WO2020227870A1 - 一种切换方法及装置、通信设备 - Google Patents

一种切换方法及装置、通信设备 Download PDF

Info

Publication number
WO2020227870A1
WO2020227870A1 PCT/CN2019/086485 CN2019086485W WO2020227870A1 WO 2020227870 A1 WO2020227870 A1 WO 2020227870A1 CN 2019086485 W CN2019086485 W CN 2019086485W WO 2020227870 A1 WO2020227870 A1 WO 2020227870A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
node
information
handover
secondary node
Prior art date
Application number
PCT/CN2019/086485
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/086485 priority Critical patent/WO2020227870A1/zh
Priority to CN201980095819.1A priority patent/CN113796118B/zh
Publication of WO2020227870A1 publication Critical patent/WO2020227870A1/zh
Priority to US17/514,583 priority patent/US20220053392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/108Source integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a handover method and device, and communication equipment.
  • the R16 Carrier Aggregation (CA)-Dual Connectivity (DC) enhancement project supporting the master cell group (Master Cell Group, MCG) fails to pass through the secondary cell group (Secondary Cell Group, SCG) chain Channel sends MCG failure information to the master node (Master Node, MN). After the MN knows the failure information, for example, it triggers a handover process to circumvent the MCG failure problem, thereby avoiding the triggering of radio resource control (Radio Resource Control, RRC) connection re-establishment .
  • Radio Resource Control Radio Resource Control
  • the embodiments of the application provide an information transmission method and device, and communication equipment.
  • the terminal After determining that the handover fails or the handover timer expires, the terminal sends first information to the target secondary node, where the first information includes handover failure information and/or MCG failure information;
  • the first information is forwarded by the target secondary node to the target master node, and the target master node decides a new handover process; or, the first information is forwarded by the target secondary node to the target master node, And the target master node forwards to the original master node, and the original master node decides the new handover process.
  • the sending unit is configured to send first information to the target secondary node after the handover fails or the handover timer expires, where the first information includes handover failure information and/or MCG failure information;
  • the first information is forwarded by the target secondary node to the target master node, and the target master node decides a new handover process; or, the first information is forwarded by the target secondary node to the target master node, And the target master node forwards to the original master node, and the original master node decides the new handover process.
  • the communication device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned information transmission method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned information transmission method.
  • the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned information transmission method.
  • the computer-readable storage medium provided by the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned information transmission method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned information transmission method.
  • the computer program provided in the embodiments of the present application when running on a computer, causes the computer to execute the above-mentioned information transmission method.
  • the terminal reports related failure information to the target secondary node, thereby avoiding triggering the RRC connection re-establishment, thereby avoiding service interruption and data loss problems.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is an EN-DC overall networking architecture provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a user plane bearer type provided by an embodiment of the application.
  • Figure 5 is a diagram of the SN-side key derivation architecture provided by an embodiment of the application.
  • FIG. 6 is a flowchart of a handover method provided by an embodiment of the application.
  • FIG. 7 is a second flowchart of a handover method provided by an embodiment of this application.
  • FIG. 8 is a third flowchart of a handover method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the structural composition of a switching device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • 5G 3 rd Generation Partnership Project
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB is still targeting users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized, and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • EN-DC LTE-NR Dual Connectivity
  • the LTE base station serves as the master node (Master Node, MN)
  • the NR base station serves as the secondary node (Secondary Node, SN).
  • E-UTRAN represents the access network part
  • EPC represents the core network part
  • the access network part consists of at least one eNB (two eNBs are shown in Figure 2) and at least one en-gNB (Figure 2 Two en-gNB) components are shown in the figure, where the eNB serves as the MN, the en-gNB serves as the SN, and both the MN and SN are connected to the EPC.
  • EN-DC scenarios include scenario 3A (Scenario 3A) and scenario 3 (Scenario 3) shown in FIG. 3.
  • LTE eNB is used as MN
  • gNB is used as SN
  • LTE eNB has control plane interface (S1-C) and user plane interface (S1-U) between LTE eNB and EPC
  • S1-U user plane interface
  • the control plane signaling of gNB needs to be forwarded to EPC through LTE eNB.
  • LTE eNB is used as MN
  • gNB is used as SN.
  • the control plane signaling and user plane messages of gNB need to pass LTE eNB forwards to EPC.
  • EN-DC Compared with LTE DC, EN-DC’s main key technical points mainly include: control plane, user plane, security, radio link failure (RLF), system broadcast reception, and radio resource management (Radio Resource Management, RRM) coordination and UE capability coordination and so on. They are described separately below.
  • RLF radio link failure
  • RRM Radio Resource Management
  • RRC entities exist on both the MN and SN sides, and both can generate RRC protocol data units (Protocol Data Unit, PDU). But there is only one RRC state machine at the same time and it is based on the MN side.
  • PDU Protocol Data Unit
  • the signaling bearer in LTE includes SRB0, SRB, and SRB2, and EN-DC further supports SRB3 on this basis.
  • SRB3 is used to transmit RRC signaling between SN and UE.
  • the generation of signaling content carried by the signaling does not require resource and UE capability negotiation with the MN.
  • EN-DC supports split SRB1 and split SRB2, that is, the Packet Data Convergence Protocol (PDCP) PDU corresponding to the RRC message generated by the MN is repeatedly transmitted on the SN side. Ensure its high reliability.
  • PDCP Packet Data Convergence Protocol
  • the bearer types of the user plane include primary cell group bearer (MCG bearer), secondary cell group bearer (SCG bearer), and primary cell group split bearer (MCG split bearer).
  • MCG bearer primary cell group bearer
  • SCG bearer secondary cell group bearer
  • MCG split bearer primary cell group split bearer
  • EN-DC proposes a secondary cell split bearer (SCG split bearer).
  • MCG split bearer and SCG split bearer are mainly due to the different functions of the PDCP layer and the different keys of the PDCP layer.
  • the PDCP version of the bearer is configured as follows:
  • EN-DC the key derivation process on the MN side is the same as the key derivation process of the LTE standalone (SA).
  • SA the key and parameter input on the SN side is shown in Figure 5.
  • the network side configures a key of KeNB or S-KeNB for each bearer for the bearer.
  • the network side uses the LTE security capability algorithm to support the judgment of NR algorithm capability support, such as NR algorithm(nea0/1/2/3 and nia0/1/2/3 ) Corresponds to LTE algorithms (eea0/1/2/3 and eia 0/1/2/3).
  • the UE In EN-DC, if the RLF occurs on the MCG side, the UE is triggered to initiate the RRC connection re-establishment process; if the RLF occurs on the SCG side, the UE suspends all SCG side bearers and SCG side transmissions and reports SCGFailureInformation to the MN side.
  • the UE keeps the measurement configuration from the MN and SN side and continues to perform the corresponding measurement, if possible.
  • NR SN does not need to broadcast system broadcast information, except for System Frame Number (SFN) timing information.
  • the system information is provided to the UE through dedicated signaling by the LTE eNB.
  • the UE needs to acquire at least the SCG radio frame timing and SFN information from the NR primary and secondary cell (PSCell).
  • PSCell NR primary and secondary cell
  • NR SCG system information (System Information, SI) changes can be configured to the UE through dedicated signaling, or LTE MCG SRB or NR SCG SRB.
  • NR Scell SI changes, the network side releases and then adds the related NR Scell, but uses the same RRC connection reconfiguration message. And this process can be completed by MCG SRB or SCG SRB.
  • NE-DC the core network connected to the access network
  • 5GC the core network connected to other DC modes
  • LTE eNB is MN
  • NR gNB is SN
  • both MN and SN are connected to EPC
  • NR gNB is MN
  • eLTE eNB is SN
  • both MN and SN are connected to the next-generation core network.
  • the types of MN and SN can be the same, both are NR gNB, and both NR gNB are connected to the next-generation core network.
  • the UE may perform handover when configured with MR-DC, and the SN may or may not change during the handover.
  • MR-DC handover may fail, and RRC connection re-establishment will be triggered after failure.
  • R16 CA DC enhancement project supports MCG failure to send MCG failure information to the network side (ie MN) through SCG link, MN knows the failure information After that, for example, a handover process is triggered to avoid the MCG failure problem, thereby avoiding the triggering of the RRC connection re-establishment. Because the RRC connection reconstruction will bring about business interruption and data loss problems.
  • Fig. 6 is a flowchart of a handover method provided by an embodiment of the application. As shown in Fig. 6, the handover method includes the following steps:
  • Step 601 After determining that the handover fails or the handover timer expires, the terminal sends first information to the target secondary node, where the first information includes handover failure information and/or MCG failure information; wherein, the first information is shared by the target The secondary node is forwarded to the target master node, and the target master node decides a new handover process; or, the first information is forwarded by the target secondary node to the target master node, and the target master node is forwarded to the original master node , The original master node decides the new handover process.
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, etc.
  • the embodiments of this application are applied to the MR-DC scenario. Specifically, 1) the original master node (S-MN) decides to initiate a handover process and initiates a handover request to the target master node (T-MN). 2) The T-MN decides whether to receive the handover request, and determines the addition information of the target secondary node (T-SN) according to the measurement result notified by the S-MN, and initiates an SN addition request to the T-SN. 3) The T-SN receives the SN addition request, and replies the SN addition request response to the T-MN. 4) T-MN replies a handover request response message to S-MN. 5) The S-MN sends a handover command to the terminal. Then, the following steps of the embodiment of the present application are executed.
  • the terminal initiates a first random access procedure to the target master node, and if the first random access procedure is unsuccessful, it is determined that the handover fails. 2) The terminal initiates a second random access procedure to the target secondary node, and the second random access procedure succeeds.
  • the terminal after determining that the handover fails or the handover timer expires, the terminal sends first information to the target secondary node, where the first information includes handover failure information and/or MCG failure information.
  • the terminal may use any of the following methods to send the first information to the secondary node:
  • Manner 1 The terminal sends the first information to the target secondary node by offloading SRB1.
  • first information is carried in first RRC signaling, and the first RRC signaling performs encryption and integrity protection through the secret key and algorithm of the SRB1 on the target master node side.
  • Manner 2 The terminal sends the first information to the target secondary node through SRB3.
  • the first information is carried in second RRC signaling, and the second RRC signaling performs encryption and integrity protection through the secret key and algorithm of the SRB3 on the target secondary node side.
  • Path 1 The first information is forwarded by the target secondary node to the target master node, and is forwarded by the target master node to the original master node, and the original master node decides a new handover process.
  • Path 2 The first information is forwarded by the target secondary node to the target master node, and the target master node decides a new handover process.
  • the target master node decides a new handover process, including:
  • the target master node determines the target node for handover, and sends the GTP tunnel number allocated by the core network used in the path switching process to the target node;
  • the target master node receives the handover command, and forwards the handover command to the target secondary node;
  • the target secondary node sends a handover command to the terminal to trigger the terminal to access the target node
  • the target secondary node sends a handover command to the terminal through the offload SRB1.
  • the target secondary node sends a handover command to the terminal through SRB3.
  • the target node initiates a path switching process to the core network according to the GTP tunnel number.
  • the target node and the target secondary node are the same node. Since the terminal has already initiated the second random access procedure to the target secondary node, the terminal can omit the request to the target secondary node. The random access process of the target secondary node. Or, in another embodiment, the target node and the target secondary node are different nodes. In this case, the terminal needs to initiate a third random access procedure to the target node.
  • the first information includes at least one of the following:
  • the cell information quality of the PSCell on the side of the original secondary node is the cell information quality of the PSCell on the side of the original secondary node
  • the cell information quality of the PSCell on the target secondary node side is the cell information quality of the PSCell on the target secondary node side.
  • the failure type is, for example, the handover failure type.
  • the cell information quality includes at least one of the following: RSRP, RSRQ, SINR, beam measurement result
  • Fig. 7 is a second flow diagram of the handover method provided by the embodiment of the application. As shown in Fig. 7, the handover method includes the following steps:
  • the S-MN decides to initiate a handover process and initiates a handover request to the T-MN.
  • the T-MN decides whether to receive the handover request, and according to the measurement result notified by the S-MN, decides the T-SN addition information, and initiates an SN addition request to the T-SN.
  • the SN receives the SN addition request and replies the SN addition request response to the T-MN.
  • the T-MN replies a handover request response to the S-MN.
  • S-MN initiates an SN release request to S-SN.
  • the S-SN releases the resource configuration and replies the SN release response to the S-MN.
  • the S-MN sends a handover command to the UE.
  • the UE establishes the resource configuration of T-MN and T-SN according to the resource configuration, and initiates a random access procedure to the T-MN.
  • the UE initiates a random access procedure to the T-SN, and it succeeds.
  • the UE sends handover failure information or MCG failure information to the target SN to the target SN.
  • the UE sends handover failure information or MCG failure information through the split SRB1 (split SRB1) established by the UE in the T-MN and T-SN.
  • the RRC signaling where the failure information is located passes through the secret key of T-MN SRB1 and Algorithm for encryption and integrity protection. or,
  • the UE sends handover failure information or MCG failure information through the SRB3 established by the UE in the T-SN.
  • the RRC signaling where the failure information is located is encrypted and integrity protected by the secret key and algorithm of the SRB3 of the T-SN.
  • the T-SN forwards the handover failure information or MCG failure information to the T-MN.
  • the T-SN forwards the handover failure information or MCG failure information to the S-MN.
  • the original SN decides a new handover procedure based on the failure information.
  • FIG. 8 is the third flowchart of the handover method provided by the embodiment of the application. As shown in FIG. 8, the handover method includes the following steps:
  • the S-MN decides to initiate a handover process and initiates a handover request to the T-MN.
  • the T-MN decides whether to receive the handover request, and according to the measurement result notified by the S-MN, decides the T-SN addition information, and initiates an SN addition request to the T-SN.
  • the SN receives the SN addition request and replies the SN addition request response to the T-MN.
  • the T-MN replies a handover request response to the S-MN.
  • S-MN initiates an SN release request to S-SN.
  • the S-SN releases the resource configuration and replies the SN release response to the S-MN.
  • the S-MN sends a handover command to the UE.
  • the UE establishes the resource configuration of T-MN and T-SN according to the resource configuration, and initiates a random access procedure to the T-MN.
  • the UE initiates a random access procedure to the T-SN, and it succeeds.
  • the UE sends handover failure information or MCG failure information to the target SN to the target SN.
  • the UE sends handover failure information or MCG failure information through the split SRB1 (split SRB1) established by the UE in the T-MN and T-SN.
  • the RRC signaling where the failure information is located passes through the secret key of T-MN SRB1 and Algorithm for encryption and integrity protection. or,
  • the UE sends handover failure information or MCG failure information through the SRB3 established by the UE in the T-SN.
  • the RRC signaling where the failure information is located is encrypted and integrity protected by the secret key and algorithm of the SRB3 of the T-SN.
  • the T-SN forwards the handover failure information or MCG failure information to the T-MN.
  • the T-MN executes the handover procedure (that is, decides on a new handover procedure).
  • the target node is T-SN, but of course it may not be T-SN but other nodes.
  • the T-MN notifies the new target node of the handover of the GTP tunnel number allocated by the core network in the GTP tunnel in the path switch process.
  • the new target node is a T-SN.
  • the T-SN sends a handover command to the UE through split SRB1 or SRB3.
  • the UE initiates a random access procedure to the new target node. If the new target node is a T-SN, the random access procedure can be omitted and a handover complete response message can be sent directly.
  • the target node of the handover (for example, T-SN) initiates a path selection process to the core network.
  • FIG. 9 is a schematic structural composition diagram of a switching device provided by an embodiment of the application. As shown in FIG. 9, the switching device includes:
  • the sending unit 901 is configured to send first information to the target secondary node after the handover fails or the handover timer expires, where the first information includes handover failure information and/or MCG failure information;
  • the first information is forwarded by the target secondary node to the target master node, and the target master node decides a new handover process; or, the first information is forwarded by the target secondary node to the target master node, And the target master node forwards to the original master node, and the original master node decides the new handover process.
  • the device further includes:
  • the first access unit is configured to initiate a first random access procedure to the target master node, and if the first random access procedure is not successful, it is determined that the handover fails.
  • the device further includes:
  • the second access unit is configured to initiate a second random access process to the target secondary node, and the second random access process is successful.
  • the sending unit is configured to send the first information to the target secondary node by offloading SRB1.
  • the first information is carried in the first RRC signaling, and the first RRC signaling is encrypted and integrity protected by the secret key and algorithm of the SRB1 on the target master node side.
  • the sending unit is configured to send the first information to the target secondary node through SRB3.
  • the first information is carried in second RRC signaling, and the second RRC signaling is encrypted and integrity protected by the secret key and algorithm of SRB3 on the target secondary node side.
  • the target master node deciding on a new handover process includes:
  • the target master node determines the target node for handover, and sends the GTP tunnel number allocated by the core network used in the path switching process to the target node;
  • the target master node receives the handover command, and forwards the handover command to the target secondary node;
  • the target node initiates a path switching process to the core network according to the GTP tunnel number.
  • the target secondary node sending a handover command to the terminal includes:
  • the target secondary node sends a handover command to the terminal through the offload SRB1.
  • the target secondary node sending a handover command to the terminal includes:
  • the target secondary node sends a handover command to the terminal through SRB3.
  • the target node and the target secondary node are the same node
  • the target node and the target auxiliary node are different nodes.
  • the apparatus when the target node and the target secondary node are different nodes, the apparatus further includes:
  • the third access unit is configured to initiate a third random access procedure to the target node.
  • the first information includes at least one of the following:
  • the cell information quality of the PSCell on the side of the original secondary node is the cell information quality of the PSCell on the side of the original secondary node
  • the cell information quality of the PSCell on the target secondary node side is the cell information quality of the PSCell on the target secondary node side.
  • FIG. 10 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device (such as a base station).
  • the communication device 600 shown in FIG. 10 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the Methods.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 600 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 11 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiments of the present application, and the chip can implement the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 12 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 12, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It's concise, so I won't repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium,
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法及装置、通信设备,包括:终端确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。

Description

一种切换方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种切换方法及装置、通信设备。
背景技术
目前,在R16载波聚合(Carrier Aggregation,CA)-双连接(Dual Connectivity,DC)增强课题中支持主小区组(Master Cell Group,MCG)发生失败通过辅小区组(Secondary Cell Group,SCG)的链路发送MCG失败信息给主节点(Master Node,MN),MN知道该失败信息之后,例如触发一个切换过程来规避MCG失败问题,从而避免了无线资源控制(Radio Resource Control,RRC)连接重建的触发。
然而,对于切换过程,会出现切换失败的情况,切换失败后也会触发RRC连接重建,导致业务中断以及数据丢失的问题。
发明内容
本申请实施例提供一种信息传输方法及装置、通信设备。
本申请实施例提供的切换方法,包括:
终端确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;
其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
本申请实施例提供的切换装置,包括:
发送单元,用于确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;
其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信息传输方法。
本申请实施例提供的芯片,用于实现上述的信息传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信息传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信息传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信息传输方法。
通过上述技术方案,终端在MR-DC场景下切换失败时,向目标辅节点上报相关的失败信息,从而可以避免触发RRC连接重建,进而避免了业务中断以及数据丢失的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申 请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的EN-DC整体组网架构;
图3为本申请实施例提供的EN-DC的方案3A和方案3的示意图;
图4为本申请实施例提供的用户面承载类型的示意图;
图5为本申请实施例提供的SN侧密钥衍生架构图;
图6为本申请实施例提供的切换方法的流程示意一;
图7为本申请实施例提供的切换方法的流程示意二;
图8为本申请实施例提供的切换方法的流程示意三;
图9为本申请实施例提供的切换装置的结构组成示意图;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile  Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特 网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密合作(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP在2017年12底 前首先完成第一个5G版本,即EN-DC(LTE-NR Dual Connectivity)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN),EN-DC的网络部署和组网架构如图2所示,其中,E-UTRAN代表接入网部分,EPC代表核心网部分,接入网部分由至少一个eNB(图2中示意出两个eNB)和至少一个en-gNB(图2中示意出两个en-gNB)组成,其中,eNB作为MN,en-gNB作为SN,MN和SN均连接到EPC。
EN-DC的场景包括图3所示的方案3A(Scenario 3A)和方案3(Scenario 3)。其中,Scenario 3A中LTE eNB作为MN,gNB作为SN,LTE eNB与EPC之间有控制面接口(S1-C)和用户面接口(S1-U),而gNB与EPC之间仅有用户面接口(S1-U),gNB的控制面信令需要通过LTE eNB转发给EPC。Scenario 3中LTE eNB作为MN,gNB作为SN,LTE eNB与EPC之间有控制面接口(S1-C)和用户面接口(S1-U),gNB的控制面信令和用户面消息均需要通过LTE eNB转发给EPC。
EN-DC相对于LTE DC来说,主要的关键技术点主要包括:控制面,用户面,安全,无线链路失败(Radio Link Failure,RLF),系统广播接收以及无线资源管理(Radio Resource Management,RRM)协调和UE能力协调等等。以下分别进行描述。
控制面
控制面上,MN和SN侧均存在RRC实体,均可以生成RRC协议数据单元(Protocol Data Unit,PDU)。但是同一个时刻只有一个RRC状态机且基于MN侧。
LTE中信令承载包括SRB0,SRB,SRB2,EN-DC在此基础上进一步支持SRB3。SRB3用于传输SN到UE之间的RRC信令,该信令承载的信令内容生成不需要和MN之间进行资源和UE能力的协商。同时为 了提高SRB1和SRB2的可靠性,EN-DC中支持split SRB1和split SRB2,即MN产生的RRC消息对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)PDU在SN侧重复传输一份,保证其高可靠性。
用户面
在LTE DC中,用户面的承载类型包括主小区组承载(MCG bearer),辅小区组承载(SCG bearer),主小区组分流承载(MCG split bearer)。在此基础上,为了提高数据传输的可靠性,EN-DC提出了辅小区组分流承载(SCG split bearer)。MCG split bearer和SCG split bearer主要在于PDCP层功能不同和PDCP层密钥不同。
为了最小化MCG split bearer和SCG split bearer之间的变更,降低标准化、实现和测试的工作以及最小化市场产品特性的分化,提出了bearer harmonization的概念,即MCG split bearer和SCG split bearer统一为一个承载类型,即Split bearer,也就是哪种split形式对于UE来说是透明的,如图4所示。
不同的承载类型之间都可以进行相互转化。为了降低承载转化带来的影响,针对承载配置PDCP version类型规定:
Figure PCTCN2019086485-appb-000001
表1
安全
EN-DC中,MN侧的密钥衍生和LTE独立组网(Standalone,SA) 的密钥衍生过程一样。针对SN侧的密钥以及参数输入如图5所示。在EN-DC中,网络侧针对每个承载配置KeNB或者S-KeNB一个密钥给该承载。
关于UE对于NR安全算法支持能力上报,为了降低对EPC的影响,网络侧通过LTE安全能力算法支持判断NR算法能力支持,例如NR algorithms(nea0/1/2/3 and nia0/1/2/3)对应LTE algorithms(eea0/1/2/3 and eia 0/1/2/3)。
无线链路监控
在EN-DC中,如果RLF发生在MCG侧,则触发UE发起RRC连接重建过程;如果RLF发生在SCG侧,则UE悬挂所有的SCG侧承载和SCG侧传输并向MN侧上报SCGFailureInformation。
在SCG失败期间,UE保持来自MN和SN侧的测量配置,并继续执行对应测量,如果可以的话。
系统广播信息接收
NR SN不需要广播系统广播信息,除了系统帧号(System Frame Number,SFN)定时信息。系统信息通过LTE eNB用专用信令提供给UE。UE需要至少从NR主辅小区(PSCell)上获取SCG的无线帧定时和SFN信息。
NR SCG的系统信息(System Information,SI)变更可以通过专用信令,或者LTE MCG SRB者NR SCG SRB配置给UE。
NR Scell SI变更,网络侧先释放然后再添加相关的NR Scell,而是使用同一个RRC连接重配置消息。而且这个过程可以通过MCG SRB或者SCG SRB来完成。
在R15后期,将支持其他DC模式,即NE-DC,5GC-EN-DC,NR DC。对于EN-DC,接入网络连接的核心网是4G核心网(EPC),而其他DC 模式连接的核心网是5G核心网(5GC)。MR-DC模式中,对于EN-DC架构,LTE eNB是MN,NR gNB是SN,MN和SN均连接EPC。对于NE-DC架构,NR gNB是MN,eLTE eNB是SN,MN和SN均连接下一代核心网。当然,MN和SN的类型可以相同,均为NR gNB,这两个NR gNB均连接下一代核心网。
在MR-DC中,UE配置了MR-DC可能会执行切换,在切换过程中SN可能变化,也可能不变化。MR-DC切换可能会失败,失败后会触发RRC连接重建,目前R16 CA,DC增强课题中支持MCG发生失败通过SCG的链路发送MCG失败信息给网络侧(即MN),MN知道该失败信息之后,例如触发一个切换过程以规避MCG失败问题,从而避免了RRC连接重建的触发。因为RRC连接重建会带来业务中断以及数据丢失的问题。但是对于切换失败,因为UE接收到切换命令之后,会释放UE在原侧MN的上下文,建立切换目标节点的上下文,而且可能SN发生变更,所以无法通过原来的SN节点上报MCG失败信息给网络侧,为此,提出了本申请实施例的以下技术方案。
图6为本申请实施例提供的切换方法的流程示意一,如图6所示,所述切换方法包括以下步骤:
步骤601:终端确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端等任意能够与网络进行通信的设备。
本申请实施例应用于MR-DC场景,具体地,1)原主节点(S-MN)判决发起切换过程,向目标主节点(T-MN)发起切换请求。2)T-MN判决是否接收切换请求,并根据S-MN通知的测量结果判决目标辅节点(T-SN)的添加信息,并向T-SN发起SN添加请求。3)T-SN接收SN添加请求,并回复SN添加请求响应给T-MN。4)T-MN回复切换请求响应消息给S-MN。5)S-MN向终端发送切换命令。而后,执行本申请实施例的以下步骤。
具体地,1)所述终端向所述目标主节点发起第一随机接入过程,如果所述第一随机接入过程未成功,则确定切换失败。2)所述终端向所述目标辅节点发起第二随机接入过程,且所述第二随机接入过程成功。
通过上述步骤1)和步骤2)可以确定,终端接入目标辅节点成功,且接入目标主节点失败,终端可以与目标辅节点通信。
本申请实施例中,终端确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息。
本申请实施例中,所述终端可以采用以下任意一种方式向标辅节点发送所述第一信息:
方式一:所述终端通过分流SRB1向目标辅节点发送所述第一信息。
进一步,所述第一信息携带在第一RRC信令中,所述第一RRC信令通过所述目标主节点侧的SRB1的秘钥和算法进行加密和完整性保护。
方式二:所述终端通过SRB3向目标辅节点发送所述第一信息。
进一步,所述第一信息携带在第二RRC信令中,所述第二RRC信令通过所述目标辅节点侧的SRB3的秘钥和算法进行加密和完整性保护。
本申请实施例中,目标辅节点接收到所述第一信息后,所述第一信息的转发路径有如下两种:
路径一:所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
路径二:所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程。
对于路径二而言,所述目标主节点判决新的切换过程,包括:
1)所述目标主节点确定切换的目标节点,将路径切换过程中使用的核心网分配的GTP隧道号发送给所述目标节点;
2)所述目标主节点接收切换命令,并将所述切换命令转发给所述目标辅节点;
3)所述目标辅节点向所述终端发送切换命令,以触发所述终端接入所述目标节点;
这里,所述目标辅节点通过分流SRB1向所述终端发送切换命令。或者,所述目标辅节点通过SRB3向所述终端发送切换命令。
4)所述目标节点根据所述GTP隧道号,向核心网发起路径切换过程。
上述方案中,在一实施方式中,所述目标节点与所述目标辅节点为相同的节点,由于终端已经向所述目标辅节点发起过第二随机接入过程,因此,可以省略终端向所述目标辅节点的随机接入过程。或者,在另一实施方式中,所述目标节点与所述目标辅节点为不同的节点,这种情况下,所述终端需要向所述目标节点发起第三随机接入过程。
本申请实施例中,所述第一信息包括以下至少之一:
失败类型;
原主节点侧的PCell的小区标识信息;
原辅节点侧的PSCell的小区标识信息;
目标主节点侧的PCell的小区标识信息;
目标辅节点侧的PSCell的小区标识信息;
原主节点侧的PCell的小区信息质量;
原辅节点侧的PSCell的小区信息质量;
目标主节点侧的PCell的小区信息质量;
目标辅节点侧的PSCell的小区信息质量。
这里,失败类型例如是切换失败类型。
这里,小区信息质量包括以下至少之一:RSRP、RSRQ、SINR、波束测量结果
图7为本申请实施例提供的切换方法的流程示意二,如图7所示,所述切换方法包括以下步骤:
1.S-MN判决发起切换过程,向T-MN发起切换请求。
2.T-MN判决是否接收切换请求,并根据S-MN通知的测量结果判决T-SN的添加信息,并向T-SN发起SN添加请求。
3.SN接收SN添加请求,并回复SN添加请求响应给T-MN。
4.T-MN回复切换请求响应给S-MN。
5.S-MN向S-SN发起SN释放请求。
6.S-SN释放资源配置,并回复SN释放响应给S-MN。
7.S-MN向UE发送切换命令。
8.UE根据资源配置建立T-MN和T-SN的资源配置,并向T-MN发起随机接入过程。
9.如果切换定时器超时,则切换失败。
10.UE向T-SN发起随机接入过程,并成功。
11.UE向目标SN发送切换失败信息或者MCG失败信息给目标SN。
1)UE通过UE在T-MN和T-SN建立的分流SRB1(split SRB1)发送切换失败信息或者MCG失败信息,此时该失败信息所在的RRC信令通过T-MN的SRB1的秘钥和算法进行加密和完整性保护。或者,
2)UE通过UE在T-SN建立的SRB3发送切换失败信息或者MCG失败信息,此时该失败信息所在的RRC信令通过T-SN的SRB3的秘钥和算法进行加密和完整性保护。
12.T-SN将切换失败信息或者MCG失败信息转发给T-MN。
13.T-SN将切换失败信息或者MCG失败信息转发给S-MN。原SN根据该失败信息,判决新的切换流程。
图8为本申请实施例提供的切换方法的流程示意三,如图8所示,所述切换方法包括以下步骤:
1.S-MN判决发起切换过程,向T-MN发起切换请求。
2.T-MN判决是否接收切换请求,并根据S-MN通知的测量结果判决T-SN的添加信息,并向T-SN发起SN添加请求。
3.SN接收SN添加请求,并回复SN添加请求响应给T-MN。
4.T-MN回复切换请求响应给S-MN。
5.S-MN向S-SN发起SN释放请求。
6.S-SN释放资源配置,并回复SN释放响应给S-MN。
7.S-MN向UE发送切换命令。
8.UE根据资源配置建立T-MN和T-SN的资源配置,并向T-MN发起随机接入过程。
9.如果切换定时器超时,则切换失败。
10.UE向T-SN发起随机接入过程,并成功。
11.UE向目标SN发送切换失败信息或者MCG失败信息给目标SN。
1)UE通过UE在T-MN和T-SN建立的分流SRB1(split SRB1)发送切换失败信息或者MCG失败信息,此时该失败信息所在的RRC信令通过T-MN的SRB1的秘钥和算法进行加密和完整性保护。或者,
2)UE通过UE在T-SN建立的SRB3发送切换失败信息或者MCG 失败信息,此时该失败信息所在的RRC信令通过T-SN的SRB3的秘钥和算法进行加密和完整性保护。
12.T-SN将切换失败信息或者MCG失败信息转发给T-MN。
13.T-MN执行切换流程(即判决新的切换过程)。
例如目标节点是T-SN,当然也可以不是T-SN,是其他节点。T-MN将路径选择(path switch)过程中的GTP tunnel中核心网分配的GTP隧道号通知给切换的新的目标节点,在一个例子中,新的目标节点例如是T-SN。
14.T-SN通过split SRB1或者SRB3发送切换命令给UE。UE向新的目标节点发起随机接入过程,如果是新的目标节点是T-SN,可以省略到随机接入过程,直接发送切换完成响应消息。
15.切换的目标节点(例如是T-SN)向核心网发起路径选择流程。
图9为本申请实施例提供的切换装置的结构组成示意图,如图9所示,所述切换装置包括:
发送单元901,用于确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;
其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
在一实施方式中,所述装置还包括:
第一接入单元,用于向所述目标主节点发起第一随机接入过程,如果所述第一随机接入过程未成功,则确定切换失败。
在一实施方式中,所述装置还包括:
第二接入单元,用于向所述目标辅节点发起第二随机接入过程,且所述第二随机接入过程成功。
在一实施方式中,所述发送单元,用于通过分流SRB1向目标辅节点发送所述第一信息。
在一实施方式中,所述第一信息携带在第一RRC信令中,所述第一RRC信令通过所述目标主节点侧的SRB1的秘钥和算法进行加密和完整性保护。
在一实施方式中,所述发送单元,用于通过SRB3向目标辅节点发送所述第一信息。
在一实施方式中,所述第一信息携带在第二RRC信令中,所述第二RRC信令通过所述目标辅节点侧的SRB3的秘钥和算法进行加密和完整性保护。
在一实施方式中,所述目标主节点判决新的切换过程,包括:
所述目标主节点确定切换的目标节点,将路径切换过程中使用的核心网分配的GTP隧道号发送给所述目标节点;
所述目标主节点接收切换命令,并将所述切换命令转发给所述目标辅节点;
所述目标辅节点向所述终端发送切换命令,以触发所述终端接入所述目标节点;
所述目标节点根据所述GTP隧道号,向核心网发起路径切换过程。
在一实施方式中,所述目标辅节点向所述终端发送切换命令,包括:
所述目标辅节点通过分流SRB1向所述终端发送切换命令。
在一实施方式中,所述目标辅节点向所述终端发送切换命令,包括:
所述目标辅节点通过SRB3向所述终端发送切换命令。
在一实施方式中,所述目标节点与所述目标辅节点为相同的节点;
或者,
所述目标节点与所述目标辅节点为不同的节点。
在一实施方式中,所述目标节点与所述目标辅节点为不同的节点的情况下,所述装置还包括:
第三接入单元,用于向所述目标节点发起第三随机接入过程。
在一实施方式中,所述第一信息包括以下至少之一:
失败类型;
原主节点侧的PCell的小区标识信息;
原辅节点侧的PSCell的小区标识信息;
目标主节点侧的PCell的小区标识信息;
目标辅节点侧的PSCell的小区标识信息;
原主节点侧的PCell的小区信息质量;
原辅节点侧的PSCell的小区信息质量;
目标主节点侧的PCell的小区信息质量;
目标辅节点侧的PSCell的小区信息质量。
本领域技术人员应当理解,本申请实施例的上述信息传输装置的相关描述可以参照本申请实施例的信息传输方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,也可以是网络设备(如基站),图10所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可 以集成在处理器610中。
可选地,如图10所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设 备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统900的示意性框图。如图12所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器, 可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus  RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的 各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种切换方法,所述方法包括:
    终端确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;
    其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
  2. 根据权利要求1所述的方法,其中,所述终端确定切换失败,包括:
    所述终端向所述目标主节点发起第一随机接入过程,如果所述第一随机接入过程未成功,则确定切换失败。
  3. 根据权利要求1或2所述的方法,其中,所述终端向目标辅节点发送第一信息之前,所述方法还包括:
    所述终端向所述目标辅节点发起第二随机接入过程,且所述第二随机接入过程成功。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述终端向目标辅节点发送第一信息,包括:
    所述终端通过分流SRB1向目标辅节点发送所述第一信息。
  5. 根据权利要求4所述的方法,其中,所述第一信息携带在第一RRC信令中,所述第一RRC信令通过所述目标主节点侧的SRB1的秘钥和算法进行加密和完整性保护。
  6. 根据权利要求1至3中任一项所述的方法,其中,所述终端向目标辅节点发送第一信息,包括:
    所述终端通过SRB3向目标辅节点发送所述第一信息。
  7. 根据权利要求6所述的方法,其中,所述第一信息携带在第二RRC信令中,所述第二RRC信令通过所述目标辅节点侧的SRB3的秘钥和算法进行加密和完整性保护。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述目标主节点判决新的切换过程,包括:
    所述目标主节点确定切换的目标节点,将路径切换过程中使用的核心网分配的GTP隧道号发送给所述目标节点;
    所述目标主节点接收切换命令,并将所述切换命令转发给所述目标辅节点;
    所述目标辅节点向所述终端发送切换命令,以触发所述终端接入所述目标节点;
    所述目标节点根据所述GTP隧道号,向核心网发起路径切换过程。
  9. 根据权利要求8所述的方法,其中,所述目标辅节点向所述终端发送切换命令,包括:
    所述目标辅节点通过分流SRB1向所述终端发送切换命令。
  10. 根据权利要求8所述的方法,其中,所述目标辅节点向所述终端发送切换命令,包括:
    所述目标辅节点通过SRB3向所述终端发送切换命令。
  11. 根据权利要求8至10中任一项所述的方法,其中,
    所述目标节点与所述目标辅节点为相同的节点;或者,
    所述目标节点与所述目标辅节点为不同的节点。
  12. 根据权利要求11所述的方法,其中,所述目标节点与所述目标辅节点为不同的节点的情况下,所述方法还包括:
    所述终端向所述目标节点发起第三随机接入过程。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一信 息包括以下至少之一:
    失败类型;
    原主节点侧的PCell的小区标识信息;
    原辅节点侧的PSCell的小区标识信息;
    目标主节点侧的PCell的小区标识信息;
    目标辅节点侧的PSCell的小区标识信息;
    原主节点侧的PCell的小区信息质量;
    原辅节点侧的PSCell的小区信息质量;
    目标主节点侧的PCell的小区信息质量;
    目标辅节点侧的PSCell的小区信息质量。
  14. 一种切换装置,所述装置包括:
    发送单元,用于确定切换失败后或者切换定时器超时,向目标辅节点发送第一信息,所述第一信息包括切换失败信息和/或MCG失败信息;
    其中,所述第一信息由所述目标辅节点转发给目标主节点,由所述目标主节点判决新的切换过程;或者,所述第一信息由所述目标辅节点转发给目标主节点,并由所述目标主节点转发给原主节点,由所述原主节点判决新的切换过程。
  15. 根据权利要求14所述的装置,其中,所述装置还包括:
    第一接入单元,用于向所述目标主节点发起第一随机接入过程,如果所述第一随机接入过程未成功,则确定切换失败。
  16. 根据权利要求14或15所述的装置,其中,所述装置还包括:
    第二接入单元,用于向所述目标辅节点发起第二随机接入过程,且所述第二随机接入过程成功。
  17. 根据权利要求14至16中任一项所述的装置,其中,所述发送单元,用于通过分流SRB1向目标辅节点发送所述第一信息。
  18. 根据权利要求17所述的装置,其中,所述第一信息携带在第一RRC信令中,所述第一RRC信令通过所述目标主节点侧的SRB1的秘钥和算法进行加密和完整性保护。
  19. 根据权利要求14至16中任一项所述的装置,其中,所述发送单元,用于通过SRB3向目标辅节点发送所述第一信息。
  20. 根据权利要求19所述的装置,其中,所述第一信息携带在第二RRC信令中,所述第二RRC信令通过所述目标辅节点侧的SRB3的秘钥和算法进行加密和完整性保护。
  21. 根据权利要求14至20中任一项所述的装置,其中,所述目标主节点判决新的切换过程,包括:
    所述目标主节点确定切换的目标节点,将路径切换过程中使用的核心网分配的GTP隧道号发送给所述目标节点;
    所述目标主节点接收切换命令,并将所述切换命令转发给所述目标辅节点;
    所述目标辅节点向所述终端发送切换命令,以触发所述终端接入所述目标节点;
    所述目标节点根据所述GTP隧道号,向核心网发起路径切换过程。
  22. 根据权利要求21所述的装置,其中,所述目标辅节点向所述终端发送切换命令,包括:
    所述目标辅节点通过分流SRB1向所述终端发送切换命令。
  23. 根据权利要求21所述的装置,其中,所述目标辅节点向所述终端发送切换命令,包括:
    所述目标辅节点通过SRB3向所述终端发送切换命令。
  24. 根据权利要求21至23中任一项所述的装置,其中,
    所述目标节点与所述目标辅节点为相同的节点;或者,
    所述目标节点与所述目标辅节点为不同的节点。
  25. 根据权利要求24所述的装置,其中,所述目标节点与所述目标辅节点为不同的节点的情况下,所述装置还包括:
    第三接入单元,用于向所述目标节点发起第三随机接入过程。
  26. 根据权利要求14至25中任一项所述的装置,其中,所述第一信息包括以下至少之一:
    失败类型;
    原主节点侧的PCell的小区标识信息;
    原辅节点侧的PSCell的小区标识信息;
    目标主节点侧的PCell的小区标识信息;
    目标辅节点侧的PSCell的小区标识信息;
    原主节点侧的PCell的小区信息质量;
    原辅节点侧的PSCell的小区信息质量;
    目标主节点侧的PCell的小区信息质量;
    目标辅节点侧的PSCell的小区信息质量。
  27. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  28. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  30. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  31. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2019/086485 2019-05-10 2019-05-10 一种切换方法及装置、通信设备 WO2020227870A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/086485 WO2020227870A1 (zh) 2019-05-10 2019-05-10 一种切换方法及装置、通信设备
CN201980095819.1A CN113796118B (zh) 2019-05-10 2019-05-10 一种切换方法及装置、通信设备
US17/514,583 US20220053392A1 (en) 2019-05-10 2021-10-29 Switching Method and Apparatus, and Communication Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086485 WO2020227870A1 (zh) 2019-05-10 2019-05-10 一种切换方法及装置、通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,583 Continuation US20220053392A1 (en) 2019-05-10 2021-10-29 Switching Method and Apparatus, and Communication Device

Publications (1)

Publication Number Publication Date
WO2020227870A1 true WO2020227870A1 (zh) 2020-11-19

Family

ID=73290142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086485 WO2020227870A1 (zh) 2019-05-10 2019-05-10 一种切换方法及装置、通信设备

Country Status (3)

Country Link
US (1) US20220053392A1 (zh)
CN (1) CN113796118B (zh)
WO (1) WO2020227870A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230934A1 (zh) * 2022-05-31 2023-12-07 北京小米移动软件有限公司 一种失败信息的传输方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220081990A (ko) * 2019-10-14 2022-06-16 구글 엘엘씨 보조 노드 변경을 통한 빠른 mcg 실패 복구
CN115296982B (zh) * 2022-10-09 2023-01-17 云和恩墨(北京)信息技术有限公司 基于数据库的节点切换方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168332A1 (en) * 2011-06-06 2012-12-13 Research In Motion Limited Method and apparatus for radio resource control procedures
CN106465435A (zh) * 2014-03-21 2017-02-22 诺基亚通信公司 双连接重建
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置
CN107690154A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种小区配置方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210422A1 (en) * 2011-08-12 2013-08-15 Interdigital Patent Holdings, Inc. Systems and/or methods for providing mobility robustness in heterogeneous network and small cell deployments
WO2014175677A1 (en) * 2013-04-26 2014-10-30 Lg Electronics Inc. Method and apparatus for performing partial handover procedure in wireless communication system
CN107690163A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区切换方法及装置
US10397836B2 (en) * 2016-10-27 2019-08-27 Ofinno, Llc Handover for UE with V2X service
US10523581B2 (en) * 2016-10-31 2019-12-31 Microsoft Technology Licensing Llc Flighting of node controller in pilot mode in resource management system
US10492107B2 (en) * 2016-11-03 2019-11-26 Ofinno, Llc SPS configuration during handover
JP6756047B2 (ja) * 2016-12-23 2020-09-16 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるv2x通信を行う方法及びこのための装置
US11323923B2 (en) * 2017-08-21 2022-05-03 Samsung Electronics Co., Ltd. Method and system for communication in wireless communication network
EP3996421A3 (en) * 2018-01-11 2022-08-24 Comcast Cable Communications LLC Connection failure reporting
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168332A1 (en) * 2011-06-06 2012-12-13 Research In Motion Limited Method and apparatus for radio resource control procedures
CN106465435A (zh) * 2014-03-21 2017-02-22 诺基亚通信公司 双连接重建
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置
CN107690154A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种小区配置方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230934A1 (zh) * 2022-05-31 2023-12-07 北京小米移动软件有限公司 一种失败信息的传输方法及装置

Also Published As

Publication number Publication date
CN113796118A (zh) 2021-12-14
CN113796118B (zh) 2023-11-24
US20220053392A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020147050A1 (zh) 一种信息上报方法及装置、终端
US20230009565A1 (en) Communication method and apparatus applied to multi-link device in wireless local area network
WO2019237763A1 (zh) 一种rlf的处理方法及装置、通信设备
WO2020154925A1 (zh) 一种协调测量配置的方法及装置、网络设备、终端
US20220053392A1 (en) Switching Method and Apparatus, and Communication Device
WO2019242722A1 (zh) 一种测量控制方法及装置、终端设备
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2020061931A1 (zh) 一种切换上报的方法、终端设备及网络设备
US11229079B2 (en) Information configuration method and terminal
US20230012998A1 (en) Communication method, access network device, terminal device, and core network device
US20210092612A1 (en) Method and device for controlling security function
WO2020232611A1 (zh) 一种小区重选方法及装置、终端
US11805563B2 (en) Wireless communication method and base station
US11611925B2 (en) Switching processing method, terminal device and network device
US20210243687A1 (en) Processing Method for Security Algorithm and Terminal
CN112703770B (zh) 一种rrc连接重建方法及装置、网络设备
US11265951B2 (en) Method and apparatus for recovering RRC connection, and terminal
US11259353B2 (en) Bearer configuration method and apparatus, and network device
WO2022021413A1 (zh) 一种密钥生成方法及装置、终端设备、网络设备
WO2021212258A1 (zh) 一种上报指示信息的方法及装置、终端设备、网络设备
WO2020155157A1 (zh) 切换过程中安全信息的处理方法及装置、网络设备、终端
US20220182895A1 (en) Wireless communication method and apparatus, and network device
WO2021248336A1 (zh) 一种释放配置的方法及装置、终端设备、网络设备
WO2022110048A1 (zh) 一种信息指示方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928470

Country of ref document: EP

Kind code of ref document: A1