WO2020226212A1 - Device for preventing exposure of passenger in vehicle to electromagnetic waves - Google Patents

Device for preventing exposure of passenger in vehicle to electromagnetic waves Download PDF

Info

Publication number
WO2020226212A1
WO2020226212A1 PCT/KR2019/005569 KR2019005569W WO2020226212A1 WO 2020226212 A1 WO2020226212 A1 WO 2020226212A1 KR 2019005569 W KR2019005569 W KR 2019005569W WO 2020226212 A1 WO2020226212 A1 WO 2020226212A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant
vehicle
area
radio wave
wave intensity
Prior art date
Application number
PCT/KR2019/005569
Other languages
French (fr)
Korean (ko)
Inventor
박용수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/005569 priority Critical patent/WO2020226212A1/en
Publication of WO2020226212A1 publication Critical patent/WO2020226212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • the present invention relates to an electromagnetic wave exposure prevention apparatus for controlling a seat in a vehicle so that a vehicle occupant is not exposed to electromagnetic waves.
  • Digital technology is introduced in most vehicles currently produced, and accordingly, the number of electronic devices mounted on the vehicle is increasing.
  • vehicles that use electricity as direct or indirect power have been recently developed, such as autonomous vehicles, electronic vehicles, and fuel cell electric vehicles, the number of electronic devices installed in vehicles is It is increasing rapidly.
  • An object of the present invention is to provide an electromagnetic wave exposure prevention apparatus that controls a seat of a vehicle to move a passenger located in an electromagnetic wave risk area to a safety area.
  • Another object of the present invention is to provide a device for preventing exposure to electromagnetic waves that identifies a child in a vehicle and moves a child located in an electromagnetic wave risk area to a safety area.
  • an object of the present invention is to provide a device for preventing exposure to electromagnetic waves that identifies pregnant women, the elderly, and patients in a vehicle as protection targets, and moves the protection target located in the electromagnetic wave risk area to a safety area.
  • an object of the present invention is to provide an electromagnetic wave exposure prevention device that identifies a specific body part of a passenger as a protection area and moves the protected area located in the electromagnetic wave risk area to a safety area.
  • an object of the present invention is to provide an electromagnetic wave exposure prevention apparatus that cuts off power applied to an electronic device in a vehicle when the occupant is within a danger zone or induces the occupant to access a vehicle access point (AP).
  • AP vehicle access point
  • An electromagnetic wave exposure prevention apparatus for achieving the above object is a device mounted in a vehicle to prevent electromagnetic wave exposure to an occupant, the position and distance of a plurality of electronic devices provided in the vehicle
  • An area setting unit that sets the plurality of virtual areas as a safety area or a danger area based on the radio wave intensity calculated for the plurality of virtual areas, and the occupant located in the risk area, and identifies
  • a vehicle control unit controlling the seat in the vehicle to move the identified occupant to the safety area.
  • the present invention has the effect of protecting the occupant from electromagnetic waves by controlling the seat of the vehicle to move the occupant located in the danger zone of the electromagnetic wave to the safe zone.
  • the present invention identifies pregnant women, the elderly, and patients in a vehicle as protection targets, and by moving the protection target located in the electromagnetic wave risk area to the safety area, it is possible to protect the occupants with physical characteristics relatively vulnerable to electromagnetic waves from electromagnetic waves. It can have an effect.
  • the present invention has the effect of reducing the electromagnetic waves generated in the vehicle as a whole by cutting off power applied to electronic devices in the vehicle or inducing access to the vehicle AP to the occupant when the occupant is within a danger zone.
  • FIG. 1 is a block diagram of an apparatus for preventing exposure to electromagnetic waves according to an embodiment of the present invention.
  • FIG. 2 is an internal block diagram of a vehicle equipped with a device for preventing exposure to electromagnetic waves.
  • 3 is a diagram showing electromagnetic waves generated from an electronic device.
  • FIG. 4 is a diagram showing an interior space of a vehicle divided into a plurality of virtual areas.
  • 5 is a view showing a state in which the occupant is located in a danger zone.
  • FIG. 6 is a view showing a state in which the occupant moves from the danger zone to the safety zone according to the seat control.
  • FIG. 7 is a view showing a state in which the occupant's protection part moves from the danger zone to the safety zone according to the seat control.
  • the present invention relates to an electromagnetic wave exposure prevention apparatus for controlling a seat in a vehicle so that a vehicle occupant is not exposed to electromagnetic waves.
  • FIG. 1 is a block diagram of a device for preventing exposure to electromagnetic waves according to an exemplary embodiment of the present invention
  • FIG. 2 is a block diagram of a vehicle equipped with a device for preventing exposure to electromagnetic waves.
  • 3 is a diagram showing electromagnetic waves generated from an electronic device.
  • FIG. 4 is a diagram illustrating an internal space of a vehicle divided into a plurality of virtual areas
  • FIG. 5 is a diagram illustrating a state in which a passenger is located in a danger area.
  • FIG. 6 is a view showing a state in which the occupant moves from the danger zone to the safety zone according to the seat control
  • FIG. 7 is a diagram showing the state in which the occupant's protective part moves from the danger zone to the safety zone according to the seat control. .
  • an electromagnetic wave exposure prevention apparatus 100 includes a database 110, a radio wave intensity calculation unit 120, an area setting unit 130, and a vehicle control unit 140. I can.
  • the electromagnetic wave exposure prevention apparatus 100 shown in FIG. 1 is according to an embodiment, and its components are not limited to the embodiment shown in FIG. 1, and some components may be added, changed, or deleted as necessary. I can.
  • the electromagnetic wave exposure preventing apparatus 100 may prevent a passenger in the vehicle 1 from being exposed to electromagnetic waves, and for this purpose, it may be mounted inside the vehicle 1.
  • the vehicle 1 described below is a vehicle including at least one electronic device 200, which is recently developed as an autonomous vehicle, an electronic vehicle, and a hydrogen fuel cell electric vehicle. It may be a concept including the like.
  • the vehicle 1 to which the present invention is applied may be provided with the above-described electromagnetic wave exposure prevention apparatus 100.
  • the vehicle 1 is provided with a plurality of electronic devices 200, a camera 300, a pressure sensor 400, a seat 500, an electromagnetic wave measurement sensor 600, and an access point (AP) 700 for a vehicle.
  • AP access point
  • the vehicle 1 shown in FIG. 2 is illustrative, and in addition to the components shown in the drawings, the vehicle 1 may be provided with any device and module required for driving.
  • Components constituting the vehicle 1 and the electromagnetic exposure prevention device 100 are ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), and FPGAs ( Field programmable gate arrays), processors, controllers, micro-controllers, and microprocessors may be implemented as at least one physical element.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors, controllers, micro-controllers, and microprocessors may be implemented as at least one physical element.
  • the database 110 may store locations of a plurality of electronic devices 200 included in the vehicle 1 and radio wave intensity (S/D) for each distance, respectively.
  • S/D radio wave intensity
  • the plurality of electronic devices 200 included in the vehicle 1 are devices that operate by receiving electricity as power, and may be arbitrary devices that assist driving and driving.
  • the electronic device 200 may include a navigation module, a battery, a black box, an ignition system, a fuel injection system, a transmission system, an instrument and display module, a speaker, a radio, a Bluetooth module, a cassette and a CD player, and the like.
  • Electromagnetic waves generated in the electronic device 200 are propagated in space from the source, and may have an intensity inversely proportional to the square of the propagation distance (propagation distance 2 ).
  • electromagnetic waves generated in the electronic device 200 may be propagated in a radial form along a specific direction in space from a position P of the electronic device 200.
  • the intensity of the electromagnetic wave may be inversely proportional to the square of the propagation distance.
  • Each electronic device 200 may be provided at a preset position in the vehicle 1.
  • each electronic device 200 provided in the vehicle 1 may be mounted at a preset position according to the functional needs.
  • the database 110 may pre-store the positions of all electronic devices 200 included in the vehicle 1.
  • the database 110 may store the three-dimensional position P of each electronic device 200, respectively.
  • the three-dimensional position P is a position defined in the interior space 10 of the vehicle 1 to be described later, and may include information on the width (X), the length (Y), and the height (Z).
  • the database 110 may store the three-dimensional position P of the electronic device 200 specified in the internal space 10 of the vehicle 1 for each electronic device 200.
  • the radio wave intensity (S/D) by distance of the electronic device 200 is a parameter representing the intensity of the electromagnetic wave according to the distance separated from the electronic device 200, and is different depending on the type and operation state of the electronic device 200. It can have a value and can be predetermined by experimentation.
  • radio wave intensity (S/D) for each distance corresponding to all electronic devices 200 included in the vehicle 1 may be stored in advance.
  • the radio wave intensity calculation unit 120 divides the internal space 10 of the vehicle 1 into a plurality of virtual areas (VA), and the location of each electronic device 200 stored in the database 110 and the radio wave intensity by distance. Based on (S/D), the electric wave intensity for the virtual area VA can be calculated, respectively.
  • the interior space 10 of the vehicle 1 may have any shape.
  • the radio wave intensity calculation unit 120 may divide the inner space 10 of the vehicle 1 having a certain shape into a plurality of virtual areas VA.
  • the divided virtual area VA may have any shape and arrangement.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one horizontal plane. Accordingly, the plurality of virtual regions VA may be arranged in a row shape along at least one horizontal plane.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one vertical plane. Accordingly, the plurality of virtual regions VA may be arranged in a column shape along at least one vertical surface.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a plurality of three-dimensional virtual regions VA.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one horizontal plane and a vertical plane.
  • the plurality of virtual regions VA may be arranged in a three-dimensional matrix form along a horizontal plane and a vertical plane.
  • FIG. 4 is a view schematically showing the interior space 10 of the vehicle 1, and for convenience of explanation, various devices provided in the interior space 10 and the appearance of the vehicle 1 are omitted.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a 3D matrix form of 6 * 3 * 3 (horizontal * vertical * height). Accordingly, the interior space 10 of the vehicle 1 may be divided into a total of 54 virtual areas VA.
  • the radio wave intensity calculation unit 120 may calculate radio wave intensity for the divided virtual region VA based on the location of each electronic device 200 and the radio wave intensity S/D for each distance.
  • the radio wave intensity calculation unit 120 may calculate a distance between the location of each electronic device 200 stored in the database 110 and each virtual area VA. Subsequently, the radio wave intensity calculation unit 120 may calculate the radio wave intensity for the virtual area VA by substituting the calculated distance into the radio wave intensity S/D for each distance stored in the database 110.
  • the calculation of the electric wave intensity for any one virtual area VA may be performed for all the electronic devices 200 included in the vehicle 1. For example, when a navigation module and a black box are provided in the vehicle 1, the radio wave intensity for one virtual area VA is calculated by considering both the electromagnetic waves propagating from the navigation module and the black box. Can be.
  • the radio wave intensity calculation unit 120 when the internal space 10 of the vehicle 1 is divided into a plurality of three-dimensional virtual regions VA, the radio wave intensity calculation unit 120 includes a plurality of three-dimensional virtual regions VA. According to the distance between the and each electronic device 200, the radio wave intensity for the plurality of 3D virtual regions VA may be calculated, respectively.
  • the three-dimensional virtual region VA may be defined by three-dimensional coordinates in the interior space 10 of the vehicle 1, and the radio wave intensity calculation unit 120 includes the coordinates of each virtual region VA and the electronic device ( The distance between each electronic device 200 and the virtual area VA may be calculated based on the coordinates (Xe, Ye, and Ze) of the three-dimensional position P of 200).
  • the coordinates of the virtual area VA may be arbitrary three-dimensional coordinates included in the virtual area VA.
  • the three-dimensional virtual area (VA) is an area having a virtual volume and can be defined by a certain range of width, height, and height, and the coordinates of the virtual area (VA) are arbitrarily selected within the range.
  • the radio wave intensity calculation unit 120 calculates each calculated distance by distance to each electronic device 200 stored in the database 110. By substituting in the radio wave intensity (S/D), the radio wave intensity for the 3D virtual region (VA) can be calculated.
  • the 3D virtual area VA is an area having a virtual volume, it may be defined by a 3D coordinate range rather than a specific coordinate. Accordingly, the distance between the 3D virtual area VA and each electronic device 200 may vary depending on the location in the virtual area VA, and the electric wave intensity calculated according to the distance is also based on the location in the virtual area VA. It can be different.
  • the radio wave intensity calculation unit 120 includes a center point Cp of a plurality of 3D virtual areas VA and each electronic device 200. ), it is possible to calculate the propagation intensity for a plurality of three-dimensional virtual regions VA, respectively.
  • each of the 3D virtual regions VA may have a center point Cp.
  • the center point Cp may be defined as the center coordinates Xc, Yc, and Zc of the three-dimensional coordinate range of the virtual area VA.
  • the center point Cp of the 3D virtual area VA may be preset and stored in the database 110.
  • the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a plurality of three-dimensional virtual regions VA based on the preset central point Cp.
  • coordinates (Xc, Yc, Zc) of 54 center points Cp may be set in advance in the database 110, and the radio wave intensity calculation unit 120 includes the vehicle 1 internal space ( 10) can be divided into 54 3D virtual regions VA having the same volume with the coordinates (Xc, Yc, Zc) of the 54 center points Cp as the center.
  • the radio wave intensity calculation unit 120 includes coordinates (Xc, Yc, Zc) of the center point (Cp) of the three-dimensional virtual region (VA) calculated or preset according to the above-described method, and the three-dimensional (3D) of the electronic device 200 A distance between each electronic device 200 and the virtual area VA may be calculated based on the coordinates Xe, Ye, and Ze of the location P.
  • the radio wave intensity calculation unit 120 calculates each calculated distance by distance to each electronic device 200 stored in the database 110. By substituting in the radio wave intensity (S/D), the radio wave intensity for the 3D virtual region (VA) can be calculated.
  • the radio wave intensity calculated as described above is calculated by considering only the factors of the electronic device 200 provided inside the vehicle 1, it is necessary to consider the electromagnetic waves outside the vehicle 1 in calculating the radio wave intensity. .
  • At least one electromagnetic wave measurement sensor 600 may be provided at a predetermined measurement point inside the vehicle 1, and the radio wave intensity calculation unit 120 includes a location of each electronic device 200 and a radio wave by distance. Based on the intensity (S/D), it is possible to calculate the radio wave intensity for the measurement point. Then, the radio wave intensity calculation unit 120 determines a correction value by comparing the radio wave strength with respect to the measurement point and the measured value of the electromagnetic wave measurement sensor 600, and corrects the radio wave intensity for the virtual area VA according to the determined correction value. I can.
  • the electromagnetic wave measurement sensor 600 may be provided inside the vehicle 1 at a preset measurement point.
  • the position of the electromagnetic wave measurement sensor 600 is not limited, but for convenience of description, it is assumed that the electromagnetic wave measurement sensor 600 is provided on the upper surface of the interior space 10 of the vehicle 1.
  • the measuring point provided with the electromagnetic wave measuring sensor 600 may be defined by three-dimensional coordinates (hereinafter, measurement coordinates (Xr, Yr, Zr)).
  • the radio wave intensity calculation unit 120 calculates the distance between the three-dimensional coordinates (Xe, Ye, Ze) and the measurement coordinates (Xr, Yr, Zr) of each electronic device 200, and calculates the calculated distance for each electronic device 200 ), you can calculate the electric wave strength for the measuring point by substituting it into the electric wave strength (S/D) for each distance.
  • the electromagnetic wave measurement sensor 600 may be provided at the measurement point to detect both inside and outside the vehicle 1 received as the measurement point.
  • the radio wave intensity calculation unit 120 may determine a difference between the radio wave intensity calculated for the measurement point and the measured value of the electromagnetic wave measurement sensor 600 as a correction value.
  • the measured value of the electromagnetic wave measurement sensor 600 is a value in which both the electromagnetic waves inside and outside the vehicle 1 are sensed, it may be greater than the radio wave intensity calculated by considering only the internal electromagnetic waves of the vehicle 1. Accordingly, the radio wave intensity calculation unit 120 may determine a value obtained by subtracting the radio wave intensity calculated for the measurement point from the measurement value of the electromagnetic wave measurement sensor 600 as a correction value.
  • the radio wave intensity calculation unit 120 can correct the radio wave intensity by adding the correction value to the radio wave intensity calculated for each virtual region VA. have.
  • the area setting unit 130 may set the plurality of virtual areas VA as the safety area SA or the danger area DA based on the radio wave intensity calculated for the plurality of virtual areas VA.
  • the danger area DA may be defined as a virtual area VA having a higher radio wave intensity than the safety area SA.
  • the area setting unit 130 may use a reference intensity.
  • the reference intensity may be set as the intensity at which the electromagnetic wave starts to affect the human body, and may be determined in advance by an experiment and stored in the database 110.
  • the region setting unit 130 may set the virtual region VA as the dangerous region DA when the radio wave intensity calculated for the specific virtual region VA exceeds the reference intensity. Conversely, the area setting unit 130 may set the virtual area VA as the safe area SA if the radio wave intensity calculated for the specific virtual area VA is less than or equal to the reference intensity.
  • the vehicle control unit 140 may identify an occupant located in the danger area DA and control the seat 500 in the vehicle 1 to move the occupant to the safety area SA.
  • the vehicle controller 140 may identify a passenger through the internal camera 300.
  • the camera 300 may be provided at an arbitrary location inside the vehicle 1.
  • the position of the camera 300 is not limited, but in order to secure a wide angle of view, the camera 300 may be provided in front of the vehicle 1 to form a photographing angle toward the rear, and the vehicle 1 It is provided on the upper part of the) to form a photographing angle toward the lower part.
  • the camera 300 may be provided on the upper portion of the vehicle 1 to form a photographing angle toward the lower portion. Accordingly, the camera 300 may form an angle of view for the entire interior space 10 of the vehicle 1.
  • the camera 300 may provide internal image data of the vehicle 1 to the vehicle controller 140.
  • the vehicle controller 140 may identify the occupant's position based on the internal image data provided from the camera 300 and may identify the occupant located in the danger area DA based on the identified occupant's position.
  • the vehicle controller 140 may use arbitrary object detection and object tracking algorithms known in the art to identify the location of the occupant.
  • the vehicle controller 140 compares the identified occupant's position with the danger zone DA and the safety zone SA set by the zone setting unit 130, so that the occupant ) Or within the safe area (SA) can be determined. Referring to FIG. 5 as an example, the vehicle controller 140 may compare the identified occupant's position with the danger zone DA, and identify that the occupant is within the danger zone DA according to the comparison result.
  • the occupant may be defined by three-dimensional coordinates in the interior space 10 of the vehicle 1.
  • the occupant's coordinates may be any three-dimensional coordinates included in the occupant's volume identified by the camera 300. More specifically, the occupant is a subject having a certain volume, and may be defined by a certain range of width, height, and height, and the occupant's coordinates may be arbitrarily selected within the range.
  • the vehicle controller 140 may determine that the occupant is within the danger zone DA if the occupant's coordinates are within the 3D coordinate range defining the danger zone DA.
  • the vehicle controller 140 may control the seat 500 in the vehicle 1 to move the occupant to the safety zone SA.
  • At least one seat 500 may be provided in the vehicle 1, and the occupant may be seated on the seat 500 when boarding the vehicle 1.
  • the seat 500 described in the present invention may be electronically controlled according to a control signal provided from the vehicle controller 140, or may be controlled by manual operation of a passenger.
  • the seat 500 may move forward or backward under the control of the vehicle controller 140, may move left or right, or may rotate in a horizontal direction.
  • the sheet 500 may include a lower sheet 510 and an upper sheet 520 that is hinged to the lower sheet 510 to form a predetermined inclination with respect to the lower sheet 510.
  • the upper sheet The seat 520 may rotate with respect to the lower seat 510 under the control of the vehicle controller 140.
  • the vehicle controller 140 may control at least one of movement, rotation, and inclination of the seat 500 to move the occupant located in the danger area DA to the safety area SA.
  • the movement of the sheet 500 may be a concept including forward, backward, and left and right movement, and the inclination of the sheet 500 may mean a slope formed by the upper sheet 520 with respect to the lower sheet 510. .
  • the vehicle control unit 140 determines the occupant identified in the first danger area DA as a first safety area SA, and the occupant identified in the second danger area DA as a second safety area ( It is possible to control the sheet 500 to move to SA).
  • the vehicle control unit 140 moves the occupant from the first danger zone DA to the first safety zone SA by reversing the seat 500 on which the occupant identified in the first danger zone DA is seated. I can make it.
  • the vehicle control unit 140 increases the slope of the seat 500 on which the occupant identified in the second danger zone DA is seated to move the occupant from the second danger zone DA to the second safety zone SA. I can make it. In other words, the vehicle control unit 140 may rotate the upper seat 520 rearward to move the occupant from the second risk area DA to the second safety area SA.
  • FIG. 6 only an example of moving the occupant to the safety area SA by reversing the seat 500 and increasing the inclination of the seat 500 is described, but the vehicle controller 140 moves, rotates and tilts the seat 500.
  • the occupant may be moved to the safety area SA through various embodiments of controlling
  • the present invention controls the seat 500 of the vehicle 1 to move the occupant located in the electromagnetic wave danger area DA to the safety area SA, thereby protecting the occupant from electromagnetic waves.
  • electromagnetic waves may exert a worse influence on a specific body part of a passenger.
  • electromagnetic waves can have a worse effect on the genitals, eyes, and head than on other areas. Accordingly, the control operation of the vehicle controller 140 described above may be performed on a specific body part of the occupant.
  • the vehicle control unit 140 identifies the occupant's protection area (PP) located in the danger area (DA) through the internal camera 300, and controls the seat 500 to secure the identified protection area (PP). It can also be moved to the area SA.
  • the protective part PP is a body part vulnerable to electromagnetic waves, and may be preset as a genital organ, eyes, head, or the like.
  • Vehicle control unit 140 can identify the protection area (PP) of the occupant based on the internal image data provided from the camera 300, and the protection area (PP) is dangerous based on the location of the identified protection area (PP) It can be determined whether it is within the area DA.
  • the object detection and object tracking algorithm described above may be used to identify the location of the protection site (PP), and in addition, various detection techniques used in the art may be used.
  • the protective part PP may be defined by any one 3D coordinate (eg, the center coordinate of the occupant's eye, the center of the genitals, and the center of the head) in the interior space 10 of the vehicle 1.
  • the vehicle control unit 140 may determine that the occupant is within the danger zone DA if the coordinates of the protection area PP are within a 3D coordinate range defining the danger zone DA.
  • the vehicle controller 140 may control the seat 500 in the vehicle 1 to move the protection area PP to the safety area SA.
  • the vehicle control unit 140 can identify the protection area PP as the head of the occupant, and move the head of the occupant identified in the danger area DA to the safety area SA. 500) can be controlled. More specifically, the vehicle controller 140 may increase the inclination of the seat 500 on which the occupant is seated to move the occupant's head from the danger area DA to the safety area SA. In other words, the vehicle controller 140 may rotate the upper seat 520 rearward so that the occupant's head moves from the danger area DA to the safety area SA.
  • the vehicle controller 140 may reverse the seat 500 as shown in FIG. 6 so that the occupant's head moves from the danger area DA to the safety area SA. .
  • the present invention identifies a specific body part of the occupant as a protective part (PP), and by moving the protective part (PP) located in the electromagnetic wave risk area (DA) to the safety area (SA), It can protect vulnerable body parts from electromagnetic waves.
  • PP protective part
  • SA safety area
  • the vehicle controller 140 controls the seat 500 to control the seat 500 when the occupant (or the occupant's protection area PP) is identified in the danger zone DA for more than a reference time to control the occupant (or occupant
  • the protective part (PP) of the can be moved to the safety area (SA).
  • the vehicle controller 140 may continuously determine whether or not the occupant (or the occupant's protection area PP) is within the danger zone DA according to a predetermined period.
  • the vehicle control unit 140 may count the time from a time point when it is determined that the occupant (or the occupant's protection area PP) is within the danger zone DA.
  • the vehicle controller 140 performs the above-described seat 500 control operation. Can be done.
  • control operation of the vehicle controller 140 described above may be performed based on characteristics of the occupant.
  • control operation according to the characteristics of the occupant will be described in detail.
  • Electromagnetic waves can affect children even worse than adults. Accordingly, the control operation of the vehicle controller 140 described above may be performed only when the occupant is estimated to be a child.
  • the vehicle controller 140 estimates the height of the occupant through the camera 300, and if the estimated height is less than the reference height, the seat 500 is controlled to safeguard the occupant located in the danger zone DA. It can be moved to the area SA.
  • the reference height is a criterion for classifying adults and children, and may be set to, for example, 140 cm.
  • the vehicle controller 140 may estimate the height of the occupant based on the internal image captured by the camera 300. For example, the vehicle controller 140 may estimate the height of the occupant based on the angle of view occupied by the occupant in the captured internal image. In addition to the estimation operation based on the angle of view, various image analysis methods used in the art may be applied to the operation of estimating the height of the passenger.
  • the vehicle control unit 140 compares the estimated height and the reference height, and performs a control operation of the seat 500 only when the estimated height is less than the reference height, so that the occupant located in the danger zone DA Can be moved to the safe area SA.
  • the vehicle controller 140 identifies the weight of the occupant through the pressure sensor 400 provided in the seat 500, and if the identified weight is less than the reference weight, the vehicle control unit 140 controls the seat 500 The occupant located in) can be moved to the safety area SA.
  • the reference weight is a criterion for classifying an adult and a child, and may be set, for example, 40 kg.
  • a pressure sensor 400 for sensing vertical pressure may be provided inside the seat 500.
  • a vertical pressure by the weight of the occupant may be applied to the pressure sensor 400, and the vehicle control unit 140 may identify the weight of the occupant through the pressure sensor 400. .
  • the vehicle control unit 140 compares the identified weight and the reference weight, and performs the seat 500 control operation only when the identified weight is less than the reference weight, and thereby the occupant located in the danger zone DA. Can be moved to the safe area SA.
  • the present invention identifies a child in the vehicle 1 and moves the child located in the electromagnetic wave danger area DA to the safety area SA, thereby protecting a child who is relatively vulnerable to electromagnetic waves from electromagnetic waves. I can.
  • the control operation of the vehicle controller 140 described above may be performed in consideration of the physical characteristics of the occupant.
  • the vehicle control unit 140 determines whether the occupant is a protection target based on the occupant information stored in the database 110, and if the occupant is a protection target, the vehicle control unit 140 controls the seat 500 to control the occupant located in the danger zone DA. Can be moved to the safe area SA.
  • passenger information may be stored in advance.
  • the occupant information may include information on the physical characteristics of the occupant, and may include, for example, information on whether a person is pregnant, age, or suffering from a disease.
  • the vehicle controller 140 may identify the occupant through a human machine interface (HMI) inside the vehicle 1.
  • HMI human machine interface
  • the HMI may perform a function of visually and aurally outputting information or status of the vehicle 1 to the driver through a plurality of physical interfaces.
  • the HMI may receive various user manipulations to control the vehicle 1 and may output driving information to the occupant.
  • the HMI may include a number of input/output modules.
  • the occupant When boarding the vehicle 1, the occupant can enter the passenger's unique information through the interface of the HMI.
  • the passenger-specific information is information for distinguishing individual passengers, and may include the passenger's name, resident registration number, ID, password, and the like.
  • the vehicle controller 140 may identify the occupant based on the input occupant's unique information, and identify occupant information corresponding to the identified occupant with reference to the database 110.
  • the vehicle controller 140 may identify the occupant through the camera 300 to determine whether the occupant is a subject of protection.
  • the vehicle control unit 140 can identify the occupant by applying algorithms such as iris recognition and facial recognition to the image of the occupant photographed through the camera 300, and stores occupant information corresponding to the identified occupant in a database. It can be identified by referring to (110).
  • the vehicle controller 140 may determine whether the occupant is a protection target based on the identified occupant information. More specifically, the vehicle controller 140 may determine the occupant as a protection target when the occupant is determined to be pregnant, an elderly, or a patient based on the occupant information.
  • the vehicle controller 140 may perform a control operation on the seat 500 only when it is determined that the occupant is a protection target.
  • the details of controlling the seat 500 to move the occupant from the danger zone DA to the safety zone SA have been described with reference to FIG. 6, and thus a detailed description thereof will be omitted.
  • the present invention identifies a pregnant woman, an elderly person, and a patient in the vehicle 1 as protection targets, and by moving the protection target located in the electromagnetic wave risk area DA to the safety area SA, It is possible to protect passengers with physical characteristics vulnerable to electromagnetic waves.
  • the area setting unit 130 is the height of the occupant identified through the internal camera 300 is less than the reference height, or the pressure sensor provided in the seat 500 ( If the weight of the occupant identified through 400) is less than the reference weight, or the vehicle control unit 140 determines that the occupant is a protection target, the reference strength used to distinguish the safety area SA and the danger area DA is determined. Can be reduced.
  • the area setting unit 130 may set the risk area DA based on a more stringent standard. That is, by decreasing the previously set reference intensity, the number of dangerous areas (DA) in which the radio wave intensity exceeds the reference intensity may increase, and accordingly, the control frequency of the vehicle controller 140 for the seat 500 is further increased. can do.
  • the vehicle controller 140 may switch the driving mode of the vehicle to the autonomous driving mode when the occupant identified in the danger zone is located in the driver's seat.
  • the vehicle 1 to which the present invention is applied may be an autonomous vehicle. Accordingly, the vehicle 1 may include an autonomous driving module that generates an autonomous driving path and controls the operation of the vehicle 1 according to the generated autonomous driving path.
  • Such an autonomous driving module may be selectively operated according to an operator's manipulation. For example, if the occupant wants to control the operation of the vehicle 1 by himself, the occupant may manually control the vehicle 1 after turning off the autonomous driving module. On the other hand, when the occupant wants the vehicle 1 to run autonomously, the occupant may turn on the autonomous driving module to allow the vehicle 1 to travel by itself.
  • the vehicle controller 140 may determine whether the occupant identified in the danger area DA is located in the driver's seat. More specifically, at least one of the plurality of virtual areas VA described above may be preset as a driver's seat, and the vehicle controller 140 is a virtual area VA in which the occupant identified in the danger area DA is preset as the driver's seat. It can be determined whether the occupant is located in the driver's seat depending on whether it is within or not. Since the method of determining whether the occupant is within a specific virtual area VA has been described above, detailed descriptions will be omitted here.
  • the vehicle controller 140 may identify the driving mode of the current vehicle.
  • the driving mode may be divided into a manual driving mode in which the above-described autonomous driving module is in an off state, and an autonomous driving mode in which the autonomous driving module is in an on state.
  • the vehicle controller 140 may switch the driving mode to the autonomous driving mode by turning on the autonomous driving module prior to controlling the above-described seat 500. Accordingly, when the above-described seat 500 control operation is performed, the vehicle 1 runs by itself even if the occupant located in the driver's seat does not operate the vehicle 1 separately, so driving stability may be ensured.
  • the vehicle controller 140 may supply power applied to at least one of the plurality of electronic devices 200 in operation when the occupant is identified in the danger zone DA. Can be blocked.
  • the radio wave intensity (S/D) for each distance of the electronic device 200 in operation may be used to calculate the radio wave intensity for the virtual area VA.
  • the vehicle control unit 140 may identify at least one electronic device 200 that is not required to be operated among a plurality of electronic devices 200 in operation in order to reduce the electric wave intensity of the vehicle 1 interior space 10 as a whole. I can.
  • the vehicle control unit 140 may identify at least one of a display module, a speaker, a radio, a Bluetooth module, a cassette, and a CD player that are not necessarily required to operate while the vehicle 1 is driving, and the identified electronic device ( 200) can be cut off.
  • the electric wave intensity of the interior space 10 of the vehicle 1 may be reduced as a whole according to the power cut-off operation of the vehicle controller 140.
  • a display module may visually output driving information of a vehicle, and a speaker may audibly output driving information.
  • the driving information may include a current driving state of the current vehicle, information necessary for driving, information expected during driving, and the like.
  • the driving information may include a current vehicle location, a driving route, an external image, a speed, a fuel level, a real-time fuel economy, a signal violation on a driving route, and a position of a speed prevention camera.
  • the vehicle control unit 140 When the vehicle control unit 140 cuts off power applied to the electronic device 200 that does not necessarily require operation, the vehicle control unit 140 may cut off only one of the display module and the speaker.
  • the vehicle control unit 140 may cut off power applied to any one of the display module and the speaker having a greater radio wave intensity. For example, when the radio wave intensity generated by the display module is greater than the radio wave intensity generated by the speaker, the vehicle controller 140 may cut off power applied to the display module and supply power to the speaker. Conversely, when the radio wave intensity generated by the speaker is greater than the radio wave intensity generated by the display module, the vehicle controller 140 may cut off power applied to the speaker and supply power to the display module.
  • one of the display module and the speaker can output driving information, and the occupant visually or audibly recognizes driving information can do.
  • the vehicle 1 may be equipped with a vehicle AP 700.
  • the vehicle AP 700 may be wirelessly connected to an adjacent base station through radio waves transmitted and received through an antenna provided outside the vehicle 1.
  • the vehicle AP 700 may transmit a radio wave having a predetermined size inside the vehicle 1 to relay a connection between a wireless communication device provided in the vehicle 1 and an adjacent base station.
  • the occupant terminal may be defined as a terminal possessed by the occupant.
  • the occupant can board the vehicle 1 while holding the occupant terminal.
  • the intensity of radio waves generated by the occupant terminal may increase in proportion to the distance between the occupant terminal and the connection target. For example, when the occupant terminal is directly connected to the base station than when the occupant terminal is connected to the vehicle AP 700, stronger radio waves may be generated in the interior space 10 of the vehicle 1.
  • the vehicle controller 140 guides access to the vehicle AP 700 (Access Point) when the occupant is identified in the danger zone DA in order to reduce the radio wave intensity of the vehicle 1 internal space 10 as a whole.
  • Setting data can be provided to the passenger terminal.
  • the setting data is data for changing the settings of the occupant terminal, and may be data for setting a Wi-Fi function of the occupant terminal. Accordingly, the occupant terminal receiving the setting data may access the vehicle AP 700 through a Wi-Fi function.
  • the setting data is a message notifying the need to change the setting to the occupant terminal, and may be a message guiding the setting of a Wi-Fi function.
  • the occupant who recognizes the message can set the Wi-Fi function of the occupant terminal, and accordingly, the occupant terminal can access the vehicle AP 700 through the Wi-Fi function.
  • the electric wave intensity of the interior space 10 of the vehicle 1 may decrease as a whole.
  • the present invention cuts off power applied to the electronic device 200 in the vehicle 1 if the occupant is within the danger zone DA, or by inducing the occupant to access the vehicle AP 700, the vehicle ( 1)
  • the electromagnetic waves generated within can be reduced overall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

The present invention relates to an electromagnetic wave exposure prevention device for controlling a seat in a vehicle so that a passenger in a vehicle is not exposed to electromagnetic waves. The vehicle to which the present invention is applied may be an autonomous driving vehicle, and the autonomous driving vehicle may be linked to an artificial intelligence module, a drone, an unmanned aerial vehicle, a robot, an augmented reality (AR) module, a virtual reality (VR) module, a 5th Generation (5G) mobile communication service, and a device.

Description

차량 내 탑승자에 대한 전자파 노출을 방지하는 장치A device that prevents exposure to electromagnetic waves to passengers in a vehicle
본 발명은 차량 내 탑승자가 전자파에 노출되지 않도록 차량 내 시트를 제어하는 전자파 노출 방지 장치에 관한 것이다.The present invention relates to an electromagnetic wave exposure prevention apparatus for controlling a seat in a vehicle so that a vehicle occupant is not exposed to electromagnetic waves.
현재 생산되는 대부분의 차량에는 디지털 기술이 도입되고, 이에 따라 차량에 탑재되는 전자기기의 수가 무수히 많아지고 있다. 이에 더하여, 최근 자율주행 차량(autonomous vehicle), 전기차(electronic vehicle), 수소연료전지차(fell cell electric vehicle)와 같이 전기를 직간접적인 동력으로 이용하는 차량이 개발됨에 따라 차량에 탑재되는 전자기기의 수는 급격하게 증가하고 있다.Digital technology is introduced in most vehicles currently produced, and accordingly, the number of electronic devices mounted on the vehicle is increasing. In addition, as vehicles that use electricity as direct or indirect power have been recently developed, such as autonomous vehicles, electronic vehicles, and fuel cell electric vehicles, the number of electronic devices installed in vehicles is It is increasing rapidly.
한편, 세계적으로 전자파의 유해성에 대한 관심이 대두되고 있으며, 특히 차량과 같이 밀폐된 공간 내에서 밀집된 다수의 전자기기로부터 발생하는 전자파의 유해성에 대한 연구가 이루어지고 있다.Meanwhile, interest in the harmfulness of electromagnetic waves is emerging around the world, and in particular, studies on the harmfulness of electromagnetic waves generated from a plurality of electronic devices concentrated in a closed space such as a vehicle are being conducted.
차량의 경우 이용자의 생활에 매우 밀접한 공간이므로 차량 내 전자파의 유해성에 대한 우려가 갈수록 증가하고 있으며, 이에 따라, 이용자가 차량에 탑승하였을 때, 차량 내에서 발생하는 전자파로부터 이용자를 보호할 수 있는 방법이 요구되고 있다.In the case of a vehicle, since it is a space very close to the user's life, concerns about the harmfulness of electromagnetic waves in the vehicle are increasing, and accordingly, a method to protect the user from electromagnetic waves generated in the vehicle when the user boards the vehicle. Is being demanded.
본 발명은 차량의 시트를 제어하여 전자파 위험영역에 위치한 탑승자를 안전영역으로 이동시키는 전자파 노출 방지 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an electromagnetic wave exposure prevention apparatus that controls a seat of a vehicle to move a passenger located in an electromagnetic wave risk area to a safety area.
또한, 본 발명은 차량에 탑승한 아동을 식별하고, 전자파 위험영역에 위치한 아동을 안전영역으로 이동시키는 전자파 노출 방지 장치를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a device for preventing exposure to electromagnetic waves that identifies a child in a vehicle and moves a child located in an electromagnetic wave risk area to a safety area.
또한, 본 발명은 차량에 탑승한 임산부, 노인, 환자를 보호대상으로 식별하고, 전자파 위험영역에 위치한 보호대상을 안전영역으로 이동시키는 전자파 노출 방지 장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a device for preventing exposure to electromagnetic waves that identifies pregnant women, the elderly, and patients in a vehicle as protection targets, and moves the protection target located in the electromagnetic wave risk area to a safety area.
또한, 본 발명은 탑승자의 특정 신체부위를 보호부위로 식별하고, 전자파 위험영역에 위치한 보호부위를 안전영역으로 이동시키는 전자파 노출 방지 장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide an electromagnetic wave exposure prevention device that identifies a specific body part of a passenger as a protection area and moves the protected area located in the electromagnetic wave risk area to a safety area.
또한, 본 발명은 탑승자가 위험영역 이내이면 차량 내 전자기기에 인가되는 전원을 차단하거나 탑승자에게 차량용 AP(Access Point)에 대한 접속을 유도하는 전자파 노출 방지 장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide an electromagnetic wave exposure prevention apparatus that cuts off power applied to an electronic device in a vehicle when the occupant is within a danger zone or induces the occupant to access a vehicle access point (AP).
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention that are not mentioned can be understood by the following description, and will be more clearly understood by examples of the present invention. In addition, it will be easily understood that the objects and advantages of the present invention can be realized by the means shown in the claims and combinations thereof.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 전자파 노출 방지 장치는 차량 내에 탑재되어 탑승자에 대한 전자파 노출을 방지하는 장치에 있어서, 상기 차랑 내 구비된 복수의 전자기기의 위치와, 거리별 전파강도가 각각 저장되는 데이터베이스, 상기 차량의 내부공간을 복수의 가상영역으로 분할하고, 상기 저장된 각 전자기기의 위치와, 거리별 전파강도에 기초하여 상기 분할된 가상영역에 대한 전파강도를 각각 산출하는 전파강도 산출부, 상기 복수의 가상영역에 대해 산출된 상기 전파강도에 기초하여 상기 복수의 가상영역을 안전영역 또는 위험영역으로 설정하는 영역 설정부 및 상기 위험영역에 위치한 상기 탑승자를 식별하고, 상기 차량 내 시트를 제어하여 상기 식별된 탑승자를 상기 안전영역으로 이동시키는 차량 제어부를 포함하는 것을 특징으로 한다.An electromagnetic wave exposure prevention apparatus according to an embodiment of the present invention for achieving the above object is a device mounted in a vehicle to prevent electromagnetic wave exposure to an occupant, the position and distance of a plurality of electronic devices provided in the vehicle A database in which each radio wave intensity is stored, and the internal space of the vehicle is divided into a plurality of virtual areas, and the radio wave intensity for the divided virtual areas is respectively calculated based on the location of each stored electronic device and the radio wave intensity for each distance. An area setting unit that sets the plurality of virtual areas as a safety area or a danger area based on the radio wave intensity calculated for the plurality of virtual areas, and the occupant located in the risk area, and identifies And a vehicle control unit controlling the seat in the vehicle to move the identified occupant to the safety area.
본 발명은 차량의 시트를 제어하여 전자파 위험영역에 위치한 탑승자를 안전영역으로 이동시킴으로써, 탑승자를 전자파로부터 보호할 수 있는 효과가 있다.The present invention has the effect of protecting the occupant from electromagnetic waves by controlling the seat of the vehicle to move the occupant located in the danger zone of the electromagnetic wave to the safe zone.
또한, 본 발명은 차량에 탑승한 아동을 식별하고, 전자파 위험영역에 위치한 아동을 안전영역으로 이동시킴으로써, 상대적으로 전자파에 취약한 아동을 전자파로부터 보호할 수 있는 효과가 있다.In addition, according to the present invention, by identifying a child in a vehicle and moving a child located in an electromagnetic wave risk area to a safety area, it is possible to protect a child who is relatively vulnerable to electromagnetic waves from electromagnetic waves.
또한, 본 발명은 차량에 탑승한 임산부, 노인, 환자를 보호대상으로 식별하고, 전자파 위험영역에 위치한 보호대상을 안전영역으로 이동시킴으로써, 상대적으로 전자파에 취약한 신체적 특징을 가진 탑승자를 전자파로부터 보호할 수 있는 효과가 있다.In addition, the present invention identifies pregnant women, the elderly, and patients in a vehicle as protection targets, and by moving the protection target located in the electromagnetic wave risk area to the safety area, it is possible to protect the occupants with physical characteristics relatively vulnerable to electromagnetic waves from electromagnetic waves. It can have an effect.
또한, 본 발명은 탑승자의 특정 신체부위를 보호부위로 식별하고, 전자파 위험영역에 위치한 보호부위를 안전영역으로 이동시킴으로써, 상대적으로 전자파에 취약한 신체부위를 전자파로부터 보호할 수 있는 효과가 있다.In addition, according to the present invention, by identifying a specific body part of the occupant as a protective part and moving the protective part located in the electromagnetic wave risk area to the safety area, there is an effect of protecting a body part relatively vulnerable to electromagnetic waves from electromagnetic waves.
또한, 본 발명은 탑승자가 위험영역 이내이면 차량 내 전자기기에 인가되는 전원을 차단하거나 탑승자에게 차량용 AP에 대한 접속을 유도함으로써, 차량 내에서 발생하는 전자파를 전체적으로 감소시키는 효과가 있다.In addition, the present invention has the effect of reducing the electromagnetic waves generated in the vehicle as a whole by cutting off power applied to electronic devices in the vehicle or inducing access to the vehicle AP to the occupant when the occupant is within a danger zone.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, specific effects of the present invention will be described together while describing specific details for carrying out the present invention.
도 1은 본 발명의 일 실시예에 따른 전자파 노출 방지 장치의 블록도.1 is a block diagram of an apparatus for preventing exposure to electromagnetic waves according to an embodiment of the present invention.
도 2는 전자파 노출 방지 장치가 구비된 차량의 내부 블록도.2 is an internal block diagram of a vehicle equipped with a device for preventing exposure to electromagnetic waves.
도 3은 전자기기로부터 발생하는 전자파를 도시한 도면.3 is a diagram showing electromagnetic waves generated from an electronic device.
도 4는 복수의 가상영역으로 분할된 차량의 내부공간을 도시한 도면.4 is a diagram showing an interior space of a vehicle divided into a plurality of virtual areas.
도 5는 탑승자가 위험영역에 위치한 모습을 도시한 도면.5 is a view showing a state in which the occupant is located in a danger zone.
도 6은 시트 제어에 따라 탑승자가 위험영역에서 안전영역으로 이동하는 모습을 도시한 도면.6 is a view showing a state in which the occupant moves from the danger zone to the safety zone according to the seat control.
도 7은 시트 제어에 따라 탑승자의 보호부위가 위험영역에서 안전영역으로 이동하는 모습을 도시한 도면.7 is a view showing a state in which the occupant's protection part moves from the danger zone to the safety zone according to the seat control.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features, and advantages will be described later in detail with reference to the accompanying drawings, and accordingly, one of ordinary skill in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of known technologies related to the present invention may unnecessarily obscure the subject matter of the present invention, a detailed description will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar elements.
본 발명은 차량 내 탑승자가 전자파에 노출되지 않도록 차량 내 시트를 제어하는 전자파 노출 방지 장치에 관한 것이다.The present invention relates to an electromagnetic wave exposure prevention apparatus for controlling a seat in a vehicle so that a vehicle occupant is not exposed to electromagnetic waves.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 전자파 노출 장치와, 이를 구비한 차량에 대해 구체적으로 설명하도록 한다.Hereinafter, an electromagnetic wave exposure apparatus according to an exemplary embodiment of the present invention and a vehicle including the same will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 전자파 노출 방지 장치의 블록도이고, 도 2는 전자파 노출 방지 장치가 구비된 차량의 내부 블록도이다.1 is a block diagram of a device for preventing exposure to electromagnetic waves according to an exemplary embodiment of the present invention, and FIG. 2 is a block diagram of a vehicle equipped with a device for preventing exposure to electromagnetic waves.
도 3은 전자기기로부터 발생하는 전자파를 도시한 도면이다.3 is a diagram showing electromagnetic waves generated from an electronic device.
도 4는 복수의 가상영역으로 분할된 차량의 내부공간을 도시한 도면이고, 도 5는 탑승자가 위험영역에 위치한 모습을 도시한 도면이다.FIG. 4 is a diagram illustrating an internal space of a vehicle divided into a plurality of virtual areas, and FIG. 5 is a diagram illustrating a state in which a passenger is located in a danger area.
도 6은 시트 제어에 따라 탑승자가 위험영역에서 안전영역으로 이동하는 모습을 도시한 도면이고, 도 7은 시트 제어에 따라 탑승자의 보호부위가 위험영역에서 안전영역으로 이동하는 모습을 도시한 도면이다.6 is a view showing a state in which the occupant moves from the danger zone to the safety zone according to the seat control, and FIG. 7 is a diagram showing the state in which the occupant's protective part moves from the danger zone to the safety zone according to the seat control. .
도 1을 참조하면, 본 발명의 일 실시예에 따른 전자파 노출 방지 장치(100)는 데이터베이스(110), 전파강도 산출부(120), 영역 설정부(130), 차량 제어부(140)를 포함할 수 있다. 도 1에 도시된 전자파 노출 방지 장치(100)는 일 실시예에 따른 것이고, 그 구성요소들이 도 1에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 일부 구성요소가 부가, 변경 또는 삭제될 수 있다.Referring to FIG. 1, an electromagnetic wave exposure prevention apparatus 100 according to an embodiment of the present invention includes a database 110, a radio wave intensity calculation unit 120, an area setting unit 130, and a vehicle control unit 140. I can. The electromagnetic wave exposure prevention apparatus 100 shown in FIG. 1 is according to an embodiment, and its components are not limited to the embodiment shown in FIG. 1, and some components may be added, changed, or deleted as necessary. I can.
이와 같은 전자파 노출 방지 장치(100)는 차량(1) 내의 탑승자가 전자파에 노출되는 것을 방지할 수 있고, 이를 위해 차량(1) 내부에 탑재될 수 있다.The electromagnetic wave exposure preventing apparatus 100 may prevent a passenger in the vehicle 1 from being exposed to electromagnetic waves, and for this purpose, it may be mounted inside the vehicle 1.
이하에서 설명되는 차량(1)은 적어도 하나 이상의 전자기기(200)를 포함하는 차량으로서, 최근 개발되고 있는 자율주행 차량(autonomous vehicle), 전기차(electronic vehicle), 수소연료전지차(fell cell electric vehicle) 등을 포함하는 개념일 수 있다.The vehicle 1 described below is a vehicle including at least one electronic device 200, which is recently developed as an autonomous vehicle, an electronic vehicle, and a hydrogen fuel cell electric vehicle. It may be a concept including the like.
도 2를 참조하면, 본 발명이 적용되는 차량(1)에는 전술한 전자파 노출 방지 장치(100)가 구비될 수 있다. 이에 더하여, 차량(1)에는 복수의 전자기기(200), 카메라(300), 압력센서(400), 시트(500), 전자파 측정 센서(600) 및 차량용 AP(Access Point)(700)가 구비될 수 있다. 도 2에 도시된 차량(1)은 예시적인 것으로, 도면에 도시된 구성요소 외에도 차량(1)에는 주행에 필요한 임의의 장치 및 모듈이 구비될 수 있다.Referring to FIG. 2, the vehicle 1 to which the present invention is applied may be provided with the above-described electromagnetic wave exposure prevention apparatus 100. In addition, the vehicle 1 is provided with a plurality of electronic devices 200, a camera 300, a pressure sensor 400, a seat 500, an electromagnetic wave measurement sensor 600, and an access point (AP) 700 for a vehicle. Can be. The vehicle 1 shown in FIG. 2 is illustrative, and in addition to the components shown in the drawings, the vehicle 1 may be provided with any device and module required for driving.
차량(1)과 전자파 노출 방지 장치(100)를 구성하는 구성요소들은 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors) 중 적어도 하나의 물리적인 요소로 구현될 수 있다.Components constituting the vehicle 1 and the electromagnetic exposure prevention device 100 are ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), and FPGAs ( Field programmable gate arrays), processors, controllers, micro-controllers, and microprocessors may be implemented as at least one physical element.
이하에서는, 차량(1) 내에 탑재된 전자파 노출 방지 장치(100)의 동작을 구체적으로 설명하도록 한다.Hereinafter, the operation of the electromagnetic wave exposure preventing apparatus 100 mounted in the vehicle 1 will be described in detail.
데이터베이스(110)에는 차량(1) 내 구비된 복수의 전자기기(200)의 위치와, 거리별 전파강도(S/D)가 각각 저장될 수 있다.The database 110 may store locations of a plurality of electronic devices 200 included in the vehicle 1 and radio wave intensity (S/D) for each distance, respectively.
차량(1) 내 구비된 복수의 전자기기(200)는 전기를 전원으로 공급받아 동작하는 기기로서, 주행 및 주행을 보조하는 임의의 기기일 수 있다. 예를 들어, 전자기기(200)는 네비게이션 모듈, 배터리, 블랙박스, 점화 시스템, 연료 분사 시스템, 트랜스미션 시스템, 계기 및 디스플레이 모듈, 스피커, 라디오, 블루투스 모듈, 카세트 및 CD 플레이어 등을 포함할 수 있다.The plurality of electronic devices 200 included in the vehicle 1 are devices that operate by receiving electricity as power, and may be arbitrary devices that assist driving and driving. For example, the electronic device 200 may include a navigation module, a battery, a black box, an ignition system, a fuel injection system, a transmission system, an instrument and display module, a speaker, a radio, a Bluetooth module, a cassette and a CD player, and the like. .
전기를 이용하여 동작함에 따라, 전자기기(200)에서는 전자파(electromagnetic wave)가 발생할 수 있다. 전자기기(200)에서 발생하는 전자파는 발원지로부터 공간상으로 전파(propagation)되며, 전파 거리의 제곱(전파거리2)에 반비례하는 세기를 가질 수 있다.As it operates using electricity, electromagnetic waves may be generated in the electronic device 200. Electromagnetic waves generated in the electronic device 200 are propagated in space from the source, and may have an intensity inversely proportional to the square of the propagation distance (propagation distance 2 ).
도 3을 참조하면, 전자기기(200)에서 발생하는 전자파는, 전자기기(200)의 위치(P)로부터 공간상으로 특정 방향을 따라 방사형태로 전파될 수 있다. 이 때, 전자파의 세기는 전파 거리의 제곱에 반비례할 수 있다.Referring to FIG. 3, electromagnetic waves generated in the electronic device 200 may be propagated in a radial form along a specific direction in space from a position P of the electronic device 200. In this case, the intensity of the electromagnetic wave may be inversely proportional to the square of the propagation distance.
각 전자기기(200)는 차량(1) 내 미리 설정된 위치에 구비될 수 있다. 다시 말해, 차량(1)의 생산 시, 차량(1)에 구비되는 각 전자기기(200)는 그 기능상의 필요에 따라 미리 설정된 위치에 탑재될 수 있다. 이 때, 데이터베이스(110)에는 차량(1) 내 구비되는 모든 전자기기(200)의 위치가 미리 저장될 수 있다.Each electronic device 200 may be provided at a preset position in the vehicle 1. In other words, when the vehicle 1 is produced, each electronic device 200 provided in the vehicle 1 may be mounted at a preset position according to the functional needs. In this case, the database 110 may pre-store the positions of all electronic devices 200 included in the vehicle 1.
보다 구체적으로, 데이터베이스(110)에는 각 전자기기(200)의 3차원 위치(P)가 각각 저장될 수 있다. 여기서 3차원 위치(P)는 후술하는 차량(1)의 내부공간(10) 내에서 정의되는 위치로서, 가로(X), 세로(Y) 및 높이(Z)에 관한 정보를 포함할 수 있다. 다시 말해, 데이터베이스(110)에는 차량(1)의 내부공간(10) 내에서 특정되는 전자기기(200)의 3차원 위치(P)가 각 전자기기(200)별로 저장될 수 있다.More specifically, the database 110 may store the three-dimensional position P of each electronic device 200, respectively. Here, the three-dimensional position P is a position defined in the interior space 10 of the vehicle 1 to be described later, and may include information on the width (X), the length (Y), and the height (Z). In other words, the database 110 may store the three-dimensional position P of the electronic device 200 specified in the internal space 10 of the vehicle 1 for each electronic device 200.
한편, 전자기기(200)의 거리별 전파강도(S/D)는 전자기기(200)로부터 이격된 거리에 따른 전자파의 세기를 나타내는 파라미터로서, 전자기기(200)의 종류 및 동작 상태에 따라 다른 값을 가질 수 있고, 실험에 의해 미리 결정될 수 있다. 데이터베이스(110)에는 차량(1) 내 구비되는 모든 전자기기(200)에 대응하는 거리별 전파강도(S/D)가 미리 저장될 수 있다.Meanwhile, the radio wave intensity (S/D) by distance of the electronic device 200 is a parameter representing the intensity of the electromagnetic wave according to the distance separated from the electronic device 200, and is different depending on the type and operation state of the electronic device 200. It can have a value and can be predetermined by experimentation. In the database 110, radio wave intensity (S/D) for each distance corresponding to all electronic devices 200 included in the vehicle 1 may be stored in advance.
전파강도 산출부(120)는 차량(1)의 내부공간(10)을 복수의 가상영역(VA)으로 분할하고, 데이터베이스(110)에 저장된 각 전자기기(200)의 위치와, 거리별 전파강도(S/D)에 기초하여 가상영역(VA)에 대한 전파강도를 각각 산출할 수 있다.The radio wave intensity calculation unit 120 divides the internal space 10 of the vehicle 1 into a plurality of virtual areas (VA), and the location of each electronic device 200 stored in the database 110 and the radio wave intensity by distance. Based on (S/D), the electric wave intensity for the virtual area VA can be calculated, respectively.
차량(1)의 내부공간(10)은 임의의 형상을 가질 수 있다. 전파강도 산출부(120)는 일정한 형상을 갖는 차량(1)의 내부공간(10)을 복수의 가상영역(VA)으로 분할할 수 있다. 분할된 가상영역(VA)은 임의의 형태 및 배열을 가질 수 있다. The interior space 10 of the vehicle 1 may have any shape. The radio wave intensity calculation unit 120 may divide the inner space 10 of the vehicle 1 having a certain shape into a plurality of virtual areas VA. The divided virtual area VA may have any shape and arrangement.
일 예에서, 전파강도 산출부(120)는 차량(1)의 내부공간(10)을 적어도 하나의 수평면을 따라 분할할 수 있다. 이에 따라, 복수의 가상영역(VA)은 적어도 하나의 수평면을 따라 행(row)의 형태로 배열될 수 있다.In an example, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one horizontal plane. Accordingly, the plurality of virtual regions VA may be arranged in a row shape along at least one horizontal plane.
다른 예에서, 전파강도 산출부(120)는 차량(1)의 내부공간(10)을 적어도 하나의 수직면을 따라 분할할 수 있다. 이에 따라, 복수의 가상영역(VA)은 적어도 하나의 수직면을 따라 열(column)의 형태로 배열될 수 있다.In another example, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one vertical plane. Accordingly, the plurality of virtual regions VA may be arranged in a column shape along at least one vertical surface.
또 다른 예에서, 전파강도 산출부(120)는 차량(1)의 내부공간(10)을 복수의 3차원 가상영역(VA)으로 분할할 수 있다. 다시 말해, 전파강도 산출부(120)는 차량(1)의 내부공간(10)을 적어도 하나의 수평면과 수직면을 따라 분할할 수 있다. 이에 따라, 복수의 가상영역(VA)은 수평면과 수직면을 따라 3차원 매트릭스(matrix) 형태로 배열될 수 있다.In another example, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a plurality of three-dimensional virtual regions VA. In other words, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 along at least one horizontal plane and a vertical plane. Accordingly, the plurality of virtual regions VA may be arranged in a three-dimensional matrix form along a horizontal plane and a vertical plane.
이하에서는 설명의 편의를 위해 복수의 가상영역(VA)이 3차원 매트릭스 형태로 배열되는 것으로 가정하여 설명하도록 한다.Hereinafter, for convenience of explanation, it is assumed that a plurality of virtual regions VA are arranged in a 3D matrix form.
도 4는 차량(1)의 내부공간(10)을 간략히 도시한 도면으로서, 설명의 편의를 위해 내부공간(10)에 구비된 각종 장치 및 차량(1)의 외관은 생략 도시하였다.4 is a view schematically showing the interior space 10 of the vehicle 1, and for convenience of explanation, various devices provided in the interior space 10 and the appearance of the vehicle 1 are omitted.
도 4를 참조하면, 전파강도 산출부(120)는 차량(1)의 내부공간(10)을 6 * 3 * 3(가로 * 세로 * 높이)의 3차원 매트릭스 형태로 분할할 수 있다. 이에 따라, 차량(1)의 내부공간(10)은 총 54개의 가상영역(VA)으로 분할될 수 있다.Referring to FIG. 4, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a 3D matrix form of 6 * 3 * 3 (horizontal * vertical * height). Accordingly, the interior space 10 of the vehicle 1 may be divided into a total of 54 virtual areas VA.
전파강도 산출부(120)는 각 전자기기(200)의 위치와, 거리별 전파강도(S/D)에 기초하여, 분할된 가상영역(VA)에 대한 전파강도를 각각 산출할 수 있다.The radio wave intensity calculation unit 120 may calculate radio wave intensity for the divided virtual region VA based on the location of each electronic device 200 and the radio wave intensity S/D for each distance.
보다 구체적으로, 전파강도 산출부(120)는 데이터베이스(110)에 저장된 각 전자기기(200)의 위치와 각 가상영역(VA) 사이의 거리를 산출할 수 있다. 이어서, 전파강도 산출부(120)는 산출된 거리를 데이터베이스(110)에 저장된 거리별 전파강도(S/D)에 대입하여 가상영역(VA)에 대한 전파강도를 산출할 수 있다.More specifically, the radio wave intensity calculation unit 120 may calculate a distance between the location of each electronic device 200 stored in the database 110 and each virtual area VA. Subsequently, the radio wave intensity calculation unit 120 may calculate the radio wave intensity for the virtual area VA by substituting the calculated distance into the radio wave intensity S/D for each distance stored in the database 110.
어느 한 가상영역(VA)에 대한 전파강도 산출은 차량(1) 내 구비된 모든 전자기기(200)에 대해 수행될 수 있다. 예를 들어, 차량(1) 내에 네비게이션 모듈과 블랙박스가 구비되는 경우, 어느 한 가상영역(VA)에 대한 전파강도 산출은 네비게이션 모듈로부터 전파되는 전자파 및 블랙박스로부터 전파되는 전자파를 모두 고려하여 수행될 수 있다.The calculation of the electric wave intensity for any one virtual area VA may be performed for all the electronic devices 200 included in the vehicle 1. For example, when a navigation module and a black box are provided in the vehicle 1, the radio wave intensity for one virtual area VA is calculated by considering both the electromagnetic waves propagating from the navigation module and the black box. Can be.
도 4에 도시된 바와 같이, 차량(1)의 내부공간(10)이 복수의 3차원 가상영역(VA)으로 분할되는 경우, 전파강도 산출부(120)는 복수의 3차원 가상영역(VA)과 각 전자기기(200) 사이의 거리에 따라 복수의 3차원 가상영역(VA)에 대한 전파강도를 각각 산출할 수 있다.As shown in FIG. 4, when the internal space 10 of the vehicle 1 is divided into a plurality of three-dimensional virtual regions VA, the radio wave intensity calculation unit 120 includes a plurality of three-dimensional virtual regions VA. According to the distance between the and each electronic device 200, the radio wave intensity for the plurality of 3D virtual regions VA may be calculated, respectively.
3차원 가상영역(VA)은 차량(1)의 내부공간(10)에서 3차원 좌표에 의해 정의될 수 있고, 전파강도 산출부(120)는 각 가상영역(VA)의 좌표와, 전자기기(200)의 3차원 위치(P)의 좌표(Xe, Ye, Ze)에 기초하여 각 전자기기(200)와 가상영역(VA) 사이의 거리를 산출할 수 있다.The three-dimensional virtual region VA may be defined by three-dimensional coordinates in the interior space 10 of the vehicle 1, and the radio wave intensity calculation unit 120 includes the coordinates of each virtual region VA and the electronic device ( The distance between each electronic device 200 and the virtual area VA may be calculated based on the coordinates (Xe, Ye, and Ze) of the three-dimensional position P of 200).
여기서, 가상영역(VA)의 좌표는, 가상영역(VA)에 포함되는 임의의 3차원 좌표일 수 있다. 보다 구체적으로, 3차원 가상영역(VA)은 가상의 부피를 갖는 영역으로서, 일정 범위의 가로, 세로 및 높이에 의해 정의될 수 있고, 가상영역(VA)의 좌표는 해당 범위 내에서 임의로 선택된 좌표일 수 있다.Here, the coordinates of the virtual area VA may be arbitrary three-dimensional coordinates included in the virtual area VA. More specifically, the three-dimensional virtual area (VA) is an area having a virtual volume and can be defined by a certain range of width, height, and height, and the coordinates of the virtual area (VA) are arbitrarily selected within the range. Can be
3차원 가상영역(VA)과 각 전자기기(200) 사이의 거리가 산출되면, 전파강도 산출부(120)는 산출된 각 거리를 데이터베이스(110)에 저장된 각 전자기기(200)에 대한 거리별 전파강도(S/D)에 대입하여 3차원 가상영역(VA)에 대한 전파강도를 산출할 수 있다.When the distance between the 3D virtual area VA and each electronic device 200 is calculated, the radio wave intensity calculation unit 120 calculates each calculated distance by distance to each electronic device 200 stored in the database 110. By substituting in the radio wave intensity (S/D), the radio wave intensity for the 3D virtual region (VA) can be calculated.
앞서 언급한 바와 같이, 3차원 가상영역(VA)은 가상의 부피를 갖는 영역인 바, 특정 좌표가 아닌, 3차원 좌표 범위에 의해 정의될 수 있다. 이에 따라, 3차원 가상영역(VA)과 각 전자기기(200) 사이의 거리는 가상영역(VA) 내의 위치에 따라 달라질 수 있고, 거리에 따라 산출되는 전파강도 또한 가상영역(VA) 내의 위치에 따라 달라질 수 있다.As mentioned above, since the 3D virtual area VA is an area having a virtual volume, it may be defined by a 3D coordinate range rather than a specific coordinate. Accordingly, the distance between the 3D virtual area VA and each electronic device 200 may vary depending on the location in the virtual area VA, and the electric wave intensity calculated according to the distance is also based on the location in the virtual area VA. It can be different.
어느 한 3차원 가상영역(VA)에 대해 상이한 전파강도가 산출되는 것을 방지하기 위해, 전파강도 산출부(120)는 복수의 3차원 가상영역(VA)의 중심점(Cp)과 각 전자기기(200) 사이의 거리에 따라 복수의 3차원 가상영역(VA)에 대한 전파강도를 각각 산출할 수 있다.In order to prevent the calculation of different radio wave intensities for any one 3D virtual area VA, the radio wave intensity calculation unit 120 includes a center point Cp of a plurality of 3D virtual areas VA and each electronic device 200. ), it is possible to calculate the propagation intensity for a plurality of three-dimensional virtual regions VA, respectively.
도 4를 참조하면, 각각의 3차원 가상영역(VA) 각각은 중심점(Cp)을 가질 수 있다. 중심점(Cp)은 가상영역(VA)의 3차원 좌표 범위의 중심 좌표(Xc, Yc, Zc)로 정의될 수 있다. 예를 들어, 가상영역(VA)이 Xa~Xb 범위의 가로, Ya~Yb 범위의 세로, Za~Zb 범위의 높이를 갖는 경우, 해당 가상영역(VA)의 중심점(Cp)은 (Xc=(Xa+Xb)/2, Yc=(Ya+Yb)/2, Zc=(Za+Zb)/2)의 좌표로 정의될 수 있다.Referring to FIG. 4, each of the 3D virtual regions VA may have a center point Cp. The center point Cp may be defined as the center coordinates Xc, Yc, and Zc of the three-dimensional coordinate range of the virtual area VA. For example, if the virtual area VA has a width in the range of Xa to Xb, a height in the range of Ya to Yb, and a height in the range of Za to Zb, the center point Cp of the virtual area VA is (Xc=( It may be defined as the coordinates of Xa+Xb)/2, Yc=(Ya+Yb)/2, and Zc=(Za+Zb)/2).
이와 달리, 3차원 가상영역(VA)의 중심점(Cp)은 미리 설정되어 데이터베이스(110)에 저장될 수 있다. 이 경우, 전파강도 산출부(120)는 미리 설정된 중심점(Cp)에 기초하여 차량(1) 내부공간(10)을 복수의 3차원 가상영역(VA)으로 분할할 수 있다.Alternatively, the center point Cp of the 3D virtual area VA may be preset and stored in the database 110. In this case, the radio wave intensity calculation unit 120 may divide the interior space 10 of the vehicle 1 into a plurality of three-dimensional virtual regions VA based on the preset central point Cp.
도 4를 참조하여 설명하면, 데이터베이스(110)에는 54개의 중심점(Cp)의 좌표(Xc, Yc, Zc)가 미리 설정될 수 있고, 전파강도 산출부(120)는 차량(1) 내부공간(10)을, 54개의 중심점(Cp)의 좌표(Xc, Yc, Zc)를 중심으로 하고 동일한 부피를 갖는 54개의 3차원 가상영역(VA)으로 분할할 수 있다.Referring to FIG. 4, coordinates (Xc, Yc, Zc) of 54 center points Cp may be set in advance in the database 110, and the radio wave intensity calculation unit 120 includes the vehicle 1 internal space ( 10) can be divided into 54 3D virtual regions VA having the same volume with the coordinates (Xc, Yc, Zc) of the 54 center points Cp as the center.
전파강도 산출부(120)는, 전술한 방법에 따라 산출되거나 미리 설정되는 3차원 가상영역(VA)의 중심점(Cp)의 좌표(Xc, Yc, Zc)와, 전자기기(200)의 3차원 위치(P)의 좌표(Xe, Ye, Ze)에 기초하여 각 전자기기(200)와 가상영역(VA) 사이의 거리를 산출할 수 있다.The radio wave intensity calculation unit 120 includes coordinates (Xc, Yc, Zc) of the center point (Cp) of the three-dimensional virtual region (VA) calculated or preset according to the above-described method, and the three-dimensional (3D) of the electronic device 200 A distance between each electronic device 200 and the virtual area VA may be calculated based on the coordinates Xe, Ye, and Ze of the location P.
3차원 가상영역(VA)과 각 전자기기(200) 사이의 거리가 산출되면, 전파강도 산출부(120)는 산출된 각 거리를 데이터베이스(110)에 저장된 각 전자기기(200)에 대한 거리별 전파강도(S/D)에 대입하여 3차원 가상영역(VA)에 대한 전파강도를 산출할 수 있다.When the distance between the 3D virtual area VA and each electronic device 200 is calculated, the radio wave intensity calculation unit 120 calculates each calculated distance by distance to each electronic device 200 stored in the database 110. By substituting in the radio wave intensity (S/D), the radio wave intensity for the 3D virtual region (VA) can be calculated.
한편, 전술한 바와 같이 산출되는 전파강도는 차량(1) 내부에 구비된 전자기기(200)의 요인만을 고려하여 산출되는 것이므로, 전파강도 산출에 있어서 차량(1) 외부의 전자파를 고려할 필요성이 있다.Meanwhile, since the radio wave intensity calculated as described above is calculated by considering only the factors of the electronic device 200 provided inside the vehicle 1, it is necessary to consider the electromagnetic waves outside the vehicle 1 in calculating the radio wave intensity. .
이를 위해, 차량(1)의 내부에 미리 설정된 측정점에는 적어도 하나의 전자파 측정 센서(600)가 구비될 수 있고, 전파강도 산출부(120)는 각 전자기기(200)의 위치와, 거리별 전파강도(S/D)에 기초하여 측정점에 대한 전파강도를 산출할 수 있다. 이어서 전파강도 산출부(120)는 측정점에 대한 전파강도와 전자파 측정 센서(600)의 측정값을 비교하여 보정값을 결정하고, 결정된 보정값에 따라 가상영역(VA)에 대한 전파강도를 보정할 수 있다.To this end, at least one electromagnetic wave measurement sensor 600 may be provided at a predetermined measurement point inside the vehicle 1, and the radio wave intensity calculation unit 120 includes a location of each electronic device 200 and a radio wave by distance. Based on the intensity (S/D), it is possible to calculate the radio wave intensity for the measurement point. Then, the radio wave intensity calculation unit 120 determines a correction value by comparing the radio wave strength with respect to the measurement point and the measured value of the electromagnetic wave measurement sensor 600, and corrects the radio wave intensity for the virtual area VA according to the determined correction value. I can.
전자파 측정 센서(600)는 차량(1) 내부에 미리 설정된 측정점에 구비될 수 있다. 전자파 측정 센서(600)의 위치는 제한되지 않으나, 이하에서는 설명의 편의를 위해 전자파 측정 센서(600)가 차량(1) 내부공간(10)의 상면에 구비된 것으로 가정하여 설명하도록 한다.The electromagnetic wave measurement sensor 600 may be provided inside the vehicle 1 at a preset measurement point. The position of the electromagnetic wave measurement sensor 600 is not limited, but for convenience of description, it is assumed that the electromagnetic wave measurement sensor 600 is provided on the upper surface of the interior space 10 of the vehicle 1.
다시 도 4를 참조하면, 전자파 측정 센서(600)가 구비된 측정점은 3차원 좌표(이하, 측정 좌표(Xr, Yr, Zr))에 의해 정의될 수 있다. 전파강도 산출부(120)는 각 전자기기(200)의 3차원 좌표(Xe, Ye, Ze)와 측정 좌표(Xr, Yr, Zr) 간의 거리를 산출하고, 산출된 거리를 각 전자기기(200)에 대한 거리별 전파강도(S/D)에 대입하여 측정점에 대한 전파강도를 산출할 수 있다.Referring back to FIG. 4, the measuring point provided with the electromagnetic wave measuring sensor 600 may be defined by three-dimensional coordinates (hereinafter, measurement coordinates (Xr, Yr, Zr)). The radio wave intensity calculation unit 120 calculates the distance between the three-dimensional coordinates (Xe, Ye, Ze) and the measurement coordinates (Xr, Yr, Zr) of each electronic device 200, and calculates the calculated distance for each electronic device 200 ), you can calculate the electric wave strength for the measuring point by substituting it into the electric wave strength (S/D) for each distance.
한편, 전자파 측정 센서(600)는 측정점에 구비되어 측정점으로 수신되는 차량(1) 내부 및 외부의 전자파를 모두 감지할 수 있다.Meanwhile, the electromagnetic wave measurement sensor 600 may be provided at the measurement point to detect both inside and outside the vehicle 1 received as the measurement point.
전파강도 산출부(120)는 측정점에 대해 산출된 전파강도와 전자파 측정 센서(600)의 측정값의 차이를 보정값으로 결정할 수 있다. 일반적으로, 전자파 측정 센서(600)의 측정값은 차량(1)의 내부 및 외부의 전자파가 모두 감지된 값이므로, 차량(1)의 내부 전자파만을 고려하여 산출된 전파강도보다 클 수 있다. 이에 따라, 전파강도 산출부(120)는, 전자파 측정 센서(600)의 측정값에서 측정점에 대해 산출된 전파강도를 감산한 값을 보정값으로 결정할 수 있다.The radio wave intensity calculation unit 120 may determine a difference between the radio wave intensity calculated for the measurement point and the measured value of the electromagnetic wave measurement sensor 600 as a correction value. In general, since the measured value of the electromagnetic wave measurement sensor 600 is a value in which both the electromagnetic waves inside and outside the vehicle 1 are sensed, it may be greater than the radio wave intensity calculated by considering only the internal electromagnetic waves of the vehicle 1. Accordingly, the radio wave intensity calculation unit 120 may determine a value obtained by subtracting the radio wave intensity calculated for the measurement point from the measurement value of the electromagnetic wave measurement sensor 600 as a correction value.
결정된 보정값은 차량(1) 외부의 전자파에 대응하는 값이므로, 전파강도 산출부(120)는 각 가상영역(VA)에 대해 산출된 전파강도에 보정값을 가산함으로써, 전파강도를 보정할 수 있다.Since the determined correction value is a value corresponding to the electromagnetic wave outside the vehicle 1, the radio wave intensity calculation unit 120 can correct the radio wave intensity by adding the correction value to the radio wave intensity calculated for each virtual region VA. have.
영역 설정부(130)는 복수의 가상영역(VA)에 대해 산출된 전파강도에 기초하여 복수의 가상영역(VA)을 안전영역(SA) 또는 위험영역(DA)으로 설정할 수 있다. 여기서 위험영역(DA)은 안전영역(SA)에 비해 전파강도가 높은 가상영역(VA)으로 정의될 수 있다. The area setting unit 130 may set the plurality of virtual areas VA as the safety area SA or the danger area DA based on the radio wave intensity calculated for the plurality of virtual areas VA. Here, the danger area DA may be defined as a virtual area VA having a higher radio wave intensity than the safety area SA.
안전영역(SA)과 위험영역(DA)을 구분하기 위해, 영역 설정부(130)는 기준강도를 이용할 수 있다. 기준강도는 전자파가 인체에 영향을 미치기 시작하는 강도로 설정될 수 있고, 실험에 의해 미리 결정되어 데이터베이스(110)에 저장될 수 있다.In order to distinguish between the safety area SA and the danger area DA, the area setting unit 130 may use a reference intensity. The reference intensity may be set as the intensity at which the electromagnetic wave starts to affect the human body, and may be determined in advance by an experiment and stored in the database 110.
영역 설정부(130)는 특정 가상영역(VA)에 대해 산출된 전파강도가 기준강도를 초과하면 해당 가상영역(VA)을 위험영역(DA)으로 설정할 수 있다. 반대로, 영역 설정부(130)는 특정 가상영역(VA)에 대해 산출된 전파강도가 기준강도 이하이면 가상영역(VA)은 안전영역(SA)으로 설정할 수 있다.The region setting unit 130 may set the virtual region VA as the dangerous region DA when the radio wave intensity calculated for the specific virtual region VA exceeds the reference intensity. Conversely, the area setting unit 130 may set the virtual area VA as the safe area SA if the radio wave intensity calculated for the specific virtual area VA is less than or equal to the reference intensity.
차량 제어부(140)는 위험영역(DA)에 위치한 탑승자를 식별하고, 차량(1) 내 시트(500)를 제어하여 탑승자를 안전영역(SA)으로 이동시킬 수 있다.The vehicle control unit 140 may identify an occupant located in the danger area DA and control the seat 500 in the vehicle 1 to move the occupant to the safety area SA.
차량 제어부(140)는 내부 카메라(300)를 통해 탑승자를 식별할 수 있다. 차량(1) 내부 임의의 위치에는 카메라(300)가 구비될 수 있다. 카메라(300)의 위치는 제한되지 않으나, 넓은 화각(angle of view)을 확보하기 위해 카메라(300)는 차량(1)의 전방에 구비되어 후방을 향해 촬영 각도를 형성할 수 있고, 차량(1)의 상부에 구비되어 하부를 향해 촬영 각도를 형성할 수 있다.The vehicle controller 140 may identify a passenger through the internal camera 300. The camera 300 may be provided at an arbitrary location inside the vehicle 1. The position of the camera 300 is not limited, but in order to secure a wide angle of view, the camera 300 may be provided in front of the vehicle 1 to form a photographing angle toward the rear, and the vehicle 1 It is provided on the upper part of the) to form a photographing angle toward the lower part.
도 5를 예로 들어 설명하면, 카메라(300)는 차량(1)의 상부에 구비되어 하부를 향해 촬영 각도를 형성할 수 있다. 이에 따라, 카메라(300)는 차량(1)의 내부공간(10) 전체에 대한 화각을 형성할 수 있다. 카메라(300)는 차량(1)의 내부 영상 데이터를 차량 제어부(140)에 제공할 수 있다.Referring to FIG. 5 as an example, the camera 300 may be provided on the upper portion of the vehicle 1 to form a photographing angle toward the lower portion. Accordingly, the camera 300 may form an angle of view for the entire interior space 10 of the vehicle 1. The camera 300 may provide internal image data of the vehicle 1 to the vehicle controller 140.
차량 제어부(140)는 카메라(300)로부터 제공된 내부 영상 데이터에 기초하여 탑승자의 위치를 식별할 수 있고, 식별된 탑승자의 위치에 기초하여 위험영역(DA)에 위치한 탑승자를 식별할 수 있다. 차량 제어부(140)는 탑승자의 위치를 식별하기 위해 당해 기술분야에서 알려진 임의의 객체 탐지(object detection) 및 객체 추적(object tracking) 알고리즘을 이용할 수 있다.The vehicle controller 140 may identify the occupant's position based on the internal image data provided from the camera 300 and may identify the occupant located in the danger area DA based on the identified occupant's position. The vehicle controller 140 may use arbitrary object detection and object tracking algorithms known in the art to identify the location of the occupant.
탑승자의 위치가 식별되면, 차량 제어부(140)는 식별된 탑승자의 위치와, 영역 설정부(130)에 의해 설정된 위험영역(DA) 및 안전영역(SA)을 비교하여, 탑승자가 위험영역(DA) 이내인지 안전영역(SA) 이내인지를 판단할 수 있다. 도 5를 예로 들어 설명하면, 차량 제어부(140)는 식별된 탑승자의 위치와 위험영역(DA)을 비교할 수 있고, 비교 결과에 따라 탑승자가 위험영역(DA) 이내임을 식별할 수 있다.When the occupant's position is identified, the vehicle controller 140 compares the identified occupant's position with the danger zone DA and the safety zone SA set by the zone setting unit 130, so that the occupant ) Or within the safe area (SA) can be determined. Referring to FIG. 5 as an example, the vehicle controller 140 may compare the identified occupant's position with the danger zone DA, and identify that the occupant is within the danger zone DA according to the comparison result.
탑승자는 차량(1)의 내부공간(10)에서 3차원 좌표에 의해 정의될 수 있다. 탑승자의 좌표는 카메라(300)에 의해 식별된 탑승자의 부피에 포함되는 임의의 3차원 좌표일 수 있다. 보다 구체적으로, 탑승자는 일정 부피를 갖는 대상으로서, 일정 범위의 가로, 세로 및 높이에 의해 정의될 수 있고, 탑승자의 좌표는 해당 범위 내에서 임의로 선택된 좌표일 수 있다.The occupant may be defined by three-dimensional coordinates in the interior space 10 of the vehicle 1. The occupant's coordinates may be any three-dimensional coordinates included in the occupant's volume identified by the camera 300. More specifically, the occupant is a subject having a certain volume, and may be defined by a certain range of width, height, and height, and the occupant's coordinates may be arbitrarily selected within the range.
차량 제어부(140)는 탑승자의 좌표가 위험영역(DA)을 정의하는 3차원 좌표 범위 이내이면, 탑승자가 위험영역(DA) 이내라고 판단할 수 있다.The vehicle controller 140 may determine that the occupant is within the danger zone DA if the occupant's coordinates are within the 3D coordinate range defining the danger zone DA.
차량 제어부(140)는 위험영역(DA) 내에서 탑승자가 식별되면, 차량(1) 내 시트(500)를 제어하여 탑승자를 안전영역(SA)으로 이동시킬 수 있다.When the occupant is identified in the danger zone DA, the vehicle controller 140 may control the seat 500 in the vehicle 1 to move the occupant to the safety zone SA.
차량(1) 내에는 적어도 하나의 시트(500)가 구비될 수 있고, 탑승자는 차량(1) 탑승 시 시트(500)에 착석할 수 있다. 본 발명에서 설명되는 시트(500)는 차량 제어부(140)에서 제공되는 제어 신호에 따라 전자식으로 제어될 수도 있으며, 탑승자의 수동 조작에 의해 제어될 수도 있다.At least one seat 500 may be provided in the vehicle 1, and the occupant may be seated on the seat 500 when boarding the vehicle 1. The seat 500 described in the present invention may be electronically controlled according to a control signal provided from the vehicle controller 140, or may be controlled by manual operation of a passenger.
시트(500)는 차량 제어부(140)의 제어에 따라 전진 또는 후진할 수 있고, 좌우로 이동할 수도 있으며, 수평 방향으로 회전할 수도 있다. 또한, 시트(500)는 하부 시트(510)와, 하부 시트(510)에 힌지 결합되어 하부 시트(510)에 대해 일정 기울기를 형성하는 상부 시트(520)를 포함할 수 있는데, 이 때, 상부 시트(520)는 차량 제어부(140)의 제어에 따라 하부 시트(510)에 대해 회동할 수 있다.The seat 500 may move forward or backward under the control of the vehicle controller 140, may move left or right, or may rotate in a horizontal direction. In addition, the sheet 500 may include a lower sheet 510 and an upper sheet 520 that is hinged to the lower sheet 510 to form a predetermined inclination with respect to the lower sheet 510. In this case, the upper sheet The seat 520 may rotate with respect to the lower seat 510 under the control of the vehicle controller 140.
차량 제어부(140)는 시트(500)의 이동, 회전 및 기울기 중 적어도 하나를 제어하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다. 여기서 시트(500)의 이동은 전진, 후진, 좌우 이동을 포함하는 개념일 수 있고, 시트(500)의 기울기는 상부 시트(520)가 하부 시트(510)에 대해 형성하는 기울기를 의미할 수 있다.The vehicle controller 140 may control at least one of movement, rotation, and inclination of the seat 500 to move the occupant located in the danger area DA to the safety area SA. Here, the movement of the sheet 500 may be a concept including forward, backward, and left and right movement, and the inclination of the sheet 500 may mean a slope formed by the upper sheet 520 with respect to the lower sheet 510. .
도 6을 참조하면, 차량 제어부(140)는 제1 위험영역(DA)에서 식별된 탑승자를 제1 안전영역(SA)으로, 제2 위험영역(DA)에서 식별된 탑승자를 제2 안전영역(SA)으로 이동시키기 위해 시트(500)를 제어할 수 있다.Referring to FIG. 6, the vehicle control unit 140 determines the occupant identified in the first danger area DA as a first safety area SA, and the occupant identified in the second danger area DA as a second safety area ( It is possible to control the sheet 500 to move to SA).
보다 구체적으로, 차량 제어부(140)는 제1 위험영역(DA)에서 식별된 탑승자가 착석한 시트(500)를 후진시켜 탑승자를 제1 위험영역(DA)에서 제1 안전영역(SA)으로 이동시킬 수 있다.More specifically, the vehicle control unit 140 moves the occupant from the first danger zone DA to the first safety zone SA by reversing the seat 500 on which the occupant identified in the first danger zone DA is seated. I can make it.
또한, 차량 제어부(140)는 제2 위험영역(DA)에서 식별된 탑승자가 착석한 시트(500)의 기울기를 증가시켜 탑승자를 제2 위험영역(DA)에서 제2 안전영역(SA)으로 이동시킬 수 있다. 다시 말해, 차량 제어부(140)는 상부 시트(520)를 후방으로 회동시켜 탑승자를 제2 위험영역(DA)에서 제2 안전영역(SA)으로 이동시킬 수 있다.In addition, the vehicle control unit 140 increases the slope of the seat 500 on which the occupant identified in the second danger zone DA is seated to move the occupant from the second danger zone DA to the second safety zone SA. I can make it. In other words, the vehicle control unit 140 may rotate the upper seat 520 rearward to move the occupant from the second risk area DA to the second safety area SA.
탑승자가 안전영역(SA) 이내로 진입하였는지 여부를 판단하기 위해 전술한 객체 추적 알고리즘이 이용될 수 있음은 당연하다.It is natural that the above-described object tracking algorithm can be used to determine whether the occupant has entered the safety area SA.
도 6에서는 시트(500)의 후진과 시트(500)의 기울기 증가를 통해 탑승자를 안전영역(SA)으로 이동시키는 예시만을 설명하였으나, 차량 제어부(140)는 시트(500)의 이동, 회전 및 기울기를 제어하는 다양한 실시예를 통해 탑승자를 안전영역(SA)으로 이동시킬 수 있다.In FIG. 6, only an example of moving the occupant to the safety area SA by reversing the seat 500 and increasing the inclination of the seat 500 is described, but the vehicle controller 140 moves, rotates and tilts the seat 500. The occupant may be moved to the safety area SA through various embodiments of controlling
상술한 바와 같이 본 발명은 차량(1)의 시트(500)를 제어하여 전자파 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킴으로써, 탑승자를 전자파로부터 보호할 수 있다.As described above, the present invention controls the seat 500 of the vehicle 1 to move the occupant located in the electromagnetic wave danger area DA to the safety area SA, thereby protecting the occupant from electromagnetic waves.
한편, 전자파는 탑승자의 특정 신체부위에 더욱 나쁜 영향을 끼칠 수 있다. 예컨대, 전자파는 다른 부위보다 생식기, 눈, 머리 부위에서 더 나쁜 영향을 끼칠 수 있다. 이에 따라, 전술한 차량 제어부(140)의 제어 동작을 탑승자의 특정 신체부위에 대해 수행될 수 있다.On the other hand, electromagnetic waves may exert a worse influence on a specific body part of a passenger. For example, electromagnetic waves can have a worse effect on the genitals, eyes, and head than on other areas. Accordingly, the control operation of the vehicle controller 140 described above may be performed on a specific body part of the occupant.
이를 위해, 차량 제어부(140)는 내부 카메라(300)를 통해 위험영역(DA)에 위치한 탑승자의 보호부위(PP)를 식별하고, 시트(500)를 제어하여 식별된 보호부위(PP)를 안전영역(SA)으로 이동시킬 수도 있다. 여기서 보호부위(PP)는 전자파에 취약한 신체 부위로서, 생식기, 눈, 머리 등으로 미리 설정될 수 있다.To this end, the vehicle control unit 140 identifies the occupant's protection area (PP) located in the danger area (DA) through the internal camera 300, and controls the seat 500 to secure the identified protection area (PP). It can also be moved to the area SA. Here, the protective part PP is a body part vulnerable to electromagnetic waves, and may be preset as a genital organ, eyes, head, or the like.
차량 제어부(140)는 카메라(300)로부터 제공된 내부 영상 데이터에 기초하여 탑승자의 보호부위(PP)를 식별할 수 있고, 식별된 보호부위(PP)의 위치에 기초하여 보호부위(PP)가 위험영역(DA) 이내인지를 판단할 수 있다. 보호부위(PP)의 위치를 식별하기 위해 전술한 객체 탐지 및 객체 추적 알고리즘이 이용될 수 있고, 이 외에도 당해 기술분야에서 이용되는 다양한 탐지 기술이 이용될 수 있다. Vehicle control unit 140 can identify the protection area (PP) of the occupant based on the internal image data provided from the camera 300, and the protection area (PP) is dangerous based on the location of the identified protection area (PP) It can be determined whether it is within the area DA. The object detection and object tracking algorithm described above may be used to identify the location of the protection site (PP), and in addition, various detection techniques used in the art may be used.
보호부위(PP)는 차량(1)의 내부공간(10)에서 어느 한 3차원 좌표(예컨대, 탑승자 눈의 중심 좌표, 생식기의 중심 좌표, 머리의 중심 좌표)에 의해 정의될 수 있다. 차량 제어부(140)는 보호부위(PP)의 좌표가 위험영역(DA)을 정의하는 3차원 좌표 범위 이내이면, 탑승자가 위험영역(DA) 이내라고 판단할 수 있다.The protective part PP may be defined by any one 3D coordinate (eg, the center coordinate of the occupant's eye, the center of the genitals, and the center of the head) in the interior space 10 of the vehicle 1. The vehicle control unit 140 may determine that the occupant is within the danger zone DA if the coordinates of the protection area PP are within a 3D coordinate range defining the danger zone DA.
차량 제어부(140)는 위험영역(DA) 내에서 보호부위(PP)가 식별되면, 차량(1) 내 시트(500)를 제어하여 보호부위(PP)를 안전영역(SA)으로 이동할 수 있다.When the protection area PP is identified in the danger area DA, the vehicle controller 140 may control the seat 500 in the vehicle 1 to move the protection area PP to the safety area SA.
도 7을 참조하면, 차량 제어부(140)는 보호부위(PP)를 탑승자의 머리로 식별할 수 있고, 위험영역(DA)에서 식별된 탑승자의 머리를 안전영역(SA)으로 이동시키기 위해 시트(500)를 제어할 수 있다. 보다 구체적으로, 차량 제어부(140)는 탑승자가 착석한 시트(500)의 기울기를 증가시켜 탑승자의 머리를 위험영역(DA)에서 안전영역(SA)으로 이동시킬 수 있다. 다시 말해, 차량 제어부(140)는 탑승자의 머리가 위험영역(DA)에서 안전영역(SA)으로 이동하도록, 상부 시트(520)를 후방으로 회동시킬 수 있다.Referring to FIG. 7, the vehicle control unit 140 can identify the protection area PP as the head of the occupant, and move the head of the occupant identified in the danger area DA to the safety area SA. 500) can be controlled. More specifically, the vehicle controller 140 may increase the inclination of the seat 500 on which the occupant is seated to move the occupant's head from the danger area DA to the safety area SA. In other words, the vehicle controller 140 may rotate the upper seat 520 rearward so that the occupant's head moves from the danger area DA to the safety area SA.
도 7에 도시된 바와는 달리, 차량 제어부(140)는 탑승자의 머리가 위험영역(DA)에서 안전영역(SA)으로 이동하도록, 도 6에 도시된 바와 같이 시트(500)를 후진시킬 수도 있다.Unlike shown in FIG. 7, the vehicle controller 140 may reverse the seat 500 as shown in FIG. 6 so that the occupant's head moves from the danger area DA to the safety area SA. .
상술한 바와 같이, 본 발명은 탑승자의 특정 신체부위를 보호부위(PP)로 식별하고, 전자파 위험영역(DA)에 위치한 보호부위(PP)를 안전영역(SA)으로 이동시킴으로써, 상대적으로 전자파에 취약한 신체부위를 전자파로부터 보호할 수 있다.As described above, the present invention identifies a specific body part of the occupant as a protective part (PP), and by moving the protective part (PP) located in the electromagnetic wave risk area (DA) to the safety area (SA), It can protect vulnerable body parts from electromagnetic waves.
한편, 차량 제어부(140)는 탑승자(또는 탑승자의 보호부위(PP))가 위험영역(DA) 내에서 기준시간 이상 식별되면 시트(500)를 제어하여 위험영역(DA)에 위치한 탑승자(또는 탑승자의 보호부위(PP))를 안전영역(SA)으로 이동시킬 수 있다.On the other hand, the vehicle controller 140 controls the seat 500 to control the seat 500 when the occupant (or the occupant's protection area PP) is identified in the danger zone DA for more than a reference time to control the occupant (or occupant The protective part (PP) of the can be moved to the safety area (SA).
차량 제어부(140)는 일정 주기에 따라 탑승자(또는 탑승자의 보호부위(PP))가 위험영역(DA) 이내인지 여부를 지속적으로 판단할 수 있다. 차량 제어부(140)는 탑승자(또는 탑승자의 보호부위(PP))가 위험영역(DA) 이내라고 판단된 시점으로부터 시간을 카운트할 수 있다. 카운트된 시간이 기준시간 이상이 될 때까지 탑승자(또는 탑승자의 보호부위(PP))가 지속적으로 위험영역(DA) 이내라고 판단되면, 차량 제어부(140)는 전술한 시트(500) 제어 동작을 수행할 수 있다.The vehicle controller 140 may continuously determine whether or not the occupant (or the occupant's protection area PP) is within the danger zone DA according to a predetermined period. The vehicle control unit 140 may count the time from a time point when it is determined that the occupant (or the occupant's protection area PP) is within the danger zone DA. When it is determined that the occupant (or the occupant's protection area (PP)) is continuously within the danger zone (DA) until the counted time becomes more than the reference time, the vehicle controller 140 performs the above-described seat 500 control operation. Can be done.
한편, 전술한 차량 제어부(140)의 제어 동작은 탑승자의 특성에 기초하여 수행될 수 있다. 이하에서는 탑승자의 특성에 따른 제어 동작을 구체적으로 설명하도록 한다.Meanwhile, the control operation of the vehicle controller 140 described above may be performed based on characteristics of the occupant. Hereinafter, the control operation according to the characteristics of the occupant will be described in detail.
전자파는 성인보다는 아동에게 더욱 나쁜 영향을 끼칠 수 있다. 이에 따라, 전술한 차량 제어부(140)의 제어 동작은 탑승자가 아동으로 추정되는 경우에 한해 수행될 수 있다.Electromagnetic waves can affect children even worse than adults. Accordingly, the control operation of the vehicle controller 140 described above may be performed only when the occupant is estimated to be a child.
이를 위해, 일 예에서 차량 제어부(140)는 카메라(300)를 통해 탑승자의 신장을 추정하고, 추정된 신장이 기준신장 미만이면 시트(500)를 제어하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다. 여기서 기준신장은 성인과 아동을 구분하기 위한 기준으로서, 예컨대 140cm로 설정될 수 있다.To this end, in one example, the vehicle controller 140 estimates the height of the occupant through the camera 300, and if the estimated height is less than the reference height, the seat 500 is controlled to safeguard the occupant located in the danger zone DA. It can be moved to the area SA. Here, the reference height is a criterion for classifying adults and children, and may be set to, for example, 140 cm.
차량 제어부(140)는 카메라(300)에 의해 촬영된 내부 영상에 기초하여 탑승자의 신장을 추정할 수 있다. 예를 들어, 차량 제어부(140)는 촬영된 내부 영상에서 탑승자가 차지하는 화각에 기초하여 탑승자의 신장을 추정할 수 있다. 화각에 의한 추정 동작 외에도, 탑승자의 신장 추정 동작에는 당해 기술분야에서 이용되는 다양한 영상 분석 방식이 적용될 수 있다.The vehicle controller 140 may estimate the height of the occupant based on the internal image captured by the camera 300. For example, the vehicle controller 140 may estimate the height of the occupant based on the angle of view occupied by the occupant in the captured internal image. In addition to the estimation operation based on the angle of view, various image analysis methods used in the art may be applied to the operation of estimating the height of the passenger.
탑승자의 신장이 추정되면, 차량 제어부(140)는 추정된 신장과 기준신장을 비교하고, 추정된 신장이 기준신장 미만인 경우에 한해 시트(500) 제어 동작을 수행하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다.When the height of the occupant is estimated, the vehicle control unit 140 compares the estimated height and the reference height, and performs a control operation of the seat 500 only when the estimated height is less than the reference height, so that the occupant located in the danger zone DA Can be moved to the safe area SA.
다른 예에서, 차량 제어부(140)는 시트(500)에 구비된 압력센서(400)를 통해 탑승자의 체중을 식별하고, 식별된 체중이 기준체중 미만이면 시트(500)를 제어하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다. 여기서 기준체중은 성인과 아동을 구분하기 위한 기준으로서, 예컨대 40kg으로 설정될 수 있다.In another example, the vehicle controller 140 identifies the weight of the occupant through the pressure sensor 400 provided in the seat 500, and if the identified weight is less than the reference weight, the vehicle control unit 140 controls the seat 500 The occupant located in) can be moved to the safety area SA. Here, the reference weight is a criterion for classifying an adult and a child, and may be set, for example, 40 kg.
시트(500)의 내부에는 수직적인 압력을 감지하는 압력센서(400)가 구비될 수 있다. 탑승자가 시트(500)에 착석하게 되면 압력센서(400)에는 탑승자의 체중에 의한 수직 압력이 인가될 수 있고, 차량 제어부(140)는 압력센서(400)를 통해 탑승자의 체중을 식별할 수 있다.A pressure sensor 400 for sensing vertical pressure may be provided inside the seat 500. When the occupant is seated on the seat 500, a vertical pressure by the weight of the occupant may be applied to the pressure sensor 400, and the vehicle control unit 140 may identify the weight of the occupant through the pressure sensor 400. .
탑승자의 체중이 식별되면, 차량 제어부(140)는 식별된 체중과 기준체중을 비교하고, 식별된 체중이 기준체중 미만인 경우에 한해 시트(500) 제어 동작을 수행하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다.When the weight of the occupant is identified, the vehicle control unit 140 compares the identified weight and the reference weight, and performs the seat 500 control operation only when the identified weight is less than the reference weight, and thereby the occupant located in the danger zone DA. Can be moved to the safe area SA.
상술한 바와 같이, 본 발명은 차량(1)에 탑승한 아동을 식별하고, 전자파 위험영역(DA)에 위치한 아동을 안전영역(SA)으로 이동시킴으로써, 상대적으로 전자파에 취약한 아동을 전자파로부터 보호할 수 있다.As described above, the present invention identifies a child in the vehicle 1 and moves the child located in the electromagnetic wave danger area DA to the safety area SA, thereby protecting a child who is relatively vulnerable to electromagnetic waves from electromagnetic waves. I can.
한편, 전자파는 임산부, 노인, 환자에게 더욱 나쁜 영향을 끼칠 수 있다. 이에 따라, 전술한 차량 제어부(140)의 제어 동작은 탑승자의 신체적 특징을 고려하여 수행될 수 있다.On the other hand, electromagnetic waves can have an even worse effect on pregnant women, the elderly, and patients. Accordingly, the control operation of the vehicle controller 140 described above may be performed in consideration of the physical characteristics of the occupant.
이를 위해, 차량 제어부(140)는 데이터베이스(110)에 저장된 탑승자 정보에 기초하여 탑승자가 보호대상인지 여부를 판단하고, 탑승자가 보호대상이면 시트(500)를 제어하여 위험영역(DA)에 위치한 탑승자를 안전영역(SA)으로 이동시킬 수 있다.To this end, the vehicle control unit 140 determines whether the occupant is a protection target based on the occupant information stored in the database 110, and if the occupant is a protection target, the vehicle control unit 140 controls the seat 500 to control the occupant located in the danger zone DA. Can be moved to the safe area SA.
데이터베이스(110)에는 탑승자 정보가 미리 저장될 수 있다. 탑승자 정보는 탑승자의 신체적 특징에 관한 정보를 포함할 수 있고, 예컨대 임신 여부, 나이, 질병을 앓고 있는지 여부에 관한 정보를 포함할 수 있다.In the database 110, passenger information may be stored in advance. The occupant information may include information on the physical characteristics of the occupant, and may include, for example, information on whether a person is pregnant, age, or suffering from a disease.
일 예에서, 탑승자가 보호대상인지 여부를 파악하기 위해 차량 제어부(140)는 차량(1) 내부의 HMI(Human Machine Interface)통해 탑승자를 식별할 수 있다.In one example, in order to determine whether the occupant is the subject of protection, the vehicle controller 140 may identify the occupant through a human machine interface (HMI) inside the vehicle 1.
HMI는 다수의 물리적인 인터페이스를 통해 차량(1)의 정보나 상태를 운전자에게 시각적 및 청각적으로 출력하는 기능을 수행할 수 있다. 또한, HMI는 차량(1)의 제어를 위해 다양한 사용자 조작을 입력받을 수 있고, 탑승자에게 주행 정보를 출력할 수도 있다. 이를 위해, HMI는 다수의 입출력 모듈을 포함할 수 있다.The HMI may perform a function of visually and aurally outputting information or status of the vehicle 1 to the driver through a plurality of physical interfaces. In addition, the HMI may receive various user manipulations to control the vehicle 1 and may output driving information to the occupant. To this end, the HMI may include a number of input/output modules.
탑승자는 차량(1)에 탑승 시 HMI의 인터페이스를 통해 탑승자 고유정보를 입력할 수 있다. 여기서 탑승자 고유정보는 개별 탑승자를 구별하기 위한 정보로서, 탑승자의 이름, 주민등록번호, ID, 비밀번호, 등을 포함할 수 있다.When boarding the vehicle 1, the occupant can enter the passenger's unique information through the interface of the HMI. Here, the passenger-specific information is information for distinguishing individual passengers, and may include the passenger's name, resident registration number, ID, password, and the like.
차량 제어부(140)는 입력된 탑승자 고유정보에 기초하여 탑승자를 식별할 수 있고, 식별된 탑승자에 대응하는 탑승자 정보를 데이터베이스(110)를 참조하여 식별할 수 있다.The vehicle controller 140 may identify the occupant based on the input occupant's unique information, and identify occupant information corresponding to the identified occupant with reference to the database 110.
다른 예에서, 탑승자가 보호대상인지 여부를 파악하기 위해 차량 제어부(140)는 카메라(300)를 통해 탑승자를 식별할 수 있다.In another example, the vehicle controller 140 may identify the occupant through the camera 300 to determine whether the occupant is a subject of protection.
보다 구체적으로, 차량 제어부(140)는 카메라(300)를 통해 촬영되는 탑승자의 영상에 홍채 인식, 안면 인식 등의 알고리즘을 적용하여 탑승자를 식별할 수 있고, 식별된 탑승자에 대응하는 탑승자 정보를 데이터베이스(110)를 참조하여 식별할 수 있다.More specifically, the vehicle control unit 140 can identify the occupant by applying algorithms such as iris recognition and facial recognition to the image of the occupant photographed through the camera 300, and stores occupant information corresponding to the identified occupant in a database. It can be identified by referring to (110).
앞서 설명한 방법에 따라 탑승자 정보가 식별되면, 차량 제어부(140)는 식별된 탑승자 정보에 기초하여 탑승자가 보호대상인지 여부를 판단할 수 있다. 보다 구체적으로, 차량 제어부(140)는 탑승자 정보에 기초하여 탑승자가 임신 상태로 판단되거나, 고령으로 판단되거나, 환자로 판단되는 경우, 탑승자를 보호대상으로 판단할 수 있다.When the occupant information is identified according to the method described above, the vehicle controller 140 may determine whether the occupant is a protection target based on the identified occupant information. More specifically, the vehicle controller 140 may determine the occupant as a protection target when the occupant is determined to be pregnant, an elderly, or a patient based on the occupant information.
차량 제어부(140)는 탑승자가 보호대상으로 판단된 경우에 한해 시트(500)에 대한 제어 동작을 수행할 수 있다. 시트(500)를 제어하여 탑승자를 위험영역(DA)으로부터 안전영역(SA)으로 이동시키는 내용에 대해서는 도 6을 참조하여 설명한 바 있으므로 여기서는 자세한 설명을 생략하도록 한다.The vehicle controller 140 may perform a control operation on the seat 500 only when it is determined that the occupant is a protection target. The details of controlling the seat 500 to move the occupant from the danger zone DA to the safety zone SA have been described with reference to FIG. 6, and thus a detailed description thereof will be omitted.
상술한 바와 같이, 본 발명은 차량(1)에 탑승한 임산부, 노인, 환자를 보호대상으로 식별하고, 전자파 위험영역(DA)에 위치한 보호대상을 안전영역(SA)으로 이동시킴으로써, 상대적으로 전자파에 취약한 신체적 특징을 가진 탑승자를 전자파로부터 보호할 수 있다.As described above, the present invention identifies a pregnant woman, an elderly person, and a patient in the vehicle 1 as protection targets, and by moving the protection target located in the electromagnetic wave risk area DA to the safety area SA, It is possible to protect passengers with physical characteristics vulnerable to electromagnetic waves.
한편, 전술한 차량 제어부(140)의 제어 동작 이전에, 영역 설정부(130)는 내부 카메라(300)를 통해 식별된 탑승자의 신장이 기준신장 미만이거나, 시트(500)에 구비된 압력센서(400)를 통해 식별된 탑승자의 체중이 기준체중 미만이거나, 차량 제어부(140)에 의해 탑승자가 보호대상으로 판단되면, 안전영역(SA)과 위험영역(DA)을 구분하기 위해 이용되는 기준강도를 감소시킬 수 있다.On the other hand, before the control operation of the vehicle control unit 140 described above, the area setting unit 130 is the height of the occupant identified through the internal camera 300 is less than the reference height, or the pressure sensor provided in the seat 500 ( If the weight of the occupant identified through 400) is less than the reference weight, or the vehicle control unit 140 determines that the occupant is a protection target, the reference strength used to distinguish the safety area SA and the danger area DA is determined. Can be reduced.
다시 말해, 탑승자가 아동으로 추정되거나, 탑승자가 임산부, 노인, 환자 등과 같이 보호대상인 경우, 영역 설정부(130)는 보다 엄격한 기준으로 위험영역(DA)을 설정할 수 있다. 즉, 기존에 설정된 기준강도가 감소함으로써, 전파강도가 기준강도를 초과하는 위험영역(DA)이 더 많아질 수 있고, 이에 따라 시트(500)에 대한 차량 제어부(140)의 제어 빈도가 더 증가할 수 있다.In other words, when the occupant is estimated to be a child or the occupant is a subject of protection such as a pregnant woman, an elderly person, or a patient, the area setting unit 130 may set the risk area DA based on a more stringent standard. That is, by decreasing the previously set reference intensity, the number of dangerous areas (DA) in which the radio wave intensity exceeds the reference intensity may increase, and accordingly, the control frequency of the vehicle controller 140 for the seat 500 is further increased. can do.
한편, 차량 제어부(140)는 위험영역에서 식별된 탑승자가 운전석에 위치한 경우, 차량의 주행모드를 자율주행 모드로 전환할 수 있다.On the other hand, the vehicle controller 140 may switch the driving mode of the vehicle to the autonomous driving mode when the occupant identified in the danger zone is located in the driver's seat.
앞서 언급한 바와 같이, 본 발명이 적용되는 차량(1)은 자율주행 차량일 수 있다. 이에 따라, 차량(1)에는 자율주행 경로를 생성하고, 생성된 자율주행 경로에 따라 차량(1)의 운행을 제어하는 자율주행 모듈이 포함될 수 있다.As mentioned above, the vehicle 1 to which the present invention is applied may be an autonomous vehicle. Accordingly, the vehicle 1 may include an autonomous driving module that generates an autonomous driving path and controls the operation of the vehicle 1 according to the generated autonomous driving path.
이와 같은 자율주행 모듈의 주행 제어에는 차간 간격 유지, 차선 이탈 방지, 차선 트래킹, 신호등 감지, 보행자 감지, 구조물 감지, 교통상황 감지, 자율 주차 등을 위한 알고리즘이 적용될 수 있으며, 이 외에도 탑승자의 조작 없이도 주행 경로를 따라 차량(1)을 목적지까지 이동시키기 위해 당해 기술분야에서 이용되는 다양한 알고리즘이 적용될 수 있다.In the driving control of such an autonomous driving module, algorithms for maintaining the gap between vehicles, preventing lane departure, lane tracking, traffic light detection, pedestrian detection, structure detection, traffic situation detection, autonomous parking, etc. can be applied. Various algorithms used in the art may be applied to move the vehicle 1 to the destination along the driving route.
이와 같은 자율주행 모듈은 탑승자의 조작에 따라 선택적으로 동작할 수 있다. 예컨대, 탑승자가 스스로 차량(1)의 운행을 제어하고자 하는 경우 탑승자는 자율주행 모듈을 오프시킨 후 수동으로 차량(1)을 제어할 수 있다. 반면에, 탑승자가 차량(1)의 자율주행을 원하는 경우 탑승자는 자율주행 모듈은 온시켜 차량(1)이 스스로 주행하도록 할 수 있다.Such an autonomous driving module may be selectively operated according to an operator's manipulation. For example, if the occupant wants to control the operation of the vehicle 1 by himself, the occupant may manually control the vehicle 1 after turning off the autonomous driving module. On the other hand, when the occupant wants the vehicle 1 to run autonomously, the occupant may turn on the autonomous driving module to allow the vehicle 1 to travel by itself.
한편, 차량 제어부(140)는 위험영역(DA)에서 식별된 탑승자가 운전석에 위치하였는지 여부를 판단할 수 있다. 보다 구체적으로, 전술한 복수의 가상영역(VA) 중 적어도 하나는 운전석으로 미리 설정될 수 있고, 차량 제어부(140)는 위험영역(DA)에서 식별된 탑승자가 운전석으로 미리 설정된 가상영역(VA) 이내인지에 따라 탑승자가 운전석에 위치하였는지 여부를 판단할 수 있다. 탑승자가 특정 가상영역(VA) 이내인지 여부를 판단하는 방법에 대해서는 전술한 바 있으므로, 여기서는 자세한 설명을 생략하도록 한다.Meanwhile, the vehicle controller 140 may determine whether the occupant identified in the danger area DA is located in the driver's seat. More specifically, at least one of the plurality of virtual areas VA described above may be preset as a driver's seat, and the vehicle controller 140 is a virtual area VA in which the occupant identified in the danger area DA is preset as the driver's seat. It can be determined whether the occupant is located in the driver's seat depending on whether it is within or not. Since the method of determining whether the occupant is within a specific virtual area VA has been described above, detailed descriptions will be omitted here.
위험영역에서 식별된 탑승자가 운전석에 위치한 것으로 판단되는 경우, 차량 제어부(140)는 현재 차량의 주행모드를 식별할 수 있다. 주행모드는 전술한 자율주행 모듈이 오프 상태인 수동주행 모드와, 자율주행 모듈이 온 상태인 자율주행 모드로 구분될 수 있다.When it is determined that the occupant identified in the danger zone is located in the driver's seat, the vehicle controller 140 may identify the driving mode of the current vehicle. The driving mode may be divided into a manual driving mode in which the above-described autonomous driving module is in an off state, and an autonomous driving mode in which the autonomous driving module is in an on state.
현재 차량의 주행모드가 수동주행 모드로 식별되면, 차량 제어부(140)는 전술한 시트(500) 제어에 앞서 자율주행 모듈을 온시켜 주행모드를 자율주행 모드로 전환할 수 있다. 이에 따라, 전술한 시트(500) 제어 동작이 수행될 때 운전석에 위치한 탑승자가 차량(1)을 별도로 조작하지 않더라도 차량(1)은 스스로 주행하게 되므로 주행 안정성이 보장될 수 있다.When the current driving mode of the vehicle is identified as the manual driving mode, the vehicle controller 140 may switch the driving mode to the autonomous driving mode by turning on the autonomous driving module prior to controlling the above-described seat 500. Accordingly, when the above-described seat 500 control operation is performed, the vehicle 1 runs by itself even if the occupant located in the driver's seat does not operate the vehicle 1 separately, so driving stability may be ensured.
전술한 시트(500) 제어 동작 외 추가적으로, 차량 제어부(140)는 탑승자가 위험영역(DA)에서 식별되면 작동중인 복수의 전자기기(200) 중 적어도 하나의 전자기기(200)에 인가되는 전원을 차단할 수 있다.In addition to the above-described seat 500 control operation, the vehicle controller 140 may supply power applied to at least one of the plurality of electronic devices 200 in operation when the occupant is identified in the danger zone DA. Can be blocked.
가상영역(VA)에 대한 전파강도 산출에는 작동중인 전자기기(200)의 거리별 전파강도(S/D)가 이용될 수 있다. 차량 제어부(140)는 차량(1) 내부공간(10)의 전파강도를 전체적으로 감소시키기 위해, 작동중인 복수의 전자기기(200) 중 작동이 요구되지 않는 적어도 하나의 전자기기(200)를 식별할 수 있다.The radio wave intensity (S/D) for each distance of the electronic device 200 in operation may be used to calculate the radio wave intensity for the virtual area VA. The vehicle control unit 140 may identify at least one electronic device 200 that is not required to be operated among a plurality of electronic devices 200 in operation in order to reduce the electric wave intensity of the vehicle 1 interior space 10 as a whole. I can.
예컨대, 차량 제어부(140)는 차량(1)의 주행 중에 작동이 필수적으로 요구되지 않는 디스플레이 모듈, 스피커, 라디오, 블루투스 모듈, 카세트 및 CD 플레이어 중 적어도 하나를 식별할 수 있고, 식별된 전자기기(200)에 인가되는 전원을 차단할 수 있다.For example, the vehicle control unit 140 may identify at least one of a display module, a speaker, a radio, a Bluetooth module, a cassette, and a CD player that are not necessarily required to operate while the vehicle 1 is driving, and the identified electronic device ( 200) can be cut off.
차량 제어부(140)의 전원 차단 동작에 따라 차량(1) 내부공간(10)의 전파강도는 전체적으로 감소할 수 있다.The electric wave intensity of the interior space 10 of the vehicle 1 may be reduced as a whole according to the power cut-off operation of the vehicle controller 140.
한편, 복수의 전자기기(200) 중 디스플레이 모듈은 차량의 주행정보를 시각적으로 출력할 수 있고, 스피커는 주행정보를 청각적으로 출력할 수 있다. 여기서 주행정보는 현재 차량의 현재 주행 상태, 주행에 필요한 정보, 주행 중에 예상되는 정보 등을 포함할 수 있다. 예컨대, 주행정보는 현재 차량의 위치, 주행 경로, 외부 영상, 속도, 연료량, 실시간 연비, 주행 경로 상의 신호 위반 및 과속 방지 카메라의 위치 등을 포함할 수 있다.Meanwhile, among the plurality of electronic devices 200, a display module may visually output driving information of a vehicle, and a speaker may audibly output driving information. Here, the driving information may include a current driving state of the current vehicle, information necessary for driving, information expected during driving, and the like. For example, the driving information may include a current vehicle location, a driving route, an external image, a speed, a fuel level, a real-time fuel economy, a signal violation on a driving route, and a position of a speed prevention camera.
차량 제어부가(140)가 작동이 필수적으로 요구되지 않는 전자기기(200)에 인가되는 전원을 차단하는 경우, 차량 제어부(140)는 디스플레이 모듈 및 스피커 중 어느 하나의 전원만을 차단할 수 있다.When the vehicle control unit 140 cuts off power applied to the electronic device 200 that does not necessarily require operation, the vehicle control unit 140 may cut off only one of the display module and the speaker.
보다 구체적으로 차량 제어부(140)는 디스플레이 모듈 및 스피커 중 전파강도가 더 큰 어느 하나에 인가되는 전원을 차단할 수 있다. 예를 들어, 디스플레이 모듈에서 발생하는 전파강도가 스피커에서 발생하는 전파강도보다 큰 경우, 차량 제어부(140)는 디스플레이 모듈에 인가되는 전원을 차단하고, 스피커에는 전원을 공급할 수 있다. 반대로, 스피커에서 발생하는 전파강도가 디스플레이 모듈에서 발생하는 전파강도보다 큰 경우, 차량 제어부(140)는 스피커에 인가되는 전원을 차단하고, 디스플레이 모듈에는 전원을 공급할 수 있다.More specifically, the vehicle control unit 140 may cut off power applied to any one of the display module and the speaker having a greater radio wave intensity. For example, when the radio wave intensity generated by the display module is greater than the radio wave intensity generated by the speaker, the vehicle controller 140 may cut off power applied to the display module and supply power to the speaker. Conversely, when the radio wave intensity generated by the speaker is greater than the radio wave intensity generated by the display module, the vehicle controller 140 may cut off power applied to the speaker and supply power to the display module.
이에 따라, 차량(1) 내 전파강도를 감소시키기 위해 일부 전자기기에 전원 공급이 제한되더라도 디스플레이 모듈 및 스피커 중 어느 하나는 주행정보를 출력할 수 있고, 탑승자는 시각적 또는 청각적으로 주행정보를 인지할 수 있다.Accordingly, even if the supply of power to some electronic devices is limited in order to reduce the intensity of radio waves in the vehicle 1, one of the display module and the speaker can output driving information, and the occupant visually or audibly recognizes driving information can do.
한편, 차량(1)에는 차량용 AP(700)가 구비될 수 있다. 차량용 AP(700)는 차량(1) 외부에 구비된 안테나를 통해 송수신되는 전파를 통해 인접 기지국과 무선으로 연결될 수 있다. 이와 같은 차량용 AP(700)는 차량(1) 내부에 일정 크기의 전파를 송신하여 차량(1) 내부에 구비된 무선 통신 기기와 인접 기지국간의 연결을 중계할 수 있다.Meanwhile, the vehicle 1 may be equipped with a vehicle AP 700. The vehicle AP 700 may be wirelessly connected to an adjacent base station through radio waves transmitted and received through an antenna provided outside the vehicle 1. The vehicle AP 700 may transmit a radio wave having a predetermined size inside the vehicle 1 to relay a connection between a wireless communication device provided in the vehicle 1 and an adjacent base station.
한편, 탑승자 단말은 탑승자가 소지하는 단말로 정의될 수 있다. 탑승자는 탑승자 단말을 소지한 채로 차량(1)에 탑승할 수 있다. 탑승자 단말에서 발생하는 전파강도는 탑승자 단말과, 접속 대상과의 거리에 비례하여 증가할 수 있다. 예를 들어, 탑승자 단말이 차량용 AP(700)에 접속된 경우보다 탑승자 단말이 기지국에 직접 접속된 경우, 차량(1) 내부공간(10)에는 더 강한 전파가 발생할 수 있다.Meanwhile, the occupant terminal may be defined as a terminal possessed by the occupant. The occupant can board the vehicle 1 while holding the occupant terminal. The intensity of radio waves generated by the occupant terminal may increase in proportion to the distance between the occupant terminal and the connection target. For example, when the occupant terminal is directly connected to the base station than when the occupant terminal is connected to the vehicle AP 700, stronger radio waves may be generated in the interior space 10 of the vehicle 1.
차량 제어부(140)는 차량(1) 내부공간(10)의 전파강도를 전체적으로 감소시키기 위해, 탑승자가 위험영역(DA)에서 식별되면, 차량용 AP(700)(Access Point)에 대한 접속을 안내하는 설정 데이터를 탑승자 단말에 제공할 수 있다.The vehicle controller 140 guides access to the vehicle AP 700 (Access Point) when the occupant is identified in the danger zone DA in order to reduce the radio wave intensity of the vehicle 1 internal space 10 as a whole. Setting data can be provided to the passenger terminal.
설정 데이터는 탑승자 단말의 설정을 변경시키는 데이터로서, 탑승자 단말의 와이파이(Wi-Fi) 기능을 설정시키는 데이터일 수 있다. 이에 따라, 설정 데이터를 수신한 탑승자 단말은 와이파이 기능을 통해 차량용 AP(700)에 접속할 수 있다. The setting data is data for changing the settings of the occupant terminal, and may be data for setting a Wi-Fi function of the occupant terminal. Accordingly, the occupant terminal receiving the setting data may access the vehicle AP 700 through a Wi-Fi function.
또한, 설정 데이터는 탑승자 단말에 설정 변경의 필요성을 알리는 메시지로서, 와이파이 기능 설정을 안내하는 메시지일 수 있다. 메시지를 인지한 탑승자는 탑승자 단말의 와이파이 기능을 설정할 수 있고, 이에 따라 탑승자 단말은 와이파이 기능을 통해 차량용 AP(700)에 접속할 수 있다.Further, the setting data is a message notifying the need to change the setting to the occupant terminal, and may be a message guiding the setting of a Wi-Fi function. The occupant who recognizes the message can set the Wi-Fi function of the occupant terminal, and accordingly, the occupant terminal can access the vehicle AP 700 through the Wi-Fi function.
탑승자 단말이 차량용 AP(700)에 접속하면, 차량(1) 내부공간(10)의 전파강도는 전체적으로 감소할 수 있다. When the occupant's terminal accesses the vehicle AP 700, the electric wave intensity of the interior space 10 of the vehicle 1 may decrease as a whole.
상술한 바와 같이, 본 발명은 탑승자가 위험영역(DA) 이내이면 차량(1) 내 전자기기(200)에 인가되는 전원을 차단하거나 탑승자에게 차량용 AP(700)에 대한 접속을 유도함으로써, 차량(1) 내에서 발생하는 전자파를 전체적으로 감소시킬 수 있다.As described above, the present invention cuts off power applied to the electronic device 200 in the vehicle 1 if the occupant is within the danger zone DA, or by inducing the occupant to access the vehicle AP 700, the vehicle ( 1) The electromagnetic waves generated within can be reduced overall.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The above-described present invention is capable of various substitutions, modifications, and changes without departing from the technical spirit of the present invention for those of ordinary skill in the technical field to which the present invention belongs. Is not limited by

Claims (18)

  1. 차량 내에 탑재되어 탑승자에 대한 전자파 노출을 방지하는 장치에 있어서,In a device mounted in a vehicle to prevent exposure to electromagnetic waves to a passenger,
    상기 차랑 내 구비된 복수의 전자기기의 위치와, 거리별 전파강도가 각각 저장되는 데이터베이스;A database in which positions of a plurality of electronic devices provided in the vehicle and radio wave intensity for each distance are stored, respectively;
    상기 차량의 내부공간을 복수의 가상영역으로 분할하고, 상기 저장된 각 전자기기의 위치와, 거리별 전파강도에 기초하여 상기 분할된 가상영역에 대한 전파강도를 각각 산출하는 전파강도 산출부;A radio wave intensity calculation unit that divides the interior space of the vehicle into a plurality of virtual areas, and calculates a radio wave intensity for the divided virtual areas based on the stored location of each electronic device and a radio wave intensity for each distance;
    상기 복수의 가상영역에 대해 산출된 상기 전파강도에 기초하여 상기 복수의 가상영역을 안전영역 또는 위험영역으로 설정하는 영역 설정부; 및An area setting unit configured to set the plurality of virtual areas as a safe area or a danger area based on the radio wave intensity calculated for the plurality of virtual areas; And
    상기 위험영역에 위치한 상기 탑승자를 식별하고, 상기 차량 내 시트를 제어하여 상기 식별된 탑승자를 상기 안전영역으로 이동시키는 차량 제어부를 포함하는And a vehicle controller that identifies the occupant located in the danger zone and controls the seat in the vehicle to move the identified occupant to the safety zone.
    전자파 노출 방지 장치.Electromagnetic exposure protection device.
  2. 제1항에 있어서,The method of claim 1,
    상기 데이터베이스에는 상기 복수의 전자기기의 3차원 위치가 각각 저장되는 전자파 노출 방지 장치.The apparatus for preventing exposure to electromagnetic waves in which three-dimensional positions of the plurality of electronic devices are respectively stored in the database.
  3. 제1항에 있어서,The method of claim 1,
    상기 전파강도 산출부는The radio wave intensity calculation unit
    상기 차량의 내부공간을 복수의 3차원 가상영역으로 분할하고, 상기 복수의 3차원 가상영역과 상기 각 전자기기 사이의 거리에 따라 상기 복수의 3차원 가상영역에 대한 전파강도를 각각 산출하는 전자파 노출 방지 장치.Electromagnetic wave exposure for dividing the interior space of the vehicle into a plurality of three-dimensional virtual regions, and calculating radio wave intensity for the plurality of three-dimensional virtual regions according to the distance between the plurality of three-dimensional virtual regions and each of the electronic devices Prevention device.
  4. 제3항에 있어서,The method of claim 3,
    상기 전파강도 산출부는The radio wave intensity calculation unit
    상기 복수의 3차원 가상영역의 중심점과 상기 각 전자기기 사이의 거리에 따라 상기 복수의 3차원 가상영역에 대한 전파강도를 각각 산출하는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention apparatus for calculating radio wave intensity for the plurality of 3D virtual areas according to a distance between the center points of the plurality of 3D virtual areas and each of the electronic devices.
  5. 제1항에 있어서,The method of claim 1,
    상기 영역 설정부는The area setting unit
    상기 가상영역에 대해 산출된 전파강도가 기준강도를 초과하면 상기 가상영역을 상기 위험영역으로 설정하고, 상기 가상영역에 대해 산출된 전파강도가 상기 기준강도 이하이면 상기 가상영역을 상기 안전영역으로 설정하는 전자파 노출 방지 장치.If the radio wave intensity calculated for the virtual area exceeds the reference intensity, the virtual area is set as the dangerous area, and when the radio wave intensity calculated for the virtual area is less than the reference intensity, the virtual area is set as the safety area Device to prevent exposure to electromagnetic waves.
  6. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    내부 카메라를 통해 촬영된 상기 탑승자의 위치에 기초하여 상기 위험영역에 위치한 상기 탑승자를 식별하는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention device that identifies the occupant located in the danger area based on the occupant's position photographed through an internal camera.
  7. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 시트의 이동, 회전 및 기울기 중 적어도 하나를 제어하여 상기 위험영역에 위치한 상기 탑승자를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention device that controls at least one of movement, rotation, and inclination of the seat to move the occupant located in the danger area to the safety area.
  8. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    내부 카메라를 통해 상기 탑승자의 신장을 추정하고, 상기 추정된 신장이 기준신장 미만이면 상기 시트를 제어하여 상기 위험영역에 위치한 상기 탑승자를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention apparatus for estimating the height of the occupant through an internal camera, and controlling the seat when the estimated height is less than the reference height to move the occupant located in the danger zone to the safety zone.
  9. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 시트에 구비된 압력센서를 통해 상기 탑승자의 체중을 식별하고, 상기 식별된 체중이 기준체중 미만이면 상기 시트를 제어하여 상기 위험영역에 위치한 상기 탑승자를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention device that identifies the weight of the occupant through a pressure sensor provided in the seat, and controls the seat when the identified weight is less than a reference weight to move the occupant located in the danger zone to the safety zone.
  10. 제1항에 있어서,The method of claim 1,
    상기 데이터베이스에는 탑승자 정보가 더 저장되고,Passenger information is further stored in the database,
    상기 차량 제어부는The vehicle control unit
    상기 데이터베이스에 저장된 탑승자 정보에 기초하여 상기 탑승자가 보호대상인지 여부를 판단하고, 상기 탑승자가 상기 보호대상이면 상기 시트를 제어하여 상기 위험영역에 위치한 상기 탑승자를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention device that determines whether the occupant is a protection target based on the occupant information stored in the database, and if the occupant is the protection target, controls the seat to move the occupant located in the danger zone to the safety zone .
  11. 제5항에 있어서,The method of claim 5,
    상기 영역 설정부는The area setting unit
    내부 카메라를 통해 식별된 상기 탑승자의 신장이 기준신장 미만이거나, 상기 시트에 구비된 압력센서를 통해 식별된 상기 탑승자의 체중이 기준체중 미만이거나, 상기 차량 제어부에 의해 상기 탑승자가 보호대상으로 판단되면, 상기 기준강도를 감소시키는 전자파 노출 방지 장치.If the height of the occupant identified through the internal camera is less than the reference height, the weight of the occupant identified through the pressure sensor provided in the seat is less than the reference weight, or the vehicle control unit determines that the occupant is a target of protection , Electromagnetic exposure prevention device for reducing the reference intensity.
  12. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 탑승자가 상기 위험영역 내에서 기준시간 이상 식별되면 상기 시트를 제어하여 상기 위험영역에 위치한 상기 탑승자를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.When the occupant is identified within the danger zone for more than a reference time, the seat is controlled to move the occupant located in the danger zone to the safety zone.
  13. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    내부 카메라를 통해 상기 위험영역에 위치한 상기 탑승자의 보호부위를 식별하고, 상기 시트를 제어하여 상기 식별된 보호부위를 상기 안전영역으로 이동시키는 전자파 노출 방지 장치.An electromagnetic wave exposure prevention device for identifying the protected area of the occupant located in the danger area through an internal camera, and controlling the seat to move the identified protection area to the safety area.
  14. 제1항에 있어서,The method of claim 1,
    상기 차량의 내부에 미리 설정된 측정점에는 적어도 하나의 전자파 측정 센서가 구비되고,At least one electromagnetic wave measurement sensor is provided at a predetermined measurement point inside the vehicle,
    상기 전파강도 산출부는The radio wave intensity calculation unit
    상기 각 전자기기의 위치와, 거리별 전파강도에 기초하여 상기 측정점에 대한 전파강도를 산출하고, 상기 측정점에 대한 전파강도와 상기 전자파 측정 센서의 측정값을 비교하여 보정값을 결정하고, 상기 결정된 보정값에 따라 상기 가상영역에 대한 전파강도를 보정하는 전자파 노출 방지 장치.The radio wave intensity for the measurement point is calculated based on the location of each electronic device and the radio wave intensity for each distance, and a correction value is determined by comparing the radio wave intensity at the measurement point with the measured value of the electromagnetic wave measurement sensor, and the determined An electromagnetic wave exposure prevention device that corrects the radio wave intensity for the virtual region according to a correction value.
  15. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 탑승자가 상기 위험영역에서 식별되면 작동중인 복수의 전자기기 중 적어도 하나의 전자기기에 인가되는 전원을 차단하는 전자파 노출 방지 장치.When the occupant is identified in the danger zone, an electromagnetic wave exposure prevention device that cuts off power applied to at least one of a plurality of electronic devices in operation.
  16. 제15항에 있어서,The method of claim 15,
    상기 복수의 전자기기는 주행정보를 시각적으로 출력하는 디스플레이 모듈 및 상기 주행정보를 청각적으로 출력하는 스피커를 포함하고,The plurality of electronic devices include a display module for visually outputting driving information and a speaker for audibly outputting the driving information,
    상기 차량 제어부는 상기 디스플레이 모듈 및 상기 스피커 중 어느 하나의 전원만을 차단하는 전자파 노출 방지 장치.The vehicle control unit is a device for preventing exposure to electromagnetic waves that cuts off only the power of one of the display module and the speaker.
  17. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 탑승자가 상기 위험영역에서 식별되면, 차량용 AP(Access Point)에 대한 접속을 안내하는 설정 데이터를 탑승자 단말에 제공하는 전자파 노출 방지 장치.When the occupant is identified in the danger zone, an electromagnetic wave exposure prevention apparatus that provides setting data guiding access to a vehicle access point (AP) to an occupant terminal.
  18. 제1항에 있어서,The method of claim 1,
    상기 차량 제어부는The vehicle control unit
    상기 위험영역에서 식별된 상기 탑승자가 운전석에 위치한 경우, 상기 차량의 주행모드를 자율주행 모드로 전환하는 전자파 노출 방지 장치.When the occupant identified in the danger zone is located in a driver's seat, an electromagnetic wave exposure prevention device that switches the driving mode of the vehicle to an autonomous driving mode.
PCT/KR2019/005569 2019-05-09 2019-05-09 Device for preventing exposure of passenger in vehicle to electromagnetic waves WO2020226212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/005569 WO2020226212A1 (en) 2019-05-09 2019-05-09 Device for preventing exposure of passenger in vehicle to electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/005569 WO2020226212A1 (en) 2019-05-09 2019-05-09 Device for preventing exposure of passenger in vehicle to electromagnetic waves

Publications (1)

Publication Number Publication Date
WO2020226212A1 true WO2020226212A1 (en) 2020-11-12

Family

ID=73051299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005569 WO2020226212A1 (en) 2019-05-09 2019-05-09 Device for preventing exposure of passenger in vehicle to electromagnetic waves

Country Status (1)

Country Link
WO (1) WO2020226212A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006806A (en) * 2002-07-15 2004-01-24 현대모비스 주식회사 Apparatus for moving seat of vehicle
JP2005333053A (en) * 2004-05-21 2005-12-02 Fujitsu Ten Ltd Electromagnetic environment improving method for vehicle, electromagnetic environment countermeasure vehicle, and sheet for vehicle
US20080014872A1 (en) * 2006-07-14 2008-01-17 Erchonia Patent Holdings, Llc Method and device for reducing exposure to undesirable electromagnetic radiation
WO2011149258A2 (en) * 2010-05-25 2011-12-01 한국전자통신연구원 Method and device for evaluating influence of electromagnetic waves of base station on human body
KR20170014399A (en) * 2015-07-30 2017-02-08 최춘화 Monitoring system of electromagnetic wave and grounding resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006806A (en) * 2002-07-15 2004-01-24 현대모비스 주식회사 Apparatus for moving seat of vehicle
JP2005333053A (en) * 2004-05-21 2005-12-02 Fujitsu Ten Ltd Electromagnetic environment improving method for vehicle, electromagnetic environment countermeasure vehicle, and sheet for vehicle
US20080014872A1 (en) * 2006-07-14 2008-01-17 Erchonia Patent Holdings, Llc Method and device for reducing exposure to undesirable electromagnetic radiation
WO2011149258A2 (en) * 2010-05-25 2011-12-01 한국전자통신연구원 Method and device for evaluating influence of electromagnetic waves of base station on human body
KR20170014399A (en) * 2015-07-30 2017-02-08 최춘화 Monitoring system of electromagnetic wave and grounding resistance

Similar Documents

Publication Publication Date Title
WO2017008224A1 (en) Moving object distance detection method, device and aircraft
WO2017003052A1 (en) Vehicle driving assistance method and vehicle
WO2012153978A2 (en) Parking camera system and method of driving the same
WO2019135437A1 (en) Guide robot and operation method thereof
WO2016099052A1 (en) Three-dimensional guidance device for informing visually handicapped person of obstacle, guidance system for providing surrounding information using same, and method therefor
WO2019004621A1 (en) Method for identifying restricted areas and robot for implementing same
WO2017034282A1 (en) Driver assistance apparatus and method for controlling the same
WO2017164666A1 (en) Unmanned aerial vehicle
WO2014163307A1 (en) Automatic driving system for vehicle
WO2020017716A1 (en) Robot for vehicle and method for controlling same
WO2014088268A1 (en) X-ray imaging apparatus and method for controlling the same
WO2019240362A1 (en) Guide robot
WO2013133464A1 (en) Image display device and method thereof
KR102180615B1 (en) Method for opening and closing door of vehicle for safe getting off of passenger
WO2020184733A1 (en) Robot
WO2020004817A1 (en) Apparatus and method for detecting lane information, and computer-readable recording medium storing computer program programmed to execute same method
WO2017003013A1 (en) Apparatus for vehicle driving assistance, operation method therefor, and vehicle comprising same
WO2013069877A1 (en) Parking assisting system
WO2012111889A1 (en) Automobile camera module, method of driving the same and method of guiding parking
WO2020159076A1 (en) Landmark location estimation apparatus and method, and computer-readable recording medium storing computer program programmed to perform method
WO2018066837A1 (en) Airport robot and system including same
WO2020209394A1 (en) Method for controlling movement of cart robot adaptively to change in travel surface by using artificial intelligence, and cart robot
WO2015093823A1 (en) Vehicle driving assistance device and vehicle equipped with same
WO2017104888A1 (en) Vehicle driving assistance device and vehicle driving assistance method therefor
WO2019139273A1 (en) Robotic vacuum cleaner and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928165

Country of ref document: EP

Kind code of ref document: A1