WO2020225951A1 - Apparatus for producing radionuclide and method for producing radionuclide - Google Patents

Apparatus for producing radionuclide and method for producing radionuclide Download PDF

Info

Publication number
WO2020225951A1
WO2020225951A1 PCT/JP2020/005352 JP2020005352W WO2020225951A1 WO 2020225951 A1 WO2020225951 A1 WO 2020225951A1 JP 2020005352 W JP2020005352 W JP 2020005352W WO 2020225951 A1 WO2020225951 A1 WO 2020225951A1
Authority
WO
WIPO (PCT)
Prior art keywords
radionuclide
fluid
raw material
radiation
circulation path
Prior art date
Application number
PCT/JP2020/005352
Other languages
French (fr)
Japanese (ja)
Inventor
田所 孝広
上野 雄一郎
祐子 可児
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP20802005.7A priority Critical patent/EP3968342B1/en
Priority to US17/601,467 priority patent/US20220199277A1/en
Publication of WO2020225951A1 publication Critical patent/WO2020225951A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/12Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by electromagnetic irradiation, e.g. with gamma or X-rays
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0036Molybdenum
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0089Actinium

Definitions

  • the present invention relates to an apparatus for producing a radionuclide using an accelerator, and in particular, a radionuclide that emits alpha rays typified by actinium 225 (Ac-225), which is in great demand as a raw material for a therapeutic drug, is compact and lightweight.
  • the present invention relates to a radionuclide production apparatus capable of efficiently producing the apparatus.
  • Actinium 225 (Ac-225), a nuclide that emits alpha rays, which has been conventionally used for research and development as a raw material nuclide for therapeutic drugs, is produced by decay from the parent nuclide, thorium 229 (Th-229). ing.
  • the facilities that can supply clinically available Ac-225 are the Institute for Transuranium Elements (ITU) in Düsseldorf, Germany, and the Oak Ridge National Laboratory (ORNL) in the United States. And, there are only three places in the world of the Institute of Physics and Power Engineering (IPPE) of the Russian National Science Center in Obninsk, Russia.
  • Th-229 is not found in nature and is produced by the collapse of uranium-233 (U-233), but due to nuclear protection, U-233 will not be manufactured in the future, so the world's production capacity is currently high. , Only the amount produced by the collapse of Th-229 produced by the collapse of U-233 held in the world. Although this amount is sufficient for use in preclinical studies and the like, it is expected that a large amount will be insufficient in the future, and production using an accelerator is desired.
  • the naturally occurring radium-226 (Ra-226) is irradiated with cyclotron-accelerated protons, and Ra emits two neutrons for each irradiated proton.
  • a production method using the -226 (p, 2n) Ac-225 reaction is known from Patent Document 1 and the like.
  • tests of this manufacturing method are underway at ORNL and the National Institutes for Quantum and Radiological Science and Technology, but have not been commercialized.
  • the manufacturing method using a cyclotron has a problem that mass production cannot be performed even if the Ra-226 target is thickened because the range of the accelerated protons in the Ra-226 target is short.
  • this manufacturing method loses most of the accelerated proton energy in the target, which raises the temperature of the target, but it is difficult to remove the heat, so the current value and energy are improved for mass production. There are problems such as not being able to make it.
  • the Ra-226 target is irradiated with high-speed neutrons, and two neutrons are emitted for each irradiated neutron.
  • Ra-226 (n, 2n) Ra-225 A method for producing radium-225 (Ra-225) by the reaction and producing Ac-225 by beta decay of the obtained Ra-225 is being studied. Accelerated neutrons are generated by irradiating deuterons accelerated by a cyclotron to a carbon target or a target such as a metal that has occluded tritium. Fast neutrons have a long range in Ra-226.
  • Patent Document 2 discloses a purification method in which an Ra-226 target containing Ac-225 is dissolved in nitric acid and then Ac-225 is separated and extracted from Ra-226 by chromatography.
  • Patent Documents 3 and 4 disclose a method of irradiating a target for braking radiation with electrons accelerated by a small electron beam accelerator to generate braking radiation ( ⁇ -rays), and irradiating the raw material with the generated braking radiation. ing.
  • ⁇ -rays braking radiation
  • neutrons can be emitted from the raw material by the ( ⁇ , n) reaction to produce a desired radionuclide.
  • molybdenum 99 Mo-99
  • Mo-99 molybdenum 100
  • Te-99m technetium-99m
  • Te-99m is used for applications such as being administered to a subject during imaging with a single-photon emission-section imaging device (SPECT).
  • SPECT single-photon emission-section imaging device
  • Patent Documents 3 and 4 are configured to heat the raw material, move the vaporized technetium oxide by flowing it with a gas, and separate the participating technetium from the gas in order to take out the generated Te-99m.
  • the method of producing a desired radionuclide by irradiating the raw material target with protons or neutrons described in Patent Document 1 or the like raises the temperature of the raw material target. Therefore, it is necessary to cool the raw material target, but it is not easy to cool the raw material target while the accelerator is irradiating protons or neutrons. Therefore, it is difficult to perform continuous irradiation. Further, since the desired radionuclide is generated on the surface or inside of the raw material target such as a plate, it is necessary to take out the raw material target and dissolve it in order to extract it, and during that time, it is necessary to stop the irradiation of protons or the like. ..
  • the raw material target is heated to the boiling point of the radionuclide to be taken out or higher while being placed at the position where the braking radiation is irradiated, and the vaporized radionuclide is flowed with gas to separate the radionuclide.
  • the boiling point of the radionuclide to be extracted must be higher than the boiling point of the raw material, and the combination of the raw material and the radionuclide to be extracted is limited.
  • Patent Documents 1, 3 and 4 it was difficult for the manufacturing methods of Patent Documents 1, 3 and 4 to improve the manufacturing efficiency.
  • An object of the present invention is to efficiently produce a radionuclide.
  • the radionuclide production apparatus of the present invention irradiates a circulation path for circulating a fluid containing a raw material and at least a part of the circulation path to generate a first radionuclide from the raw material.
  • a substance containing at least a part of the first radionuclide and the second radionuclide generated from the first radionuclide is extracted from the radiation generator and the fluid circulating in the circulation path, and the remaining raw material. It has a separation device that returns the fluid containing the above to the circulation path.
  • the raw material by circulating the fluid containing the raw material, the raw material can be supplied to the position where the radiation is irradiated, and after the irradiation, the desired radionuclide can be separated by moving from the irradiation position to the separation device. Further, since the circulating fluid can be cooled or heated at a position different from the irradiation position to control the temperature, the radionuclide can be efficiently produced at a predetermined temperature.
  • the radionuclide production apparatus of the present embodiment includes a circulation path 21 for circulating a fluid 20 containing a raw material, a radiation generator 50, and a separation apparatus 30.
  • the manufacturing apparatus irradiates the fluid 20 with radiation 12 from the radiation generator 50 in the middle of the circulation path while circulating the fluid 20 containing the raw material along the circulation path 21, and the raw material in the fluid 20. Produces a first radionuclide from. Further, while the fluid 20 is circulated along the circulation path 21, the separator 30 uses at least one of the first radionuclide and the second radionuclide generated from the first radionuclide in the fluid 20. The substance containing the portion is taken out, and the fluid 20 containing the remaining raw materials is returned to the circulation path and circulated.
  • the raw material is circulated while the fluid 20 containing the raw material is circulated, the raw material is irradiated in the middle of the circulation, the desired radionuclide is taken out, and the remaining raw material is returned to the circulation path again.
  • radiation can be continuously irradiated to generate a desired radionuclide, and the generated radionuclide can be taken out from the fluid 20. Therefore, the production efficiency of radionuclides can be improved.
  • the radionuclide production apparatus of the present embodiment has a simple structure, the raw material that has not been converted into the radionuclide can be repeatedly circulated. Therefore, the circulation path serves as a supply mechanism for the raw material and the radionuclide. Since it also functions as a moving mechanism for taking out the radionuclide and also as a storage mechanism for raw materials and generated radionuclides, the device configuration can be simplified.
  • the fluid 20 can be constantly circulated, it is possible to prevent an excessive temperature rise of the raw material due to irradiation. Further, since the cooling device and the heating device of the fluid 20 can be easily arranged in the region where the radiation is not irradiated in the middle of the circulation path, it is easy to cool or heat the temperature of the fluid 20 to a desired temperature. Can be done.
  • the production amount of the radionuclide can be easily adjusted by adjusting the circulation speed of the fluid 20 and the concentration of the raw material contained in the fluid 20 and adjusting the extraction amount of the radionuclide. can do.
  • the radiation generator 50 may be any device as long as it can irradiate the fluid 20 with radiation, and for example, an accelerator that accelerates charged particles can be used.
  • an accelerator that accelerates charged particles can be used.
  • an electron beam accelerator, a cyclotron, a synchrotron, and a cyclosynchrotron can be used.
  • the electron beam accelerator that emits the accelerated electron beam is suitable for a small radionuclide production apparatus because it can be made smaller and simpler than other accelerators.
  • a linear electron beam accelerator is suitable because of its small size.
  • the radiation generator 50 can use an electron beam accelerator 1 and a holding unit 11a that holds the braking radiation target 11 at a position where the electron beam emitted from the electron beam accelerator is irradiated.
  • the fluid 20 can be irradiated with the braking radiation ( ⁇ -rays) 12 generated from the braking radiation target 11 irradiated with the electron beam. Therefore, by irradiating the raw material with one braking radiation ( ⁇ -ray), 1 Radionuclides can be produced from raw materials by ( ⁇ , n) reactions that generate neutrons.
  • any one of a dissolved solution in which the raw material is dissolved in a solvent, a dispersion solution in which the raw material is dispersed in the solvent, and a dispersed gas in which the raw material is dispersed in a gas is used. be able to.
  • the raw material may be any material that produces radionuclides by irradiation with radiation.
  • any of Ra-226 (the number after the element symbol indicates the mass number), Mo-100, Zn-68, Ge-70, Zr-91, Pd-106, and Hf-178.
  • Zirconium chloride, palladium hydride, hafnium chloride, hafnium carbide and the like can be used as raw materials.
  • any solvent that can dissolve the raw material may be used.
  • the raw material is Ra-226, an aqueous solution, a hydrochloric acid solution, or a nitric acid solution can be used as the fluid 20.
  • a slurry in which raw material particles are dispersed can be used by using a solvent that does not dissolve the raw materials.
  • an inert gas in which fine particles of the raw material are dispersed can be used. Further, the gas containing the vapor of the raw material may be used as the fluid 20.
  • the raw material is radium-226 (Ra-226), and an aqueous solution thereof, a hydrochloric acid solution or a nitrate solution is used as the fluid 20, and a radiation generator using an electron beam accelerator is used.
  • radium-225 Ra-225
  • Ra-225 decays in the fluid 20 to become actinium 225 (Ac-225) as the second radionuclide.
  • the separation device is configured to separate actinium 225 (Ac-225) from the fluid 20.
  • the reaction cross section (Ra-226 ( ⁇ , n) Ra-225) of the ( ⁇ , n) reaction that produces Ra-225 from Ra-226 irradiates Ra-226 with accelerated protons, and 2 Since it is about the same as the reaction cross section of the method (Ra-226 (p, 2n) Ac-225) for directly producing Ac-225 by the reaction of emitting neutrons, the production efficiency can be maintained.
  • the raw material is molybdenum 100 (Mo-100) or molybdenum trioxide 100
  • the hydrochloric acid or nitrate solution thereof is used as the fluid 20
  • neutron rays are irradiated from the radiation generator.
  • (N, 2n) reaction can generate molybdenum 99 (Mo-99) in the fluid 20 as the first radioactive nuclei.
  • Mo-99 decays to technetium-99m (Te-99m) as the second radionuclide.
  • the separation device 30 is configured to separate Te-99m from the fluid 20.
  • the separation device 30 may be any structure as long as it can extract at least a part of the first radionuclide and the second radionuclide.
  • a column filled with a stationary phase (or carrier) is used as the separation device 30, and the raw material and the first radionuclide or the second radionuclide are separated and taken out by chromatography by passing the column through the fluid 20.
  • the configuration is such that the first radionuclide or the second radionuclide is extracted from the part 31.
  • the liquid containing the raw material after separation is returned to the circulation loop 21 again.
  • the separation device 30 adds a material that binds to and precipitates the first radionuclide and the second radionuclide to the fluid 20, and collects and recovers the precipitate to obtain the first radionuclide and the second radionuclide.
  • the structure may be such that the liquid containing the raw material that has not been taken out and precipitated is returned to the circulation loop 21.
  • the separator 30 heats the first radionuclide or the second radionuclide above the boiling point, recovers the vapor and cools the first radionuclide or the second radionuclide.
  • the radionuclide may be taken out, and the solvent may be added again to the raw material that has not become vapor to return it to the circulation loop 21 as a slurry.
  • the target 11 for braking radiation may be any one as long as it generates braking radiation by irradiation with an electron beam 10, and for example, a metal having a large atomic number such as tungsten, platinum, lead, or bismuth is used. ..
  • Embodiment 1 The configuration of the radionuclide production apparatus of the first embodiment will be described with reference to FIG.
  • the radionuclide production apparatus of the present embodiment irradiates the target 11 for braking radiation held by the holding portion 11a with the electron beam 10 accelerated by the electron beam accelerator 1 as shown in FIG. ⁇ -ray) 12 is generated.
  • a pump 22 for circulating the fluid 20 and a separation device 30 for separating desired radionuclides are arranged in the middle of the circulation path (hereinafter referred to as a circulation loop) 21.
  • the fluid (here, the solution) 20 containing the raw material circulates in the circulation loop 21.
  • the fluid 20 containing the raw material is irradiated with the braking radiation 12 emitted from the braking radiation target 11 when passing through the circulation loop 21 arranged close to the braking radiation target 11.
  • the first radionuclide is generated from the raw material nuclide in the fluid 20 by the ( ⁇ , n) reaction that generates one neutron by the irradiation of one braking radiation.
  • the fluid 20 containing the generated radionuclide and the raw material further moves in the circulation loop 21, and during that time, the first radionuclide partially collapses and changes to the second radionuclide.
  • the fluid 20 reaches the separation device 30, and at least a part of the first radionuclide and the second radionuclide is taken out from the extraction unit 31 by the separation device 30.
  • the fluid containing the first radionuclide and the second radionuclide and the raw material that have not been taken out moves again through the circulation loop 21 and is irradiated with the braking radiation 12.
  • Ra-226 can be used as a raw material, and an aqueous solution, a hydrochloric acid solution, or a nitric acid solution of the raw material can be used as the fluid 20.
  • the fluid 20 containing the raw material Ra-226 repeatedly circulates in the circulation loop 21, and each time it is irradiated with the braking radiation 12, the raw material nuclides Ra-226 to Ra-225 in the fluid 20 are released by the ( ⁇ , n) reaction. Will be generated.
  • the Ra-225 produced undergoes beta decay with a half-life of 14.8 days and becomes partly a progeny nuclide, Ac-225, during circulation. Therefore, the fluid 20 flowing through the circulation loop 21 includes the raw material Ra-226 and the generated Ra-225 and Ac-225.
  • the separation device 30 takes out Ac-225 by a column or the like.
  • Ac-225 which is a raw material for therapeutic agents, can be produced by the production apparatus of the present embodiment.
  • Fig. 2 shows the theoretical value of the reaction cross section of the reaction in which Ra-226 is irradiated with gamma rays to generate one neutron. From FIG. 2, it can be seen that Ra-225 can be generated by irradiating Ra-226 with ⁇ -rays (radiation) 12 having an energy equal to or higher than the threshold value.
  • the electron beam accelerator 1 can be downsized as compared with the proton accelerator or the heavy particle accelerator if the acceleration energy and the acceleration current value are the same.
  • the formation cross-sectional area of the ( ⁇ , n) reaction that produces Ra-225 from Ra-226 is the method of irradiating Ra-226 with accelerated protons (Ra-226 (p, 2n) Ac-225) Ac- It is comparable to the cross-sectional area that produces 225. Therefore, the radionuclide production apparatus of the present embodiment using the electron beam accelerator 1 can be made smaller than the radionuclide production apparatus using the proton accelerator or the heavy particle accelerator.
  • the neutrons generated from the braking radiation target are relatively small, and most of the braking radiation is easily shielded by lead or the like. Therefore, the braking radiation target and its surroundings are shielded. Therefore, it is possible to reduce the size of the radionuclide production apparatus.
  • the electron beam accelerator 1 is shown to be smaller than the circulation loop 21, but the actual electron beam accelerator 1 has a length of several meters, whereas the circulation loop 21 has a length of several meters.
  • the diameter of the loop can be within 1 m.
  • a proton accelerator or a heavy particle accelerator as the radiation generator.
  • a proton accelerator or a heavy particle accelerator as the radiation generator.
  • the above-mentioned (Ra-226 (p, 2n) Ac-225) reaction may be used, or the (Ra-226 (n, 2n) Ra-225) reaction may be used.
  • Ra-226, which is a raw material nuclide in the fluid 20 remains as a raw material nuclide without nuclear reaction with the braking radiation 12. Further, since it is difficult to separate and purify Ra-225 produced by the reaction between the braking radiation 12 and the raw material from Ra-226 in the separation device 30, Ra-226 and Ra-225 are fluid 20. It circulates in the state contained in. Although Ra-225 is also irradiated with braking radiation 12 each time it circulates, the amount of Ra-226 in the fluid 20 is very small compared to Ra-226, so the nuclides from Ra-225 and braking radiation. The amount of nuclides produced by the reaction is very small and does not matter.
  • the fluid 20 undergoes beta decay while circulating in the circulation loop 21 and is transformed into Ac-225, and each time the fluid 20 passes through the separation device 30, Ac-225 is separated from the take-out unit 31. Taken out. Therefore, Ac-225 can be continuously or as needed to be taken out from the take-out unit 31, and the circulation loop 21 can also have a function of storing raw material nuclides.
  • Ac-225 which is useful as a raw material for therapeutic drugs, becomes Fr-221, which is a progeny nuclide, with a half-life of 10.0 days. Fr-221 becomes At-217 with a half-life of 4.9 minutes, and At-217 becomes Bi-213 with a half-life of 32 ms.
  • Ac-225 and its progeny nuclides are useful as raw materials for therapeutic drugs, but Ra-226 and Ra-225 are unnecessary nuclides as raw materials for therapeutic drugs because they are not nuclides that emit alpha rays. , Separation and purification with Ac-225 is required. In the radiation generator of the present embodiment, Ra-226 and Ra-225 can be separated from Ac-225, circulated again, and reused.
  • the radiation generator of the first embodiment can efficiently produce radionuclides by irradiating the radiation while circulating the fluid containing the raw material.
  • Embodiment 2 An example of the radionuclide production apparatus of the second embodiment will be described with reference to FIG.
  • the radionuclide production apparatus of the second embodiment has the same configuration as the apparatus of FIG. 1 of the first embodiment, but in the second embodiment, a linear region 21a is provided in the circulation loop 21, and the central axis 12a of the braking radiation 12 is formed. It differs from the first embodiment in that the radiation generator 50 is arranged so as to pass through the linear region 21a of the circulation loop 21.
  • the configuration of the radionuclide production apparatus of the second embodiment is larger than the case where the braking radiation is irradiated so that the distance that the braking radiation 12 passes through the fluid 20 in the circulation loop 21 crosses the circulation loop 21 as shown in FIG. Due to the lengthening, the amount of the first radionuclide produced from the raw material in the fluid 20 can be increased. As a result, the production efficiency of radionuclides can be increased. Hereinafter, it will be described in more detail.
  • the radiation generator 50 of the second embodiment generates braking radiation by irradiating the target 11 for braking radiation with the electron beam 2 accelerated by the electron beam accelerator 1.
  • the target 11 for braking radiation is irradiated with an electron beam having a relatively high energy such as the electron beam 2 emitted from the electron beam accelerator 1
  • the central axis 12a having the highest intensity of the braking radiation 12 generated is the electron beam. It coincides with the irradiation axis direction of.
  • a part of the circulation loop 21 (straight line region 21a) is installed so that its longitudinal direction coincides with the central axis 12a where the braking radiation 12 is strongly generated.
  • the range of the braking radiation 12 in the fluid (solution) 20 containing the raw material is very long as compared with the range of charged particles such as protons or deuterons. Therefore, by installing a part of the circulation loop 21 (straight line region 21a) so that the longitudinal direction thereof coincides with the central axis 12a of the braking radiation 12, the amount of reaction between the raw material nuclide in the circulation loop 21 and the braking radiation can be increased. To increase. Therefore, when the fluid 20 contains Ra-226 as a raw material as in the example described in the first embodiment, the amount of Ra-225 produced by the manufacturing apparatus of the second embodiment is larger than that of the manufacturing apparatus of the first embodiment. To increase.
  • the circulation loop 21 is provided with a linear region 21a so that the longitudinal direction coincides with the central axis 12a of the braking radiation 12, but the configuration is not limited to this, and the braking radiation 12 circulates. It is possible to provide another structure in the circulation loop 21 for increasing the distance through the loop 21.
  • the intensity distribution of the braking radiation 12 is the strongest in the axial direction (central axis 12a) of the electron beam 10 centering on the position where the electron beam 10 irradiates the target 11 for braking radiation, and the angle formed by the central axis 12a.
  • the diameter of the circulation loop 21 may be increased in the direction of the central axis 12a because it becomes weaker as the value increases.
  • Embodiment 3 An example of the radionuclide production apparatus of the third embodiment will be described with reference to FIG.
  • the radionuclide production apparatus of the third embodiment has the same configuration as the apparatus of the first embodiment, but is different from the first embodiment in that the circulation loop 21 is provided with the gas discharge port 40.
  • the discharge port 30 By providing the discharge port 30, it is possible to release the gaseous nuclide generated by the decay of the radionuclide contained in the fluid 20. As a result, it is possible to suppress the inclusion of gas in the fluid 20, and the fluid 20 can be stably circulated by the pump 22. The details will be described below.
  • Ra-226 When Ra-226 is used as the raw material nuclide in the circulation loop for the radionuclide production solution, it undergoes alpha decay with a half-life of 1600 years and produces radon 222 (Rn-222).
  • Rn-222 belongs to a rare gas element and is known to exist as a monatomic molecule gas in the standard state. For example, assuming that the solvent of the fluid 20 is water at 20 ° C., the solubility of Rn-222 in water is 24.5 ml per 100 ml, so that an amount of Rn-222 that is insoluble in water is generated in the circulation loop 21. In that case, it will exist as a gas in the fluid 20.
  • the pump 22 may not operate normally when a gas is mixed with the fluid 20. Further, since the volume of the gas is large, when the gas is mixed with the fluid 20, the amount of the raw material nuclide Ra-226 contained in the fluid 20 in the region irradiated with the braking radiation 12 is reduced. Therefore, the amount of Ra-225 produced from the raw material is reduced.
  • the gas contained in the fluid 20 is discharged by providing the discharge port 40 in the circulation loop 21.
  • the above-mentioned inconvenience caused by the gas being mixed in the fluid 20 can be eliminated, and a desired nuclide can be stably produced.
  • the gas is not always discharged from the discharge port 40, and may be periodically or irregularly depending on the amount of gas nuclides produced such as Rn-222 and the solubility of the gas in the solution of the fluid 20. It may be released at a regular release timing.
  • Embodiment 4 An example of the radionuclide production apparatus of the fourth embodiment will be described with reference to FIGS. 5 and 6.
  • the radionuclide production apparatus of the fourth embodiment has the same configuration as that of the first embodiment, but all or a part 23 of the piping of the circulation loop 21 is made of the material of the braking radiation target 11, and the braking radiation target 11 It is different from the first embodiment in that it also serves as.
  • the radiation generator 50 irradiates the electron beam 10 toward the piping of the circulation loop 21 made of a material that generates braking radiation. As a result, braking radiation 12 is generated from the piping, and the fluid 20 flowing inside the circulation loop 21 is irradiated.
  • a metal having a large atomic number such as tungsten or platinum can be used as the material constituting all or part of the pipe 23 that also serves as the braking radiation target 11 of the circulation loop 21.
  • the distance between the position where the braking radiation 12 is generated (target 11) and the raw material nuclide of the fluid 20 is shortened.
  • the intensity of the braking radiation 12 irradiated to the raw material nuclide is increased, so that the amount of the desired radionuclide (for example, Ra-225) produced is increased.
  • the energy of the electron beam 10 is lost, so that the temperature of the target 11 rises, but since the fluid 20 circulates, the target 11 can be cooled by the fluid 20. That is, the fluid 20 cools the target 11 by receiving heat by heat conduction at a position in contact with the braking radiation target 11 and dissipating the heat received in the region of the circulation loop 21 which does not also serve as the target 11. be able to.
  • a cooling unit 24 for cooling the fluid 20 may be arranged in the middle of the circulation loop 21. As a result, the braking radiation target 11 can be efficiently cooled by the fluid 20.
  • a temperature adjusting unit having both heating and cooling functions may be arranged instead of the cooling unit 24, a temperature adjusting unit having both heating and cooling functions may be arranged.
  • the temperature adjusting unit 24 heats or cools the fluid 20 according to the heat generation temperature of the braking radiation target 11, and the temperature at which the radionuclide production solution does not vaporize or the temperature at which the solubility of the raw material nuclide is maximized. Can be kept in.
  • a control unit 60 that controls the temperature adjusting unit 24 and the pump 22 may be arranged. As shown in FIG. 6, the control unit 60 controls the operation and stop times of the pump 22 and the flow rate during operation. Further, the control unit 60 controls the operation of the temperature control unit 24 to heat or cool the fluid 20. In this way, the control unit 60 can adjust the temperature of the fluid 20 to a predetermined temperature range by controlling both the pump 22 and the temperature control unit 24.
  • control unit 60 may adjust the flow rate of the pump 22 according to the amount of radionuclides to be taken out from the separation device 30. That is, when it is desired to reduce the amount of radionuclides taken out from the separation device 30, the control unit 60 reduces the flow rate of the pump 22. By adjusting the flow rate of the pump 22 in this way, the production amount can be controlled.
  • Embodiment 5 An example of the radionuclide production apparatus of the fifth embodiment will be described with reference to FIG.
  • the radionuclide production apparatus of the fifth embodiment has the same configuration as the apparatus of the first embodiment, but differs from the first embodiment in that a plurality of radiation generators 50 are provided around the circulation loop 21. ..
  • Each of the plurality of radiation generators 50 irradiates the circulation loop 21 with radiation.
  • the circulation loop 21 is irradiated with braking radiation from two radiation generators 50 having the same structure as shown in FIG. 7, it is doubled as compared with the case where one radiation generator 50 of FIG. 1 is used. Since the amount of radionuclides (for example, Ra-225) can be produced, the production efficiency can be improved.
  • the apparatus of the present embodiment 5 includes a plurality of radiation generators 50, even if one radiation generator 50 fails, the production can be continued using the other one, so that the apparatus can be generated. The risk of not being able to produce nuclides at all can be reduced.
  • all or a part of the piping of the circulation loop 21 is made of a metal having a large atomic number such as tungsten or platinum, and a plurality of piping of the circulation loop 21 is provided. It may be configured to be also used as the braking radiation target 11 at a location.
  • Embodiment 6 An example of the radionuclide production apparatus of the sixth embodiment will be described with reference to FIG.
  • the radionuclide production apparatus of the sixth embodiment has the same configuration as the apparatus of the first embodiment, but is implemented in that the circulation loop 21 is provided with a detour circuit 25 for bypassing the separation device 30 and a flow path switcher 27. It is different from Form 1.
  • the radionuclide production apparatus of the first embodiment has a configuration in which the fluid 20 passes through the separation device 30 each time it circulates in the circulation loop 21, the radionuclide is always taken out from the separation device 30 during the operation of the apparatus.
  • the detour circuit 25 is provided, and the flow path switch 27 can select whether to flow the fluid 20 through the detour circuit 25 or the separation device 30.
  • the timing of taking out the radionuclide can be controlled.
  • Ac-225 can be produced from the raw material Ra-226 as in the following example.
  • FIG. 9 shows an example of the amounts of Ra-225 and Ac-225 in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with the braking radiation 12 for 20 hours, which is shorter than the half-life of Ra-225. Shown. In the example of FIG. 9, since the irradiation time of the braking radiation 12 is sufficiently shorter than the half-life of Ra-225, the amount of Ra-225 depends on the time while the braking radiation 12 is being irradiated.
  • the flow path switch 27 is set so that the fluid 20 is passed through the separation apparatus 30 during and after the irradiation, and Ac-225 is continuously separated and taken out. It can be taken out from the part 31.
  • the radionuclide production apparatus of the present embodiment can intermittently take out Ac-225.
  • FIG. 10 shows Ra-225 and Ac- in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with the braking radiation 12 for 20 hours, which is shorter than the half-life of Ra-225, as in FIG. An example of the amount of 225 is shown.
  • the increase and decrease of Ra-225 in FIG. 10 are the same as in FIG. Further, in FIG. 10, it is the same as in FIG. 9 that Ac-225 increases and reaches the maximum amount about 428 hours after the irradiation of the braking radiation 12.
  • the fluid 20 is passed through the detour 25 by the flow path switcher 27 for 428 hours after the irradiation of the braking radiation 12, but the fluid 20 is separated by the flow path switcher 27 at 428 hours after the irradiation. It is passed through the apparatus 30 and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (first separation and purification).
  • the fluid 20 is flowed to the detour 25 by the flow path switch 27, or the circulation of the circulation loop 21 is stopped.
  • Ac-225 is generated by the beta decay of Ra-225 already generated in the fluid 20 even if the fluid 20 is not irradiated with the braking radiation 12, so that it increases again as shown in FIG. Approximately 428 hours after the first removal, the maximum amount is reached again. Therefore, in the example of FIG. 10, the fluid 20 is flowed through the separation device 30 by the flow path switch 27, and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (second separation and purification).
  • the fluid 20 is flowed through the detour 25 by the flow path switch 27, or the circulation of the circulation loop 21 is stopped, and about 428 hours after the second withdrawal, the fluid 20 is passed by the flow path switch 27. Is flowed through the separation device 30, and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (third separation and purification).
  • the radiation generator 50 is not required while the Ac-225 is continuously or intermittently taken out after the braking radiation 12 is irradiated, as shown in FIG.
  • the circulation loop 21 By moving the circulation loop 21 from the front of the radiation generator 50 and installing another raw material nuclide 15 or another circulation loop 21 in the moved portion, another nuclide or a radionuclide in the other circulation loop 21 is installed.
  • the form of the other raw material nuclide 15 may be solid or liquid.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Particle Accelerators (AREA)

Abstract

The purpose of the present invention is to efficiently produce a radionuclide. In the present invention, while a fluid including a raw material is circulated along a circulation path, a first radionuclide is generated in the fluid from the raw material by irradiating the fluid with radiation midway along the circulation path. While the fluid is circulated along the circulation path, a substance including at least a portion from among the first radionuclide and a second radionuclide generated from the first radionuclide is then taken from the fluid, and the remaining fluid including the raw material is returned to the circulation path and recirculated.

Description

放射性核種製造装置、および、放射性核種製造方法Radionuclide production equipment and radionuclide production method
 本発明は、加速器を利用した放射性核種の製造装置に係り、特に、治療用薬剤の原料として需要の大きいアクチニウム225(Ac-225)に代表されるアルファ線を放出する放射性核種を、小型軽量な装置で効率良く製造することが可能な放射性核種の製造装置に関する。 The present invention relates to an apparatus for producing a radionuclide using an accelerator, and in particular, a radionuclide that emits alpha rays typified by actinium 225 (Ac-225), which is in great demand as a raw material for a therapeutic drug, is compact and lightweight. The present invention relates to a radionuclide production apparatus capable of efficiently producing the apparatus.
 従来、治療用薬剤の原料核種として研究開発に利用されているアルファ線を放出する核種であるアクチニウム225(Ac-225)は、親核種であるトリウム229(Th-229)からの崩壊によって生産されている。現在、臨床に利用可能なのAc-225を供給可能な施設は、ドイツのカールスルーエにある超ウラン元素研究所(ITU:Institute for Transuranium Elements)、米国オークリッジ国立研究所(ORNL:Oak Ridge National Laboratory)、及び、ロシアのオブニンスクにあるロシア国立科学センタ物理エネルギ研究所(IPPE:Institute of Physics and Power Engineering)の世界に3カ所のみである。 Actinium 225 (Ac-225), a nuclide that emits alpha rays, which has been conventionally used for research and development as a raw material nuclide for therapeutic drugs, is produced by decay from the parent nuclide, thorium 229 (Th-229). ing. Currently, the facilities that can supply clinically available Ac-225 are the Institute for Transuranium Elements (ITU) in Karlsruhe, Germany, and the Oak Ridge National Laboratory (ORNL) in the United States. And, there are only three places in the world of the Institute of Physics and Power Engineering (IPPE) of the Russian National Science Center in Obninsk, Russia.
 Th-229は自然界には無く、ウラン233(U-233)からの崩壊により生成されるが、核防護の関係で、U-233が今後製造されないことから、世界での生産可能量は、現在、世界で保有されているU-233の崩壊により生成されるTh-229の崩壊により生成される量のみとなっている。この量は、臨床前試験等に用いるには十分であるが、今後、大量に不足することが予想されており、加速器を用いた製造が望まれている。 Th-229 is not found in nature and is produced by the collapse of uranium-233 (U-233), but due to nuclear protection, U-233 will not be manufactured in the future, so the world's production capacity is currently high. , Only the amount produced by the collapse of Th-229 produced by the collapse of U-233 held in the world. Although this amount is sufficient for use in preclinical studies and the like, it is expected that a large amount will be insufficient in the future, and production using an accelerator is desired.
 加速器を用いたAc-225製造に関しては、天然に存在するラジウム226(Ra-226)に、サイクロトロンで加速された陽子を照射し、照射された陽子1個に対し2個の中性子を放出させるRa-226(p,2n)Ac-225反応を利用する製造方法が特許文献1等により知られている。また、この製造方法の試験は、ORNLや量子科学技術研究開発機構において進められているが、商用化はされていない。サイクロトロンを用いた製造方法は、加速された陽子のRa-226ターゲット中での飛程が短いため、Ra-226ターゲットを厚くしても大量製造ができないという課題がある。また、この製造方法は、加速された陽子のエネルギーのほとんどをターゲット中で失うため、ターゲットの温度が上昇するが、その除熱は困難であるため、大量製造のために電流値やエネルギーを向上させることができない等の課題がある。 Regarding the production of Ac-225 using an accelerator, the naturally occurring radium-226 (Ra-226) is irradiated with cyclotron-accelerated protons, and Ra emits two neutrons for each irradiated proton. A production method using the -226 (p, 2n) Ac-225 reaction is known from Patent Document 1 and the like. In addition, tests of this manufacturing method are underway at ORNL and the National Institutes for Quantum and Radiological Science and Technology, but have not been commercialized. The manufacturing method using a cyclotron has a problem that mass production cannot be performed even if the Ra-226 target is thickened because the range of the accelerated protons in the Ra-226 target is short. In addition, this manufacturing method loses most of the accelerated proton energy in the target, which raises the temperature of the target, but it is difficult to remove the heat, so the current value and energy are improved for mass production. There are problems such as not being able to make it.
 加速器を用いたAc-225の別の製造方法として、Ra-226ターゲットに高速中性子を照射し、照射した中性子1個に対して中性子2個を放出させるRa-226(n,2n)Ra-225反応によりラジウム225(Ra-225)製造し、得られたRa-225のベータ崩壊によってAc-225を製造する手法が検討されている。加速した中性子は、サイクロトロンにより加速した重陽子を、炭素のターゲットやトリチウムを吸蔵させた金属等のターゲットに照射することにより発生させる。高速中性子は、Ra-226中での飛程が長い。よって、原料であるRa-226を厚くすることにより、Ac-225を大量に製造できるが、大量に発生する高速中性子の遮蔽が必要なため、装置が大型になってしまうという課題がある。また、大量の高速中性子により、装置構造物全体が強く放射化されてしまうという課題もある。 As another method for producing Ac-225 using an accelerator, the Ra-226 target is irradiated with high-speed neutrons, and two neutrons are emitted for each irradiated neutron. Ra-226 (n, 2n) Ra-225 A method for producing radium-225 (Ra-225) by the reaction and producing Ac-225 by beta decay of the obtained Ra-225 is being studied. Accelerated neutrons are generated by irradiating deuterons accelerated by a cyclotron to a carbon target or a target such as a metal that has occluded tritium. Fast neutrons have a long range in Ra-226. Therefore, by thickening the raw material Ra-226, Ac-225 can be produced in large quantities, but there is a problem that the apparatus becomes large because it is necessary to shield the fast neutrons generated in large quantities. There is also a problem that the entire device structure is strongly activated by a large amount of fast neutrons.
 一方、特許文献2には、Ac-225を含むRa-226ターゲットを硝酸に溶解した後、クロマトグラフィを用いてAc-225をRa-226から分離抽出する精製方法が開示されている。 On the other hand, Patent Document 2 discloses a purification method in which an Ra-226 target containing Ac-225 is dissolved in nitric acid and then Ac-225 is separated and extracted from Ra-226 by chromatography.
 特許文献3、4には、小型の電子線加速器で加速された電子を制動放射線用ターゲットに照射して制動放射線(γ線)を発生させ、発生した制動放射線を原料に照射する方法が開示されている。これにより、(γ,n)反応によって、原料から中性子を放出させ、所望の放射性核種を製造することができる。この製造方法により、モリブデン100(Mo-100)を原料としてモリブデン99(Mo-99)を生成できる。さらにMo-99のベータ崩壊により、テクネチウム99m(Te-99m)を製造できる。Te-99mは、単一格子放射断面撮像装置(SPECT)での撮像の際に被検体に投与される等の用途に用いられる。 Patent Documents 3 and 4 disclose a method of irradiating a target for braking radiation with electrons accelerated by a small electron beam accelerator to generate braking radiation (γ-rays), and irradiating the raw material with the generated braking radiation. ing. As a result, neutrons can be emitted from the raw material by the (γ, n) reaction to produce a desired radionuclide. By this production method, molybdenum 99 (Mo-99) can be produced from molybdenum 100 (Mo-100) as a raw material. Furthermore, the beta decay of Mo-99 can produce technetium-99m (Te-99m). Te-99m is used for applications such as being administered to a subject during imaging with a single-photon emission-section imaging device (SPECT).
 上記特許文献3、4の装置は、生成したTe-99mを取り出すために、原料を加熱し、気化した酸化テクネリウムをガスで流して移動させ、ガスから参加テクネリウムを分離する構成である。 The devices of Patent Documents 3 and 4 are configured to heat the raw material, move the vaporized technetium oxide by flowing it with a gas, and separate the participating technetium from the gas in order to take out the generated Te-99m.
特表2007-508531号公報Special Table 2007-508531 特開2009-527731号公報Japanese Unexamined Patent Publication No. 2009-527731 特開2015-99117号公報JP-A-2015-99117 特開2016-80574号公報Japanese Unexamined Patent Publication No. 2016-80574
 特許文献1等に記載の陽子や中性子を原料ターゲットに照射することにより所望の放射性核種を生じさせる方法は、原料ターゲットの温度が上昇する。このため、原料ターゲットの冷却が必要であるが、加速器から陽子や中性子が照射されている最中の原料ターゲットを冷却するのは容易ではない。このため、連続照射を行うことは難しい。また、所望の放射性核種は、板状等の原料ターゲットの表面や内部に生じるため、抽出するためには原料ターゲットを取り出して溶解する必要があり、その間、陽子等の照射を停止させる必要がある。 The method of producing a desired radionuclide by irradiating the raw material target with protons or neutrons described in Patent Document 1 or the like raises the temperature of the raw material target. Therefore, it is necessary to cool the raw material target, but it is not easy to cool the raw material target while the accelerator is irradiating protons or neutrons. Therefore, it is difficult to perform continuous irradiation. Further, since the desired radionuclide is generated on the surface or inside of the raw material target such as a plate, it is necessary to take out the raw material target and dissolve it in order to extract it, and during that time, it is necessary to stop the irradiation of protons or the like. ..
 また、特許文献3,4の方法は、原料ターゲットを制動放射線が照射される位置に配置したままの状態で、取り出したい放射性核種の沸点以上に加熱し、気化した放射性核種をガスで流して分離する。放射線が照射されている最中の原料ターゲットを、取り出したい放射性核種の沸点以上まで加熱するのは容易ではない。そのため、原料へ放射線の連続照射しながら、放射線核種を取り出すことは難しい。また、取り出したい放射性核種の沸点が、原料の沸点よりも高い必要があり、原料と取り出す放射性核種との組み合わせが限られる。 Further, in the methods of Patent Documents 3 and 4, the raw material target is heated to the boiling point of the radionuclide to be taken out or higher while being placed at the position where the braking radiation is irradiated, and the vaporized radionuclide is flowed with gas to separate the radionuclide. To do. It is not easy to heat a raw material target that is being irradiated to above the boiling point of the radionuclide to be extracted. Therefore, it is difficult to extract radiation nuclides while continuously irradiating the raw material with radiation. In addition, the boiling point of the radionuclide to be extracted must be higher than the boiling point of the raw material, and the combination of the raw material and the radionuclide to be extracted is limited.
 上記のような理由により、特許文献1、3および4の製造方法は製造効率を向上させることは難しかった。 For the above reasons, it was difficult for the manufacturing methods of Patent Documents 1, 3 and 4 to improve the manufacturing efficiency.
 本発明の目的は、効率よく放射性核種を製造することにある。 An object of the present invention is to efficiently produce a radionuclide.
 上記の目的を達成するために、本発明の放射性核種製造装置は、原料を含む流体を循環させる循環路と、循環路の少なくとも一部に放射線を照射し、原料から第1の放射性核種を生じさせる放射線発生装置と、循環路を循環している流体から、第1の放射性核種および第1の放射性核種から生じた第2の放射性核種のうちの少なくとも一部を含む物質を取り出し、残りの原料を含む流体を循環路に戻す分離装置とを有する。 In order to achieve the above object, the radionuclide production apparatus of the present invention irradiates a circulation path for circulating a fluid containing a raw material and at least a part of the circulation path to generate a first radionuclide from the raw material. A substance containing at least a part of the first radionuclide and the second radionuclide generated from the first radionuclide is extracted from the radiation generator and the fluid circulating in the circulation path, and the remaining raw material. It has a separation device that returns the fluid containing the above to the circulation path.
 本発明によれば、原料を含む流体を循環させることにより、放射線が照射される位置に原料を供給できるとともに、照射後には照射位置から分離装置まで移動させて所望の放射性核種を分離できる。また、循環中の流体を、放射線の照射位置とは異なる位置で冷却または加熱して温度管理できるため、所定の温度で放射性核種を効率よく製造することができる。 According to the present invention, by circulating the fluid containing the raw material, the raw material can be supplied to the position where the radiation is irradiated, and after the irradiation, the desired radionuclide can be separated by moving from the irradiation position to the separation device. Further, since the circulating fluid can be cooled or heated at a position different from the irradiation position to control the temperature, the radionuclide can be efficiently produced at a predetermined temperature.
本発明の実施形態1の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 1 of this invention. Ra-226にガンマ線を照射して、中性子を1個発生させる反応の反応断面積の理論値を示すグラフである。It is a graph which shows the theoretical value of the reaction cross section of the reaction which irradiates Ra-226 with gamma ray and generates one neutron. 本発明の実施形態2の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 2 of this invention. 本発明の実施形態3の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 3 of this invention. 本発明の実施形態4の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 4 of this invention. 本発明の実施形態4の放射性核種製造装置におけるポンプの流量調整の一例である。This is an example of adjusting the flow rate of the pump in the radionuclide production apparatus according to the fourth embodiment of the present invention. 本発明の実施形態5の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 5 of this invention. 本発明の実施形態6の放射性核種製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radionuclide production apparatus of Embodiment 6 of this invention. Ra-226を含む流体20に、Ra-225の半減期よりも短い20時間だけ制動放射線12を照射した場合の、流体20中のRa-225とAc-225の量の一例を示すグラフである。It is a graph which shows an example of the amount of Ra-225 and Ac-225 in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with the braking radiation 12 for 20 hours shorter than the half-life of Ra-225. .. Ra-226を含む流体20に、Ra-225の半減期よりも短い20時間だけ制動放射線12を照射した後、間欠的にAc-225を分離した場合の、流体20中のRa-225とAc-225の量の一例を示すグラフである。Ra-225 and Ac in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with braking radiation 12 for 20 hours, which is shorter than the half-life of Ra-225, and then Ac-225 is intermittently separated. It is a graph which shows an example of the amount of -225. 本発明の実施形態6の放射性核種製造装置の循環ループ21を移動させて、他の原料核種15の製造を行う例を説明する図である。It is a figure explaining the example of moving the circulation loop 21 of the radionuclide production apparatus of Embodiment 6 of this invention, and producing another raw material nuclide 15.
 本発明の一実施形態について説明する。 An embodiment of the present invention will be described.
 本実施形態の放射性核種製造装置は、図1に示すように、原料を含む流体20を循環させる循環路21と、放射線発生装置50と、分離装置30とを備えて構成される。 As shown in FIG. 1, the radionuclide production apparatus of the present embodiment includes a circulation path 21 for circulating a fluid 20 containing a raw material, a radiation generator 50, and a separation apparatus 30.
 本実施形態では、この製造装置により、原料を含む流体20を循環路21に沿って循環させながら、循環路の途中で放射線発生装置50から放射線12を流体20に照射し、流体20中で原料から第1の放射性核種を生じさせる。さらに、流体20を循環路21に沿って循環させながら、分離装置30は、流体20の中から、第1の放射性核種および第1の放射性核種から生じた第2の放射性核種のうちの少なくとも一部を含む物質を取り出し、残りの原料を含む流体20を再び循環路に戻して循環させる。 In the present embodiment, the manufacturing apparatus irradiates the fluid 20 with radiation 12 from the radiation generator 50 in the middle of the circulation path while circulating the fluid 20 containing the raw material along the circulation path 21, and the raw material in the fluid 20. Produces a first radionuclide from. Further, while the fluid 20 is circulated along the circulation path 21, the separator 30 uses at least one of the first radionuclide and the second radionuclide generated from the first radionuclide in the fluid 20. The substance containing the portion is taken out, and the fluid 20 containing the remaining raw materials is returned to the circulation path and circulated.
 このように、本実施形態では、原料を含む流体20を循環させながら、その途中で放射線を照射し、さらに、所望の放射性核種を取り出し、残りの原料を再び循環路に戻すことにより、原料を含む流体20を常に循環させながら、連続して放射線を照射して所望の放射性核種を生じさせ、生じた放射性核種を流体20から取り出すことができる。よって、放射性核種の製造効率を向上させることができる。 As described above, in the present embodiment, the raw material is circulated while the fluid 20 containing the raw material is circulated, the raw material is irradiated in the middle of the circulation, the desired radionuclide is taken out, and the remaining raw material is returned to the circulation path again. While constantly circulating the containing fluid 20, radiation can be continuously irradiated to generate a desired radionuclide, and the generated radionuclide can be taken out from the fluid 20. Therefore, the production efficiency of radionuclides can be improved.
 また、本実施形態の放射性核種製造装置は、簡単な構成でありながら、放射性核種に変換されなかった原料は繰り返し循環させることができるため、循環路は、原料の供給機構として、かつ、放射性核種を取り出しのための移動機構として、さらには、原料や生成した放射性核種の保管機構としても機能するため、装置構成を簡素化できる。 Further, although the radionuclide production apparatus of the present embodiment has a simple structure, the raw material that has not been converted into the radionuclide can be repeatedly circulated. Therefore, the circulation path serves as a supply mechanism for the raw material and the radionuclide. Since it also functions as a moving mechanism for taking out the radionuclide and also as a storage mechanism for raw materials and generated radionuclides, the device configuration can be simplified.
 また、本実施形態の放射性核種製造装置では、流体20を常に循環させることができるため、放射線照射による原料の過度な温度上昇を防ぐことができる。また、循環路の途中であって、放射線が照射されない領域に流体20の冷却装置や加熱装置を容易に配置することができるため、流体20の温度を所望の温度まで冷却または加熱することも容易にできる。 Further, in the radionuclide production apparatus of the present embodiment, since the fluid 20 can be constantly circulated, it is possible to prevent an excessive temperature rise of the raw material due to irradiation. Further, since the cooling device and the heating device of the fluid 20 can be easily arranged in the region where the radiation is not irradiated in the middle of the circulation path, it is easy to cool or heat the temperature of the fluid 20 to a desired temperature. Can be done.
 また、本実施形態の放射性核種製造装置では、流体20の循環速度や流体20に含まれる原料濃度を調節したり、放射性核種の取り出し量を調節することにより、放射性核種の製造量を容易に調整することができる。 Further, in the radionuclide production apparatus of the present embodiment, the production amount of the radionuclide can be easily adjusted by adjusting the circulation speed of the fluid 20 and the concentration of the raw material contained in the fluid 20 and adjusting the extraction amount of the radionuclide. can do.
 なお、放射線発生装置50は、放射線を流体20に照射できるものであればどのようなものでもよく、例えば荷電粒子を加速する加速器を用いることができる。具体的には例えば、電子線加速器、サイクロトロン、シンクロトロンおよびサイクロシンクロトロンを用いることができる。これらのうち加速した電子線を出射する電子線加速器は、他の加速器と比較して小型で簡素な構成とすることができるため小型の放射性核種製造装置に好適である。特に、線形電子線加速器は、小型であるため好適である。 The radiation generator 50 may be any device as long as it can irradiate the fluid 20 with radiation, and for example, an accelerator that accelerates charged particles can be used. Specifically, for example, an electron beam accelerator, a cyclotron, a synchrotron, and a cyclosynchrotron can be used. Of these, the electron beam accelerator that emits the accelerated electron beam is suitable for a small radionuclide production apparatus because it can be made smaller and simpler than other accelerators. In particular, a linear electron beam accelerator is suitable because of its small size.
 例えば、放射線発生装置50は、電子線加速器1と、電子線加速器から出射された電子線の照射される位置に制動放射線用ターゲット11を保持する保持部11aとを含むものを用いることができる。これにより、電子線を照射された制動放射線用ターゲット11から生じる制動放射線(γ線)12を流体20に照射することができるため、1個の制動放射線(γ線)を原料に照射するにより1個の中性子を発生させる(γ,n)反応によって、原料から放射性核種を製造することができる。 For example, the radiation generator 50 can use an electron beam accelerator 1 and a holding unit 11a that holds the braking radiation target 11 at a position where the electron beam emitted from the electron beam accelerator is irradiated. As a result, the fluid 20 can be irradiated with the braking radiation (γ-rays) 12 generated from the braking radiation target 11 irradiated with the electron beam. Therefore, by irradiating the raw material with one braking radiation (γ-ray), 1 Radionuclides can be produced from raw materials by (γ, n) reactions that generate neutrons.
 循環路21で循環させる流体20としては、例えば、原料を溶媒に溶解した溶解溶液、原料を溶媒に分散させた分散溶液、および、原料をガスに分散させた分散ガスのうちのいずれかを用いることができる。 As the fluid 20 circulated in the circulation path 21, for example, any one of a dissolved solution in which the raw material is dissolved in a solvent, a dispersion solution in which the raw material is dispersed in the solvent, and a dispersed gas in which the raw material is dispersed in a gas is used. be able to.
 原料としては、放射線の照射により放射性核種を生じるものであればどのようなものでもよい。 The raw material may be any material that produces radionuclides by irradiation with radiation.
 例えば、原料としては、Ra-226(元素記号の後の数字は質量数を示す),Mo-100、Zn-68、Ge-70、Zr-91、Pd-106、Hf-178のうちのいずれか、および、これらの酸化物、窒化物、炭酸塩、水素化物、塩化物、炭化物、具体的には、三酸化モリブデン、酸化亜鉛、炭酸亜鉛、一酸化及び二酸化ゲルマニウム、水素化ゲルマニウム、二酸化ジルコニウム、塩化ジルコニウム、水素化パラジウム、塩化ハフニウム、炭化ハフニウム等を原料として用いることができる。 For example, as a raw material, any of Ra-226 (the number after the element symbol indicates the mass number), Mo-100, Zn-68, Ge-70, Zr-91, Pd-106, and Hf-178. Or these oxides, nitrides, carbonates, hydrides, chlorides, carbides, specifically molybdenum trioxide, zinc oxide, zinc carbonate, monoxide and germanium dioxide, germanium hydride, zirconium dioxide. , Zirconium chloride, palladium hydride, hafnium chloride, hafnium carbide and the like can be used as raw materials.
 流体20を原料の溶解溶液とする場合、原料を溶解できる溶媒であればどのようなものを用いてもよい。例えば、原料がRa-226である場合、水溶液、塩酸溶液、または、硝酸溶液を流体20として用いることができる。 When the fluid 20 is used as a dissolution solution for the raw material, any solvent that can dissolve the raw material may be used. For example, when the raw material is Ra-226, an aqueous solution, a hydrochloric acid solution, or a nitric acid solution can be used as the fluid 20.
 流体20として原料の分散溶液を用いる場合、原料を溶解しない溶媒を用いて、原料粒子を分散させたスラリーを用いることができる。 When a dispersion solution of raw materials is used as the fluid 20, a slurry in which raw material particles are dispersed can be used by using a solvent that does not dissolve the raw materials.
 流体20として分散ガスを用いる場合、原料の微粒子が分散した不活性ガスを用いることができる。また、原料の蒸気を含むガスを流体20として用いてもよい。 When a dispersed gas is used as the fluid 20, an inert gas in which fine particles of the raw material are dispersed can be used. Further, the gas containing the vapor of the raw material may be used as the fluid 20.
 具体的には、本実施形態の放射性核種製造装置において、原料がラジウム226(Ra-226)であり、その水溶液、塩酸溶液または硝酸溶液を流体20として用いて、電子線加速器を用いる放射線発生装置から制動放射線を照射することにより、(γ,n)反応により第1の放射性核種としてラジウム225(Ra-225)を流体20中に発生させる構成にすることができる。Ra-225は、流体20中で崩壊し第2の放射性核種としてアクチニウム225(Ac-225)となる。分離装置は、アクチニウム225(Ac-225)を流体20から分離する構成とする。 Specifically, in the radionuclide production apparatus of the present embodiment, the raw material is radium-226 (Ra-226), and an aqueous solution thereof, a hydrochloric acid solution or a nitrate solution is used as the fluid 20, and a radiation generator using an electron beam accelerator is used. By irradiating with braking radiation from the source, radium-225 (Ra-225) can be generated in the fluid 20 as the first radionuclide by the (γ, n) reaction. Ra-225 decays in the fluid 20 to become actinium 225 (Ac-225) as the second radionuclide. The separation device is configured to separate actinium 225 (Ac-225) from the fluid 20.
 このとき、Ra-226からRa-225を生成する(γ,n)反応の反応断面積(Ra-226(γ,n)Ra-225)は、Ra-226に加速した陽子を照射し、2個の中性子を放出する反応により直接Ac-225を製造する方法(Ra-226(p,2n)Ac-225)の反応断面積と同程度であることから、製造効率も維持できる。 At this time, the reaction cross section (Ra-226 (γ, n) Ra-225) of the (γ, n) reaction that produces Ra-225 from Ra-226 irradiates Ra-226 with accelerated protons, and 2 Since it is about the same as the reaction cross section of the method (Ra-226 (p, 2n) Ac-225) for directly producing Ac-225 by the reaction of emitting neutrons, the production efficiency can be maintained.
 また、本実施形態の放射性核種製造装置において、原料がモリブデン100(Mo-100)または三酸化モリブデン100であり、その塩酸又は硝酸溶液を流体20とし、放射線発生装置から中性子線を照射することにより、(n,2n)反応により、第1の放射性核種としてモリブデン99(Mo-99)を流体20中に発生させることができる。Mo-99は、崩壊して第2の放射性核種としてテクネチウム99m(Te-99m)となる。この場合、分離装置30は、Te-99mを流体20から分離する構成とする。 Further, in the radioactive nuclei production apparatus of the present embodiment, the raw material is molybdenum 100 (Mo-100) or molybdenum trioxide 100, the hydrochloric acid or nitrate solution thereof is used as the fluid 20, and neutron rays are irradiated from the radiation generator. , (N, 2n) reaction can generate molybdenum 99 (Mo-99) in the fluid 20 as the first radioactive nuclei. Mo-99 decays to technetium-99m (Te-99m) as the second radionuclide. In this case, the separation device 30 is configured to separate Te-99m from the fluid 20.
 本実施形態において、分離装置30は、第1放射性核種および第2放射性核種の少なくとも一部を取り出すことができる構成であれば、どのようなものであってもよい。例えば、分離装置30として、固定相(または担体)が充てんされたカラムを用い、流体20にカラムを通過させることにより、クロマトグラフィにより原料と、第1放射性核種または第2放射性核種を分離し、取り出し部31から第1放射性核種または第2放射性核種を取りだす構成とする。この時、分離後の原料を含む液体は、再び循環ループ21に戻す。 In the present embodiment, the separation device 30 may be any structure as long as it can extract at least a part of the first radionuclide and the second radionuclide. For example, a column filled with a stationary phase (or carrier) is used as the separation device 30, and the raw material and the first radionuclide or the second radionuclide are separated and taken out by chromatography by passing the column through the fluid 20. The configuration is such that the first radionuclide or the second radionuclide is extracted from the part 31. At this time, the liquid containing the raw material after separation is returned to the circulation loop 21 again.
 また、分離装置30は、流体20に、第1放射性核種および第2放射性核種と結合して沈殿する材料を添加し、沈殿物を集めて回収することにより第1放射性核種および第2放射性核種を取り出し、沈殿しなかった原料を含む液体を循環ループ21に戻す構造としてもよい。 Further, the separation device 30 adds a material that binds to and precipitates the first radionuclide and the second radionuclide to the fluid 20, and collects and recovers the precipitate to obtain the first radionuclide and the second radionuclide. The structure may be such that the liquid containing the raw material that has not been taken out and precipitated is returned to the circulation loop 21.
 流体20が分散溶液(スラリー)である場合、分離装置30は、第1放射性核種または第2放射性核種の沸点以上に加熱して、蒸気を回収して冷却することにより第1放射性核種または第2放射性核種を取り出し、蒸気とならなかった原料に再び溶媒を添加してスラリーとして循環ループ21に戻す構造としてもよい。 When the fluid 20 is a dispersion solution (slurry), the separator 30 heats the first radionuclide or the second radionuclide above the boiling point, recovers the vapor and cools the first radionuclide or the second radionuclide. The radionuclide may be taken out, and the solvent may be added again to the raw material that has not become vapor to return it to the circulation loop 21 as a slurry.
 また、制動放射線用ターゲット11としては、電子線10の照射により制動放射線を生じるものであればどのようなものでもよいが、例えば、タングステン、白金、鉛、ビスマス等の原子番号の大きな金属を用いる。 Further, the target 11 for braking radiation may be any one as long as it generates braking radiation by irradiation with an electron beam 10, and for example, a metal having a large atomic number such as tungsten, platinum, lead, or bismuth is used. ..
 以下、本発明の実施形態を、図面を参照してさらに詳しく説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
 <<実施形態1>>
 実施形態1の放射性核種製造装置の構成を図1に基づいて説明する。
<< Embodiment 1 >>
The configuration of the radionuclide production apparatus of the first embodiment will be described with reference to FIG.
 本実施形態の放射性核種製造装置は、図1に示したように電子線加速器1で加速された電子線10を、保持部11aで保持された制動放射線用ターゲット11に照射することで制動放射線(γ線)12を発生させる。循環路(以下、循環ループと呼ぶ)21の途中には、流体20を循環させるポンプ22と、所望の放射性核種を分離する分離装置30が配置されている。 The radionuclide production apparatus of the present embodiment irradiates the target 11 for braking radiation held by the holding portion 11a with the electron beam 10 accelerated by the electron beam accelerator 1 as shown in FIG. γ-ray) 12 is generated. A pump 22 for circulating the fluid 20 and a separation device 30 for separating desired radionuclides are arranged in the middle of the circulation path (hereinafter referred to as a circulation loop) 21.
 原料を含む流体(ここでは溶液)20は、循環ループ21の中を循環している。 The fluid (here, the solution) 20 containing the raw material circulates in the circulation loop 21.
 原料を含む流体20は、制動放射線用ターゲット11に近接配置されている循環ループ21を通過する際に、制動放射線用ターゲット11から出射された制動放射線12の照射を受ける。これにより、1個の制動放射線の照射により1個の中性子を発生させる(γ,n)反応によって、流体20中の原料核種から第1放射性核種が生成される。 The fluid 20 containing the raw material is irradiated with the braking radiation 12 emitted from the braking radiation target 11 when passing through the circulation loop 21 arranged close to the braking radiation target 11. As a result, the first radionuclide is generated from the raw material nuclide in the fluid 20 by the (γ, n) reaction that generates one neutron by the irradiation of one braking radiation.
 生成された放射性核種と原料とを含む流体20は、さらに循環ループ21内を移動し、その最中に、第1放射性核種は一部崩壊して第2放射性核種に変わる。流体20は、分離装置30に到達し、分離装置30によって、第1放射性核種および第2放射性核種の少なくとも一部が取り出し部31から外部に取り出される。取り出されなかった第1放射性核種および第2放射性核種と原料を含む流体は、再び循環ループ21を通って移動し、制動放射線12の照射を受ける。 The fluid 20 containing the generated radionuclide and the raw material further moves in the circulation loop 21, and during that time, the first radionuclide partially collapses and changes to the second radionuclide. The fluid 20 reaches the separation device 30, and at least a part of the first radionuclide and the second radionuclide is taken out from the extraction unit 31 by the separation device 30. The fluid containing the first radionuclide and the second radionuclide and the raw material that have not been taken out moves again through the circulation loop 21 and is irradiated with the braking radiation 12.
 上記の反応と分離は、流体20が循環ループ21を循環するたびに繰り返される。 The above reaction and separation are repeated each time the fluid 20 circulates in the circulation loop 21.
 例えば、原料としてRa-226を用い、流体20として、原料の水溶液、または、塩酸溶液、または、硝酸溶液を用いることができる。原料Ra-226を含む流体20は、循環ループ21を繰り返し循環し、制動放射線12の照射を受けるたびに、(γ,n)反応により、流体20中の原料核種Ra-226からRa-225が生成される。生成されたRa-225は、14.8日の半減期でベータ崩壊し、循環している間に一部が子孫核種であるAc-225となる。よって、循環ループ21を流れている流体20は、原料Ra-226と生成されたRa-225とAc-225を含む。 For example, Ra-226 can be used as a raw material, and an aqueous solution, a hydrochloric acid solution, or a nitric acid solution of the raw material can be used as the fluid 20. The fluid 20 containing the raw material Ra-226 repeatedly circulates in the circulation loop 21, and each time it is irradiated with the braking radiation 12, the raw material nuclides Ra-226 to Ra-225 in the fluid 20 are released by the (γ, n) reaction. Will be generated. The Ra-225 produced undergoes beta decay with a half-life of 14.8 days and becomes partly a progeny nuclide, Ac-225, during circulation. Therefore, the fluid 20 flowing through the circulation loop 21 includes the raw material Ra-226 and the generated Ra-225 and Ac-225.
 分離装置30は、Ac-225をカラム等により取り出す。 The separation device 30 takes out Ac-225 by a column or the like.
 以上により、本実施形態の製造装置によって、治療用薬剤の原料となるAc-225を製造することができる。 From the above, Ac-225, which is a raw material for therapeutic agents, can be produced by the production apparatus of the present embodiment.
 図2にRa-226にガンマ線を照射して中性子を1個発生させる反応の反応断面積の理論値を示す。図2より、閾値以上のエネルギーのγ線(放射線)12をRa-226に照射することにより、Ra-225を生成できることがわかる。 Fig. 2 shows the theoretical value of the reaction cross section of the reaction in which Ra-226 is irradiated with gamma rays to generate one neutron. From FIG. 2, it can be seen that Ra-225 can be generated by irradiating Ra-226 with γ-rays (radiation) 12 having an energy equal to or higher than the threshold value.
 電子線加速器1は、同程度の加速エネルギー及び加速電流値であれば、陽子加速器または重粒子加速器と比較して小型化が可能である。また、Ra-226からRa-225を生成する(γ,n)反応の生成断面積は、Ra-226に加速した陽子を照射する方法(Ra-226(p,2n)Ac-225) Ac-225を生成する断面積と同程度である。よって、電子線加速器1を用いる本実施形態の放射性核種製造装置は、陽子加速器または重粒子加速器を用いる放射性核種製造装置よりも小型化することができる。 The electron beam accelerator 1 can be downsized as compared with the proton accelerator or the heavy particle accelerator if the acceleration energy and the acceleration current value are the same. The formation cross-sectional area of the (γ, n) reaction that produces Ra-225 from Ra-226 is the method of irradiating Ra-226 with accelerated protons (Ra-226 (p, 2n) Ac-225) Ac- It is comparable to the cross-sectional area that produces 225. Therefore, the radionuclide production apparatus of the present embodiment using the electron beam accelerator 1 can be made smaller than the radionuclide production apparatus using the proton accelerator or the heavy particle accelerator.
 また、電子線形加速器を用いた場合、制動放射線用ターゲットから発生する中性子は比較的少なく、大部分が鉛等での遮蔽が容易な制動放射線であることから、制動放射線用ターゲット及びその周囲の遮蔽を小型にすることが可能であり、したがって、放射性核種製造装置の小型化が可能である。 In addition, when an electronic linear accelerator is used, the neutrons generated from the braking radiation target are relatively small, and most of the braking radiation is easily shielded by lead or the like. Therefore, the braking radiation target and its surroundings are shielded. Therefore, it is possible to reduce the size of the radionuclide production apparatus.
 なお、図1では、図示の都合上、電子線加速器1を循環ループ21よりも小さく表しているが、実際の電子線加速器1は、長さ数mであるのに対し、循環ループ21は、ループの径を1m以内することが可能である。 In FIG. 1, for convenience of illustration, the electron beam accelerator 1 is shown to be smaller than the circulation loop 21, but the actual electron beam accelerator 1 has a length of several meters, whereas the circulation loop 21 has a length of several meters. The diameter of the loop can be within 1 m.
 なお、本実施形態において、放射線発生装置として、陽子加速器または重粒子加速器を用いることももちろん可能である。例えば、上述の(Ra-226(p,2n)Ac-225)反応を用いてもよいし、 (Ra-226(n,2n)Ra-225)反応を用いてもよい。 Of course, in the present embodiment, it is also possible to use a proton accelerator or a heavy particle accelerator as the radiation generator. For example, the above-mentioned (Ra-226 (p, 2n) Ac-225) reaction may be used, or the (Ra-226 (n, 2n) Ra-225) reaction may be used.
 本実施形態の放射性核種製造装置において、流体20中の原料核種であるRa-226の大部分は、制動放射線12と核反応することなく原料核種として残る。また、制動放射線12と原料が反応することにより生成されたRa-225は、分離装置30において、Ra-226から分離精製することは困難であるため、Ra-226とRa-225は、流体20に含まれた状態で循環する。なお、循環のたびにRa-225にも制動放射線12が照射されるが、Ra-226と比較して流体20中のRa-226の量は非常に少ないため、Ra-225と制動放射線による核反応により生成する核種は、微量であり問題とならない。 In the radionuclide production apparatus of the present embodiment, most of Ra-226, which is a raw material nuclide in the fluid 20, remains as a raw material nuclide without nuclear reaction with the braking radiation 12. Further, since it is difficult to separate and purify Ra-225 produced by the reaction between the braking radiation 12 and the raw material from Ra-226 in the separation device 30, Ra-226 and Ra-225 are fluid 20. It circulates in the state contained in. Although Ra-225 is also irradiated with braking radiation 12 each time it circulates, the amount of Ra-226 in the fluid 20 is very small compared to Ra-226, so the nuclides from Ra-225 and braking radiation. The amount of nuclides produced by the reaction is very small and does not matter.
 Ra-225は、流体20が循環ループ21中を循環中にベータ崩壊してAc-225に壊変し、分離装置30を流体20が通過するたびに、Ac-225が分離されて取り出し部31から取り出される。よって、取出し部31から、連続的または必要に応じてAc-225を取り出すことが可能であり、循環ループ21は、原料核種の保管の機能も兼ねることが可能でなる。 In Ra-225, the fluid 20 undergoes beta decay while circulating in the circulation loop 21 and is transformed into Ac-225, and each time the fluid 20 passes through the separation device 30, Ac-225 is separated from the take-out unit 31. Taken out. Therefore, Ac-225 can be continuously or as needed to be taken out from the take-out unit 31, and the circulation loop 21 can also have a function of storing raw material nuclides.
 なお、治療用薬剤の原料として有用なAc-225は、10.0日の半減期で子孫核種であるFr-221となる。Fr-221は、半減期4.9分でAt-217となり、At-217は、半減期32ミリ秒でBi-213となる。Ac-225及びその子孫核種は治療用薬剤の原料として有用であるが、Ra-226及びRa-225は、アルファ線を放出する核種ではないことから治療用薬剤の原料としては不要な核種であり、Ac-225との分離精製が必要である。本実施形態の放射線発生装置は、Ra-226及びRa-225を、Ac-225から分離して再び循環させ、再利用することができる。 Ac-225, which is useful as a raw material for therapeutic drugs, becomes Fr-221, which is a progeny nuclide, with a half-life of 10.0 days. Fr-221 becomes At-217 with a half-life of 4.9 minutes, and At-217 becomes Bi-213 with a half-life of 32 ms. Ac-225 and its progeny nuclides are useful as raw materials for therapeutic drugs, but Ra-226 and Ra-225 are unnecessary nuclides as raw materials for therapeutic drugs because they are not nuclides that emit alpha rays. , Separation and purification with Ac-225 is required. In the radiation generator of the present embodiment, Ra-226 and Ra-225 can be separated from Ac-225, circulated again, and reused.
 このように、実施形態1の放射線発生装置は、原料を含む流体を循環させながら放射線を照射することにより、効率よく放射性核種を製造することができる。 As described above, the radiation generator of the first embodiment can efficiently produce radionuclides by irradiating the radiation while circulating the fluid containing the raw material.
 <<実施形態2>>
 実施形態2の放射性核種製造装置の一例を、図3に基づいて説明する。
<< Embodiment 2 >>
An example of the radionuclide production apparatus of the second embodiment will be described with reference to FIG.
 実施形態2の放射性核種製造装置は、実施形態1の図1の装置と同様の構成であるが、実施形態2では、循環ループ21に直線領域21aを設け、制動放射線12の中心軸12aが、循環ループ21の直線領域21a内を通過するように、放射線発生装置50が配置されている点で実施形態1とは異なる。 The radionuclide production apparatus of the second embodiment has the same configuration as the apparatus of FIG. 1 of the first embodiment, but in the second embodiment, a linear region 21a is provided in the circulation loop 21, and the central axis 12a of the braking radiation 12 is formed. It differs from the first embodiment in that the radiation generator 50 is arranged so as to pass through the linear region 21a of the circulation loop 21.
 実施形態2の放射性核種製造装置の構成は、制動放射線12が循環ループ21内の流体20内を通過する距離が、図1のように循環ループ21を横切るように制動放射線を照射する場合よりも長くなるため、流体20内の原料から生成される第1の放射性核種の量を増加させることができる。これにより、放射性核種を製造効率を高めることができる。以下、さらに詳しく説明する。 The configuration of the radionuclide production apparatus of the second embodiment is larger than the case where the braking radiation is irradiated so that the distance that the braking radiation 12 passes through the fluid 20 in the circulation loop 21 crosses the circulation loop 21 as shown in FIG. Due to the lengthening, the amount of the first radionuclide produced from the raw material in the fluid 20 can be increased. As a result, the production efficiency of radionuclides can be increased. Hereinafter, it will be described in more detail.
 実施形態1と同様に、実施形態2の放射線発生装置50は、電子線加速器1によって加速された電子線2を、制動放射線用ターゲット11に照射することにより、制動放射線を発生する。電子線加速器1から照射される電子線2のように、比較的エネルギーの高い電子線を制動放射線用ターゲット11に照射した場合、発生する制動放射線12の強度が最も大きい中心軸12aは、電子線の照射軸方向に一致する。 Similar to the first embodiment, the radiation generator 50 of the second embodiment generates braking radiation by irradiating the target 11 for braking radiation with the electron beam 2 accelerated by the electron beam accelerator 1. When the target 11 for braking radiation is irradiated with an electron beam having a relatively high energy such as the electron beam 2 emitted from the electron beam accelerator 1, the central axis 12a having the highest intensity of the braking radiation 12 generated is the electron beam. It coincides with the irradiation axis direction of.
 そこで、本実施形態2の装置では、循環ループ21の一部分(直線領域21a)を、その長手方向が、制動放射線12が強く発生される中心軸12aと一致するように設置する。 Therefore, in the device of the second embodiment, a part of the circulation loop 21 (straight line region 21a) is installed so that its longitudinal direction coincides with the central axis 12a where the braking radiation 12 is strongly generated.
 原料を含む流体(溶液)20中における制動放射線12の飛程は、陽子または重陽子等の荷電粒子の飛程と比較して、非常に長い。そのため、循環ループ21の一部分(直線領域21a)を、その長手方向が、制動放射線12の中心軸12aと一致するように設置することにより、循環ループ21中の原料核種と制動放射線による反応量が増加する。よって、実施形態1で説明した例のように、流体20が原料としてRa-226を含む場合、実施形態2の製造装置で生成されるRa-225の量は、実施形態1の製造装置よりも増加する。 The range of the braking radiation 12 in the fluid (solution) 20 containing the raw material is very long as compared with the range of charged particles such as protons or deuterons. Therefore, by installing a part of the circulation loop 21 (straight line region 21a) so that the longitudinal direction thereof coincides with the central axis 12a of the braking radiation 12, the amount of reaction between the raw material nuclide in the circulation loop 21 and the braking radiation can be increased. To increase. Therefore, when the fluid 20 contains Ra-226 as a raw material as in the example described in the first embodiment, the amount of Ra-225 produced by the manufacturing apparatus of the second embodiment is larger than that of the manufacturing apparatus of the first embodiment. To increase.
 なお、本実施形態では、循環ループ21に直線状の領域21aを設けて、長手方向を制動放射線12の中心軸12aと一致させる構成であったが、この構成に限られず、制動放射線12が循環ループ21内を通過する距離を長くするための他の構造を循環ループ21内に設けることが可能である。例えば、制動放射線12の強度分布は、電子線10が制動放射線用ターゲット11に照射される位置を中心に、電子線10の軸方向(中心軸12a)が最も強く、中心軸12aとのなす角が大きくなるにつれ弱くなるため、中心軸12a方向において、循環ループ21の径を大きくしても良い。 In the present embodiment, the circulation loop 21 is provided with a linear region 21a so that the longitudinal direction coincides with the central axis 12a of the braking radiation 12, but the configuration is not limited to this, and the braking radiation 12 circulates. It is possible to provide another structure in the circulation loop 21 for increasing the distance through the loop 21. For example, the intensity distribution of the braking radiation 12 is the strongest in the axial direction (central axis 12a) of the electron beam 10 centering on the position where the electron beam 10 irradiates the target 11 for braking radiation, and the angle formed by the central axis 12a. The diameter of the circulation loop 21 may be increased in the direction of the central axis 12a because it becomes weaker as the value increases.
 <<実施形態3>>
 実施形態3の放射性核種製造装置の一例を、図4に基づいて説明する。
<< Embodiment 3 >>
An example of the radionuclide production apparatus of the third embodiment will be described with reference to FIG.
 実施形態3の放射性核種製造装置は、実施形態1の装置と同様の構成であるが、循環ループ21に気体の放出口40を設けている点が実施形態1とは異なっている。放出口30を設けたことにより、流体20に含まれる放射性核種が崩壊することで生成される気体状の核種を放出することができる。これにより、流体20中に気体が含まれることを抑制でき、流体20をポンプ22により安定して循環させることができる。以下、詳しく説明する。 The radionuclide production apparatus of the third embodiment has the same configuration as the apparatus of the first embodiment, but is different from the first embodiment in that the circulation loop 21 is provided with the gas discharge port 40. By providing the discharge port 30, it is possible to release the gaseous nuclide generated by the decay of the radionuclide contained in the fluid 20. As a result, it is possible to suppress the inclusion of gas in the fluid 20, and the fluid 20 can be stably circulated by the pump 22. The details will be described below.
 放射性核種製造溶液用循環ループ中の原料核種としてRa-226を用いた場合、半減期1600年でアルファ崩壊し、ラドン222(Rn-222)を生成する。Rn-222は、希ガス元素に属し、標準状態で単原子分子の気体として存在することが知られている。例えば、流体20の溶媒が20℃の水であるとすると、Rn-222の水に対する溶解度は、100mlあたり24.5mlであるため、水に溶解されない量のRn-222が循環ループ21内に発生した場合には、流体20中に気体として存在することになる。 When Ra-226 is used as the raw material nuclide in the circulation loop for the radionuclide production solution, it undergoes alpha decay with a half-life of 1600 years and produces radon 222 (Rn-222). Rn-222 belongs to a rare gas element and is known to exist as a monatomic molecule gas in the standard state. For example, assuming that the solvent of the fluid 20 is water at 20 ° C., the solubility of Rn-222 in water is 24.5 ml per 100 ml, so that an amount of Rn-222 that is insoluble in water is generated in the circulation loop 21. In that case, it will exist as a gas in the fluid 20.
 ポンプ22は、流体20に気体が混合されている場合、正常に作動しなくなる可能性がある。また、気体の体積は大きいため、流体20に気体が混ざっていると、制動放射線12が照射される領域の流体20に含まれる原料核種Ra-226の量が低減する。このため、原料からRa-225が生成される量が減少してしまう。 The pump 22 may not operate normally when a gas is mixed with the fluid 20. Further, since the volume of the gas is large, when the gas is mixed with the fluid 20, the amount of the raw material nuclide Ra-226 contained in the fluid 20 in the region irradiated with the braking radiation 12 is reduced. Therefore, the amount of Ra-225 produced from the raw material is reduced.
 そこで、本実施形態では、循環ループ21に放出口40を設けることにより、流体20内に含まれる気体を放出する。これにより、流体20内に気体が混合していることによる、上述のような不都合を解消し、安定して所望の核種を製造することができる。 Therefore, in the present embodiment, the gas contained in the fluid 20 is discharged by providing the discharge port 40 in the circulation loop 21. As a result, the above-mentioned inconvenience caused by the gas being mixed in the fluid 20 can be eliminated, and a desired nuclide can be stably produced.
 なお、放出口40から気体を放出は、必ずしも常時行わなくてもよく、Rn-222等の気体の核種の生成量と、流体20の溶液への気体の溶解度等に応じて、定期的または不定期な放出タイミングで放出してもよい。 It should be noted that the gas is not always discharged from the discharge port 40, and may be periodically or irregularly depending on the amount of gas nuclides produced such as Rn-222 and the solubility of the gas in the solution of the fluid 20. It may be released at a regular release timing.
 <<実施形態4>>
 実施形態4の放射性核種製造装置の一例を、図5及び図6に従って説明する。
<< Embodiment 4 >>
An example of the radionuclide production apparatus of the fourth embodiment will be described with reference to FIGS. 5 and 6.
 実施形態4の放射性核種製造装置は、実施形態1と同様の構成であるが、循環ループ21の配管の全部または一部23が、制動放射線用ターゲット11の材料で構成され、制動放射線用ターゲット11を兼用している点で実施形態1とは異なっている。放射線発生装置50は、電子線10を、制動放射線を発生する材料で構成された循環ループ21の配管に向かって照射する。これにより、配管から制動放射線12が発生し、循環ループ21の内部を流れる流体20に照射される。 The radionuclide production apparatus of the fourth embodiment has the same configuration as that of the first embodiment, but all or a part 23 of the piping of the circulation loop 21 is made of the material of the braking radiation target 11, and the braking radiation target 11 It is different from the first embodiment in that it also serves as. The radiation generator 50 irradiates the electron beam 10 toward the piping of the circulation loop 21 made of a material that generates braking radiation. As a result, braking radiation 12 is generated from the piping, and the fluid 20 flowing inside the circulation loop 21 is irradiated.
 循環ループ21の制動放射線用ターゲット11を兼用する配管の全部または一部23を構成する材料としては、タングステンや白金等の原子番号の大きな金属を用いることができる。 A metal having a large atomic number such as tungsten or platinum can be used as the material constituting all or part of the pipe 23 that also serves as the braking radiation target 11 of the circulation loop 21.
 このように、循環ループ21の配管の一部が制動放射線用ターゲット11を兼用することにより、制動放射線12が発生される位置(ターゲット11)と流体20の原料核種との距離が短くなる。これにより、原料核種に照射される制動放射線12の強度が強くなるため、所望の放射性核種(例えばRa-225)の生成量が増加する。 In this way, since a part of the piping of the circulation loop 21 also serves as the braking radiation target 11, the distance between the position where the braking radiation 12 is generated (target 11) and the raw material nuclide of the fluid 20 is shortened. As a result, the intensity of the braking radiation 12 irradiated to the raw material nuclide is increased, so that the amount of the desired radionuclide (for example, Ra-225) produced is increased.
 なお、制動放射線用ターゲット11では、電子線10のエネルギーが損失されるため、ターゲット11の温度が上昇するが、流体20が循環しているため、流体20によってターゲット11を冷却することができる。すなわち、流体20は、制動放射線用ターゲット11に接する位置で熱伝導により熱を受け取って、ターゲット11を兼用していない循環ループ21の領域で受け取った熱を放熱することにより、ターゲット11を冷却することができる。 In the braking radiation target 11, the energy of the electron beam 10 is lost, so that the temperature of the target 11 rises, but since the fluid 20 circulates, the target 11 can be cooled by the fluid 20. That is, the fluid 20 cools the target 11 by receiving heat by heat conduction at a position in contact with the braking radiation target 11 and dissipating the heat received in the region of the circulation loop 21 which does not also serve as the target 11. be able to.
 また、循環ループ21の途中に、流体20を冷却する冷却部24を配置してもよい。これにより、制動放射線用ターゲット11を流体20により効率よく冷却することができる。 Further, a cooling unit 24 for cooling the fluid 20 may be arranged in the middle of the circulation loop 21. As a result, the braking radiation target 11 can be efficiently cooled by the fluid 20.
 また、冷却部24に変えて、加熱および冷却の両方の機能を備える温度調整部を配置してもよい。これにより、制動放射線用ターゲット11の発熱温度に応じて、温度調整部24が流体20を加熱または冷却し、放射性核種製造溶液が気化しない温度、または、原料核種の溶解度が最大となるような温度に保つことができる。 Further, instead of the cooling unit 24, a temperature adjusting unit having both heating and cooling functions may be arranged. As a result, the temperature adjusting unit 24 heats or cools the fluid 20 according to the heat generation temperature of the braking radiation target 11, and the temperature at which the radionuclide production solution does not vaporize or the temperature at which the solubility of the raw material nuclide is maximized. Can be kept in.
 また、図5のように、温度調整部24とポンプ22を制御する制御部60を配置してもよい。制御部60は、図6に示すようにポンプ22の運転と停止の時間、ならびに運転時の流量を制御する。また、制御部60は、温度調節部24が流体20を加熱または冷却する動作を制御する。このように制御部60は、ポンプ22と温度調節部24の両方を制御することにより、流体20の温度を所定の温度範囲に調整することができる。 Further, as shown in FIG. 5, a control unit 60 that controls the temperature adjusting unit 24 and the pump 22 may be arranged. As shown in FIG. 6, the control unit 60 controls the operation and stop times of the pump 22 and the flow rate during operation. Further, the control unit 60 controls the operation of the temperature control unit 24 to heat or cool the fluid 20. In this way, the control unit 60 can adjust the temperature of the fluid 20 to a predetermined temperature range by controlling both the pump 22 and the temperature control unit 24.
 また、制御部60は、分離装置30から取り出したい放射性核種の量に応じて、ポンプ22の流量を調整してもよい。すなわち、分離装置30から取り出す放射性核種の量を低減したい場合には、制御部60は、ポンプ22の流量を減少させる。このように、ポンプ22の流量を調整することにより、製造量の制御を行うことができる。 Further, the control unit 60 may adjust the flow rate of the pump 22 according to the amount of radionuclides to be taken out from the separation device 30. That is, when it is desired to reduce the amount of radionuclides taken out from the separation device 30, the control unit 60 reduces the flow rate of the pump 22. By adjusting the flow rate of the pump 22 in this way, the production amount can be controlled.
 <<実施形態5>>
 実施形態5の放射性核種製造装置の一例を図7に従って説明する。
<< Embodiment 5 >>
An example of the radionuclide production apparatus of the fifth embodiment will be described with reference to FIG.
 実施形態5の放射性核種製造装置は、実施形態1の装置と同様の構成であるが、循環ループ21の周囲に複数台の放射線発生装置50を備えている点で実施形態1とは異なっている。複数台の放射線発生装置50は、放射線をそれぞれ循環ループ21に照射する。例えば、図7のように2台の同じ構造の放射線発生装置50からそれぞれ循環ループ21に制動放射線を照射した場合、図1の1台の放射線発生装置50を用いる場合と比較して、2倍の量の放射性核種(例えばRa-225)を製造できるため、製造効率を高めることができる。 The radionuclide production apparatus of the fifth embodiment has the same configuration as the apparatus of the first embodiment, but differs from the first embodiment in that a plurality of radiation generators 50 are provided around the circulation loop 21. .. Each of the plurality of radiation generators 50 irradiates the circulation loop 21 with radiation. For example, when the circulation loop 21 is irradiated with braking radiation from two radiation generators 50 having the same structure as shown in FIG. 7, it is doubled as compared with the case where one radiation generator 50 of FIG. 1 is used. Since the amount of radionuclides (for example, Ra-225) can be produced, the production efficiency can be improved.
 また、本実施形態5の装置は、複数台の放射線発生装置50を備えているため、1台の放射線発生装置50が故障した場合でも、他の1台を用いて製造を継続できるため、生成核種がまったく製造できなくなるリスクを低減できる。 Further, since the apparatus of the present embodiment 5 includes a plurality of radiation generators 50, even if one radiation generator 50 fails, the production can be continued using the other one, so that the apparatus can be generated. The risk of not being able to produce nuclides at all can be reduced.
 また、本実施形態と実施形態4の構成を組み合わせて、循環ループ21の配管の全部または複数個所の一部を、タングステンや白金等の原子番号の大きな金属を用い、循環ループ21の配管を複数個所で制動放射線用ターゲット11と兼用させる構成としても良い。 Further, by combining the configurations of the present embodiment and the fourth embodiment, all or a part of the piping of the circulation loop 21 is made of a metal having a large atomic number such as tungsten or platinum, and a plurality of piping of the circulation loop 21 is provided. It may be configured to be also used as the braking radiation target 11 at a location.
 <<実施形態6>>
 実施形態6の放射性核種製造装置の一例を図8に従って説明する。
<< Embodiment 6 >>
An example of the radionuclide production apparatus of the sixth embodiment will be described with reference to FIG.
 実施形態6の放射性核種製造装置は、実施形態1の装置と同様の構成であるが、循環ループ21に、分離装置30を迂回する迂回路25と、流路切替器27を設けた点で実施形態1とは異なっている。 The radionuclide production apparatus of the sixth embodiment has the same configuration as the apparatus of the first embodiment, but is implemented in that the circulation loop 21 is provided with a detour circuit 25 for bypassing the separation device 30 and a flow path switcher 27. It is different from Form 1.
 実施形態1の放射性核種製造装置は、流体20が循環ループ21を循環するたびに分離装置30を通過する構成であるため、装置の運転中は、常時、分離装置30から放射性核種が取り出される。これに対し、本実施形態6の放射性核種製造装置では、迂回路25を設け、流路切替器27により流体20を迂回路25に流すか、分離装置30に流すかを選択することができる。これにより、装置の運転中であっても、迂回路25に流体20を流した場合には放射性核種は取り出されず、流体20を分離装置30に流した時にのみ放射性核種が取り出される。したがって、本実施形態6の放射性核種製造装置によれば、放射性核種を取り出すタイミングを制御することができる。例えば、以下の例のように、原料であるRa-226からAc-225を製造することができる。 Since the radionuclide production apparatus of the first embodiment has a configuration in which the fluid 20 passes through the separation device 30 each time it circulates in the circulation loop 21, the radionuclide is always taken out from the separation device 30 during the operation of the apparatus. On the other hand, in the radionuclide production apparatus of the sixth embodiment, the detour circuit 25 is provided, and the flow path switch 27 can select whether to flow the fluid 20 through the detour circuit 25 or the separation device 30. As a result, even during the operation of the device, the radionuclide is not taken out when the fluid 20 is passed through the detour 25, and the radionuclide is taken out only when the fluid 20 is passed through the separation device 30. Therefore, according to the radionuclide production apparatus of the sixth embodiment, the timing of taking out the radionuclide can be controlled. For example, Ac-225 can be produced from the raw material Ra-226 as in the following example.
 原料であるRa-226を含む流体20に制動放射線12を照射することで製造したRa-225は、14.8日の半減期でベータ崩壊し、子孫核種であるAc-225となる。図9に、Ra-226を含む流体20に、Ra-225の半減期よりも短い20時間だけ制動放射線12を照射した場合の、流体20中のRa-225とAc-225の量の一例を示す。図9の例では、制動放射線12の照射時間が、Ra-225の半減期と比較して十分短いため、Ra-225の量は、制動放射線12が照射されている間はその時間に応じて増加し、照射終了後は半減期14.8日でベータ崩壊するため漸減する。一方、Ac-225は、制動放射線12の照射されている間は、Ra-225の増加に遅れて増加し、照射終了後もRa-225のベータ崩壊による漸減に対応して増加し、照射後約428時間で最大量となるが、半減期10.0日で子孫核種であるFr-221に変化するのに伴い減少する。 Ra-225 produced by irradiating the fluid 20 containing Ra-226, which is the raw material, with braking radiation 12, undergoes beta decay with a half-life of 14.8 days and becomes the progeny nuclide Ac-225. FIG. 9 shows an example of the amounts of Ra-225 and Ac-225 in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with the braking radiation 12 for 20 hours, which is shorter than the half-life of Ra-225. Shown. In the example of FIG. 9, since the irradiation time of the braking radiation 12 is sufficiently shorter than the half-life of Ra-225, the amount of Ra-225 depends on the time while the braking radiation 12 is being irradiated. It increases and gradually decreases because it undergoes beta decay with a half-life of 14.8 days after the end of irradiation. On the other hand, Ac-225 increased after the increase of Ra-225 while being irradiated with the braking radiation 12, and increased in response to the gradual decrease of Ra-225 due to beta decay even after the irradiation was completed. It reaches its maximum in about 428 hours, but decreases with a half-life of 10.0 days as it changes to the progeny nuclide Fr-221.
 このとき、本実施形態の放射性核種製造装置は、照射中及び照射後を通じて、流体20を分離装置30に通すように流路切替器27を設定し、連続してAc-225を分離して取り出し部31から取り出すことができる。 At this time, in the radionuclide production apparatus of the present embodiment, the flow path switch 27 is set so that the fluid 20 is passed through the separation apparatus 30 during and after the irradiation, and Ac-225 is continuously separated and taken out. It can be taken out from the part 31.
 また、図10に示すように、本実施形態の放射性核種製造装置は、間欠的にAc-225を取り出すこともできる。 Further, as shown in FIG. 10, the radionuclide production apparatus of the present embodiment can intermittently take out Ac-225.
 図10は、図9と同様に、Ra-226を含む流体20に、Ra-225の半減期よりも短い20時間だけ制動放射線12を照射した場合の、流体20中のRa-225とAc-225の量の一例を示す。図10におけるRa-225の増加と漸減は、図9と同様である。また、図10において、Ac-225が増加し、制動放射線12の照射後約428時間で最大量となるのも図9と同様である。 FIG. 10 shows Ra-225 and Ac- in the fluid 20 when the fluid 20 containing Ra-226 is irradiated with the braking radiation 12 for 20 hours, which is shorter than the half-life of Ra-225, as in FIG. An example of the amount of 225 is shown. The increase and decrease of Ra-225 in FIG. 10 are the same as in FIG. Further, in FIG. 10, it is the same as in FIG. 9 that Ac-225 increases and reaches the maximum amount about 428 hours after the irradiation of the braking radiation 12.
 図10の例は、制動放射線12の照射後から428時間までは、流体20を流路切替器27により迂回路25を流すが、照射後428時間において、流路切替器27により流体20を分離装置30に流し、循環ループ21中の流体20のAc-225をすべて取り出す(1回目の分離精製)。 In the example of FIG. 10, the fluid 20 is passed through the detour 25 by the flow path switcher 27 for 428 hours after the irradiation of the braking radiation 12, but the fluid 20 is separated by the flow path switcher 27 at 428 hours after the irradiation. It is passed through the apparatus 30 and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (first separation and purification).
 1回目の取り出し後、流路切替器27により流体20を迂回路25に流すか、または循環ループ21の循環を停止させる。Ac-225は、制動放射線12を流体20に照射していなくても、流体20の中にすでに生成されているRa-225のベータ崩壊によって生成されるため、図10のように再び増加し、1回目の取り出しから約428時間後に再び最大量となる。そこで、図10の例では、流路切替器27により流体20を分離装置30に流し、循環ループ21中の流体20のAc-225をすべて取り出す(2回目の分離精製)。 After the first take-out, the fluid 20 is flowed to the detour 25 by the flow path switch 27, or the circulation of the circulation loop 21 is stopped. Ac-225 is generated by the beta decay of Ra-225 already generated in the fluid 20 even if the fluid 20 is not irradiated with the braking radiation 12, so that it increases again as shown in FIG. Approximately 428 hours after the first removal, the maximum amount is reached again. Therefore, in the example of FIG. 10, the fluid 20 is flowed through the separation device 30 by the flow path switch 27, and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (second separation and purification).
 2回目の取り出し後、流路切替器27により流体20を迂回路25に流すか、または循環ループ21の循環を停止させ、2回目の取り出しから約428時間後に、流路切替器27により流体20を分離装置30に流し、循環ループ21中の流体20のAc-225をすべて取り出す(3回目の分離精製)。 After the second withdrawal, the fluid 20 is flowed through the detour 25 by the flow path switch 27, or the circulation of the circulation loop 21 is stopped, and about 428 hours after the second withdrawal, the fluid 20 is passed by the flow path switch 27. Is flowed through the separation device 30, and all Ac-225 of the fluid 20 in the circulation loop 21 is taken out (third separation and purification).
 このように、本実施形態6の装置では、制動放射線12を照射後に、Ac-225を連続的に取り出すことも可能であるし、間欠的に取り出すことも可能である。 As described above, in the apparatus of the sixth embodiment, it is possible to continuously take out Ac-225 after irradiating the braking radiation 12, or to take out Ac-225 intermittently.
 なお、実施形態6の放射性核種製造装置において、制動放射線12を照射後、Ac-225を連続的または間欠的に取り出している間は、放射線発生装置50は不要であるので、図11に示すように、循環ループ21を放射線発生装置50の前から移動させ、移動させた部分に他の原料核種15や他の循環ループ21を設置することで、他の核種や他の循環ループ21における放射性核種の製造が可能となる。他の原料核種15の形態としては、固体でも液体でも良い。 In the radionuclide production apparatus of the sixth embodiment, the radiation generator 50 is not required while the Ac-225 is continuously or intermittently taken out after the braking radiation 12 is irradiated, as shown in FIG. By moving the circulation loop 21 from the front of the radiation generator 50 and installing another raw material nuclide 15 or another circulation loop 21 in the moved portion, another nuclide or a radionuclide in the other circulation loop 21 is installed. Can be manufactured. The form of the other raw material nuclide 15 may be solid or liquid.
1…電子線加速器、10…電子線、11…制動放射線用ターゲット、12…制動放射線、15…他の原料核種、20…流体、21…循環ループ(循環路)、22…ポンプ、23…配管材料にターゲット材料を用いた部分、24…冷却部、25…迂回路、30…分離装置、31…取出し部、40…放出口

 
1 ... electron beam accelerator, 10 ... electron beam, 11 ... braking radiation target, 12 ... braking radiation, 15 ... other raw material nuclei, 20 ... fluid, 21 ... circulation loop (circulation path), 22 ... pump, 23 ... piping Part where the target material is used as the material, 24 ... Cooling part, 25 ... Detour, 30 ... Separator, 31 ... Extraction part, 40 ... Discharge port

Claims (15)

  1.  原料を含む流体を循環させる循環路と、
     前記循環路の少なくとも一部に放射線を照射し、前記原料から第1の放射性核種を生じさせる放射線発生装置と、
     前記循環路を循環している流体から、前記第1の放射性核種および前記第1の放射性核種から生じた第2の放射性核種のうちの少なくとも一部を含む物質を取り出し、残りの原料を含む流体を前記循環路に戻す分離装置とを有することを特徴とする放射性核種製造装置。
    A circulation path that circulates the fluid containing raw materials,
    A radiation generator that irradiates at least a part of the circulation path to generate a first radionuclide from the raw material.
    A fluid containing at least a part of the first radionuclide and the second radionuclide generated from the first radionuclide is extracted from the fluid circulating in the circulation path, and the remaining raw material is contained. A radionuclide production apparatus comprising a separation apparatus for returning the fluid to the circulation path.
  2.  請求項1に記載の放射性核種製造装置であって、前記放射線発生装置は、加速した電子線を出射する電子線加速器と、前記電子線加速器から出射される電子線の照射される位置に制動放射線用ターゲットを保持する保持部とを含み、前記電子線を照射された前記制動放射線用ターゲットから生じる制動放射線を前記流体に照射することを特徴とする放射性核種製造装置。 The radionuclide production apparatus according to claim 1, wherein the radiation generator includes an electron beam accelerator that emits an accelerated electron beam and braking radiation at a position where the electron beam emitted from the electron beam accelerator is irradiated. A radionuclide production apparatus comprising a holding portion for holding a target for radionuclide, which irradiates the fluid with braking radiation generated from the target for braking radiation irradiated with the electron beam.
  3.  請求項1に記載の放射性核種製造装置であって、前記流体は、前記原料を溶媒に溶解した溶液、前記原料を溶媒に分散させた分散溶液、および、前記原料をガスに分散させた分散ガスのうちのいずれかであることを特徴とする放射性核種製造装置。 The radioactive nuclei production apparatus according to claim 1, wherein the fluid is a solution in which the raw material is dissolved in a solvent, a dispersion solution in which the raw material is dispersed in a solvent, and a dispersion gas in which the raw material is dispersed in a gas. A radioactive nuclei species production apparatus characterized in being one of the following.
  4.  請求項1に記載の放射性核種製造装置であって、前記循環路の一部は、前記流体が流れる方向が直線状の領域を有し、
     前記放射線発生装置の出射する放射線の中心軸は、前記循環路の前記直線状の領域内を通過するように前記放射線発生装置が配置されていることを特徴とする放射性核種製造装置。
    The radionuclide production apparatus according to claim 1, wherein a part of the circulation path has a region in which the fluid flows in a linear direction.
    A radionuclide production apparatus, characterized in that the radiation generator is arranged so that the central axis of radiation emitted by the radiation generator passes through the linear region of the circulation path.
  5.  請求項1に記載の放射性核種製造装置であって、前記循環路には、前記流体に含まれる放射性核種が崩壊することにより生成される気体状の核種を、放出する放出口が設置されていることを特徴とする放射性核種製造装置。 The radionuclide production apparatus according to claim 1, wherein a discharge port for discharging gaseous nuclides generated by the decay of the radionuclide contained in the fluid is provided in the circulation path. A radionuclide production device characterized by this.
  6.  請求項1に記載の放射性核種製造装置であって、前記循環路の少なくとも一部は、電子線を照射されることにより制動放射線を発生する材料によって構成され、
     前記放射線発生装置は、加速した電子線を出射する電子線加速器であり、前記電子線を、前記制動放射線を発生する材料で構成された前記循環路に向かって出射し、前記循環路の流れる流体に制動放射線を照射することを特徴とする放射性核種製造装置。
    The radionuclide production apparatus according to claim 1, wherein at least a part of the circulation path is made of a material that generates braking radiation by being irradiated with an electron beam.
    The radiation generator is an electron beam accelerator that emits an accelerated electron beam, emits the electron beam toward the circulation path made of a material that generates the braking radiation, and a fluid flowing through the circulation path. A radionuclide production apparatus characterized by irradiating a radionuclide.
  7.  請求項1に記載の放射性核種製造装置であって、前記循環路に備えられたポンプと、前記ポンプを制御する制御部とをさらに有し、
     前記制御部は、ポンプの運転及び停止の時間、および、ポンプ運転時の流量の少なくとも一方を調整することを特徴とする放射性核種製造装置。
    The radionuclide production apparatus according to claim 1, further comprising a pump provided in the circulation path and a control unit for controlling the pump.
    The radionuclide production apparatus, wherein the control unit adjusts at least one of a pump operation and stop time and a flow rate during pump operation.
  8.  請求項1に記載の放射性核種製造装置であって、前記循環路には、前記流体を冷却する冷却部が備えられていることを特徴とする放射性核種製造装置。 The radionuclide production apparatus according to claim 1, wherein the circulation path is provided with a cooling unit for cooling the fluid.
  9.  請求項2に記載の放射性核種製造装置であって、前記放射線発生装置は、複数台であり、それぞれの前記放射線発生装置は、前記循環路の異なる部分に制動放射線を照射することを特徴とする放射性核種製造装置。 The radionuclide production apparatus according to claim 2, wherein the radiation generators are a plurality of units, and each of the radiation generators irradiates different parts of the circulation path with braking radiation. Radionuclide production equipment.
  10.  請求項1に記載の放射線核種製造装置であって、前記循環路には、前記分離装置を迂回する迂回路が備えられていることを特徴とする放射性核種製造装置。 The radionuclide production apparatus according to claim 1, wherein the circulation path is provided with a detour circuit that bypasses the separation device.
  11.  原料を含む流体を循環路に沿って循環させながら、循環路の途中で放射線を前記流体に照射することにより前記原料から第1の放射性核種を前記流体中に生じさせ、
     前記流体を循環路に沿って循環させながら、前記流体の中から、前記第1の放射性核種および前記第1の放射性核種から生じた第2の放射性核種のうちの少なくとも一部を含む物質を取り出し、残りの原料を含む流体を再び前記循環路に戻して循環させることを特徴とする放射性核種製造方法。
    While the fluid containing the raw material is circulated along the circulation path, the fluid is irradiated with radiation in the middle of the circulation path to generate a first radionuclide from the raw material in the fluid.
    While circulating the fluid along the circulation path, a substance containing at least a part of the first radionuclide and the second radionuclide generated from the first radionuclide is taken out from the fluid. , A method for producing a radionuclide, which comprises returning a fluid containing the remaining raw materials to the circulation path and circulating the fluid.
  12.  請求項11に記載の放射性核種製造方法であって、前記放射線は、加速した電子をターゲットに照射することにより生じさせた制動放射線であることを特徴とする放射性核種製造方法。 The radionuclide production method according to claim 11, wherein the radiation is bremsstrahlung radiation generated by irradiating a target with accelerated electrons.
  13.  請求項11に記載の放射性核種製造方法であって、前記原料は、ラジウム226(Ra-226)であり、前記第1の放射性核種は、ラジウム225(Ra-225)であり、前記第2の放射性核種はアクチニウム225(Ac-225)であることを特徴とする放射性核種製造方法。 The method for producing a radionuclide according to claim 11, wherein the raw material is radium-226 (Ra-226), the first radionuclide is radium 225 (Ra-225), and the second A method for producing a radionuclide, characterized in that the radionuclide is actinium-225 (Ac-225).
  14.  請求項11に記載の放射性核種製造方法であって、前記原料は、モリブデン100(Mo-100)または三酸化モリブデン100であり、前記第1の放射性核種はモリブデン99(Mo-99)であり、前記第2の放射性核種はテクネチウム99m(Te-99m)であることを特徴とする放射性核種製造方法。 The method for producing a radionuclide according to claim 11, wherein the raw material is molybdenum 100 (Mo-100) or molybdenum trioxide 100, and the first radionuclide is molybdenum 99 (Mo-99). A method for producing a radionuclide, wherein the second radionuclide is technetium-99m (Te-99m).
  15.  請求項11に記載の放射性核種製造方法であって、前記流体は、前記原料を溶媒に溶解した溶液、前記原料を溶媒に分散させた分散溶液、および、前記原料をガスに分散させた分散ガスのうちのいずれかであることを特徴とする放射性核種製造方法。 The method for producing a radioactive nuclei according to claim 11, wherein the fluid is a solution in which the raw material is dissolved in a solvent, a dispersion solution in which the raw material is dispersed in a solvent, and a dispersion gas in which the raw material is dispersed in a gas. A method for producing a radioactive nuclei, which is characterized by being one of the following.
PCT/JP2020/005352 2019-05-09 2020-02-12 Apparatus for producing radionuclide and method for producing radionuclide WO2020225951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20802005.7A EP3968342B1 (en) 2019-05-09 2020-02-12 Apparatus for producing radionuclide and method for producing radionuclide
US17/601,467 US20220199277A1 (en) 2019-05-09 2020-02-12 Apparatus for producing radionuclide and method for producing radionuclide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019089200A JP7194637B2 (en) 2019-05-09 2019-05-09 Radionuclide production device and radionuclide production method
JP2019-089200 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020225951A1 true WO2020225951A1 (en) 2020-11-12

Family

ID=73044216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005352 WO2020225951A1 (en) 2019-05-09 2020-02-12 Apparatus for producing radionuclide and method for producing radionuclide

Country Status (4)

Country Link
US (1) US20220199277A1 (en)
EP (1) EP3968342B1 (en)
JP (1) JP7194637B2 (en)
WO (1) WO2020225951A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022169069A (en) * 2021-04-27 2022-11-09 株式会社日立製作所 Radionuclide manufacturing system and radionuclide manufacturing method
JP2023077836A (en) * 2021-11-25 2023-06-06 株式会社日立製作所 Radioactive nuclide production system and radioactive nuclide production method
JP2023081765A (en) * 2021-12-01 2023-06-13 株式会社日立製作所 Radioactive nuclide producing system and radioactive nuclide producing method
JP2023158966A (en) * 2022-04-19 2023-10-31 株式会社日立製作所 Radioactive nuclide production system, and radioactive nuclide production method
CN115472316A (en) * 2022-09-16 2022-12-13 中国核动力研究设计院 Fuel rod, rod bundle assembly and material pouring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506093A (en) * 1990-02-23 1993-09-02 オイローペイシェ アトムゲマインシャフト(オイラトム) Production method of actinium-225 and bismuth-213
JP2002221600A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Target for irradiation system, and irradiation system
JP2007536533A (en) * 2004-05-05 2007-12-13 アクチニウム ファーマシューティカルズ,インコーポレイティド Radium target and its manufacturing method
JP2016080574A (en) * 2014-10-20 2016-05-16 株式会社日立製作所 Radioactive medicine production system, radioactive medicine production device, and method for producing radioactive medicine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200100079A1 (en) * 1998-06-26 2001-10-22 Пол М. Браун TREATMENT OF RADIOACTIVE WASTE BY MEANS OF STIMULATED RADIOACTIVE DECOMPOSITION
WO2001041154A1 (en) * 1999-11-30 2001-06-07 Scott Schenter Method of producing actinium-225 and daughters
JP4618732B2 (en) * 2006-10-20 2011-01-26 独立行政法人 日本原子力研究開発機構 Method and apparatus for manufacturing radioactive molybdenum
CA2713959C (en) * 2008-02-05 2012-01-31 The Curators Of The University Of Missouri Radioisotope production and treatment of solution of target material
US9196389B2 (en) * 2012-11-13 2015-11-24 General Atomics Systems and methods for efficiently preparing plutonium-238 with high isotopic purity
CA3013320C (en) 2016-02-03 2022-05-03 Riken Method for preparing radioactive substance through muon irradiation, and substance prepared using said method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506093A (en) * 1990-02-23 1993-09-02 オイローペイシェ アトムゲマインシャフト(オイラトム) Production method of actinium-225 and bismuth-213
JP2002221600A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Target for irradiation system, and irradiation system
JP2007536533A (en) * 2004-05-05 2007-12-13 アクチニウム ファーマシューティカルズ,インコーポレイティド Radium target and its manufacturing method
JP2016080574A (en) * 2014-10-20 2016-05-16 株式会社日立製作所 Radioactive medicine production system, radioactive medicine production device, and method for producing radioactive medicine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968342A4 *

Also Published As

Publication number Publication date
US20220199277A1 (en) 2022-06-23
EP3968342A1 (en) 2022-03-16
EP3968342A4 (en) 2023-01-18
JP2020183926A (en) 2020-11-12
EP3968342B1 (en) 2024-05-01
JP7194637B2 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2020225951A1 (en) Apparatus for producing radionuclide and method for producing radionuclide
US9202600B2 (en) Method for production of radioisotope preparations and their use in life science, research, medical application and industry
Habs et al. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance
EP2606489B1 (en) Method for producing isotopes, in particular method for producing radioisotopes by means of gamma-beam irradiation
EP2862181B1 (en) Apparatus and methods for transmutation of elements
EP2788989B1 (en) Radionuclide generator having first and second atoms of a first element
JP6288694B2 (en) Radioactive material by muon irradiation and method for producing the same
Grundler et al. The metamorphosis of radionuclide production and development at paul scherrer institute
JP5522563B2 (en) Method and apparatus for producing radioactive molybdenum
Radford et al. Methods for the production of radionuclides for medicine
US20220215979A1 (en) Method and system for producing medical radioisotopes
JP5522564B2 (en) Radioisotope production method and apparatus
JP5522567B2 (en) Radioisotope production method and apparatus
JP5522568B2 (en) Radioisotope production method and apparatus
Lundqvist Radionuclide Production
US20240153663A1 (en) Radionuclide production system and radionuclide production method
Mausner et al. Reactor production of radionuclides
Vallabhajosula Production of Radionuclides
Loveless et al. Production of Therapeutic Radionuclides
Pashentsev Production of radionuclides for cyclotron positron-emission tomography
Luo Preparation of Radionuclides
JP5522565B2 (en) Radioisotope production method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020802005

Country of ref document: EP

Effective date: 20211209