WO2020224628A1 - 两步随机接入的方法及终端 - Google Patents

两步随机接入的方法及终端 Download PDF

Info

Publication number
WO2020224628A1
WO2020224628A1 PCT/CN2020/089077 CN2020089077W WO2020224628A1 WO 2020224628 A1 WO2020224628 A1 WO 2020224628A1 CN 2020089077 W CN2020089077 W CN 2020089077W WO 2020224628 A1 WO2020224628 A1 WO 2020224628A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
type
resources
information
random access
Prior art date
Application number
PCT/CN2020/089077
Other languages
English (en)
French (fr)
Inventor
孙鹏
陈晓航
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217037694A priority Critical patent/KR20210151972A/ko
Priority to EP20802607.0A priority patent/EP3968723B1/en
Priority to BR112021022368A priority patent/BR112021022368A2/pt
Publication of WO2020224628A1 publication Critical patent/WO2020224628A1/zh
Priority to US17/520,473 priority patent/US20220061104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a two-step random access method and terminal.
  • the 2-step random access (2SR) procedure cannot effectively use ⁇ (Pi)/2 binary phase shift keying (Binary Phase Shift Keying, BPSK) modulation and Pi/2BSPK-based demodulation
  • BPSK Binary Phase Shift Keying
  • DMRS Demodulation Reference Signal
  • An objective of the embodiments of the present disclosure is to provide a two-step random access method and terminal, which solves the problem of limited terminal transmission power, which affects transmission efficiency and coverage performance.
  • the embodiments of the present disclosure provide a two-step random access method applied to a terminal, including:
  • the embodiments of the present disclosure also provide a terminal, including:
  • the receiving module is used to receive one or more two-step random access configuration information
  • the transmission module is used to determine transmission resources and/or transmission modes according to configuration information and auxiliary uplink transmission information, and perform transmission.
  • an embodiment of the present disclosure also provides a terminal, including: a processor, a memory, and a program stored in the memory and capable of running on the processor.
  • a terminal including: a processor, a memory, and a program stored in the memory and capable of running on the processor.
  • the program is executed by the processor, the implementation is as follows: The steps of the two-step random access method described in the first aspect.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the two steps described in the first aspect are implemented. Steps of random access method.
  • the embodiments of the present disclosure can improve transmission efficiency and coverage performance.
  • Figure 1 is a schematic diagram of the preamble code
  • Figure 2 is a schematic diagram of a 4-step random access process
  • Figure 3 is a schematic diagram of the RO of FDM at a point in time
  • FIG. 4 is a schematic diagram of the architecture of a wireless communication system according to an embodiment of the disclosure.
  • FIG. 5 is a flowchart of a two-step random access method according to an embodiment of the disclosure.
  • FIG. 6 is one of schematic structural diagrams of a terminal according to an embodiment of the disclosure.
  • FIG. 7 is the second structural diagram of a terminal according to an embodiment of the disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • New Radio Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliable & Low Latency Communication (Ultra Reliable & Low). Latency Communication, URLLC), these scenarios put forward requirements for the system such as high reliability, low latency, large bandwidth, and wide coverage.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • Ultra Reliable & Low Ultra Reliable & Low Latency Communication
  • URLLC Latency Communication
  • Preamble code 1. About random access preamble code (Preamble code):
  • the terminal In the uplink transmission mode in the related technology, if the terminal needs to send uplink data, it must first obtain uplink timing synchronization through a random access process, that is, obtain uplink timing advance (TA) information from the network side. After obtaining uplink synchronization, the terminal can send uplink data through dynamic scheduling or semi-persistent scheduling.
  • TA uplink timing advance
  • the terminal can send uplink data in an asynchronous state.
  • the terminal is also in an asynchronous state when sending the preamble code, so it is necessary to add a cyclic prefix (Cyclic Prefix, CP) to the preamble code to offset the impact of transmission delay, see Figure 1.
  • CP Cyclic Prefix
  • the terminal first sends message 1 (msg1) to the network side, including the preamble code; after detecting the preamble code, the network side sends message 2 (msg2), including the corresponding preamble code Random Access Response (RAR) message; After receiving msg2, the terminal sends message 3 (msg3) according to the instructions of RAR; after receiving msg3, the network side sends message 4 (msg4), including the contention resolution identifier ( contention resolution ID); when the terminal receives msg4, the 4-step random access is completed.
  • message 1 msg1
  • the network side sends message 2 (msg2), including the corresponding preamble code Random Access Response (RAR) message
  • RAR Random Access Response
  • the terminal After receiving msg2, the terminal sends message 3 (msg3) according to the instructions of RAR; after receiving msg3, the network side sends message 4 (msg4), including the contention resolution identifier ( contention resolution ID); when the terminal receives
  • the terminal sends message A (msgA) to the network side. After receiving msgA, the network side sends message B (msgB) to the terminal. After the terminal receives msgB, the 2-step random access is completed.
  • PRACH Physical Random Access Channel
  • the base station can be configured to have multiple frequency division multiplexing (Frequency Division Multiplexing) at one point in time (time instance, that is, the time required to transmit a PRACH resource, here also refers to the time domain position used to transmit PRACH).
  • FDM frequency division multiplexing
  • PRACH transmission opportunity Physical random access channel transmission opportunity
  • PRACH occasion RO
  • the number of ROs that can perform FDM on a time instance can be: ⁇ 1,2 ,4,8 ⁇ .
  • the preamble code can only be transmitted on the time domain resource configured by the parameter PRACHConfigurationIndex, and the preamble code can only be transmitted on the frequency domain resource configured by the parameter prach-FDM.
  • the PRACH frequency domain resource n RA ⁇ 0,1,...,M- 1 ⁇ , where M is equal to the parameter prach-FDM.
  • the PRACH frequency domain resources are numbered in ascending order from the lowest frequency RO resource in the initial active uplink bandwidth part (initial active uplink bandwidth part); otherwise, the PRACH frequency domain resources are numbered from the active uplink bandwidth part (active uplink bandwidth part).
  • the RO resources with the lowest internal frequency are numbered in ascending order.
  • SS/PBCH block SSB
  • SS block synchronization signal block
  • CSI-RS Channel State Information-Reference Signal
  • the number of ROs of FDM on a time instance is 8, and the actual number of SSBs transmitted is 4.
  • the corresponding SSBs are SSB#0, SSB#1, SSB#2, SSB#3, each SSB associates 2 ROs. If the terminal sends PRACH on the RO corresponding to SSB0, the terminal selects one RO from RO#0 and RO#1 to send PRACH.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA ((Evolution-UTRA, E-UTRA)), IEEE 802.11 ((Wi-Fi)), IEEE 802.16 ((WiMAX)), IEEE 802.20, Flash-OFDM and other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA (Evolution-UTRA, E-UTRA)
  • IEEE 802.11 (Wi-Fi)
  • IEEE 802.16 (WiMAX)
  • IEEE 802.20 Flash-OFDM and other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA (Evolution-U
  • LTE and more advanced LTE are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • FIG. 4 is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system may include: a network device 40 and a terminal 41.
  • the terminal 41 may be denoted as UE 41, and the terminal 41 may communicate (transmit signaling or transmit data) with the network device 40 and the network device 41.
  • the connection between the various devices mentioned above may be a wireless connection.
  • a solid line is used in FIG. 4 to indicate.
  • the network device 40 provided by the embodiment of the present disclosure may be a base station, which may be a commonly used base station, an evolved node base station (eNB), or a network device in a 5G system (for example, the following Equipment such as next generation node base station (gNB) or transmission and reception point (TRP)).
  • eNB evolved node base station
  • 5G system for example, the following Equipment such as next generation node base station (gNB) or transmission and reception point (TRP)).
  • gNB next generation node base station
  • TRP transmission and reception point
  • the terminal 41 provided in the embodiment of the present disclosure may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook or a personal digital assistant (Personal Digital Assistant, PDA), a mobile Internet device (Mobile Internet Device (MID), Wearable Device (Wearable Device), or vehicle-mounted device, etc.
  • an embodiment of the present disclosure provides a two-step random access method.
  • the execution subject of the method is a terminal, and the specific steps are as follows:
  • Step 501 Receive one or more two-step random access configuration information
  • the configuration information may include but not limited to one or more of the following (1) to (5):
  • the types of two-step random access resources may be Physical Random Access Channel (PRACH) resources and Physical Uplink Shared Channel (PUSCH) resources.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • the two-step random access resources include but are not limited to one or more of the following (a) to (f):
  • the DMRS sequence is generated using the zeroth type and the data does not use the first type of modulation resources.
  • the first type can be ⁇ (Pi)/2 binary phase shift keying (BSPK), or quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16 Quadrature Amplitude). Modulation, 16QAM), 64QAM, 256QAM, 1024QAM, 8Phase Shift Keying (8PSK), and other possible modulation types.
  • modulation types such as Pi/2BSPK can be effectively used in the two-step random access process, which reduces scenarios where the terminal transmission power is limited and improves transmission efficiency and coverage performance.
  • the zeroth type of DMRS sequence includes, but is not limited to, one or more of the following: sequences generated using pseudo-random sequences and QPSK modulation methods, sequences generated using pseudo-random sequences and Pi/2BSPK modulation methods, sequences generated based on ZC sequences , According to the BPSK sequence obtained by the computer search, the QPSK sequence obtained by the computer search, the 8PSK sequence obtained by the computer search, etc.
  • the first information indicates the mapping relationship of two-step random access resources
  • the first information may further indicate the mapping relationship between PRACH resources and PUSCH resources.
  • the mapping relationship may include that different PUSCH resources correspond to the same PRACH resource; or, different PRACH resources correspond to the same PUSCH resource.
  • the second information indicates the transmission method used
  • the second information is further used to indicate one or more of the following (a) to (i):
  • MCS Modulation and Coding Scheme
  • the third information indicates whether the specified transmission mode is used on the two-step random access resource.
  • the designated transmission mode can be Pi/2BSPK transmission, but of course it is not limited to this.
  • the fourth information indicates the time domain and/or frequency domain information of the configured resource.
  • Step 502 Determine transmission resources and/or transmission modes according to configuration information and auxiliary uplink transmission information, and perform uplink transmission.
  • auxiliary uplink transmission information may include one or more of the following: terminal capabilities, uplink transmission-related information, and information carried by a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the transmission resource and/or transmission mode are determined according to one or more of the terminal's capabilities, uplink transmission-related information, and bearer information, and configuration information, for example For sexual description, please refer to Example 1 to Example 3 below.
  • step 502 the information carried by the PDCCH is received.
  • the method may further include: indicating the transmission resource and/or the transmission mode through a PRACH resource, or indicating the transmission mode through a PUSCH resource.
  • the resource configured by the configuration information may include but not limited to one or more of the following (1) to (6):
  • the DMRS sequence is generated using the zeroth type and the data uses the first type of modulation resources;
  • the DMRS sequence does not use the zeroth type generation and the data does not use the resources of the first type modulation.
  • the DMRS sequence does not use the zeroth type generation and the data uses the first type modulation resources
  • the DMRS sequence is generated using the zeroth type and the data does not use the first type of modulation resources.
  • the transmission mode may include but not limited to one or more of the following (1) to (9):
  • the DMRS sequence is not generated using the zeroth type
  • the capabilities of the terminal may include, but are not limited to, any of the following (1) to (5):
  • the information related to uplink transmission includes but not limited to one or more of the following (1) to (5):
  • the type of uplink transmission content including but not limited to control type, application layer data type, etc.;
  • the number of retransmissions may include two-step access retransmission times, four-step access retransmission times, two-step access times that have failed, and four-step access retransmission times that have failed, etc.;
  • the embodiments of the present disclosure can reduce scenarios where terminal transmission power is limited, and improve transmission efficiency and coverage performance.
  • the first type is Pi/2BSPK.
  • the implementation of other modulation types is similar to this.
  • Example 1 includes step 1 and step 2.
  • Step 1 The UE receives through broadcast the configuration information of multiple 2-step random access resources sent by the network side;
  • the configuration information may include: PRACH resource information, PUSCH resource information, PRACH resource and PUSCH resource mapping relationship information, etc.;
  • the information corresponding to each PUSCH resource can indicate in each configuration information whether the UE adopts Pi/2BSPK transmission;
  • Pi/2BPSK transmission includes any of the following: data is modulated by Pi/2BSPK; DMRS sequence is generated by Pi/2BSPK; data is modulated by Pi/2BSPK and DMRS sequence is generated by Pi/2BSPK;
  • the configuration information may also include: whether the data is modulated by Pi/2BSPK and/or whether the DMRS sequence is generated by Pi/2BSPK;
  • different PUSCH configuration resources can correspond to the same PRACH resource.
  • Step 2 According to one or more of whether the UE has Pi/2BPSK transmission capability, path loss, transmit power, bearer transmission block size, bearer content priority, bearer content type, etc., select which type of resource to use Uplink transmission;
  • the ability of the UE to transmit Pi/2BPSK may include one or more of the following: the UE has the ability to modulate data Pi/2BSPK; the ability to generate DMRS sequences using Pi/2BSPK.
  • step 1 determines whether the UE has the ability to modulate the data Pi/2BSPK and/or the ability to generate the DMRS sequence using Pi/2BSPK.
  • the data adopts Pi/2BSPK modulated resources
  • the DMRS sequence uses resources generated by Pi/2BSPK;
  • Example 1 includes step 1 and step 2.
  • Step 1 The UE receives one or more 2-step random access resource configuration information sent by the network side through broadcast;
  • the received configuration information may include: multiple types of modulation schemes are allowed to be configured on the same PUSCH resource;
  • the UE may use Pi/2BPSK modulation or not Pi/2BSPK modulation;
  • the UE may either use Pi/2BPSK to generate the DMRS sequence, or not use Pi/2BSPK to generate the DMRS sequence.
  • the configuration information further includes: a mapping relationship between PRACH resources and PUSCH resources, for example, allowing multiple PRACH resources to be mapped to the same PUSCH resource.
  • different PRACH resources can be used to indicate the adopted MCS, whether to adopt Pi/2BPSK, and other information;
  • Step 2 Select the corresponding PRACH resource according to one or more of whether the UE has Pi/2BPSK transmission capability, path loss, transmit power, bearer transmission block size, bearer content priority, bearer content type, etc. And use the transmission mode corresponding to the PRACH resource for uplink transmission.
  • Example 1 includes step 1 and step 2.
  • Step 1 The UE receives the configuration information of one or more 2-step random access resources sent by the network side through broadcast.
  • Example 1 Example 1
  • Example 2 Example 2
  • Step 2 You can use a similar way to Example 1 or Example 2 for transmission.
  • the information carried by the PDCCH can directly indicate which configuration information is used.
  • the information carried by the PDCCH may include the corresponding MCS, modulation type and other information.
  • Example 3 It can be transmitted in a manner similar to Example 1 or Example 2.
  • Example 1 If it is a two-step RACH process triggered by the UE: a method similar to Example 1 or Example 2 can be used for transmission.
  • the embodiment of the present disclosure also provides a terminal. Since the principle of the terminal to solve the problem is similar to the two-step random access method in the embodiment of the present disclosure, the implementation of the terminal can refer to the implementation of the method. Narrated.
  • an embodiment of the present disclosure further provides a terminal, and the terminal 600 includes:
  • the receiving module 601 is configured to receive one or more two-step random access configuration information
  • the transmission module 602 is configured to determine transmission resources and/or transmission modes according to configuration information and auxiliary uplink transmission information, and perform uplink transmission.
  • the transmission module 602 is further configured to: according to one or more of the capabilities of the terminal, information related to uplink transmission, and information carried by the physical downlink control channel PDCCH, and the Configure information, determine the transmission resource and/or transmission mode, and perform uplink transmission.
  • the receiving module 601 is further configured to: receive information carried by the PDCCH.
  • the resources configured by the configuration information include but are not limited to one or more of the following (1) to (6):
  • the DMRS sequence is generated using the zeroth type and the data uses the first type of modulation resources;
  • the DMRS sequence does not use the zeroth type generation and the data does not use the resources of the first type modulation.
  • the DMRS sequence does not use the zeroth type generation and the data uses the first type modulation resources
  • the DMRS sequence is generated using the zeroth type and the data does not use the first type of modulation resources.
  • the first type can be ⁇ (Pi)/2 binary phase shift keying (BSPK), or quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (16 Quadrature Amplitude). Modulation, 16QAM), 64QAM, 256QAM, 1024QAM, 8 Phase Shift Keying (8PSK), and other possible modulation types.
  • BSPK binary phase shift keying
  • QPSK quadrature phase shift keying
  • 16QAM 64QAM
  • 256QAM 256QAM
  • 1024QAM 1024QAM
  • 8PSK Phase Shift Keying
  • the zeroth type of DMRS sequence includes but is not limited to one or more of the following: sequences generated using pseudo-random sequences and QPSK modulation methods, sequences generated using pseudo-random sequences and Pi/2 BSPK modulation methods, and sequences generated based on ZC sequences
  • the sequence is based on the BPSK sequence obtained by the computer search, the QPSK sequence obtained by the computer search, and the 8PSK sequence obtained by the computer search.
  • the configuration information includes but is not limited to one or more of the following (1) to (5):
  • the first information indicates the mapping relationship of two-step random access resources
  • the second information indicates whether the terminal adopts a designated transmission mode
  • the third information indicates whether the specified transmission mode is used on the two-step random access resource
  • the fourth information indicates the time domain and/or frequency domain information of the configured resource.
  • the second information is further used to indicate one or more of the following (1) to (9):
  • MCS Modulation and Coding Scheme
  • the DMRS sequence is not generated using the zeroth type
  • the first information further indicates the mapping relationship between the physical random access channel PRACH resource and the physical uplink shared channel PUSCH resource.
  • the mapping relationship includes: different PUSCH resources correspond to the same PRACH resource; or, different PRACH resources correspond to the same PUSCH resource.
  • the transmission mode includes but not limited to one or more of the following (1) to (9):
  • the DMRS sequence is not generated using the zeroth type
  • the capability of the terminal includes any one of the following (1) to (5):
  • the information related to uplink transmission includes one or more of the following (1) to (5):
  • the type of uplink transmission content including but not limited to control type, application layer data type, etc.;
  • Retransmission times including two-step access retransmission times, four-step access retransmission times, two-step access times that have failed, and four-step access retransmission times that have failed, etc.;
  • the terminal further includes: an indication module, configured to indicate the transmission resource and/or the transmission mode through a PRACH resource; or, to indicate the transmission mode through a PUSCH resource.
  • an indication module configured to indicate the transmission resource and/or the transmission mode through a PRACH resource; or, to indicate the transmission mode through a PUSCH resource.
  • the terminal provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • the terminal 700 shown in FIG. 7 includes: at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in the terminal 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 7.
  • the user interface 703 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 702 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synch link DRAM, SLDRAM
  • DRRAM Direct Rambus RAM
  • the memory 702 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: the operating system 7021 and the application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 7022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program that implements the method of the embodiments of the present disclosure may be included in the application program 7022.
  • a program or instruction stored in the memory 702 by calling a program or instruction stored in the memory 702, specifically, a program or instruction stored in the application program 7022, the following steps are implemented during execution: receiving one or more two-step random access Configuration information; determine the transmission resource and/or transmission mode according to the configuration information and auxiliary uplink transmission information, and perform uplink transmission.
  • the terminal provided in the embodiment of the present disclosure can execute the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described in this embodiment here.
  • the steps of the method or algorithm described in connection with the disclosure of the present disclosure may be implemented in a hardware manner, or may be implemented in a manner of executing software instructions on a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disks, mobile hard disks, read-only optical disks, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium can be carried in an ASIC.
  • the ASIC can be carried in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in the present disclosure can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种两步随机接入的方法及终端,该方法包括:接收一个或多个两步随机接入的配置信息;根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。

Description

两步随机接入的方法及终端
相关申请的交叉引用
本申请主张在2019年5月9日在中国提交的中国专利申请No.201910385817.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种两步随机接入的方法及终端。
背景技术
2步随机接入(2 step random access,2SR)过程(procedure)无法有效使用π(Pi)/2二进制相移键控(Binary Phase Shift Keying,BPSK)这类调制及基于Pi/2BSPK的解调参考信号(Demodulation Reference Signal,DMRS)序列,导致终端(例如,用户设备(User Equipment,UE))发射功率受限,影响传输效率和覆盖性能。
发明内容
本公开实施例的一个目的在于提供一种两步随机接入的方法及终端,解决终端发射功率受限,影响传输效率和覆盖性能的问题。
第一方面,本公开实施例提供一种两步随机接入的方法,应用于终端,包括:
接收一个或多个两步随机接入的配置信息;
根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。
第二方面,本公开实施例还提供一种终端,包括:
接收模块,用于接收一个或多个两步随机接入的配置信息;
传输模块,用于根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行传输。
第三方面,本公开实施例还一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的两步随机接入的方法的步骤。
第四方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的两步随机接入的方法的步骤。
本公开实施例,可以提高传输效率和覆盖性能。
附图说明
通过阅读下文可选的实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选的实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为preamble码的示意图;
图2为4步随机接入过程的示意图;
图3为一个时间点上的FDM的RO的示意图;
图4为本公开实施例的无线通信系统的架构示意图;
图5为本公开实施例的两步随机接入的方法的流程图;
图6为本公开实施例的终端的结构示意图之一;
图7为本公开实施例的终端的结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清 楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了便于理解本公开实施例,下面介绍几个技术点:
与以往的移动通信系统相比,未来第五代移动通信技术(Fifth-generation,5G)系统需要适应更加多样化的场景和业务需求。新无线(New Radio,NR)的主要场景包括:增强移动宽带增强(Enhanced Mobile Broadband,eMBB)、大规模物联网(Massive Machine Type Communication,mMTC)、超高可靠超低时延通信(Ultra Reliable &Low Latency Communication,URLLC),这些场景对系统提出了高可靠、低时延、大带宽、广覆盖等要求。
一、关于随机接入前导码(Preamble码):
在相关技术中的上行传输模式下,终端如果需要发送上行数据,首先要通过随机接入过程获取上行定时同步,即从网络侧获得上行定时提前(Timing advance,TA)信息。在取得上行同步后,终端可以通过动态调度或半静态调度发送上行数据。
当上行数据包较小时,通过随机接入过程获得上行同步后发送上行数据的方式会造成资源和电量的消耗。因此在mMTC场景下,终端可在非同步的状态下,发送上行数据。
与随机接入过程类似,终端发送preamble码时也是处于非同步状态,因此需要通过在preamble码中添加循环前缀(Cyclic Prefix,CP)来抵消传输延迟带来的影响,参见图1。
二、关于4步随机接入过程和2步随机接入过程:
参见图2,在4步随机接入过程中,终端首先向网络侧发送消息1(msg1),包含preamble码;网络侧检测到preamble码后,发送消息2(msg2),包含该preamble码对应的随机接入响应(Random Access Response,RAR)消息; 终端接收到msg2后,根据RAR的指示,发送消息3(msg3);网络侧收到msg3后,发送消息4(msg4),包含竞争解决标识(contention resolution ID);终端收到msg4,即完成4步随机接入。
在2步随机接入过程中,终端向网络侧发送消息A(msgA),网络侧收到msgA后,向终端发送消息B(msgB),终端收到msgB后,即完成2步随机接入。
三、关于物理随机接入信道(Physical Random Access Channel,PRACH)机会(Occasions):
在NR中,基站可以配置在一个时间点(time instance,即传输一个PRACH资源所需的时长,在这里也指用于传输PRACH的时域位置)上存在多个频分复用(Frequency Division Multiplexing,FDM)的物理随机接入信道传输机会(PRACH transmission occasion,或者称为物理随机接入信道机会(PRACH occasion,RO)。一个time instance上可以进行FDM的RO个数可以为:{1,2,4,8}。
preamble码只能在参数PRACHConfigurationIndex配置的时域资源上传输,preamble码只能在参数prach-FDM配置的频域资源上传输,PRACH频域资源n RA∈{0,1,...,M-1},其中M等于参数prach-FDM。在初始接入的时候,PRACH频域资源从初始激活上行带宽部分(initial active uplink bandwidth part)内频率最低RO资源开始升序编号,否则,PRACH频域资源从激活上行带宽部分(active uplink bandwidth part)内频率最低RO资源开始升序编号。
在NR中,RO和实际发送的同步信号/物理广播信道块(SS/PBCH block,SSB,也可以简称为同步信号块(SS block))之间存在关联关系。一个RO上可能关联多个SSB,一个RO关联的SSB的数目可以是:{1/8,1/4,1/2,1,2,4,8,16}。对于非竞争的随机接入过程,RO和信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)也可能存在关联关系。
参见图3,一个time instance上的FDM的RO数目为8个,实际传输的SSB数目为4个,例如:对应的SSB为SSB#0,SSB#1,SSB#2,SSB#3,每个SSB关联2个RO。如果终端在SSB0对应的RO上发送PRACH,那么终端在RO#0和RO#1中选择一个RO进行PRACH的发送。
本文所描述的技术不限于5G系统以及后续演进通信系统,以及不限于长期演进(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA((Evolution-UTRA,E-UTRA))、IEEE 802.11((Wi-Fi))、IEEE 802.16((WiMAX))、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。
下面结合附图介绍本公开的实施例。本公开实施例提供的两步随机接入的方法及终端可以应用于无线通信系统中。参考图4,为本公开实施例提供的一种无线通信系统的架构示意图。如图4所示,该无线通信系统可以包括:网络设备40和终端41,终端41可以记做UE41,终端41可以与网络设备40和网络设备41通信(传输信令或传输数据)。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系, 图4中采用实线示意。
本公开实施例提供的网络设备40可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络设备(例如,下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。
本公开实施例提供的终端41可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。
参见图5,本公开实施例提供一种两步随机接入的方法,该方法的执行主体为终端,具体步骤如下:
步骤501:接收一个或多个两步随机接入的配置信息;
在本公开实施例中,可选地,配置信息可以包括但不限于以下(1)~(5)中的一项或多项:
(1)一个或多个两步随机接入资源的信息;
例如,两步随机接入资源的类型可以是物理随机接入信道(Physical Random Access Channel,PRACH)资源和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源。
进一步地,两步随机接入资源包括但不限于以下(a)~(f)中的一项或多项:
(a)数据占用的时频资源;
(b)解调参考信号(Demodulation Reference Signal,DMRS)序列占用的时频资源;
(c)DMRS序列采用第零类型生成和数据采用第一类型调制的资源;
(d)DMRS序列不采用第零类型生成和数据不采用第一类型调制的资源。
(e)DMRS序列不采用第零类型生成和数据采用第一类型调制的资源;
(f)DMRS序列采用第零类型生成和数据不采用第一类型调制的资源。
例如,第一类型可以是π(Pi)/2二进制相移键控(BSPK),或者也可以是正交相移键控(Quadrature Phase Shift Keying,QPSK),16正交幅度调 制(16 Quadrature Amplitude Modulation,16QAM),64QAM,256QAM,1024QAM,8移相键控(8Phase Shift Keying,8PSK),以及其他可能的调制类型。这样在本公开实施例中,在两步随机接入过程中可以有效使用Pi/2BSPK等调制类型,减少终端发射功率受限的场景和提高传输效率和覆盖性能。
例如,DMRS序列第零类型包括但不限于以下一项或多项:采用伪随机序列及QPSK调制方式生成的序列,采用伪随机序列及Pi/2BSPK调制方式生成的序列,根据ZC序列生成的序列,根据计算机搜索得到的BPSK序列,根据计算机搜索得到的QPSK序列,根据计算机搜索得到的8PSK序列等。
(2)第一信息,指示两步随机接入资源的映射关系;
可选地,所述第一信息可以进一步指示PRACH资源和PUSCH资源的映射关系。映射关系可以包括不同的PUSCH资源对应相同的PRACH资源;或者,不同的PRACH资源对应相同的PUSCH资源。
(3)第二信息,指示采用的传输方式;
可选地,所述第二信息进一步用于指示以下(a)~(i)中的一项或多项:
(a)调制与编码策略(Modulation and Coding Scheme,MCS);
(b)数据采用第一调制类型调制;
(c)数据不采用第一调制类型调制;
(d)DMRS序列采用第零类型生成;
(e)DMRS序列不采用第零类型生成;
(f)传输编码速率;
(g)DMRS的类型;
(h)DMRS的密度;
(i)DMRS的数量。
(4)第三信息,指示在两步随机接入资源上是否采用指定的传输方式。
例如:指定的传输方式可以是Pi/2BSPK传输,当然并不限于此。
(5)第四信息,指示配置资源的时域和/或频域信息。
可以理解的是,如果接收多个两步随机接入的配置信息,该配置信息中的上述(1)~(5)中的至少一项不相同。
步骤502:根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。
在本公开实施例中,可选地,辅助上行传输信息可以包括以下一项或多项:终端的能力、上行传输相关的信息和物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的信息。
在本公开实施例中,可选地,根据所述终端的能力、上行传输相关的信息、和承载的信息中的一项或多项,以及配置信息,确定传输资源和/或传输方式,举例性说明可以参见以下示例1~示例3。
在本公开实施例中,可选地,在步骤502之前,接收PDCCH承载的信息。
在本公开实施例中,可选地,在步骤502之后,所述方法还可以包括:通过PRACH资源指示所述传输资源和/或所述传输方式,或者,通过PUSCH资源指示所述传输方式。
在本公开实施例中,可选地,配置信息配置的资源可以包括但不限于以下(1)~(6)中的一项或多项:
(1)数据占用的时频资源;
(2)DMRS序列占用的时频资源;
(3)DMRS序列采用第零类型生成和数据采用第一类型调制的资源;
(4)DMRS序列不采用第零类型生成和数据不采用第一类型调制的资源。
(5)DMRS序列不采用第零类型生成和数据采用第一类型调制的资源;
(6)DMRS序列采用第零类型生成和数据不采用第一类型调制的资源。
在本公开实施例中,可选地,所述传输方式可以包括但不限于以下(1)~(9)中的一项或多项:
(1)MCS;
(2)数据采用第一类型调制;
(3)数据不采用第一类型调制;
(4)DMRS序列采用第零类型生成;
(5)DMRS序列不采用第零类型生成;
(6)传输编码速率;
(7)DMRS的类型;
(8)DMRS的密度;
(9)DMRS的数量。
在本公开实施例中,可选地,所述终端的能力可以包括但不限于以下(1)~(5)中的任意一项:
(1)数据采用第一类型调制的能力;
(2)DMRS序列采用第零类型生成的能力;
(3)数据采用第一类型调制和DMRS序列采用第零类型生成的能力。
(4)支持的DMRS类型的能力;
(5)终端最大输出功率的能力。
在本公开实施例中,可选地,所述上行传输相关的信息包括但不限于以下(1)~(5)中的一项或多项:
(1)路径损耗;
(2)所述终端的发射功率;
(3)传输块大小;
(4)上行传输内容的优先级;
(5)上行传输内容的类型,例如包括但不限于控制类型、应用层数据类型等;
(6)重传次数,例如重传次数可以包括两步接入重传次数、四步接入重传次数、已经失败的两步接入次数、已经失败的四步接入重传次数等;
(7)传输次数是否达到预先配置的门限;
(8)传输历史信息。
本公开实施例可以减少终端发射功率受限的场景,提高传输效率和覆盖性能。
在下面介绍的示例1至示例3中,第一类型为Pi/2BSPK,当然可以理解的是,其他调制类型的实施方式与此类似。
示例1:
在示例1的实施方式中包括步骤1和步骤2。
步骤1:UE通过广播接收网络侧发送的多个2步随机接入资源的配置信息;
例如,配置信息可以包括:PRACH资源的信息、PUSCH资源的信息、PRACH资源和PUSCH资源的映射关系信息等;
其中,接收的多个PUSCH资源的信息中,每个PUSCH资源对应的信息在每个配置信息中可以指示UE是否采用Pi/2BSPK传输;
(1)Pi/2BPSK传输包括以下任意一项:数据采用Pi/2BSPK调制;DMRS序列采用Pi/2BSPK生成;数据采用Pi/2BSPK调制和DMRS序列采用Pi/2BSPK生成;
(2)配置信息还可以包括:数据是否采用Pi/2BSPK调制和/或者DMRS序列是否采用Pi/2BSPK生成;
其中,不同的PUSCH配置资源可以对应相同的PRACH资源。
步骤2:根据UE是否具备Pi/2BPSK传输的能力、路径损耗、发射功率、承载的传输块大小、承载内容的优先级、承载内容的类型等中的一项或多项,选择使用哪类资源进行上行传输;
其中,UE具备Pi/2BPSK传输的能力可以包括以下一项或多项:UE具备数据Pi/2BSPK调制能力;DMRS序列采用Pi/2BSPK生成的能力。
可以理解的是,根据UE是否具备Pi/2BPSK传输的能力选择使用哪类资源进行上行传输包括:
根据UE是否具备数据Pi/2BSPK调制能力和/或DMRS序列采用Pi/2BSPK生成的能力,决定使用步骤1中配置的多种资源中的哪一种:
(1)数据采用Pi/2BSPK调制的资源;
(2)DMRS序列采用Pi/2BSPK生成的资源;
(3)数据和DMRS同时采用Pi/2BSPK的资源;
(4)数据和DMRS同时不采用Pi/2BSPK的资源。
示例2
在示例1的实施方式中包括步骤1和步骤2。
步骤1:UE通过广播接收网络侧发送的一个或多个2步随机接入资源的配置信息;
例如,接收的配置信息中可以包括:在相同的PUSCH资源上允许配置多种类型的调制方式;
示例性地,包括但不限于允许指示在该PUSCH资源上,UE既可以采用Pi/2BPSK调制,也可以不采用Pi/2BSPK调制;
示例性地,包括但不限于允许指示在该PUSCH资源上,UE既可以采用Pi/2BPSK生成DMRS序列,也可以不采用Pi/2BSPK生成DMRS序列。
可选地,配置信息中还包括:PRACH资源和PUSCH资源的映射关系,例如允许多个PRACH资源映射到相同的PUSCH资源。
在本示例中,可以使用不同的PRACH资源表示采用的MCS、是否采用Pi/2BPSK等信息;
步骤2:根据UE是否具备Pi/2BPSK传输的能力、路径损耗、发射功率、承载的传输块大小、承载内容的优先级、承载内容的类型等中的一项或多项,选择对应的PRACH资源以及使用与该PRACH资源对应的传输方式进行上行传输。
示例3
在示例1的实施方式中包括步骤1和步骤2。
步骤1:UE通过广播接收网络侧发送的一个或多个2步随机接入资源的配置信息。
可以理解的是,对应的配置可以如示例1或者示例2中的描述。
步骤2:可以使用类似示例1或示例2的方式传输。
如果是网络触发的2 step RACH过程:
(1)可以通过PDCCH承载的信息直接指示使用哪个配置信息。
(2)PDCCH承载的信息中可以包括对应的MCS、调制类型等信息。
(3)可以使用类似示例1或示例2的方式传输。
如果是UE触发的2 step RACH过程:可以使用类似示例1或示例2的方式传输。
本公开实施例中还提供了一种终端,由于终端解决问题的原理与本公开实施例中两步随机接入的方法相似,因此该终端的实施可以参见方法的实施,重复之处不再敷述。
参见图6,本公开实施例还提供一种终端,该终端600包括:
接收模块601,用于接收一个或多个两步随机接入的配置信息;
传输模块602,用于根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。
在本公开实施例中,可选地,传输模块602进一步用于:根据所述终端的能力、上行传输相关的信息和物理下行控制信道PDCCH承载的信息中的一项或多项,以及所述配置信息,确定所述传输资源和/或传输方式,并进行上行传输。
在本公开实施例中,可选地,接收模块601还用于:接收PDCCH承载的信息。
在本公开实施例中,可选地,所述配置信息配置的资源包括但不限于以下(1)~(6)中的一项或多项:
(1)数据占用的时频资源;
(2)DMRS序列占用的时频资源;
(3)DMRS序列采用第零类型生成和数据采用第一类型调制的资源;
(4)DMRS序列不采用第零类型生成和数据不采用第一类型调制的资源。
(5)DMRS序列不采用第零类型生成和数据采用第一类型调制的资源;
(6)DMRS序列采用第零类型生成和数据不采用第一类型调制的资源。
例如,第一类型可以是π(Pi)/2二进制相移键控(BSPK),或者也可以是正交相移键控(Quadrature Phase Shift Keying,QPSK),16正交幅度调制(16 Quadrature Amplitude Modulation,16QAM),64QAM,256QAM,1024QAM,8移相键控(8 Phase Shift Keying,8PSK),以及其他可能的调制类型。
例如,DMRS序列第零类型包括但不限于以下一项或多项:采用伪随机序列及QPSK调制方式生成的序列,采用伪随机序列及Pi/2 BSPK调制方式生成的序列,根据ZC序列生成的序列,根据计算机搜索得到的BPSK序列,根据计算机搜索得到的QPSK序列,根据计算机搜索得到的8PSK序列等。
在本公开实施例中,可选地,所述配置信息包括但不限于以下(1)~(5)中的一项或多项:
(1)一个或多个两步随机接入资源的信息;
(2)第一信息,指示两步随机接入资源的映射关系;
(3)第二信息,指示所述终端是否采用指定的传输方式;
(4)第三信息,指示在两步随机接入资源上是否采用指定的传输方式;
(5)第四信息,指示配置资源的时域和/或频域信息。
在本公开实施例中,可选地,所述第二信息进一步用于指示以下(1)~(9)中的一项或多项:
(1)调制与编码策略(Modulation and Coding Scheme,MCS);
(2)数据采用第一调制类型调制;
(3)数据不采用第一调制类型调制;
(4)DMRS序列采用第零类型生成;
(5)DMRS序列不采用第零类型生成;
(6)传输编码速率;
(7)DMRS的类型;
(8)DMRS的密度;
(9)DMRS的数量。
在本公开实施例中,可选地,所述第一信息进一步指示物理随机接入信道PRACH资源和物理上行共享信道PUSCH资源的映射关系。
在本公开实施例中,可选地,所述映射关系包括:不同的PUSCH资源对应相同的PRACH资源;或者,不同的PRACH资源对应相同的PUSCH资源。
在本公开实施例中,可选地,所述传输方式包括但不限于以下(1)~(9)中的一项或多项:
(1)MCS;
(2)数据采用第一类型调制;
(3)数据不采用第一类型调制;
(4)DMRS序列采用第零类型生成;
(5)DMRS序列不采用第零类型生成;
(6)传输编码速率;
(7)DMRS的类型;
(8)DMRS的密度;
(9)DMRS的数量。
在本公开实施例中,可选地,所述终端的能力包括以下(1)~(5)中的任意一项:
(1)数据采用第一类型调制的能力;
(2)DMRS序列采用第零类型生成的能力;
(3)数据采用第一类型调制和DMRS序列采用第零类型生成的能力。
(4)支持的DMRS类型的能力;
(5)终端最大输出功率的能力。
在本公开实施例中,可选地,所述上行传输相关的信息包括以下(1)~(5)中的一项或多项:
(1)路径损耗;
(2)所述终端的发射功率;
(3)传输块大小;
(4)上行传输内容的优先级;
(5)上行传输内容的类型,例如包括但不限于控制类型、应用层数据类型等;
(6)重传次数,包括两步接入重传次数、四步接入重传次数、已经失败的两步接入次数、已经失败的四步接入重传次数等;
(7)传输次数是否达到预先配置的门限;
(8)传输历史信息。
在本公开实施例中,可选地,终端还包括:指示模块,用于通过PRACH资源指示所述传输资源和/或所述传输方式;或者,通过PUSCH资源指示所述传输方式。
本公开实施例提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
如图7所示,图7所示的终端700包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。终端700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系 统705。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702保存了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序7022中。
在本公开的一个实施例中,通过调用存储器702保存的程序或指令,具体地,可以是应用程序7022中保存的程序或指令,执行时实现以下步骤:接 收一个或多个两步随机接入的配置信息;根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。
本公开实施例提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以由在处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以携带在ASIC中。另外,该ASIC可以携带在核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种两步随机接入的方法,应用于终端,包括:
    接收一个或多个两步随机接入的配置信息;
    根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输。
  2. 根据权利要求1所述的方法,其中,所述根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行上行传输,包括:
    根据所述终端的能力、上行传输相关的信息和物理下行控制信道PDCCH承载的信息中的一项或多项,以及所述配置信息,确定所述传输资源和/或传输方式,并进行上行传输。
  3. 根据权利要求1所述的方法,其中,所述配置信息包括以下一项或多项:
    一个或多个两步随机接入资源的信息;
    第一信息,指示两步随机接入资源的映射关系;
    第二信息,指示采用的传输方式;
    第三信息,指示在两步随机接入资源上是否采用指定的传输方式;
    第四信息,指示配置资源的时域和/或频域信息。
  4. 根据权利要求1所述的方法,其中,所述配置信息配置的资源包括以下一项或多项:
    数据占用的时频资源;
    解调参考信号DMRS序列占用的时频资源;
    DMRS序列采用第零类型生成和数据采用第一类型调制的资源;
    DMRS序列不采用第零类型生成和数据不采用第一类型调制的资源;
    DMRS序列不采用第零类型生成和数据采用第一类型调制的资源;
    DMRS序列采用第零类型生成和数据不采用第一类型调制的资源。
  5. 根据权利要求4所述的方法,其中,所述第一信息进一步指示物理随机接入信道PRACH资源和物理上行共享信道PUSCH资源的映射关系。
  6. 根据权利要求5所述的方法,其中,所述映射关系包括:
    不同的PUSCH资源对应相同的PRACH资源;或者,不同的PRACH资源对应相同的PUSCH资源。
  7. 根据权利要求1~6任一项所述的方法,还包括:
    通过PRACH资源指示所述传输资源和/或所述传输方式;或者,
    通过PUSCH资源指示所述传输方式。
  8. 根据权利要求1~7任一项所述的方法,其中,所述传输方式包括以下一项或多项:
    MCS;
    数据采用第一类型调制;
    数据不采用第一类型调制;
    DMRS序列采用第零类型生成;
    DMRS序列不采用第零类型生成;
    传输编码速率;
    DMRS的类型;
    DMRS的密度;
    DMRS的数量。
  9. 根据权利要求2所述的方法,其中,所述终端的能力包括以下一项或多项:
    数据采用第一类型调制的能力;
    DMRS序列采用第零类型生成的能力;
    数据采用第一类型调制和DMRS序列采用第零类型生成的能力;
    支持的DMRS类型的能力;
    终端最大输出功率的能力。
  10. 根据权利要求2所述的方法,其中,所述上行传输相关的信息包括以下一项或多项:
    路径损耗;
    所述终端的发射功率;
    传输块大小;
    上行传输内容的优先级;
    上行传输内容的类型;
    重传次数;
    传输次数是否达到预先配置的门限;
    传输历史信息。
  11. 一种终端,包括:
    接收模块,用于接收一个或多个两步随机接入的配置信息;
    传输模块,用于根据配置信息及辅助上行传输信息确定传输资源和/或传输方式,并进行传输。
  12. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的两步随机接入的方法的步骤。
  13. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的两步随机接入的方法的步骤。
PCT/CN2020/089077 2019-05-09 2020-05-08 两步随机接入的方法及终端 WO2020224628A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217037694A KR20210151972A (ko) 2019-05-09 2020-05-08 2단계 랜덤 접속 방법 및 단말
EP20802607.0A EP3968723B1 (en) 2019-05-09 2020-05-08 Method for two-step random access, terminal and computer-readable storage medium
BR112021022368A BR112021022368A2 (pt) 2019-05-09 2020-05-08 Método para acesso aleatório em duas etapas e terminal.
US17/520,473 US20220061104A1 (en) 2019-05-09 2021-11-05 Method for 2-step random access and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910385817.8A CN111615210A (zh) 2019-05-09 2019-05-09 两步随机接入的方法及终端
CN201910385817.8 2019-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,473 Continuation US20220061104A1 (en) 2019-05-09 2021-11-05 Method for 2-step random access and terminal

Publications (1)

Publication Number Publication Date
WO2020224628A1 true WO2020224628A1 (zh) 2020-11-12

Family

ID=72197557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089077 WO2020224628A1 (zh) 2019-05-09 2020-05-08 两步随机接入的方法及终端

Country Status (6)

Country Link
US (1) US20220061104A1 (zh)
EP (1) EP3968723B1 (zh)
KR (1) KR20210151972A (zh)
CN (1) CN111615210A (zh)
BR (1) BR112021022368A2 (zh)
WO (1) WO2020224628A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453372B (zh) * 2020-03-25 2023-08-25 大唐移动通信设备有限公司 一种随机接入方法、基站、用户设备、装置、介质
EP4243548A4 (en) * 2020-11-13 2023-12-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN113411909B (zh) * 2021-08-19 2021-10-29 成都爱瑞无线科技有限公司 数据处理方法、设备、系统及存储介质
WO2023050199A1 (zh) * 2021-09-29 2023-04-06 Oppo广东移动通信有限公司 一种随机接入方法及装置、终端设备、网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119354A1 (zh) * 2015-01-30 2016-08-04 宇龙计算机通信科技(深圳)有限公司 一种上行调度方法及装置
CN106507493A (zh) * 2016-11-22 2017-03-15 珠海市魅族科技有限公司 避免上行资源冲突的方法、装置、基站及终端
CN107306451A (zh) * 2016-04-22 2017-10-31 展讯通信(上海)有限公司 用户设备及上行数据传输方法、基站及上行调度方法
CN109644467A (zh) * 2018-02-11 2019-04-16 Oppo广东移动通信有限公司 传输上行控制信息的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122855B2 (ja) * 2011-09-30 2017-04-26 インターデイジタル パテント ホールディングス インコーポレイテッド 縮小されたチャネル帯域幅を使用するデバイス通信
CN109076589B (zh) * 2016-05-12 2022-06-07 夏普株式会社 基站装置、终端装置及其通信方法
US10959251B2 (en) * 2017-01-17 2021-03-23 Qualcomm Incorporated Parallel processing of uplink and downlink transmissions
JP2020065095A (ja) * 2017-02-20 2020-04-23 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
EP3964014B1 (en) * 2019-05-02 2023-12-06 Telefonaktiebolaget LM Ericsson (publ) Two-step contention-free random access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119354A1 (zh) * 2015-01-30 2016-08-04 宇龙计算机通信科技(深圳)有限公司 一种上行调度方法及装置
CN107306451A (zh) * 2016-04-22 2017-10-31 展讯通信(上海)有限公司 用户设备及上行数据传输方法、基站及上行调度方法
CN106507493A (zh) * 2016-11-22 2017-03-15 珠海市魅族科技有限公司 避免上行资源冲突的方法、装置、基站及终端
CN109644467A (zh) * 2018-02-11 2019-04-16 Oppo广东移动通信有限公司 传输上行控制信息的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On 2-Step RACH Channel Structure", 3GPP TSG RAN WG1 #96BIS R1-1904715, 12 April 2019 (2019-04-12), XP051691708 *
See also references of EP3968723A4 *
ZTE: "Summary of 7.2.1.1 Channel Structure for Two-Step RACH", 3GPP TSG RAN WG1 #96 R1-1903435, 1 March 2019 (2019-03-01), XP051690819 *

Also Published As

Publication number Publication date
KR20210151972A (ko) 2021-12-14
EP3968723A4 (en) 2022-07-06
CN111615210A (zh) 2020-09-01
US20220061104A1 (en) 2022-02-24
EP3968723B1 (en) 2024-05-01
EP3968723A1 (en) 2022-03-16
BR112021022368A2 (pt) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020224628A1 (zh) 两步随机接入的方法及终端
US11089594B2 (en) Resource allocation method, user equipment, and network device
US11984994B2 (en) HARQ-ACK sending method, receiving method, terminal and base station
JP6741805B2 (ja) Mtcデバイスに適したpdcchの初期化
EP3684125B1 (en) Terminal apparatus, base station apparatus, and communication method
US10554357B2 (en) Data transmission method, network device, and terminal device
US11558865B2 (en) Resource indication method, base station and terminal
JP2019526949A (ja) データを伝送するための方法、端末装置とネットワーク装置
WO2020192700A1 (en) Methods, terminal device and base station for random access procedure
EP3582565B1 (en) Data transmission method, and computer-readable storage medium
US20200068594A1 (en) Control information transmission method, terminal device, and network device
US10992405B2 (en) Signal transmission method, signal receiving method, and device
US20220166485A1 (en) Method for transmitting uplink feedback information related to beam of user equipment in wireless communication system, and user equipment and base station for supporting same
US11991684B2 (en) Data transmission method and apparatus
US20210377087A1 (en) Method for reference signal generation and communications device
EP3716705B1 (en) Method for determining transmission resources, terminal device and network device
WO2020228631A1 (zh) 跨时隙调度的处理方法及设备
CN113645679B (zh) 数据传输时的波束确定方法及装置、存储介质、ue、基站
EP3595224B1 (en) Information transmission method, terminal device and network device
WO2018059014A1 (zh) 一种确定时序的方法和设备
JP2021503810A (ja) Pucch伝送方法、端末およびネットワーク側機器
WO2021088782A1 (zh) 传输的方法和设备
WO2021110080A1 (zh) 上行传输资源选择的方法及终端
WO2021031778A1 (zh) 传输方法、配置pucch的方法和设备
WO2021228139A1 (zh) Pucch重复传输的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037694

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021022368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020802607

Country of ref document: EP

Effective date: 20211209

ENP Entry into the national phase

Ref document number: 112021022368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211108