WO2020226128A1 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
WO2020226128A1
WO2020226128A1 PCT/JP2020/018325 JP2020018325W WO2020226128A1 WO 2020226128 A1 WO2020226128 A1 WO 2020226128A1 JP 2020018325 W JP2020018325 W JP 2020018325W WO 2020226128 A1 WO2020226128 A1 WO 2020226128A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rotor
temperature sensor
measuring device
tire
Prior art date
Application number
PCT/JP2020/018325
Other languages
French (fr)
Japanese (ja)
Inventor
大暉 佐藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020226128A1 publication Critical patent/WO2020226128A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/20Devices for measuring or signalling tyre temperature only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Definitions

  • the present disclosure relates to a device for measuring the temperature of the rotor of a motor.
  • Some temperature sensors that measure the temperature of the motor are configured as follows.
  • the temperature sensor is installed on the inner surface of the motor housing. Then, by measuring the radiant heat emitted from the rotor, the temperature of the rotor is measured without contacting the rotor.
  • Patent Document 1 is available as a document showing such a technique.
  • the temperature of the rotating rotor can be measured. Based on the temperature, it can be determined whether or not the output of the motor is excessive. As a result, the reliability of the motor can be ensured by avoiding the application of excessive torque and the like.
  • the rotor rotates relative to the temperature sensor, so the temperature sensor cannot always measure the temperature of the same part of the rotor. Therefore, it is difficult to accurately measure the temperature of the rotor and accurately grasp the tendency of the temperature change of the rotor.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to enable accurate acquisition of the rotor temperature and the tendency of the rotor temperature change.
  • the temperature measuring device of the present disclosure measures the temperature of the rotor of a motor having a rotor and a stator.
  • the rotor is rotatably provided around a predetermined axis and is attached with a permanent magnet.
  • a coil is attached to the stator.
  • the motor causes the rotor to generate torque around the axis by the cooperation of the permanent magnet and the coil.
  • the temperature measuring device has a temperature sensor, a transmitting unit, and a receiving unit.
  • the temperature sensor is fixed to the rotor or a rotating body rotating with the rotor, and measures the temperature of a predetermined portion of the rotor.
  • the transmission unit is fixed to the rotor or a rotating body that rotates with the rotor, acquires temperature information that is information about the temperature from the temperature sensor, and transmits the temperature information to the outside of the rotor.
  • the receiving unit is installed outside the rotor in a state where it does not rotate together with the rotor, and receives the temperature information transmitted by the transmitting unit.
  • the temperature sensor since the temperature sensor is fixed to the rotor or a rotating body that rotates with the rotor, it does not rotate relative to the rotor. Therefore, even if the rotor rotates, the temperature sensor can accurately measure the temperature of the rotor. Further, since the temperature sensor always measures the temperature of the same portion of the rotor, it is possible to accurately grasp the tendency of the temperature change of the rotor as compared with the case where the measurement point of the rotor changes. Then, by transmitting the temperature information to the receiving unit outside the rotor by the transmitting unit, the temperature information can be taken out to the outside of the rotor. The motor can be controlled accurately based on the temperature information.
  • FIG. 1 is a schematic view showing a temperature measuring device and its surroundings in the first embodiment.
  • FIG. 2 is a cross-sectional view of tires, motors, etc. as viewed in the traveling direction of the vehicle.
  • FIG. 3 is a cross-sectional view of the tire, the motor, and the like viewed outward in the axial direction.
  • FIG. 4 is a cross-sectional view of the rim, the temperature sensor, and the valve member as viewed in the axial direction.
  • FIG. 5 is a graph showing the relationship between each position on the rotor and the temperature.
  • FIG. 6 is a cross-sectional view of the tire, the motor, and the like viewed outward in the axial direction in the second embodiment.
  • FIG. 7 is a cross-sectional view showing a propeller, a motor, and the like in the third embodiment.
  • FIG. 1 is a schematic view showing the temperature measuring device of the present embodiment and its surroundings.
  • the vehicle 90 has a vehicle body 91, four tires 60, and two motors 20.
  • the two motors 20 are in-wheel motors installed inside each of the left and right tires 60 on the front side, and drive the tires 60 corresponding to themselves independently of the other three tires 60.
  • each tire 60 is a normal pneumatic tire.
  • the vehicle 90 has a control unit 10 for controlling the motor 20, a tire pressure monitoring system 70 (TPMS) for monitoring the air pressure of the tire 60, and a temperature measuring device 80 for measuring the temperature of the motor 20.
  • the tire pressure monitoring system 70 includes an air pressure sensor 72, a transmission unit 73, a reception unit 76, and a display unit 77.
  • the transmitting unit 73 and the receiving unit 76 also form a part of the temperature measuring device 80.
  • the temperature measuring device 80 includes a temperature sensor 82 and an estimating unit 87 in addition to the transmitting unit 73 and the receiving unit 76.
  • FIG. 2 is a cross-sectional view of the front right tire 60 shown in FIG. 1, the wheel 50 and the motor 20 on the inner peripheral side thereof, and the like as viewed in the traveling direction of the vehicle 90.
  • a wheel 50 is installed on the inner peripheral side of the tire 60.
  • the wheel 50 has a disc portion 52 and a rim portion 56.
  • the rim portion 56 is a cylindrical member and is installed on the inner peripheral side of the tire 60.
  • a disc portion 52 is provided on the inner peripheral side of the rim portion 56.
  • the disk portion 52 is fitted and fixed to a shaft portion 41 described later, and has a plurality of spoke portions that extend radially from the hub portion 53 and connect the hub portion 53 and the rim portion 56. It has 54 and.
  • the motor 20 has a stator 30 and a rotor 40.
  • the stator 30 has a cylindrical support 33.
  • the rotor 40 has a shaft portion 41, a supported portion 42, a connecting portion 43, and an outer rotor portion 45.
  • the shaft portion 41 is rotatably installed around its own axis X on the inner peripheral side of the support portion 33.
  • the supported portion 42 is a cylindrical portion whose inner diameter is substantially equal to the outer diameter of the shaft portion 41 and whose outer diameter is slightly smaller than the inner diameter of the support portion 33, and is externally fitted and fixed to the shaft portion 41. ..
  • a bearing 23 is interposed between the outer peripheral surface of the supported portion 42 and the inner peripheral surface of the supported portion 33.
  • the supported portion 42 is rotatably supported by the supporting portion 33 via the bearing 23.
  • Each member constituting the rotor 40 that is, the shaft portion 41, the supported portion 42, the connecting portion 43, and the outer rotor portion 45, is integrated with the wheel 50 and the tire 60 and rotates around the axis X.
  • the outer rotor portion 45 is a cylindrical portion whose inner diameter is slightly larger than the outer diameter of the support portion 33, and is externally fitted with a gap to the support portion 33.
  • the connecting portion 43 is a disk-shaped portion that connects the end of the supported portion 42 in the axial direction outer Db and the end of the outer rotor portion 45 in the axial direction outer Db, and is fixed to the disk portion 52. There is.
  • FIG. 3 is a view showing a cross section of lines III-III shown in FIG. 2, that is, a cross-sectional view of the tire 60, the wheel 50, the motor 20, and the like as viewed from the outer Db in the axial direction.
  • a plurality of permanent magnets 44 are provided on the inner peripheral edge of the outer rotor portion 45 at intervals in the circumferential direction.
  • a coil 34 is installed on the outer peripheral edge of the support portion 33. Then, due to the cooperation between the permanent magnet 44 and the coil 34, a torque around the axis X is generated in the rotor 40, and the rotor 40, the wheel 50, and the tire 60 rotate integrally.
  • the tire pressure monitoring system 70 includes a valve member 74.
  • the valve member 74 includes an air valve 71, the above-mentioned air pressure sensor 72, and a transmission unit 73.
  • the valve member 74 is fixed to the rim portion 56. Therefore, the valve member 74 rotates together with the tire 60, the wheel 50, and the rotor 40.
  • the air valve 71 is installed so as to project from the inside of the tire 60 to the outer Db in the axial direction, and is configured so that air can be sucked into the tire 60.
  • the air pressure sensor 72 and the transmission unit 73 are installed on the outer peripheral surface of the rim unit 56, that is, in the tire 60.
  • the air pressure sensor 72 measures the air pressure of the tire 60 and transmits the air pressure information IP, which is information on the air pressure, to the transmission unit 73.
  • the transmission unit 73 wirelessly transmits the air pressure information iP to the outside of the rotating unit including the rotor 40, the wheel 50, and the tire 60.
  • the air pressure information iP may be information indicating whether or not the air pressure is higher than a predetermined value, that is, information indicating whether or not the air pressure is normal, or information indicating whether or not the air pressure itself is normal. When the information indicates the air pressure itself, the receiving side determines whether or not the air pressure is normal.
  • the temperature measuring device 80 includes the temperature sensor 82 and the transmitting unit 73 described above, and a communication line 83 connecting them.
  • the temperature sensor 82 is attached at a position facing the outer peripheral surface of the outer rotor portion 45 on the inner peripheral surface of the rim portion 56.
  • the temperature sensor 82 measures the radiant heat (that is, infrared rays) radiated from the outer rotor portion 45. Therefore, the temperature sensor 82 is a non-contact type sensor that measures the temperature of the outer rotor portion 45 without contacting the outer rotor portion 45.
  • the communication line 83 connects the temperature sensor 82 and the transmission unit 73 so as to be communicable.
  • the communication line 83 passes through the inside of the valve member 74 from the temperature sensor 82 side and is connected to the transmission unit 73 without penetrating the rim portion 56 in the radial direction of the tire 60.
  • the temperature sensor 82 transmits the temperature information iT, which is the acquired temperature information, to the transmission unit 73 via the communication line 83.
  • the transmission unit 73 wirelessly transmits the temperature information iT to the outside of the rotating unit including the rotor 40, the wheel 50, and the tire 60.
  • the installation position of the temperature sensor 82 will be described.
  • the length direction of the axis X will be referred to as the “axis direction”.
  • the direction on the vehicle body 91 side in the axial direction is referred to as “inward Da in the axial direction”
  • the opposite direction is referred to as “outward Db in the axial direction”.
  • the axial range from the end surface 52a of the axial inner Da of the disc portion 52 to the end 60a of the axial inner Da at the contact portion between the tire 60 and the rim portion 56 is defined as the "first range R1". ..
  • the temperature sensor 82 is arranged so as to fall within the first range R1 in the axial direction (Da, Db).
  • the outer rotor portion 45 is installed so as to extend inward Da in the axial direction from the disc portion 52. Therefore, if the length of the inner Da in the axial direction of the outer rotor portion 45 is short, the end 45a of the inner Da in the axial direction of the outer rotor portion 45 is in the axial direction than the end 56a of the inner Da in the axial direction of the rim portion 56.
  • the inner peripheral surface of the rim portion 56 near the end 56a of the inner Da in the axial direction does not face the outer peripheral surface of the outer rotor portion 45.
  • the temperature sensor 82 is arranged as described above, even if the temperature sensor 82 is arranged inward Da in the axial direction from the first range R1, even if the outer rotor portion 45 is arranged on the axis. Even if it is small in the direction inward Da, it becomes easy to face the outer peripheral surface of the outer rotor portion 45. Therefore, it becomes easy to correspond to the outer rotor portion 45 of each size. Further, as compared with the case where the temperature sensor 82 is arranged in the axial direction inner Da than the first range R1, the temperature sensor 82 has entered the axial outer Db through the opening of the axial inner Da of the wheel 50. This is because it is arranged at the position, so that the influence of the disturbance caused by the air flowing in from the opening can be suppressed.
  • all of the temperature sensors 82 are arranged so as to be within the first range R1. This is because the above effect can be obtained more remarkably.
  • the range on the outer Db side in the axial direction in the two ranges in which the first range R1 is bisected in the axial direction (Da, Db) is referred to as the "second range R2". More preferably, in the axial direction (Da, Db), the temperature sensor 82 is arranged so that at least a part thereof falls within the second range R2. More preferably, in the axial direction (Da, Db), the temperature sensors 82 are all arranged so as to fall within the second range R2. This is because the above effect can be obtained more remarkably. Therefore, in the present embodiment, all of the temperature sensors 82 are arranged so as to fall within the second range R2 in the axial direction (Da, Db).
  • first position p1 the position of the outer rotor portion 45 facing the air pressure sensor 72
  • second position p2 the intersection of the virtual straight line L connecting the first position p1 and the axis X and the end face on the outer peripheral side of the permanent magnet 44
  • third position p3 the intersection of the virtual straight line L and the end surface of the permanent magnet 44 on the inner peripheral side
  • the temperature sensor 82 measures the first temperature T1, which is the temperature of the first position p1. Based on the first temperature T1, the estimation unit 87 described later estimates the second temperature T2, which is the temperature of the second position p2, and the third temperature T3, which is the temperature of the third position p3.
  • FIG. 4 is a cross-sectional view of the rim portion 56, the valve member 74, and the temperature sensor 82 as viewed from the outer Db in the axial direction.
  • the virtual straight line connecting the center of gravity of the valve member 74 and the axis X when viewed from the outer Db in the axial direction is referred to as “valve line L1”.
  • the virtual straight line connecting the center of gravity of the temperature sensor 82 and the axis X when viewed from the outer Db in the axial direction is referred to as the “temperature sensor line L2”.
  • the angle ⁇ formed by the valve wire L1 and the temperature sensor wire L2 is preferably 10 ° or less. This is because the center of gravity of the temperature sensor 82 is located near the center of gravity of the valve member 74, so that the change in the position of the center of gravity of the rim portion 56 or the like due to the installation of the temperature sensor 82 can be suppressed. Further, by arranging the temperature sensor 82 near the valve member 74, it becomes easy to connect the temperature sensor 82 to the transmission unit 73 of the valve member 74. In order to obtain such an effect more remarkably, the above angle ⁇ is preferably 5 ° or less. Therefore, in the present embodiment, the angle ⁇ is 5 ° or less. In FIG.
  • the temperature sensor 82 and the valve member 74 are exaggerated and shifted in the circumferential direction in order to show the angle ⁇ , but in reality, the temperature sensor 82 and the valve member 74 are shown in the circumferential direction. The deviation to is smaller than that shown in the figure.
  • the receiving unit 76, the display unit 77, the estimating unit 87, and the control unit 10 are installed in the vehicle body 91. Therefore, unlike the air pressure sensor 72, the temperature sensor 82, and the transmission unit 73, they do not rotate together with the tire 60, the wheel 50, and the rotor 40.
  • the air pressure sensor 72 transmits the air pressure information iP
  • the temperature sensor 82 transmits the temperature information iT to the transmission unit 73, respectively.
  • the transmission unit 73 wirelessly transmits the air pressure information iP and the temperature information iT to the outside of the rotating unit.
  • the receiving unit 76 receives the wirelessly transmitted air pressure information iP and temperature information iT and transmits them to the display unit 77 and the estimation unit 87.
  • the display unit 77 notifies the driver or the like by displaying that the air pressure of the tire 60 is abnormal.
  • the estimation unit 87 acquires the first temperature T1 from the temperature information iT received from the reception unit 76, and estimates the second temperature T2 and the third temperature T3 based on the first temperature T1. The details of the estimation method will be described later.
  • the estimation unit 87 transmits the estimated second temperature T2 and third temperature T3 to the control unit 10.
  • the control unit 10 controls the motor 20 based on the second temperature T2 and the third temperature T3. Specifically, for example, when the second temperature T2 or the third temperature T3 is larger than a predetermined value, the output of the motor 20 is limited.
  • FIG. 5 is a graph showing the temperature (T) at each portion ( ⁇ ) of the outer rotor portion 45. With reference to this graph, a method of estimating the second temperature T2 and the third temperature T3 from the above first temperature T1 will be described.
  • the estimation unit 87 has, for example, a map showing the relationship between the first temperature T1 and the second temperature T2 and the third temperature T3, and based on the map and the first temperature T1, a first The two temperature T2 and the third temperature T3 may be estimated.
  • the estimation unit 87 acquires the heat flux q in the path from the first position p1 to the third position p3 in the outer rotor unit 45 through the second position p2, and the heat flux q and the first temperature T1. Therefore, the second temperature T2 and the third temperature T3 may be estimated. Specifically, it is as follows.
  • the length from the first position p1 to the second position p2 is referred to as the "first length ⁇ 1".
  • the length from the second position p2 to the third position p3 is defined as the “second length ⁇ 2”.
  • the thermal conductivity in the section from the first position p1 to the second position p2 is defined as "first thermal conductivity ⁇ 1”.
  • the thermal conductivity in the section from the second position p2 to the third position p3 is defined as "second thermal conductivity ⁇ 2".
  • the second temperature T2 and the third temperature T3 are expressed by the following equation 1.
  • the estimation unit 87 has the respective values of the first thermal conductivity ⁇ 1, the second thermal conductivity ⁇ 2, the first length ⁇ 1, and the second length ⁇ 2 as data. Therefore, if the heat flux q can be obtained, the heat flux q, the measured first temperature T1, and each of the above values ( ⁇ 1, ⁇ 2) held as data are displayed on the upper side of the above equation 1.
  • the second temperature T2 can be obtained by substituting into the equation of. Further, the heat flux q, the measured first temperature T1, and each of the above values ( ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2) held as data are substituted into the lower equation of the above equation 1. As a result, the third temperature T3 can be obtained.
  • the heat flux q can be estimated from, for example, the heat input entering the motor 20 and the heat output exiting the motor 20.
  • the heat input can be estimated from, for example, the power consumption of the motor 20.
  • the heat output can be estimated from, for example, copper loss, iron loss, mechanical loss, endothermic reaction by the cooling medium, temperature of the stator 30, residual magnetic flux density, and the like.
  • the second temperature T2 and the third temperature T3 can be obtained by estimating the heat flux q from the estimated heat input and heat output.
  • the temperature measuring device 80 can be adopted for the rotor 40 of the motor 20 that drives the tire 60 of the vehicle 90. Further, since the temperature sensor 82 is fixed to the rim portion 56, it does not rotate relative to the outer rotor portion 45. Therefore, the first temperature T1 can be measured accurately.
  • the transmission unit 73 rotates relative to the reception unit 76, the air pressure information iP and the temperature information iT are wirelessly transmitted to the reception unit 76. Therefore, unlike the case where the air pressure information iP and the temperature information iT are transmitted by wire, the transmission unit 73 does not need to provide a sliding connector (brush) or the like for allowing relative rotation to escape in the middle of the wire. And the temperature information iT can be transmitted to the receiving unit 76.
  • the temperature sensor 82 is attached to the rim portion 56 instead of the outer rotor portion 45, which tends to generate heat because the permanent magnet 44 is installed and is close to the coil 34, the temperature of the outer rotor portion 45 is difficult to be transmitted. Therefore, the risk of failure of the temperature sensor 82 due to the temperature of the outer rotor portion 45 can be suppressed. Further, if the temperature sensor 82 is attached to the outer peripheral surface of the outer rotor portion 45, the temperature sensor 82 may be detached from the outer peripheral surface due to centrifugal force. In that respect, since the temperature sensor 82 is attached to the inner peripheral surface of the rim portion 56, there is no concern that the temperature sensor 82 will come off to the outside due to centrifugal force.
  • the temperature measuring device 80 transmits the temperature information iT to the outside of the rotor 40 by using the transmitting unit 73 of the tire pressure monitoring system 70, it is not necessary to have the transmitting unit 73 independently, and the configuration is simple. Become. Further, since the temperature sensor 82 is located inside the wheel 50, the influence of disturbance is small. Further, since the transmission unit 73 is inside the tire 60, it is not easily damaged.
  • the estimation unit 87 since the estimation unit 87 is provided, the temperature of the permanent magnet 44 can be estimated even when the temperature of the permanent magnet 44 is not directly measured as in the case of the present embodiment.
  • FIG. 6 is a cross-sectional view of the tire 60 and the motor 20 as viewed outward from the axial direction Db in the second embodiment.
  • the "temperature sensor 82" referred to in the first embodiment is the first temperature sensor 82 in the present embodiment, and the outer peripheral portion of the support portion 33 has a second temperature for measuring the temperature of the inner peripheral surface of the outer rotor portion 45.
  • a sensor 88 is provided.
  • the second temperature sensor 88 is also a non-contact type sensor like the first temperature sensor 82. Since the inner peripheral surface of the outer rotor portion 45 rotates relative to the second temperature sensor 88, the second temperature sensor 88 can measure the temperature of the same portion of the inner peripheral surface of the outer rotor portion 45. Instead, the average temperature of the entire circumference of the inner peripheral surface of the outer rotor portion 45 is measured.
  • the second temperature sensor 88 transmits information about the measured temperature to the estimation unit 87.
  • the estimation of the second temperature T2 by the estimation unit 87 of the present embodiment will be described with reference to FIG. 5 again.
  • the estimation unit 87 estimates the third temperature T3 based on the temperature of the inner peripheral surface of the outer rotor unit 45 measured by the second temperature sensor 88.
  • the second temperature T2 is estimated based on the third temperature T3 and the measured first temperature T1 and the like.
  • the details are as follows. By eliminating q by the above two equations of equation 1 to make one equation, the following equation of equation 2 is obtained.
  • the estimation unit 87 uses the values of the first thermal conductivity ⁇ 1, the second thermal conductivity ⁇ 2, the first length ⁇ 1, and the second length ⁇ 2 as data as in the case of the first embodiment. have. Therefore, by substituting each of these values ( ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2), the measured first temperature T1, and the estimated third temperature T3 into the above equation of equation 2, the second The temperature T2 can be determined.
  • the temperature measurement timings of the first temperature sensor 82 and the second temperature sensor 88 overlap at least a part of the temperature measurement timings. This is because the second temperature T2 can be estimated more accurately by measuring at the same timing.
  • the second temperature sensor 88 is preferably not deviated in the axial direction (Da, Db) with respect to the first temperature sensor 82, but can be implemented even if the second temperature sensor 88 is deviated in the axial direction (Da, Db).
  • the second temperature sensor 88 measures the temperature of the inner peripheral surface of the outer rotor portion 45 to estimate the third temperature T3. Therefore, the second temperature T2 can be estimated without using a map or estimating the heat flux q. Further, the temperature of the permanent magnet 44 can be estimated more accurately by not only measuring the first temperature T1 but also measuring the temperature of the inner peripheral surface of the outer rotor portion 45.
  • FIG. 7 is a cross-sectional view of the motor 20 and the like in the third embodiment as viewed in a direction orthogonal to the axial direction (Da, Db).
  • the motor 20 is not an in-wheel motor that drives the tire 60 of the vehicle 90, but a propeller 69 of a manned or unmanned aerial vehicle 100 such as a helicopter or a drone.
  • the propeller 69 is connected to the shaft portion 41 of the motor 20, and the propeller 69 rotates together with the rotor 40.
  • a protrusion 59 that protrudes toward the outer periphery of the outer rotor portion 45 is attached to the rotor 40, and the temperature sensor 82 and the transmission portion 73 are attached to the protrusion 59.
  • the temperature sensor 82 and the transmission unit 73 are connected by wire so as to be able to communicate with each other.
  • the transmission unit 73 wirelessly transmits the temperature information iT to the reception unit outside the rotor 40.
  • the temperature measuring device 80 can also be implemented for the motor 20 of the flying object 100.
  • the above embodiment can be modified and implemented as follows, for example.
  • the transmission unit 73 may transmit each information to the reception unit 76 by wire instead of wirelessly.
  • the temperature measuring device 80 may have its own transmission unit 73 in addition to the transmission unit 73 of the tire pressure monitoring system 70.
  • the temperature sensor 82 may not be a non-contact type sensor but a contact type sensor directly attached to the outer rotor portion 45. Further, the temperature sensor 82 does not measure the temperature of a portion of the outer rotor portion 45 other than the permanent magnet, but may directly measure the temperature of the permanent magnet 44. Further, in the second embodiment, the second temperature sensor 88 may not be a non-contact type sensor but a contact type sensor directly attached to the inner peripheral portion of the outer rotor portion 45.
  • the motor 20 may be provided not for each of the two tires 60 on the front side but for each of the two tires 60 on the rear side, or for each of the four tires. It may be provided for the tire 60. Further, in the first and second embodiments, the tire 60 is a non-pneumatic tire and may not have the air pressure sensor 72 and the display unit 77.
  • the flying object 100 may be an unmanned aerial vehicle or a manned aerial vehicle having wings instead of a drone or the like. Then, the propeller 69 may drive the flying object 100 forward.

Abstract

This temperature measuring device (80), for measuring the temperature of a rotor (40) in a motor (20), comprises a temperature sensor (82), a transmission unit (73), and a receiving unit (76). The temperature sensor (82) is fixed to the rotor (40) or a rotating body (56) which rotates together therewith, and measures the temperature of a prescribed area (p1) on the rotor (40). The transmission unit (73) is fixed to the rotor (40) or to the rotating body (56) which rotates together therewith, and acquires temperature information (iT) from the temperature sensor (82) and transmits this to outside of the rotor (40). The receiving unit (76) is installed outside of the rotor (40) in a state not rotating together with the rotor (40), and receives the temperature information (iT) transmitted by the transmission unit (73).

Description

温度計測装置Temperature measuring device 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年5月7日に出願された日本出願番号2019-087729号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-087729, which was filed on May 7, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、モータのロータの温度を計測する装置に関する。 The present disclosure relates to a device for measuring the temperature of the rotor of a motor.
 モータの温度を計測する温度センサの中には、次のように構成されたものがある。温度センサは、モータのハウジングの内面に設置されている。そして、ロータから発せられる輻射熱を計測することにより、ロータの温度をロータに接触することなく計測する。そして、このような技術を示す文献としては、次の特許文献1がある。 Some temperature sensors that measure the temperature of the motor are configured as follows. The temperature sensor is installed on the inner surface of the motor housing. Then, by measuring the radiant heat emitted from the rotor, the temperature of the rotor is measured without contacting the rotor. The following Patent Document 1 is available as a document showing such a technique.
特開2008-168790号公報Japanese Unexamined Patent Publication No. 2008-168790
 上記の温度センサによれば、回転するロータの温度を計測することができる。その温度に基づいて、モータの出力が過大であるか否か等を判断することができる。それにより、過大トルクの印加等を回避して、モータの信頼性を確保することができる。 According to the above temperature sensor, the temperature of the rotating rotor can be measured. Based on the temperature, it can be determined whether or not the output of the motor is excessive. As a result, the reliability of the motor can be ensured by avoiding the application of excessive torque and the like.
 しかしながら、上記の技術では、温度センサに対してロータが相対回転するため、温度センサは、常にロータの同じ部分の温度を計測することはできない。そのため、ロータの温度を精度よく計測することや、ロータの温度変化の傾向を正確に把握することは、難しい。 However, in the above technology, the rotor rotates relative to the temperature sensor, so the temperature sensor cannot always measure the temperature of the same part of the rotor. Therefore, it is difficult to accurately measure the temperature of the rotor and accurately grasp the tendency of the temperature change of the rotor.
 本開示は、上記事情に鑑みてなされたものであり、ロータの温度やロータの温度変化の傾向を、精度よく取得できるようにすることを主たる目的とする。 The present disclosure has been made in view of the above circumstances, and its main purpose is to enable accurate acquisition of the rotor temperature and the tendency of the rotor temperature change.
 本開示の温度計測装置は、ロータとステータとを有するモータの、前記ロータの温度を計測する。前記ロータは、所定の軸線回りに回転自在に設けられ且つ永久磁石が取り付けられている。ステータは、コイルが取り付けられている。前記モータは、前記永久磁石と前記コイルとの共働により前記ロータに前記軸線回りのトルクを発生させる。 The temperature measuring device of the present disclosure measures the temperature of the rotor of a motor having a rotor and a stator. The rotor is rotatably provided around a predetermined axis and is attached with a permanent magnet. A coil is attached to the stator. The motor causes the rotor to generate torque around the axis by the cooperation of the permanent magnet and the coil.
 前記温度計測装置は、温度センサと送信部と受信部とを有する。前記温度センサは、前記ロータ又はそれと共に回転する回転体に固定されており、前記ロータの所定部分の温度を計測する。前記送信部は、前記ロータ又はそれと共に回転する回転体に固定されており、前記温度センサから前記温度に関する情報である温度情報を取得して、前記ロータの外部に送信する。前記受信部は、前記ロータの外部に前記ロータと共に回転することのない状態で設置されており、前記送信部により送信された前記温度情報を受信する。 The temperature measuring device has a temperature sensor, a transmitting unit, and a receiving unit. The temperature sensor is fixed to the rotor or a rotating body rotating with the rotor, and measures the temperature of a predetermined portion of the rotor. The transmission unit is fixed to the rotor or a rotating body that rotates with the rotor, acquires temperature information that is information about the temperature from the temperature sensor, and transmits the temperature information to the outside of the rotor. The receiving unit is installed outside the rotor in a state where it does not rotate together with the rotor, and receives the temperature information transmitted by the transmitting unit.
 本開示によれば、温度センサは、ロータ又はそれと共に回転する回転体に固定されているため、ロータに対して相対回転しない。そのため、ロータが回転しても、温度センサはロータの温度を精度よく計測できる。さらに、温度センサは、常にロータにおける同じ部分の温度を計測するため、ロータにおける計測箇所が変化する場合に比べて、ロータの温度変化の傾向を正確に把握することができる。そして、その温度情報を送信部により、ロータの外部の受信部に送信することにより、その温度情報をロータの外部に持ち出すことができる。その温度情報に基づいて、モータを精度よく制御することができる。 According to the present disclosure, since the temperature sensor is fixed to the rotor or a rotating body that rotates with the rotor, it does not rotate relative to the rotor. Therefore, even if the rotor rotates, the temperature sensor can accurately measure the temperature of the rotor. Further, since the temperature sensor always measures the temperature of the same portion of the rotor, it is possible to accurately grasp the tendency of the temperature change of the rotor as compared with the case where the measurement point of the rotor changes. Then, by transmitting the temperature information to the receiving unit outside the rotor by the transmitting unit, the temperature information can be taken out to the outside of the rotor. The motor can be controlled accurately based on the temperature information.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、温度計測装置及びその周辺を示す概略図であり、 図2は、タイヤ及びモータ等を車両の進行方向に見た断面図であり、 図3は、タイヤ及びモータ等を軸線方向外方に見た断面図であり、 図4は、リム、温度センサ及びバルブ部材を軸線方向に見た断面図であり、 図5は、ロータにおける各位置と温度との関係を示すグラフであり、 図6は、第2実施形態において、タイヤ及びモータ等を軸線方向外方に見た断面図であり、 図7は、第3実施形態において、プロペラ及びモータ等を示す断面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic view showing a temperature measuring device and its surroundings in the first embodiment. FIG. 2 is a cross-sectional view of tires, motors, etc. as viewed in the traveling direction of the vehicle. FIG. 3 is a cross-sectional view of the tire, the motor, and the like viewed outward in the axial direction. FIG. 4 is a cross-sectional view of the rim, the temperature sensor, and the valve member as viewed in the axial direction. FIG. 5 is a graph showing the relationship between each position on the rotor and the temperature. FIG. 6 is a cross-sectional view of the tire, the motor, and the like viewed outward in the axial direction in the second embodiment. FIG. 7 is a cross-sectional view showing a propeller, a motor, and the like in the third embodiment.
 次に本開示の実施形態について図面を参照しつつ説明する。ただし、本開示は実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, the embodiment of the present disclosure will be described with reference to the drawings. However, the present disclosure is not limited to the embodiment, and can be appropriately modified and implemented without departing from the spirit of the disclosure.
 [第1実施形態]
 図1は、本実施形態の温度計測装置及びその周辺を示す概略図である。車両90は、車体91と4つのタイヤ60と2つのモータ20とを有する。2つのモータ20は、前側の左右の各タイヤ60の内側に設置されているインホイールモータであって、自身に対応するタイヤ60を、他の3つのタイヤ60から独立して駆動する。本実施形態では、各タイヤ60は、通常の空気入りのタイヤである。
[First Embodiment]
FIG. 1 is a schematic view showing the temperature measuring device of the present embodiment and its surroundings. The vehicle 90 has a vehicle body 91, four tires 60, and two motors 20. The two motors 20 are in-wheel motors installed inside each of the left and right tires 60 on the front side, and drive the tires 60 corresponding to themselves independently of the other three tires 60. In this embodiment, each tire 60 is a normal pneumatic tire.
 さらに、車両90は、モータ20を制御する制御部10と、タイヤ60の空気圧を監視するタイヤ圧監視システム70(TPMS)と、モータ20の温度を計測する温度計測装置80とを有する。タイヤ圧監視システム70は、空気圧センサ72と送信部73と受信部76と表示部77とを有する。送信部73及び受信部76は、温度計測装置80の一部も構成している。温度計測装置80は、送信部73及び受信部76に加え、温度センサ82及び推定部87を有する。 Further, the vehicle 90 has a control unit 10 for controlling the motor 20, a tire pressure monitoring system 70 (TPMS) for monitoring the air pressure of the tire 60, and a temperature measuring device 80 for measuring the temperature of the motor 20. The tire pressure monitoring system 70 includes an air pressure sensor 72, a transmission unit 73, a reception unit 76, and a display unit 77. The transmitting unit 73 and the receiving unit 76 also form a part of the temperature measuring device 80. The temperature measuring device 80 includes a temperature sensor 82 and an estimating unit 87 in addition to the transmitting unit 73 and the receiving unit 76.
 図2は、図1に示す前側の右側のタイヤ60、並びにその内周側にあるホイール50及びモータ20等を、車両90の進行方向に見た断面図である。タイヤ60よりも内周側にはホイール50が設置されている。ホイール50は、ディスク部52とリム部56とを有する。 FIG. 2 is a cross-sectional view of the front right tire 60 shown in FIG. 1, the wheel 50 and the motor 20 on the inner peripheral side thereof, and the like as viewed in the traveling direction of the vehicle 90. A wheel 50 is installed on the inner peripheral side of the tire 60. The wheel 50 has a disc portion 52 and a rim portion 56.
 リム部56は、円筒状の部材であってタイヤ60の内周側に設置されている。そのリム部56の内周側にディスク部52が設けられている。ディスク部52は、後述する軸部41に外嵌されて固定されてハブ部53と、ハブ部53から放射線状に延びてハブ部53とリム部56とを連結している複数本のスポーク部54とを有する。 The rim portion 56 is a cylindrical member and is installed on the inner peripheral side of the tire 60. A disc portion 52 is provided on the inner peripheral side of the rim portion 56. The disk portion 52 is fitted and fixed to a shaft portion 41 described later, and has a plurality of spoke portions that extend radially from the hub portion 53 and connect the hub portion 53 and the rim portion 56. It has 54 and.
 モータ20は、ステータ30とロータ40とを有する。ステータ30は、円筒状の支持部33を有する。ロータ40は、軸部41と被支持部42と接続部43とアウタロータ部45とを有する。 The motor 20 has a stator 30 and a rotor 40. The stator 30 has a cylindrical support 33. The rotor 40 has a shaft portion 41, a supported portion 42, a connecting portion 43, and an outer rotor portion 45.
 軸部41は、支持部33の内周側において、自身の軸線X回りに回転自在に設置されている。被支持部42は、内径が軸部41の外径と略等しく、外径が支持部33の内径よりも若干小さい円筒状の部位であって、軸部41に外嵌されて固定されている。その被支持部42の外周面と支持部33の内周面との間に、ベアリング23が介装されている。これにより、被支持部42は、ベアリング23を介して支持部33に回転自在に支持されている。ロータ40を構成する各部材、すなわち、軸部41、被支持部42、接続部43及びアウタロータ部45は、ホイール50及びタイヤ60と一体で、軸線X回りに回転する。 The shaft portion 41 is rotatably installed around its own axis X on the inner peripheral side of the support portion 33. The supported portion 42 is a cylindrical portion whose inner diameter is substantially equal to the outer diameter of the shaft portion 41 and whose outer diameter is slightly smaller than the inner diameter of the support portion 33, and is externally fitted and fixed to the shaft portion 41. .. A bearing 23 is interposed between the outer peripheral surface of the supported portion 42 and the inner peripheral surface of the supported portion 33. As a result, the supported portion 42 is rotatably supported by the supporting portion 33 via the bearing 23. Each member constituting the rotor 40, that is, the shaft portion 41, the supported portion 42, the connecting portion 43, and the outer rotor portion 45, is integrated with the wheel 50 and the tire 60 and rotates around the axis X.
 アウタロータ部45は、内径が支持部33の外径よりも若干大きい円筒状の部位であって、支持部33に対して隙間を有して外嵌されている。接続部43は、被支持部42の軸線方向外方Dbの端とアウタロータ部45の軸線方向外方Dbの端とを接続している円盤状の部位であって、ディスク部52に固定されている。 The outer rotor portion 45 is a cylindrical portion whose inner diameter is slightly larger than the outer diameter of the support portion 33, and is externally fitted with a gap to the support portion 33. The connecting portion 43 is a disk-shaped portion that connects the end of the supported portion 42 in the axial direction outer Db and the end of the outer rotor portion 45 in the axial direction outer Db, and is fixed to the disk portion 52. There is.
 図3は、図2に示すIII-III線の断面を示す図、すなわち、タイヤ60、ホイール50及びモータ20等を軸線方向外方Dbにみた断面図である。アウタロータ部45の内周縁部には、永久磁石44が周方向に間隔をおいて複数設けられている。そして、支持部33の外周縁部には、コイル34が設置されている。そして、永久磁石44とコイル34との共働により、ロータ40に軸線X回りのトルクが発生して、ロータ40、ホイール50及びタイヤ60が一体で回転する。 FIG. 3 is a view showing a cross section of lines III-III shown in FIG. 2, that is, a cross-sectional view of the tire 60, the wheel 50, the motor 20, and the like as viewed from the outer Db in the axial direction. A plurality of permanent magnets 44 are provided on the inner peripheral edge of the outer rotor portion 45 at intervals in the circumferential direction. A coil 34 is installed on the outer peripheral edge of the support portion 33. Then, due to the cooperation between the permanent magnet 44 and the coil 34, a torque around the axis X is generated in the rotor 40, and the rotor 40, the wheel 50, and the tire 60 rotate integrally.
 再び図2を参照しつつ説明する。タイヤ圧監視システム70は、バルブ部材74を有する。そのバルブ部材74は、エアバルブ71と、前述の空気圧センサ72及び送信部73と、を有する。バルブ部材74は、リム部56に固定されている。よって、バルブ部材74は、タイヤ60、ホイール50及びロータ40と共に回転する。 The explanation will be given again with reference to FIG. The tire pressure monitoring system 70 includes a valve member 74. The valve member 74 includes an air valve 71, the above-mentioned air pressure sensor 72, and a transmission unit 73. The valve member 74 is fixed to the rim portion 56. Therefore, the valve member 74 rotates together with the tire 60, the wheel 50, and the rotor 40.
 エアバルブ71は、タイヤ60内から軸線方向外方Dbに突出するように設置されており、タイヤ60に空気を吸入可能に構成されている。空気圧センサ72及び送信部73は、リム部56の外周面、すなわちタイヤ60内に設置されている。空気圧センサ72は、タイヤ60の空気圧を計測して、その空気圧に関する情報である空気圧情報iPを、送信部73に送信する。送信部73は、その空気圧情報iPを、ロータ40、ホイール50及びタイヤ60を含む回転部の外部に無線送信する。 The air valve 71 is installed so as to project from the inside of the tire 60 to the outer Db in the axial direction, and is configured so that air can be sucked into the tire 60. The air pressure sensor 72 and the transmission unit 73 are installed on the outer peripheral surface of the rim unit 56, that is, in the tire 60. The air pressure sensor 72 measures the air pressure of the tire 60 and transmits the air pressure information IP, which is information on the air pressure, to the transmission unit 73. The transmission unit 73 wirelessly transmits the air pressure information iP to the outside of the rotating unit including the rotor 40, the wheel 50, and the tire 60.
 なお、空気圧情報iPは、空気圧が所定値よりも高いか否かを示す情報、すなわち空気圧が正常であるか否かの情報であってもよいし、空気圧自体を示す情報であってもよい。空気圧自体を示す情報である場合、受信側で、空気圧が正常であるか否かの判定を行う。 The air pressure information iP may be information indicating whether or not the air pressure is higher than a predetermined value, that is, information indicating whether or not the air pressure is normal, or information indicating whether or not the air pressure itself is normal. When the information indicates the air pressure itself, the receiving side determines whether or not the air pressure is normal.
 温度計測装置80は、前述の温度センサ82及び送信部73と、それらを繋ぐ通信線83とを有する。温度センサ82は、リム部56の内周面におけるアウタロータ部45の外周面に対向する位置に取り付けられている。温度センサ82は、アウタロータ部45から輻射される輻射熱(すなわち赤外線)を計測する。よって、温度センサ82は、アウタロータ部45に接触することなく、アウタロータ部45の温度を計測する非接触型のセンサである。 The temperature measuring device 80 includes the temperature sensor 82 and the transmitting unit 73 described above, and a communication line 83 connecting them. The temperature sensor 82 is attached at a position facing the outer peripheral surface of the outer rotor portion 45 on the inner peripheral surface of the rim portion 56. The temperature sensor 82 measures the radiant heat (that is, infrared rays) radiated from the outer rotor portion 45. Therefore, the temperature sensor 82 is a non-contact type sensor that measures the temperature of the outer rotor portion 45 without contacting the outer rotor portion 45.
 なお、リム部56の内周面に対する温度センサ82の取付け方法としては、ネジによる螺着や係合部材による係合等の機械的取付け、バンドによる取付け、接着、接合、埋込み、磁石による取付け、吸着、それらの組合せを例示する。 As a method of attaching the temperature sensor 82 to the inner peripheral surface of the rim portion 56, mechanical attachment such as screwing with a screw or engagement with an engaging member, attachment with a band, adhesion, joining, embedding, attachment with a magnet, etc. Adsorption and combinations thereof are illustrated.
 通信線83は、温度センサ82と送信部73とを通信可能に接続している。通信線83は、リム部56をタイヤ60の径方向に貫通することなく、温度センサ82側からバルブ部材74の内側を通過して送信部73に接続されている。温度センサ82は、取得した温度に関する情報である温度情報iTを、通信線83により送信部73に送信する。送信部73は、その温度情報iTを、ロータ40、ホイール50及びタイヤ60を含む回転部の外部に無線送信する。 The communication line 83 connects the temperature sensor 82 and the transmission unit 73 so as to be communicable. The communication line 83 passes through the inside of the valve member 74 from the temperature sensor 82 side and is connected to the transmission unit 73 without penetrating the rim portion 56 in the radial direction of the tire 60. The temperature sensor 82 transmits the temperature information iT, which is the acquired temperature information, to the transmission unit 73 via the communication line 83. The transmission unit 73 wirelessly transmits the temperature information iT to the outside of the rotating unit including the rotor 40, the wheel 50, and the tire 60.
 次に、温度センサ82の設置位置について説明する。以下では、軸線Xの長さ方向を「軸線方向」とする。また、軸線方向における車体91側の方向を「軸線方向内方Da」とし、その反対方向を「軸線方向外方Db」とする。また、ディスク部52の軸線方向内方Daの端面52aから、タイヤ60とリム部56との接触部における軸線方向内方Daの端60aまでの軸線方向範囲を、「第1範囲R1」とする。 Next, the installation position of the temperature sensor 82 will be described. In the following, the length direction of the axis X will be referred to as the “axis direction”. Further, the direction on the vehicle body 91 side in the axial direction is referred to as "inward Da in the axial direction", and the opposite direction is referred to as "outward Db in the axial direction". Further, the axial range from the end surface 52a of the axial inner Da of the disc portion 52 to the end 60a of the axial inner Da at the contact portion between the tire 60 and the rim portion 56 is defined as the "first range R1". ..
 軸線方向(Da,Db)において、温度センサ82は、少なくともその一部が第1範囲R1に入るように配置されていることが好ましい。なぜなら、アウタロータ部45は、ディスク部52から軸線方向内方Daに延びるように設置される。そのため、もし仮にアウタロータ部45の軸線方向内方Daの長さが短いと、アウタロータ部45の軸線方向内方Daの端45aが、リム部56の軸線方向内方Daの端56aよりも軸線方向外方Dbに位置する。それにより、リム部56の軸線方向内方Daの端56a付近の内周面が、アウタロータ部45の外周面に対向しなくなる。 It is preferable that at least a part of the temperature sensor 82 is arranged so as to fall within the first range R1 in the axial direction (Da, Db). This is because the outer rotor portion 45 is installed so as to extend inward Da in the axial direction from the disc portion 52. Therefore, if the length of the inner Da in the axial direction of the outer rotor portion 45 is short, the end 45a of the inner Da in the axial direction of the outer rotor portion 45 is in the axial direction than the end 56a of the inner Da in the axial direction of the rim portion 56. Located on the outer Db. As a result, the inner peripheral surface of the rim portion 56 near the end 56a of the inner Da in the axial direction does not face the outer peripheral surface of the outer rotor portion 45.
 その点、温度センサ82が、上記のように配置されていれば、温度センサ82が第1範囲R1よりも軸線方向内方Daに配置される場合に比べて、たとえ仮に「アウタロータ部45が軸線方向内方Daに小さくても」、アウタロータ部45の外周面に対向し易くなる。そのため、各サイズのアウタロータ部45に対して対応し易くなるからである。また、温度センサ82が第1範囲R1よりも軸線方向内方Daに配置される場合に比べて、温度センサ82が、ホイール50の軸線方向内方Daの開口から軸線方向外方Dbに入り込んだ位置に配されることになるので、当該開口から流入する空気による外乱の影響を抑えることができるからである。 In that respect, if the temperature sensor 82 is arranged as described above, even if the temperature sensor 82 is arranged inward Da in the axial direction from the first range R1, even if the outer rotor portion 45 is arranged on the axis. Even if it is small in the direction inward Da, it becomes easy to face the outer peripheral surface of the outer rotor portion 45. Therefore, it becomes easy to correspond to the outer rotor portion 45 of each size. Further, as compared with the case where the temperature sensor 82 is arranged in the axial direction inner Da than the first range R1, the temperature sensor 82 has entered the axial outer Db through the opening of the axial inner Da of the wheel 50. This is because it is arranged at the position, so that the influence of the disturbance caused by the air flowing in from the opening can be suppressed.
 より好ましくは、軸線方向(Da,Db)において、温度センサ82は、その全部が第1範囲R1内に収まるように配置されることである。上記の効果をより顕著に得ることができるからである。 More preferably, in the axial direction (Da, Db), all of the temperature sensors 82 are arranged so as to be within the first range R1. This is because the above effect can be obtained more remarkably.
 以下では、第1範囲R1を軸線方向(Da,Db)に2等分した2つの範囲における軸線方向外方Db側の範囲を「第2範囲R2」とする。さらに好ましくは、軸線方向(Da,Db)において、温度センサ82は、少なくともその一部が第2範囲R2に入るように配置されることである。さらに好ましくは、軸線方向(Da,Db)において、温度センサ82は、その全部が第2範囲R2に入るように配置されることである。上記の効果をさらに顕著に得ることができるからである。そのため、本実施形態では、軸線方向(Da,Db)において、温度センサ82は、その全部が第2範囲R2に入るように配置されている。 In the following, the range on the outer Db side in the axial direction in the two ranges in which the first range R1 is bisected in the axial direction (Da, Db) is referred to as the "second range R2". More preferably, in the axial direction (Da, Db), the temperature sensor 82 is arranged so that at least a part thereof falls within the second range R2. More preferably, in the axial direction (Da, Db), the temperature sensors 82 are all arranged so as to fall within the second range R2. This is because the above effect can be obtained more remarkably. Therefore, in the present embodiment, all of the temperature sensors 82 are arranged so as to fall within the second range R2 in the axial direction (Da, Db).
 次に再び図3を参照しつつ、温度センサ82により温度を計測する位置等について説明する。以下では、アウタロータ部45における空気圧センサ72に対向する位置を「第1位置p1」とする。また、第1位置p1と軸線Xとを結ぶ仮想直線Lと永久磁石44の外周側の端面との交点を「第2位置p2」とする。また、当該仮想直線Lと永久磁石44の内周側の端面との交点を「第3位置p3」とする。 Next, with reference to FIG. 3 again, the position where the temperature is measured by the temperature sensor 82 and the like will be described. In the following, the position of the outer rotor portion 45 facing the air pressure sensor 72 will be referred to as “first position p1”. Further, the intersection of the virtual straight line L connecting the first position p1 and the axis X and the end face on the outer peripheral side of the permanent magnet 44 is defined as the “second position p2”. Further, the intersection of the virtual straight line L and the end surface of the permanent magnet 44 on the inner peripheral side is defined as the "third position p3".
 温度センサ82は、第1位置p1の温度である第1温度T1を計測する。その第1温度T1に基づいて、後述する推定部87が、第2位置p2の温度である第2温度T2と、第3位置p3の温度である第3温度T3とを推定する。 The temperature sensor 82 measures the first temperature T1, which is the temperature of the first position p1. Based on the first temperature T1, the estimation unit 87 described later estimates the second temperature T2, which is the temperature of the second position p2, and the third temperature T3, which is the temperature of the third position p3.
 図4は、リム部56、バルブ部材74、温度センサ82を軸線方向外方Dbに見た断面図である。以下では、この図のとおり軸線方向外方Dbに見て、バルブ部材74の重心と軸線Xとを結ぶ仮想直線を「バルブ線L1」とする。また、この図のとおり軸線方向外方Dbに見て、温度センサ82の重心と軸線Xとを結ぶ仮想直線を「温度センサ線L2」とする。 FIG. 4 is a cross-sectional view of the rim portion 56, the valve member 74, and the temperature sensor 82 as viewed from the outer Db in the axial direction. In the following, as shown in this figure, the virtual straight line connecting the center of gravity of the valve member 74 and the axis X when viewed from the outer Db in the axial direction is referred to as “valve line L1”. Further, as shown in this figure, the virtual straight line connecting the center of gravity of the temperature sensor 82 and the axis X when viewed from the outer Db in the axial direction is referred to as the “temperature sensor line L2”.
 バルブ線L1と温度センサ線L2とがなす角度θは、10°以下であることが好ましい。バルブ部材74の重心の近くに温度センサ82の重心が位置することにより、温度センサ82の設置による、リム部56等の重心位置の変動を抑制できるからである。また、バルブ部材74の近くに温度センサ82が配されることにより、温度センサ82をバルブ部材74の送信部73に接続し易くなるからである。このような効果をより顕著に得るため、上記の角度θは、5°以下であることが好ましい。そのため、本実施形態では、当該角度θは、5°以下になっている。なお、図4では、角度θを示すために、温度センサ82とバルブ部材74とを周方向に誇張してずらして示しているが、実際には、温度センサ82とバルブ部材74との周方向へのずれは、図示したものよりも小さくなっている。 The angle θ formed by the valve wire L1 and the temperature sensor wire L2 is preferably 10 ° or less. This is because the center of gravity of the temperature sensor 82 is located near the center of gravity of the valve member 74, so that the change in the position of the center of gravity of the rim portion 56 or the like due to the installation of the temperature sensor 82 can be suppressed. Further, by arranging the temperature sensor 82 near the valve member 74, it becomes easy to connect the temperature sensor 82 to the transmission unit 73 of the valve member 74. In order to obtain such an effect more remarkably, the above angle θ is preferably 5 ° or less. Therefore, in the present embodiment, the angle θ is 5 ° or less. In FIG. 4, the temperature sensor 82 and the valve member 74 are exaggerated and shifted in the circumferential direction in order to show the angle θ, but in reality, the temperature sensor 82 and the valve member 74 are shown in the circumferential direction. The deviation to is smaller than that shown in the figure.
 次に、再び図1を参照しつつ、タイヤ圧監視システム70及び温度計測装置80等の機能について説明する。受信部76、表示部77、推定部87及び制御部10は、車体91内に設置されている。よって、これらは、空気圧センサ72や温度センサ82や送信部73とは違い、タイヤ60、ホイール50及びロータ40と共に回転することはない。 Next, the functions of the tire pressure monitoring system 70, the temperature measuring device 80, and the like will be described with reference to FIG. 1 again. The receiving unit 76, the display unit 77, the estimating unit 87, and the control unit 10 are installed in the vehicle body 91. Therefore, unlike the air pressure sensor 72, the temperature sensor 82, and the transmission unit 73, they do not rotate together with the tire 60, the wheel 50, and the rotor 40.
 前述の通り、空気圧センサ72は空気圧情報iPを、温度センサ82は温度情報iTを、それぞれ送信部73に送信する。そして、送信部73は、前述の通り、それらの空気圧情報iP及び温度情報iTを、回転部の外部に無線送信する。 As described above, the air pressure sensor 72 transmits the air pressure information iP, and the temperature sensor 82 transmits the temperature information iT to the transmission unit 73, respectively. Then, as described above, the transmission unit 73 wirelessly transmits the air pressure information iP and the temperature information iT to the outside of the rotating unit.
 受信部76は、それらの無線送信された空気圧情報iP及び温度情報iTを受信して、表示部77及び推定部87に送信する。表示部77は、受信した空気圧情報iPが異常を示すものである場合、タイヤ60の空気圧が異常である旨を表示することにより、その旨をドライバ等に通知する。 The receiving unit 76 receives the wirelessly transmitted air pressure information iP and temperature information iT and transmits them to the display unit 77 and the estimation unit 87. When the received air pressure information iP indicates an abnormality, the display unit 77 notifies the driver or the like by displaying that the air pressure of the tire 60 is abnormal.
 推定部87は、受信部76から受信した温度情報iTから第1温度T1を取得し、それに基づいて第2温度T2及び第3温度T3を推定する。その推定の手法の詳細については後述する。 The estimation unit 87 acquires the first temperature T1 from the temperature information iT received from the reception unit 76, and estimates the second temperature T2 and the third temperature T3 based on the first temperature T1. The details of the estimation method will be described later.
 推定部87は、その推定した第2温度T2及び第3温度T3を制御部10に送信する。制御部10は、その第2温度T2及び第3温度T3に基づいて、モータ20を制御する。具体的には、例えば、第2温度T2又は第3温度T3が所定値よりも大きい場合には、モータ20の出力を制限する。 The estimation unit 87 transmits the estimated second temperature T2 and third temperature T3 to the control unit 10. The control unit 10 controls the motor 20 based on the second temperature T2 and the third temperature T3. Specifically, for example, when the second temperature T2 or the third temperature T3 is larger than a predetermined value, the output of the motor 20 is limited.
 図5は、アウタロータ部45の各部位(δ)における温度(T)を示すグラフである。このグラフを参照しつつ、上記の第1温度T1とから、第2温度T2及び第3温度T3を推定する手法について説明する。 FIG. 5 is a graph showing the temperature (T) at each portion (δ) of the outer rotor portion 45. With reference to this graph, a method of estimating the second temperature T2 and the third temperature T3 from the above first temperature T1 will be described.
 当該手法については、次の2つが考えられる。まず第1に、推定部87は、例えば第1温度T1と、第2温度T2及び第3温度T3との関係を示すマップを有しており、そのマップ及び第1温度T1に基づいて、第2温度T2及び第3温度T3を推定するようにしてもよい。 Regarding this method, the following two can be considered. First, the estimation unit 87 has, for example, a map showing the relationship between the first temperature T1 and the second temperature T2 and the third temperature T3, and based on the map and the first temperature T1, a first The two temperature T2 and the third temperature T3 may be estimated.
 また第2に、推定部87は、アウタロータ部45における第1位置p1から第2位置p2を経て第3位置p3に至る経路での熱流束qを取得し、その熱流束qと第1温度T1とから、第2温度T2及び第3温度T3を推定するようにしてもよい。具体的には、次のとおりである。 Secondly, the estimation unit 87 acquires the heat flux q in the path from the first position p1 to the third position p3 in the outer rotor unit 45 through the second position p2, and the heat flux q and the first temperature T1. Therefore, the second temperature T2 and the third temperature T3 may be estimated. Specifically, it is as follows.
 以下では、第1位置p1から第2位置p2までの長さを「第1長さδ1」とする。また、第2位置p2から第3位置p3までの長さを「第2長さδ2」とする。また、第1位置p1から第2位置p2までの区間における熱伝導率を「第1熱伝導率λ1」とする。また、第2位置p2から第3位置p3までの区間における熱伝導率を「第2熱伝導率λ2」とする。熱方程式から、第2温度T2及び第3温度T3は、次の数1のとおりに表される。 In the following, the length from the first position p1 to the second position p2 is referred to as the "first length δ1". Further, the length from the second position p2 to the third position p3 is defined as the "second length δ2". Further, the thermal conductivity in the section from the first position p1 to the second position p2 is defined as "first thermal conductivity λ1". Further, the thermal conductivity in the section from the second position p2 to the third position p3 is defined as "second thermal conductivity λ2". From the heat equation, the second temperature T2 and the third temperature T3 are expressed by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、推定部87は、第1熱伝導率λ1、第2熱伝導率λ2、第1長さδ1、第2長さδ2との各値をデータとして持っている。よって、熱流束qを取得することができれば、その熱流束qと、計測された第1温度T1と、データとして持っている上記の各値(λ1,λ2)とを、上記の数1の上側の式に代入することにより、第2温度T2を求めることができる。さらに、その熱流束qと、計測された第1温度T1と、データとして持っている上記の各値(λ1,λ2,δ1,δ2)とを、上記の数1の下側の式に代入することにより、第3温度T3を求めることができる。 Here, the estimation unit 87 has the respective values of the first thermal conductivity λ1, the second thermal conductivity λ2, the first length δ1, and the second length δ2 as data. Therefore, if the heat flux q can be obtained, the heat flux q, the measured first temperature T1, and each of the above values (λ1, λ2) held as data are displayed on the upper side of the above equation 1. The second temperature T2 can be obtained by substituting into the equation of. Further, the heat flux q, the measured first temperature T1, and each of the above values (λ1, λ2, δ1, δ2) held as data are substituted into the lower equation of the above equation 1. As a result, the third temperature T3 can be obtained.
 その熱流束qは、例えば、モータ20に入ってくる熱入力と、モータ20から出ていく熱出力とから、推定することができる。熱入力は、例えば、モータ20の消費電力から推定することができる。熱出力は、例えば、銅損、鉄損、機械損、冷却媒体による吸熱、ステータ30の温度、残留磁束密度等から推定することができる。その推定した熱入力及び熱出力から、上記の通り、熱流束qを推定することにより、第2温度T2及び第3温度T3を求めることができる。 The heat flux q can be estimated from, for example, the heat input entering the motor 20 and the heat output exiting the motor 20. The heat input can be estimated from, for example, the power consumption of the motor 20. The heat output can be estimated from, for example, copper loss, iron loss, mechanical loss, endothermic reaction by the cooling medium, temperature of the stator 30, residual magnetic flux density, and the like. As described above, the second temperature T2 and the third temperature T3 can be obtained by estimating the heat flux q from the estimated heat input and heat output.
 本実施形態によれば、次の効果が得られる。車両90のタイヤ60を駆動するモータ20のロータ40に対して、温度計測装置80を採用することができる。また、温度センサ82は、リム部56に固定されているため、アウタロータ部45に対して相対回転しない。そのため、第1温度T1を精度よく計測できる。 According to this embodiment, the following effects can be obtained. The temperature measuring device 80 can be adopted for the rotor 40 of the motor 20 that drives the tire 60 of the vehicle 90. Further, since the temperature sensor 82 is fixed to the rim portion 56, it does not rotate relative to the outer rotor portion 45. Therefore, the first temperature T1 can be measured accurately.
 また、送信部73は、受信部76に対して相対回転することになるが、空気圧情報iP及び温度情報iTを受信部76に無線送信する。そのため、空気圧情報iP及び温度情報iTを有線により送信する場合とは違い、有線の途中に相対回転を逃がすための摺接子(ブラシ)等を設けなくても、送信部73は、空気圧情報iP及び温度情報iTを受信部76に送信することができる。 Further, although the transmission unit 73 rotates relative to the reception unit 76, the air pressure information iP and the temperature information iT are wirelessly transmitted to the reception unit 76. Therefore, unlike the case where the air pressure information iP and the temperature information iT are transmitted by wire, the transmission unit 73 does not need to provide a sliding connector (brush) or the like for allowing relative rotation to escape in the middle of the wire. And the temperature information iT can be transmitted to the receiving unit 76.
 また、温度センサ82は、永久磁石44が設置され且つコイル34に近いため発熱し易いアウタロータ部45ではなく、リム部56に取り付けられているため、アウタロータ部45の温度が伝わり難い。そのため、アウタロータ部45の温度により、温度センサ82に障害が生じるリスクを抑えられる。また、温度センサ82が、もし仮にアウタロータ部45の外周面に取り付けられていれば、遠心力により温度センサ82が当該外周面から外側に外れてしまうおそれがある。その点、温度センサ82は、リム部56の内周面に取り付けられているため、遠心力により温度センサ82が外側に外れてしまうといった心配はない。 Further, since the temperature sensor 82 is attached to the rim portion 56 instead of the outer rotor portion 45, which tends to generate heat because the permanent magnet 44 is installed and is close to the coil 34, the temperature of the outer rotor portion 45 is difficult to be transmitted. Therefore, the risk of failure of the temperature sensor 82 due to the temperature of the outer rotor portion 45 can be suppressed. Further, if the temperature sensor 82 is attached to the outer peripheral surface of the outer rotor portion 45, the temperature sensor 82 may be detached from the outer peripheral surface due to centrifugal force. In that respect, since the temperature sensor 82 is attached to the inner peripheral surface of the rim portion 56, there is no concern that the temperature sensor 82 will come off to the outside due to centrifugal force.
 また、温度計測装置80は、タイヤ圧監視システム70の送信部73を利用して、温度情報iTをロータ40の外部に送信するため、独自に送信部73を有する必要がなく、構成がシンプルになる。また、温度センサ82については、ホイール50の内側にあるので、外乱の影響が少ない。さらに、送信部73については、タイヤ60内にあるので損傷し難い。 Further, since the temperature measuring device 80 transmits the temperature information iT to the outside of the rotor 40 by using the transmitting unit 73 of the tire pressure monitoring system 70, it is not necessary to have the transmitting unit 73 independently, and the configuration is simple. Become. Further, since the temperature sensor 82 is located inside the wheel 50, the influence of disturbance is small. Further, since the transmission unit 73 is inside the tire 60, it is not easily damaged.
 また、推定部87があるため、本実施形態の場合のように、永久磁石44の温度を直接計測しない場合にも、永久磁石44の温度を推定することができる。 Further, since the estimation unit 87 is provided, the temperature of the permanent magnet 44 can be estimated even when the temperature of the permanent magnet 44 is not directly measured as in the case of the present embodiment.
 [第2実施形態]
 次に第2実施形態について説明する。以下の実施形態では、それ以前の実施形態のものと同一の又は対応する部材等は同一の符号を付する。本実施形態については、第1実施形態をベースに、これと異なる点を中心に説明する。
[Second Embodiment]
Next, the second embodiment will be described. In the following embodiments, the same or corresponding members and the like as those in the previous embodiments are designated by the same reference numerals. The present embodiment will be described with reference to the first embodiment and focusing on differences from the first embodiment.
 図6は、第2実施形態において、タイヤ60及びモータ20を軸線方向外方Dbに見た断面図である。第1実施形態でいう「温度センサ82」は、本実施形態では第1温度センサ82であって、支持部33の外周部には、アウタロータ部45の内周面の温度を計測する第2温度センサ88が設けられている。第2温度センサ88も、第1温度センサ82と同様、非接触型のセンサである。アウタロータ部45の内周面は、第2温度センサ88に対して相対回転することになるので、第2温度センサ88は、アウタロータ部45の内周面の同じ部分の温度を計測することができず、アウタロータ部45の内周面の一周全体の平均温度を計測することになる。第2温度センサ88は、計測した温度に関する情報を推定部87に送信する。 FIG. 6 is a cross-sectional view of the tire 60 and the motor 20 as viewed outward from the axial direction Db in the second embodiment. The "temperature sensor 82" referred to in the first embodiment is the first temperature sensor 82 in the present embodiment, and the outer peripheral portion of the support portion 33 has a second temperature for measuring the temperature of the inner peripheral surface of the outer rotor portion 45. A sensor 88 is provided. The second temperature sensor 88 is also a non-contact type sensor like the first temperature sensor 82. Since the inner peripheral surface of the outer rotor portion 45 rotates relative to the second temperature sensor 88, the second temperature sensor 88 can measure the temperature of the same portion of the inner peripheral surface of the outer rotor portion 45. Instead, the average temperature of the entire circumference of the inner peripheral surface of the outer rotor portion 45 is measured. The second temperature sensor 88 transmits information about the measured temperature to the estimation unit 87.
 再び図5を参照しつつ、本実施形態の推定部87による第2温度T2の推定について説明する。推定部87は、第2温度センサ88により計測された、アウタロータ部45の内周面の温度に基づいて第3温度T3を推定する。その第3温度T3と、計測された第1温度T1等とに基づいて、第2温度T2を推定する。詳しくは、次の通りである。上記の数1の2つの式によりqを消去して1つの式にすると、次の数2の式が得られる。 The estimation of the second temperature T2 by the estimation unit 87 of the present embodiment will be described with reference to FIG. 5 again. The estimation unit 87 estimates the third temperature T3 based on the temperature of the inner peripheral surface of the outer rotor unit 45 measured by the second temperature sensor 88. The second temperature T2 is estimated based on the third temperature T3 and the measured first temperature T1 and the like. The details are as follows. By eliminating q by the above two equations of equation 1 to make one equation, the following equation of equation 2 is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本実施形態でも推定部87は、第1実施形態の場合と同じく、第1熱伝導率λ1、第2熱伝導率λ2、第1長さδ1、第2長さδ2の各値を、データとして持っている。よって、それらの各値(λ1,λ2,δ1,δ2)と、計測された第1温度T1と、推定された第3温度T3とを、上記の数2の式に代入することにより、第2温度T2を求めることができる。 In the present embodiment as well, the estimation unit 87 uses the values of the first thermal conductivity λ1, the second thermal conductivity λ2, the first length δ1, and the second length δ2 as data as in the case of the first embodiment. have. Therefore, by substituting each of these values (λ1, λ2, δ1, δ2), the measured first temperature T1, and the estimated third temperature T3 into the above equation of equation 2, the second The temperature T2 can be determined.
 再び図6を参照しつつ説明する。第1温度センサ82と第2温度センサ88との温度計測タイミングは、少なくとも一部の温度計測タイミングどうしが重複することが好ましい。同じタイミングで計測することで、より精度よく第2温度T2を推定できるからである。第2温度センサ88は、第1温度センサ82に対して軸線方向(Da,Db)にずれていないことが好ましいが、軸線方向(Da,Db)にずれていても実施できる。 The explanation will be given again with reference to FIG. It is preferable that the temperature measurement timings of the first temperature sensor 82 and the second temperature sensor 88 overlap at least a part of the temperature measurement timings. This is because the second temperature T2 can be estimated more accurately by measuring at the same timing. The second temperature sensor 88 is preferably not deviated in the axial direction (Da, Db) with respect to the first temperature sensor 82, but can be implemented even if the second temperature sensor 88 is deviated in the axial direction (Da, Db).
 本実施形態によれば、第1温度センサ82により第1温度T1を計測するだけでなく、第2温度センサ88によりアウタロータ部45の内周面の温度を計測して第3温度T3も推定することにより、マップを用いたり、熱流束qを推定したりしなくても、第2温度T2を推定することができる。また、第1温度T1を計測するだけでなく、アウタロータ部45の内周面の温度も計測することにより、永久磁石44の温度をより精度よく推定できる。 According to this embodiment, not only the first temperature sensor 82 measures the first temperature T1, but also the second temperature sensor 88 measures the temperature of the inner peripheral surface of the outer rotor portion 45 to estimate the third temperature T3. Therefore, the second temperature T2 can be estimated without using a map or estimating the heat flux q. Further, the temperature of the permanent magnet 44 can be estimated more accurately by not only measuring the first temperature T1 but also measuring the temperature of the inner peripheral surface of the outer rotor portion 45.
 [第3実施形態]
 次に第3実施形態について説明する。本実施形態については、第1実施形態をベースに、これと異なる点を中心に説明する。
[Third Embodiment]
Next, the third embodiment will be described. The present embodiment will be described with reference to the first embodiment and focusing on differences from the first embodiment.
 図7は、第3実施形態において、モータ20等を軸線方向(Da,Db)に直交する方向にみた断面図である。本実施形態では、モータ20は、車両90のタイヤ60を駆動するインホイールモータではなく、ヘリコプタやドローン等の有人又は無人の飛行体100のプロペラ69を駆動するものである。 FIG. 7 is a cross-sectional view of the motor 20 and the like in the third embodiment as viewed in a direction orthogonal to the axial direction (Da, Db). In this embodiment, the motor 20 is not an in-wheel motor that drives the tire 60 of the vehicle 90, but a propeller 69 of a manned or unmanned aerial vehicle 100 such as a helicopter or a drone.
 詳しくは、モータ20の軸部41にはプロペラ69が接続されており、プロペラ69はロータ40と共に回転する。ロータ40には、アウタロータ部45よりも外周側に突出する突出部59が取り付けられており、その突出部59に、温度センサ82と送信部73とが取り付けられている。温度センサ82と送信部73とは有線により通信可能に接続されている。送信部73は、ロータ40の外部の受信部に温度情報iTを無線送信する。 Specifically, the propeller 69 is connected to the shaft portion 41 of the motor 20, and the propeller 69 rotates together with the rotor 40. A protrusion 59 that protrudes toward the outer periphery of the outer rotor portion 45 is attached to the rotor 40, and the temperature sensor 82 and the transmission portion 73 are attached to the protrusion 59. The temperature sensor 82 and the transmission unit 73 are connected by wire so as to be able to communicate with each other. The transmission unit 73 wirelessly transmits the temperature information iT to the reception unit outside the rotor 40.
 本実施形態によれば、飛行体100のモータ20に対しても、温度計測装置80を実施することができる。 According to this embodiment, the temperature measuring device 80 can also be implemented for the motor 20 of the flying object 100.
 [他の実施形態]
 以上の実施形態は、例えば次のように変更して実施できる。送信部73は、無線ではなく、有線により各情報を受信部76に送信するものであってもよい。また、第1及び第2実施形態において、温度計測装置80は、タイヤ圧監視システム70の送信部73とは別に、独自の送信部73を有していてもよい。
[Other Embodiments]
The above embodiment can be modified and implemented as follows, for example. The transmission unit 73 may transmit each information to the reception unit 76 by wire instead of wirelessly. Further, in the first and second embodiments, the temperature measuring device 80 may have its own transmission unit 73 in addition to the transmission unit 73 of the tire pressure monitoring system 70.
 また、温度センサ82は、非接触型のセンサではなく、アウタロータ部45に直接取り付けられる接触型のセンサであってもよい。また、温度センサ82は、アウタロータ部45における永久磁石以外の部分の温度を計測するものではなく、永久磁石44の温度を直接計測するものであってもよい。また、第2実施形態において、第2温度センサ88は、非接触型のセンサではなく、アウタロータ部45の内周部に直接取り付けられる接触型のセンサであってもよい。 Further, the temperature sensor 82 may not be a non-contact type sensor but a contact type sensor directly attached to the outer rotor portion 45. Further, the temperature sensor 82 does not measure the temperature of a portion of the outer rotor portion 45 other than the permanent magnet, but may directly measure the temperature of the permanent magnet 44. Further, in the second embodiment, the second temperature sensor 88 may not be a non-contact type sensor but a contact type sensor directly attached to the inner peripheral portion of the outer rotor portion 45.
 また、第1及び第2実施形態において、モータ20は、前側の2つの各タイヤ60に対してではなく、後側の2つの各タイヤ60に対して設けられていてもよいし、4つの各タイヤ60に対して設けられていてもよい。また、第1及び第2実施形態において、タイヤ60は非空気入りのタイヤであって、空気圧センサ72及び表示部77が無くてもよい。 Further, in the first and second embodiments, the motor 20 may be provided not for each of the two tires 60 on the front side but for each of the two tires 60 on the rear side, or for each of the four tires. It may be provided for the tire 60. Further, in the first and second embodiments, the tire 60 is a non-pneumatic tire and may not have the air pressure sensor 72 and the display unit 77.
 また、第3実施形態において、飛行体100は、ドローン等ではなく、翼を有する無人機や有人機等であってもよい。そして、プロペラ69は、当該飛行体100を前方に駆動するものであってもよい。 Further, in the third embodiment, the flying object 100 may be an unmanned aerial vehicle or a manned aerial vehicle having wings instead of a drone or the like. Then, the propeller 69 may drive the flying object 100 forward.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (11)

  1.  所定の軸線(X)回りに回転自在に設けられ且つ永久磁石(44)が設置されているロータ(40)と、コイル(34)が設置されているステータ(30)とを有し、前記永久磁石と前記コイルとの共働により前記ロータに前記軸線回りのトルクを発生させるモータ(20)の、前記ロータの温度を計測する温度計測装置(80)であって、
     前記ロータ又はそれと共に回転する回転体(56,59)に固定されており、前記ロータの所定部分(p1)の温度(T1)を計測する温度センサ(82)と、
     前記ロータ又はそれと共に回転する回転体に固定されており、前記温度センサから前記温度に関する情報である温度情報(iT)を取得して、前記ロータの外部に送信する送信部(73)と、
     前記ロータの外部に前記ロータと共に回転することのない状態で設置されており、前記送信部により送信された前記温度情報を受信する受信部(76)と、
     を有する温度計測装置。
    It has a rotor (40) rotatably provided around a predetermined axis (X) and a permanent magnet (44) installed, and a stator (30) on which a coil (34) is installed. A temperature measuring device (80) for measuring the temperature of the rotor of a motor (20) that generates torque around the axis in the rotor by the cooperation of a magnet and the coil.
    A temperature sensor (82) fixed to the rotor or a rotating body (56, 59) rotating with the rotor and measuring the temperature (T1) of a predetermined portion (p1) of the rotor.
    A transmission unit (73) fixed to the rotor or a rotating body rotating with the rotor, acquiring temperature information (iT) which is information about the temperature from the temperature sensor and transmitting the temperature information (iT) to the outside of the rotor.
    A receiving unit (76) that is installed outside the rotor so as not to rotate with the rotor and receives the temperature information transmitted by the transmitting unit.
    A temperature measuring device having.
  2.  前記送信部は、前記温度情報の送信を無線により行う、請求項1に記載の温度計測装置。 The temperature measuring device according to claim 1, wherein the transmitting unit wirelessly transmits the temperature information.
  3.  前記ロータは、前記ステータの外周面よりも外周側に設けられているアウタロータ部(45)を有し、
     前記永久磁石は、前記アウタロータ部に設置されており、
     前記温度センサは、前記アウタロータ部の外周面と対向する位置に固定されており、前記アウタロータ部の外周面の温度を、当該外周面に接触することなく計測する非接触型の温度センサである、請求項1又は2に記載の温度計測装置。
    The rotor has an outer rotor portion (45) provided on the outer peripheral side of the outer peripheral surface of the stator.
    The permanent magnet is installed in the outer rotor portion, and is
    The temperature sensor is a non-contact type temperature sensor that is fixed at a position facing the outer peripheral surface of the outer rotor portion and measures the temperature of the outer peripheral surface of the outer rotor portion without contacting the outer peripheral surface. The temperature measuring device according to claim 1 or 2.
  4.  前記モータは、車両(90)のタイヤ(60)よりも内周側に設けられており、前記タイヤを回転させるインホイールモータであって、
     前記ロータは、前記タイヤ及びそのホイール(50)と一体で回転するものであり、
     前記温度センサは、前記ホイールの内周面に設置されている、
     請求項3に記載の温度計測装置。
    The motor is an in-wheel motor that is provided on the inner peripheral side of the tire (60) of the vehicle (90) and rotates the tire.
    The rotor rotates integrally with the tire and its wheel (50).
    The temperature sensor is installed on the inner peripheral surface of the wheel.
    The temperature measuring device according to claim 3.
  5.  前記ホイールは、筒状のリム部(56)と前記リム部よりも内周側に設けられているディスク部(52)とを有し、
     前記軸線の長さ方向を軸線方向とし、前記軸線方向における前記車両の車体(91)側の方向を軸線方向内方(Da)とし、軸線方向内方とは反対方向を軸線方向外方(Db)とし、前記ディスク部の前記軸線方向内方の端面(52a)から、前記タイヤと前記リム部との接触部における前記軸線方向内方の端(60a)までの軸線方向範囲を、第1範囲(R1)として、
     前記軸線方向において、前記温度センサは、少なくとも一部が前記第1範囲に入るように配置されている、請求項4に記載の温度計測装置。
    The wheel has a tubular rim portion (56) and a disc portion (52) provided on the inner peripheral side of the rim portion.
    The length direction of the axis is the axis direction, the direction of the vehicle body (91) side in the axis direction is the inward direction of the axis (Da), and the direction opposite to the inside of the axis direction is the outside of the axis direction (Db). ), The first range is the axial range from the axially inward end surface (52a) of the disc portion to the axially inward end (60a) at the contact portion between the tire and the rim portion. As (R1)
    The temperature measuring device according to claim 4, wherein at least a part of the temperature sensor is arranged so as to fall within the first range in the axial direction.
  6.  前記第1範囲を前記軸線方向に2等分した2つの範囲のうちの軸線方向外方側の範囲を第2範囲(R2)として、
     前記軸線方向において、前記温度センサは、少なくとも一部が前記第2範囲に入るように配置されている、請求項5に記載の温度計測装置。
    Of the two ranges obtained by bisecting the first range in the axial direction, the range on the outer side in the axial direction is defined as the second range (R2).
    The temperature measuring device according to claim 5, wherein at least a part of the temperature sensor is arranged so as to fall within the second range in the axial direction.
  7.  前記車両は、前記タイヤの空気圧を監視するタイヤ圧監視システム(70)を有し、前記送信部は、前記タイヤ圧監視システムの一部であり、
     前記送信部は、前記空気圧に関する情報である空気圧情報(iP)及び前記温度情報を、前記ロータの外部に送信するものである、
     請求項4~6のいずれか1項に記載の温度計測装置。
    The vehicle has a tire pressure monitoring system (70) that monitors the tire pressure, and the transmission unit is a part of the tire pressure monitoring system.
    The transmission unit transmits the air pressure information (iP), which is information on the air pressure, and the temperature information to the outside of the rotor.
    The temperature measuring device according to any one of claims 4 to 6.
  8.  前記タイヤ圧監視システムは、前記タイヤに空気を吸入するためのエアバルブ(71)と、前記タイヤの空気圧を計測する空気圧センサ(72)と、前記送信部とを有するバルブ部材(74)を有し、
     前記軸線の長さ方向である軸線方向にみて、前記バルブ部材の重心と前記軸線とを結ぶ仮想直線(L1)と、前記温度センサの重心と前記軸線とを結ぶ仮想直線(L2)とがなす角度(θ)は、10°以下である、請求項7に記載の温度計測装置。
    The tire pressure monitoring system includes an air valve (71) for sucking air into the tire, an air pressure sensor (72) for measuring the air pressure of the tire, and a valve member (74) having the transmitting unit. ,
    A virtual straight line (L1) connecting the center of gravity of the valve member and the axis is formed by a virtual straight line (L2) connecting the center of gravity of the temperature sensor and the axis when viewed in the axial direction which is the length direction of the axis. The temperature measuring device according to claim 7, wherein the angle (θ) is 10 ° or less.
  9.  前記モータは、飛行体(100)のプロペラ(69)を回すモータである請求項1~3のいずれか1項に記載の温度計測装置。 The temperature measuring device according to any one of claims 1 to 3, wherein the motor is a motor that rotates a propeller (69) of an air vehicle (100).
  10.  前記温度センサは、前記ロータにおける前記永久磁石以外の部分の温度(T1)を計測するものであり、
     前記温度センサにより計測された前記永久磁石以外の部分の温度に基づいて、前記永久磁石の温度(T2,T3)を推定する推定部(87)を有する請求項1~9のいずれか1項に記載の温度計測装置。
    The temperature sensor measures the temperature (T1) of a portion of the rotor other than the permanent magnet.
    The invention according to any one of claims 1 to 9, further comprising an estimation unit (87) for estimating the temperature (T2, T3) of the permanent magnet based on the temperature of a portion other than the permanent magnet measured by the temperature sensor. The temperature measuring device described.
  11.  前記ロータの外周面の温度(T1)を計測する、前記温度センサとしての第1温度センサ(82)と、前記ロータの内周面の温度を計測する第2温度センサ(88)と、を有し、
     前記推定部は、前記第1温度センサ及び前記第2温度センサにより計測された温度に基づいて、前記永久磁石の温度(T2,T3)を推定する、請求項10に記載の温度計測装置。
    It has a first temperature sensor (82) as the temperature sensor for measuring the temperature (T1) of the outer peripheral surface of the rotor, and a second temperature sensor (88) for measuring the temperature of the inner peripheral surface of the rotor. And
    The temperature measuring device according to claim 10, wherein the estimating unit estimates the temperature (T2, T3) of the permanent magnet based on the temperature measured by the first temperature sensor and the second temperature sensor.
PCT/JP2020/018325 2019-05-07 2020-04-30 Temperature measuring device WO2020226128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019087729A JP7279499B2 (en) 2019-05-07 2019-05-07 temperature measuring device
JP2019-087729 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020226128A1 true WO2020226128A1 (en) 2020-11-12

Family

ID=73044234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018325 WO2020226128A1 (en) 2019-05-07 2020-04-30 Temperature measuring device

Country Status (2)

Country Link
JP (1) JP7279499B2 (en)
WO (1) WO2020226128A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144147A (en) * 2011-01-12 2012-08-02 Pacific Ind Co Ltd Tire sensor unit and tire condition monitoring system
JP2013182317A (en) * 2012-02-29 2013-09-12 Pacific Ind Co Ltd Radio communication system for rotor
JP2015002618A (en) * 2013-06-14 2015-01-05 本田技研工業株式会社 Rotor of rotary electrical machine
JP2016088111A (en) * 2014-10-29 2016-05-23 ヤンマー株式会社 helicopter
CN108768087A (en) * 2018-03-30 2018-11-06 中科矿山设备有限公司 Large-scale outer rotor permanent magnet motor p-m rotor wireless temperature monitoring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144147A (en) * 2011-01-12 2012-08-02 Pacific Ind Co Ltd Tire sensor unit and tire condition monitoring system
JP2013182317A (en) * 2012-02-29 2013-09-12 Pacific Ind Co Ltd Radio communication system for rotor
JP2015002618A (en) * 2013-06-14 2015-01-05 本田技研工業株式会社 Rotor of rotary electrical machine
JP2016088111A (en) * 2014-10-29 2016-05-23 ヤンマー株式会社 helicopter
CN108768087A (en) * 2018-03-30 2018-11-06 中科矿山设备有限公司 Large-scale outer rotor permanent magnet motor p-m rotor wireless temperature monitoring apparatus

Also Published As

Publication number Publication date
JP2020183888A (en) 2020-11-12
JP7279499B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
KR20080009712A (en) Bearing assembly with integrated sensor system
US6879149B2 (en) Wheel support bearing assembly
JP4963006B2 (en) Wireless sensor system and wheel bearing device with wireless sensor
US9950701B2 (en) Tire pressure sensor with included position sensor
WO2009055326A1 (en) Drive torque sensing wheel end
WO2020226128A1 (en) Temperature measuring device
JP2006138873A (en) Rolling bearing unit with rotating speed detector
WO2017051881A1 (en) Rolling bearing unit for supporting wheel
KR20050014751A (en) Tire information detecting device
JP2006005978A (en) Wireless sensor system and bearing device with wireless sensor
JP2003121454A (en) Rolling bearing unit having rotational speed detector
JP2006189125A (en) Constant velocity universal joint with temperature sensor
JP2019053013A (en) Wheel speed detector and in-wheel motor drive device
CN110293946A (en) In-wheel motor drive unit
JP2008271644A (en) Generator-equipped bearing for wheel
JP2017159877A (en) Driving device
JP2006003268A (en) Bearing device for wheel with built-in load sensor
JP4106893B2 (en) Rolling bearing unit with sensor
WO2005028218A1 (en) Wheel bearing apparatus having wireless sensor
KR20140076441A (en) Apparatus for sensing wheel speed for in-wheel motor
WO2018192454A1 (en) Automobile power steering sensor
JP2004263716A (en) Sensor assembly, sealing device and rolling bearing device
JP3790375B2 (en) Wheel bearing
JP2005301645A (en) Wireless sensor system and bearing device with wireless sensor
KR100846058B1 (en) Senso ring clamping band for constant velocity joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20801717

Country of ref document: EP

Kind code of ref document: A1