WO2020226446A1 - Flexible aluminum electrode based on textile materials and method for manufacturing same - Google Patents

Flexible aluminum electrode based on textile materials and method for manufacturing same Download PDF

Info

Publication number
WO2020226446A1
WO2020226446A1 PCT/KR2020/006068 KR2020006068W WO2020226446A1 WO 2020226446 A1 WO2020226446 A1 WO 2020226446A1 KR 2020006068 W KR2020006068 W KR 2020006068W WO 2020226446 A1 WO2020226446 A1 WO 2020226446A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
monomolecular
aluminum electrode
based flexible
flexible aluminum
Prior art date
Application number
PCT/KR2020/006068
Other languages
French (fr)
Korean (ko)
Inventor
조진한
남동현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2020226446A1 publication Critical patent/WO2020226446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/204LB techniques
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/50Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials fabric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a fabric material-based flexible aluminum electrode and a method for manufacturing the same, and more particularly, to a flexible electrode having excellent electrical and mechanical properties and workability by coating aluminum on a fabric material substrate as an insulator, and a method of manufacturing the same.
  • the portable electrode should be light while implementing high electrical conductivity, and further, in order to exhibit high performance when applied as an electrode of an energy storage device, a high ion flux should be implemented.
  • a general flexible electrode is manufactured by depositing an electrode material with high electrical conductivity on a substrate.
  • electrode materials that are currently in the spotlight, carbon materials such as graphaene and carbon nanotubes (CNT), metal wires, etc. Conductive polymers and the like.
  • Such an electrode material can secure high electrical conductivity per area due to its structural feature having a large area, and can have mechanical flexibility.
  • synthesis at a high temperature is required to reduce the loss of electrical conductivity, and additionally, a chemical reduction reaction is required for strong bonding, and the process is complicated, takes a long time, and has disadvantages in terms of cost.
  • the present invention is to solve the problems of the prior art, one aspect of the present invention is a fabric material-based flexible aluminum electrode in which aluminum is uniformly coated with a high packing density by employing an electroplating method on an insulating fabric material substrate having a porous structure. And it is to provide a manufacturing method.
  • Fabric material-based flexible aluminum electrode is a porous substrate formed by crossing a plurality of fibers with each other; A bonding layer formed on the surface of the fiber; A base layer comprising a nanoparticle layer including metal nanoparticles and formed on the bonding layer, and a monomolecular material containing an amine group (NH 2 ) and including a monomolecular layer formed on the nanoparticle layer; And a plating layer formed by electroplating aluminum (Al) on the base layer.
  • Al aluminum
  • the fiber may include any one or more selected from the group consisting of polyester, nylon, and acrylic fibers.
  • the bonding layer may include an amine group (NH 2 )-containing polymer material.
  • the polymer material may include any one or more selected from the group consisting of polyethylenimine (PEI), and poly(allylamine)hydrochloride (PAH). have.
  • PEI polyethylenimine
  • PAH poly(allylamine)hydrochloride
  • the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt.
  • the monomolecular material is tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), It may include any one or more selected from the group consisting of tetrakis (aminomethyl) methane, and methanetetramine.
  • a plurality of the base layers may be sequentially stacked.
  • the base layer may have a sheet resistance of 10 0 to 10 4 ⁇ /sq.
  • At least two or more of the plurality of base layers may be made of a material different from each other at least one of the nanoparticle layer and the monomolecular layer.
  • the fabric material-based flexible aluminum electrode manufacturing method (a) by immersing a porous substrate formed by crossing a plurality of fibers in a first dispersion in which a polymer material is dispersed, Forming a bonding layer on the surface; (b) forming a nanoparticle layer by immersing the substrate on which the bonding layer is formed in a second dispersion in which metal nanoparticles are dispersed; (c) forming a monomolecular layer by immersing the substrate on which the nanoparticle layer is formed in a third dispersion in which an amine group-containing monomolecular material is dispersed; And (d) electroplating aluminum (Al) to form a plating layer on the monomolecular layer.
  • the step (b) and the step (c) are sequentially repeated at least a plurality of times, and the nano A plurality of conductive layers in which the monomolecular layer is stacked on the particle layer may be stacked.
  • a light and human-friendly flexible electrode is realized by simply and quickly coating aluminum on an insulator substrate made of a fabric material having high flexibility by electroplating, and at the same time, the electrical conductivity, mechanical strength, and workability of the electrode are improved. I can.
  • the electrode fabricated according to the present invention can be applied not only to energy storage devices, but also to various electric devices that require light weight and high flexibility, and is not limited in size and shape of the electrode to be manufactured because it is applied with simple electroplating. Does not.
  • FIG. 1 to 2 are perspective views schematically showing a fabric material-based flexible aluminum electrode according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a fabric material-based flexible aluminum electrode according to another embodiment of the present invention taken along line A-A' of FIG. 2.
  • Figure 4 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to another embodiment of the present invention.
  • 6A is an SEM image of an electrode manufactured according to an embodiment of the present invention.
  • 8A to 8B are results of a mechanical stability test of an electrode manufactured according to an embodiment of the present invention.
  • 9A to 9B are graphs of evaluation results of electrochemical properties of an energy storage device (battery) to which an electrode manufactured according to an embodiment of the present invention is applied.
  • FIG. 1 to 2 are perspective views schematically showing a fabric material-based flexible aluminum electrode according to an embodiment of the present invention.
  • a fabric material-based flexible aluminum electrode includes a porous substrate 10 formed by crossing a plurality of fibers 11 with each other; A bonding layer 20 formed on the surface of the fiber 11; A base comprising a nanoparticle layer 31 including metal nanoparticles and formed on the bonding layer 20, and a monomolecular layer 33 formed on the nanoparticle layer 31 and including a monomolecular material containing an amine group (NH 2 ) Layer 30; And a plating layer 40 formed by electroplating aluminum (Al) on the base layer 30.
  • the present invention relates to a flexible electrode.
  • a fabric material-based flexible aluminum electrode according to the present invention was devised.
  • the fabric material-based flexible aluminum electrode according to the present invention includes a porous substrate 10, a bonding layer 20, a base layer 30, and a plating layer 40.
  • the substrate 10 is a woven fabric substrate in which a plurality of fibers 11 are intersected with each other, and has a plurality of pores formed when the fibers 11 cross each other.
  • the fibers 11 forming the material of the substrate 10 are long, thin, and bendable linear objects, and may include both natural fibers and synthetic fibers. Accordingly, the substrate 10 has flexibility by weaving either natural fibers or synthetic fibers alone, or a mixture of these fibers 11.
  • the fibers 11 constituting the flexible substrate 10 may be made of at least one or more of polyester, nylon, and acrylic fibers. However, the fibers 11 are not necessarily limited thereto, and as long as the flexible substrate 10 having a predetermined shape while intersecting with each other can be formed, there is no particular limitation on the type thereof.
  • the substrate 10 there is a weaving method as a representative method of manufacturing the substrate 10 using a plurality of fibers 11, but in the present invention, the scope of rights should not be limited by the method, and 2D to 3D As long as the substrate 10 can be formed in a predetermined shape, such as, it may be manufactured in any manner. In this way, the flexible substrate 10 manufactured by the fibers 11 has a number of fine-sized pores, which are connected from the outer surface to the inner surface of the substrate 10. In addition, the substrate 10 may have electrical insulation according to the type of fiber 11 or the like.
  • the substrate 10 supports the base layer 30 and the plating layer 40, wherein the base layer 30 is bonded to the substrate 10 via the bonding layer 20.
  • the bonding layer 20 is a layer formed by adsorbing a polymer material on the flexible porous substrate 10.
  • the polymer material allows metal nanoparticles to be described later to be coated on the substrate 10 to form the nanoparticle layer 31.
  • the polymer material penetrates into the surface of the substrate 10, that is, through the pores of the substrate 10 as well as the outer fibers 11 exposed to the outside, and is adsorbed to the outer surfaces of each of the inner fibers 11. I can.
  • the polymer material may be adsorbed in a form surrounding the outer surface of the fiber 11.
  • polymeric materials may contain an amine group (NH 2 ) having strong affinity with metal nanoparticles, and as an example, select any one or more from the group consisting of polyethylenimine (PEI), and poly(allylamine)hydrochloride (PAH). Can be used.
  • PEI polyethylenimine
  • PAH poly(allylamine)hydrochloride
  • the polymer material is not necessarily limited to the polymer, and there is no particular limitation as long as it is a material capable of fixing metal nanoparticles to the surface of the fiber 11.
  • the base layer 30 is a double layer in which a monomolecular layer 33 is stacked on the nanoparticle layer 31 formed on the bonding layer 20.
  • the nanoparticle layer 31 is a layer formed by metal nanoparticles on the bonding layer 20, and is fixed to the substrate 10 by the bonding layer 20 as described above, outside of the substrate 10 And it is formed on each of the fibers 11 on the inner side, at this time may be formed in a form surrounding the outer surface of the bonding layer (20).
  • the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt, but the material is not necessarily limited thereto.
  • the monomolecular layer 33 is a layer formed by coating a monomolecular material on the nanoparticle layer 31.
  • the monomolecular substance is a monomolecular substance containing an amine group (NH 2 ), tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), tetrakis(aminomethyl)methane, And it may include any one or more selected from the group consisting of methanetetramine.
  • the monomolecular material is not necessarily limited thereto, and there is no particular limitation as long as it is a monomolecular material containing an amine group.
  • these monomolecular materials fix the metal nanoparticles together with the polymer materials described above, and impart electrical conductivity to the nanoparticle layer 31.
  • the constituent particles are surrounded by long organic ligands and thus exhibit insulation.
  • the amine group-containing polymer material (binding layer 20) and the amine group-containing monomolecular material (monomolecular layer 33) replace the insulating organic ligand to improve the bonding strength between metal nanoparticles, Electrical conductivity is imparted to the particle layer 31.
  • the base layer 30 formed in this way may be formed to have a minimum electrical conductivity capable of electroplating in order to form the plating layer 40 by an electroplating method.
  • the base layer 30 may have a sheet resistance of 10 0 to 10 4 ⁇ /sq, and within that range, electroplating may be effectively performed.
  • the sheet resistance of the base layer 30 is not necessarily limited within the above range, and may be differently determined depending on the type of metal nanoparticles and monomolecular materials, the number of stacked base layers 30 to be described later, and the like.
  • the plating layer 40 is a layer formed by electroplating aluminum (Al) on the base layer 30.
  • Aluminum is an economical electrode material because its electrical conductivity is superior to other metals compared to other metals. It also has excellent wearability and portability because of its high electrical conductivity to its mass. In addition, it has excellent stability at high voltage, so it can be used as a positive electrode material for batteries. Since such aluminum is coated by an electroplating method, it can be coated with a high packing density. At this time, since the porosity of the substrate 10 is maintained, aluminum is adsorbed very uniformly and disposed on the outside and inside of the substrate 10. The plating layer 40 can be evenly formed on each of the fibers 11. Furthermore, since the electroplating is performed in a short time in a simple manner, the time taken to form the electrode can be shortened, the manufacturing cost can be reduced, and various designs are possible because the size or shape can be selected according to the purpose of use of the electrode.
  • FIG. 3 is a cross-sectional view of a fabric material-based flexible aluminum electrode according to another embodiment of the present invention taken along line A-A' of FIG. 2.
  • a plurality of base layers 30 may be sequentially stacked. That is, the second base layer 30b may be stacked on the first base layer 30a, or another base layer 30 may be stacked thereon.
  • the nanoparticle layer 31 and the monomolecular layer 33 constituting each of the base layers 30 may be made of the same material, but may be made of different materials.
  • the nanoparticles of the nanoparticle layer 31a constituting the first base layer 30a use Au
  • the monomolecular material of the monomolecular layer 33a uses DETA
  • the nanoparticles constituting the second base layer 30b By using Ag for the nanoparticles of the particle layer 31b and TREN for the monomolecular material of the monomolecular layer 33b, the double base layer 30 having a (Au/DETA)/(Ag/TREN) structure may be formed.
  • the number of layers of the base layer 30, the types of metal nanoparticles, and single molecules may be determined according to securing a minimum electrical conductivity for aluminum electroplating.
  • the fabric material-based flexible aluminum electrode according to the present invention has a high bonding force between particles and at the same time contains numerous pores unique to the fabric material, when applied to the current collector of an energy store, it not only facilitates the introduction of the electrolyte, It is possible to maximize the number of particles introduced per unit area with a relatively large surface area compared to a flat plate without pores. That is, high ion mobility and driving stability can be secured.
  • the electrode according to the present invention can be particularly applied to the positive electrode current collector of a battery. It can be applied to various electric devices that require flexibility, and since it is applied with simple electroplating, it is not restricted in the size and shape of the electrode to be manufactured.
  • Figure 4 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention.
  • the fabric material-based flexible aluminum electrode manufacturing method (a) by immersing a porous substrate formed by crossing a plurality of fibers in a first dispersion in which a polymer material is dispersed.
  • the fabric material-based porous water decomposition catalyst manufacturing method according to the present invention may consist of a bonding layer forming step (S100), a nanoparticle layer forming step (S200), a monomolecular layer forming step (S300), and a plating layer forming step (S400).
  • the bonding layer forming step (S100) is a process of forming a bonding layer on the surface of fibers constituting the porous flexible substrate.
  • a first dispersion in which a polymer material is dispersed is prepared, and a substrate is immersed in the first dispersion.
  • the substrate is a porous flexible substrate formed by crossing a plurality of fibers, the first dispersion is permeated along the pores of the substrate, so that the polymer material is adsorbed on the surface of the fibers inside as well as outside.
  • the fiber may include any one or more selected from the group consisting of polyester, nylon, and acrylic fiber
  • the polymer material is a polymer containing an amine group, which is polyethylenimine (PEI), and poly(allylamine) hydrochloride (PAH). It may include any one or more selected from the group consisting of.
  • fibers and polymer materials are not necessarily limited to the materials.
  • ethanol may be used as the solvent for the first dispersion, but there is no particular limitation as long as it is a solvent capable of dispersing a polymer material to form a bonding layer on the fiber surface.
  • the nanoparticle layer forming step (S200) is a process of coating metal nanoparticles on the bonding layer.
  • the substrate on which the bonding layer is formed is immersed in a second dispersion in which the metal nanoparticles are dispersed to form a nanoparticle layer.
  • the second dispersion liquid penetrates through the pores and is coated on the bonding layer adsorbed on the inner fiber surface.
  • the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt, and may be dispersed in toluene to prepare a second dispersion.
  • the metal nanoparticles and the solvent are not necessarily limited thereto.
  • the monomolecular layer forming step (S300) is a process of forming a thin film on the nanoparticle layer using a monomolecular material containing an amine group.
  • the amine group-containing monomolecular substance is dispersed in ethanol or the like to prepare a third dispersion, and the substrate is immersed.
  • the third dispersion liquid also penetrates through the pores of the substrate to the inside, a monomolecular material is coated on the nanoparticle layer formed on the outer and inner fiber surfaces to form a monomolecular layer.
  • the monomolecular substance is any one or more selected from the group consisting of tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), tetrakis(aminomethyl)methane, and methanetetramine. It may include, but is not necessarily limited thereto.
  • TREN tris(2-aminoethyl)amine
  • DETA diehthylenetriamine
  • tetrakis(aminomethyl)methane and methanetetramine. It may include, but is not necessarily limited thereto.
  • the base layer is formed by laminating the monomolecular layer on the nanoparticle layer.
  • the base layer thus formed may be formed to have a minimum electrical conductivity capable of electroplating in order to form a plating layer by an electroplating method. Therefore, the sheet resistance of the base layer is preferably in the range of 10 0 to 10 4 ⁇ /sq. To this end, the type of metal nanoparticles may be appropriately selected, or the base layer may be formed in a multilayer structure, which will be described later.
  • the plating layer forming step (S400) is a process of electroplating aluminum on the base layer.
  • a substrate may be used as a cathode and an aluminum metal may be used as an anode, each of which is immersed in an electrolyte solution, and electricity is supplied by connecting a power supply to the cathode and the anode.
  • an aluminum plating layer is formed on the base layer.
  • the substrate is washed with a cleaning solution such as distilled water, and after the cleaning is completed, the substrate can be dried using an inert gas such as nitrogen. have.
  • FIG. 5 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to another embodiment of the present invention.
  • the base layer of the multilayer structure is formed by a layer-by-layer assembly method by sequentially repeating the metal nanoparticle layer forming step (S200), and the monomolecular layer forming step (S300) several times.
  • the metal nanoparticles and the monomolecular materials constituting each base layer may be the same, or at least one or more of them may be selected as different materials.
  • a first dispersion was prepared by dispersing PEI, a polymer having an amine group, in ethanol at 2 mg/mL, and then a porous fabric substrate made of a polyester material was supported for 3 hours. After washing the supported fabric substrate twice with ethanol, the fabric substrate is dried using a dryer. After synthesizing hydrophobically stabilized Au nanoparticles as TOABr (tetraoctylammonium bromide), the second dispersion was prepared by dispersing it in toluene, and the fabric substrate was supported for 1 hour.
  • TOABr tetraoctylammonium bromide
  • the fabric substrate After washing with toluene twice, the fabric substrate is dried using a dryer, and it is immersed in an ethanol solution (third dispersion) in which 2 mg/mL of DETA (diehthylenetriamine), a single molecule having an amine group, is dispersed for 30 minutes. Similarly, wash twice with ethanol and dry the fabric substrate.
  • DETA diehthylenetriamine
  • a structure in which Au nanoparticles and DETA single molecules are stacked by a layered assembly method (TOABr-Au NP/DETA) is formed by sequentially supporting the second and third dispersions above, so that the sheet resistance is 10 0 ⁇ 10 4 ⁇ /
  • a base layer is generated (Polyester/PEI/(TOABr-Au/DETA) n ).
  • electroplating is performed with an ionic liquid aluminum plating solution (1-ethyl-3-methylimidazolium chloride-aluminum chloride) (based on a polyester substrate at 8 mA/cm 2 for 15 minutes).
  • an ionic liquid aluminum plating solution (1-ethyl-3-methylimidazolium chloride-aluminum chloride) (based on a polyester substrate at 8 mA/cm 2 for 15 minutes).
  • plating proceeds in a three-electrode system, and the polyester substrate to be plated is used as the working electrode, the metal to be plated is used as the counter electrode, and the platinum electrode (pt coil) is used as the reference electrode. ).
  • an aluminum plating layer is formed on the base layer when electricity is supplied by connecting a power supply.
  • the above plating process may be performed in an argon (or nitrogen) atmosphere to prevent oxidation of the ionic liquid, or may be performed after pouring decane, a protective layer, on the ionic liquid in order to experiment in air.
  • the aluminum plated substrate was washed twice with DI (deionized water), and dried in a vacuum oven at 100°C for 1 hour in a vacuum state.
  • FIG. 6A is an SEM image of an electrode manufactured according to an exemplary embodiment of the present invention
  • FIG. 6B is an EDS mapping image of an electrode manufactured according to an exemplary embodiment of the present invention.
  • Figure 6a is a pure polyester (Bare textile) used in the example and the flexible aluminum electrode prepared in the example through a scanning electron microscope (Scanning Electron Microscope, SEM),
  • Figure 6b is an energy dispersive spectroscopy (Energy Dispersive X -ray Spectroscope, EDS) as a result of observing the flexible aluminum electrode manufactured in the Example, as a reference, it was confirmed that aluminum was evenly coated inside without any influence on the internal structure and shape of the porous substrate where fibers intersect each other. Based on these results, it can be seen that there is no change in the mechanical properties of the fabric-based flexible aluminum electrode.
  • the polyester substrate of the example Polyester/PEI/(TOABr-Au/DETA) n , and Polyester/PEI/(TOABr-Au/DETA) 4 /Al
  • the sheet resistance for each of the samples was measured.
  • the polyester substrate showed insulation, but as the base layer was formed, Polyester/PEI/(TOABr-Au/DETA) n had electrical conductivity, and the sheet resistance decreased as the number of layers (n) of the base layer increased. I did.
  • 8A to 8B are results of a mechanical stability test of an electrode manufactured according to an embodiment of the present invention.
  • FIG. 8A a test was conducted to light the LED light by connecting the flexible aluminum electrode manufactured according to the embodiment with a lead wire and flowing a current, and it was confirmed that the LED light was turned on even in the crumpled electrode by applying mechanical deformation. As a result, it can be seen that the flexible aluminum electrode according to the present invention maintains excellent conductivity even when mechanical deformation is applied.
  • an aluminum electrode was manufactured using electroless plating instead of electroplating in the above embodiment, and the conductivity ( ⁇ ) for the initial conductivity ( ⁇ 0 ) was measured during 5000 crumpling cycles. As a result, it was confirmed that the mechanical stability of the flexible aluminum electrode manufactured by electroplating according to the present example is superior to that of the aluminum electrode manufactured by electroless plating.
  • Evaluation Example 5 Evaluation of the electrochemical properties of an energy store using a fabric-based flexible aluminum electrode
  • 9A to 9B are graphs of evaluation results of electrochemical properties of an energy storage device (battery) to which an electrode manufactured according to an embodiment of the present invention is applied.
  • LiFePO 4 Lithium iron phosphate nanoparticles, which are battery positive nanoparticles, were stacked on the flexible aluminum electrode fabricated according to the embodiment by using a layered box assembly method, and this was used as a working electrode and a counter electrode.
  • a coin cell was fabricated using lithium foil to measure CV (Cyclic Voltammetry) and GCD (Galvanostatic Charge/Discharge), and the results are shown in FIGS. 9A to 9B.
  • CV Cyclic Voltammetry
  • GCD Gatevanostatic Charge/Discharge
  • a peak of LiFePO 4 was confirmed at around 3.5 V, and a large difference in capacity appeared especially when compared to an electrode made of a non-porous aluminum plate.
  • a porous fabric substrate It is possible to confirm the effectiveness that a flexible aluminum electrode plated with aluminum can be applied to an energy storage device.
  • the present invention is manufactured by coating aluminum at high density by employing an electroplating method on an insulating fabric material substrate having a porous structure, and thus industrial applicability is recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention relates to a flexible aluminum electrode based on textile materials, and a method for manufacturing same. According to an embodiment of the present invention, the flexible aluminum electrode based on textile materials, comprises: a porous substrate (10) which is formed by a plurality of fibers (11) intersecting one another; a bonding layer (20) which is formed on the surface of the fibers (11); a base layer (30) which includes a nanoparticle layer (31) containing metal nanoparticles and formed on the bonding layer (20) and includes a monomolecular layer (33) containing a monomolecular material containing an amine group (NH2); and a plating layer (40) which is formed by electroplating aluminum (Al) on the base layer (30).

Description

직물소재 기반 플렉시블 알루미늄 전극 및 그 제조방법Fabric material-based flexible aluminum electrode and its manufacturing method
직물소재 기반 플렉시블 알루미늄 전극 및 그 제조방법에 관한 것으로, 보다 상세하게는 절연체인 직물소재 기판에 알루미늄이 코팅되어 전기적·기계적 특성 및 가공성이 우수한 플렉시블 전극 및 그 제조방법에 관한 것이다.It relates to a fabric material-based flexible aluminum electrode and a method for manufacturing the same, and more particularly, to a flexible electrode having excellent electrical and mechanical properties and workability by coating aluminum on a fabric material substrate as an insulator, and a method of manufacturing the same.
휴대가 가능하고 몸에 직접 착용이 가능한 전자기기의 관심이 증가함에 따라, 가볍고 플렉시블(flexible)한 기계적 특성을 갖는 고유연성 전극의 개발의 필요성도 증가하고 있는 추세다. 특히 이러한 고유연성 전극은 다양한 기계적 스트레스(bending, stretching, twisting) 하에서도 전기전도도를 유지할 수 있어야 하며, 다양한 환경에서도 성능의 저하가 없는 긴 수명이 요구된다. 또한, 휴대가 가능한 형태의 전극은 높은 전기전도도를 구현함과 동시에 가벼워야 하고, 나아가 에너지 저장 소자의 전극으로 적용하였을 때에 고성능을 발휘하기 위해서는 높은 이온플럭스를 구현할 수 있어야 한다.As the interest in portable electronic devices that can be worn directly on the body increases, the necessity of developing highly flexible electrodes having light and flexible mechanical properties is also increasing. In particular, these highly flexible electrodes must be able to maintain electrical conductivity even under various mechanical stresses (bending, stretching, twisting), and a long life without deterioration in performance is required even in various environments. In addition, the portable electrode should be light while implementing high electrical conductivity, and further, in order to exhibit high performance when applied as an electrode of an energy storage device, a high ion flux should be implemented.
일반적인 플렉시블 전극은 기판 상에 전기전도도가 높은 전극물질을 성막하여 제조하는데, 현재 각광받고 있는 전극 재료로는 그래핀(graphaene), 탄소나노튜브 (carbon nanotube, CNT) 등과 같은 탄소소재와 금속와이어, 전도성 고분자 등이 있다. 이런 전극 재료는 넓은 면적을 갖는 구조적 특징으로 인해 면적당 높은 전기전도도를 확보할 수 있으며, 기계적으로 유연성을 가질 수 있다. 그러나 전기전도도의 손실을 줄이기 위해 높은 온도에서의 합성이 필요하며, 추가적으로 강한 결합을 위해 화학적 환원반응을 요구하는 등 공정이 복잡하고 시간이 오래 걸리며 비용 측면에서도 단점이 있다. A general flexible electrode is manufactured by depositing an electrode material with high electrical conductivity on a substrate.As electrode materials that are currently in the spotlight, carbon materials such as graphaene and carbon nanotubes (CNT), metal wires, etc. Conductive polymers and the like. Such an electrode material can secure high electrical conductivity per area due to its structural feature having a large area, and can have mechanical flexibility. However, synthesis at a high temperature is required to reduce the loss of electrical conductivity, and additionally, a chemical reduction reaction is required for strong bonding, and the process is complicated, takes a long time, and has disadvantages in terms of cost.
따라서 유연한 기계적 특성을 유지하면서 간단하고 빠른 공정으로 높은 전기적 특성을 기대할 수 있는 전극의 개발이 요구되고 있는 상황이다.Therefore, there is a demand for the development of an electrode that can expect high electrical properties through a simple and fast process while maintaining flexible mechanical properties.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 다공성 구조의 절연성 직물소재 기판에 전기도금법을 채용하여 알루미늄을 높은 패킹밀도로 균일하게 코팅한 직물소재 기반 플렉시블 알루미늄 전극 및 그 제조방법을 제공하는 데 있다.The present invention is to solve the problems of the prior art, one aspect of the present invention is a fabric material-based flexible aluminum electrode in which aluminum is uniformly coated with a high packing density by employing an electroplating method on an insulating fabric material substrate having a porous structure. And it is to provide a manufacturing method.
본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극은 다수의 섬유가 서로 교차되어 형성된 다공성 기판; 상기 섬유의 표면에 형성된 결합층; 금속 나노입자를 포함하고 상기 결합층 상에 형성된 나노입자층, 및 아민기(NH 2) 함유 단분자 물질을 포함하고 상기 나노입자층 상에 형성된 단분자층을 포함하는 기초층; 및 상기 기초층 상에 알루미늄(Al)이 전기도금되어 형성된 도금층;을 포함한다.Fabric material-based flexible aluminum electrode according to an embodiment of the present invention is a porous substrate formed by crossing a plurality of fibers with each other; A bonding layer formed on the surface of the fiber; A base layer comprising a nanoparticle layer including metal nanoparticles and formed on the bonding layer, and a monomolecular material containing an amine group (NH 2 ) and including a monomolecular layer formed on the nanoparticle layer; And a plating layer formed by electroplating aluminum (Al) on the base layer.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 섬유는, 폴리에스테르, 나일론 및 아크릴 섬유로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the fiber may include any one or more selected from the group consisting of polyester, nylon, and acrylic fibers.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 결합층은, 아민기(NH 2) 함유 고분자 물질을 포함할 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the bonding layer may include an amine group (NH 2 )-containing polymer material.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 고분자 물질은, polyethylenimine(PEI), 및 poly(allylamine)hydrochloride(PAH)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the polymer material may include any one or more selected from the group consisting of polyethylenimine (PEI), and poly(allylamine)hydrochloride (PAH). have.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 금속 나노입자는, Au, Ag, Al, Cu, 및 Pt로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 단분자 물질은, tris(2-aminoethyl)amine(TREN), propane-1,2,3-triamine, diehthylenetriamine(DETA), tetrakis(aminomethyl)methane, 및 methanetetramine으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the monomolecular material is tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), It may include any one or more selected from the group consisting of tetrakis (aminomethyl) methane, and methanetetramine.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 기초층은, 다수 개가 순차적으로 적층될 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, a plurality of the base layers may be sequentially stacked.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 상기 기초층은, 시트 저항(sheet resistance)이 10 0 ~ 10 4 Ω/sq일 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, the base layer may have a sheet resistance of 10 0 to 10 4 Ω/sq.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극에 있어서, 다수 개의 상기 기초층 중 적어도 2개 이상은, 각각의 상기 나노입자층 및 상기 단분자층 중 적어도 하나 이상이 서로 상이한 물질로 이루어질 수 있다.In addition, in the fabric material-based flexible aluminum electrode according to an embodiment of the present invention, at least two or more of the plurality of base layers may be made of a material different from each other at least one of the nanoparticle layer and the monomolecular layer. .
한편, 또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법은 (a) 고분자 물질이 분산된 제1 분산액에, 다수의 섬유가 서로 교차되어 형성된 다공성 기판을 침지하여, 상기 섬유의 표면에 결합층을 형성하는 단계; (b) 금속 나노입자가 분산된 제2 분산액에, 상기 결합층이 형성된 상기 기판을 침지하여, 나노입자층을 형성하는 단계; (c) 아민기 함유 단분자 물질이 분산된 제3 분산액에, 상기 나노입자층이 형성된 상기 기판을 침지하여, 단분자층을 형성하는 단계; 및 (d) 알루미늄(Al)을 전기도금하여, 상기 단분자층 상에 도금층을 형성하는 단계;를 포함한다.On the other hand, in addition, the fabric material-based flexible aluminum electrode manufacturing method according to the embodiment of the present invention (a) by immersing a porous substrate formed by crossing a plurality of fibers in a first dispersion in which a polymer material is dispersed, Forming a bonding layer on the surface; (b) forming a nanoparticle layer by immersing the substrate on which the bonding layer is formed in a second dispersion in which metal nanoparticles are dispersed; (c) forming a monomolecular layer by immersing the substrate on which the nanoparticle layer is formed in a third dispersion in which an amine group-containing monomolecular material is dispersed; And (d) electroplating aluminum (Al) to form a plating layer on the monomolecular layer.
또한, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법에 있어서, 상기 (d) 단계 이전에, 상기 (b) 단계 및 상기 (c) 단계를 순차적으로 적어도 다수 회 반복하여, 상기 나노입자층에 상기 단분자층이 적층된 전도층을 다수 개 적층할 수 있다.In addition, in the fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention, before the step (d), the step (b) and the step (c) are sequentially repeated at least a plurality of times, and the nano A plurality of conductive layers in which the monomolecular layer is stacked on the particle layer may be stacked.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.Features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be interpreted in a conventional and dictionary meaning, and the inventor may appropriately define the concept of the term in order to describe his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에 따르면, 고유연성을 가지는 직물소재의 절연체 기판에 전기도금 방식으로 알루미늄을 간단하고 빠르게 코팅함으로써, 가볍고 인체친화적인 플렉시블 전극을 구현함과 동시에 전극의 전기전도도 및 기계적 강도 그리고 가공성을 향상시킬 수 있다.According to the present invention, a light and human-friendly flexible electrode is realized by simply and quickly coating aluminum on an insulator substrate made of a fabric material having high flexibility by electroplating, and at the same time, the electrical conductivity, mechanical strength, and workability of the electrode are improved. I can.
또한, 본 발명에 따라 제작되는 전극은 입자 간 높은 결합력을 가지며 동시에 직물소재 고유의 수많은 세공을 가지므로, 에너지 저장소자의 집전체로 사용되는 경우 높은 이온 이동도와 구동안정성을 확보할 수 있다. 알루미늄은 가격 및 질량대비 전기전도도가 다른 금속에 비해 월등히 우수하고 높은 전압에서의 안정성이 우수해 특히 배터리의 양극 집전체에 적용될 수 있다.In addition, since the electrode manufactured according to the present invention has a high bonding force between particles and at the same time has numerous pores unique to a fabric material, high ion mobility and driving stability can be secured when used as a current collector of an energy store. Aluminum has excellent electrical conductivity compared to other metals in terms of price and mass, and has excellent stability at high voltage, so it can be particularly applied to the positive electrode current collector of a battery.
나아가, 본 발명에 따라 제작되는 전극은 에너지 저장 소자뿐만 아니라, 경량의 고유연성을 필요로 하는 다양한 전기소자에 적용될 수 있고, 간단한 전기도금을 적용하므로 제작하고자 하는 전극의 크기, 모양 등에 제약을 받지 않는다.Furthermore, the electrode fabricated according to the present invention can be applied not only to energy storage devices, but also to various electric devices that require light weight and high flexibility, and is not limited in size and shape of the electrode to be manufactured because it is applied with simple electroplating. Does not.
도 1 내지 도 2는 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극을 개략적으로 도시한 사시도이다.1 to 2 are perspective views schematically showing a fabric material-based flexible aluminum electrode according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극을 도 2의 A-A'에 따라 절단한 단면도이다.3 is a cross-sectional view of a fabric material-based flexible aluminum electrode according to another embodiment of the present invention taken along line A-A' of FIG. 2.
도 4는 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법의 공정도이다.Figure 4 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법의 공정도이다.5 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to another embodiment of the present invention.
도 6a는 본 발명의 실시예에 따라 제조된 전극의 SEM 이미지이다.6A is an SEM image of an electrode manufactured according to an embodiment of the present invention.
도 6b는 본 발명의 실시예에 따라 제조된 전극의 EDS mapping 이미지이다.6B is an EDS mapping image of an electrode manufactured according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 제조된 전극의 시트 저항(sheet resistance)의 변화 그래프이다.7 is a graph of change in sheet resistance of an electrode manufactured according to an embodiment of the present invention.
도 8a 내지 도 8b는 본 발명의 실시예에 따라 제조된 전극의 기계적 안정성 테스트 결과이다.8A to 8B are results of a mechanical stability test of an electrode manufactured according to an embodiment of the present invention.
도 9a 내지 도 9b는 본 발명의 실시예에 따라 제조된 전극이 적용된 에너지 저장소자(배터리)의 전기화학적 특성 평가 결과 그래프이다.9A to 9B are graphs of evaluation results of electrochemical properties of an energy storage device (battery) to which an electrode manufactured according to an embodiment of the present invention is applied.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.Objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments associated with the accompanying drawings. In adding reference numerals to elements of each drawing in the present specification, it should be noted that, even though they are indicated on different drawings, only the same elements are to have the same number as possible. In addition, terms such as "first" and "second" are used to distinguish one component from other components, and the component is not limited by the terms. Hereinafter, in describing the present invention, detailed descriptions of related known technologies that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 2는 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극을 개략적으로 도시한 사시도이다.1 to 2 are perspective views schematically showing a fabric material-based flexible aluminum electrode according to an embodiment of the present invention.
도 1 내지 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극은 다수의 섬유(11)가 서로 교차되어 형성된 다공성 기판(10); 섬유(11)의 표면에 형성된 결합층(20); 금속 나노입자를 포함하고 결합층(20) 상에 형성된 나노입자층(31), 및 아민기(NH 2) 함유 단분자 물질을 포함하고 나노입자층(31) 상에 형성된 단분자층(33)을 포함하는 기초층(30); 및 기초층(30) 상에 알루미늄(Al)이 전기도금되어 형성된 도금층(40);을 포함한다.1 to 2, a fabric material-based flexible aluminum electrode according to an embodiment of the present invention includes a porous substrate 10 formed by crossing a plurality of fibers 11 with each other; A bonding layer 20 formed on the surface of the fiber 11; A base comprising a nanoparticle layer 31 including metal nanoparticles and formed on the bonding layer 20, and a monomolecular layer 33 formed on the nanoparticle layer 31 and including a monomolecular material containing an amine group (NH 2 ) Layer 30; And a plating layer 40 formed by electroplating aluminum (Al) on the base layer 30.
본 발명은 플렉시블 전극에 관한 것이다. 최근 직접 몸에 착용 가능한 웨어러블 전자기기들이 개발됨에 따라서 고유연성 전극에 대한 필요성이 증대되고 있는데, 이러한 전극의 요건으로서 가볍고, 다양한 기계적 스트레스(bending, stretching, twisting) 하에서도 전기전도도를 유지할 수 있어야 한다. 또한, 다양한 환경에서도 성능의 저하가 없는 긴 수명이 요구되며, 고성능 에너지 저장 소자의 전극으로 활용되기 위해서는 높은 이온플럭스를 구현할 수 있어야 한다. 이에 상기 요건을 충족할 수 있는 전극 개발의 결과로서 본 발명에 따른 직물소재 기반 플렉시블 알루미늄 전극이 안출되었다.The present invention relates to a flexible electrode. Recently, as wearable electronic devices that can be directly worn on the body are developed, the need for highly flexible electrodes is increasing. As a requirement for these electrodes, it is necessary to maintain electrical conductivity under light and various mechanical stresses (bending, stretching, twisting). . In addition, a long life without deterioration in performance is required even in various environments, and in order to be used as an electrode of a high-performance energy storage device, a high ion flux must be implemented. Accordingly, as a result of the development of an electrode capable of meeting the above requirements, a fabric material-based flexible aluminum electrode according to the present invention was devised.
구체적으로, 본 발명에 따른 직물소재 기반 플렉시블 알루미늄 전극은, 다공성 기판(10), 결합층(20), 기초층(30), 및 도금층(40)을 포함한다.Specifically, the fabric material-based flexible aluminum electrode according to the present invention includes a porous substrate 10, a bonding layer 20, a base layer 30, and a plating layer 40.
여기서, 기판(10)은 다수의 섬유(11)가 서로 교차되어 짜여진 직물 기재로서, 섬유(11)끼리 교차하면서 생긴 다수의 세공을 구비한다. 이러한 기판(10)의 소재를 이루는 섬유(11)는 길고 가늘며 연하게 굽힐 수 있는 선상 물체로서, 천연섬유, 및 합성섬유를 모두 포함할 수 있다. 따라서, 기판(10)은 천연섬유 또는 합성섬유 단독으로, 또는 이들 섬유(11)를 혼방하여 방직함으로써, 유연성을 가지게 된다. 이러한 플렉시블 기판(10)을 구성하는 섬유(11)로는, 폴리에스테르, 나일론, 및 아크릴 섬유 중 적어도 어느 하나 이상으로 이루어질 수 있다. 다만, 섬유(11)가 반드시 이에 한정되는 것은 아니고, 서로 교차하면서 소정의 형태를 갖는 유연 기판(10)을 형성할 수 있는 한, 그 종류에 특별한 제한은 없다.Here, the substrate 10 is a woven fabric substrate in which a plurality of fibers 11 are intersected with each other, and has a plurality of pores formed when the fibers 11 cross each other. The fibers 11 forming the material of the substrate 10 are long, thin, and bendable linear objects, and may include both natural fibers and synthetic fibers. Accordingly, the substrate 10 has flexibility by weaving either natural fibers or synthetic fibers alone, or a mixture of these fibers 11. The fibers 11 constituting the flexible substrate 10 may be made of at least one or more of polyester, nylon, and acrylic fibers. However, the fibers 11 are not necessarily limited thereto, and as long as the flexible substrate 10 having a predetermined shape while intersecting with each other can be formed, there is no particular limitation on the type thereof.
한편, 다수의 섬유(11)를 이용해 기판(10)을 제조하는 대표적인 방식으로 직조(weaving) 방식이 있는데, 본 발명에 있어서는 그 방식에 의해 권리범위가 제한되어서는 안 되고, 2차원 내지 3차원 등 소정의 형상으로 기판(10)을 형성할 수 있는 한 어떠한 방식으로 제조되어도 무방하다. 이렇게 섬유(11)에 의해 제조된 유연 기판(10)은 미세한 크기의 세공을 다수 구비하는데, 그 세공은 기판(10)의 외면에서부터 내부까지 연결된다. 또한, 기판(10)은 섬유(11)의 종류 등에 따라 전기 절연성을 가질 수 있다. 이러한 기판(10)은 기초층(30) 및 도금층(40)을 지지하는데, 이때 기초층(30)은 결합층(20)을 매개로 기판(10)에 결합된다.On the other hand, there is a weaving method as a representative method of manufacturing the substrate 10 using a plurality of fibers 11, but in the present invention, the scope of rights should not be limited by the method, and 2D to 3D As long as the substrate 10 can be formed in a predetermined shape, such as, it may be manufactured in any manner. In this way, the flexible substrate 10 manufactured by the fibers 11 has a number of fine-sized pores, which are connected from the outer surface to the inner surface of the substrate 10. In addition, the substrate 10 may have electrical insulation according to the type of fiber 11 or the like. The substrate 10 supports the base layer 30 and the plating layer 40, wherein the base layer 30 is bonded to the substrate 10 via the bonding layer 20.
결합층(20)은 유연한 다공성 기판(10)에 고분자 물질이 흡착되어 형성되는 층(layer)이다. 여기서, 고분자 물질은 후술하는 금속 나노입자가 기판(10)에 코팅되어 나노입자층(31)을 형성하게 한다. 한편, 고분자 물질은 기판(10)의 표면, 즉 외부로 노출된 외측의 섬유(11)뿐만 아니라, 기판(10)의 세공을 통해 내부로 침투되어 내측의 섬유(11) 각각의 외면에 흡착될 수 있다. 이때, 고분자 물질은 섬유(11)의 외면을 감싸는 형태로 흡착될 수 있다. 이러한 고분자 물질은 금속 나노입자와의 친화력이 강한 아민기(NH 2)를 함유할 수 있고, 그 일례로 polyethylenimine(PEI), 및 poly(allylamine)hydrochloride(PAH)로 구성된 군으로부터 어느 하나 이상을 선택하여 사용할 수 있다. 다만, 고분자 물질이 반드시 상기 고분자에 한정되는 것은 아니고, 금속 나노입자를 섬유(11)의 표면에 고정할 수 있는 물질이면 특별한 제한은 없다.The bonding layer 20 is a layer formed by adsorbing a polymer material on the flexible porous substrate 10. Here, the polymer material allows metal nanoparticles to be described later to be coated on the substrate 10 to form the nanoparticle layer 31. Meanwhile, the polymer material penetrates into the surface of the substrate 10, that is, through the pores of the substrate 10 as well as the outer fibers 11 exposed to the outside, and is adsorbed to the outer surfaces of each of the inner fibers 11. I can. In this case, the polymer material may be adsorbed in a form surrounding the outer surface of the fiber 11. These polymeric materials may contain an amine group (NH 2 ) having strong affinity with metal nanoparticles, and as an example, select any one or more from the group consisting of polyethylenimine (PEI), and poly(allylamine)hydrochloride (PAH). Can be used. However, the polymer material is not necessarily limited to the polymer, and there is no particular limitation as long as it is a material capable of fixing metal nanoparticles to the surface of the fiber 11.
기초층(30)은 결합층(20)에 형성된 나노입자층(31) 상에 단분자층(33)이 적층된 이중층이다. 여기서, 나노입자층(31)은 결합층(20) 상에 금속 나노입자에 의해 형성된 층으로서, 전술한 바와 같이 결합층(20)에 의해 기판(10)에 고정되는바, 기판(10)의 외측 및 내측에 있는 섬유(11) 각각에 형성되고, 이때 결합층(20)의 외면을 감싸는 형태로 형성될 수 있다. 한편, 금속 나노입자는 Au, Ag, Al, Cu, 및 Pt로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있지만, 그 소재가 반드시 이에 한정되는 것은 아니다.The base layer 30 is a double layer in which a monomolecular layer 33 is stacked on the nanoparticle layer 31 formed on the bonding layer 20. Here, the nanoparticle layer 31 is a layer formed by metal nanoparticles on the bonding layer 20, and is fixed to the substrate 10 by the bonding layer 20 as described above, outside of the substrate 10 And it is formed on each of the fibers 11 on the inner side, at this time may be formed in a form surrounding the outer surface of the bonding layer (20). Meanwhile, the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt, but the material is not necessarily limited thereto.
단분자층(33)은 단분자 물질이 나노입자층(31) 상에 코팅되어 형성된 층이다. 여기서, 단분자 물질은 아민기(NH 2) 함유 단분자 물질로서, tris(2-aminoethyl)amine(TREN), propane-1,2,3-triamine, diehthylenetriamine(DETA), tetrakis(aminomethyl)methane, 및 methanetetramine으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 다만, 단분자 물질이 반드시 이에 한정되는 것은 아니고, 아민기를 함유하는 단분자 물질이면 특별한 제한은 없다. 이러한 단분자 물질은 전술한 고분자 물질과 함께 금속 나노입자를 고정하는 한편, 나노입자층(31)에 전기전도도를 부여한다. 금속입자로 이루어진 박막의 경우에, 구성입자가 길이가 긴 유기 리간드들에 의해 둘러싸이므로 절연성을 보인다. 이에, 본 발명에서는 아민기 함유 고분자 물질(결합층(20)) 및 아민기 함유 단분자 물질(단분자층(33))로 하여금 절연성 유기 리간드를 치환시켜 금속 나노입자들 사이의 결합력을 향상시키고, 나노입자층(31)에 전기전도성을 부여한다.The monomolecular layer 33 is a layer formed by coating a monomolecular material on the nanoparticle layer 31. Here, the monomolecular substance is a monomolecular substance containing an amine group (NH 2 ), tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), tetrakis(aminomethyl)methane, And it may include any one or more selected from the group consisting of methanetetramine. However, the monomolecular material is not necessarily limited thereto, and there is no particular limitation as long as it is a monomolecular material containing an amine group. These monomolecular materials fix the metal nanoparticles together with the polymer materials described above, and impart electrical conductivity to the nanoparticle layer 31. In the case of a thin film made of metal particles, the constituent particles are surrounded by long organic ligands and thus exhibit insulation. Accordingly, in the present invention, the amine group-containing polymer material (binding layer 20) and the amine group-containing monomolecular material (monomolecular layer 33) replace the insulating organic ligand to improve the bonding strength between metal nanoparticles, Electrical conductivity is imparted to the particle layer 31.
이렇게 형성된 기초층(30)은, 전기도금 방식으로 도금층(40)을 형성하기 위해 전기도금이 가능한 최소한의 전기전도성을 갖도록 형성될 수 있다. 이때, 기초층(30)은 10 0 ~ 10 4 Ω/sq의 시트 저항(sheet resistance)을 가질 수 있고, 그 범위 내에서 효과적으로 전기도금이 이루어질 수 있다. 다만, 기초층(30)의 시트 저항이 반드시 상기 범위 내에 한정되는 것은 아니고, 금속 나노입자 및 단분자 물질의 종류, 후술하는 기초층(30)의 적층 수 등에 따라 달리 정해질 수도 있다.The base layer 30 formed in this way may be formed to have a minimum electrical conductivity capable of electroplating in order to form the plating layer 40 by an electroplating method. In this case, the base layer 30 may have a sheet resistance of 10 0 to 10 4 Ω/sq, and within that range, electroplating may be effectively performed. However, the sheet resistance of the base layer 30 is not necessarily limited within the above range, and may be differently determined depending on the type of metal nanoparticles and monomolecular materials, the number of stacked base layers 30 to be described later, and the like.
도금층(40)은 기초층(30) 상에, 알루미늄(Al)이 전기도금되어 형성되는 층이다. 알루미늄은 가격 대비 전기전도도가 다른 금속에 비해 월등히 우수하므로 경제적인 전극 소재이고, 또한 질량 대비 전기전도도가 높기 때문에 착용성 내지 휴대성도 우수하다. 또한, 고전압에서 안정성이 우수해 배터리의 양극 전극 물질로 활용될 수 있다. 이러한 알루미늄은 전기도금 방식으로 코팅되는바, 높은 패킹밀도로 코팅될 수 있고, 이때 기판(10)의 기공성이 그대로 유지되므로 매우 균일하게 알루미늄이 흡착되어 기판(10)의 외측 및 내측에 배치된 섬유(11) 각각에 고르게 도금층(40)을 형성할 수 있다. 나아가 전기도금은 간단한 방식으로 단시간 내에 이루어지므로, 전극을 형성하는데 걸리는 시간을 단축하고, 제조비용을 낮출 수 있으며, 전극의 사용 목적에 따라 그 크기나 모양을 선택할 수 있어 다양한 설계가 가능하다.The plating layer 40 is a layer formed by electroplating aluminum (Al) on the base layer 30. Aluminum is an economical electrode material because its electrical conductivity is superior to other metals compared to other metals. It also has excellent wearability and portability because of its high electrical conductivity to its mass. In addition, it has excellent stability at high voltage, so it can be used as a positive electrode material for batteries. Since such aluminum is coated by an electroplating method, it can be coated with a high packing density. At this time, since the porosity of the substrate 10 is maintained, aluminum is adsorbed very uniformly and disposed on the outside and inside of the substrate 10. The plating layer 40 can be evenly formed on each of the fibers 11. Furthermore, since the electroplating is performed in a short time in a simple manner, the time taken to form the electrode can be shortened, the manufacturing cost can be reduced, and various designs are possible because the size or shape can be selected according to the purpose of use of the electrode.
도 3은 본 발명의 다른 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극을 도 2의 A-A'에 따라 절단한 단면도이다.3 is a cross-sectional view of a fabric material-based flexible aluminum electrode according to another embodiment of the present invention taken along line A-A' of FIG. 2.
도 3을 참고로, 본 발명의 다른 실시예에서, 기초층(30)은 다수 개가 순차적으로 적층된 구조로 형성될 수 있다. 즉, 제1 기초층(30a) 상에 제2 기초층(30b)이 적층되거나, 그 위에 또 다른 기초층(30)이 적층될 수 있다. 이때, 각각의 기초층(30)을 구성하는 나노입자층(31)과 단분자층(33)은 동일한 소재로 이루질 수 있지만, 서로 다른 소재로 이루어져도 무방하다. 일례로, 제1 기초층(30a)을 구성하는 나노입자층(31a)의 나노입자는 Au를, 단분자층(33a)의 단분자 물질은 DETA를 사용하고, 제2 기초층(30b)을 구성하는 나노입자층(31b)의 나노입자는 Ag를, 단분자층(33b)의 단분자 물질은 TREN를 사용함으로써, (Au/DETA)/(Ag/TREN) 구조의 이중 기초층(30)을 구성할 수 있다. 여기서, 기초층(30)의 적층 수, 금속 나노입자 및 단분자의 종류는 알루미늄 전기도금을 위한 최소한의 전기전도성 확보에 따라 정해질 수 있다. Referring to FIG. 3, in another embodiment of the present invention, a plurality of base layers 30 may be sequentially stacked. That is, the second base layer 30b may be stacked on the first base layer 30a, or another base layer 30 may be stacked thereon. At this time, the nanoparticle layer 31 and the monomolecular layer 33 constituting each of the base layers 30 may be made of the same material, but may be made of different materials. For example, the nanoparticles of the nanoparticle layer 31a constituting the first base layer 30a use Au, the monomolecular material of the monomolecular layer 33a uses DETA, and the nanoparticles constituting the second base layer 30b By using Ag for the nanoparticles of the particle layer 31b and TREN for the monomolecular material of the monomolecular layer 33b, the double base layer 30 having a (Au/DETA)/(Ag/TREN) structure may be formed. Here, the number of layers of the base layer 30, the types of metal nanoparticles, and single molecules may be determined according to securing a minimum electrical conductivity for aluminum electroplating.
종합적으로, 본 발명에 따르면, 고유연성을 가지는 직물소재의 절연체 기판에 전기도금 방식으로 알루미늄을 간단하고 빠르게 코팅함으로써, 플렉시블 전극의 전기전도도 및 기계적 강도 그리고 가공성을 향상시킬 수 있다. Overall, according to the present invention, it is possible to improve electrical conductivity, mechanical strength, and workability of a flexible electrode by simply and quickly coating aluminum on an insulator substrate made of a fabric material having high flexibility by electroplating.
또한, 본 발명에 따른 직물소재 기반 플렉시블 알루미늄 전극은 입자 간 높은 결합력을 가지며 동시에 직물소재 고유의 수많은 기공을 포함하므로, 에너지 저장소자의 집전체에 적용되는 경우, 전해질의 유입을 용이하게 할 뿐 아니라, 기공을 구비하지 않은 평판에 비해 상대적으로 넓은 표면적으로 단위 면적당 도입되는 입자의 수를 극대화할 수 있다. 즉, 높은 이온 이동도와 구동안정성을 확보할 수 있다.In addition, since the fabric material-based flexible aluminum electrode according to the present invention has a high bonding force between particles and at the same time contains numerous pores unique to the fabric material, when applied to the current collector of an energy store, it not only facilitates the introduction of the electrolyte, It is possible to maximize the number of particles introduced per unit area with a relatively large surface area compared to a flat plate without pores. That is, high ion mobility and driving stability can be secured.
나아가 알루미늄은 가격 및 질량대비 전기전도도가 다른 금속에 비해 월등히 우수하고 높은 전압에서의 안정성이 우수하기 때문에, 본 발명에 따른 전극은 특히 배터리의 양극 집전체에 적용될 수 있고, 이뿐만 아니라 경량의 고유연성을 필요로 하는 다양한 전기소자에 적용될 수 있고, 간단한 전기도금을 적용하므로 제작하고자 하는 전극의 크기, 모양 등에 제약을 받지 않는다.Furthermore, since aluminum has superior electrical conductivity to price and mass compared to other metals and has excellent stability at high voltages, the electrode according to the present invention can be particularly applied to the positive electrode current collector of a battery. It can be applied to various electric devices that require flexibility, and since it is applied with simple electroplating, it is not restricted in the size and shape of the electrode to be manufactured.
이하에서는 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법에 대해 설명한다. 본 발명에 따른 직물소재 기반 플렉시블 알루미늄 전극에 대해서는 상술하였는바, 중복되는 사항에 대해서는 상세한 설명을 생략하거나 간략하게만 기술한다.Hereinafter, a fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention will be described. The fabric material-based flexible aluminum electrode according to the present invention has been described above, and a detailed description of overlapping matters will be omitted or briefly described.
도 4는 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법의 공정도이다.Figure 4 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법은 (a) 고분자 물질이 분산된 제1 분산액에, 다수의 섬유가 서로 교차되어 형성된 다공성 기판을 침지하여, 섬유의 표면에 결합층을 형성하는 단계(S100); (b) 금속 나노입자가 분산된 제2 분산액에, 결합층이 형성된 기판을 침지하여, 나노입자층을 형성하는 단계(S200); (c) 아민기 함유 단분자 물질이 분산된 제3 분산액에, 나노입자층이 형성된 기판을 침지하여, 단분자층을 형성하는 단계(S300); 및 (d) 알루미늄(Al)을 전기도금하여, 단분자층 상에 도금층을 형성하는 단계(S400);를 포함한다.As shown in Figure 4, the fabric material-based flexible aluminum electrode manufacturing method according to an embodiment of the present invention (a) by immersing a porous substrate formed by crossing a plurality of fibers in a first dispersion in which a polymer material is dispersed. , Forming a bonding layer on the surface of the fiber (S100); (b) forming a nanoparticle layer by immersing the substrate on which the bonding layer is formed in the second dispersion in which the metal nanoparticles are dispersed (S200); (c) forming a monomolecular layer by immersing a substrate on which a nanoparticle layer is formed in a third dispersion in which an amine group-containing monomolecular material is dispersed (S300); And (d) electroplating aluminum (Al) to form a plating layer on the monomolecular layer (S400).
본 발명에 따른 직물소재 기반 다공성 물분해 촉매 제조방법은 결합층 형성단계(S100), 나노입자층 형성단계(S200), 단분자층 형성단계(S300), 및 도금층 형성단계(S400)로 구성될 수 있다.The fabric material-based porous water decomposition catalyst manufacturing method according to the present invention may consist of a bonding layer forming step (S100), a nanoparticle layer forming step (S200), a monomolecular layer forming step (S300), and a plating layer forming step (S400).
결합층 형성단계(S100)는 다공성 유연 기판을 구성하는 섬유 표면에 결합층을 형성하는 공정이다. 여기서, 고분자 물질이 분산된 제1 분산액을 준비하고, 그 제1 분산액에 기판을 침지한다. 이때, 기판은 다수의 섬유가 서로 교차되어 형성된 다공성 유연 기재이므로, 기판의 세공을 따라 제1 분산액이 침투되어, 고분자 물질이 외측 뿐 아니라 내측의 섬유의 표면에 흡착된다. 여기서, 섬유는 폴리에스테르, 나일론 및 아크릴 섬유로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있고, 고분자 물질은 아민기를 함유하는 고분자로서 polyethylenimine(PEI), 및 poly(allylamine)hydrochloride(PAH)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 다만, 섬유 및 고분자 물질이 반드시 상기 재료에 한정되는 것은 아니다. 또한, 제1 분산액이 용매로서는 예를 들어, 에탄올을 사용할 수 있는데, 고분자 물질을 분산시켜 섬유 표면에 결합층을 형성할 수 있는 용매이기만 하면 특별한 제한은 없다.The bonding layer forming step (S100) is a process of forming a bonding layer on the surface of fibers constituting the porous flexible substrate. Here, a first dispersion in which a polymer material is dispersed is prepared, and a substrate is immersed in the first dispersion. At this time, since the substrate is a porous flexible substrate formed by crossing a plurality of fibers, the first dispersion is permeated along the pores of the substrate, so that the polymer material is adsorbed on the surface of the fibers inside as well as outside. Here, the fiber may include any one or more selected from the group consisting of polyester, nylon, and acrylic fiber, and the polymer material is a polymer containing an amine group, which is polyethylenimine (PEI), and poly(allylamine) hydrochloride (PAH). It may include any one or more selected from the group consisting of. However, fibers and polymer materials are not necessarily limited to the materials. In addition, ethanol may be used as the solvent for the first dispersion, but there is no particular limitation as long as it is a solvent capable of dispersing a polymer material to form a bonding layer on the fiber surface.
나노입자층 형성단계(S200)는 결합층 상에 금속 나노입자를 코팅하는 공정으로서, 금속 나노입자가 분산된 제2 분산액에 결합층이 형성된 기판을 침지하여 나노입자층을 형성한다. 이때, 결합층에 의해 기판의 세공이 폐쇄되는 것은 아니므로, 제2 분산액이 그 세공을 통해 침투되어 내부의 섬유 표면에 흡착된 결합층에 코팅된다. 여기서, 금속 나노입자는 Au, Ag, Al, Cu, 및 Pt로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있고, 이들을 톨루엔 등에 분산시켜 제2 분산액을 준비할 수 있다. 다만, 금속 나노입자 및 용매가 반드시 이에 한정되는 것은 아니다.The nanoparticle layer forming step (S200) is a process of coating metal nanoparticles on the bonding layer. The substrate on which the bonding layer is formed is immersed in a second dispersion in which the metal nanoparticles are dispersed to form a nanoparticle layer. At this time, since the pores of the substrate are not closed by the bonding layer, the second dispersion liquid penetrates through the pores and is coated on the bonding layer adsorbed on the inner fiber surface. Here, the metal nanoparticles may include any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt, and may be dispersed in toluene to prepare a second dispersion. However, the metal nanoparticles and the solvent are not necessarily limited thereto.
단분자층 형성단계(S300)는 아민기 함유 단분자 물질을 이용해 나노입자층에 박막을 형성하는 공정이다. 여기서, 아민기 함유 단분자 물질을 에탄올 등에 분산시켜 제3 분산액을 준비하고, 기판을 침지한다. 이때, 제3 분산액도 기판의 세공을 통해 내부까지 침투되므로, 외측 및 내측의 섬유 표면에 형성된 나노입자층에 단분자 물질이 코팅되어 단분자층을 형성한다. 여기서, 단분자 물질은 tris(2-aminoethyl)amine(TREN), propane-1,2,3-triamine, diehthylenetriamine(DETA), tetrakis(aminomethyl)methane, 및 methanetetramine으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함할 수 있지만, 반드시 이에 한정되는 것은 아니다. 이렇게 나노입자층 상에 단분자층이 적층됨으로써 기초층이 형성된다.The monomolecular layer forming step (S300) is a process of forming a thin film on the nanoparticle layer using a monomolecular material containing an amine group. Here, the amine group-containing monomolecular substance is dispersed in ethanol or the like to prepare a third dispersion, and the substrate is immersed. At this time, since the third dispersion liquid also penetrates through the pores of the substrate to the inside, a monomolecular material is coated on the nanoparticle layer formed on the outer and inner fiber surfaces to form a monomolecular layer. Here, the monomolecular substance is any one or more selected from the group consisting of tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), tetrakis(aminomethyl)methane, and methanetetramine. It may include, but is not necessarily limited thereto. The base layer is formed by laminating the monomolecular layer on the nanoparticle layer.
이렇게 형성된 기초층은, 전기도금 방식으로 도금층을 형성하기 위해 전기도금이 가능한 최소한의 전기전도성을 갖도록 형성될 수 있다. 따라서, 기초층의 시트 저항은 10 0 ~ 10 4 Ω/sq 범위가 바람직하다. 이를 위해서, 금속 나노입자의 종류를 적절하게 선택하거나, 기초층을 다층 구조로 형성할 수 있는데 이에 대해서는 후술한다. The base layer thus formed may be formed to have a minimum electrical conductivity capable of electroplating in order to form a plating layer by an electroplating method. Therefore, the sheet resistance of the base layer is preferably in the range of 10 0 to 10 4 Ω/sq. To this end, the type of metal nanoparticles may be appropriately selected, or the base layer may be formed in a multilayer structure, which will be described later.
도금층 형성단계(S400)는 기초층 상에 알루미늄을 전기도금하는 공정이다. 기판을 음극으로, 알루미늄 금속을 양극으로 하여, 각각을 전해질 용액에 담그고, 음극과 양극에 전원장치를 연결하여 전기를 공급하는 방식으로 진행할 수 있다. 이로써, 기초층에 알루미늄 도금층이 형성된다.The plating layer forming step (S400) is a process of electroplating aluminum on the base layer. A substrate may be used as a cathode and an aluminum metal may be used as an anode, each of which is immersed in an electrolyte solution, and electricity is supplied by connecting a power supply to the cathode and the anode. Thus, an aluminum plating layer is formed on the base layer.
한편, 섬유에 결합층, 기초층, 및 도금층이 순차적으로 적층되면, 그 기판을 증류수 등과 같은 세정액을 이용해 세정하고, 세정이 종료된 후에는, 질소 등과 같은 불활성 가스를 사용해 그 기판을 건조할 수 있다. On the other hand, when the bonding layer, the base layer, and the plating layer are sequentially stacked on the fiber, the substrate is washed with a cleaning solution such as distilled water, and after the cleaning is completed, the substrate can be dried using an inert gas such as nitrogen. have.
도 5는 본 발명의 다른 실시예에 따른 직물소재 기반 플렉시블 알루미늄 전극 제조방법의 공정도이다.5 is a flow chart of a fabric material-based flexible aluminum electrode manufacturing method according to another embodiment of the present invention.
도 5를 참고로, 다층 구조의 기초층은 상기 금속 나노입자층 형성단계(S200), 및 단분자층 형성단계(S300)를 순차적으로 수회 반복함으로써, 층상조립법(Layer-by-Layer assembly)에 의해 형성할 수 있다. 이때, 각각의 기초층을 구성하는 금속 나노입자 및 단분자 물질은 서로 동일하거나, 또는 이들 중 적어도 하나 이상을 다른 재료로 선택할 수 있다.Referring to FIG. 5, the base layer of the multilayer structure is formed by a layer-by-layer assembly method by sequentially repeating the metal nanoparticle layer forming step (S200), and the monomolecular layer forming step (S300) several times. I can. In this case, the metal nanoparticles and the monomolecular materials constituting each base layer may be the same, or at least one or more of them may be selected as different materials.
이하에서는 구체적인 실시예 및 평가예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through specific examples and evaluation examples.
실시예: 직물소재 기반 플렉시블 알루미늄 전극 제조Example: Fabric material-based flexible aluminum electrode manufacturing
에탄올에 아민기를 가진 고분자인 PEI를 2 mg/mL로 분산시켜 제1 분산액을 준비한 후, 폴리에스테르(Polyester) 소재의 다공성 직물 기판을 3시간 동안 담지한다. 담지되었던 직물 기판을 두 차례 에탄올로 워싱하는 과정을 거친 후, 드라이기를 이용하여 직물 기판을 건조한다. TOABr(tetraoctylammonium bromide)인 소수성으로 안정화되어 있는 Au 나노입자를 합성한 후, 이를 톨루엔에 분산시켜 제2 분산액을 제조한 후에, 상기 직물 기판을 1시간 담지한다. 두 차례 톨루엔으로 워싱한 후에 드라이기를 이용해 직물 기판을 건조하고, 아민기를 갖는 단분자인 DETA(diehthylenetriamine)가 2 mg/mL이 분산된 에탄올 용액(제3 분산액)에 30분간 담지한다. 마찬가지로 에탄올로 두 차례 워싱하고 직물 기판을 건조한다. 위의 제2 분산액과 제3 분산액에 순차적으로 담지하여 Au 나노입자와 DETA 단분자가 층상조립법에 의해 적층되는 구조(TOABr-Au NP/DETA)를 형성하여 시트 저항이 10 0 ~ 10 4 Ω/sq될 때까지 Au 나노입자와 DETA 단분자를 교차 적층함으로써, 기초층을 생성한다(Polyester/PEI/(TOABr-Au/DETA) n).A first dispersion was prepared by dispersing PEI, a polymer having an amine group, in ethanol at 2 mg/mL, and then a porous fabric substrate made of a polyester material was supported for 3 hours. After washing the supported fabric substrate twice with ethanol, the fabric substrate is dried using a dryer. After synthesizing hydrophobically stabilized Au nanoparticles as TOABr (tetraoctylammonium bromide), the second dispersion was prepared by dispersing it in toluene, and the fabric substrate was supported for 1 hour. After washing with toluene twice, the fabric substrate is dried using a dryer, and it is immersed in an ethanol solution (third dispersion) in which 2 mg/mL of DETA (diehthylenetriamine), a single molecule having an amine group, is dispersed for 30 minutes. Similarly, wash twice with ethanol and dry the fabric substrate. A structure in which Au nanoparticles and DETA single molecules are stacked by a layered assembly method (TOABr-Au NP/DETA) is formed by sequentially supporting the second and third dispersions above, so that the sheet resistance is 10 0 ~ 10 4 Ω/ By cross-stacking Au nanoparticles and DETA monomolecules until sq is achieved, a base layer is generated (Polyester/PEI/(TOABr-Au/DETA) n ).
다음 이온성 액체(Ionic liquid) 알루미늄 도금 용액(1-ethyl-3-methylimidazolium chloride - aluminum chloride)으로 전기도금을 실시한다(polyester 기판 기준으로 8 mA/cm 2 에서 15분 동안 실시함). 이때 도금은 3전극 시스템으로 진행이 되며 도금하고자 하는 폴리에스테르 기판을 작업전극(working electrode)으로, 도금에 사용할 금속을 상대전극(counter electrode)으로, 백금 전극(pt coil)을 기준전극(reference electrode)로 위치시킨다. 이 전극들을 전해질 용액에 담지한 후 전원장치를 연결하여 전기를 공급하면 기초층 위에 알루미늄 도금층이 형성된다. 여기서, 위의 도금과정은 이온성 액체의 산화를 방지하기 위해 아르곤(또는 질소) 분위기에서 진행하거나 공기 중에서 실험하기 위해서는 protective layer인 decane을 이온성 액체 위에 부은 후 진행할 수 있다. 알루미늄 도금된 기판을 DI(deionized water)로 두 차례 워싱하고, 진공 오븐에서 100℃의 진공상태에서 1시간 동안 건조한다.Next, electroplating is performed with an ionic liquid aluminum plating solution (1-ethyl-3-methylimidazolium chloride-aluminum chloride) (based on a polyester substrate at 8 mA/cm 2 for 15 minutes). At this time, plating proceeds in a three-electrode system, and the polyester substrate to be plated is used as the working electrode, the metal to be plated is used as the counter electrode, and the platinum electrode (pt coil) is used as the reference electrode. ). After the electrodes are supported in an electrolyte solution, an aluminum plating layer is formed on the base layer when electricity is supplied by connecting a power supply. Here, the above plating process may be performed in an argon (or nitrogen) atmosphere to prevent oxidation of the ionic liquid, or may be performed after pouring decane, a protective layer, on the ionic liquid in order to experiment in air. The aluminum plated substrate was washed twice with DI (deionized water), and dried in a vacuum oven at 100°C for 1 hour in a vacuum state.
이러한 공정을 거쳐, Polyester/PEI/(TOABr-Au/DETA) 4/Al 샘플을 제작하였다.Through this process, a Polyester/PEI/(TOABr-Au/DETA) 4 /Al sample was produced.
평가예 1: 직물소재 기반 플렉시블 알루미늄 전극의 구조 분석Evaluation Example 1: Structure Analysis of Fabric Material-Based Flexible Aluminum Electrode
도 6a는 본 발명의 실시예에 따라 제조된 전극의 SEM 이미지이고, 도 6b는 본 발명의 실시예에 따라 제조된 전극의 EDS mapping 이미지이다.6A is an SEM image of an electrode manufactured according to an exemplary embodiment of the present invention, and FIG. 6B is an EDS mapping image of an electrode manufactured according to an exemplary embodiment of the present invention.
도 6a은 실시예에 사용된 순수 폴리에스테르(Bare textile) 및 실시예에서 제조된 플렉시블 알루미늄 전극을 주사전자현미경(Scanning Electron Microscope, SEM)을 통해, 도 6b는 에너지분산형 분광분석법(Energy Dispersive X-ray Spectroscope, EDS)으로 실시예에서 제조된 플렉시블 알루미늄 전극을 관찰한 결과로서, 이를 참고로 섬유가 서로 교차하는 다공성 기판의 내부 구조 및 형태에 어떠한 영향 없이 알루미늄이 내부에까지 고르게 코팅되었음을 확인하였다. 이러한 결과를 토대로 직물소재 기반 플렉시블 알루미늄 전극의 기계적 특성에 변화가 없다는 사실을 알 수 있다.Figure 6a is a pure polyester (Bare textile) used in the example and the flexible aluminum electrode prepared in the example through a scanning electron microscope (Scanning Electron Microscope, SEM), Figure 6b is an energy dispersive spectroscopy (Energy Dispersive X -ray Spectroscope, EDS) as a result of observing the flexible aluminum electrode manufactured in the Example, as a reference, it was confirmed that aluminum was evenly coated inside without any influence on the internal structure and shape of the porous substrate where fibers intersect each other. Based on these results, it can be seen that there is no change in the mechanical properties of the fabric-based flexible aluminum electrode.
평가예 2: 직물소재 기반 플렉시블 알루미늄 전극의 시트 저항 분석Evaluation Example 2: Analysis of sheet resistance of fabric-based flexible aluminum electrodes
도 7은 본 발명의 실시예에 따라 제조된 전극의 시트 저항(sheet resistance)의 변화 그래프이다.7 is a graph of change in sheet resistance of an electrode manufactured according to an embodiment of the present invention.
실시예의 폴리에스테르 기판, Polyester/PEI/(TOABr-Au/DETA) n, Polyester/PEI/(TOABr-Au/DETA) 4/Al 샘플 각각에 대한 시트 저항(Sheet resistance)을 측정하였다. 그 결과, 폴리에스테르 기판은 절연성을 보였지만, 기초층이 형성됨에 따라 Polyester/PEI/(TOABr-Au/DETA) n은 전기전도성을 가졌고, 기초층의 적층 수(n)가 증가할수록 시트 저항은 감소하였다. 4개의 기초층이 적층될 때에 3.2 × 10 2 Ω/sq의 시트 저항을 나타냈고, 여기서 알루미늄을 도금한 Polyester/PEI/(TOABr-Au/DETA) 4/Al 샘플의 시트 저항은 1.8 × 10 -2 Ω/sq를 가지는 것으로 측정되었는바, 알루미늄 도금을 통해 전기전도도가 향상되는 것을 확인했다. 종합적으로 보면, 본 발명의 실시예 따라 제조된 플렉시블 알루미늄 전극은 전기도금을 통해 매우 짧은 시간 내에 금속에 가까운 전도성을 가지는 것을 알 수 있다.The polyester substrate of the example, Polyester/PEI/(TOABr-Au/DETA) n , and Polyester/PEI/(TOABr-Au/DETA) 4 /Al The sheet resistance for each of the samples was measured. As a result, the polyester substrate showed insulation, but as the base layer was formed, Polyester/PEI/(TOABr-Au/DETA) n had electrical conductivity, and the sheet resistance decreased as the number of layers (n) of the base layer increased. I did. When the stack of four base layer 3.2 × 10 2 Ω / sq for showed a sheet resistance wherein the sheet resistance of the plated aluminum Polyester / PEI / (TOABr-Au / DETA) 4 / Al sample is 1.8 × 10 - It was measured to have 2 Ω/sq, and it was confirmed that the electrical conductivity was improved through aluminum plating. Overall, it can be seen that the flexible aluminum electrode manufactured according to the embodiment of the present invention has conductivity close to metal within a very short time through electroplating.
평가예 4: 직물소재 기반 플렉시블 알루미늄 전극의 기계적 안정성 평가Evaluation Example 4: Evaluation of Mechanical Stability of Fabric Material-Based Flexible Aluminum Electrode
도 8a 내지 도 8b는 본 발명의 실시예에 따라 제조된 전극의 기계적 안정성 테스트 결과이다.8A to 8B are results of a mechanical stability test of an electrode manufactured according to an embodiment of the present invention.
도 8a에서는 실시예에 따라 제조된 플렉시블 알루미늄 전극을 도선으로 연결하고 전류를 흐르게 하여 LED light를 점등하는 테스트를 실시하였는데, 기계적 변형을 가해 구겨진 전극에서도 LED light가 점등되는 것을 확인하였다. 그 결과, 본 발명에 따른 플렉시블 알루미늄 전극은 기계적 변형이 가해져도 우수한 전도성을 유지하는 것을 알 수 있다.In FIG. 8A, a test was conducted to light the LED light by connecting the flexible aluminum electrode manufactured according to the embodiment with a lead wire and flowing a current, and it was confirmed that the LED light was turned on even in the crumpled electrode by applying mechanical deformation. As a result, it can be seen that the flexible aluminum electrode according to the present invention maintains excellent conductivity even when mechanical deformation is applied.
도 8b에서는 상기 실시예에서 전기도금 대신에 무전해 도금을 이용하여 알루미늄 전극을 제조(Electroless plating)하고, 5000회에 걸친 Crumpling cycles 동안 초기 전도도(σ 0)에 대한 전도도(σ)를 측정하였는데, 그 결과 무전해 도금으로 제작된 알루미늄 전극에 비해 본 실시예에 따라 전기도금으로 제작된 플렉시블 알루미늄 전극의 기계적 안정성이 우수한 것으로 확인되었다.In FIG. 8B, an aluminum electrode was manufactured using electroless plating instead of electroplating in the above embodiment, and the conductivity (σ) for the initial conductivity (σ 0 ) was measured during 5000 crumpling cycles. As a result, it was confirmed that the mechanical stability of the flexible aluminum electrode manufactured by electroplating according to the present example is superior to that of the aluminum electrode manufactured by electroless plating.
평가예 5: 직물소재 기반 플렉시블 알루미늄 전극을 적용한 에너지 저장소자의 전기화학적 특성 평가Evaluation Example 5: Evaluation of the electrochemical properties of an energy store using a fabric-based flexible aluminum electrode
도 9a 내지 도 9b는 본 발명의 실시예에 따라 제조된 전극이 적용된 에너지 저장소자(배터리)의 전기화학적 특성 평가 결과 그래프이다.9A to 9B are graphs of evaluation results of electrochemical properties of an energy storage device (battery) to which an electrode manufactured according to an embodiment of the present invention is applied.
실시예에 따라 제작된 플렉시블 알루미늄 전극에 층상자기조립법을 이용하여 배터리 양극 나노입자인 LiFePO 4(Lithium iron phosphate) 나노입자를 적층하고, 이를 작업전극(working electrode)으로, 상대전극(counter electrode)로는 리튬 foil을 사용하여 coin cell을 제작하여 CV(Cyclic Voltammetry) 및 GCD(Galvanostatic Charge/Discharge) 측정하고 그 결과를 도 9a 내지 도 9b에 나타냈다. 또한, 실시예에 따른 플렉시블 알루니늄 전극 대신, 비다공성 알루미늄 플레이트(Nonporous Al plate)로 전극을 제작하여 상기 실험을 반복 수행하고 그 결과도 도 9a 내지 도 9b에 함께 도시하였다.LiFePO 4 (Lithium iron phosphate) nanoparticles, which are battery positive nanoparticles, were stacked on the flexible aluminum electrode fabricated according to the embodiment by using a layered box assembly method, and this was used as a working electrode and a counter electrode. A coin cell was fabricated using lithium foil to measure CV (Cyclic Voltammetry) and GCD (Galvanostatic Charge/Discharge), and the results are shown in FIGS. 9A to 9B. In addition, instead of the flexible aluminum electrode according to the embodiment, the above experiment was repeatedly performed by fabricating an electrode with a non-porous aluminum plate, and the results are also shown in FIGS. 9A to 9B.
도 9a 내지 도 9b를 참고로, 3.5 V 부근에서 LiFePO 4의 peak가 확인되고, 특히 비다공성인 알루미늄 플레이트로 제작한 전극과 비교하였을 때 큰 용량차이가 나타나는바, 본 발명에 따라 다공성 직물소재 기판에 알루미늄이 도금된 플렉시블 알루미늄 전극이 에너지 저장소자에 적용될 수 있는 효용성을 확인할 수 있다. 9A to 9B, a peak of LiFePO 4 was confirmed at around 3.5 V, and a large difference in capacity appeared especially when compared to an electrode made of a non-porous aluminum plate. According to the present invention, a porous fabric substrate It is possible to confirm the effectiveness that a flexible aluminum electrode plated with aluminum can be applied to an energy storage device.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, this is for explaining the present invention in detail, and the present invention is not limited thereto, and those of ordinary skill in the art within the spirit of the present invention It is clear that modifications or improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be made clear by the appended claims.
[부호의 설명][Explanation of code]
10: 기판 11: 섬유 10: substrate 11: fiber
20: 결합층 30: 기초층 20: bonding layer 30: base layer
31: 나노입자층 33: 단분자층 31: nanoparticle layer 33: monomolecular layer
40: 도금층40: plating layer
본 발명은 다공성 구조의 절연성 직물소재 기판에 전기도금법을 채용하여 알루미늄을 고밀도로 코팅하여 제조되므로 산업상 이용가능성이 인정된다.The present invention is manufactured by coating aluminum at high density by employing an electroplating method on an insulating fabric material substrate having a porous structure, and thus industrial applicability is recognized.

Claims (11)

  1. 다수의 섬유가 서로 교차되어 형성된 다공성 기판;A porous substrate formed by crossing a plurality of fibers;
    상기 섬유의 표면에 형성된 결합층;A bonding layer formed on the surface of the fiber;
    금속 나노입자를 포함하고 상기 결합층 상에 형성된 나노입자층, 및 아민기(NH 2) 함유 단분자 물질을 포함하고 상기 나노입자층 상에 형성된 단분자층을 포함하는 기초층; 및A base layer comprising a nanoparticle layer including metal nanoparticles and formed on the bonding layer, and a monomolecular material containing an amine group (NH 2 ) and including a monomolecular layer formed on the nanoparticle layer; And
    상기 기초층 상에 알루미늄(Al)이 전기도금되어 형성된 도금층;을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible aluminum electrode comprising; a plating layer formed by electroplating aluminum (Al) on the base layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 섬유는,The fiber,
    폴리에스테르, 나일론 및 아크릴 섬유로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible aluminum electrode comprising any one or more selected from the group consisting of polyester, nylon and acrylic fibers.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 결합층은,The bonding layer,
    아민기(NH 2) 함유 고분자 물질을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible aluminum electrode containing an amine group (NH 2 )-containing polymer material.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 고분자 물질은,The polymer material,
    polyethylenimine(PEI), 및 poly(allylamine)hydrochloride(PAH)로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible aluminum electrode comprising any one or more selected from the group consisting of polyethylenimine (PEI), and poly(allylamine) hydrochloride (PAH).
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 금속 나노입자는,The metal nanoparticles,
    Au, Ag, Al, Cu, 및 Pt로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible aluminum electrode comprising any one or more selected from the group consisting of Au, Ag, Al, Cu, and Pt.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 단분자 물질은,The monomolecular substance,
    tris(2-aminoethyl)amine(TREN), propane-1,2,3-triamine, diehthylenetriamine(DETA), tetrakis(aminomethyl)methane, 및 methanetetramine으로 구성된 군으로부터 선택되는 어느 하나 이상을 포함하는 직물소재 기반 플렉시블 알루미늄 전극.Fabric material-based flexible containing at least one selected from the group consisting of tris(2-aminoethyl)amine (TREN), propane-1,2,3-triamine, diehthylenetriamine (DETA), tetrakis(aminomethyl)methane, and methanetetramine Aluminum electrode.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 기초층은,The base layer,
    다수 개가 순차적으로 적층된 직물소재 기반 플렉시블 알루미늄 전극.Fabric-based flexible aluminum electrodes in which a number of layers are sequentially stacked.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 기초층은,The base layer,
    시트 저항(sheet resistance)이 10 0 ~ 10 4 Ω/sq인 직물소재 기반 플렉시블 알루미늄 전극.Fabric-based flexible aluminum electrode with sheet resistance of 10 0 to 10 4 Ω/sq.
  9. 청구항 7에 있어서,The method of claim 7,
    다수 개의 상기 기초층 중 적어도 2개 이상은,At least two or more of the plurality of base layers,
    각각의 상기 나노입자층 및 상기 단분자층 중 적어도 하나 이상이 서로 상이한 물질로 이루어진 직물소재 기반 플렉시블 알루미늄 전극.At least one of each of the nanoparticle layer and the monomolecular layer is a fabric material-based flexible aluminum electrode made of different materials.
  10. (a) 고분자 물질이 분산된 제1 분산액에, 다수의 섬유가 서로 교차되어 형성된 다공성 기판을 침지하여, 상기 섬유의 표면에 결합층을 형성하는 단계;(a) forming a bonding layer on the surface of the fibers by immersing a porous substrate formed by crossing a plurality of fibers in a first dispersion in which a polymer material is dispersed;
    (b) 금속 나노입자가 분산된 제2 분산액에, 상기 결합층이 형성된 상기 기판을 침지하여, 나노입자층을 형성하는 단계;(b) forming a nanoparticle layer by immersing the substrate on which the bonding layer is formed in a second dispersion in which metal nanoparticles are dispersed;
    (c) 아민기 함유 단분자 물질이 분산된 제3 분산액에, 상기 나노입자층이 형성된 상기 기판을 침지하여, 단분자층을 형성하는 단계; 및(c) forming a monomolecular layer by immersing the substrate on which the nanoparticle layer is formed in a third dispersion in which an amine group-containing monomolecular material is dispersed; And
    (d) 알루미늄(Al)을 전기도금하여, 상기 단분자층 상에 도금층을 형성하는 단계;를 포함하는 직물소재 기반 플렉시블 알루미늄 전극 제조방법.(d) electroplating aluminum (Al) to form a plating layer on the monomolecular layer; fabric material-based flexible aluminum electrode manufacturing method comprising a.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 (d) 단계 이전에, 상기 (b) 단계 및 상기 (c) 단계를 순차적으로 적어도 다수 회 반복하여, 상기 나노입자층에 상기 단분자층이 적층된 전도층을 다수 개 적층하는 직물소재 기반 플렉시블 알루미늄 전극 제조방법.Prior to the step (d), the step (b) and step (c) are sequentially repeated at least a plurality of times to stack a plurality of conductive layers in which the monomolecular layer is stacked on the nanoparticle layer. Manufacturing method.
PCT/KR2020/006068 2019-05-09 2020-05-08 Flexible aluminum electrode based on textile materials and method for manufacturing same WO2020226446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190054409A KR102326739B1 (en) 2019-05-09 2019-05-09 Flexible aluminum electrode based on textile materials and method for manufacturing the same
KR10-2019-0054409 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020226446A1 true WO2020226446A1 (en) 2020-11-12

Family

ID=73051564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006068 WO2020226446A1 (en) 2019-05-09 2020-05-08 Flexible aluminum electrode based on textile materials and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102326739B1 (en)
WO (1) WO2020226446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115966702A (en) * 2022-09-13 2023-04-14 扬州纳力新材料科技有限公司 Lightweight safe composite positive current collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045470A (en) * 2010-08-25 2012-03-08 Toda Kogyo Corp Method of manufacturing conductive coating film, and conductive coating film
KR20150016457A (en) * 2013-08-02 2015-02-12 한국과학기술원 Stack structure electrode of metal coated polymer nanofiber membrane and manufacturing method thereof
JP2016056407A (en) * 2014-09-09 2016-04-21 戸田工業株式会社 Production method of conductive fabric, and conductive fabric
KR20160061346A (en) * 2013-10-04 2016-05-31 광주과학기술원 Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
KR101877681B1 (en) * 2017-07-14 2018-07-13 고려대학교 산학협력단 Flexible electrode, biofuel cell and its preparing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375124B1 (en) 2009-10-16 2014-03-14 그래핀스퀘어 주식회사 Graphene transparent electode and flexible silicon thin film semiconductor device having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045470A (en) * 2010-08-25 2012-03-08 Toda Kogyo Corp Method of manufacturing conductive coating film, and conductive coating film
KR20150016457A (en) * 2013-08-02 2015-02-12 한국과학기술원 Stack structure electrode of metal coated polymer nanofiber membrane and manufacturing method thereof
KR20160061346A (en) * 2013-10-04 2016-05-31 광주과학기술원 Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
JP2016056407A (en) * 2014-09-09 2016-04-21 戸田工業株式会社 Production method of conductive fabric, and conductive fabric
KR101877681B1 (en) * 2017-07-14 2018-07-13 고려대학교 산학협력단 Flexible electrode, biofuel cell and its preparing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115966702A (en) * 2022-09-13 2023-04-14 扬州纳力新材料科技有限公司 Lightweight safe composite positive current collector
CN115966702B (en) * 2022-09-13 2023-11-28 扬州纳力新材料科技有限公司 Lightweight safe composite positive current collector

Also Published As

Publication number Publication date
KR102326739B1 (en) 2021-11-15
KR20200129664A (en) 2020-11-18

Similar Documents

Publication Publication Date Title
Kim et al. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors
Li et al. High‐performance polypyrrole/graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage
Zhou et al. Bioinspired Micro/Nanofluidic Ion Transport Channels for Organic Cathodes in High‐Rate and Ultrastable Lithium/Sodium‐Ion Batteries
Kong et al. Encapsulating V 2 O 5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries
Purkait et al. All-porous heterostructure of reduced graphene oxide–polypyrrole–nanoporous gold for a planar flexible supercapacitor showing outstanding volumetric capacitance and energy density
US9138965B2 (en) Conductive fibrous materials
Cai et al. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire
Feng et al. Flexible symmetrical planar supercapacitors based on multi-layered MnO 2/Ni/graphite/paper electrodes with high-efficient electrochemical energy storage
WO2021225315A1 (en) Mxene-coated hydrophilic fiber membrane-based complex generator
WO2012093880A9 (en) Nano-porous electrode for super capacitor and manufacturing method thereof
Verma et al. Highly stable self-charging piezoelectric (Rochelle salt) driven supercapacitor based on Ni nanowires
WO2020222435A1 (en) Textile material-based porous water splitting catalyst and preparation method therefor
KR20190123265A (en) Energy storage systems and systems
Zhao et al. Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability
Song et al. Stable and fast lithium–sulfur battery achieved by rational design of multifunctional separator
WO2020226446A1 (en) Flexible aluminum electrode based on textile materials and method for manufacturing same
WO2018080083A1 (en) Flexible electrode and manufacturing method therefor
WO2019013544A1 (en) Flexible electrode, biofuel cell using same, and method for manufacturing same
Weng et al. Failure mechanism in fiber-shaped electrodes for lithium-ion batteries
WO2022075565A1 (en) Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor
WO2019098498A1 (en) Fabric material-based flexible electrode and manufacturing method thereof
Sun et al. Energy harvesting and storage devices fused into various patterns
WO2018030835A1 (en) Rechargeable battery
WO2018190555A1 (en) Supercapacitor electrode and method for preparing same
WO2021125410A1 (en) Surface-treated copper foil, method for producing same, and negative electrode for secondary battery including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20801734

Country of ref document: EP

Kind code of ref document: A1