for UE200 users. Specifically, the user IF unit 260 is realized by hardware and software that realize various types of input / output. The hardware configuration of UE200 will be described later.
 (2.2)gNB100
 図4は、gNB100の機能ブロック構成図である。なお、gNB101も同様の機能ブロック構成を有する。
(2.2) gNB100
FIG. 4 is a functional block configuration diagram of the gNB 100. The gNB 101 also has a similar functional block configuration.
 図4に示すように、gNB100は、無線通信部110、MAC処理部120、RLC処理部130、PDCP処理部140、制御部150及びネットワークIF部160を備える。 As shown in FIG. 4, the gNB100 includes a wireless communication unit 110, a MAC processing unit 120, an RLC processing unit 130, a PDCP processing unit 140, a control unit 150, and a network IF unit 160.
 無線通信部110は、UE200との無線通信を実行する。具体的には、無線通信部110は、5Gの仕様に従ってUE200との無線通信を実行する。gNB100は、UE200と同様に、Massive MIMO、キャリアアグリゲーション(CA)、及びデュアルコネクティビティ(DC)などに対応することができる。 The wireless communication unit 110 executes wireless communication with the UE 200. Specifically, the wireless communication unit 110 executes wireless communication with the UE 200 according to the 5G specifications. Like UE200, gNB100 can support Massive MIMO, Carrier Aggregation (CA), Dual Connectivity (DC), and so on.
 MAC処理部120、RLC処理部130及びPDCP処理部140の機能は、アップリンクとダウンリンクが逆になるものの、UE200のMAC処理部220、RLC処理部230及びPDCP処理部240と同様である。 The functions of the MAC processing unit 120, RLC processing unit 130, and PDCP processing unit 140 are the same as those of the UE200 MAC processing unit 220, RLC processing unit 230, and PDCP processing unit 240, although the uplink and downlink are reversed.
 制御部150は、無線通信部110、MAC処理部120、RLC処理部130及びPDCP処理部140の動作を制御する。制御部150の機能も、アップリンクとダウンリンクが逆になるものの、UE200の制御部250と同様である。 The control unit 150 controls the operations of the wireless communication unit 110, the MAC processing unit 120, the RLC processing unit 130, and the PDCP processing unit 140. The function of the control unit 150 is the same as that of the control unit 250 of the UE 200, although the uplink and the downlink are reversed.
 ネットワークIF部160は、NG-RAN20(及び5GC)と接続するためのNWインターフェースを提供する。具体的には、ネットワークIF部160は、gNB101とのインターフェース(X2, Xnなど)、及び5GCとのインターフェース(N2, N3など)を提供する。 The network IF unit 160 provides a NW interface for connecting to the NG-RAN20 (and 5GC). Specifically, the network IF unit 160 provides an interface with gNB101 (X2, Xn, etc.) and an interface with 5GC (N2, N3, etc.).
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、ダウンリンク(DL)とアップリンク(UL)とにおいて非対称な数のPDCP duplication(以下、Asymmetric PDCP duplicationと呼称するが、用語はこれに限られない)が設定された場合におけるgNB100及びUE200の動作について説明する。
(3) Operation of Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, gNB100 when an asymmetric number of PDCP duplication (hereinafter referred to as Asymmetric PDCP duplication, but the term is not limited to this) is set between the downlink (DL) and the uplink (UL). And the operation of UE200 will be described.
 (3.1)Asymmetric PDCP duplicationの設定例
 図5は、Asymmetric PDCP duplicationの設定例を示す。図5に示す例では、gNB100及びUE200の両方において、1つのPDCPエンティティと関連付けられた4つのRLCエンティティが設定されている。
(3.1) Asymmetric PDCP duplication setting example FIG. 5 shows a setting example of Asymmetric PDCP duplication. In the example shown in FIG. 5, four RLC entities associated with one PDCP entity are set in both gNB100 and UE200.
 一方で、図5に示すように、DLは各RLCエンティティに設定、つまり、4つのDLが設定されているが、ULは、3つのRLCエンティティにのみに設定、つまり、3つのULが設定されており、DLとULとにおいて非対称となっている。なお、DL及びULの数は、CCの数と読み替えてもよい。 On the other hand, as shown in FIG. 5, DL is set for each RLC entity, that is, 4 DLs are set, but UL is set for only 3 RLC entities, that is, 3 ULs are set. It is asymmetrical between DL and UL. The number of DLs and ULs may be read as the number of CCs.
 このため、DL方向では、4つのRLC data PDUが重複送信されるが、UL方向では、3つのRLC data PDUが重複送信に留まる。 Therefore, in the DL direction, four RLC data PDUs are transmitted in duplicate, but in the UL direction, three RLC data PDUs are transmitted in duplicate.
 なお、図5に示す例では、DLとULとが4:3であるが、非対称であれば、DLとULとの比率は特に限定されない。また、以下、DLにおいてRLC data PDUが送信される例について説明するが、ULにおいてRLC data PDUが送信される場合も同様に動作し得る。 In the example shown in FIG. 5, DL and UL are 4: 3, but if they are asymmetric, the ratio of DL and UL is not particularly limited. Further, an example in which the RLC data PDU is transmitted in the DL will be described below, but the same operation can be performed when the RLC data PDU is transmitted in the UL.
 上述したように、RLC-AMでは、DLを介して送信されたRLC data PDUに対して、ULを介して送受信されるフィードバック情報、具体的には、RLC status reportが規定されている(3GPP TS38.322参照)。 As mentioned above, RLC-AM defines feedback information sent and received via UL for RLC data PDU transmitted via DL, specifically, RLC status report (3GPP TS38). See .322).
 このため、DL数とUL数(つまり、下り方向と上り方向におけるCC数)とに差分があると、LCH restrictionによって、RLC status reportを送信できない問題が発生する。この結果、gNB100側においてRLC異常が検出され、正常な通信を継続することができなくなる。本実施形態では、このような問題を解消する。 Therefore, if there is a difference between the number of DLs and the number of ULs (that is, the number of CCs in the downlink and uplink directions), there will be a problem that the RLC status report cannot be sent due to LCH restriction. As a result, an RLC abnormality is detected on the gNB100 side, and normal communication cannot be continued. In this embodiment, such a problem is solved.
 (3.2)動作例1
 図6は、Asymmetric PDCP duplicationが設定された場合におけるUE200の動作フロー(動作例1)を示す。図7は、動作例1に従ったgNB100及びUE200によるRLC data PDUとRLC status reportの送受信の状態を示す。
(3.2) Operation example 1
FIG. 6 shows the operation flow (operation example 1) of the UE 200 when Asymmetric PDCP duplication is set. FIG. 7 shows the transmission / reception status of the RLC data PDU and the RLC status report by the gNB100 and UE200 according to the operation example 1.
 本動作例では、UE200は、Asymmetric PDCP duplicationが設定された場合でも、すべてのRLC data PDUについてRLC status reportが返送できるように動作する。なお、上述したように、RLC status reportは、RLC control PDUであってもよい。 In this operation example, UE200 operates so that RLC status report can be returned for all RLC data PDUs even when Asymmetric PDCP duplication is set. As described above, the RLC status report may be an RLC control PDU.
 図6に示すように、UE200は、複製されたRLC data PDU 320(図5参照)を受信する(S10)。具体的には、UE200は、4つのRLCエンティティ(1つのプライマリRLCエンティティと、3つのセカンダリRLCエンティティ)を介してRLC data PDUを受信する。 As shown in FIG. 6, the UE 200 receives the duplicated RLC data PDU 320 (see FIG. 5) (S10). Specifically, the UE 200 receives RLC data PDUs via four RLC entities (one primary RLC entity and three secondary RLC entities).
 UE200は、対応するRLCエンティティ、具体的には、RLC data PDUを受信したRLCエンティティにおいて、RLC status report(RLC control PDU、以下同)を送信可能なCC、サービングセル、ULキャリアまたはBWPが有るか否かを判定する(S20)。 UE200 has a CC, serving cell, UL carrier or BWP capable of transmitting RLC status report (RLC control PDU, the same applies hereinafter) in the corresponding RLC entity, specifically, the RLC entity that received the RLC data PDU. Is determined (S20).
 なお、UE200は、以下の何れかに該当する場合、CC、サービングセル、ULキャリアまたはBWPがないと判定してもよい。 Note that UE200 may be determined to have no CC, serving cell, UL carrier or BWP if any of the following applies.
  ・マッピングされるCC、サービングセル、ULキャリアまたはBWPがない
  ・Activate状態のCC、サービングセル、ULキャリアまたはBWPがない
  ・UL time alignmentが確立している(つまり、属するTAGのTA timerが起動中)のCC、サービングセル、ULキャリアまたはBWPがない
  ・ネットワークからCC、サービングセル、ULキャリアまたはBWPがない旨の指示が受信(例えば、RRCレイヤのシグナリングによって、”UL absence”或いは“Asym config”のようなIEが、LCH(またはRLCベアラ)に対して適用された場合)
 なお、UE200は、単純に、RLC data PDUを受信したRLCエンティティと関連付けられているULが設定されているか否かを判定してもよい。
-No CC, serving cell, UL carrier or BWP to be mapped-No CC, serving cell, UL carrier or BWP in Activated state-UL time alignment is established (that is, the TA timer of the TAG to which it belongs is running) No CC, Serving Cell, UL Carrier or BWP • Received instructions from the network that there is no CC, Serving Cell, UL Carrier or BWP (eg IE such as "UL absence" or "Asym config" by RRC layer signaling When applied to LCH (or RLC bearer))
Note that the UE 200 may simply determine whether or not the UL associated with the RLC entity that received the RLC data PDU is set.
 また、RLC status reportの送信に用いられるCC、サービングセル、ULキャリアまたはBWPは、以下の何れかの基準に基づいて決定されてもよい。 Further, the CC, serving cell, UL carrier or BWP used for transmitting the RLC status report may be determined based on any of the following criteria.
  ・ランダムに選択
  ・他のCC(LCH, RLCエンティティ)をラウンドロビンに選択
  ・最も帯域幅が大きい対象を選択
  ・最もHARQ再送数小さい対象を選択
  ・最もModulation and Coding Scheme(MCS)が小さい(最も品質を担保できる)対象を選択
  ・最も割り当てPhysical Resource Block(PRB)数が多い対象を選択
  ・最もスケジューリング機会が多い対象を選択
  ・最も識別子の値が大きい(或いは最初)または小さい(或いは最後)対象を選択
  ・ネットワークによって指定された対象を選択
  ・直近でRLC status reportを送信可能な対象を選択
  ・プライマリセル(PCell)を選択
  ・プライマリRLCエンティティが関連付けられている対象を選択
  ・RLC status reportを送信可能な余剰スペース(トランスポートブロック, MAC PDU)を有する対象を選択
 UE200は、RLC status reportを送信可能なCC、サービングセル、ULキャリアまたはBWPが有る場合、当該CC、サービングセル、ULキャリ及びBWPの少なくとも何れかを用いてRLC status reportをgNB100に送信する(S30)。
-Random selection-Select other CC (LCH, RLC entity) for round robin-Select the target with the largest bandwidth-Select the target with the smallest number of HARQ retransmissions-The smallest Modulation and Coding Scheme (MCS) (most) Select the target that can guarantee the quality ・ Select the target with the largest number of assigned Physical Resource Blocks (PRBs) ・ Select the target with the most scheduling opportunities ・ Target with the largest (or first) or smallest (or last) identifier value -Select the target specified by the network-Select the target for which the most recent RLC status report can be sent-Select the primary cell (PCell) -Select the target with which the primary RLC entity is associated-Send the RLC status report Select a target with possible surplus space (transport block, MAC PDU) The UE200, if there is a CC, serving cell, UL carrier or BWP capable of sending an RLC status report, at least the CC, serving cell, UL carry and BWP. Send an RLC status report to gNB100 using either (S30).
 一方、UE200は、RLC status reportを送信可能なCC、サービングセル、ULキャリア及びBWPがない場合、LCHとCC(サービングセル)とのマッピング制約、具体的には、上述したLCH restrictionを適用しないと決定する(S40)。 On the other hand, UE200 decides not to apply the mapping constraint between LCH and CC (serving cell), specifically the above-mentioned LCH restriction, when there is no CC, serving cell, UL carrier and BWP capable of transmitting RLC status report. (S40).
 なお、UE200は、PDCP duplicationをdeactivateとすることによって、このような決定を実現してもよい。PDCP duplicationがdeactivateされると、上述したマッピングは、自律的に解除することが規定されている(3GPP TS38.300参照)ためである。 Note that the UE200 may realize such a decision by deactivating PDCP duplication. This is because it is stipulated that when PDCP duplication is deactivated, the above-mentioned mapping is automatically deactivated (see 3GPP TS38.300).
 また、PDCP duplicationのdeactivate(不活性化)は、ネットワークがUE200に対して明示的に指示(例えば、RRCまたはMACレイヤのシグナリング)してもよい。或いは、このような明示的な指示なしに、UE200が暗黙的に実行してもよい。この際、UE200は、LCHとCCとのマッピングの設定に基づいて、不活性化すると判定してもよい。なお、ネットワーク(gNB100側)は、必ずPDCP duplicationをdeactivateする。 In addition, PDCP duplication deactivation may be explicitly instructed by the network to UE200 (for example, RRC or MAC layer signaling). Alternatively, the UE 200 may execute it implicitly without such explicit instruction. At this time, the UE 200 may be determined to be inactivated based on the setting of the mapping between LCH and CC. The network (gNB100 side) must deactivate PDCP duplication.
 UE200は、他のRLCエンティティ、つまり、RLC data PDUを受信したRLCエンティティとは異なるRLCエンティティと関連付けられているCC、サービングセル、ULキャリア及びBWPの少なくとも何れかを用いて、RLC status reportをgNB100に送信する(S50)。 The UE200 uses at least one of the CC, serving cell, UL carrier and BWP associated with another RLC entity, that is, an RLC entity that is different from the RLC entity that received the RLC data PDU, to set the RLC status report to gNB100. Send (S50).
 なお、このようにRLCエンティティと関連付けられているCC、サービングセル、ULキャリア及びBWPの少なくとも何れかを用いて、RLC status reportを送信する場合、当該RLC status reportが、何れのRLCエンティティ(或いはLCH, CC)と対応するのかを識別する識別情報が付与されていてもよい。例えば、RLCエンティティの識別子、RLCベアラの識別子、LCH ID, DL serving cellの識別子などが挙げられる。 When the RLC status report is transmitted using at least one of CC, serving cell, UL carrier and BWP associated with the RLC entity in this way, the RLC status report is any RLC entity (or LCH, LCH,). Identification information that identifies whether it corresponds to CC) may be given. For example, the identifier of the RLC entity, the identifier of the RLC bearer, the identifier of the LCH ID, the identifier of the DL serving cell, and the like can be mentioned.
 図7に示すように、4つのRLCエンティティは、AMで動作しているが、RLCエンティティ105~RLCエンティティ205間では、DLのみが設定され、ULが設定されていない。この状態において、PDCP duplicationが実行されると、Asymmetric PDCP duplicationの状態(DL:UL=4:3)となる。 As shown in FIG. 7, the four RLC entities are operating in AM, but only DL is set and UL is not set between RLC entity 105 and RLC entity 205. When PDCP duplication is executed in this state, it becomes the state of Asymmetric PDCP duplication (DL: UL = 4: 3).
 このため、RLCエンティティ205は、RLCエンティティ105から送信されたRLC data PDUに対するRLC status reportをRLCエンティティ105に直接返送することができない。 Therefore, the RLC entity 205 cannot directly return the RLC status report for the RLC data PDU sent from the RLC entity 105 to the RLC entity 105.
 そこで、UE200は、MACエンティティ(図7では不図示、図2参照)を経由して、他のRLCエンティティと関連付けられているUL(具体的には、CC、サービングセル、ULキャリア、BWP)に当該RLC status reportを振り向ける(図中の一点鎖線参照)。これにより、Asymmetric PDCP duplicationの状態であっても、RLCエンティティ105から送信されたRLC data PDUに対するRLC status reportがgNB100に返送される。 Therefore, the UE200 corresponds to the UL (specifically, CC, serving cell, UL carrier, BWP) associated with other RLC entities via the MAC entity (not shown in FIG. 7, see FIG. 2). Turn the RLC status report (see the alternate long and short dash line in the figure). As a result, the RLC status report for the RLC data PDU sent from the RLC entity 105 is returned to the gNB 100 even in the state of Asymmetric PDCP duplication.
 なお、UE200当たりの複製されたベアラに対する最大4つのRLCエンティティの構成は、同じ無線ベアラIDを有する複数のRLC-BearerConfigsによってサポートされることが好ましい。また、セルグループ当たりの複製されたベアラに対する最大4つのRLCエンティティの構成は、同じ無線ベアラIDを有する複数のRLC-BearerConfigsによってサポートされることが好ましい。 It should be noted that the configuration of up to four RLC entities for duplicate bearers per UE200 is preferably supported by multiple RLC-Bearer Configs with the same radio bearer ID. Also, the configuration of up to four RLC entities for replicated bearers per cell group is preferably supported by multiple RLC-Bearer Configs with the same radio bearer ID.
 さらに、RRCは、各RLCベアラがアップリンクの複製に使用されるか否かを設定することが好ましく、PDCP duplicationがactive化されると、PDCPは、複製が設定されているすべてのRLCベアラに複製されたデータユニット(PDCP PDU)を送信することが好ましい。 In addition, the RRC preferably sets whether or not each RLC bearer is used for uplink replication, and when PDCP duplication is activated, PDCP will be applied to all RLC bearers for which replication is configured. It is preferable to transmit the duplicated data unit (PDCP PDU).
 (3.3)動作例2
 図8は、Asymmetric PDCP duplicationが設定された場合におけるUE200の動作フロー(動作例2)を示す。図9は、動作例2に従ったgNB100及びUE200によるRLC data PDUとRLC status reportの送受信の状態を示す。
(3.3) Operation example 2
FIG. 8 shows the operation flow (operation example 2) of the UE 200 when Asymmetric PDCP duplication is set. FIG. 9 shows the transmission / reception status of the RLC data PDU and the RLC status report by the gNB100 and UE200 according to the operation example 2.
 本動作例では、Asymmetric PDCP duplicationによってRLC status reportを送信するためのアップリンク(UL)がない場合、RLC data PDUが送信されたダウンリンク(DL)をRLC status reportの送信が不要な片方向リンク(um-Uni-Directional-DL)として取り扱うことによって、RLC status reportの送信を回避する。 In this operation example, if there is no uplink (UL) for sending RLC status report by Asymmetric PDCP duplication, the downlink (DL) to which RLC data PDU was sent is a one-way link that does not require sending RLC status report. Avoid sending RLC status report by treating it as (um-Uni-Directional-DL).
 図8に示すように、UE200は、複製されたRLC data PDU 320(図5参照)を受信する(S110)。具体的には、UE200は、動作例1と同様に、4つのRLCエンティティ(1つのプライマリRLCエンティティと、3つのセカンダリRLCエンティティ)を介してRLC data PDU 320を受信する。 As shown in FIG. 8, the UE 200 receives the duplicated RLC data PDU 320 (see FIG. 5) (S110). Specifically, the UE 200 receives the RLC data PDU 320 via four RLC entities (one primary RLC entity and three secondary RLC entities) as in the operation example 1.
 UE200は、RLC data PDUの受信に応じて返送されるRLC status reportを送信可能なULが有るか否かを判定する(S120)。具体的には、UE200は、RLC data PDUを受信したRLCエンティティと関連付けられているUL(CC、サービングセル、ULキャリアまたはBWP)が設定されているか否かを判定する。 The UE200 determines whether or not there is a UL capable of transmitting the RLC status report returned in response to the reception of the RLC data PDU (S120). Specifically, the UE 200 determines whether the UL (CC, serving cell, UL carrier or BWP) associated with the RLC entity that received the RLC data PDU is set.
 UE200は、RLC status reportを送信可能なULが有る場合、当該ULを介してRLC status reportをgNB100に送信する(S130)。 If there is a UL that can send the RLC status report, the UE200 sends the RLC status report to the gNB100 via the UL (S130).
 一方、UE200は、RLC status reportを送信可能なULがない場合、um-Uni-Directional-DLを用いると決定する(S140)。 On the other hand, UE200 decides to use um-Uni-Directional-DL when there is no UL that can send RLC status report (S140).
 um-Uni-Directional-DLは、3GPP TS38.322などで規定されている。um-Uni-Directional-DLでは、UE200は、DLを介したRLC data PDUの受信のみを実行し、ULを介したフィードバック情報の送信、つまり、RLC status reportの送信を実行しない。 Um-Uni-Directional-DL is specified in 3GPP TS38.322, etc. In um-Uni-Directional-DL, the UE200 only receives RLC data PDUs via DL and does not send feedback information via UL, that is, RLC status report.
 図9に示すように、UE200は、um-Uni-Directional-DLを用いると決定した場合、RLCエンティティ205は、Acknowledged Mode(AM)ではなく、Unacknowledged Mode(UM)として動作する。これに対応して、RLCエンティティ105もUMとして動作する。 As shown in FIG. 9, when the UE200 decides to use um-Uni-Directional-DL, the RLC entity 205 operates as Unacknowledged Mode (UM) instead of Acknowledged Mode (AM). Correspondingly, RLC entity 105 also acts as a UM.
 なお、UE200は、um-Uni-Directional-DLを用いると決定し、対応する有効なUL(UL CC, ULキャリア, ULサービングセル)が設定されていないDLによって構成されるDL only CC/Cell/Carrierが設定されている場合、論理チャネル(LCH)に関するマッピングの設定、具体的には、LCHとサービングセルとのマッピングの設定を省略してもよい。 In addition, UE200 has decided to use um-Uni-Directional-DL, and DL only CC / Cell / Carrier composed of DLs for which the corresponding valid UL (UL CC, UL carrier, UL serving cell) is not set. If is set, the mapping settings for the logical channel (LCH), specifically the mapping between the LCH and the serving cell, may be omitted.
 また、UE200は、PDCP duplicationが設定されたRLCベアラにum-Uni-Directional-DLが設定される場合、対応する有効なUL(UL CC, ULキャリア, ULサービングセル)が設定されていないDL only Cell/CC/Carrierは、当該RLCベアラに関連付けられると暗黙的に認識してもよい。 In addition, UE200 is a DL only Cell that does not have a corresponding valid UL (UL CC, UL carrier, UL serving cell) set when um-Uni-Directional-DL is set for the RLC bearer with PDCP duplication set. / CC / Carrier may implicitly recognize that it is associated with the RLC bearer.
 さらに、上述したum-Uni-Directional-DLは、AMのRLCエンティティに対して、RLC status reportをdisable(無効化、省略、抑制)するというモデリングによって実現されてもよい。 Furthermore, the above-mentioned um-Uni-Directional-DL may be realized by modeling to disable (disable, omit, suppress) the RLC status report for the RLC entity of AM.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、PDCP duplicationによって複製されたRLC data PDU 320に対するRLC status reportをgNB100に送信できるCC、サービングセル、ULキャリア及びBWPがない場合、当該RLC data PDU 320を受信したRLCエンティティ以外のRLCエンティティを選択する。さらに、UE200は、選択したRLCエンティティを介して当該RLC data PDU 320に対するRLC status reportをgNB100に送信する。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the UE 200 is other than the RLC entity that received the RLC data PDU 320 if there is no CC, serving cell, UL carrier and BWP capable of sending an RLC status report to the gNB 100 for the RLC data PDU 320 replicated by PDCP duplication. Select the RLC entity for. In addition, UE200 sends an RLC status report for the RLC data PDU 320 to gNB100 via the selected RLC entity.
 このため、Asymmetric PDCP duplicationが設定された場合でも、RLC data PDUに対するRLC status reportを確実に返送できる。すなわち、UE200によれば、PDCP duplicationが拡張され、Asymmetric PDCP duplicationが設定された場合でも、確実にRLC data PDUの送信に対するフィードバック情報などの応答を返送し得る。 Therefore, even if Asymmetric PDCP duplication is set, the RLC status report for the RLC data PDU can be reliably returned. That is, according to UE200, even when PDCP duplication is extended and Asymmetric PDCP duplication is set, it is possible to reliably return a response such as feedback information for the transmission of RLC data PDU.
 本実施形態では、UE200は、RLC status reportをgNB100に送信できるCC、サービングセル、ULキャリアまたはBWPの少なくとも何れかの有無に基づいて、当該RLC data PDU 320を受信したRLCエンティティ以外のRLCエンティティを選択するか否かを決定し得る。このため、UE200は、RLC status reportの送信可否を多面的に判定できる。これにより、さらに確実にRLC data PDUの送信に対するフィードバック情報などの応答を返送し得る。 In this embodiment, the UE 200 selects an RLC entity other than the RLC entity that received the RLC data PDU 320 based on the presence or absence of at least one of CC, serving cell, UL carrier or BWP capable of transmitting the RLC status report to the gNB 100. You can decide whether or not to do it. Therefore, the UE200 can determine whether or not the RLC status report can be transmitted from multiple aspects. As a result, it is possible to more reliably return a response such as feedback information to the transmission of the RLC data PDU.
 本実施形態では、UE200は、LCHに関するマッピング制約(LCH restriction)の適用が除外されることによって、複製された当該RLC data PDU 320を受信したRLCエンティティ以外のRLCエンティティを選択できる。このため、新規な動作を定義することなく、既存のUE200の動作を活用しつつ、Asymmetric PDCP duplication設定時におけるフィードバック情報などの送信に対応できる。 In the present embodiment, the UE 200 can select an RLC entity other than the RLC entity that received the duplicated RLC data PDU 320 by excluding the application of the mapping constraint (LCH restriction) regarding LCH. Therefore, it is possible to send feedback information when Asymmetric PDCP duplication is set while utilizing the existing UE200 operation without defining a new operation.
 本実施形態では、UE200は、PDCP duplicationによって複製されたRLC data PDU 320に対するRLC status reportgNB100に送信できるアップリンクがない場合、当該RLC data PDU 320の送信に用いられるダウンリンクを、RLC status reportの送信が不要なum-Uni-Directional-DLとして取り扱うことができる。このため、Asymmetric PDCP duplicationが設定された場合でも、RLC status reportが送信できないRLCエンティティについては、UMに変更することによって、RLC status reportの送信を回避し得る。これにより、Asymmetric PDCP duplicationが設定された場合でも、RLC status reportが正常に送信できずに不正終了する状態も回避しつつ、送信が可能なるフィードバック情報などの応答を確実に返送し得る。 In the present embodiment, when there is no uplink that can be transmitted to the RLC status report gNB100 for the RLC data PDU 320 replicated by PDCP duplication, the UE 200 transmits the downlink used for transmitting the RLC data PDU 320 to the RLC status report. Can be treated as unnecessary um-Uni-Directional-DL. Therefore, even if Asymmetric PDCP duplication is set, it is possible to avoid sending RLC status report by changing to UM for RLC entities that cannot send RLC status report. As a result, even when Asymmetric PDCP duplication is set, it is possible to reliably return a response such as feedback information that can be transmitted while avoiding a state in which the RLC status report cannot be transmitted normally and terminates abnormally.
 本実施形態では、UE200は、複製された当該RLC data PDU 320の送信に用いられるダウンリンクをum-Uni-Directional-DLとして取り扱う場合、オリジナルのデータユニット(PDCP PDU 310)、及び複製されたデータユニットの送信に用いられる論理チャネル(LCH)に関するマッピングの設定を省略できる。このため、UE200における不必要な動作を削減でき、UE200のパフォーマンス向上に寄与し得る。 In the present embodiment, when the UE 200 treats the downlink used for transmitting the duplicated RLC data PDU 320 as um-Uni-Directional-DL, the UE 200 has the original data unit (PDCP PDU 310) and the duplicated data. You can omit the mapping settings for the logical channel (LCH) used to transmit the unit. Therefore, unnecessary operations in the UE 200 can be reduced, which can contribute to the performance improvement of the UE 200.
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above with reference to Examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 例えば、上述した実施形態では、主にUE200の動作について説明したが、gNB100(及びgNB101)もUE200と同様に、Asymmetric PDCP duplicationに対応した動作を実行し得る。 For example, in the above-described embodiment, the operation of the UE200 has been mainly described, but the gNB100 (and gNB101) can also perform an operation corresponding to Asymmetric PDCP duplication in the same manner as the UE200.
 また、上述した実施形態では、gNB100に集約された例について説明したが、複数のgNBに跨がってAsymmetric PDCP duplicationが設定(つまり、DCの状態)されてもよい。同様に、UEについても、複数のUEを用いてAsymmetric PDCP duplicationが設定されてもよい。このような場合、PDCPエンティティは、何れかのUEに配置され、複数のRLCエンティティが異なるUEに分散して跨がるように配置されてもよい。さらに、当該複数のUEには、Time Sensitive Networking(TSN)に属するデバイスなどが接続されてもよいし親機と子機のような関係でも構わない。 Further, in the above-described embodiment, the example of aggregation in gNB100 has been described, but Asymmetric PDCP duplication may be set (that is, the state of DC) across a plurality of gNBs. Similarly, for UEs, Asymmetric PDCP duplication may be set using a plurality of UEs. In such a case, the PDCP entity may be arranged in any UE, and a plurality of RLC entities may be arranged so as to be distributed and straddled in different UEs. Further, a device belonging to Time Sensitive Networking (TSN) may be connected to the plurality of UEs, or a relationship such as a master unit and a slave unit may be used.
 さらに、UE200は、Asymmetric PDCP duplicationに対応する能力(capability)を有していることをネットワークに通知してもよい。例えば、band combination毎、バンド毎、CC毎、リソースブロック(RB)種別(Signalling Radio Bearer (SRB), Data Radio Bearer (DRB))毎に、当該能力の有無、或いはサポート可能なRLCエンティティ数を通知してもよい。なお、通知は、DLとULとで独立していてもよい。 Furthermore, the UE200 may notify the network that it has the capability to support Asymmetric PDCP duplication. For example, for each band combination, each band, each CC, and each resource block (RB) type (Signalling Radio Bearer (SRB), Data Radio Bearer (DRB)), the presence or absence of the ability or the number of RLC entities that can be supported is notified. You may. The notification may be independent of DL and UL.
 また、UE200は、上述したAsymmetric PDCP duplicationへの対応を、特定のベアラのみを対象として適用してもよい。これにより、UE200のAsymmetric PDCP duplicationへの対応機能の実装を容易にし得る。例えば、DRBまたはSRBのみ、或いは特定の識別子を有する、またはサービス品質(QoS)と対応付けられたベアラのみなどとすることが挙げられる。 In addition, UE200 may apply the above-mentioned support for Asymmetric PDCP duplication only to a specific bearer. This makes it easy to implement the function corresponding to Asymmetric PDCP duplication of UE200. For example, only DRBs or SRBs, or only bearers that have a specific identifier or are associated with quality of service (QoS).
 さらに、上述した実施形態では、PDCP duplication数が、DLとULとで4:3となるようなDL>ULのケースについて説明した。UE200の実装を考慮すると、このようなケースが典型的ではあるが、上述した動作例は、DL<ULとなるようなケースにも勿論適用し得る。 Furthermore, in the above-described embodiment, the case where the number of PDCP duplications is 4: 3 between DL and UL has been described. Considering the implementation of UE200, such a case is typical, but the above-mentioned operation example can of course be applied to a case where DL <UL.
 また、上述した実施形態の説明に用いたブロック構成図(図3,4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagrams (FIGS. 3 and 4) used in the description of the above-described embodiment show blocks of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit or a transmitter. As described above, the method of realizing each is not particularly limited.
 さらに、上述したgNB100、gNB101及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、当該装置のハードウェア構成の一例を示す図である。図10に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned gNB100, gNB101 and UE200 (the device) may function as a computer for processing the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 10, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図3,4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 3 and 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), RandomAccessMemory (RAM), and the like. May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a photomagnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in this disclosure, Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5 th generation mobile communication system (5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize suitable systems and at least next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the function of the base station. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100, 101 gNB
 105 RLCエンティティ
 110 無線通信部
 120 MAC処理部
 130 RLC処理部
 140 PDCP処理部
 150 制御部
 160 ネットワークIF部
 200 UE
 205 RLCエンティティ
 210 無線通信部
 220 MAC処理部
 230 RLC処理部
 240 PDCP処理部
 250 制御部
 260 ユーザIF部
 310 PDCP PDU 
 320 RLC data PDU 
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Radio communication system 20 NG-RAN
100, 101 gNB
105 RLC entity 110 Wireless communication unit 120 MAC processing unit 130 RLC processing unit 140 PDCP processing unit 150 Control unit 160 Network IF unit 200 UE
205 RLC entity 210 Wireless communication unit 220 MAC processing unit 230 RLC processing unit 240 PDCP processing unit 250 Control unit 260 User IF unit 310 PDCP PDU
320 RLC data PDU
1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Claims (5)

  1.  無線リンク制御レイヤの第1エンティティを介して、第1データユニットを受信するとともに、前記無線リンク制御レイヤの第2エンティティを介して、第2データユニットを受信する受信部と、
     受信した前記第2データユニットに対するフィードバック情報を前記第2エンティティ以外の無線リンク制御レイヤの第1エンティティに関連付けられた無線リソースを用いて送信する送信部と
    を備える通信装置。
    A receiving unit that receives the first data unit via the first entity of the wireless link control layer and receives the second data unit via the second entity of the wireless link control layer.
    A communication device including a transmission unit that transmits received feedback information to the second data unit using radio resources associated with the first entity of the wireless link control layer other than the second entity.
  2.  前記送信部は、前記フィードバック情報を送信できるコンポーネントキャリア、サービングセル、キャリアまたは帯域情報の少なくとも何れかがない場合、前記第2エンティティ以外の無線リンク制御レイヤの第1エンティティに関連付けられた無線リソースを用いて前記フィードバック情報を送信する請求項1に記載の通信装置。 The transmitter uses radio resources associated with the first entity of the radio link control layer other than the second entity if there is no component carrier, serving cell, carrier or band information capable of transmitting the feedback information. The communication device according to claim 1, wherein the feedback information is transmitted.
  3.  前記送信部は、前記第1データユニット及び前記第2データユニットの送信に用いられる論理チャネルに関するマッピング制約の適用が除外されることによって、前記第2エンティティ以外の無線リンク制御レイヤの第1エンティティに関連付けられた無線リソースを用いて前記フィードバック情報を送信する請求項1に記載の通信装置。 The transmitting unit becomes a first entity of the radio link control layer other than the second entity by excluding the application of the mapping constraint regarding the logical channel used for transmitting the first data unit and the second data unit. The communication device according to claim 1, wherein the feedback information is transmitted using the associated radio resource.
  4.  無線リンク制御レイヤの第1エンティティを介して、第1データユニットを受信するととともに、無線リンク制御レイヤの第2エンティティを介して、第2データユニットを受信する受信部と、
     受信した前記第2データユニットに対するフィードバック情報を送信できる無線リンクがない場合、前記第2データユニットの送信に用いられる無線リンクを、前記フィードバック情報の送信が不要な片方向リンクとして取り扱う制御部と
    を備える通信装置。
    A receiver that receives the first data unit via the first entity of the wireless link control layer and receives the second data unit via the second entity of the wireless link control layer.
    When there is no wireless link capable of transmitting the received feedback information to the second data unit, the control unit that treats the wireless link used for transmitting the second data unit as a one-way link that does not require the transmission of the feedback information. Communication device to be equipped.
  5.  前記制御部は、前記第2データユニットの送信に用いられる無線リンクを前記片方向リンクとして取り扱う場合、前記第1データユニット及び前記第2データユニットの送信に用いられる論理チャネルに関するマッピングの設定を省略する請求項4に記載の通信装置。
     
    When the control unit handles the wireless link used for transmission of the second data unit as the one-way link, the control unit omits the setting of mapping regarding the logical channel used for transmission of the first data unit and the second data unit. The communication device according to claim 4.
PCT/JP2019/018841 2019-05-10 2019-05-10 Communication device WO2020230222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018841 WO2020230222A1 (en) 2019-05-10 2019-05-10 Communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018841 WO2020230222A1 (en) 2019-05-10 2019-05-10 Communication device

Publications (1)

Publication Number Publication Date
WO2020230222A1 true WO2020230222A1 (en) 2020-11-19

Family

ID=73289939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018841 WO2020230222A1 (en) 2019-05-10 2019-05-10 Communication device

Country Status (1)

Country Link
WO (1) WO2020230222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013610A1 (en) * 2021-08-05 2023-02-09 株式会社デンソー Communication device, base station device, and communication method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancement of RLC status report over air interface for DC-based PDCP duplication", 3GPP TSG-RAN WG2 #106 R2-1905941, vol. RAN WG2, 2 May 2019 (2019-05-02), XP051710287 *
HUAWEI , HISILICON: "Single uplink feedback for dual downlink data transmission", 3GPP TSG-RAN WG2 MEETING #105BIS R2-1903921, vol. RAN WG2, 29 March 2019 (2019-03-29), XP051693156 *
NT DOCOMO INC: "Discussion on PDCP duplication [ online", 3GPP TSG-RAN WG2 MEETING #106 R2- 1908003, vol. RAN WG2, 3 May 2019 (2019-05-03), XP051712251 *
SAMSUNG: "PDCP Duplication with up to 4 RLCs", 3GPP TSG-RAN WG2 MEETING #106 R2- 1906793, vol. RAN WG2, 3 May 2019 (2019-05-03), XP051711096 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013610A1 (en) * 2021-08-05 2023-02-09 株式会社デンソー Communication device, base station device, and communication method

Similar Documents

Publication Publication Date Title
US11711167B2 (en) Apparatus, method and computer program
KR20180081446A (en) Methods for controlling a data redundant transmission and Apparatuses thereof
WO2020255424A1 (en) Terminal
WO2020217538A1 (en) Wireless communication node
WO2020217534A1 (en) Wireless communication node
JP7247199B2 (en) Radio access system and communication equipment
WO2018070465A1 (en) Wireless communication device
JP7285853B2 (en) Terminal, base station, communication system and communication method
JP7361114B2 (en) terminal
JP7361115B2 (en) terminal
WO2020230222A1 (en) Communication device
WO2020255421A1 (en) Terminal
WO2022168767A1 (en) Wireless base station, wireless communication system, and wireless communication method
US20240129818A1 (en) Radio base station and terminal
CN114009085B (en) Terminal
WO2021009883A1 (en) Terminal and communication nodes
WO2021029075A1 (en) Terminal and communication method
WO2021161433A1 (en) Wireless communication node
WO2020217469A1 (en) Communication device
JP7382394B2 (en) Wireless base station and user equipment
WO2023022150A1 (en) Terminal, wireless communication system, and wireless communication method
WO2020255420A1 (en) Terminal
WO2021220971A1 (en) Terminal and communication method
WO2022201475A1 (en) Base station, system, information notification method
JPWO2020165957A1 (en) Communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP