WO2020223964A1 - 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备 - Google Patents

一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备 Download PDF

Info

Publication number
WO2020223964A1
WO2020223964A1 PCT/CN2019/086228 CN2019086228W WO2020223964A1 WO 2020223964 A1 WO2020223964 A1 WO 2020223964A1 CN 2019086228 W CN2019086228 W CN 2019086228W WO 2020223964 A1 WO2020223964 A1 WO 2020223964A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
discharge module
electrostatic protection
tips
electronic equipment
Prior art date
Application number
PCT/CN2019/086228
Other languages
English (en)
French (fr)
Inventor
王天兴
万佳
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980003208.XA priority Critical patent/CN112219331A/zh
Priority to PCT/CN2019/086228 priority patent/WO2020223964A1/zh
Publication of WO2020223964A1 publication Critical patent/WO2020223964A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the embodiments of the present application relate to the technical field of electronic equipment, and in particular to an electrostatic protection circuit, method, stylus and electronic equipment applied to electronic equipment.
  • ESD Electrostatic Discharge
  • Electrostatic discharge is regarded as the biggest potential killer of electronic equipment quality, and electrostatic protection has also become an important content of electronic equipment quality control.
  • Static electricity has always been an important factor affecting the life of electronic equipment components during the use of electronic equipment.
  • the impact of electrostatic pulses can easily cause damage to the components in the electronic equipment.
  • the electrostatic protection circuit will increase the cost of the circuit, increase the complexity of the circuit design, and also cause its own junction capacitance. Brings an increase in power consumption and affects the performance of electronic devices.
  • one of the technical problems solved by the embodiments of the present application is to provide an electrostatic protection circuit, method, stylus, and electronic device applied to electronic equipment to overcome or alleviate the above-mentioned defects in the prior art.
  • the embodiment of the application provides an electrostatic protection circuit applied to electronic equipment, including: a tip discharge module and a current limiting resistor, the tip discharge module includes at least two tips separated from each other, and the distance between the two tips is not greater than With a preset value, one tip of the tip discharge module is connected to the electrode of the electronic device, the other tip of the tip discharge module is connected to the ground terminal, one end of the current limiting resistor is connected to the electrode of the electronic device, and the other end Connected to the test pin of the control chip in the electronic device, the breakdown voltage of the tip discharge module is less than the partial voltage of the current limiting resistor, so that the electrostatic pulse generated by the outside of the electronic device is removed from the tip The discharge module is discharged to the ground terminal.
  • the embodiment of the present application provides an electrostatic protection method applied to electronic equipment.
  • the applied electrostatic protection circuit includes a tip discharge module and a current limiting resistor.
  • the tip discharge module includes at least two tips separated from each other. The distance between the two tips is not greater than a preset value, one tip of the tip discharge module is connected to the electrode of the electronic device, the other tip of the tip discharge module is connected to the ground terminal, and one end of the current limiting resistor is connected to the electronic device.
  • the electrode of the device, the other end is connected to the test pin of the control chip in the electronic device, the breakdown voltage of the tip discharge module is less than the partial voltage of the current limiting resistor, so that the external voltage generated by the electronic device
  • the electrostatic pulse is discharged from the tip discharge module to the ground terminal.
  • the electrostatic protection method includes: receiving an electrostatic pulse current generated from the outside of the electronic device; and the electrostatic pulse current is discharged to the ground terminal through the tip discharge module.
  • An embodiment of the application provides a stylus pen, which includes the static electricity protection circuit in any embodiment of the application.
  • An embodiment of the present application provides an electronic device, which includes the electrostatic protection circuit in any embodiment of the present application.
  • the current limiting between the electrode of the electronic device and the ground terminal and the tip discharge module between the electrode of the electronic device and the test pin of the control chip in the electronic device The resistor realizes electrostatic protection, and the breakdown voltage of the tip discharge module is less than the divided voltage of the current limiting resistor, so that the electrostatic pulse generated by the outside of the electronic device is discharged from the tip discharge module to the ground end. Therefore, the electrostatic protection circuit of the embodiment of the present application reduces the circuit cost, and the circuit design is simple, and the performance of the electronic device is improved.
  • FIG. 1 is a circuit diagram of an electrostatic protection circuit applied to an electronic device in an embodiment of the application
  • FIG. 2 is a schematic diagram of a tip discharge module in an embodiment of the application
  • FIG. 3 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • FIG. 4 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • FIG. 5 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • Fig. 6 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • FIG. 7 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • FIG. 8 is a schematic diagram of another tip discharge module in an embodiment of the application.
  • Fig. 9 is a flowchart of an electrostatic protection method applied to electronic equipment in an embodiment.
  • a bidirectional TVS (Transient Voltage Suppressor) tube is usually added between the external static electricity and the ground (GND), so that the turn-on voltage Vb of the bidirectional TVS tube is smaller than the turn-on voltage of the test pin (Pin) of the control chip. And the clamping voltage Vclamp of the bidirectional TVS tube is less than the damage voltage of the test pin of the control chip.
  • the ESD pulse also called electrostatic pulse, I ESD in the figure
  • the bidirectional TVS tube is turned on first, so as to guide the ESD pulse caused by the external static electricity to the ground
  • the control chip in the stylus is protected from being damaged by the impact of the ESD pulse.
  • the current stylus usually increases the coding voltage of the stylus and adopts the design scheme of main and sub-tips.
  • a bidirectional TVS tube is still used for ESD protection, and a higher reverse turn-off voltage Vrwn is required, and a bidirectional TVS tube with a very small junction capacitance, but a bidirectional TVS tube that can meet this requirement is very rare in the market. If the bidirectional TVS tube has a large junction capacitance, it will affect the power consumption and performance of the stylus. If the reverse turn-off voltage Vrwn of the bidirectional TVS tube is low, it will limit the coding voltage of the stylus. And this kind of two-way TVS tube also adds extra cost, resulting in higher circuit cost.
  • the current limiting between the electrode of the electronic device and the ground terminal and the tip discharge module between the electrode of the electronic device and the test pin of the control chip in the electronic device The resistor realizes electrostatic protection, the breakdown voltage of the tip discharge module is less than the divided voltage of the current limiting resistor, and the electrostatic pulse generated by the outside of the electronic device is discharged from the tip discharge module to the ground terminal. Therefore, the electrostatic protection circuit of the embodiment of the present application reduces the circuit cost, and the circuit design is simple, and the performance of the electronic device is improved.
  • FIG. 1 is an electrostatic protection (ESD) circuit applied to electronic equipment according to an embodiment of the application.
  • the electrostatic protection circuit is located on the PCB circuit board of the electronic device.
  • the electronic device may be any electronic device that needs electrostatic protection.
  • a stylus is taken as an example, but the embodiment of this application is not limited to the stylus.
  • the electrostatic protection circuit includes: a tip discharge module ESD_P and a current limiting resistor R2, the tip discharge module includes at least two tips separated from each other, the distance between the two tips is not greater than a preset value, so One tip of the tip discharge module ESD_P is connected to the electrode of the electronic device, and the other tip is connected to the ground terminal GND. One end of the current-limiting resistor R2 is connected to the electrode of the electronic device, and the other end is connected to the test Pin of the control chip 31 in the electronic device. The breakdown voltage of the tip discharge module ESD_P is less than that of the current-limiting resistor R2. A voltage is applied to discharge the electrostatic pulse generated from the outside of the electronic device from the tip discharge module ESD_P to the ground terminal GND.
  • the tip is a conductor.
  • the conductor includes copper skin.
  • the preset value is 0.08mm.
  • the electrodes in this application can be the electrodes of a stylus, or earphones, of course, they can also be electrodes of other electronic devices.
  • the external electrostatic pulse is transmitted to the tip discharge module ESD_P through the electrodes, and then the electrostatic pulse The ESD_P is discharged to the ground through the tip discharge module.
  • the electrode of the present application can also be a wire, and of course, it can also be any component in an electronic device that can receive or transmit an electrostatic pulse current.
  • the withstand voltage value of the current limiting resistor is greater than 300V.
  • the circuit cost of the tip discharge module ESD_P and current limiting resistor R2 used in this application is lower than that of a bidirectional TVS tube, and the tip discharge module ESD_P and current limiting resistor R2 used in this application are not affected by whether the electrodes of the electronic device are used or not.
  • the impact of high voltage, the breakdown voltage value of the tip discharge module ESD_P is greater than the voltage value of the high voltage coding, the tip discharge module ESD_P and current limiting resistor R2 used in this application will not restrict the electrodes of the electronic device from using high voltage Code, especially for stylus.
  • the capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P is mainly determined by the distance between the tips of the tip discharge module ESD_P and/or the relative cross-sectional area between the tips determine.
  • the capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P is inversely proportional to the distance between the tips of the tip discharge module ESD_P; and/or, the parasitic capacitance between the tips of the tip discharge module ESD_P
  • the capacitance value of ESD_P is proportional to the relative cross-sectional area between the tips of the tip discharge module ESD_P.
  • the distance between the tips of the tip discharge modules is proportional to the voltage value of the breakdown voltage, that is, the smaller the distance between the tips of the tip discharge modules, the The voltage value of the breakdown voltage is smaller.
  • the smaller the breakdown voltage between the tips of the tip discharge module is, the better the discharge between the tips, and the better the effect of the tip discharge.
  • this application adjusts the capacitance value of the parasitic capacitance of the tip discharge module ESD_P by adjusting the distance between the tips of the tip discharge module ESD_P and the relative cross-sectional area between the tips. And the discharge effect.
  • the tip discharge module ESD_P described in this application includes two tips, a first tip 21 and a second tip 22.
  • the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22 can be adjusted by the distance between the first tip 21 and the second tip 22, the difference between the first tip 21 and the second tip 22 The smaller the distance, the larger the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22.
  • the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22 of the tip discharge module ESD_P of the present application can also be adjusted by the relative cross-sectional area between the first tip 21 and the second tip 22, The larger the relative cross-sectional area between the first tip 21 and the second tip 22, the larger the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22.
  • the capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P can be effectively adjusted and controlled to avoid excessive parasitic capacitance between the tips of the tip discharge module ESD_P. Affect the power consumption and performance of the control chip in the stylus.
  • the discharge effect between the first tip 21 and the second tip 22 of the tip discharge module ESD_P of the present application can be adjusted by adjusting the distance between the first tip 21 and the second tip 22, the first tip 21 The smaller the distance to the second tip 22, the smaller the breakdown voltage of the tip discharge module ESD_P, and the better the discharge effect between the first tip 21 and the second tip 22.
  • the discharge effect between the tips of the tip discharge module ESD_P can be effectively adjusted and controlled, and the discharge effect between the tips of the tip discharge module ESD_P can be adjusted by adjusting the distance between the tips.
  • the number of tips included in the tip discharge module ESD_P in this application is not specifically limited, and those skilled in the art can set the number of tips according to the needs of the electrostatic protection circuit.
  • the present application obtains the ideal discharge effect and the capacitance value of the parasitic capacitance by adjusting the distance between the tips of the tip discharge module ESD_P and the relative cross-sectional area between the tips, wherein the parasitic capacitance between the two tips
  • the capacitance value of the capacitor can be adjusted to not more than 0.6pF. .
  • copper is exposed on the surface where at least two of the tips in the tip discharge module are close to each other.
  • the tip discharge module ESD_P is two tips that are exposed to copper.
  • the copper-exposed tip discharge module ESD_P has a lower breakdown voltage.
  • the two tips of the copper-exposed treatment facilitate the breakdown of the electrostatic pulse, that is, the electrostatic pulse generated by the outside of the electronic device Break down the two tips of the exposed copper treatment, and the electrostatic pulse is discharged to the ground terminal GND through the two tips of the exposed copper treatment.
  • FIG. 2 is a schematic diagram of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment according to another embodiment of the application.
  • 3 is a schematic diagram of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment according to another embodiment of the application.
  • the two tips are a conical convex body and a conical concave body that are adapted and fit. Both the first tip 21 and the second tip 22 are exposed to copper.
  • the distance between the first tip 21 and the second tip 22 is d1
  • the diameter of the exposed copper part is L1
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper part .
  • the two tips are two rectangular parallelepipeds with I-shaped opposite faces that are adapted in shape. Both the first tip 21 and the second tip 22 are exposed to copper. The distance between the first tip 21 and the second tip 22 is d2, the diameter of the exposed copper part is L2, and the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper part .
  • the current-limiting resistor R2 is a resistor with a high withstand voltage.
  • the current limiting resistor R2 with high withstand voltage can prevent it from being damaged by higher electrostatic pulses, thereby further ensuring that the application of high voltage to the electrodes of the electronic device will not affect the operation of the electrostatic protection circuit, and the electrostatic protection circuit is also The application of high voltage to the electrodes of the electronic device is not restricted.
  • the withstand voltage value of the current limiting resistor R2 is greater than 300V.
  • the withstand voltage value of the current limiting resistor R2 can be set according to actual requirements, which is not limited in this application.
  • the embodiment of the present application also provides an electrostatic protection (ESD) method applied to electronic equipment.
  • ESD electrostatic protection
  • the static electricity protection method is applied to a static electricity protection circuit.
  • the electrostatic protection circuit is located on the PCB circuit board of the electronic device.
  • the electronic device may be any electronic device that needs electrostatic protection.
  • a stylus is taken as an example, but the embodiment of this application is not limited to the stylus.
  • the electrostatic protection circuit includes: a tip discharge module ESD_P and a current limiting resistor R2, the tip discharge module includes at least two tips separated from each other, the distance between the two tips is not greater than a preset value, and the tip One tip of the discharge module ESD_P is connected to the electrode of the electronic device, the other tip is connected to the ground terminal GND, and one end of the current limiting resistor R2 is connected to the electrode of the electronic device.
  • the embodiment of the present application takes the stylus electrode as an example for description, the other end is connected to the test Pin of the control chip 31 in the electronic device, and the breakdown voltage of the tip discharge module ESD_P is less than the partial voltage of the current limiting resistor R2 , The electrostatic pulse generated by the outside of the electronic device is discharged from the tip discharge module ESD_P to the ground terminal GND.
  • the tip is a conductor.
  • the conductor includes copper skin.
  • the electrodes in this application can be the electrodes of a stylus, or earphones, of course, they can also be electrodes of other electronic devices.
  • the external electrostatic pulse is transmitted to the tip discharge module ESD_P through the electrodes, and then the electrostatic pulse The ESD_P is discharged to the ground through the tip discharge module.
  • the electrode of the present application can also be a wire, and of course, it can also be any component in an electronic device that can receive or transmit an electrostatic pulse current.
  • the method includes:
  • Step S901 Receive an electrostatic pulse current generated from the outside of the electronic device.
  • Step S902 The electrostatic pulse current is discharged to the ground terminal through the tip discharge module.
  • the withstand voltage value of the current limiting resistor is greater than 300V.
  • the circuit cost of the tip discharge module ESD_P and current limiting resistor R2 used in this application is lower than that of a bidirectional TVS tube, and the tip discharge module ESD_P and current limiting resistor R2 used in this application are not affected by whether the electrodes of the electronic device are used or not.
  • the influence of high voltage realizes the high voltage coding of electronic equipment.
  • the parasitic capacitance between the tips of the tip discharge module ESD_P is determined by the distance between the tips of the tip discharge module ESD_P and/or the relative cross-sectional area between the tips.
  • the capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P is inversely proportional to the distance between the tips of the tip discharge module ESD_P; and/or, between the tips of the tip discharge module ESD_P
  • the capacitance value of the parasitic capacitance is proportional to the relative cross-sectional area between the tips of the tip discharge module ESD_P.
  • the distance between the tips of the tip discharge module is proportional to the voltage value of the breakdown voltage.
  • this application adjusts the capacitance value of the parasitic capacitance of the tip discharge module ESD_P by adjusting the distance between the tips of the tip discharge module ESD_P and the relative cross-sectional area between the tips. And the discharge effect.
  • the tip discharge module ESD_P described in the application includes two tips, a first tip 21 and a second tip 22.
  • the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22 can be adjusted by the distance between the first tip 21 and the second tip 22, the difference between the first tip 21 and the second tip 22 The smaller the distance, the greater the parasitic capacitance between the first tip 21 and the second tip 22.
  • the capacitance value of the parasitic capacitance between the first tip 21 and the second tip 22 of the tip discharge module ESD_P of the present application can also be adjusted by the relative cross-sectional area between the first tip 21 and the second tip 22, The larger the relative cross-sectional area between the first tip 21 and the second tip 22 is, the larger the parasitic capacitance between the first tip 21 and the second tip 22 is.
  • the capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P can be effectively adjusted and controlled to avoid the excessive capacitance value of the parasitic capacitance between the tips of the tip discharge module ESD_P.
  • Parasitic capacitance will affect the power consumption and performance of the control chip in the stylus.
  • the voltage value of the breakdown voltage between the first tip 21 and the second tip 22 of the tip discharge module ESD_P of this application can be adjusted by adjusting the distance between the first tip 21 and the second tip 22 The smaller the distance between the first tip 21 and the second tip 22, the smaller the voltage value of the breakdown voltage, and the better the discharge effect between the first tip 21 and the second tip 22.
  • the voltage value of the breakdown voltage between the tips of the tip discharge module ESD_P of the present application can be effectively adjusted and controlled.
  • the distance between the tips of the tip discharge module ESD_P can be adjusted by adjusting the distance between the tips. Discharge effect.
  • the number of tips included in the tip discharge module ESD_P in this application is not specifically limited, and those skilled in the art can set the number of tips according to the needs of the electrostatic protection circuit.
  • the present application obtains the ideal discharge effect and the capacitance value of the parasitic capacitance by adjusting the distance between the tips of the tip discharge module ESD_P and the relative cross-sectional area between the tips, wherein the parasitic capacitance between the two tips
  • the capacitance value of the capacitor can be no more than 0.6 pF.
  • copper is exposed on the surface where at least two of the tips in the tip discharge module are close to each other.
  • the tip discharge module ESD_P is two tips that are exposed to copper.
  • the two tips of the exposed copper treatment facilitate the breakdown of the electrostatic pulse, that is, the electrostatic pulse generated by the outside of the electronic device breaks down the two tips of the exposed copper treatment, and the electrostatic pulse passes The two tips of the exposed copper are discharged to the ground terminal GND.
  • FIG. 2 is a schematic diagram of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment according to another embodiment of the application.
  • 3 is a schematic diagram of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment according to another embodiment of the application.
  • the two tips are a conical convex body and a conical concave body that are adapted and fit. Both the first tip 21 and the second tip 22 are exposed to copper.
  • the distance between the first tip 21 and the second tip 22 is d1
  • the diameter of the exposed copper part is L1
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper part .
  • the distance d1 between the first tip 21 and the second tip 22 is the distance between the outer surface of the conical convex body and the outer surface of the conical concave body with a suitable shape;
  • the diameter of the exposed copper part L1 is the diameter of the bottom surface of the conical convex body and the diameter of the bottom surface of the conical concave body with a suitable shape;
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part.
  • the outer surface area of the conical convex body and the outer surface area of the conical concave body are matched and fit.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 can be adjusted by adjusting the diameter of the exposed copper treatment part to L1.
  • the diameter L1 of the exposed copper processing part is not greater than 0.9 mm, and the diameter L1 may also be equal to the minimum processing size of the PCB.
  • the two tips are two rectangular parallelepipeds with I-shaped opposite faces that are adapted in shape. Both the first tip 21 and the second tip 22 are exposed to copper. The distance between the first tip 21 and the second tip 22 is d2, the diameter of the exposed copper part is L2, and the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper part .
  • the distance d2 between the first tip 21 and the second tip 22 is the parallel distance between the I-shaped opposing faces of the two rectangular parallelepipeds with a matching shape; the diameter L2 of the exposed copper part is the shape The length of the I-shaped opposing surfaces of the two rectangular parallelepipeds; the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part, specifically, two I-shaped shapes with matching shapes The outer surface area of the opposing cuboid.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 can be adjusted by adjusting the diameter of the exposed copper treatment part to L2.
  • the diameter L2 of the exposed copper treatment part is not greater than 0.9 mm, and the diameter L2 can also be equal to the minimum processing size of the PCB.
  • FIG. 4, FIG. 5, FIG. 6, FIG. 7 and FIG. 8 are schematic diagrams of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment in other embodiments of the present application.
  • ESD electrostatic protection
  • the distance between the first tip 21 and the second tip 22 is d3, the diameter of the exposed copper part is L3, and the relative cross-sectional area between the first tip 21 and the second tip 22 is exposed The surface area of the copper treated part.
  • the second tip 22 shown in FIG. 4 is a cylindrical concave body, and the distance d3 between the first tip 21 and the second tip 22 is the first tip The distance from the tip of the conical convex body in 21 to the bottom surface of the conical concave body of the second tip 22.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part.
  • the outer surface area of the conical convex body of the first tip 21 and the outer surface area of the cylindrical concave body of the second tip 22 are The surface area of the exposed copper treatment part.
  • the diameter L3 of the exposed copper processing part is not greater than 0.9 mm, and the diameter L3 can also be equal to the minimum processing size of the PCB.
  • the distance between the first tip 21 and the second tip 22 is d4, the diameter of the exposed copper part is L4, and the relative cross-sectional area between the first tip 21 and the second tip 22 is exposed The surface area of the copper treated part.
  • the second tip 22 shown in FIG. 5 is also a conical convex body, and the distance d4 between the first tip 21 and the second tip 22 is the first tip The distance between the tip of the conical convex body of 21 and the tip of the conical convex body of the second tip 22.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part.
  • the outer surface area of the conical protrusion of the first tip 21 and the outer surface area of the conical protrusion of the second tip 22 are exposed.
  • the diameter L4 of the exposed copper treatment part is not greater than 0.9 mm, and the diameter L4 can also be equal to the minimum processing size of the PCB.
  • the two tips are an I-shaped rectangular parallelepiped and a cylindrical concave body with matching shapes. Both the first tip 21 and the second tip 22 are exposed to copper.
  • the distance between the first tip 21 and the second tip 22 is d5
  • the diameter of the exposed copper part is L5
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper part .
  • the distance d5 between the first tip 21 and the second tip 22 is the distance between the opposite surface of the I-shaped rectangular parallelepiped and the cylindrical concave body and the bottom surface of the cylindrical concave body.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the copper exposed part.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part.
  • the cross-sectional area of the opposite side of the I-shaped rectangular parallelepiped and the cylindrical concave body, and the inner surface area of the cylindrical concave body is exposed to copper. Part of the surface area.
  • the diameter L5 of the exposed copper treatment part is not greater than 0.9 mm, and the diameter L5 may also be equal to the minimum processing size of the PCB.
  • the distance between the first tip 21 and the second tip 22 is d6, the diameter of the exposed copper part is L6, and the relative cross-sectional area between the first tip 21 and the second tip 22 is exposed The surface area of the copper treated part.
  • the second tip 22 shown in FIG. 7 is a rectangular parallelepiped, and the distance d6 between the first tip 21 and the second tip 22 is that of the first tip 21
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part.
  • the outer surface area of the conical convex body of the first tip 21 and the outer surface area of the cuboid of the second tip 22 are exposed copper.
  • the diameter L6 of the exposed copper processing part is not greater than 0.9 mm, and the diameter L6 may also be equal to the minimum processing size of the PCB.
  • FIG. 8 is a schematic diagram of the tip discharge module ESD_P in an electrostatic protection (ESD) circuit applied to electronic equipment according to another embodiment of the application.
  • ESD electrostatic protection
  • the distance between the first tip 21 and the second tip 22 is d7
  • the diameter of the exposed copper treatment part is L7
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is exposed
  • the surface area of the copper treated part It should be noted that the first tip 21 is a conical convex body, the second tip 22 is a cuboid, and the first tip 21 and the second tip 22 are arranged oppositely.
  • a plurality of first tips 21 are dispersedly arranged, for example, evenly distributed around the second tips 22.
  • the distance d7 between the first tip 21 and the second tip 22 is the distance from the tip of the conical projection to the surface of the cuboid, and the diameter L7 of the exposed copper treatment part is the bottom diameter of the conical projection.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 is the surface area of the exposed copper treatment part, specifically, the surface area of the conical protrusion of the first tip 21 and the surface area of the cuboid of the second tip 22.
  • the relative cross-sectional area between the first tip 21 and the second tip 22 can be adjusted by adjusting the diameter of the exposed copper treatment part to L7.
  • the diameter L7 of the exposed copper treatment part is not greater than 0.9 mm, and the diameter L7 may also be equal to the minimum processing size of the PCB.
  • the present application can adjust the parasitic capacitance between the first tip 21 and the second tip 22 by adjusting the relative cross-sectional area and the relative distance of the first tip 21 and the second tip 22, so as to obtain a satisfactory performance.
  • the parasitic capacitance between the first tip 21 and the second tip 22 prevents the parasitic capacitance between the first tip 21 and the second tip 22 from affecting the power consumption and performance of the control chip in the stylus.
  • the present application can adjust the breakdown voltage of the tip discharge module ESD_P by adjusting the relative distance between the first tip 21 and the second tip 22, and adjust the distance between the first tip 21 and the second tip 22
  • the distance can be no more than 0.08mm.
  • the breakdown voltage is small enough, but the capacitance value of the parasitic capacitance is relatively large.
  • the relative cross-sectional area of the first tip 21 and the second tip 22 is adjusted to be small enough, and the parasitic capacitance is small at this time.
  • the parasitic capacitance can reach not more than 600 fF, that is, 0.6 pF, which reduces the cost of the tip discharge module.
  • the breakdown voltage reduces the capacitance value of the parasitic capacitance and meets the actual demand of the stylus. Although the breakdown voltage is small enough, it will be higher than the voltage value of the high-voltage coding of the stylus. Therefore, the tip discharge module ESD_P and the current-limiting resistor R2 used in this application will not limit the use of high-voltage electrodes on the electronic device. Voltage coding. Of course, the relative cross-sectional area and relative distance of the first tip 21 and the second tip 22 can be set according to actual requirements, which is not limited in this application.
  • the current-limiting resistor R2 is a resistor with a high withstand voltage, and the withstand voltage of the current-limiting resistor R2 can be selected to be greater than 300V.
  • the current-limiting resistor R2 with high withstand voltage can prevent it from being damaged by a large partial voltage, thereby further ensuring that the application of high voltage to the electrode of the electronic device will not affect the operation of the electrostatic protection circuit, and the electrostatic protection circuit is also The application of high voltage to the electrodes of the electronic device is not restricted.
  • the embodiment of the present application also provides a stylus, including: the static electricity protection circuit in any embodiment of the present application.
  • An embodiment of the present application also provides an electronic device, which includes the static electricity protection circuit in any embodiment of the present application.
  • the electronic devices in the embodiments of this application exist in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communications.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has calculation and processing functions, and generally also has mobile Internet features.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content.
  • Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • Server A device that provides computing services.
  • the structure of a server includes a processor 810, hard disk, memory, system bus, etc.
  • the server is similar to a general computer architecture, but because it needs to provide highly reliable services, it has High requirements in terms of performance, reliability, security, scalability, and manageability.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • This application may be described in the general context of computer-executable instructions executed by a computer, such as program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific transactions or implement specific abstract data types.
  • This application can also be practiced in distributed computing environments. In these distributed computing environments, remote processing devices connected through a communication network execute transactions.
  • program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

一种应用于电子设备的静电防护电路、静电防护方法、触控笔以及电子设备,所述静电防护电路,包括:尖端放电模块(ESD_P)和限流电阻(R2),所述尖端放电模块(ESD_P)至少包括相互分离的两个尖端(21,22),所述两个尖端(21,22)的距离不大于预设值,所述尖端放电模块(ESD_P)的一尖端(21)连接所述电子设备的电极,所述尖端放电模块(ESD_P)的另一尖端(22)连接接地端,所述限流电阻(R2)的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片的测试管脚(Pin),所述尖端放电模块(ESD_P)的击穿电压小于所述限流电阻(R2)的分压电压,以使所述电子设备的外界所产生的静电脉冲从所述尖端放电模块(ESD_P)泄放到所述接地端(GND),其中,所述静电防护电路设置在电子设备的PCB电路板上。静电防护电路降低了电路成本,且电路设计简单,改进了电子设备的性能。

Description

一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备 技术领域
本申请实施例涉及电子设备技术领域,尤其涉及一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备。
背景技术
ESD(静电放电)对电子设备造成的破坏和损伤很大。静电放电被认为是电子设备质量最大的潜在杀手,静电防护也成为电子设备质量控制的一项重要内容。静电问题一直是电子设备使用过程中,影响电子设备元件寿命的重要原因,由于静电脉冲的冲击容易造成电子设备中元件的损坏。而为了避免这种损坏,通常需要增加静电防护电路来保护电子设备中元件免受静电脉冲的冲击,静电防护电路会造成电路成本的增加,增加电路设计的复杂性,也会引起自身的结电容带来功耗的增加,影响电子设备的性能。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备,用以克服或者缓解现有技术中的上述缺陷。
本申请实施例提供了一种应用于电子设备的静电防护电路,包括:尖端放电模块和限流电阻,所述尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块的一尖端连接所述电子设备的电极,所述尖端放电模块的另一尖端连接接地端,所述限流电阻的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片的测试管脚,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,以使所述电子设备的外界所产生的静电脉冲从所述尖端放电模块泄放到所述接地端。
本申请实施例提供了一种应用于电子设备的静电防护方法,所应用的静电防护电路包括:尖端放电模块和限流电阻,所述尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块的一尖端连接所述电子设备的电极,所述尖端放电模块的另一尖端连接接地端, 所述限流电阻的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片的测试管脚,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,以使所述电子设备的外界所产生的静电脉冲从所述尖端放电模块泄放到所述接地端。所述静电防护方法包括:接收所述电子设备的外界产生的静电脉冲电流;所述静电脉冲电流经过所述尖端放电模块泄放到所述接地端。
本申请实施例提供一种触控笔,其包括本申请任一实施例中的静电防护电路。
本申请实施例提供一种电子设备,其包括本申请任一实施例中的静电防护电路。
本申请实施例提供的技术方案中,通过位于所述电子设备的电极与接地端之间的尖端放电模块和位于所述电子设备的电极与电子设备中控制芯片的测试管脚之间的限流电阻实现静电防护,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,以使所述电子设备的外界所产生的静电脉冲从所述尖端放电模块泄放到所述接地端。因此,本申请实施例的静电防护电路降低了电路成本,且电路设计简单,改进了电子设备的性能。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例中应用于电子设备的静电防护电路的电路图;
图2为本申请实施例中一种尖端放电模块的示意图;
图3为本申请实施例中另一种尖端放电模块的示意图;
图4为本申请实施例中另一种尖端放电模块的示意图;
图5为本申请实施例中另一种尖端放电模块的示意图;
图6为本申请实施例中另一种尖端放电模块的示意图;
图7为本申请实施例中另一种尖端放电模块的示意图;
图8为本申请实施例中另一种尖端放电模块的示意图;
图9为实施例中应用于电子设备的静电防护方法的流程图。
具体实施方式
实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
随着电子设备的发展,出现了很多对静电防护具有较高要求的电子设备。比如,触控显示技术中的触控笔,静电脉冲容易通过触控笔笔尖进入到触控笔内部而损坏芯片。
现有技术通常会采用在外界静电和接地端(GND)之间增加一个双向TVS(Transient Voltage Suppressor)管,令双向TVS管的开启电压Vb小于控制芯片的测试管脚(Pin)的开启电压,且双向TVS管的钳位电压Vclamp小于控制芯片测试管脚的损坏电压。在外界静电所带来的ESD脉冲(亦称之静电脉冲,即为图中I ESD)到来时,双向TVS管优先被导通,从而起到将所述外界静电所带来的ESD脉冲导入接地端,保护所述触控笔内的控制芯片不会被ESD脉冲冲击造成损坏。
但是目前的触控笔为了提高性能,通常会提高触控笔的打码电压和采用主、副笔尖的设计方案。此时仍然采用双向TVS管进行ESD保护,会需要反向关断电压Vrwn更高,且结电容极小的双向TVS管,但市场上能满足此要求的双向TVS管非常的罕见。如果双向TVS管具有较大的结电容,影响触控笔的功耗和性能,如果双向TVS管的反向关断电压Vrwn较低,则会限制触控笔的打码电压。而这类双向TVS管也会增加额外的成本,造成电路的成本较高。
本申请实施例提供的技术方案中,通过位于所述电子设备的电极与接地端之间的尖端放电模块和位于所述电子设备的电极与电子设备中控制芯片的测试管脚之间的限流电阻实现静电防护,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,所述电子设备的外界所产生的静电脉冲从所述尖端放电模块泄放到所述接地端。因此,本申请实施例的静电防护电路降低了电路成本,且电路设计简单,改进了电子设备的性能。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
图1为本申请实施例一种应用于电子设备的静电防护(ESD)电路。所述静电防护电路位于电子设备的PCB电路板上。所述电子设备可以为任何需要进行静电防护的电子设备。在本申请实施例中以触控笔为例,但本申请实施例并不限定于触控笔。
参见图1,所述静电防护电路,包括:尖端放电模块ESD_P和限流电阻R2,所述尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块ESD_P的一尖端连接所述电子设备的电极, 另一尖端连接接地端GND。所述限流电阻R2的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片31的测试Pin,所述尖端放电模块ESD_P的击穿电压小于所述限流电阻R2的分压电压,以使所述电子设备的外界所产生的静电脉冲从所述尖端放电模块ESD_P泄放到所述接地端GND。所述尖端为导体。所述导体包括铜皮。其中,所述预设值为0.08mm。需要说明的是,本申请的电极可以是触控笔的电极,也可以是耳机的电极,当然也可以是其它电子设备的电极,外界的静电脉冲通过电极传送至尖端放电模块ESD_P,然后静电脉冲通过尖端放电模块ESD_P释放到地。本申请的电极也可以导线,当然也可以是电子设备中任意能够接收或传送静电脉冲电流的部件。
当所述尖端放电模块ESD_P的击穿电压小于所述限流电阻R2的分压电压,静电从放电尖端泄放到地。当所述尖端放电模块ESD_P的击穿电压大于所述限流电阻R2的分压电压,静电脉冲通过限流电阻R2进入芯片,但由于限流电阻R2的存在,使进入芯片的电流小于芯片损坏时的最大电流。因此,所述电子设备的外界所产生的静电脉冲不会造成所述电子设备中控制芯片31的损坏,保护了所述电子设备中的控制芯片31。较佳的,限流电阻的耐压值大于300V。本申请所采用的尖端放电模块ESD_P和限流电阻R2的电路成本低于双向TVS管,且本申请所采用的尖端放电模块ESD_P和限流电阻R2并不会受所述电子设备的电极是否采用高电压的影响,尖端放电模块ESD_P的击穿电压值大于高电压打码的电压值,本申请所采用的尖端放电模块ESD_P和限流电阻R2也不会限制所述电子设备的电极采用高电压打码,尤其对于触控笔而言。
在本申请一具体实现中,所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值主要由所述尖端放电模块ESD_P的尖端之间的距离和/或所述尖端之间的相对截面积确定。
所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值大小与所述尖端放电模块ESD_P的尖端之间的距离成反比;和/或,所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值大小与所述尖端放电模块ESD_P的尖端之间的相对截面积成正比。
在本申请另一具体实现中,所述尖端放电模块的尖端之间的距离与所述击穿电压的电压值大小成正比,即所述尖端放电模块的尖端之间的距离越小,所述击穿电压的电压值越小。
具体的,所述尖端放电模块ESD_P的尖端之间的距离越小,所述尖端放电模块的尖端之间的击穿电压越小。所述尖端放电模块的尖端之间的击穿 电压越小越有利于尖端之间的放电,所述尖端放电的效果越好。
在本申请再一具体实现中,本申请通过调整所述尖端放电模块ESD_P的尖端之间的距离和所述尖端之间的相对截面积来调整所述尖端放电模块ESD_P的寄生电容的电容值大小以及放电效果。
具体地,本申请所述尖端放电模块ESD_P包括两个尖端,第一尖端21和第二尖端22。第一尖端21和第二尖端22之间的寄生电容的电容值大小可以通过所述第一尖端21和第二尖端22之间的距离进行调整,第一尖端21和第二尖端22之间的距离越小,第一尖端21和第二尖端22之间的寄生电容的电容值越大。
本申请所述尖端放电模块ESD_P的第一尖端21和第二尖端22之间的寄生电容的电容值大小也可以通过所述第一尖端21和第二尖端22之间的相对截面积进行调整,第一尖端21和第二尖端22之间的相对截面积越大,第一尖端21和第二尖端22之间的寄生电容的电容值越大。
因此,本申请所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值可以进行有效的调整控制,避免由于所述尖端放电模块ESD_P的尖端之间的寄生电容过大,所述寄生电容会影响触控笔中控制芯片的功耗和性能。
本申请所述尖端放电模块ESD_P的第一尖端21和第二尖端22之间的放电效果可以通过调整所述第一尖端21和第二尖端22之间的距离进行调整,所述第一尖端21和第二尖端22之间的距离越小,所述尖端放电模块ESD_P的击穿电压越小,所述第一尖端21和第二尖端22之间的放电效果越好。
因此,本申请所述尖端放电模块ESD_P的尖端之间的放电效果可以进行有效的调整控制,通过调整尖端之间的距离调整所述尖端放电模块ESD_P的尖端之间的放电效果。
本申请所述尖端放电模块ESD_P所包含的尖端数量并不进行具体限定,本领域技术人员可以根据所述静电防护电路的需要对所述尖端的数量进行设定。
具体地,本申请通过调整所述尖端放电模块ESD_P的尖端之间的距离以及所述尖端之间的相对截面积获得理想的放电效果以及寄生电容的电容值,其中,两个尖端之间的寄生电容的电容值可以调整至不大于0.6pF。。
在本申请再一具体实现中,所述尖端放电模块中的至少两个尖端的靠近之处表面露铜。
在本申请再一具体实现中,所述尖端放电模块ESD_P为露铜处理的 两个尖端。
因此,露铜处理的所述尖端放电模块ESD_P的击穿电压更低,所述露铜处理的两个尖端有利于静电脉冲对其进行击穿,即令所述电子设备的外界所产生的静电脉冲击穿所述露铜处理的两个尖端,所述静电脉冲通过所述露铜处理的两个尖端泄放到所述接地端GND。
图2为本申请另一实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。图3为本申请再一实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。
参见图2,所述两个尖端(第一尖端21和第二尖端22)为形状适配的且契合的一个圆锥凸体和一个圆锥凹体。所述第一尖端21和第二尖端22均进行露铜处理。所述第一尖端21和第二尖端22之间的距离为d1,露铜处理部分的直径为L1,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。
参见图3,所述两个尖端(第一尖端21和第二尖端22)为形状适配的两个具有工字型相对面的长方体。所述第一尖端21和第二尖端22均进行露铜处理。所述第一尖端21和第二尖端22之间的距离为d2,露铜处理部分的直径为L2,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。
图2和图3只是本申请对所述两个尖端的示例,本申请对所述尖端的形状以及尖端的距离并不进行限定。
在本申请再一具体实现中,所述限流电阻R2为耐压值高的电阻。所述耐压值高的限流电阻R2可以避免其被较高的静电脉冲损坏,从而进一步保证所述电子设备电极施加高电压不会影响所述静电防护电路的工作,所述静电防护电路也不会限制所述电子设备电极施加高电压。较佳地,所述限流电阻R2的耐压值大于300V。当然,所述限流电阻R2的耐压值可以根据实际需求设置,本申请对此不做限定。
本申请实施例还提供一种应用于电子设备的静电防护(ESD)方法。所述静电防护方法应用于一静电防护电路。
所述静电防护电路位于电子设备的PCB电路板上。所述电子设备可以为任何需要进行静电防护的电子设备。在本申请实施例中以触控笔为例,但本申请实施例并不限定于触控笔。
参见图1,所述静电防护电路,包括:尖端放电模块ESD_P和限流 电阻R2,尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块ESD_P的一尖端连接所述电子设备的电极,另一尖端连接接地端GND,所述限流电阻R2的一端连接所述电子设备的电极。本申请实施例以触控笔电极为例进行说明,另一端连接所述电子设备中控制芯片31的测试Pin,所述尖端放电模块ESD_P的击穿电压小于所述限流电阻R2的分压电压,所述电子设备的外界所产生的静电脉冲从所述尖端放电模块ESD_P泄放到所述接地端GND。所述尖端为导体。所述导体包括铜皮。需要说明的是,本申请的电极可以是触控笔的电极,也可以是耳机的电极,当然也可以是其它电子设备的电极,外界的静电脉冲通过电极传送至尖端放电模块ESD_P,然后静电脉冲通过尖端放电模块ESD_P释放到地。本申请的电极也可以导线,当然也可以是电子设备中任意能够接收或传送静电脉冲电流的部件。
参见图9,所述方法包括:
步骤S901、接收所述电子设备的外界产生的静电脉冲电流。
步骤S902、所述静电脉冲电流经过所述尖端放电模块泄放到所述接地端。
由于本申请所述尖端放电模块ESD_P的击穿电压小于所述限流电阻R2的分压电压,所述电子设备的外界所产生的静电脉冲通过电子设备的电极从所述尖端放电模块ESD_P泄放到所述接地端GND,使静电脉冲电流不会通过所述限流电阻R2流向所述电子设备中控制芯片31。可能少量静电脉冲电流会通过所述限流电阻R2流向所述电子设备中控制芯片31,所述电子设备的外界所产生的静电脉冲不会造成所述电子设备中控制芯片31的损坏,保护了所述电子设备中的控制芯片31。较佳的,所述限流电阻的耐压值大于300V。本申请所采用的尖端放电模块ESD_P和限流电阻R2的电路成本低于双向TVS管,且本申请所采用的尖端放电模块ESD_P和限流电阻R2并不会受所述电子设备的电极是否采用高电压的影响,从而实现对电子设备的高压打码。
在本申请一具体实现中,所述尖端放电模块ESD_P的尖端之间的寄生电容通过所述尖端放电模块ESD_P的尖端之间的距离和/或所述尖端之间的相对截面积确定。
具体地,所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值大小与所述尖端放电模块ESD_P的尖端之间的距离成反比;和/或,所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值大小与所述尖端放电模块ESD_P的尖端之间的相对截面积成正比。
在本申请另一具体实现中,所述尖端放电模块的尖端之间的距离与所述击穿电压的电压值成正比。
所述尖端放电模块ESD_P的尖端之间的距离越小,所述尖端放电模块的尖端之间的击穿电压越小。所述尖端之间的击穿电压越小越有利于尖端之间的放电,所述尖端放电的效果越好。
在本申请再一具体实现中,本申请通过调整所述尖端放电模块ESD_P的尖端之间的距离和所述尖端之间的相对截面积来调整所述尖端放电模块ESD_P的寄生电容的电容值大小以及放电效果。
具体地,申请所述尖端放电模块ESD_P包括两个尖端,第一尖端21和第二尖端22。第一尖端21和第二尖端22之间的寄生电容的电容值大小可以通过所述第一尖端21和第二尖端22之间的距离进行调整,第一尖端21和第二尖端22之间的距离越小,第一尖端21和第二尖端22之间的寄生电容越大。
本申请所述尖端放电模块ESD_P的第一尖端21和第二尖端22之间的寄生电容的电容值大小也可以通过所述第一尖端21和第二尖端22之间的相对截面积进行调整,第一尖端21和第二尖端22之间的相对截面积越大,第一尖端21和第二尖端22之间的寄生电容越大。
因此,本申请所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值可以进行有效的调整控制,避免由于所述尖端放电模块ESD_P的尖端之间的寄生电容的电容值过大,所述寄生电容会影响触控笔中控制芯片的功耗和性能。
本申请所述尖端放电模块ESD_P的第一尖端21和第二尖端22之间的所述击穿电压的电压值大小可以通过调整所述第一尖端21和第二尖端22之间的距离进行调整,所述第一尖端21和第二尖端22之间的距离越小,所述击穿电压的电压值越小,所述第一尖端21和第二尖端22之间的放电效果越好。
因此,本申请所述尖端放电模块ESD_P的尖端之间的所述击穿电压的电压值大小可以进行有效的调整控制,通过调整尖端之间的距离调整所述尖端放电模块ESD_P的尖端之间的放电效果。
本申请所述尖端放电模块ESD_P所包含的尖端数量并不进行具体限定,本领域技术人员可以根据所述静电防护电路的需要对所述尖端的数量进行设定。
具体地,本申请通过调整所述尖端放电模块ESD_P的尖端之间的距离以及所述尖端之间的相对截面积获得理想的放电效果以及寄生电容的电容值, 其中,两个尖端之间的寄生电容的电容值可以为不大于0.6pF。
在本申请再一具体实现中,所述尖端放电模块中的至少两个尖端的靠近之处表面露铜。在本申请另一具体实现中,所述尖端放电模块ESD_P为露铜处理的两个尖端。
因此,所述露铜处理的两个尖端有利于静电脉冲对其进行击穿,即令所述电子设备的外界所产生的静电脉冲击穿所述露铜处理的两个尖端,所述静电脉冲通过所述露铜处理的两个尖端泄放到所述接地端GND。
图2为本申请另一实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。图3为本申请再一实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。
参见图2,所述两个尖端(第一尖端21和第二尖端22)为形状适配的且契合的一个圆锥凸体和一个圆锥凹体。所述第一尖端21和第二尖端22均进行露铜处理。所述第一尖端21和第二尖端22之间的距离为d1,露铜处理部分的直径为L1,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,所述第一尖端21和第二尖端22之间的距离d1为形状适配的圆锥凸体的外表面和圆锥凹体的外表面之间的距离;露铜处理部分的直径L1为形状适配的圆锥凸体的底面的直径和圆锥凹体的底面的直径;第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,形状适配的且契合的圆锥凸体的外表面积和圆锥凹体的外表面积。本申请可以通过调整露铜处理部分的直径为L1来调整第一尖端21和第二尖端22之间的相对截面积。较佳地,露铜处理部分的直径为L1不大于0.9mm,直径L1也可以等于PCB的最小加工尺寸。
参见图3,所述两个尖端(第一尖端21和第二尖端22)为形状适配的两个具有工字型相对面的长方体。所述第一尖端21和第二尖端22均进行露铜处理。所述第一尖端21和第二尖端22之间的距离为d2,露铜处理部分的直径为L2,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,所述第一尖端21和第二尖端22之间的距离d2为形状适配的两个长方体的工字型相对面之间的平行距离;露铜处理部分的直径L2为形状适配的两个长方体的工字型相对面的长度;第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,形状适配的两个工字型相对面的长方体的外表面积。本申请可以通过调整露铜处理部分的直径为L2来调整第一尖端21和第二尖端22之间的相对截面积。较佳地,露铜处理部分的 直径为L2不大于0.9mm,直径L2也可以等于PCB的最小加工尺寸。
图2和图3只是本申请对所述两个尖端的示例,本申请对所述尖端的形状以及尖端的距离并不进行限定。
图4、图5、图6、图7以及图8所示均为本申请其它实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。
参见图4所示,所述第一尖端21和第二尖端22之间的距离为d3,露铜处理部分的直径为L3,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,与图2所示两个尖端不同的是,图4所示的第二尖端22为圆柱凹体,第一尖端21和第二尖端22之间的距离d3为为第一尖端21中的圆锥凸体的尖端到第二尖端22的圆锥凹体的底面之间的距离。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,第一尖端21的圆锥凸体的外表面积和第二尖端22的圆柱凹体的外表面积为露铜处理部分的表面面积。较佳地,露铜处理部分的直径为L3不大于0.9mm,直径L3也可以等于PCB的最小加工尺寸。
参见图5所示,所述第一尖端21和第二尖端22之间的距离为d4,露铜处理部分的直径为L4,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,与图2所示两个尖端不同的是,图5所示的第二尖端22亦为圆锥凸体,第一尖端21和第二尖端22之间的距离d4为第一尖端21的圆锥凸体的尖端与第二尖端22的圆锥凸体的尖端之间的距离。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,第一尖端21的圆锥凸体的外表面积和第二尖端22圆锥凸体的外表面积为露铜处理部分的表面面积。较佳地,露铜处理部分的直径为L4不大于0.9mm,直径L4也可以等于PCB的最小加工尺寸。
参见图6所示,所述两个尖端(第一尖端21和第二尖端22)为形状适配的一个工字型长方体与一个圆柱凹体。所述第一尖端21和第二尖端22均进行露铜处理。所述第一尖端21和第二尖端22之间的距离为d5,露铜处理部分的直径为L5,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,第一尖端21和第二尖端22之间的距离d5为工字型长方体与圆柱凹体的相对面与圆柱凹体的底面之间的距离,露铜处理部分的直径为工字型长方体与圆柱凹体的相对面的底面直径。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,工字型长方体与圆柱凹 体相对面的截面积、圆柱凹体的内表面积为露铜处理部分的表面面积。较佳地,露铜处理部分的直径为L5不大于0.9mm,直径L5也可以等于PCB的最小加工尺寸。
参见图7所示,所述第一尖端21和第二尖端22之间的距离为d6,露铜处理部分的直径为L6,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,与图2所示两个尖端不同的是,图7所示的第二尖端22为一长方体,第一尖端21和第二尖端22之间的距离d6为第一尖端21的圆锥凸体的尖端与第二尖端22的长方体的表面的距离。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,第一尖端21的圆锥凸体的外表面积和第二尖端22的长方体的外表面积为露铜处理部分的表面面积。较佳地,露铜处理部分的直径为L6不大于0.9mm,直径L6也可以等于PCB的最小加工尺寸。
图8为本申请另一实施例一种应用于电子设备的静电防护(ESD)电路中所述尖端放电模块ESD_P的示意图。由于受到PCB加工的影响,两个尖端(第一尖端21和第二尖端22)的距离存在误差,在尖端放电时,存在尖端间的距离不能满足要求的情形,如距离偏大,使得需要更大的ESD电流来击穿。若同时存在多个第一尖端21,则不同第一尖端21距离第二尖端22的距离不同,在进行放电时,就能够增加满足距离要求的概率,使得ESD电流会选择距离最小的尖端进行放电。参见图8所示,所述第一尖端21和第二尖端22之间的距离为d7,露铜处理部分的直径为L7,第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积。需要说明的是,第一尖端21为圆锥凸体,第二尖端22为长方体,第一尖端21与第二尖端22相对布置。第一尖端21分散布置多个,比如,均布于第二尖端22的周围。第一尖端21和第二尖端22之间的距离d7为圆锥凸体的尖端到长方体的表面之间的距离,露铜处理部分的直径L7为为圆锥凸体的底面直径。第一尖端21和第二尖端22之间的相对截面积为露铜处理部分的表面面积具体为,第一尖端21的圆锥凸体的表面积以及第二尖端22的长方体的表面积。可以通过调整露铜处理部分的直径为L7来调整第一尖端21和第二尖端22之间的相对截面积。较佳地,露铜处理部分的直径为L7不大于0.9mm,直径L7也可以等于PCB的最小加工尺寸。
因此,本申请可以实现通过调整所述第一尖端21和第二尖端22的相对截面积以及相对距离来调整所述第一尖端21和第二尖端22之间的寄生电容,从而获得满足要求的第一尖端21和第二尖端22之间的寄生电容,避免第一尖 端21和第二尖端22之间的寄生电容影响所述触控笔中控制芯片的功耗和性能。
具体的,本申请可以通过调整所述第一尖端21和第二尖端22的相对距离来调整所述尖端放电模块ESD_P的击穿电压,将所述第一尖端21和第二尖端22的距离调整的足够小,例如距离可以是不大于0.08mm,此时击穿电压足够小,但是寄生电容的电容值较大,再通过调整所述第一尖端21和第二尖端22的相对截面积,将所述第一尖端21和第二尖端22的截面积调整的足够小,此时寄生电容较小,较佳地,寄生电容可以达到不大于600fF,即0.6pF,既减小了尖端放电模块的击穿电压,又减小了寄生电容的电容值,满足了触控笔的实际需求。击穿电压虽然足够小,但是会高于触控笔的高压打码的电压值,所以,本申请所采用的尖端放电模块ESD_P和限流电阻R2也不会限制所述电子设备的电极采用高电压打码。当然,所述第一尖端21和第二尖端22的相对截面积以及相对距离可以根据实际需求设置,本申请对此不做限定。
在本申请再一具体实现中,所述限流电阻R2为耐压值高的电阻,所述限流电阻R2的耐压值可以选择大于300V。所述耐压值高的限流电阻R2可以避免其被较大的分压损坏,从而进一步保证所述电子设备电极施加高电压不会影响所述静电防护电路的工作,所述静电防护电路也不会限制所述电子设备电极施加高电压。
本申请实施例还提供一种触控笔,包括:本申请任一实施例中的静电防护电路。
本申请实施例还提供一种电子设备,其包括本申请任一实施例中的静电防护电路。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器810、硬 盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定事务或实现特定抽象数据 类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行事务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (26)

  1. 一种应用于电子设备的静电防护电路,其特征在于,包括:尖端放电模块和限流电阻,所述尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块的一尖端连接所述电子设备的电极,所述尖端放电模块的另一尖端连接接地端,所述限流电阻的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片的测试管脚,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,以使外界静电脉冲从所述尖端放电模块泄放到所述接地端,其中,所述静电防护电路设置在电子设备的PCB电路板上。
  2. 根据权利要求1所述的应用于电子设备的静电防护电路,其特征在于,所述尖端放电模块包括铜皮。
  3. 根据权利要求1所述的应用于电子设备的静电防护电路,其特征在于,所述尖端放电模块的所述两个尖端之间的寄生电容的电容值不大于0.6pF。
  4. 根据权利要求1所述的应用于电子设备的静电防护电路,其特征在于,所述尖端放电模块的所述两个尖端之间的距离与所述尖端放电模块的击穿电压的电压值大小成正比。
  5. 根据权利要求1所述的应用于电子设备的静电防护电路,其特征在于,所述预设值为0.08mm。
  6. 根据权利要求1-5中任一项所述的应用于电子设备的静电防护电路,其特征在于,所述两个尖端的靠近之处表面露铜。
  7. 根据权利要求1-5中任一项所述的应用于电子设备的静电防护电路,其特征在于,所述尖端放电模块包括露铜处理的两个尖端。
  8. 根据权利要求6或7所述的应用于电子设备的静电防护电路,其特征在于,所述两个尖端的露铜部分的直径不大于0.9mm。
  9. 根据权利要求1-8中任意一项所述的应用于电子设备的静电防护电路,其特征在于,所述两个尖端为形状适配的且契合的一个圆锥凸体和一个圆锥凹体。
  10. 根据权利要求1-8中任意一项所述的应用于电子设备的静电防护电路,其特征在于,所述两个尖端为形状适配的两个具有工字形相对面的长方体。
  11. 根据权利要求1-10中任意一项所述的应用于电子设备的静电防护电路,其特征在于,所述限流电阻的耐压值大于300V。
  12. 根据权利要求1-11中任意一项所述的应用于电子设备的静电防护电路,其特征在于,所述电子设备包括触控笔。
  13. 一种应用于电子设备的静电防护方法,其特征在于,所应用的静电防护电路包括:尖端放电模块和限流电阻,所述尖端放电模块至少包括相互分离的两个尖端,所述两个尖端的距离不大于预设值,所述尖端放电模块的一尖端连接所述电子设备的电极,所述尖端放电模块的另一尖端连接接地端,所述限流电阻的一端连接所述电子设备的电极,另一端连接所述电子设备中控制芯片的测试管脚,所述尖端放电模块的击穿电压小于所述限流电阻的分压电压,其中,所述静电防护电路设置在电子设备的PCB电路板上,
    所述方法包括:
    接收所述电子设备的外界产生的静电脉冲电流;
    所述静电脉冲电流经过所述尖端放电模块泄放到所述接地端。
  14. 根据权利要求13所述的应用于电子设备的静电防护方法,其特征在于,所述尖端放电模块包括铜皮。
  15. 根据权利要求13所述的应用于电子设备的静电防护方法,其特征在于,所述尖端放电模块的所述两个尖端之间的寄生电容的电容值不大于0.6pF。
  16. 根据权利要求13所述的应用于电子设备的静电防护方法,其特征在于,所述尖端放电模块的所述两个尖端之间的距离与所述尖端放电模块的击穿电压的电压值大小成正比。
  17. 根据权利要求13所述的应用于电子设备的静电防护方法,其特征在于,所述预设值为0.08mm。
  18. 根据权利要求13-16中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述两个尖端的靠近之处表面露铜。
  19. 根据权利要求13-16中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述尖端放电模块包括露铜处理的两个尖端。
  20. 根据权利要求18或19所述的应用于电子设备的静电防护电路,其特征在于,所述两个尖端的露铜部分的直径不大于0.9mm。
  21. 根据权利要求13-20中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述两个尖端为形状适配的且契合的一个圆锥凸体和一个圆锥凹体。
  22. 根据权利要求13-20中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述两个尖端为形状适配的两个工字形相对面的长方体。
  23. 根据权利要求13-22中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述限流电阻的高耐压值大于300V。
  24. 根据权利要求13-23中任意一项所述的应用于电子设备的静电防护方法,其特征在于,所述电子设备包括触控笔。
  25. 一种触控笔,其特征在于,包括:如权利要求1-12任一项所述的静电防护电路。
  26. 一种电子设备,其特征在于,包括:如权利要求1-12任一项所述的静电防护电路。
PCT/CN2019/086228 2019-05-09 2019-05-09 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备 WO2020223964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003208.XA CN112219331A (zh) 2019-05-09 2019-05-09 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备
PCT/CN2019/086228 WO2020223964A1 (zh) 2019-05-09 2019-05-09 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086228 WO2020223964A1 (zh) 2019-05-09 2019-05-09 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备

Publications (1)

Publication Number Publication Date
WO2020223964A1 true WO2020223964A1 (zh) 2020-11-12

Family

ID=73050952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086228 WO2020223964A1 (zh) 2019-05-09 2019-05-09 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备

Country Status (2)

Country Link
CN (1) CN112219331A (zh)
WO (1) WO2020223964A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047107A1 (en) * 2002-09-06 2004-03-11 Chih-Chung Hsu ESD protection circuit for touch button
CN1878444A (zh) * 2005-06-10 2006-12-13 明基电通股份有限公司 静电放电防护的电路板
CN101969194A (zh) * 2010-10-12 2011-02-09 福建星网锐捷网络有限公司 接口防静电方法、防静电保护电路及电气设备
CN103327733A (zh) * 2013-06-28 2013-09-25 青岛歌尔声学科技有限公司 印刷电路板的静电防护方法、印刷电路板和电子产品
CN105680434A (zh) * 2016-01-27 2016-06-15 上海斐讯数据通信技术有限公司 一种基于元器件的静电保护结构和一种元器件封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047107A1 (en) * 2002-09-06 2004-03-11 Chih-Chung Hsu ESD protection circuit for touch button
CN1878444A (zh) * 2005-06-10 2006-12-13 明基电通股份有限公司 静电放电防护的电路板
CN101969194A (zh) * 2010-10-12 2011-02-09 福建星网锐捷网络有限公司 接口防静电方法、防静电保护电路及电气设备
CN103327733A (zh) * 2013-06-28 2013-09-25 青岛歌尔声学科技有限公司 印刷电路板的静电防护方法、印刷电路板和电子产品
CN105680434A (zh) * 2016-01-27 2016-06-15 上海斐讯数据通信技术有限公司 一种基于元器件的静电保护结构和一种元器件封装结构

Also Published As

Publication number Publication date
CN112219331A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US20200081567A1 (en) Circuit, touch chip, and electronic device for capacitance detection
EP3785341B1 (en) Electrostatic discharge circuit for cross domain esd protection
US10579837B2 (en) Method, device and electronic apparatus for testing capability of analyzing a two-dimensional code
US20210034178A1 (en) Capacitance detection circuit, detection chip and electronic device
US20200126470A1 (en) Display panel and display device
US20170187183A1 (en) Chip and electronic device
CN112232059B (zh) 文本纠错方法、装置、计算机设备及存储介质
WO2020223964A1 (zh) 一种应用于电子设备的静电防护电路、方法、触控笔以及电子设备
CN111176582A (zh) 矩阵存储方法、矩阵访问方法、装置和电子设备
CN210053208U (zh) 一种应用于电子设备的静电防护电路
US20160149402A1 (en) Usb esd protection circuit
US11509134B2 (en) Communication interface protection circuit having transient voltage suppression
EP3370186A1 (en) Fingerprint recognition system
CN109842498A (zh) 一种客户端配置方法、服务器、客户端及电子设备
WO2020206644A1 (zh) 一种触控屏中引线的制作方法、触控屏及电子设备
CN110738075B (zh) 一种指纹识别芯片以及终端设备
CN107392408A (zh) 一种信用分数的提示信息输出方法及装置
US10565366B2 (en) Numerical verification code generation method and device
US10553578B2 (en) Electronic device and method for operating the same
CN206962436U (zh) 保护电路、设备及通信系统
CN110690691A (zh) 一种设备接口保护电路
CN110096477A (zh) 一种数据存储的方法及装置
CN110913298A (zh) 一种耳机装置及通信方法、系统、计算机可读存储介质
US20130054865A1 (en) Mouse
US9313879B2 (en) Motherboard with electrostatic discharge protection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928040

Country of ref document: EP

Kind code of ref document: A1