WO2020226183A1 - Method for acquiring diagnosis assistance index for knee osteoarthritis, index, diagnosis assistance program, and wearable device - Google Patents

Method for acquiring diagnosis assistance index for knee osteoarthritis, index, diagnosis assistance program, and wearable device Download PDF

Info

Publication number
WO2020226183A1
WO2020226183A1 PCT/JP2020/018726 JP2020018726W WO2020226183A1 WO 2020226183 A1 WO2020226183 A1 WO 2020226183A1 JP 2020018726 W JP2020018726 W JP 2020018726W WO 2020226183 A1 WO2020226183 A1 WO 2020226183A1
Authority
WO
WIPO (PCT)
Prior art keywords
knee osteoarthritis
acceleration
index
acquiring
diagnostic support
Prior art date
Application number
PCT/JP2020/018726
Other languages
French (fr)
Japanese (ja)
Inventor
友 岩間
武雄 名倉
健吾 原藤
直道 荻原
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2021518410A priority Critical patent/JPWO2020226183A1/ja
Publication of WO2020226183A1 publication Critical patent/WO2020226183A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention relates to an evaluation method for measuring the severity and progression of knee osteoarthritis.
  • a method that can easily evaluate the severity of knee osteoarthritis, prognosis prediction, etc., an evaluation index, a program for calculating the evaluation index, and a small wearable without the need for an expensive measuring device or a dedicated measurement environment. Inspection equipment. It also relates to a new index of knee osteoarthritis that reflects knee pain.
  • Osteoarthritis of the knee is a degenerative disease that accompanies aging, and is a disease in which the cartilage of the knee joint wears, causing pain during walking and causing gait disturbance as it progresses.
  • the number of patients is increasing, and it is said that there are an estimated 25 million patients in Japan.
  • knee osteoarthritis is the most common among arthropathy, and it is said that about 80% of people over the age of 60 have some kind of knee osteoarthritis by roentgenology.
  • the knee has two joints, the tibial femur joint formed by the femur and tibia, and the patellofemur joint formed by the femur and patella.
  • the frequency of knee osteoarthritis is predominantly osteoarthritis of the femoral tibial joint.
  • medial osteoarthritis (so-called O-leg) is the main cause.
  • Knee osteoarthritis can be broadly divided into two treatment methods: conservative treatment and surgical treatment when it progresses.
  • Conservative treatment includes lifestyle guidance, drug therapy such as painkillers and intra-articular injection, exercise therapy such as quadriceps femoris strength training, and equipment therapy using knee supporters.
  • Surgical treatment includes artificial joint replacement. There is a technique.
  • osteoarthritis is diagnosed by the presence or absence of tenderness by palpation, the range of motion of joints, X-ray images, etc., but there is not necessarily a correlation between the deformity of the knee joint by X-ray images and the symptoms. Some people have few symptoms such as pain despite the progress of knee joint deformity, while others complain of strong pain even though there is almost no knee joint deformity. Early diagnosis and treatment of knee osteoarthritis are important because the symptoms can be improved or the progression can be delayed if appropriate treatment is given. If accurate diagnosis of knee osteoarthritis can be made at an early stage, conservative treatment will suppress the progression of knee osteoarthritis and will not interfere with activities of daily living.
  • KAM external knee varus moment
  • Patent Document 1 discloses that KAM is measured by a device attached to a lower leg equipped with a plurality of sensors.
  • Non-Patent Document 2 reports a method of estimating KAM by installing a plurality of small acceleration sensors on the pelvis, thighs, and lower legs, installing a small floor reaction force meter on the sole, and combining wearable devices. ..
  • biomarkers present in blood, urine, etc. are being searched for.
  • Patent Document 1 is a large-scale device like a robot suit worn on the lower leg, and cannot be used on a daily basis in outpatient clinics. Further, the measurement method described in Non-Patent Document 2 requires a plurality of acceleration sensors, requires a combination of floor reaction force meters, and further, complicated calculation processing is required for the data obtained from the acceleration sensors. It has not been widely used because it is necessary.
  • hyaluronic acid and glycosaminoglycan which are used as biomarkers, fluctuate drastically due to various factors such as diurnal fluctuations and diet, and cannot be said to be effective markers.
  • the X-ray image does not necessarily correlate with the disease symptom and cannot be used as an effective index for measuring the grade of knee osteoarthritis. Therefore, it has been desired to develop an objective index that can be easily measured and can accurately diagnose knee osteoarthritis. If an index that correlates with pain can be obtained, it can be used as an objective index for screening effective drugs and improving assistive devices. Furthermore, it becomes possible to select the optimal treatment method for the patient, specifically, the drug and the orthosis, and it is possible to select the treatment method suitable for each individual patient.
  • the present invention relates to a method for supporting the diagnosis of knee osteoarthritis, an index for evaluating the severity and progression of knee osteoarthritis in place of KAM, an evaluation method, a program and a device used for measurement.
  • a method for acquiring a diagnostic support index for knee osteoarthritis in which acceleration of the trunk and / or lower limbs during walking is measured, and a lateral acceleration peak width value immediately after heel contact is extracted.
  • a method for acquiring a diagnostic support index which comprises calculating an average value of peak width values of lateral acceleration and acquiring a value that supports the diagnosis of knee osteoarthritis from the average value.
  • This is a method for acquiring a diagnostic support index for knee osteoarthritis.
  • the rising position of acceleration in the vertical direction is determined to be when the heel touches, and the peak width value of the lateral acceleration immediately after the heel touches is extracted.
  • An index of the severity of knee osteoarthritis which is the average value of the peak width values of lateral acceleration synchronized with the rising position of longitudinal acceleration in the trunk and / or lower limbs during walking.
  • a program that supports the diagnosis of knee osteoarthritis which records the acceleration in the trunk and / or lower limbs during walking measured by an acceleration sensor, and sets the rising position of the vertical acceleration to the heel contact.
  • a diagnosis support program for knee osteoarthritis which comprises extracting the peak width of the lateral acceleration immediately after the heel touches down and calculating the average value of the peak width of the lateral acceleration.
  • a wearable device for knee osteoarthritis which includes an acceleration sensor, a microprocessor, a memory, and a display, and the program according to (9) or (10) is stored in the memory.
  • a wearable device for knee osteoarthritis which is equipped with an acceleration sensor, a microprocessor, and a memory, and is measured by an acceleration sensor on an external device equipped with the program according to (9) or (10).
  • the wearable device according to (11) or (12) which comprises a member to be attached to the sacral portion or the lower leg.
  • FIG. 1A is a diagram schematically showing an example of the measurement method of the present invention.
  • FIG. 1B is a diagram showing actual measurement values measured by a sensor installed in the sacral region.
  • the figure which shows that the peak width value of the acceleration in a lateral direction is extracted by judging the heel contact time from a single acceleration sensor by the data which synchronized with the acceleration sensor and the floor reaction force meter.
  • the severity and progression of knee osteoarthritis can be easily evaluated without the need for an expensive measuring device and a dedicated measuring room.
  • the lateral acceleration value by the measurement method shown below can be continuously measured in daily medical care such as outpatient clinics and clinics, and can be used for diagnosis, evaluation of treatment policy, and the like. Further, by attaching the measuring device, it is possible to measure for a long time without burdening the patient. As a result, it becomes possible to monitor the daily life of the patient and analyze the correlation between pain and movement, which can be useful for treatment.
  • KAM is used as an index for measuring the progression and severity of knee osteoarthritis, but this measurement method can not only be an index equivalent to KAM, but also the progression of knee osteoarthritis. It is an index that more reflects the severity of the disease. Therefore, instead of measuring KAM, which requires an expensive measuring device and a dedicated measuring room, it can be used for confirmation of drug effectiveness, clinical trials, evaluation of improvement of equipment, and the like. Further, while KAM measures the force at which the knee bends, that is, torque, this measuring method is a method of measuring acceleration, that is, movement that correlates with pain. Therefore, it can be a parameter for measuring knee osteoarthritis more sensitively. As a result, it is highly possible that knee osteoarthritis can be diagnosed at an early stage and the prognosis can be predicted. If accurate diagnosis of knee osteoarthritis is possible at an early stage, activities of daily living can be maintained by conservative treatment.
  • an existing acceleration sensor is used to measure the acceleration of the trunk and lower limbs during walking, but the measurement is specialized for the examination of knee osteoarthritis.
  • the device can have the following configuration.
  • the knee osteoarthritis measuring device is a microprocessor, a measurement value or a program having a built-in program that extracts the peak width of lateral acceleration at the time of heel contact measured by an acceleration sensor and an acceleration sensor and calculates the average thereof. It is possible to provide a memory for storing the data and a display capable of displaying the result and the like.
  • the time when the heel touches down is identified from the rise of the vertical acceleration measured by the acceleration sensor, and the identified lateral acceleration when the heel touches down is stored in the built-in memory, and from the peak width value stored in the memory.
  • the average value is calculated by the processor.
  • the calculated average value is displayed on the display, from which the doctor can judge the degree of knee osteoarthritis of the patient. Further, when the measured lateral acceleration value exceeds the reference value, it can be programmed to show the value and to show the suspicion of knee osteoarthritis or the like on the display.
  • the wearable device can monitor daily activities not only during outpatient treatment but also at home. There is no system that can monitor daily activities, and it is an epoch-making device. Furthermore, since it can be easily measured, it is possible to follow up for a long period of time to see what kind of effect the therapeutic agent or various interventions have.
  • this evaluation method based on the acceleration value correlates with the degree of progression of knee osteoarthritis, it can be used as a criterion when applying surgery, and the therapeutic effect of drugs and the effect of assistive devices are evaluated. It can be used as an objective index.
  • TSND151 three-dimensional acceleration sensors
  • ATR-Promotions three-dimensional acceleration sensors
  • the acceleration sensors are attached to six places, but it may be attached to at least one place for measurement.
  • the heel contact state may be determined by a sensor different from the sensor that measures the lateral acceleration.
  • KAM affixed 46 reflection markers in the gait analysis room, and performed gait analysis by the conventional method using eight infrared cameras (Oqus, Qualisys) and two floor reaction force meters (Bertec, Columbus). It was calculated using Visual 3D (C-motion Company).
  • the measurement was performed on 38 knees (16 females, 3 males, age 68.9 ⁇ 6.5 years, BMI 22.1 ⁇ 2.7 kg / m 2 ) of 19 patients with medial knee osteoarthritis.
  • Fig. 1 (A) schematically shows the case where the acceleration sensor is attached to the sacral region.
  • An acceleration sensor is attached near the sacral bone, and the acceleration is measured in three directions: the vertical direction (vertical direction, Az), the traveling direction (Ax), and the direction perpendicular to the traveling direction (horizontal direction, Ay, LM Axis).
  • the sensor attached near the sacrum will be referred to as the sacral sensor, and the sensor attached to the lower leg will be referred to as the lower leg sensor.
  • the measured value of the lateral acceleration is shown in FIG. 1 (B).
  • the peak width of the lateral acceleration generated when the heel touches down (Fig. 1 (B), Peak range of Acc indicated by a thick arrow) correlates with the peak value of KAM. showed that.
  • the peak width refers to the amount of change in acceleration until the next peak value in which the peak value of positive acceleration outward with respect to the stance limb is continuous at the initial stage of stance. Patients with medial knee osteoarthritis tend to walk while swinging from side to side, but the amount of change in lateral acceleration is regarded as the peak width.
  • the peak value of KAM including patients with medial knee osteoarthritis and healthy subjects and the acceleration value in the lateral direction were measured.
  • the correlation between the lateral acceleration value and the KAM peak value in the sacral sensor (FIG. 2 (A)) and the lower leg sensor (FIG. 2 (B)) is shown.
  • Pearson's correlation analysis was used, and P ⁇ 0.05 was considered significant.
  • Both the sacral sensor and the lower leg sensor showed a significant correlation between the lateral acceleration value and the KAM peak value.
  • r 0.60 (P ⁇ 0.01), which was more strongly correlated with the KAM value than the measured values (0.43, P ⁇ 0.01) of the sacral sensor.
  • Non-Patent Documents 3 and 4 a KAM peak value of 4.2% body weight x height or more is severe knee osteoarthritis.
  • This value corresponds to 30,000 or more in the lateral acceleration peak width value obtained from the lower leg sensor, and is in good agreement with the comprehensive findings obtained by other diagnostic methods such as X-ray images.
  • the report that the acceleration at the time of heel contact in the trunk and limbs correlates with the peak value of KAM is a new finding that has never existed before.
  • the sensors attached to the femur and sternum also showed a correlation with the KAM value, although there was no significant difference. Even in these places, there is a possibility that accurate measurement can be performed by the method of fixing the acceleration sensor, such as attaching the acceleration sensor so that it is fixed more closely to the body.
  • the peak width value of acceleration is relatively large, and it is possible to judge when the heel touches down only by the value of the acceleration sensor in the lateral direction.
  • walking is slow, so it is difficult to determine when the heel touches the ground without using a motion capture system.
  • measurement using a motion capture system makes the device large-scale, making it difficult to use in daily medical care and clinics. Therefore, we investigated a method to determine when the heel touches the ground with a single accelerometer without using a motion capture system.
  • the rise of the vertical component of the acceleration sensor may be estimated to be when the heel touches the ground, and the peak width value of the horizontal component immediately after that may be measured.
  • the lateral acceleration value correlates with the conventionally used evaluation values such as KAM and lateral thrust, and is a measurement value that better reflects the patient's movement, a new knee osteoarthritis is replaced with these measurement values. It can be used as a diagnostic index for osteoarthritis. Furthermore, since it can be a new index that reflects the correlation with pain, it can be used as an objective index for drug discovery development, improvement of equipment, and the like.

Abstract

The present invention enables evaluation of the severity of knee osteoarthritis by measuring the acceleration in the lateral direction using an acceleration sensor attached to the torso or a leg when the heel strikes the ground. This wearable device provided with an acceleration sensor facilitates evaluation of knee osteoarthritis. The present invention can provide an index and device for knee osteoarthritis which facilitate measurement without the need of an expensive measurement device and a special measurement room, and the index can be an objective index not only for performing an optimal treatment on a patient but also for a drug discovery screening and improvement of an assistance instrument.

Description

変形性膝関節症の診断支援指標取得方法、指標、診断支援プログラム及びウェアラブルデバイスDiagnosis support index acquisition method, index, diagnosis support program and wearable device for knee osteoarthritis
 本発明は、変形性膝関節症の重症度、進行度を測定する評価方法に関する。高額な測定装置や専用の計測環境を必要とすることなく、簡便に変形性膝関節症の重症度、予後予測等を評価できる方法、評価指標、評価指標を算出するためのプログラム及び小型のウェアラブルな検査機器に関する。また、膝の痛みを反映した変形性膝関節症の新たな指標に関する。 The present invention relates to an evaluation method for measuring the severity and progression of knee osteoarthritis. A method that can easily evaluate the severity of knee osteoarthritis, prognosis prediction, etc., an evaluation index, a program for calculating the evaluation index, and a small wearable without the need for an expensive measuring device or a dedicated measurement environment. Inspection equipment. It also relates to a new index of knee osteoarthritis that reflects knee pain.
 変形性膝関節症は加齢に伴う変性疾患であり、膝の関節の軟骨が摩耗し、歩行時等に疼痛を生じ、進行すると歩行障害を生じる疾患である。高齢化に伴い、患者は増加傾向にあり、国内には推定2500万人程度の患者がいると言われている。また、変形性膝関節症は関節症の中でも頻度が高く、60歳以上の約8割がX線学的に何らかの変形性膝関節症を有していると言われている。 Osteoarthritis of the knee is a degenerative disease that accompanies aging, and is a disease in which the cartilage of the knee joint wears, causing pain during walking and causing gait disturbance as it progresses. With the aging of the population, the number of patients is increasing, and it is said that there are an estimated 25 million patients in Japan. In addition, knee osteoarthritis is the most common among arthropathy, and it is said that about 80% of people over the age of 60 have some kind of knee osteoarthritis by roentgenology.
 膝には大腿骨と脛骨で形成される脛骨大腿関節と、大腿骨と膝蓋骨で形成される膝蓋大腿関節の2つの関節がある。変形性膝関節症の頻度は、大腿脛骨関節の変形性関節症が圧倒的に多い。また、日本人では内側型変形性関節症(いわゆるO脚)が主体となっている。 The knee has two joints, the tibial femur joint formed by the femur and tibia, and the patellofemur joint formed by the femur and patella. The frequency of knee osteoarthritis is predominantly osteoarthritis of the femoral tibial joint. In Japanese, medial osteoarthritis (so-called O-leg) is the main cause.
 変形性膝関節症は、大きく分けると保存的治療と、進行した場合の手術的治療の2つの治療法がある。保存的治療としては、生活指導、鎮痛剤や関節腔内注射などの薬物療法、大腿四頭筋の筋力訓練などの運動療法、膝サポーターなどによる装具療法が、手術的治療としては、人工関節置換術などがある。 Knee osteoarthritis can be broadly divided into two treatment methods: conservative treatment and surgical treatment when it progresses. Conservative treatment includes lifestyle guidance, drug therapy such as painkillers and intra-articular injection, exercise therapy such as quadriceps femoris strength training, and equipment therapy using knee supporters. Surgical treatment includes artificial joint replacement. There is a technique.
 一般的に変形性関節症は、触診による圧痛の有無、関節の可動域、X線画像等で診断されるが、X線画像による膝関節の変形と、症状の間には必ずしも相関がない。膝関節の変形が進行しているにもかかわらず、痛みなどの症状がほとんどない者もいる一方で、膝関節の変形がほとんど見られないにもかかわらず、強い痛みを訴える者もいる。変形性膝関節症は、適切な治療を受ければ症状の改善や進行を遅らせることができることから、早期の診断と治療が重要となる。早期に変形性膝関節症の正確な診断を行うことができれば、保存的治療によって、変形性膝関節症の進行を抑制し、日常生活動作に支障をきたすことがない。 Generally, osteoarthritis is diagnosed by the presence or absence of tenderness by palpation, the range of motion of joints, X-ray images, etc., but there is not necessarily a correlation between the deformity of the knee joint by X-ray images and the symptoms. Some people have few symptoms such as pain despite the progress of knee joint deformity, while others complain of strong pain even though there is almost no knee joint deformity. Early diagnosis and treatment of knee osteoarthritis are important because the symptoms can be improved or the progression can be delayed if appropriate treatment is given. If accurate diagnosis of knee osteoarthritis can be made at an early stage, conservative treatment will suppress the progression of knee osteoarthritis and will not interfere with activities of daily living.
 従来から、外部膝関節内反モーメント(knee adduction moment;KAM)が、変形性膝関節症の進行度を示す有用なマーカーとして使用されている。KAMは内側型変形性膝関節症患者の歩行時における内側膝関節荷重負荷の指標である(非特許文献1)。内側型変形性膝関節症は、脛骨大腿関節内側部に過剰な圧迫力が加わることで進行が助長されると考えられている。そのため、KAMは、変形性膝関節症の重症度や進行度と相関し、変形性膝関節症患者の予後予測指標となると言われている。 Conventionally, the external knee varus moment (KAM) has been used as a useful marker indicating the degree of progression of knee osteoarthritis. KAM is an index of medial knee joint load during walking in patients with medial knee osteoarthritis (Non-Patent Document 1). Medial knee osteoarthritis is thought to be promoted by applying excessive compression force to the medial part of the tibial femoral joint. Therefore, KAM correlates with the severity and progression of knee osteoarthritis, and is said to be a prognostic index for patients with knee osteoarthritis.
 しかしながら、KAMを計測するには、モーションキャプチャシステムなどの三次元動作解析装置と、床反力計を設置した広い計測室が必要である。変形性膝関節症は、進行の比較的遅い疾患であり、何年にもわたって経過を観察する必要があり、クリニックなどでの外来診療において、継続的な経過観察が必要とされる。しかし、KAMの計測は、高額な計測装置と専用の計測室を必要とすることから、外来診療でその値を計測することはできなかった。また、計測室での測定は、限定した動作しか測定できず、必ずしも日常生活動作を反映しないことも問題であると考えられている。また、痛みの強い患者は無意識のうちに痛みが生じないような歩き方をすることから、重度の変形性膝関節症の患者群では、KAMによる測定値は必ずしも重症度と相関しないことが指摘されていた。 However, in order to measure KAM, a three-dimensional motion analysis device such as a motion capture system and a large measurement room equipped with a floor reaction force meter are required. Osteoarthritis of the knee is a disease that progresses relatively slowly and needs to be followed up for many years, and continuous follow-up is required in outpatient clinics and the like. However, since KAM measurement requires an expensive measuring device and a dedicated measuring room, it was not possible to measure the value in outpatient clinics. In addition, it is considered that the measurement in the measurement room can measure only limited movements and does not necessarily reflect activities of daily living. In addition, it was pointed out that in the group of patients with severe knee osteoarthritis, the measured value by KAM does not necessarily correlate with the severity because patients with strong pain walk unconsciously so as not to cause pain. It had been.
 近年、簡便に変形性膝関節症の進行を測定するために様々な方法が提案されている(特許文献1、非特許文献2)。特許文献1には、複数のセンサーを備えた下腿に装着するデバイスによりKAMを測定することが開示されている。非特許文献2には、小型加速度センサーを骨盤、大腿、下腿に複数個設置し、靴底に小型床反力計を設置し、ウェアラブルデバイスの組合せによって、KAMを推定する方法が報告されている。また、血液、尿などに存在するバイオマーカーの探索が行われている。 In recent years, various methods have been proposed for easily measuring the progression of knee osteoarthritis (Patent Document 1, Non-Patent Document 2). Patent Document 1 discloses that KAM is measured by a device attached to a lower leg equipped with a plurality of sensors. Non-Patent Document 2 reports a method of estimating KAM by installing a plurality of small acceleration sensors on the pelvis, thighs, and lower legs, installing a small floor reaction force meter on the sole, and combining wearable devices. .. In addition, biomarkers present in blood, urine, etc. are being searched for.
米国特許出願公開第2018/0235830号明細書U.S. Patent Application Publication No. 2018/0235830
 特許文献1に記載されているデバイスは、下腿に装着するロボットスーツ様の大掛かりなものであり、外来診療において日常的に使用することはできない。また、非特許文献2に記載されている測定方法は、加速度センサーが複数必要であり、かつ床反力計を組み合わせる必要があること、さらに、加速度センサーから得られたデータに複雑な計算処理が必要であることなどから、普及するにはいたっていない。 The device described in Patent Document 1 is a large-scale device like a robot suit worn on the lower leg, and cannot be used on a daily basis in outpatient clinics. Further, the measurement method described in Non-Patent Document 2 requires a plurality of acceleration sensors, requires a combination of floor reaction force meters, and further, complicated calculation processing is required for the data obtained from the acceleration sensors. It has not been widely used because it is necessary.
 また、バイオマーカーとして用いられているヒアルロン酸、グリコサミノグリカン(GAG)は、日内変動や食事など種々の要因によって変動が激しく、有効なマーカーとは言い難い。また、前述のように、X線画像は必ずしも疾患症状とは相関せず、変形性膝関節症のグレードを測る有効な指標とすることができない。そのため、簡便に測定することができるとともに、精度良く変形性膝関節症を診断し得る客観的指標の開発が望まれていた。痛みと相関する指標を得ることができれば、有効な薬物のスクリーニングや、補助器具の改良の客観的な指標とすることができる。さらに、患者に対しては最適な治療法、具体的には薬物や装具の選択を行うことが可能となり、個々の患者に適した治療法を選択することができる。 In addition, hyaluronic acid and glycosaminoglycan (GAG), which are used as biomarkers, fluctuate drastically due to various factors such as diurnal fluctuations and diet, and cannot be said to be effective markers. Further, as described above, the X-ray image does not necessarily correlate with the disease symptom and cannot be used as an effective index for measuring the grade of knee osteoarthritis. Therefore, it has been desired to develop an objective index that can be easily measured and can accurately diagnose knee osteoarthritis. If an index that correlates with pain can be obtained, it can be used as an objective index for screening effective drugs and improving assistive devices. Furthermore, it becomes possible to select the optimal treatment method for the patient, specifically, the drug and the orthosis, and it is possible to select the treatment method suitable for each individual patient.
 本発明は、変形性膝関節症の診断を支援する方法、KAMに代わる変形性膝関節症の重症度、進行度を評価する指標、評価方法、測定に用いるプログラム及びデバイスに関する。
(1)変形性膝関節症の診断支援指標取得方法であって、歩行時の体幹及び/又は下肢の加速度を測定し、踵接地時直後の横方向の加速度ピーク幅値を抽出し、該横方向の加速度のピーク幅値の平均値を算出し、該平均値から変形性膝関節症の診断の支援となる値を取得することを特徴とする診断支援指標取得方法。
(2)変形性膝関節症の診断支援指標取得方法であって、縦方向の加速度の立ち上がり位置を踵接地時と判定し、踵接地時直後の横方向の加速度のピーク幅値を抽出して算出する請求項1に記載の診断支援指標取得方法。
(3)変形性膝関節症の診断支援指標取得方法であって、単一の加速度センサーによって測定することを特徴とする(1)又は(2)に記載の診断支援指標取得方法。
(4)変形性膝関節症の診断支援指標取得方法であって、前記加速度は仙骨部又は下腿で測定することを特徴とする(1)~(3)いずれか1つ記載の診断支援指標取得方法。
(5)歩行時の体幹及び/又は下肢における縦方向の加速度の立ち上がり位置と同期した横方向の加速度のピーク幅値の平均値である変形性膝関節症の重症度の指標。
(6)単一の加速度センサーにより前記縦方向及び横方向の加速度を測定することを特徴とする(5)記載の変形性膝関節症の重症度の指標。
(7)前記指標は、仙骨部又は下腿で測定されることを特徴とする(5)又は(6)に記載の変形性膝関節症の重症度の指標。
(8)(5)~(7)いずれか1つに記載の指標を用いて、変形性膝関節症の治療薬、補助器具、及び/又は治療方法を評価する方法。
(9)変形性膝関節症の診断を支援するプログラムであって、加速度センサーにより測定される歩行時の体幹及び/又は下肢における加速度を記録し、縦方向の加速度の立ち上がり位置を踵接地時と判定し、踵接地時直後の横方向の加速度のピーク幅を抽出し、前記横方向の加速度のピーク幅の平均値を算出することを特徴とする変形性膝関節症の診断支援プログラム。
(10)変形性膝関節症の診断を支援するプログラムであって、前記加速度は単一の加速度センサーにより測定される加速度であることを特徴とする(9)記載の変形性膝関節症の診断支援プログラム。
(11)変形性膝関節症のウェアラブルデバイスであって、加速度センサーと、マイクロプロセッサと、メモリと、ディスプレイを備えており、該メモリには(9)又は(10)に記載のプログラムが格納されていることを特徴とするウェアラブルデバイス。
(12)変形性膝関節症のウェアラブルデバイスであって、加速度センサーと、マイクロプロセッサと、メモリを備えており、(9)又は(10)に記載のプログラムを備えた外部デバイスに加速度センサーで測定したデータを送信することを特徴とするウェアラブルデバイス。
(13)仙骨部又は下腿に装着するための部材を備えていることを特徴とする(11)又は(12)に記載のウェアラブルデバイス。
(14)変形性膝関節症の治療において、単一の加速度センサーにより測定された歩行時の体幹又は下肢における縦方向の加速度の立ち上がり位置と同期した横方向の加速度のピーク幅値の平均値である変形性膝関節症の重症度の指標によって保存的治療又は手術的治療を選択する変形性膝関節症の治療方法。
(15)変形性膝関節症の治療において保存的治療を選択した場合に、前記変形性膝関節症の重症度の指標を用いて治療薬及び/又は補助器具を選択する(14)の治療方法。
The present invention relates to a method for supporting the diagnosis of knee osteoarthritis, an index for evaluating the severity and progression of knee osteoarthritis in place of KAM, an evaluation method, a program and a device used for measurement.
(1) A method for acquiring a diagnostic support index for knee osteoarthritis, in which acceleration of the trunk and / or lower limbs during walking is measured, and a lateral acceleration peak width value immediately after heel contact is extracted. A method for acquiring a diagnostic support index, which comprises calculating an average value of peak width values of lateral acceleration and acquiring a value that supports the diagnosis of knee osteoarthritis from the average value.
(2) This is a method for acquiring a diagnostic support index for knee osteoarthritis. The rising position of acceleration in the vertical direction is determined to be when the heel touches, and the peak width value of the lateral acceleration immediately after the heel touches is extracted. The method for acquiring a diagnostic support index according to claim 1 for calculation.
(3) The method for acquiring a diagnostic support index according to (1) or (2), which is a method for acquiring a diagnostic support index for knee osteoarthritis, which is measured by a single acceleration sensor.
(4) A method for acquiring a diagnostic support index for knee osteoarthritis, wherein the acceleration is measured at the sacral region or the lower leg, and the diagnostic support index is acquired according to any one of (1) to (3). Method.
(5) An index of the severity of knee osteoarthritis, which is the average value of the peak width values of lateral acceleration synchronized with the rising position of longitudinal acceleration in the trunk and / or lower limbs during walking.
(6) The index of the severity of knee osteoarthritis according to (5), wherein the longitudinal and lateral accelerations are measured by a single acceleration sensor.
(7) The index of the severity of knee osteoarthritis according to (5) or (6), wherein the index is measured at the sacral region or the lower leg.
(8) A method for evaluating a therapeutic agent, an auxiliary device, and / or a therapeutic method for knee osteoarthritis using the index according to any one of (5) to (7).
(9) A program that supports the diagnosis of knee osteoarthritis, which records the acceleration in the trunk and / or lower limbs during walking measured by an acceleration sensor, and sets the rising position of the vertical acceleration to the heel contact. A diagnosis support program for knee osteoarthritis, which comprises extracting the peak width of the lateral acceleration immediately after the heel touches down and calculating the average value of the peak width of the lateral acceleration.
(10) The diagnosis of knee osteoarthritis according to (9), which is a program that supports the diagnosis of knee osteoarthritis, wherein the acceleration is an acceleration measured by a single acceleration sensor. Support program.
(11) A wearable device for knee osteoarthritis, which includes an acceleration sensor, a microprocessor, a memory, and a display, and the program according to (9) or (10) is stored in the memory. A wearable device characterized by being.
(12) A wearable device for knee osteoarthritis, which is equipped with an acceleration sensor, a microprocessor, and a memory, and is measured by an acceleration sensor on an external device equipped with the program according to (9) or (10). A wearable device characterized by transmitting the data.
(13) The wearable device according to (11) or (12), which comprises a member to be attached to the sacral portion or the lower leg.
(14) In the treatment of knee osteoarthritis, the average value of the peak width value of the lateral acceleration synchronized with the rising position of the longitudinal acceleration in the trunk or lower limbs during walking measured by a single acceleration sensor. A method of treating knee osteoarthritis in which conservative treatment or surgical treatment is selected according to an index of the severity of knee osteoarthritis.
(15) The treatment method of (14), in which when conservative treatment is selected in the treatment of knee osteoarthritis, a therapeutic agent and / or an auxiliary device is selected using the index of the severity of knee osteoarthritis. ..
本実施例の測定方法及び実測値を示した図。図1(A)は、本発明の測定方法の例を模式的に示した図。図1(B)は、仙骨部に設置したセンサーにより測定した実測値を示す図。The figure which showed the measurement method and the measured value of this Example. FIG. 1A is a diagram schematically showing an example of the measurement method of the present invention. FIG. 1B is a diagram showing actual measurement values measured by a sensor installed in the sacral region. 仙骨センサー(A)、下腿センサー(B)における横方向の加速度値とKAMピーク値の相関を示す図。The figure which shows the correlation of the lateral acceleration value and the KAM peak value in the sacrum sensor (A), and the lower leg sensor (B). 仙骨センサーにおける横方向の加速度、膝内反角、KAMピーク値の比較を示す図。The figure which shows the comparison of the lateral acceleration, the knee varus angle, and the KAM peak value in the sacral sensor. 加速度センサーと床反力計を同期させたデータにより、単一の加速度センサーから踵接地時を判定し、横方向の加速度のピーク幅値を抽出することを示す図。The figure which shows that the peak width value of the acceleration in a lateral direction is extracted by judging the heel contact time from a single acceleration sensor by the data which synchronized with the acceleration sensor and the floor reaction force meter.
 以下の実施例で示す測定方法によれば、高額な計測装置と専用の計測室を必要とすることなく、簡便に変形性膝関節症の重症度、進行度を評価することができる。以下に示す測定方法による横方向の加速度値は、外来診療、クリニックなど、日常的な診療において継続して測定することができ、診断、治療方針等の評価に用いることができる。また、測定装置を装着することによって、患者の負担なく長時間計測することも可能となる。その結果、患者の日常生活をモニターし、痛みと動作の相関を解析することが可能となり、治療に役立てることができるようになる。 According to the measurement method shown in the following examples, the severity and progression of knee osteoarthritis can be easily evaluated without the need for an expensive measuring device and a dedicated measuring room. The lateral acceleration value by the measurement method shown below can be continuously measured in daily medical care such as outpatient clinics and clinics, and can be used for diagnosis, evaluation of treatment policy, and the like. Further, by attaching the measuring device, it is possible to measure for a long time without burdening the patient. As a result, it becomes possible to monitor the daily life of the patient and analyze the correlation between pain and movement, which can be useful for treatment.
 現在、変形性膝関節症の進行や重症度を測定する指標としては、KAMが使用されているが、本測定方法は、KAMと同等の指標となり得るだけではなく、変形性膝関節症の進行や重症度をより反映した指標となる。したがって、高額な計測装置と専用の計測室を必要とするKAMの測定に代わり、薬剤の有効性の確認や治験、また、装具の改良の評価等にも使用することができる。さらに、KAMは膝が曲がろうとする力、すなわちトルクを測定しているのに対し、本測定方法は、加速度、すなわち痛みと相関する動きを測定する方法である。したがって、より鋭敏に変形性膝関節症を測定するパラメータとなり得る。その結果、早期に変形性膝関節症を診断し、予後予測を行うことができる可能性が高い。変形性膝関節症の早期に正確な診断が可能になれば、保存的治療によって日常生活動作を維持できる。 Currently, KAM is used as an index for measuring the progression and severity of knee osteoarthritis, but this measurement method can not only be an index equivalent to KAM, but also the progression of knee osteoarthritis. It is an index that more reflects the severity of the disease. Therefore, instead of measuring KAM, which requires an expensive measuring device and a dedicated measuring room, it can be used for confirmation of drug effectiveness, clinical trials, evaluation of improvement of equipment, and the like. Further, while KAM measures the force at which the knee bends, that is, torque, this measuring method is a method of measuring acceleration, that is, movement that correlates with pain. Therefore, it can be a parameter for measuring knee osteoarthritis more sensitively. As a result, it is highly possible that knee osteoarthritis can be diagnosed at an early stage and the prognosis can be predicted. If accurate diagnosis of knee osteoarthritis is possible at an early stage, activities of daily living can be maintained by conservative treatment.
 以下の実施例で示すように、ここでは、歩行時の体幹、及び下肢の加速度を計測するために、既存の加速度センサーを用いているが、変形性膝関節症の検査に特化した測定機器は以下のような構成とすることができる。例えば、変形性膝関節症測定装置は、加速度センサー、加速度センサーによって測定した踵接地時の横方向の加速度のピーク幅を抽出し、その平均を算出させるプログラムを内蔵したマイクロプロセッサ、測定値やプログラムを記憶するメモリ、さらに結果等を表示することができるディスプレイを備えることができる。あるいは、センサーによって得られたデータを一時的にメモリに蓄積し、プロセッサによりPCやスマホに送信し、PC等のプログラムによって処理させることも可能である。PC等でデータを処理、表示することから、プロセッサやディスプレイはPC等のものを使用することができるので、より小型の装置とすることができる。 As shown in the following examples, here, an existing acceleration sensor is used to measure the acceleration of the trunk and lower limbs during walking, but the measurement is specialized for the examination of knee osteoarthritis. The device can have the following configuration. For example, the knee osteoarthritis measuring device is a microprocessor, a measurement value or a program having a built-in program that extracts the peak width of lateral acceleration at the time of heel contact measured by an acceleration sensor and an acceleration sensor and calculates the average thereof. It is possible to provide a memory for storing the data and a display capable of displaying the result and the like. Alternatively, it is also possible to temporarily store the data obtained by the sensor in a memory, transmit it to a PC or a smartphone by a processor, and process it by a program such as a PC. Since data is processed and displayed on a PC or the like, a processor or a display can be used on the PC or the like, so that the device can be made smaller.
 加速度センサーによって測定された縦方向の加速度の立ち上がりから踵接地時を同定し、同定された踵接地時の横方向の加速度が、内蔵するメモリに記憶され、メモリに記憶されたピーク幅の値から、その平均値がプロセッサにより計算される。算出した平均値は、ディスプレイに表示され、その値から医師は患者の膝関節症の程度を判断することができる。さらに、測定した横方向の加速度値が基準の値を上回る場合には、その値を示すとともに、変形性膝関節症の疑いがあること等がディスプレイに表示されるようにプログラムすることもできる。 The time when the heel touches down is identified from the rise of the vertical acceleration measured by the acceleration sensor, and the identified lateral acceleration when the heel touches down is stored in the built-in memory, and from the peak width value stored in the memory. , The average value is calculated by the processor. The calculated average value is displayed on the display, from which the doctor can judge the degree of knee osteoarthritis of the patient. Further, when the measured lateral acceleration value exceeds the reference value, it can be programmed to show the value and to show the suspicion of knee osteoarthritis or the like on the display.
 また、下腿部、仙骨部など、変形性膝関節症の検査に適した箇所に固定して計測するために、サイズの調節が可能なバンドなど、装着のために必要な部材を設けることができる。小型のウェアラブルデバイスとすることによって、外来診療などで使用することが可能となる。 In addition, in order to fix and measure at a place suitable for the examination of knee osteoarthritis such as the lower leg and sacrum, it is necessary to provide members necessary for wearing such as a band whose size can be adjusted. it can. By making it a small wearable device, it can be used in outpatient clinics.
 ウェアラブルデバイスは、外来診療時だけではなく、在宅時の日常動作をモニタリングすることができる。日常動作をモニタリングできるシステムは従来にはなく、画期的なデバイスである。さらに、簡便に計測することができることから、治療薬、あるいは種々の介入がどのような効果を生じるか、長期間にわたって経過観察をすることができる。今まで、簡便かつ客観的な評価方法がなかったことから、薬剤や補助器具、あるいは外科手術による治療など、変形性膝関節症治療の有効性の客観的評価は困難であった。加速度値に基づく本評価方法は、変形性膝関節症の進行度と相関していることから、外科手術を適用する際の判断基準としたり、薬剤等の治療効果や補助器具の効果を評価する客観的な指標とすることができる。 The wearable device can monitor daily activities not only during outpatient treatment but also at home. There is no system that can monitor daily activities, and it is an epoch-making device. Furthermore, since it can be easily measured, it is possible to follow up for a long period of time to see what kind of effect the therapeutic agent or various interventions have. Until now, there has been no simple and objective evaluation method, so it has been difficult to objectively evaluate the effectiveness of treatment for knee osteoarthritis, such as treatment with drugs, assistive devices, or surgery. Since this evaluation method based on the acceleration value correlates with the degree of progression of knee osteoarthritis, it can be used as a criterion when applying surgery, and the therapeutic effect of drugs and the effect of assistive devices are evaluated. It can be used as an objective index.
[実施例]
 加速度は、3次元加速度センサー(TSND151、ATR-Promotions)を体幹および両下肢の計6か所(胸骨部、仙骨部、両大腿部、両下腿部)に貼付し、各部位の加速度を計測した。ここでは、6か所に加速度センサーを貼付しているが、少なくともいずれか1か所に貼付し、計測すればよい。また、患者の歩行状態によっては、横方向の加速度を測定するセンサーとは別のセンサーにより踵接地時を判定してもよい。
[Example]
For acceleration, three-dimensional acceleration sensors (TSND151, ATR-Promotions) are attached to a total of 6 locations (sternum, sacrum, both thighs, both lower legs) on the trunk and both lower limbs, and the acceleration of each part Was measured. Here, the acceleration sensors are attached to six places, but it may be attached to at least one place for measurement. Further, depending on the walking state of the patient, the heel contact state may be determined by a sensor different from the sensor that measures the lateral acceleration.
 加速度測定と同時に、KAMとの相関を解析した。KAMは、歩行解析室で反射マーカーを46個を貼付し、赤外線カメラ8台(Oqus、Qualisys)、2枚の床反力計(Bertec、Columbus)を用いて従来法による歩行解析を施行し、Visual 3D(C-motion Company)を用いて算出した。 At the same time as the acceleration measurement, the correlation with KAM was analyzed. KAM affixed 46 reflection markers in the gait analysis room, and performed gait analysis by the conventional method using eight infrared cameras (Oqus, Qualisys) and two floor reaction force meters (Bertec, Columbus). It was calculated using Visual 3D (C-motion Company).
 被験者である内側型膝関節症患者19名の38膝(女性16名、男性3名、年齢68.9±6.5歳、BMI22.1±2.7kg/m)を対象として測定した。 The measurement was performed on 38 knees (16 females, 3 males, age 68.9 ± 6.5 years, BMI 22.1 ± 2.7 kg / m 2 ) of 19 patients with medial knee osteoarthritis.
 仙骨部に加速度センサーを貼付した場合について、図1(A)に模式的に示す。加速度センサーを仙骨付近に貼付し、垂直方向(縦方向、Az)、進行方向(Ax)、進行方向に対して直角方向(横方向、Ay、LM Axis)の3方向の加速度を計測する。なお、仙骨付近に貼付したセンサーを以下仙骨センサー、下腿部に貼付したセンサーを下腿センサーと記載する。 Fig. 1 (A) schematically shows the case where the acceleration sensor is attached to the sacral region. An acceleration sensor is attached near the sacral bone, and the acceleration is measured in three directions: the vertical direction (vertical direction, Az), the traveling direction (Ax), and the direction perpendicular to the traveling direction (horizontal direction, Ay, LM Axis). The sensor attached near the sacrum will be referred to as the sacral sensor, and the sensor attached to the lower leg will be referred to as the lower leg sensor.
 横方向の加速度の実測値を図1(B)に示す。種々の測定値を解析した結果、後述するように、踵接地時に生じる横方向の加速度のピーク幅(図1(B)、太い矢印で示したPeak range of Acc)が、KAMのピーク値と相関を示した。ピーク幅とは、立脚初期において、立脚肢に対して外方向に正の加速度のピーク値が連続した次のピーク値に至るまでの、加速度の変化量のことを指す。内側型変形性膝関節症患者では、身体が左右に振れながら歩行する傾向があるが、横方向の加速度の変化量がピーク幅として捉えられている。 The measured value of the lateral acceleration is shown in FIG. 1 (B). As a result of analyzing various measured values, as will be described later, the peak width of the lateral acceleration generated when the heel touches down (Fig. 1 (B), Peak range of Acc indicated by a thick arrow) correlates with the peak value of KAM. showed that. The peak width refers to the amount of change in acceleration until the next peak value in which the peak value of positive acceleration outward with respect to the stance limb is continuous at the initial stage of stance. Patients with medial knee osteoarthritis tend to walk while swinging from side to side, but the amount of change in lateral acceleration is regarded as the peak width.
 内側型変形性膝関節症患者、及び健常者を含めたKAMのピーク値と、横方向の加速度値を測定した。仙骨センサー(図2(A))、下腿センサー(図2(B))における横方向の加速度値とKAMピーク値の相関を示す。統計はピアソンの相関分析を用い、P<0.05を有意とした。仙骨センサーでも、下腿センサーでも横方向の加速度値は、KAMピーク値と有意な相関を認めた。下腿センサーでは、r=0.60(P<0.01)と、仙骨センサーの測定値(0.43、P<0.01)より、KAM値とより強い相関を認めた。従来から、KAMピーク値4.2%体重×身長以上では、重度の変形性膝関節症であると判断されている(非特許文献3、4)。この値は、下腿センサーから得られた横方向の加速度ピーク幅値では30,000以上に相当し、X線画像等、他の診断方法により得られた総合的な所見とよく一致している。体幹や四肢における踵接地時の加速度とKAMのピーク値が相関するという報告は従来にはなく新たな知見である。大腿、胸骨に貼付したセンサーも、有意差はないもののKAM値との相関を認めた。これらの箇所でも、加速度センサーがより身体に密着して固定されるように貼付するなど、加速度センサーの固定方法で、精度良く測定できる可能性がある。 The peak value of KAM including patients with medial knee osteoarthritis and healthy subjects and the acceleration value in the lateral direction were measured. The correlation between the lateral acceleration value and the KAM peak value in the sacral sensor (FIG. 2 (A)) and the lower leg sensor (FIG. 2 (B)) is shown. For the statistics, Pearson's correlation analysis was used, and P <0.05 was considered significant. Both the sacral sensor and the lower leg sensor showed a significant correlation between the lateral acceleration value and the KAM peak value. In the lower leg sensor, r = 0.60 (P <0.01), which was more strongly correlated with the KAM value than the measured values (0.43, P <0.01) of the sacral sensor. Conventionally, it has been determined that a KAM peak value of 4.2% body weight x height or more is severe knee osteoarthritis (Non-Patent Documents 3 and 4). This value corresponds to 30,000 or more in the lateral acceleration peak width value obtained from the lower leg sensor, and is in good agreement with the comprehensive findings obtained by other diagnostic methods such as X-ray images. The report that the acceleration at the time of heel contact in the trunk and limbs correlates with the peak value of KAM is a new finding that has never existed before. The sensors attached to the femur and sternum also showed a correlation with the KAM value, although there was no significant difference. Even in these places, there is a possibility that accurate measurement can be performed by the method of fixing the acceleration sensor, such as attaching the acceleration sensor so that it is fixed more closely to the body.
 変形性膝関節症においては、lateral thrustと言われる歩行時の膝関節の横ぶれが臨床的に視認されている。同一患者において同時に測定した仙骨センサーにおける横方向の加速度(plevic Acc)、lateral thrustを示す膝内反角(Knee varus angle)、KAMピーク値(KAM)の比較を示す(図3)。横方向の加速度のピークと、lateral thrust、KAMピーク値の第1ピークのタイミングが一致している。この結果から、横方向の加速度値はこれら従来の評価値と相関する値であることが示唆される。 In osteoarthritis of the knee, lateral movement of the knee joint during walking, which is called lateral thrust, is clinically visually recognized. A comparison of lateral acceleration (plevic Acc), knee varus angle (Knee varus angle) indicating lateral thrust, and KAM peak value (KAM) in the sacral sensor measured simultaneously in the same patient is shown (FIG. 3). The timing of the peak of the lateral acceleration coincides with the timing of the first peak of the lateral thrust and KAM peak values. From this result, it is suggested that the lateral acceleration value is a value that correlates with these conventional evaluation values.
 図1Bに示した例は、加速度のピーク幅値が比較的大きく、横方向の加速度センサーの値だけでも踵接地時を判断することができる。しかしながら、痛みの強い患者などでは、歩行もゆっくりとなることから、モーションキャプチャシステムを使用しないと踵接地時を判断することが困難であった。しかし、モーションキャプチャシステムを使用した測定では装置が大掛かりなものとなり、日々の診療やクリニックでの使用が困難になる。そこで、モーションキャプチャシステムを使用せず、単一の加速度計で踵接地時を判定する方法を検討した。 In the example shown in FIG. 1B, the peak width value of acceleration is relatively large, and it is possible to judge when the heel touches down only by the value of the acceleration sensor in the lateral direction. However, in patients with strong pain, walking is slow, so it is difficult to determine when the heel touches the ground without using a motion capture system. However, measurement using a motion capture system makes the device large-scale, making it difficult to use in daily medical care and clinics. Therefore, we investigated a method to determine when the heel touches the ground with a single accelerometer without using a motion capture system.
 被験者の下腿に加速度センサーを取り付け、床反力計の上を歩行してもらい、加速度センサー(Acc)と床反力計(GRF)のサンプリングレートを200Hzとして同期させた波形を比較した(図4左)。その結果、加速度計の縦成分波形の立ち上がりと、床反力波形の立ち上がりは5~10ms程度の誤差範囲で一致することが明らかとなった(図4右)。これを利用すれば、床反力計やモーションキャプチャシステムといった大掛かりな装置を使用することなく、1台の加速度センサーから踵接地のタイミングを推定することができる。すなわち、加速度センサーの縦成分の立ち上がりを踵接地時と推定し、その直後の横成分のピーク幅値を計測すればよい。この方法により単一の加速度センサーで計測させた、縦成分、横成分の値から、変形性膝関節症の重症度の指標を簡便に計測することが可能となった。この方法を用いることにより、どんな患者であっても簡便に変形性膝関節症の重症度の指標を測定することができる。 An acceleration sensor was attached to the lower leg of the subject, and the patient walked on the floor reaction force meter, and the waveforms synchronized with the sampling rate of the acceleration sensor (Acc) and the floor reaction force meter (GRF) were compared (Fig. 4). left). As a result, it was clarified that the rise of the vertical component waveform of the accelerometer and the rise of the floor reaction force waveform match within an error range of about 5 to 10 ms (Fig. 4, right). By using this, it is possible to estimate the timing of heel contact from one acceleration sensor without using a large-scale device such as a floor reaction force meter or a motion capture system. That is, the rise of the vertical component of the acceleration sensor may be estimated to be when the heel touches the ground, and the peak width value of the horizontal component immediately after that may be measured. By this method, it has become possible to easily measure the index of the severity of knee osteoarthritis from the values of the vertical component and the horizontal component measured by a single acceleration sensor. By using this method, it is possible to easily measure the index of the severity of knee osteoarthritis in any patient.
 横方向の加速度値は、従来使用されてきたKAM、lateral thrustといった評価値とも相関し、かつ患者の動作をより良く反映する測定値であることから、これらの測定値に代わって新しい変形性膝関節症の診断指標として用いることができる。さらに、痛みとの相関を反映する新しい指標となり得ることから、創薬開発、装具の改良等の客観的指標として用いることができる。 Since the lateral acceleration value correlates with the conventionally used evaluation values such as KAM and lateral thrust, and is a measurement value that better reflects the patient's movement, a new knee osteoarthritis is replaced with these measurement values. It can be used as a diagnostic index for osteoarthritis. Furthermore, since it can be a new index that reflects the correlation with pain, it can be used as an objective index for drug discovery development, improvement of equipment, and the like.

Claims (13)

  1.  変形性膝関節症の診断支援指標取得方法であって、
     歩行時の体幹及び/又は下肢の加速度を測定し、
     踵接地時直後の横方向の加速度のピーク幅値を抽出し、
     該横方向の加速度のピーク幅値の平均値を算出し、
     該平均値から変形性膝関節症の診断の支援となる値を取得することを特徴とする診断支援指標取得方法。
    It is a method of acquiring a diagnostic support index for knee osteoarthritis.
    Measure the acceleration of the trunk and / or lower limbs during walking,
    Extract the peak width value of the lateral acceleration immediately after the heel touches down,
    The average value of the peak width values of the lateral acceleration is calculated.
    A method for acquiring a diagnostic support index, which comprises acquiring a value that supports the diagnosis of knee osteoarthritis from the average value.
  2.  変形性膝関節症の診断支援指標取得方法であって、
     縦方向の加速度の立ち上がり位置を踵接地時と判定し、
     踵接地時直後の横方向の加速度のピーク幅値を抽出して算出する請求項1に記載の診断支援指標取得方法。
    It is a method of acquiring a diagnostic support index for knee osteoarthritis.
    Judging that the rising position of the acceleration in the vertical direction is when the heel touches the ground,
    The diagnostic support index acquisition method according to claim 1, wherein the peak width value of the lateral acceleration immediately after the heel touches down is extracted and calculated.
  3.  変形性膝関節症の診断支援指標取得方法であって、
     単一の加速度センサーによって測定することを特徴とする請求項1又は2に記載の診断支援指標取得方法。
    It is a method of acquiring a diagnostic support index for knee osteoarthritis.
    The method for acquiring a diagnostic support index according to claim 1 or 2, wherein the measurement is performed by a single acceleration sensor.
  4.  変形性膝関節症の診断支援指標取得方法であって、
     前記加速度は仙骨部又は下腿で測定することを特徴とする請求項1~3いずれか1項記載の診断支援指標取得方法。
    It is a method of acquiring a diagnostic support index for knee osteoarthritis.
    The method for acquiring a diagnostic support index according to any one of claims 1 to 3, wherein the acceleration is measured at the sacral region or the lower leg.
  5.  歩行時の体幹及び/又は下肢における縦方向の加速度の立ち上がり位置と同期した横方向の加速度のピーク幅値の平均値である変形性膝関節症の重症度の指標。 An index of the severity of knee osteoarthritis, which is the average value of the peak width values of lateral acceleration synchronized with the rising position of longitudinal acceleration in the trunk and / or lower limbs during walking.
  6.  単一の加速度センサーにより前記縦方向及び横方向の加速度を測定することを特徴とする請求項5記載の変形性膝関節症の重症度の指標。 The index of the severity of knee osteoarthritis according to claim 5, wherein the longitudinal and lateral accelerations are measured by a single acceleration sensor.
  7.  前記指標は、
     仙骨部又は下腿で測定されることを特徴とする請求項5又は6に記載の変形性膝関節症の重症度の指標。
    The index is
    The index of severity of knee osteoarthritis according to claim 5 or 6, characterized in that it is measured at the sacral region or the lower leg.
  8.  請求項5~7いずれか1項に記載の指標を用いて、
     変形性膝関節症の治療薬、補助器具、及び/又は治療方法を評価する方法。
    Using the index according to any one of claims 5 to 7,
    A method of evaluating therapeutic agents, assistive devices, and / or treatment methods for knee osteoarthritis.
  9.  変形性膝関節症の診断を支援するプログラムであって、
     加速度センサーにより測定される歩行時の体幹及び/又は下肢における加速度を記録し、
     縦方向の加速度の立ち上がり位置を踵接地時と判定し、
     踵接地時直後の横方向の加速度のピーク幅を抽出し、
     前記横方向の加速度のピーク幅の平均値を算出することを特徴とする変形性膝関節症の診断支援プログラム。
    A program that supports the diagnosis of knee osteoarthritis
    Record the acceleration in the trunk and / or lower limbs during walking measured by the accelerometer,
    Judging that the rising position of the acceleration in the vertical direction is when the heel touches the ground,
    Extract the peak width of the lateral acceleration immediately after the heel touches down,
    A diagnostic support program for knee osteoarthritis, which comprises calculating the average value of the peak widths of the lateral acceleration.
  10.  変形性膝関節症の診断を支援するプログラムであって、
     前記加速度は単一の加速度センサーにより測定される加速度であることを特徴とする請求項9記載の変形性膝関節症の診断支援プログラム。
    A program that supports the diagnosis of knee osteoarthritis
    The diagnostic support program for knee osteoarthritis according to claim 9, wherein the acceleration is an acceleration measured by a single acceleration sensor.
  11.  変形性膝関節症のウェアラブルデバイスであって、
     加速度センサーと、
     マイクロプロセッサと、
     メモリと、
     ディスプレイを備えており、
     該メモリには請求項9又は10に記載のプログラムが格納されていることを特徴とするウェアラブルデバイス。
    A wearable device for knee osteoarthritis
    Accelerometer and
    With a microprocessor
    With memory
    Equipped with a display
    A wearable device characterized in that the program according to claim 9 or 10 is stored in the memory.
  12.  変形性膝関節症のウェアラブルデバイスであって、
     加速度センサーと、
     マイクロプロセッサと、
     メモリを備えており、
     請求項9又は10に記載のプログラムを備えた外部デバイスに加速度センサーで測定したデータを送信することを特徴とするウェアラブルデバイス。
    A wearable device for knee osteoarthritis
    Accelerometer and
    With a microprocessor
    Equipped with memory
    A wearable device comprising transmitting data measured by an acceleration sensor to an external device comprising the program according to claim 9 or 10.
  13.  仙骨部又は下腿に装着するための部材を備えていることを特徴とする請求項11又は12に記載のウェアラブルデバイス。 The wearable device according to claim 11 or 12, characterized in that it includes a member to be attached to the sacral region or the lower leg.
PCT/JP2020/018726 2019-05-08 2020-05-08 Method for acquiring diagnosis assistance index for knee osteoarthritis, index, diagnosis assistance program, and wearable device WO2020226183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021518410A JPWO2020226183A1 (en) 2019-05-08 2020-05-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019087958 2019-05-08
JP2019-087958 2019-05-08

Publications (1)

Publication Number Publication Date
WO2020226183A1 true WO2020226183A1 (en) 2020-11-12

Family

ID=73050781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018726 WO2020226183A1 (en) 2019-05-08 2020-05-08 Method for acquiring diagnosis assistance index for knee osteoarthritis, index, diagnosis assistance program, and wearable device

Country Status (2)

Country Link
JP (1) JPWO2020226183A1 (en)
WO (1) WO2020226183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250098A1 (en) * 2021-05-28 2022-12-01 京セラ株式会社 Information processing device, electronic appliance, information processing system, information processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261525A (en) * 2003-03-04 2004-09-24 Microstone Corp Judging method and judging device for gonarthorosis
JP2005342254A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Walking period detecting apparatus
JP2012179114A (en) * 2011-02-28 2012-09-20 Hiroshima Univ Measurement device, measurement method and measurement program
JP2017202236A (en) * 2016-05-13 2017-11-16 花王株式会社 Gait analysis method and gait analysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261525A (en) * 2003-03-04 2004-09-24 Microstone Corp Judging method and judging device for gonarthorosis
JP2005342254A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Walking period detecting apparatus
JP2012179114A (en) * 2011-02-28 2012-09-20 Hiroshima Univ Measurement device, measurement method and measurement program
JP2017202236A (en) * 2016-05-13 2017-11-16 花王株式会社 Gait analysis method and gait analysis device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEGUCHI, NAOKI ET AL.: "Significance of performing motion analysis using an accelerometer in knee osteoarthritis, Comparison between HTO patients and healthy subjects", ABSTRACTS OF THE 48TH CONGRESS OF JAPANESE SOCIETY OF PHYSICAL THERAPY, vol. 40, no. 2, May 2013 (2013-05-01) *
INOUE, YOSHIKATSU ET AL.: "Evaluation of varus osteoarthritic knee by an ultra-small accelerometer", THE JOURNAL OF TOKYO MEDICAL UNIVERSITY, vol. 65, no. 3, 2007, pages 263 - 269 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250098A1 (en) * 2021-05-28 2022-12-01 京セラ株式会社 Information processing device, electronic appliance, information processing system, information processing method, and program

Also Published As

Publication number Publication date
JPWO2020226183A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
Robbins et al. Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis
Besier et al. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis
Sinclair et al. The test-retest reliability of knee joint center location techniques
Stief et al. Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols
Birmingham et al. Test–retest reliability of the peak knee adduction moment during walking in patients with medial compartment knee osteoarthritis
Baert et al. Gait characteristics and lower limb muscle strength in women with early and established knee osteoarthritis
Lustig et al. The KneeKG system: a review of the literature
Williams et al. Dynamic measurement of lumbar curvature using fibre-optic sensors
JPWO2006085387A1 (en) Non-invasive moving body analysis system and method of use thereof
Sinclair et al. Differences in tibiocalcaneal kinematics measured with skin-and shoe-mounted markers
Zhang et al. Techniques for in vivo measurement of ligament and tendon strain: a review
Fernandes et al. Test–retest reliability and minimal detectable change of three-dimensional gait analysis in chronic low back pain patients
Ancillao et al. Effect of the soft tissue artifact on marker measurements and on the calculation of the helical axis of the knee during a gait cycle: A study on the CAMS-Knee data set
Pfau et al. Estimation of vertical tuber coxae movement in the horse from a single inertial measurement unit
Bagwell et al. The influence of squat kinematics and cam morphology on acetabular stress
Lee et al. An algorithm for automated analysis of ultrasound images to measure tendon excursion in vivo
Costello et al. Quantifying varus thrust in knee osteoarthritis using wearable inertial sensors: A proof of concept
WO2020226183A1 (en) Method for acquiring diagnosis assistance index for knee osteoarthritis, index, diagnosis assistance program, and wearable device
Newell et al. Detecting differences between asymptomatic and osteoarthritic gait is influenced by changing the knee adduction moment model
Lawrenson et al. Pericapsular hip muscle activity in people with and without femoroacetabular impingement. A comparison in dynamic tasks
RU2551193C1 (en) Method of early diagnostics of pes valgus deformation of feet in children
Lovern et al. Dynamic tracking of the scapula using skin-mounted markers
Hagemeister et al. In vivo reproducibility of a new non-invasive diagnostic tool for three-dimensional knee evaluation
Wang et al. High-speed fluoroscopic imaging for investigation of three-dimensional knee kinematics before and after marathon running
Yuen et al. A comparison of gastrocnemius muscle–tendon unit length during gait using anatomic, cadaveric and MRI models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802461

Country of ref document: EP

Kind code of ref document: A1