WO2020228293A1 - 太赫兹光谱成像数据的处理方法及装置 - Google Patents

太赫兹光谱成像数据的处理方法及装置 Download PDF

Info

Publication number
WO2020228293A1
WO2020228293A1 PCT/CN2019/119468 CN2019119468W WO2020228293A1 WO 2020228293 A1 WO2020228293 A1 WO 2020228293A1 CN 2019119468 W CN2019119468 W CN 2019119468W WO 2020228293 A1 WO2020228293 A1 WO 2020228293A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
hyperspectral
terahertz
spectral
hyperspectral data
Prior art date
Application number
PCT/CN2019/119468
Other languages
English (en)
French (fr)
Inventor
郑小平
曹斌
耿华
邓晓娇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020228293A1 publication Critical patent/WO2020228293A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/803Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of input or preprocessed data

Definitions

  • This application relates to the technical field of spectral image processing, and more specifically, to a method and device for processing terahertz spectral imaging data.
  • terahertz spectral imaging technology can not only detect the shape of objects, but also perform spectral analysis and identification, and has huge application potential in security inspection and other fields.
  • an asynchronous optical sampling method In the traditional technology, an asynchronous optical sampling method, a continuously rotating optical delay line method, and a compressed sensing method using a mask modulator are used. At the same time, increase the number of time domain and spatial domain sampling points to realize terahertz high-space hyperspectral imaging technology. However, the traditional method needs to collect a large amount of data, resulting in low spectral imaging efficiency.
  • the present application discloses a method and device for processing terahertz spectral imaging data that can reduce the amount of data collection and improve the efficiency of spectral imaging.
  • An embodiment of the present application provides a processing method for terahertz spectral imaging data, including:
  • the initial terahertz spectrum data is mixed data, and the mixed data includes the high spatial data and the first hyperspectral data.
  • the scanning of the object to be measured to collect initial terahertz spectrum data includes:
  • the object to be measured is scanned, the high-space data is collected, and the first hyperspectral data is determined to be collected according to the position information to obtain the initial terahertz spectrum data, wherein the position information includes relative to the last collected In the first hyperspectral data, the distance moved by the object to be measured;
  • the position information includes horizontal movement distance information and/or vertical movement distance information of the object to be measured.
  • the number of sampling points of the high-space terahertz spectrum dimension collected is equal to the number of sampling points of the first hyperspectral data spectrum dimension Among them, Z is a natural number greater than 1.
  • the number of sampling points of all terahertz spectrum data collected is equal to the number of sampling points of the target terahertz spectrum data acquired at one time Among them, XYZ is a natural number greater than 1.
  • the position information includes horizontal movement distance information and/or vertical movement distance information of the object to be measured.
  • the spatial resolution of the high spatial data is equal to the spatial resolution of the terahertz spectrum data of the target collected at one time.
  • the spectral resolution of the first hyperspectral data is equal to the spectral resolution of the target terahertz spectral data collected at one time.
  • the performing reconstruction processing on the high-space data to obtain second hyperspectral data, and using the first hyperspectral data and the second hyperspectral data as target terahertz spectral data includes:
  • first hyperspectral data as a hyperspectral database
  • hyperspectral database uses the hyperspectral database to perform reconstruction processing on the hyperspace data to obtain second hyperspectral data
  • An embodiment of the application provides a processing device for terahertz spectral imaging data, including:
  • Acquisition module used to scan the object to be measured and collect initial terahertz spectrum data
  • An extraction module for extracting high-space data and first hyperspectral data in the terahertz spectrum data
  • the reconstruction processing module is configured to perform reconstruction processing on the high-space data to obtain second hyperspectral data, and use the first hyperspectral data and the second hyperspectral data as target terahertz spectral data.
  • An embodiment of the present application provides an imaging system, including: the method implemented by the imaging system includes the steps of any one of the above methods.
  • this application discloses a processing method and device for terahertz spectral imaging data, which scans an object to be measured, collects initial terahertz spectral data, and extracts high-space data in the initial terahertz spectral data And first hyperspectral data, performing reconstruction processing on the high spatial data to obtain second hyperspectral data, and using the first hyperspectral data and the second hyperspectral data as target terahertz spectral data,
  • This method collects initial terahertz spectrum data by scanning, extracts and reconstructs the initial terahertz spectrum data, and can reduce the collection of high-space hyperspectral terahertz spectrum data without adding or changing hardware equipment. Volume, thereby improving the efficiency of spectral imaging.
  • FIG. 1 is a structural block diagram of a processing system for terahertz spectral imaging data provided by an embodiment
  • FIG. 2 is a flowchart of a method for processing terahertz spectral imaging data provided by an embodiment
  • FIG. 3 is a flowchart of a specific method for obtaining target terahertz spectrum data according to another embodiment
  • FIG. 4 is a schematic structural diagram of a processing device for terahertz spectral imaging data provided by an embodiment
  • Fig. 5 is an internal structure diagram of a computer device provided by an embodiment.
  • the processing method of terahertz spectral imaging data can be applied to the processing system of terahertz spectral imaging data as shown in FIG. 1.
  • the system includes a laser, a beam splitter, a time retarder, and terahertz radiation.
  • the laser is used to generate laser pulses
  • the time delay device is used to adjust the delay time of the terahertz pulse relative to the detection light
  • the terahertz radiation generating device is used to generate the terahertz pulse time-domain waveform
  • the terahertz detection device is used to receive the terahertz pulse Time-domain waveform
  • the lock-in amplifier is used to amplify the output signal of the terahertz detection device and transmit it to the computer equipment for data processing.
  • the object to be tested is set on a movable electronically controlled two-dimensional translation stage (not shown in the figure), and the computer equipment is respectively connected with the time delayer and the electronically controlled two-dimensional translation stage.
  • the laser may be a femtosecond laser
  • the terahertz radiation generating device may use a photoconductive antenna or a nonlinear optical crystal.
  • the working principle of the system is: the laser generates laser pulses, and the laser pulses are divided into two beams of pump light and probe light by the beam splitter.
  • the pump light passes through the time retarder and is incident on the terahertz radiation generating device to generate a terahertz pulse.
  • the terahertz pulse is then irradiated on the object to be measured, and after passing through the object to be measured, it is incident on the terahertz detection device together with the probe light to obtain THz pulse time domain waveform.
  • the time-domain waveform of the terahertz pulse is amplified by the lock-in amplifier and then transmitted to the computer equipment for data extraction and processing.
  • FIG. 2 is a schematic flowchart of a processing method for terahertz spectral imaging data provided by an embodiment. This embodiment relates to the process of obtaining target terahertz spectrum data. As shown in Figure 2, the method includes:
  • S101 Scan the object to be measured, and collect initial terahertz spectrum data.
  • the above-mentioned object to be measured may be an object that needs to be measured or imaged.
  • the object to be measured is set on an electronically controlled two-dimensional translation stage, and the computer device can control the movement of the electronically controlled two-dimensional translation stage so that the object to be measured follows the electrical Control the movement of the two-dimensional translation stage.
  • the initial terahertz spectrum data can be a collection of scan data of the object to be measured at pixel points, and the initial terahertz spectrum data can be a spectral image data cube, and the specific data format can be based on actual measurement or imaging requirements, and The type of information to be extracted is determined.
  • the computer device can control the movement of the electronically controlled two-dimensional translation stage, so that the object to be measured moves to different pixel point positions.
  • the computer equipment can control the time delay to determine the accuracy of the spectrum sampling of the object to be measured at each pixel point position, so as to obtain the terahertz time-domain pulse waveform of the object to be measured at different pixel point positions to obtain the initial phase Hertz spectrum data.
  • the one-dimensional time domain may be the z direction
  • the two-dimensional spatial domain may be the (x, y) direction.
  • the initial terahertz spectrum data is mixed data, and the mixed data includes the high spatial data and the first hyperspectral data.
  • the high-space data and the first hyperspectral data can be extracted respectively.
  • the extraction method can be characterized as: retaining some sampling points according to actual needs and rejecting the remaining sampling points, and taking the retained sampling points as the data to be processed.
  • the computer device may obtain the target terahertz spectrum data after reconstructing the data to be processed.
  • the initial terahertz spectral data can be mixed data, which includes high spatial resolution terahertz spectral data (ie high spatial data) and high spectral resolution terahertz spectral data (ie hyperspectral data), which is equivalent to Computer equipment needs to extract high spatial data and first hyperspectral data.
  • high spatial resolution terahertz spectral data ie high spatial data
  • high spectral resolution terahertz spectral data ie hyperspectral data
  • the spatial resolution of the high spatial data is equal to the spatial resolution of the terahertz spectrum data of the target collected at one time.
  • the spectral resolution of the first hyperspectral data is equal to the spectral resolution of the target terahertz spectral data collected at one time.
  • the target terahertz spectrum data can represent the complete high-space high-spectral resolution terahertz spectrum data collected at one time.
  • the computer device can extract the high spatial resolution terahertz spectral data and the spectral resolution of the first hyperspectral data from the initial terahertz spectral data obtained after scanning processing.
  • the spatial resolution of high spatial resolution terahertz spectral data ie, high spatial data
  • the spatial resolution of high spatial resolution terahertz spectral data can be the same as the spatial resolution of the complete high spatial high spectral resolution terahertz spectral data collected at one time, but high spatial resolution The spectral resolution of terahertz spectrum data is low.
  • the hyperspectral sampling points in the initial terahertz spectrum data can be removed to keep consistent with the surrounding low spectral resolution terahertz spectrum curve, so as to obtain high spatial resolution terahertz spectrum data.
  • the spatial position remains unchanged to facilitate spectral reconstruction processing.
  • the spectral resolution of the first hyperspectral data may be the same as the spectral resolution of the complete high-spatial high-spectral-resolution terahertz spectral data collected at one time. At the same time, in the extraction process, all the low spectral resolution terahertz spectral curves in the initial terahertz spectral curve are removed, and only the hyperspectral pixel curve is retained.
  • S103 Perform reconstruction processing on the high-space data to obtain second hyperspectral data, and use the first hyperspectral data and the second hyperspectral data as target terahertz spectral data.
  • the computer device can reconstruct the spectra of all pixels in the high-space data to obtain the second hyperspectral data, and use the extracted first hyperspectral data and the reconstructed second hyperspectral data as Target terahertz spectrum data.
  • the target terahertz spectrum data may be high spatial and high spectral resolution terahertz spectrum data.
  • the target terahertz spectrum data can be used for terahertz spectrum imaging.
  • This embodiment provides a method for processing terahertz spectral imaging data, scanning an object to be measured, collecting initial terahertz spectral data, extracting high-space data and first hyperspectral data in the initial terahertz spectral data, The high-space data is reconstructed to obtain second hyperspectral data, and the first hyperspectral data and the second hyperspectral data are used as target terahertz spectral data.
  • This method collects the initial terahertz data by scanning Spectral data, and extract and reconstruct the initial terahertz spectral data. Without the need to add or change hardware equipment, it can reduce the amount of high-space hyperspectral terahertz spectral data collected, effectively shorten the scanning time, and then Improve spectral imaging efficiency.
  • the initial terahertz spectrum data is mixed data, and the mixed data includes the high spatial data and the first hyperspectral data; in S101, the object to be measured is scanned to collect the initial terahertz spectrum
  • the data step includes: scanning the object to be measured, collecting the high-space data, and determining to collect the first hyperspectral data according to the position information to obtain the initial terahertz spectrum data.
  • the position information includes the distance moved by the object to be measured relative to the last time the first hyperspectral data was collected.
  • the number of sampling points of the high-space terahertz spectrum dimension collected is equal to the number of sampling points of the first hyperspectral data spectrum dimension
  • the number of sampling points of all terahertz spectrum data collected is equal to the number of sampling points of the target terahertz spectrum data acquired at one time Among them, XYZ and Z are both natural numbers greater than 1.
  • the aforementioned scanning method may be called a fast scanning method, which is characterized by greatly reducing the time domain sampling points of the object to be measured.
  • the position information includes horizontal movement distance information and/or vertical movement distance information of the object under test.
  • the above-mentioned distance information of the horizontal movement of the object under test can be characterized as the first hyperspectral data collected by the object this time, relative to the first hyperspectral data collected last time, moving in the horizontal direction (that is, the x direction)
  • the above-mentioned distance information of the vertical movement of the object to be measured can be characterized as the distance that the object to be measured moves in the vertical direction (ie the y direction) relative to the first hyperspectral data collected this time .
  • Determining the method of collecting the first hyperspectral data can be characterized as: the first hyperspectral data collected by the object under test this time, moving X steps in the horizontal direction relative to the first hyperspectral data collected last time, or the object under test is collected this time The first hyperspectral data is moved by Y steps in the vertical direction relative to the first hyperspectral data collected last time. Among them, collecting the first hyperspectral data is equivalent to collecting a complete terahertz spectral curve with high spectral resolution.
  • the number of spectral data sampling points of the first hyperspectral data collected may be equal to the number of spectral data sampling points in the complete terahertz hyperspectral high-space data acquired at one time.
  • the first hyperspectral data may be hyperspectral data, and the first hyperspectral data has hyperspectral characteristics.
  • the spectral resolution of the first hyperspectral data may be Z times the resolution of the high spatial data (ie, the low spectral data), and may also be equal to the spectral resolution of the target terahertz spectral data.
  • This embodiment provides a processing method for terahertz spectral imaging data.
  • the object to be measured is scanned, high spatial data is collected, and the first hyperspectral data is determined to be collected according to the position information to obtain initial terahertz spectral data, and then the initial terahertz spectral data is obtained.
  • the Hertz spectrum data is processed to obtain the target terahertz spectrum data.
  • This method can collect initial terahertz spectrum data in a fast scanning mode, can reduce the amount of spectrum data collected, effectively shorten the scanning time, and thereby improve the spectral imaging efficiency.
  • the high-space data is reconstructed in S103 to obtain second hyperspectral data, and the first hyperspectral data and the second hyperspectral data are combined .
  • the target terahertz spectrum data include:
  • the extracted first hyperspectral data can be used as a high spectral resolution database, and the high spectral resolution database is used to reconstruct the spectral data of all pixels in the extracted high spatial data, and the scanned
  • the high-space low-spectral resolution data collected in the process is reconstructed and processed into hyperspectral data, that is, the second hyperspectral data.
  • the reconstruction processing method may be Wiener method, pseudo-inverse method, neural network or deep learning method, etc., which is not limited in this embodiment.
  • the computer device can perform Fourier transform on the hyperspace data and the first hyperspectral data and then perform reconstruction processing, and can also perform the reconstruction processing on the hyperspace data and the first hyperspectral data. Perform reconstruction first, and then perform Fourier transform on the reconstructed data to transform it into the frequency domain.
  • the computer device can store the extracted second hyperspectral data in the initial terahertz spectrum data collected during scanning at a spatial location other than the first hyperspectral data. At this time, the second hyperspectral data can be stored.
  • the hyperspectral data and the first hyperspectral data are used as target terahertz spectrum data.
  • the computer equipment can also perform imaging processing on the target terahertz spectrum data to complete terahertz spectrum imaging.
  • This embodiment provides a processing method for terahertz spectral imaging data.
  • the computer device can reconstruct the low-spectral high-spatial resolution terahertz spectral data into hyper-spectral data, and save the hyper-spectral data to the data collected during scanning.
  • the spatial location of the non-first hyperspectral data is stored in order to obtain high spatial and high spectral resolution terahertz spectral data.
  • This method does not need to add or change hardware equipment, but only changes the data collection In this way, the amount of terahertz spectral data collected can be reduced, the scanning time can be effectively shortened, and the spectral imaging efficiency can be improved.
  • steps in the flowchart of FIGS. 2-3 are displayed in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless specifically stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in Figure 2-3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. These sub-steps or stages The order of execution does not need to be performed sequentially, but may be performed alternately or alternately with other steps or at least part of the sub-steps or stages of other steps.
  • the processing device for terahertz spectral imaging data please refer to the above limitation on the processing method of terahertz spectral imaging data, which will not be repeated here.
  • the various modules in the device for processing terahertz spectral imaging data in the above-mentioned computer equipment can be implemented in whole or in part by software, hardware, and combinations thereof.
  • the foregoing modules may be embedded in the form of hardware or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the foregoing modules.
  • FIG. 4 is a schematic structural diagram of a processing device for terahertz spectral imaging data provided by an embodiment. As shown in FIG. 4, the device may include: an acquisition module 11, an extraction module 12, and a reconstruction processing module 13.
  • the collection module 11 is used to scan the object to be measured and collect initial terahertz spectrum data
  • the extraction module 12 is used to extract high-space data and first hyperspectral data in the initial terahertz spectrum data
  • the reconstruction processing module 13 is configured to perform reconstruction processing on the high-space data to obtain second hyperspectral data, and use the first hyperspectral data and the second hyperspectral data as target terahertz Spectral data.
  • the spatial resolution of the high spatial data is equal to the spatial resolution of the terahertz spectrum data of the target collected at one time.
  • the spectral resolution of the first hyperspectral data is equal to the spectral resolution of the target terahertz spectral data collected at one time.
  • the device for processing terahertz spectral imaging data provided in this embodiment can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the initial terahertz spectrum data is mixed data, and the mixed data includes the high spatial data and the first hyperspectral data;
  • the acquisition module 11 is specifically configured to scan the object to be measured , Collecting high-space data, and determining to collect first hyperspectral data according to location information, where the location information includes the distance moved by the object to be measured relative to the last time the first hyperspectral data was collected.
  • the number of sampling points of the high-space terahertz spectrum dimension collected is equal to the number of sampling points of the first hyperspectral data spectrum dimension Among them, Z is a natural number greater than 1.
  • the number of sampling points for all terahertz spectrum data collected is equal to the number of sampling points for acquiring the target terahertz spectrum data at one time Among them, XYZ is a natural number greater than 1.
  • the position information includes the distance information of the horizontal movement and/or the vertical movement of the object.
  • the device for processing terahertz spectral imaging data provided in this embodiment can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the reconstruction processing module 13 includes: a reconstruction processing unit 131 and a storage unit 132.
  • the reconstruction processing unit 131 is configured to use the first hyperspectral data as a hyperspectral database, and use the hyperspectral database to perform reconstruction processing on the hyperspace data to obtain second hyperspectral data ;
  • the storage unit 132 is configured to store the second hyperspectral data to a spatial location other than the first hyperspectral data in the initial terahertz spectrum data, and to store the first hyperspectral data and the first hyperspectral data 2.
  • Hyperspectral data as target terahertz spectrum data.
  • the device for processing terahertz spectral imaging data provided in this embodiment can execute the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • an imaging system is provided, and the imaging system can implement the following steps:
  • a computer device is provided, and its internal structure diagram may be as shown in FIG. 5.
  • the computer equipment includes a processor, a memory, a network interface, a display screen and an input device connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a processing method of terahertz spectral imaging data.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, a trackball or a touchpad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • FIG. 5 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • a storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the following steps:
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本申请公开了一种太赫兹光谱成像数据的处理方法及装置,该方法包括:对待测物进行扫描,采集初始太赫兹光谱数据,提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据,对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据,该方法通过扫描采集初始太赫兹光谱数据,并对初始太赫兹光谱数据进行提取以及重构处理,在不需要额外增加或改变硬件设备的基础上,能够减少高空间高光谱太赫兹光谱数据的采集量,进而提高光谱成像效率。

Description

太赫兹光谱成像数据的处理方法及装置
相关申请
本申请要求2019年05月13日申请的,申请号为201910392615.6,名称为“太赫兹光谱成像数据的处理方法及装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及光谱图像处理技术领域,更具体的说,涉及一种太赫兹光谱成像数据的处理方法及装置。
背景技术
随着太赫兹技术的发展,太赫兹检测技术中发展最早、技术最成熟的成像技术是太赫兹时域光谱成像技术。其中,太赫兹光谱成像技术不但能够检测物体的形状,还能够进行光谱分析和识别,在安全检查等领域具有巨大的应用潜力。
传统技术中,采用异步光学采样方法、连续转动光学延迟线方法,以及利用掩膜调制器的压缩感知方法。同时,增加时域和空域采样点数量,以实现太赫兹高空间高光谱成像技术。但是,传统的方法需要采集的数据量较大,导致光谱成像效率较低。
发明内容
有鉴于此,本申请公开一种能够降低数据采集量并提高光谱成像效率的太赫兹光谱成像数据的处理方法及装置。
本申请实施例提供一种太赫兹光谱成像数据的处理方法,包括:
对待测物进行扫描,采集初始太赫兹光谱数据;
提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
优先地,所述初始太赫兹光谱数据为混合数据,所述混合数据包括所述高空间数据以及所述第一高光谱数据。
优先地,所述对待测物进行扫描,采集初始太赫兹光谱数据,包括:
对待测物进行扫描,采集所述高空间数据,并根据位置信息确定采集所述第一高光谱 数据,得到所述初始太赫兹光谱数据,其中,所述位置信息包括相对于上一次采集所述第一高光谱数据时,所述待测物所移动的距离;
以及可选的,所述位置信息包括所述待测物水平方向移动的距离信息和/或垂直方向移动的距离信息。
优先地,所述扫描过程中,采集到的高空间太赫兹光谱维采样点数量,等于第一高光谱数据光谱维采样点数量的
Figure PCTCN2019119468-appb-000001
其中,Z为大于1的自然数。
优先地,所述扫描过程中,采集到的所有太赫兹光谱数据采样点数量,等于一次性获取目标太赫兹光谱数据采样点数量的
Figure PCTCN2019119468-appb-000002
其中,XYZ为大于1的自然数。
优先地,所述位置信息包括所述待测物水平方向移动的距离信息和/或垂直方向移动的距离信息。
优先地,所述高空间数据的空间分辨率,等于一次性采集目标太赫兹光谱数据的空间分辨率。
优先地,所述第一高光谱数据的光谱分辨率,等于一次性采集目标太赫兹光谱数据的光谱分辨率。
优先地,所述对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据,包括:
将所述第一高光谱数据作为高光谱数据库,利用所述高光谱数据库,对所述高空间数据进行重构处理,得到第二高光谱数据;
将所述第二高光谱数据存储至所述初始太赫兹光谱数据中非第一高光谱数据所处空间位置,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
本申请实施例提供一种太赫兹光谱成像数据的处理装置,包括:
采集模块,用于对待测物进行扫描,采集初始太赫兹光谱数据;
提取模块,用于提取所述太赫兹光谱数据中的高空间数据以及第一高光谱数据;
重构处理模块,用于对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
本申请实施例提供一种成像系统,包括:所述成像系统实现的方法包括上述任一项所述方法的步骤。
从上述的技术方案可知,本申请公开了一种太赫兹光谱成像数据的处理方法及装置,对待测物进行扫描,采集初始太赫兹光谱数据,提取所述初始太赫兹光谱数据中的高空间 数据以及第一高光谱数据,对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据,该方法通过扫描采集初始太赫兹光谱数据,并对初始太赫兹光谱数据进行提取以及重构处理,在不需要额外增加或改变硬件设备的基础上,能够减少高空间高光谱太赫兹光谱数据的采集量,进而提高光谱成像效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一实施例提供的太赫兹光谱成像数据的处理系统的结构框图;
图2为一实施例提供的太赫兹光谱成像数据的处理方法的流程图;
图3为另一实施例提供的获取目标太赫兹光谱数据的具体方法流程图;
图4为一实施例提供的太赫兹光谱成像数据的处理装置的结构示意图;
图5为一个实施例提供的计算机设备的内部结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的太赫兹光谱成像数据的处理方法,可适用于如图1所示的太赫兹光谱成像数据的处理系统中,该系统包括激光器、分束镜、时间延迟器、太赫兹辐射产生装置、太赫兹探测装置、锁相放大器、电控二维平台以及计算机设备。其中,激光器用于产生激光脉冲,时间延迟器用于调节太赫兹脉冲相对于探测光的延迟时间;太赫兹辐射产生装置用于产生太赫兹脉冲时域波形;太赫兹探测装置用于接收太赫兹脉冲时域波形;锁相放大器用于将太赫兹探测装置的输出信号放大,并传输给计算机设备进行数据处理。待测物设置于可移动的电控二维平移台(图中未示出)上,计算机设备分别与时间延迟器和电控二维平移台连接。可选的,激光器可以为飞秒激光器,太赫兹辐射产生装置可以使用光电导天线或非线性光学晶体。
该系统的工作原理为:激光器产生激光脉冲,激光脉冲被分束镜分为泵浦光和探测光两路光束。泵浦光经过时间延迟器,入射到太赫兹辐射产生装置产生太赫兹脉冲,太赫兹脉冲再照射到待测物上,并经过待测物后与探测光一同入射到太赫兹探测装置上,得到太赫兹脉冲时域波形。太赫兹脉冲时域波形经过锁相放大器放大后,传输给计算机设备进行数据提取及处理。
为了使本申请的目的、技术方案及优点更加清楚明白,通过下述实施例并结合附图,对本申请实施例中的技术方案的进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定发明。
图2为一实施例提供的太赫兹光谱成像数据的处理方法的流程示意图。本实施例涉及的是获取目标太赫兹光谱数据的过程。如图2所示,该方法包括:
S101、对待测物进行扫描,采集初始太赫兹光谱数据。
具体的,上述待测物可以为需要进行测量或者成像的物体,待测物设置在电控二维平移台上,并且计算机设备可以控制电控二维平移台移动,使得待测物随着电控二维平移台移动。可选的,初始太赫兹光谱数据可以为待测物在像元点的扫描数据集合,并且该初始太赫兹光谱数据可以是光谱图像数据立方体,具体数据格式可以根据实际的测量或成像要求,以及需要提取信息的类型确定。
在本实施例中,计算机设备可以控制电控二维平移台移动,使得待测物移动到不同的像元点位置。同时,计算机设备可以控制时间延迟器,确定待测物在每个像元点位置的光谱采样精确程度,从而获得待测物在不同像元点位置的太赫兹时域脉冲波形,以得到初始太赫兹光谱数据。需要说明的是,通过对待测物的时域一维进行采样,并对待测物的空域二维进行扫描,可以实现数据点扫描采集。以空间坐标系(xyz)为例,时域一维可以为z方向,空域二维可以为(x,y)方向。
S102、提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据。
可选的,所述初始太赫兹光谱数据为混合数据,所述混合数据包括所述高空间数据以及所述第一高光谱数据。
具体的,从扫描采集得到的初始太赫兹光谱数据中,可以分别提取出高空间数据以及第一高光谱数据。其中,提取的方式可以表征为,根据实际需求保留部分采样点剔除其余采样点,并且将保留的部分采样点作为待处理数据。可选的,计算机设备可以对待处理数据进行重构处理后,得到目标太赫兹光谱数据。
其中,初始太赫兹光谱数据可以为混合数据,该混合数据包括了高空间分辨率太赫兹光谱数据(即高空间数据),以及高光谱分辨率太赫兹光谱数据(即高光谱数据),相当 于计算机设备需要提取的高空间数据以及第一高光谱数据。
可选的,所述高空间数据的空间分辨率,等于一次性采集目标太赫兹光谱数据的空间分辨率。所述第一高光谱数据的光谱分辨率,等于一次性采集目标太赫兹光谱数据的光谱分辨率。其中,目标太赫兹光谱数据可以表征一次性采集的完整高空间高光谱分辨率太赫兹光谱数据。
可以理解的是,计算机设备可以从扫描处理后得到的初始太赫兹光谱数据中,分别提取出高空间分辨率太赫兹光谱数据以及第一高光谱数据的光谱分辨率。其中,高空间分辨率太赫兹光谱数据(即高空间数据)的空间分辨率,可以与一次性采集完整的高空间高光谱分辨率太赫兹光谱数据的空间分辨率相同,但是,高空间分辨率太赫兹光谱数据的光谱分辨率较低。可选的,在提取过程中,可以将初始太赫兹光谱数据中的高光谱采样点去除,与周围低光谱分辨率太赫兹光谱曲线保持一致,从而得到高空间分辨率太赫兹光谱数据。另外,高空间分辨率太赫兹光谱数据提取后,空间位置保持不变,以便于光谱重构处理。
需要说明的是的,上述第一高光谱数据的光谱分辨率,与一次性采集完整的高空间高光谱分辨率太赫兹光谱数据的光谱分辨率可以相同。同时,在提取过程中,将初始太赫兹光谱曲线中的所有低光谱分辨率太赫兹光谱曲线去除,仅保留高光谱像元曲线。
S103、对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
具体的,计算机设备可以对高空间数据中所有像元光谱进行重构处理,得到第二高光谱数据,并将提取得到的第一高光谱数据以及重构处理后的第二高光谱数据,作为目标太赫兹光谱数据。其中,目标太赫兹光谱数据可以为高空间高光谱分辨率太赫兹光谱数据。可选的,目标太赫兹光谱数据可以用于进行太赫兹光谱成像。
本实施例提供了一种太赫兹光谱成像数据的处理方法,对待测物进行扫描,采集初始太赫兹光谱数据,提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据,对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据,该方法通过扫描采集初始太赫兹光谱数据,并对初始太赫兹光谱数据进行提取以及重构处理,在不需要额外增加或改变硬件设备的基础上,能够减少高空间高光谱太赫兹光谱数据的采集量,有效缩短扫描时间,进而提高光谱成像效率。
作为其中一个实施例,所述初始太赫兹光谱数据为混合数据,所述混合数据包括所述高空间数据以及所述第一高光谱数据;上述S101中对待测物进行扫描,采集初始太赫兹光谱数据的步骤,包括:对待测物进行扫描,采集所述高空间数据,并根据位置信息确定 采集所述第一高光谱数据,得到所述初始太赫兹光谱数据。其中,所述位置信息包括相对于上一次采集所述第一高光谱数据时,所述待测物所移动的距离。
可选的,所述扫描过程中,采集到的高空间太赫兹光谱维采样点数量,等于第一高光谱数据光谱维采样点数量的
Figure PCTCN2019119468-appb-000003
同时,所述扫描过程中,采集到的所有太赫兹光谱数据采样点数量等于一次性获取目标太赫兹光谱数据采样点数量的
Figure PCTCN2019119468-appb-000004
其中,XYZ、Z均为大于1的自然数。
具体的,上述扫描方式可以称为快速扫描方式,表征为通过大幅度减少待测物的时域采样点实现。
需要说明的是,当
Figure PCTCN2019119468-appb-000005
远大于1时,将大幅度缩短快速扫描采样时间。
进一步,所述位置信息包括所述待测物水平方向移动的距离信息和/或垂直方向移动的距离信息。
可以理解的是,上述待测物水平方向移动的距离信息可以表征为待测物本次采集第一高光谱数据,相对于上一次采集第一高光谱数据在水平方向(即x方向)上移动的距离,上述待测物垂直方向移动的距离信息可以表征为待测物本次采集第一高光谱数据,相对于上一次采集第一高光谱数据在垂直方向(即y方向)上移动的距离。确定采集第一高光谱数据的方式可以表征为,待测物本次采集第一高光谱数据,相对于上一次采集第一高光谱数据在水平方向上移动X步,或者待测物本次采集第一高光谱数据,相对于上一次采集第一高光谱数据在垂直方向上移动Y步。其中,采集第一高光谱数据相当于是采集一条完整的高光谱分辨率太赫兹光谱曲线。
还可以理解的是,在扫描过程中,采集到的第一高光谱数据的光谱数据采样点数量,可以等于一次性获取完整的太赫兹高光谱高空间数据中光谱数据采样点数量。其中,第一高光谱数据可以为高光谱数据,且第一高光谱数据具有高光谱的特征。可选的,第一高光谱数据的光谱分辨率可以为高空间数据(即低光谱数据)分辨率的Z倍,还可以等于目标太赫兹光谱数据的光谱分辨率。
本实施例提供了一种太赫兹光谱成像数据的处理方法,对待测物进行扫描,采集高空间数据,并根据位置信息确定采集第一高光谱数据,得到初始太赫兹光谱数据,进而对初始太赫兹光谱数据进行处理,得到目标太赫兹光谱数据。该方法能够采用快速扫描方式采集初始太赫兹光谱数据,能够减少光谱数据的采集量,有效缩短扫描时间,进而提高光谱 成像效率。
作为其中一个实施例,如图3所示,上述S103中对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据的步骤,包括:
S1031、将所述第一高光谱数据作为高光谱数据库,利用所述高光谱数据库,对所述高空间数据进行重构处理,得到第二高光谱数据。
具体的,将提取得到的第一高光谱数据可以作为高光谱分辨率数据库,并采用该高光谱分辨率数据库,对提取得到的高空间数据中所有像元光谱数据进行重构处理,可以将扫描过程中采集得到的高空间低光谱分辨数据重构处理成高光谱数据,即第二高光谱数据。其中,所述重构处理的方法可以为维纳法、伪逆法、神经网络或深度学习法等,本实施例对此不做任何限定。
需要说明的是,为了获取频域高光谱数据,计算机设备可以对高空间数据和第一高光谱数据进行傅里叶变换后再执行重构处理,还可以对高空间数据和第一高光谱数据先进行重构处理,再对重构后的数据进行傅里叶变换,将其变换到频域上。
S1032、将所述第二高光谱数据存储至所述初始太赫兹光谱数据中非第一高光谱数据所处空间位置,并根据所述第一高光谱数据以及所述第二高光谱数据,得到目标太赫兹光谱数据。
可以理解的是,计算机设备可以将提取得到的第二高光谱数据存储至,扫描时采集得到的初始太赫兹光谱数据中非第一高光谱数据所存储的空间位置,此时,可以将第二高光谱数据以及第一高光谱数据,作为目标太赫兹光谱数据。计算机设备还可以对目标太赫兹光谱数据进行成像处理,完成太赫兹光谱成像。
本实施例提供了一种太赫兹光谱成像数据的处理方法,计算机设备能够将低光谱高空间分辨率太赫兹光谱数据重构为高光谱数据,并将该高光谱数据保存至扫描时采集得到的初始太赫兹光谱数据中非第一高光谱数据所存储的空间位置,以得到高空间高光谱分辨率太赫兹光谱数据,该方法在不需要额外增加或改变硬件设备的基础上,仅改变数据采集方式,就能够减少太赫兹光谱数据的采集量,有效缩短扫描时间,提高光谱成像效率。
应该理解的是,虽然图2-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必是依次进 行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
关于太赫兹光谱成像数据的处理装置的具体限定可以参见上文中对于太赫兹光谱成像数据的处理方法的限定,在此不再赘述。上述计算机设备中太赫兹光谱成像数据的处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图4为一实施例提供的太赫兹光谱成像数据的处理装置结构示意图。如图4所示,该装置可以包括:采集模块11、提取模块12以及重构处理模块13。
具体的,所述采集模块11,用于对待测物进行扫描,采集初始太赫兹光谱数据;
所述提取模块12,用于提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
所述重构处理模块13,用于对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
可选的,所述高空间数据的空间分辨率,等于一次性采集目标太赫兹光谱数据的空间分辨率。所述第一高光谱数据的光谱分辨率,等于一次性采集目标太赫兹光谱数据的光谱分辨率。
本实施例提供的太赫兹光谱成像数据的处理装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
在其中一个实施例中,所述初始太赫兹光谱数据为混合数据,所述混合数据包括所述高空间数据以及所述第一高光谱数据;所述采集模块11具体用于对待测物进行扫描,采集高空间数据,并根据位置信息确定采集第一高光谱数据,其中,所述位置信息包括相对于上一次采集所述第一高光谱数据时,所述待测物所移动的距离。
进一步,所述扫描过程中,采集到的高空间太赫兹光谱维采样点数量,等于第一高光谱数据光谱维采样点数量的
Figure PCTCN2019119468-appb-000006
其中,Z为大于1的自然数。所述扫描过程中,采集到的所有太赫兹光谱数据采样点数量,等于一次性获取目标太赫兹光谱数据采样点数量的
Figure PCTCN2019119468-appb-000007
其中,XYZ为大于1的自然数。所述位置信息包括所述待测物水平方向移动的距离信息和/或垂直方向移动的距离信息。
本实施例提供的太赫兹光谱成像数据的处理装置,可以执行上述方法实施例,其实现 原理和技术效果类似,在此不再赘述。
在其中一个实施例中,所述重构处理模块13包括:重构处理单元131和存储单元132。
具体的,所述重构处理单元131,用于将所述第一高光谱数据作为高光谱数据库,利用所述高光谱数据库,对所述高空间数据进行重构处理,得到第二高光谱数据;
所述存储单元132,用于将所述第二高光谱数据存储至所述初始太赫兹光谱数据中非第一高光谱数据所处空间位置,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
本实施例提供的太赫兹光谱成像数据的处理装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
在一个实施例中,提供了一种成像系统,所述成像系统可以实现以下步骤:
对待测物进行扫描,采集初始太赫兹光谱数据;
提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
在一个实施例中,提供了一种计算机设备,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种太赫兹光谱成像数据的处理方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
对待测物进行扫描,采集初始太赫兹光谱数据;
提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以 及所述第二高光谱数据,作为目标太赫兹光谱数据。
在一个实施例中,提供了一种存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
对待测物进行扫描,采集初始太赫兹光谱数据;
提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种太赫兹光谱成像数据的处理方法,其特征在于,所述方法包括:
    对待测物进行扫描,采集初始太赫兹光谱数据;
    提取所述初始太赫兹光谱数据中的高空间数据以及第一高光谱数据;
    对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
  2. 根据权利要求1所述的方法,其特征在于,所述初始太赫兹光谱数据为混合数据,所述混合数据包括所述高空间数据以及所述第一高光谱数据。
  3. 根据权利要求1所述的方法,其特征在于,所述对待测物进行扫描,采集初始太赫兹光谱数据,包括:
    对待测物进行扫描,采集所述高空间数据,并根据位置信息确定采集所述第一高光谱数据,得到所述初始太赫兹光谱数据,其中,所述位置信息包括相对于上一次采集所述第一高光谱数据时,所述待测物所移动的距离;
    以及优选的,所述位置信息包括所述待测物水平方向移动的距离信息和/或垂直方向移动的距离信息。
  4. 根据权利要求3所述的方法,其特征在于,所述扫描过程中,采集到的高空间太赫兹光谱维采样点数量,等于第一高光谱数据光谱维采样点数量的
    Figure PCTCN2019119468-appb-100001
    其中,Z为大于1的自然数。
  5. 根据权利要求3所述的方法,其特征在于,所述扫描过程中,采集到的所有太赫兹光谱数据采样点数量,等于一次性获取目标太赫兹光谱数据采样点数量的
    Figure PCTCN2019119468-appb-100002
    其中,XYZ为大于1的自然数。
  6. 根据权利要求1所述的方法,其特征在于,所述高空间数据的空间分辨率,等于一次性采集目标太赫兹光谱数据的空间分辨率。
  7. 根据权利要求1所述的方法,其特征在于,所述第一高光谱数据的光谱分辨率,等于一次性采集目标太赫兹光谱数据的光谱分辨率。
  8. 根据权利要求1所述的方法,其特征在于,所述对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫 兹光谱数据,包括:
    将所述第一高光谱数据作为高光谱数据库,利用所述高光谱数据库,对所述高空间数据进行重构处理,得到第二高光谱数据;
    将所述第二高光谱数据存储至所述初始太赫兹光谱数据中非第一高光谱数据所处空间位置,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
  9. 一种太赫兹光谱成像数据的处理装置,其特征在于,所述装置包括:
    采集模块,用于对待测物进行扫描,采集初始太赫兹光谱数据;
    提取模块,用于提取所述太赫兹光谱数据中的高空间数据以及第一高光谱数据;
    重构处理模块,用于对所述高空间数据进行重构处理,得到第二高光谱数据,并将所述第一高光谱数据以及所述第二高光谱数据,作为目标太赫兹光谱数据。
  10. 一种成像系统,其特征在于,所述成像系统实现的方法包括权利要求1至8中任一项所述方法的步骤。
PCT/CN2019/119468 2019-05-13 2019-11-19 太赫兹光谱成像数据的处理方法及装置 WO2020228293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910392615.6A CN111928942B (zh) 2019-05-13 2019-05-13 太赫兹光谱成像数据的处理方法及装置
CN201910392615.6 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020228293A1 true WO2020228293A1 (zh) 2020-11-19

Family

ID=73231166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119468 WO2020228293A1 (zh) 2019-05-13 2019-11-19 太赫兹光谱成像数据的处理方法及装置

Country Status (3)

Country Link
US (1) US11422031B2 (zh)
CN (1) CN111928942B (zh)
WO (1) WO2020228293A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114037609B (zh) * 2021-10-21 2024-04-19 中国科学院沈阳自动化研究所 一种基于学习太赫兹成像逆过程的太赫兹图像超分辨算法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471715A (zh) * 2013-09-02 2013-12-25 北京航空航天大学 一种共光路组合式光场光谱成像方法及装置
CN103558160A (zh) * 2013-10-21 2014-02-05 中国科学院遥感与数字地球研究所 一种提高光谱成像空间分辨率的方法和系统
US20140070102A1 (en) * 2012-08-01 2014-03-13 Tatiana Globus Terahertz Spectroscopy Characterization with High Spectral and Spatial Resolution for Biological and Chemical Sensing and Method of Use
CN105334182A (zh) * 2015-12-10 2016-02-17 中国科学院重庆绿色智能技术研究院 一种全光纤太赫兹准时域实时光谱仪
CN105527242A (zh) * 2014-10-27 2016-04-27 深圳先进技术研究院 一种太赫兹压缩成像系统及方法
CN105548083A (zh) * 2015-12-08 2016-05-04 电子科技大学 双光路太赫兹时域光谱仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284975C (zh) * 2003-01-16 2006-11-15 上海交通大学 遥感图像双线性插值小波变换融合的优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140070102A1 (en) * 2012-08-01 2014-03-13 Tatiana Globus Terahertz Spectroscopy Characterization with High Spectral and Spatial Resolution for Biological and Chemical Sensing and Method of Use
CN103471715A (zh) * 2013-09-02 2013-12-25 北京航空航天大学 一种共光路组合式光场光谱成像方法及装置
CN103558160A (zh) * 2013-10-21 2014-02-05 中国科学院遥感与数字地球研究所 一种提高光谱成像空间分辨率的方法和系统
CN105527242A (zh) * 2014-10-27 2016-04-27 深圳先进技术研究院 一种太赫兹压缩成像系统及方法
CN105548083A (zh) * 2015-12-08 2016-05-04 电子科技大学 双光路太赫兹时域光谱仪
CN105334182A (zh) * 2015-12-10 2016-02-17 中国科学院重庆绿色智能技术研究院 一种全光纤太赫兹准时域实时光谱仪

Also Published As

Publication number Publication date
CN111928942B (zh) 2021-11-23
CN111928942A (zh) 2020-11-13
US20200363263A1 (en) 2020-11-19
US11422031B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
US9230319B2 (en) Method of reconstructing a biological tissue image, and method and apparatus for acquiring a biological tissue image
Niu et al. An innovative application of generative adversarial networks for physically accurate rock images with an unprecedented field of view
JP6235886B2 (ja) 生体組織画像の再構成方法及び装置並びに該生体組織画像を用いた画像表示装置
CN108139711B (zh) 数字全息显微术重构中的自动参考
CN110599558B (zh) 太赫兹光谱成像的数据重构方法、装置、设备和存储介质
US20130195327A1 (en) Noise reduction processing method and apparatus for a biological tissue image
CN103499392A (zh) 一种太赫兹波远场探测超衍射分辨成像仪
Li et al. Seasonal change of leaf and woody area profiles in a midlatitude deciduous forest canopy from classified dual-wavelength terrestrial lidar point clouds
CN109444879A (zh) 一种DInSAR近断层同震形变场提取方法
Jiang et al. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning
CN109410139A (zh) 一种文物内部和表面病害数字化分析评估方法
Deng et al. Machine-learning enhanced photoacoustic computed tomography in a limited view configuration
WO2020228293A1 (zh) 太赫兹光谱成像数据的处理方法及装置
US20230146924A1 (en) Neural network analysis of lfa test strips
Spitzbarth et al. Simultaneous iterative reconstruction technique software for spectral–spatial EPR imaging
Fang et al. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review
Takizawa et al. High-speed hyperspectral imaging enabled by compressed sensing in time domain
US20150310609A1 (en) Systems and methods for regularized fourier analysis in x-ray phase contrast imaging
Scatigno et al. Neutron imaging and learning algorithms: new perspectives in cultural heritage applications
CN108072614A (zh) 一种基于非均匀傅里叶变换的干涉合成孔径显微方法
Zhang et al. Sectional image reconstruction in optical scanning holography using compressed sensing
Rodigheri et al. Estimating Crop Sowing and Harvesting Dates Using Satellite Vegetation Index: A Comparative Analysis
Sawyer et al. Towards a simulation framework to maximize the resolution of biomedical hyperspectral imaging
Liang et al. Ultrafast optical imaging
Su et al. Physics-guided terahertz computational imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929064

Country of ref document: EP

Kind code of ref document: A1