WO2020228466A1 - Msm型探测器的偏置电压调整方法和装置、msm型探测器 - Google Patents

Msm型探测器的偏置电压调整方法和装置、msm型探测器 Download PDF

Info

Publication number
WO2020228466A1
WO2020228466A1 PCT/CN2020/084807 CN2020084807W WO2020228466A1 WO 2020228466 A1 WO2020228466 A1 WO 2020228466A1 CN 2020084807 W CN2020084807 W CN 2020084807W WO 2020228466 A1 WO2020228466 A1 WO 2020228466A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias voltage
preset
adjustment
initial
adjustment step
Prior art date
Application number
PCT/CN2020/084807
Other languages
English (en)
French (fr)
Inventor
段立业
卢尧
侯孟军
唐大伟
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020228466A1 publication Critical patent/WO2020228466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Definitions

  • the present disclosure relates to the technical field of photodetectors, and in particular to a method and device for adjusting the bias voltage of an MSM type detector, and an MSM type detector.
  • metal-semicondctor-metal (MSM) detectors have a simple structure and are easy to integrate single-chip field effect transistors to realize photoelectronic integrated circuits, and are widely configured in the field of photodetection.
  • the embodiment of the present disclosure provides a method for adjusting the bias voltage of an MSM detector, including:
  • the final bias voltage of the MSM detector is determined based on the bias voltage before the last adjustment.
  • the determining the initial bias voltage includes:
  • the smallest bias voltage value within the preset first bias voltage range is determined as the initial bias voltage.
  • the preset mechanism includes:
  • the bias voltage is reduced based on the preset second adjustment step size.
  • the selection of an adjustment mechanism from a preset mechanism based on the initial bias voltage includes:
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step size .
  • the selection of an adjustment mechanism from a preset mechanism based on the initial bias voltage includes:
  • the dark state image corresponding to the object under test is collected based on the smallest bias voltage value within the first bias voltage range Noise parameter
  • the adjustment mechanism is selected to reduce the bias voltage based on the preset second adjustment step
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step.
  • the determining the final bias voltage of the MSM detector based on the bias voltage before the last adjustment includes:
  • the third adjustment step length is both smaller than the first adjustment step length and the second adjustment step length;
  • the initial bias voltage is used as the final bias voltage of the MSM detector.
  • each fine-tuning of the voltage bias voltage includes:
  • the preset third adjustment step is reduced until it is determined based on the reduced third adjustment step that the second bias voltage is adjusted from the initial bias voltage to the cut-off bias.
  • the number of voltage adjustments is greater than the preset second threshold, and the fine-tuned bias voltages from the initial bias voltage adjustment to the cut-off bias voltage within the second bias voltage range are determined based on the reduced third adjustment step size .
  • the embodiments of the present disclosure also provide a bias voltage adjustment device for MSM detectors, including:
  • the determining unit is configured to determine the initial bias voltage based on the power-on instruction of the metal-semiconductor-metal MSM detector;
  • the adjustment unit is configured to select an adjustment mechanism from a preset mechanism based on the initial bias voltage, and adjust the initial bias voltage based on the adjustment mechanism to obtain an adjusted bias voltage;
  • An acquisition unit configured to collect noise parameters corresponding to the dark state image of the object under test based on the initial bias voltage, and to reacquire the noise parameters corresponding to the dark state image of the object under test based on the adjusted bias voltage;
  • the judging unit is configured to judge whether the difference in noise parameters corresponding to the dark state image collected based on the bias voltage before and after the adjustment is greater than a preset first threshold;
  • the collection unit is further configured to, if the judgment unit judges that it is not greater than the preset first threshold, adjust the adjusted bias voltage again based on the adjustment mechanism until the judgment unit determines the The difference between the noise parameters corresponding to the dark state image collected by the bias voltage is greater than the preset first threshold;
  • the processing unit is configured to determine the final bias voltage of the MSM detector based on the bias voltage before the last adjustment.
  • the determining unit is specifically configured to determine whether the MSM-type detector stores the bias voltage set at the previous startup;
  • the preset mechanism includes:
  • the bias voltage is reduced based on the preset second adjustment step size.
  • the adjustment unit is specifically configured as:
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step size .
  • the adjustment unit is specifically configured as:
  • the dark state image corresponding to the object under test is collected based on the smallest bias voltage value within the first bias voltage range Noise parameter
  • the adjustment mechanism is selected to reduce the bias voltage based on the preset second adjustment step
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step.
  • the processing unit is specifically configured as:
  • the third adjustment step length is both smaller than the first adjustment step length and the second adjustment step length;
  • the initial bias voltage is used as the final bias voltage of the MSM detector.
  • the processing unit is specifically configured to determine the second bias voltage range based on the preset third adjustment step size The number of adjustments from the initial bias voltage adjustment to the end bias voltage adjustment within;
  • the preset third adjustment step is reduced until it is determined based on the reduced third adjustment step that the second bias voltage is adjusted from the initial bias voltage to the cut-off bias.
  • the number of voltage adjustments is greater than the preset second threshold, and the fine-tuned bias voltages from the initial bias voltage adjustment to the cut-off bias voltage within the second bias voltage range are determined based on the reduced third adjustment step size .
  • an MSM type detector including:
  • the memory is configured to store instructions executed by at least one processor
  • the processor is configured to execute instructions stored in the memory to execute the method of the first aspect.
  • FIG. 1 is a schematic structural diagram of an image acquisition system provided by an embodiment of the disclosure
  • FIG. 2a is a schematic cross-sectional view of an MSM type detector provided by an embodiment of the disclosure.
  • FIG. 2b is a top view of an MSM type detector provided by an embodiment of the disclosure.
  • FIG. 3 is a flowchart of a method for adjusting the bias voltage of an MSM type detector according to an embodiment of the disclosure
  • FIG. 4 is a specific flow chart of a method for adjusting the bias voltage of an MSM detector provided by an embodiment of the disclosure
  • FIG. 5 is a schematic structural diagram of a bias voltage adjusting device for an MSM type detector provided by an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of an MSM type detector provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of another MSM type detector provided by an embodiment of the disclosure.
  • the bias voltage setting of the MSM detector has a direct impact on the performance of the MSM detector.
  • the sensitivity of the MSM detector increases with the increase of the bias voltage, and with the increase of the bias voltage, the MSM The popcorn noise of the detector also increases.
  • the bias voltage setting for MSM detectors generally selects a theoretically larger value within the preset bias voltage range as the bias voltage of MSM detectors.
  • the The popcorn noise of the image actually collected under the bias voltage is relatively large, resulting in poor quality of the collected image.
  • an embodiment of the present disclosure provides an image acquisition system.
  • the system includes: a light source 1, for example, an X light source, an object to be measured 2 and an MSM type Detector 3; where the light source 1, the object to be measured 2 and the MSM type detector 3 are located on the same plane, the object to be measured 2 is located between the light source 1 and the MSM type detector 3, the light source 1 is configured to emit a beam of light, and The light beam is irradiated on the object 2 to be measured, the object 2 to be measured is configured to block the light beam emitted by the light source 1, and the MSM type detector 3 converts the light signal into an electrical signal.
  • a light source 1 for example, an X light source, an object to be measured 2 and an MSM type Detector 3
  • the light source 1 is configured to emit a beam of light
  • the light beam is irradiated on the object 2 to be measured
  • the object 2 to be measured is configured to block the light beam emitted by the light source 1
  • FIG. 2a is a schematic cross-sectional view of an MSM type detector provided in an embodiment of the present disclosure.
  • the MSM detector includes an amorphous silicon a-si substrate 21, a semi-insulating film 22 epitaxially grown on the a-si substrate 21, a gallium arsenide GaAs film 23 epitaxially grown on the semi-insulating film 22, and a GaAs film
  • the Schottky electrode 24 formed on the surface of 23; wherein the Schottky electrode 24 includes a positive electrode 241 and a negative electrode 242.
  • Fig. 2b a top view of an MSM type detector provided by an embodiment of the present disclosure, the positive electrode 241 and the negative electrode 242 are interdigitated electrodes composed of two separate sets of metal strips.
  • the method for adjusting the bias voltage of the MSM type detector provided by the embodiments of the present disclosure will be described in further detail below with reference to the accompanying drawings.
  • the specific implementation of the method may include the following steps (the method flow is shown in FIG. The flow of the complete embodiment is shown in Figure 4):
  • S301 Determine an initial bias voltage based on the power-on instruction of the metal-semiconductor-metal MSM detector.
  • the MSM type detector receives the power-on instruction input by the user and controls the power-on operation based on the power-on instruction. After detecting that the power-on operation is completed, the MSM type detector needs to determine the initial bias voltage.
  • determining the initial bias voltage of the MSM detector can specifically include:
  • the smallest bias voltage value in the preset first voltage range is determined as the initial bias voltage.
  • the MSM detector determines whether the bias voltage set at the last power-on is stored in the database. If the bias voltage set at the last power-on is stored, it is determined to use the bias voltage set at the latest power-on as the initial Bias voltage, if the bias voltage set at the last startup is not stored, obtain the first voltage value range pre-stored in the database, and use the smallest bias voltage in the preset first voltage value range as the initial bias voltage .
  • S302 Collect noise parameters corresponding to the dark state image of the object to be measured based on the initial bias voltage.
  • the MSM detector collects the image of the object to be measured based on the initial bias voltage, which is called a dark state image. And determine the noise parameters corresponding to the dark state image, for example, the noise parameters include popcorn noise, noise density, etc.
  • the MSM detector After the MSM detector collects the image of the object to be measured based on the initial bias voltage, it needs to determine the first modulation mechanism for subsequent adjustment of the bias voltage according to the determined initial bias voltage among multiple preset mechanisms.
  • the specifics are as follows The two methods are described as examples to illustrate the preset mechanism.
  • Manner 1 Increase the bias voltage based on a preset first adjustment step.
  • Manner 2 Decrease the bias voltage based on the preset second adjustment step.
  • the first modulation step length and the second adjustment step length may be the same or different, which is not limited here.
  • the process of selecting the adjustment mechanism for the MSM type detector in these two cases will be described in detail below.
  • the adjustment mechanism determines the adjustment mechanism, which specifically includes:
  • the adjustment mechanism is selected to reduce the bias voltage based on the preset second adjustment step
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step.
  • the initial bias voltage is the bias voltage set by the MSM detector last time, that is, the initial bias voltage is 5V, the preset first threshold is 20, and the preset first bias voltage range [3V, 10V], the first adjustment step is 0.5, and the second adjustment step is 0.5.
  • the MSM detector collects the dark state image of the object under test when the bias voltage is 3V
  • the corresponding noise parameter is 30, and the MSM detector collects the dark state image of the object under test when the bias voltage is 5V.
  • the corresponding noise parameter is 60 . It is determined that the difference between the noise parameter corresponding to the dark state image collected based on the minimum bias voltage value and the noise parameter corresponding to the dark state image collected based on the initial bias voltage is 30, and is greater than the preset first threshold 20, then based on the second Adjust the step size to reduce the initial bias voltage to obtain an adjusted bias voltage of 2.5.
  • the MSM detector collects the dark state image of the object under test when the bias voltage is 3V
  • the corresponding noise parameter is 30, and the MSM detector collects the dark state image of the object under test when the bias voltage is 5V.
  • the corresponding noise parameter is 40 . Determine that the difference between the noise parameter corresponding to the image collected based on the minimum bias voltage value and the noise parameter corresponding to the dark state image collected based on the initial bias voltage is 10, and is less than the preset first threshold of 20, then based on the first adjustment
  • the initial bias voltage is increased by the step size, and the adjusted bias voltage is 3.5.
  • S305 Re-acquire noise parameters corresponding to the dark state image of the object to be measured based on the adjusted bias voltage.
  • S306 Determine whether the difference between the noise parameters corresponding to the dark state image collected based on the bias voltage before and after the adjustment is greater than a preset first threshold.
  • the MSM detector reacquires the dark state image of the object to be measured based on the adjusted bias voltage, and determines the noise parameters corresponding to the reacquired dark state image, and then judges the difference between the noise parameters corresponding to the dark state image collected by the bias voltage before and after adjustment Whether it is greater than the preset first threshold, if it is not greater than the preset first threshold, adjust the adjusted bias voltage again based on the first mechanism until it is determined that the difference between the noise parameters of the image collected based on the bias voltage before and after the adjustment is greater than the preset Set the first threshold.
  • steps 304 to 306 are repeated until the bias voltage collection before and after the adjustment is determined The difference between the noise parameters corresponding to the dark state image is greater than the preset first threshold.
  • S307 Determine the final bias voltage of the MSM detector based on the bias voltage before the last adjustment.
  • the bias voltage before the last adjustment can be directly used as the final bias voltage of the MSM detector, that is, if the MSM detector determines that the difference between the noise parameters corresponding to the dark state image collected by the bias voltage before and after the adjustment is greater than the preset If the first threshold is set, the bias voltage before the last adjustment is directly used as the final bias voltage of the MSM detector.
  • the MSM type detector determines the final bias voltage of the MSM type detector based on the bias voltage before the last adjustment, which may specifically include:
  • the third adjustment step length is both smaller than the first adjustment step length and the second adjustment step length.
  • the determination of the fine-tuning bias voltage can be further limited, which specifically includes:
  • the preset third adjustment step is reduced until it is determined based on the reduced third adjustment step that the second bias voltage is adjusted from the initial bias voltage to the cut-off bias voltage. Until the number of adjustments is greater than the preset second threshold, the fine adjustment bias voltages from the initial bias voltage adjustment to the cut-off bias voltage within the second bias voltage range are determined based on the reduced third adjustment step size.
  • the third adjustment step is 0.1, which is smaller than the first adjustment
  • the step length and the second adjustment step length are 0.5; it is determined that each trimming bias voltage is 5.9V, 5.8V, 5.7V, 5.6V, and the number of adjustments is 5 times. If the preset second threshold value is 9, then decrease the third Adjust the step size to 0.05, and then determine that each trimming bias voltage is 5.95V, 5.9V, 5.85V, 5.8V, 5.75V, 5.7V, 5.65V, 5.6V, 5.55V, and the number of adjustments is 10 times, which meets the requirements.
  • the trimming bias voltage as the final bias voltage of the MSM detector; for example, if the preset first threshold is 30 and the trimming bias voltage is 5.7V, the following conditions are met: dark state acquisition based on 5.7V The difference between the noise parameter corresponding to the image and the noise parameter corresponding to the dark state image collected based on 5.75V is not more than 30, and the difference between the noise parameter corresponding to the dark state image collected based on 5.7V and the noise parameter corresponding to the dark state image collected based on 5.65V is greater than 30 , The final bias voltage of the MSM detector is 5.7V.
  • the initial bias voltage is 6V.
  • the following takes the initial bias voltage as the bias voltage set during the last startup as an example to illustrate the specific process of the bias voltage adjustment of the MSM type detector in detail.
  • the MSM detector determines that the initial bias voltage is 5V, the preset first voltage range [3V, 10V], the preset first threshold value is 30, and the preset second threshold value is 10.
  • the MSM detector collects the dark state image of the object under test at a bias voltage of 3V, and determines that the noise parameter corresponding to the dark state image of the object under test is 10 at a bias voltage of 3V. Then, the MSM detector operates at 5V. The dark state image of the object under test is collected under the bias voltage, and the noise parameter corresponding to the dark state image is determined to be 20.
  • the MSM type detector is determined to collect the dark state image of the object under test under the bias voltage of 3V and the bias voltage of 5V
  • the difference of the noise parameters corresponding to the dark state image of the object to be measured is 10, which is less than the preset first threshold
  • the bias voltage 5V is adjusted to 5.5V with the first adjustment step of 0.5, and then based on the bias voltage of 5.5V Reacquire the dark state image of the object to be measured, and determine the noise parameter 30 corresponding to the reacquired dark state image, and determine that the difference between the noise parameters corresponding to the dark state image collected by the bias voltage before and after adjustment is 10, which is less than the preset first threshold 30.
  • the number of steps to gradually adjust from 5.5V to 6V in steps of 0.1 is 5 times, which is less than the preset second threshold, then the step length is reduced from 0.1 to 0.05, which is determined from 5.5
  • the number of times V is adjusted to 6V is 10, which is equal to the preset second threshold, and the corresponding adjusted bias voltages are respectively 5.55V, 5.6V, 5.65V, 5.7V, 5.75V, 5.8V, 5.85V, 5.9 V, 5.95V, 6V.
  • the bias voltage after 10 adjustments is 5.7V, the following conditions are met: the difference between the noise parameter of the dark state image collected based on 5.7V and the noise parameter of the dark state image collected based on 5.65V is not more than 30, and The difference between the noise parameter of the dark state image collected based on 5.7V and the noise parameter of the dark state image collected based on 5.75V is greater than 30, so 5.7V is used as the bias voltage of the MSM detector. If there is no bias voltage that satisfies the above conditions in the bias voltages of the 10 adjustments, 5.5V is used as the bias voltage of the MSM detector.
  • the MSM detector first collects the noise parameters corresponding to the dark state image of the initial bias voltage, then adjusts the initial bias voltage, and re-acquires the adjusted dark state image of the bias voltage. Noise parameters, and compare whether the difference between the noise coefficient of the two dark-state images acquired before and after is greater than the preset first threshold, if not greater than, adjust the bias voltage again until the noise parameters of the dark-state images acquired twice before and after are greater than the preset Until the first threshold, the final bias voltage of the MSM detector is determined according to the bias voltage after the last adjustment.
  • the MSM detector gradually adjusts the bias voltage by continuously acquiring the quality of the dark state image until the critical value corresponding to the sudden change of popcorn noise is determined, and the critical value is regarded as the MSM detector
  • the bias voltage of the detector not only ensures that the MSM detector has a high sensitivity, but also ensures that the image collected by the MSM detector has low popcorn noise, and improves the quality of the collected image.
  • an embodiment of the present disclosure also provides a bias voltage adjustment device for an MSM detector. See FIG. 5, including:
  • the determining unit 401 is configured to determine the initial bias voltage based on the power-on instruction of the metal-semiconductor-metal MSM detector;
  • the collecting unit 402 collects noise parameters corresponding to the dark state image of the object to be measured based on the initial bias voltage, and reacquires the noise parameters corresponding to the dark state image of the object to be measured based on the adjusted bias voltage;
  • the adjustment unit 403 is configured to select an adjustment mechanism from a preset mechanism based on the initial bias voltage, and adjust the initial bias voltage based on the adjustment mechanism to obtain an adjusted bias voltage;
  • the determining unit 404 is configured to determine whether the difference between the noise parameters corresponding to the dark state image collected based on the bias voltage before and after the adjustment is greater than a preset first threshold;
  • the collecting unit 402 is further configured to, if the judging unit 404 judges that it is not greater than the preset first threshold, adjust the adjusted bias voltage again based on the adjustment mechanism until the judging unit 404 determines to collect the dark state image based on the bias voltage before and after the adjustment The difference between the corresponding noise parameters is greater than the preset first threshold;
  • the processing unit 405 is configured to determine the final bias voltage of the MSM detector based on the bias voltage before the last adjustment.
  • the determining unit 401 is configured to determine whether the MSM type detector stores the bias voltage set at the previous startup;
  • the bias voltage set at the previous power-on is determined to determine the bias voltage set at the previous power-on as the initial bias voltage; if not, the smallest bias voltage value within the preset first bias voltage range is determined as the initial bias voltage.
  • the preset mechanism includes:
  • the bias voltage is reduced based on the preset second adjustment step size.
  • the adjusting unit 403 is specifically configured as follows:
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step size .
  • the adjusting unit 403 is specifically configured as follows:
  • the dark state image corresponding to the object to be measured is collected based on the smallest bias voltage value within the first bias voltage value range Noise parameters;
  • the adjustment mechanism is selected to reduce the bias voltage based on the preset second adjustment step
  • the adjustment mechanism is selected to increase the bias voltage based on the preset first adjustment step.
  • the processing unit 405 is specifically configured to:
  • the third adjustment step length is both smaller than the first adjustment step length and the second adjustment step length;
  • the initial bias voltage is used as the final bias voltage of the MSM detector.
  • the processing unit 405 is specifically configured to:
  • the preset third adjustment step is reduced until it is determined based on the reduced third adjustment step that the second bias voltage is adjusted from the initial bias voltage to the cut-off bias.
  • the number of voltage adjustments is greater than the preset second threshold, and the fine-tuned bias voltages from the initial bias voltage adjustment to the cut-off bias voltage within the second bias voltage range are determined based on the reduced third adjustment step size .
  • an MSM type detector referring to FIG. 6, including:
  • the memory 501 is configured to store instructions executed by at least one processor
  • the processor 502 is configured to execute instructions stored in the memory to execute the foregoing method.
  • the MSM type detector may further include: a transceiver 503, which is configured to send images collected by the MSM type detector to a remote computing or server, etc.
  • Electronic equipment wherein the transceiver 503 can be integrated inside the MSM type detector, or can be set outside the MSM type detector and connected to the MSM type detector.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps configured to implement functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

本公开提供了一种MSM型探测器的偏置电压调整方法和装置、MSM型探测器,该方法包括:确定MSM型探测器初始的偏置电压,基于初始的偏置电压采集待测物体暗态图像对应的噪声参数;调整初始的偏置电压得到调整后的偏置电压,基于调整后的偏置电压重新采集待测物体暗态图像对应的噪声参数,判断基于调整前后的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值;若不大于,则再次调整调整后的偏置电压,直至调整前后的偏置电压采集暗态图像对应的噪声参数之差大于预设第一阈值为止,基于最后一次调整前的偏置电压确定MSM型探测器的最终偏置电压。解决了现有技术中采集的图像质量较差的技术问题。

Description

MSM型探测器的偏置电压调整方法和装置、MSM型探测器
相关申请的交叉引用
本公开要求在2019年05月16日提交中国专利局、申请号为201910411240.3、申请名称为“MSM型探测器及其偏置电压调整方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光电探测器技术领域,尤其涉及一种MSM型探测器的偏置电压调整方法和装置、MSM型探测器。
背景技术
在光电探测器技术领域,金属-半导体-金属(metal-semicondctor-metal,MSM)探测器具有结构简单,易于场效应管单片集成实现光电子集成回路,被广泛配置为光电探测领域。
发明内容
本公开实施例提供了一种MSM型探测器的偏置电压调整方法,包括:
基于金属-半导体-金属MSM型探测器的开机指令,确定初始的偏置电压;
基于所述初始的偏置电压采集待测物体的暗态图像对应的噪声参数;
基于所述初始的偏置电压在预设的机制中选定调整机制,基于所述调整机制调整所述初始的偏置电压得到调整后的偏置电压;
基于所述调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数;
判断基于调整前后的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值;
若不大于,则基于所述调整机制再次调整调整后的偏置电压,直至确定 基于本次调整前后的偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值为止;
基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,所述确定初始的偏置电压,包括:
判断所述MSM型探测器中是否存储有前一次开机所设置的偏置电压;
若是,则将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压;
若否,将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,所述预设的机制,包括:
基于预设的第一调整步长增大偏置电压;或,
基于预设的第二调整步长减小偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,所述基于所述初始的偏置电压在预设的机制中选定调整机制,包括:
若将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,所述基于所述初始的偏置电压在预设的机制中选定调整机制,包括:
若将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压,则基于所述第一偏置电压范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
判断基于所述最小的偏置电压值采集暗态图像对应的噪声参数与基于所述初始的偏置电压采集暗态图像对应的噪声参数之差是否大于所述预设第一阈值;
若是,则所述调整机制选定为基于预设的第二调整步长减小偏置电压;
若否,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,所述基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压,包括:
确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;所述第三调整步长同时小于所述第一调整步长和所述第二调整步长;
确定是否在一微调偏置电压,使得基于所述第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值;
若存在,则将所述微调偏置电压作为所述MSM型探测器的最终偏置电压;
若不存在,则将所述起始偏置电压作为所述MSM型探测器的最终偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述方法中,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压,具体包括:
基于所述预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数;
判断所述调整次数是否大于预设第二阈值;
若大于,则基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
若不大于,则减小所述预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
另一方面,本公开实施例还提供了一种MSM型探测器的偏置电压调整装置,包括:
确定单元,被配置为基于金属-半导体-金属MSM型探测器的开机指令, 确定初始的偏置电压;
调整单元,被配置为基于所述初始的偏置电压在预设的机制中选定调整机制,基于所述调整机制调整所述初始的偏置电压得到调整后的偏置电压;
采集单元,被配置为基于所述初始的偏置电压采集待测物体的暗态图像对应的噪声参数,基于所述调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数;
判断单元,被配置为判断基于调整前后的偏置电压采集的暗态图像对应的噪声参数之差是否大于预设第一阈值;
所述采集单元,还被配置为若所述判断单元判断不大于所述预设第一阈值,则基于所述调整机制再次调整调整后的偏置电压,直至所述判断单元确定基于调整前后的偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值为止;
处理单元,被配置为基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述确定单元,具体被配置为判断所述MSM型探测器中是否存储有前一次开机所设置的偏置电压;
若是,则确定将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压;若否,将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述预设的机制,包括:
基于预设的第一调整步长增大偏置电压;或,
基于预设的第二调整步长减小偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述调整单元,具体被配置为:
若将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏 置电压,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述调整单元,具体被配置为:
若将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压,则基于所述第一偏置电压范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
判断基于所述最小的偏置电压值采集暗态图像对应的噪声参数与基于所述初始的偏置电压采集暗态图像对应的噪声参数之差是否大于所述预设第一阈值;
若是,则所述调整机制选定为基于预设的第二调整步长减小偏置电压;
若否,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述处理单元,具体被配置为:
确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;所述第三调整步长同时小于所述第一调整步长和所述第二调整步长;
确定是否在一微调偏置电压,使得基于所述第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值;
若存在,则将所述微调偏置电压作为所述MSM型探测器的最终偏置电压;
若不存在,则将所述起始偏置电压作为所述MSM型探测器的最终偏置电压。
在一种可能的实现方式中,在本公开实施例提供的上述装置中,所述处理单元,具体被配置为:基于所述预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数;
判断所述调整次数是否大于预设第二阈值;
若大于,则基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
若不大于,则减小所述预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
另一方面,本公开实施例还提供了一种MSM型探测器,包括:
存储器,被配置为存储至少一个处理器所执行的指令;
处理器,被配置为执行存储器中存储的指令执行如第一方面的方法。
附图说明
图1为本公开实施例所提供的一种图像采集系统的结构示意图;
图2a为本公开实施例所提供的一种MSM型探测器的截面示意图;
图2b为本公开实施例所提供的一种MSM型探测器的俯视图;
图3为本公开实施例所提供的一种MSM型探测器的偏置电压调整方法的流程图;
图4为本公开实施例所提供的一种MSM型探测器的偏置电压调整方法的具体流程图;
图5为本公开实施例所提供的一种MSM型探测器的偏置电压调整装置的结构示意图;
图6为本公开实施例所提供的一种MSM型探测器的结构示意图;
图7为本公开实施例所提供的另一种MSM型探测器的结构示意图。
具体实施方式
本公开实施例提供的方案中,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
为了更好的理解上述技术方案,下面通过附图以及具体实施例对本公开技术方案做详细的说明,应当理解本公开实施例以及实施例中的具体特征是 对本公开技术方案的详细的说明,而不是对本公开技术方案的限定,在不冲突的情况下,本公开实施例以及实施例中的技术特征可以相互组合。
目前,MSM探测器的偏置电压设置对MSM探测器的性能有着直接影响,例如,MSM探测器的灵敏度随着偏置电压的增大而升高,而随着偏置电压的升高,MSM探测器的爆米花噪声也随之增大。目前,对于MSM探测器的偏置电压设置一般是在预设的偏置电压范围内选择出一个理论较大值作为MSM探测器的偏置电压,但是,由于噪声或其他因素的影响,在该偏置电压下实际采集的图像的爆米花噪声较大,导致采集的图像的质量较差。
为了便于理解MSM型探测器采集待测物体图像的过程,参见图1,本公开实施例提供了一种图像采集系统,该系统包括:光源1,例如,X光源,待测物体2以及MSM型探测器3;其中,光源1、待测物体2以及MSM型探测器3位于同一平面上,待测物体2位于光源1和MSM型探测器3之间,光源1被配置为发射光线束,并将光线束照射到待测物体2上,待测物体2被配置为遮挡光源1发射的光线束,MSM型探测器3将光信号转换为电信号。
为了便于了解MSM型探测器的结构,参见图2a,本公开实施例提供的一种MSM型探测器的截面示意图。MSM型探测器包括非晶硅a-si衬底21,在a-si衬底21上外延生长的半绝缘薄膜22,在半绝缘薄膜22外延生长的砷化镓GaAs薄膜23,以及在GaAs薄膜23表面形成的肖特基电极24;其中,肖特基电极24包括正电极241和负电极242。参见图2b,本公开实施例提供的一种MSM型探测器的俯视图,正电极241和负电极242由分立的两组金属条构成的叉指电极。
以下结合说明书附图对本公开实施例所提供的一种MSM型探测器的偏置电压调整方法做进一步详细的说明,该方法的具体实现方式可以包括以下步骤(方法流程如图3所示,具体完整实施例的流程如图4所示):
S301,基于金属-半导体-金属MSM型探测器的开机指令,确定初始的偏置电压。
具体的,MSM型探测器接收用户输入的开机指令,并基于开机指令控制进行开机操作,当检测到开机操作完成后,MSM型探测器需要确定初始的偏置电压。
可实施的方案中,确定MSM型探测器的初始的偏置电压,可以具体包括:
判断MSM型探测器中是否存储有前一次开机所设置的偏置电压;
若有,则确定将前一次开机所设置的偏置电压确定为初始的偏置电压;
否则,将预设的第一电压范围内最小的偏置电压值确定为初始的偏置电压。
具体地,MSM型探测器判断数据库中是否存储有最近一次开机所设置的偏置电压,若存储有最近一次开机所设置的偏置电压,确定将最近一次开机所设置的偏置电压作为初始的偏置电压,若没有存储最近一次开机所设置的偏置电压,获取数据库中预先存储的第一电压值范围,将预设的第一电压值范围内最小的偏置电压作为初始的偏置电压。
S302,基于初始的偏置电压采集待测物体的暗态图像对应的噪声参数。
具体地,MSM型探测器在确定初始的偏置电压之后,当光源1在不发射光线束的情况下,MSM型探测器基于初始的偏置电压采集待测物体的图像称为暗态图像,并确定暗态图像对应的噪声参数,例如,噪声参数包括爆米花噪声、噪点密度等。
S303,基于初始的偏置电压在预设的机制中选定调整机制。
MSM型探测器基于初始的偏置电压采集待测物体的图像之后,需要在预设的多个机制中根据确定的初始的偏置电压确定后续调整偏置电压的第一调制机制,具体的以下述两种方式为例来说明预设的机制。
方式1、基于预设的第一调整步长增大偏置电压。
方式2、基于预设的第二调整步长减小偏置电压。
第一调制步长和第二调整步长可以相同,也可以不同,在此不做限定。
具体地,由于MSM型探测器确定出的初始的偏置电压有两种情况,下面对这两种情况下MSM型探测器选定调整机制的过程进行详细的说明。
情况1、若初始的偏置电压为预设的第一电压范围内最小的偏置电压值,说明设置的初始的偏置电压已经为最小值,则调整机制选定为基于预设的第一调整步长增大偏置电压。
情况2、若初始的偏置电压为最近一次使用MSM型探测器所设置的偏置电压,则不确定设置的初始的偏置电压偏大还是偏小,此时,需要基于预设的第一电压范围内最小的偏置电压值来确定调整机制,具体包括:
基于第一偏置电压值范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
判断基于最小的偏置电压值采集暗态图像对应的噪声参数与基于初始的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值;
若大于,说明初始的偏置电压值偏大,则调整机制选定为基于预设的第二调整步长减小偏置电压;
否则,说明初始的偏置电压值偏小,则调整机制选定为基于预设的第一调整步长增大偏置电压。
S304,基于调整机制调整初始的偏置电压得到调整后的偏置电压。
例如,若初始的偏置电压为最近一次使用MSM型探测器所设置的偏置电压,即初始的偏置电压为5V,预设的第一阈值为20,预设的第一偏置电压范围[3V,10V],第一调整步长为0.5,第二调整步长为0.5。
若MSM型探测器在偏置电压为3V时采集待测物体暗态图像对应的噪声参数为30,MSM型探测器在偏置电压为5V时采集待测物体暗态图像对应的噪声参数为60。确定基于最小的偏置电压值采集暗态图像对应的噪声参数与基于初始的偏置电压采集暗态图像对应的噪声参数之差为30,且大于预设的第一阈值20,则基于第二调整步长减小初始的偏置电压得到调整后的偏置电压为2.5。
若MSM型探测器在偏置电压为3V时采集待测物体暗态图像对应的噪声参数为30,MSM型探测器在偏置电压为5V时采集待测物体暗态图像对应的噪声参数为40。确定基于最小的偏置电压值采集的图像对应的噪声参数与基 于初始的偏置电压采集暗态图像对应的噪声参数之差为10,且小于预设的第一阈值20,则基于第一调整步长增大初始的偏置电压得到调整后的偏置电压为3.5。
S305,基于调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数。
基于选定的第一机制调整初始的偏置电压得到调整后的偏置电压,基于调整后的偏置电压重新采集待测物体的暗态图像,并确定重新采集的暗态图像对应的噪声参数。
S306,判断基于调整前后的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值。
MSM型探测器基于调整后的偏置电压重新采集待测物体暗态图像,并确定重新采集的暗态图像对应的噪声参数之后,判断调整前后偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值,若不大于预设第一阈值,则基于第一机制再次调整调整后的偏置电压,直至确定基于调整前后的偏置电压采集的图像的噪声参数之差大于预设第一阈值为止。具体的,若MSM型探测器检测到调整前后的偏置电压采集暗态图像的噪声参数之差不大于预设第一阈值,则重复步骤304至步骤306,直到判断调整前后的偏置电压采集暗态图像对应的噪声参数之差大于预设第一阈值为止。
S307,基于最后一次调整前的偏置电压确定MSM型探测器的最终偏置电压。
具体地,可以直接将最后一次调整前的偏置电压作为MSM型探测器的最终偏置电压,即若MSM型探测器确定调整前后偏置电压采集暗态图像对应的噪声参数之差是大于预设第一阈值,则直接将最后一次调整前的偏置电压作为MSM型探测器的最终偏置电压。
可选地,为了提高MSM型探测器的最终偏置电压的精度,MSM型探测器基于最后一次调整前的偏置电压确定MSM型探测器的最终偏置电压,可以具体包括:
确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定第二偏置电压范围内从起始偏置电压调整到截止偏置电压,并确定调整的各微调偏置电压;第三调整步长同时小于第一调整步长和第二调整步长。
具体地,为了提高MSM型探测器的最终偏置电压的精度,可以对微调偏置电压的确定进行进一步限定,具体包括:
基于预设的第三调整步长确定第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数;
判断调整次数是否大于预设第二阈值;
若大于,则基于预设的第三调整步长确定第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
若不大于,则减小预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
例如,最后一次调整为从6V调整至5.5V,则第二偏置电压范围内的起始偏置电压为6V,截止偏置电压为5.5V,第三调整步长为0.1,小于第一调整步长和第二调整步长0.5;则确定各微调偏置电压为5.9V、5.8V、5.7V、5.6V,调整次数为5次,若预设第二阈值为9,则减小第三调整步长至0.05,则确定各微调偏置电压为5.95V、5.9V、5.85V、5.8V、5.75V、5.7V、5.65V、5.6V、5.55V,调整次数为10次,满足要求。
确定是否在一微调偏置电压,使得基于第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于预设第一阈值;
若存在,则将该微调偏置电压作为MSM型探测器的最终偏置电压;例如,若预设第一阈值为30,微调偏置电压为5.7V时满足以下条件:基于5.7V采集暗态图像对应的噪声参数与基于5.75V采集暗态图像对应的噪声参数之差不大于30,基于5.7V采集暗态图像对应的噪声参数与基于5.65V采集暗态图像对应的噪声参数之差大于30,则MSM型探测器的最终偏置电压为5.7V。
若不存在,则将起始偏置电压作为MSM型探测器的最终偏置电压;例如,若预设第一阈值为30,在5.95V、5.9V、5.85V、5.8V、5.75V、5.7V、5.65V、5.6V、5.55V中没有满足以上条件,则MSM型探测器的最终偏置电压为6V。
为了便于理解上述MSM型探测器的偏置电压调整过程,下面以初始偏置电压为最近一次开机所设置的偏置电压为例,来详细说明MSM型探测器的偏置电压调整具体过程。
例如,MSM型探测器确定初始的偏置电压为5V,预设的第一电压范围[3V,10V],预设第一阈值为30,预设第二阈值为10。
首先,MSM型探测器在3V偏置电压下采集待测物体暗态图像,并确定在3V偏置电压下采集待测物体暗态图像对应的噪声参数为10,然后,MSM型探测器在5V偏置电压下采集待测物体暗态图像,并确定该暗态图像所对应的噪声参数为20,MSM型探测器确定在3V偏置电压下采集待测物体暗态图像与5V偏置电压下采集待测物体暗态图像所对应的噪声参数之差为10,小于预设第一阈值,则以第一调整步长0.5将偏置电压5V调整到5.5V,再基于5.5V的偏置电压重新采集待测物体暗态图像,并确定重新采集暗态图像对应的噪声参数30,确定调整前后的偏置电压采集暗态图像对应的噪声参数之差为10,小于预设第一阈值30。
然后,基于第一调整步长0.5再次将5.5V的偏置电压调整到6V,基于6V的偏置电压重新采集待测物体暗态图像,并基于6V所采集暗态图像对应的噪声参数为65,确定调整前后的偏置电压采集暗态图像对应的噪声参数之差为35,大于预设第一阈值,则确定最后一次调整的第二偏置电压范围为[5.5V,6V]。
最后,在[5.5V,6V]范围内,以0.1的步长逐步从5.5V调整到6V的次数为5次,小于预设第二阈值,则将步长0.1减小到0.05,确定从5.5V调整到6V的次数为10,等于预设第二阈值,且所对应的调整后的偏置电压分别为5.55V、5.6V、5.65V、5.7V、5.75V、5.8V、5.85V、5.9V、5.95V、6V。若10次调整后的偏置电压中,偏置电压为5.7V时满足以下条件:基于5.7V采集 暗态图像的噪声参数与基于5.65V采集暗态图像的噪声参数之差不大于30,而基于5.7V采集暗态图像的噪声参数与基于5.75V采集暗态图像的噪声参数之差大于30,则将5.7V作为MSM型探测器的偏置电压。若10次调整候的偏置电压中不存在一偏置电压满足上述的条件,则将5.5V作为MSM型探测器的偏置电压。
本公开实施例提供的方案中,MSM型探测器首先采集初始的偏置电压的暗态图像对应的噪声参数,然后调整初始的偏置电压,重新采集调整后的偏置电压暗态图像对应的噪声参数,再比较前后两次采集暗态图像的噪声系数之差是否大于预设第一阈值,若不大于,则再次调整偏置电压,直到前后两次采集暗态图像的噪声参数大于预设第一阈值为止,根据最后一次调整后的偏置电压确定MSM型探测器的最终偏置电压。因此,本公开实施例中,MSM型探测器通过不断实际采集暗态图像的质量来逐步调整偏置电压,直到确定出爆米花噪声突变所对应的临界值,并将该临界值作为MSM型探测器的偏置电压,不仅保证了MSM型探测器具有较高的灵敏度,还保证了MSM型探测器采集的图像具有较低的爆米花噪声,提高采集的图像的质量。
基于同一发明构思,本公开实施例还提供了一种MSM型探测器的偏置电压调整装置,参见图5,包括:
确定单元401,被配置为基于金属-半导体-金属MSM型探测器的开机指令,确定初始的偏置电压;
采集单元402,基于初始的偏置电压采集待测物体的暗态图像对应的噪声参数,基于调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数;
调整单元403,被配置为基于初始的偏置电压在预设的机制中选定调整机制,基于调整机制调整初始的偏置电压得到调整后的偏置电压;
判断单元404,被配置为判断基于调整前后的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值;
采集单元402,还被配置为若判断单元404判断不大于预设第一阈值,则基于调整机制再次调整调整后的偏置电压,直至判断单元404确定基于调整 前后的偏置电压采集暗态图像对应的噪声参数之差大于预设第一阈值为止;
处理单元405,被配置为基于最后一次调整前的偏置电压确定MSM型探测器的最终偏置电压。
可选地,在本公开实施例提供的上述装置中,确定单元401,被配置为判断MSM型探测器中是否存储有前一次开机所设置的偏置电压;
若是,则确定将前一次开机所设置的偏置电压确定为初始的偏置电压;若否,将预设的第一偏置电压范围内最小的偏置电压值确定为初始的偏置电压。
可选地,在本公开实施例提供的上述装置中,预设的机制,包括:
基于预设的第一调整步长增大偏置电压;或,
基于预设的第二调整步长减小偏置电压。
可选地,在本公开实施例提供的上述装置中,调整单元403,具体被配置为:
若将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
可选地,在本公开实施例提供的上述装置中,调整单元403,具体被配置为:
若将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压,则基于所述第一偏置电压值范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
判断基于所述最小的偏置电压值采集暗态图像对应的噪声参数与基于所述初始的偏置电压采集暗态图像对应的噪声参数之差是否大于所述预设第一阈值;
若是,则所述调整机制选定为基于预设的第二调整步长减小偏置电压;
若否,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
可选地,在本公开实施例提供的上述装置中,处理单元405,具体被配置为:
确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;所述第三调整步长同时小于所述第一调整步长和所述第二调整步长;
确定是否在一微调偏置电压,使得基于所述第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值;
若存在,则将所述微调偏置电压作为所述MSM型探测器的最终偏置电压;
若不存在,则将所述起始偏置电压作为所述MSM型探测器的最终偏置电压。
可选地,在本公开实施例提供的上述装置中,处理单元405,具体被配置为:
基于所述预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数;
判断所述调整次数是否大于预设第二阈值;
若大于,则基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
若不大于,则减小所述预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
基于同一发明构思,本公开实施例还提供了一种MSM型探测器,参见图6,包括:
存储器501,被配置为存储至少一个处理器所执行的指令;
处理器502,被配置为执行存储器中存储的指令执行上述方法。
可选地,参见图7,本公开实施例所提供的MSM型探测器,还可以包括:收发机503,收发机503被配置为将MSM型探测器采集的图像发送给远端计算或服务器等电子设备,其中,收发机503可以集成在MSM型探测器的内部,也可以设置于MSM型探测器外部,并与MSM型探测器连接。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种MSM型探测器的偏置电压调整方法,其中,包括:
    基于金属-半导体-金属MSM型探测器的开机指令,确定初始的偏置电压;
    基于所述初始的偏置电压采集待测物体的暗态图像对应的噪声参数;
    基于所述初始的偏置电压在预设的机制中选定调整机制,基于所述调整机制调整所述初始的偏置电压得到调整后的偏置电压;
    基于所述调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数;
    判断基于调整前后的偏置电压采集暗态图像对应的噪声参数之差是否大于预设第一阈值;
    若不大于,则基于所述调整机制再次调整调整后的偏置电压,直至确定基于本次调整前后的偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值为止;
    基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压。
  2. 如权利要求1所述的方法,其中,所述确定初始的偏置电压,包括:
    判断所述MSM型探测器中是否存储有前一次开机所设置的偏置电压;
    若是,则将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压;
    若否,将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压。
  3. 如权利要求2所述的方法,其中,所述预设的机制,包括:
    基于预设的第一调整步长增大偏置电压;或,
    基于预设的第二调整步长减小偏置电压。
  4. 如权利要求3所述的方法,其中,所述基于所述初始的偏置电压在预设的机制中选定调整机制,包括:
    若将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
  5. 如权利要求3所述的方法,其中,所述基于所述初始的偏置电压在预设的机制中选定调整机制,包括:
    若将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压,则基于所述第一偏置电压范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
    判断基于所述最小的偏置电压值采集暗态图像对应的噪声参数与基于所述初始的偏置电压采集暗态图像对应的噪声参数之差是否大于所述预设第一阈值;
    若是,则所述调整机制选定为基于预设的第二调整步长减小偏置电压;
    若否,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
  6. 如权利要求1所述的方法,其中,所述基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压,包括:
    确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;所述第三调整步长同时小于所述第一调整步长和所述第二调整步长;
    确定是否在一微调偏置电压,使得基于所述第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值;
    若存在,则将所述微调偏置电压作为所述MSM型探测器的最终偏置电压;
    若不存在,则将所述起始偏置电压作为所述MSM型探测器的最终偏置电压。
  7. 如权利要求6所述的方法,其中,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压,具体包括:
    基于所述预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数;
    判断所述调整次数是否大于预设第二阈值;
    若大于,则基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
    若不大于,则减小所述预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
  8. 一种MSM型探测器的偏置电压调整装置,其中,包括:
    确定单元,被配置为基于金属-半导体-金属MSM型探测器的开机指令,确定初始的偏置电压;
    调整单元,被配置为基于所述初始的偏置电压在预设的机制中选定调整机制,基于所述调整机制调整所述初始的偏置电压得到调整后的偏置电压;
    采集单元,被配置为基于所述初始的偏置电压采集待测物体的暗态图像对应的噪声参数,基于所述调整后的偏置电压重新采集待测物体的暗态图像对应的噪声参数;
    判断单元,被配置为判断基于调整前后的偏置电压采集的暗态图像对应的噪声参数之差是否大于预设第一阈值;
    所述采集单元,还被配置为若所述判断单元判断不大于所述预设第一阈值,则基于所述调整机制再次调整调整后的偏置电压,直至所述判断单元确定基于调整前后的偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值为止;
    处理单元,被配置为基于最后一次调整前的偏置电压确定所述MSM型探测器的最终偏置电压。
  9. 如权利要求8所述的装置,其中,所述确定单元,具体被配置为判断所述MSM型探测器中是否存储有前一次开机所设置的偏置电压;
    若是,则确定将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压;若否,将预设的第一偏置电压范围内最小的偏置电压值确定为所述 初始的偏置电压。
  10. 如权利要求9所述的装置,其中,所述预设的机制,包括:
    基于预设的第一调整步长增大偏置电压;或,
    基于预设的第二调整步长减小偏置电压。
  11. 如权利要求10所述的装置,其中,所述调整单元,具体被配置为:
    若将预设的第一偏置电压范围内最小的偏置电压值确定为所述初始的偏置电压,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
  12. 如权利要求10所述的装置,其中,所述调整单元,具体被配置为:
    若将所述前一次开机所设置的偏置电压确定为所述初始的偏置电压,则基于所述第一偏置电压值范围内最小的偏置电压值采集待测物体的暗态图像对应的噪声参数;
    判断基于所述最小的偏置电压值采集暗态图像对应的噪声参数与基于所述初始的偏置电压采集暗态图像对应的噪声参数之差是否大于所述预设第一阈值;
    若是,则所述调整机制选定为基于预设的第二调整步长减小偏置电压;
    若否,则所述调整机制选定为基于预设的第一调整步长增大偏置电压。
  13. 如权利要求8所述的装置,其中,所述处理单元,具体被配置为:
    确定最后一次调整的第二偏置电压范围,基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;所述第三调整步长同时小于所述第一调整步长和所述第二调整步长;
    确定是否在一微调偏置电压,使得基于所述第三调整步长调整前后的微调偏置电压采集暗态图像对应的噪声参数之差大于所述预设第一阈值;
    若存在,则将所述微调偏置电压作为所述MSM型探测器的最终偏置电压;
    若不存在,则将所述起始偏置电压作为所述MSM型探测器的最终偏置电压。
  14. 如权利要求13所述的装置,其中,所述处理单元,具体被配置为:
    基于所述预设的第三调整步长确定所述第二偏置电压范围内从起始偏置 电压调整到截止偏置电压的调整次数;
    判断所述调整次数是否大于预设第二阈值;
    若大于,则基于预设的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压;
    若不大于,则减小所述预设的第三调整步长,直到基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的调整次数大于预设第二阈值为止,基于减小后的第三调整步长确定所述第二偏置电压范围内从起始偏置电压调整到截止偏置电压的各微调偏置电压。
  15. 一种MSM型探测器,其中,包括:
    存储器,被配置为存储至少一个处理器所执行的指令;
    处理器,被配置为执行存储器中存储的指令执行如权利要求1-7任一项的方法。
PCT/CN2020/084807 2019-05-16 2020-04-14 Msm型探测器的偏置电压调整方法和装置、msm型探测器 WO2020228466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910411240.3A CN110132326B (zh) 2019-05-16 2019-05-16 Msm型探测器及其偏置电压调整方法和装置
CN201910411240.3 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020228466A1 true WO2020228466A1 (zh) 2020-11-19

Family

ID=67574839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084807 WO2020228466A1 (zh) 2019-05-16 2020-04-14 Msm型探测器的偏置电压调整方法和装置、msm型探测器

Country Status (2)

Country Link
CN (1) CN110132326B (zh)
WO (1) WO2020228466A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132326B (zh) * 2019-05-16 2021-08-17 京东方科技集团股份有限公司 Msm型探测器及其偏置电压调整方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164715A1 (en) * 2006-01-19 2007-07-19 James Zeng Voltage-locked loop
CN101859156A (zh) * 2010-05-14 2010-10-13 南京大学 电光调制器偏置电压控制装置及其控制方法
CN105141860A (zh) * 2015-08-20 2015-12-09 电子科技大学 一种红外成像系统和方法
CN109710009A (zh) * 2018-11-15 2019-05-03 深圳市速腾聚创科技有限公司 偏置电压调节方法及装置
CN110132326A (zh) * 2019-05-16 2019-08-16 京东方科技集团股份有限公司 Msm型探测器及其偏置电压调整方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233514A (en) * 1978-12-14 1980-11-11 General Electric Company Solid state radiation detector and arrays thereof
KR20080007897A (ko) * 2006-07-18 2008-01-23 삼성전자주식회사 이미지 센서의 구동신호 공급장치 및 방법
JP2008026913A (ja) * 2007-08-16 2008-02-07 Fujitsu Ltd 表示装置
JP5235466B2 (ja) * 2008-03-28 2013-07-10 富士フイルム株式会社 放射線画像撮影装置
CN102393250B (zh) * 2011-07-26 2012-12-19 电子科技大学 一种获取红外焦平面探测器最佳偏置电压的方法和装置
CN105391955B (zh) * 2015-12-25 2019-05-10 北京智芯微电子科技有限公司 一种红外图像采集处理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164715A1 (en) * 2006-01-19 2007-07-19 James Zeng Voltage-locked loop
CN101859156A (zh) * 2010-05-14 2010-10-13 南京大学 电光调制器偏置电压控制装置及其控制方法
CN105141860A (zh) * 2015-08-20 2015-12-09 电子科技大学 一种红外成像系统和方法
CN109710009A (zh) * 2018-11-15 2019-05-03 深圳市速腾聚创科技有限公司 偏置电压调节方法及装置
CN110132326A (zh) * 2019-05-16 2019-08-16 京东方科技集团股份有限公司 Msm型探测器及其偏置电压调整方法和装置

Also Published As

Publication number Publication date
CN110132326B (zh) 2021-08-17
CN110132326A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US11048061B2 (en) Electronic device including camera module
EP2760013A1 (en) Backlight adjustment method, backlight adjustment apparatus, and display screen
WO2020228466A1 (zh) Msm型探测器的偏置电压调整方法和装置、msm型探测器
CN101262567A (zh) 自动曝光方法与装置
US20170063088A1 (en) Method for Power Budget
EP3288194A1 (en) Method for adjusting los alarm decision threshold and optical module
WO2022057834A1 (zh) Vr系统中多摄像头曝光中心点的对齐方法、系统
WO2018120861A1 (zh) 背光亮度数据获取及处理方法、装置、液晶显示设备
WO2019001005A1 (zh) 亮度调节方法及装置
US9223440B2 (en) Optical navigation utilizing speed based algorithm selection
KR20190033462A (ko) 전력 제어 방법, 거리 측정 모듈 및 전자 장치
WO2021102908A1 (zh) 信号调整方法、装置及计算机存储介质
CN102955659B (zh) 显示界面调整方法及系统
US10127852B2 (en) Method for adjusting display parameters and display device using the same
US9431892B1 (en) High voltage start-up circuit with adjustable start-up time
US20130342757A1 (en) Variable Flash Control For Improved Image Detection
TW201430632A (zh) 光學導航裝置、方法及其電腦程式產品
CN109784145A (zh) 基于深度图的目标检测方法及存储介质
KR20200087440A (ko) 열화상 처리 방법 및 그 장치
US10599195B2 (en) Method and apparatus for controlling hot plug operation of CPU in mobile terminal
CN103211607B (zh) X光机及其控制方法和装置
CN107392882A (zh) 一种基于角点检测的简单透镜psf迭代优化初始值的方法
EP4161217A1 (en) Method and system for fixing initial brightness level of light fixture, storage medium and light fixture system
JP2019175423A (ja) 情報処理システムおよび情報処理方法
KR100708933B1 (ko) 자동 노출 제어장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806405

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20806405

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20806405

Country of ref document: EP

Kind code of ref document: A1