WO2020222656A1 - A pumping system - Google Patents

A pumping system Download PDF

Info

Publication number
WO2020222656A1
WO2020222656A1 PCT/NZ2020/050036 NZ2020050036W WO2020222656A1 WO 2020222656 A1 WO2020222656 A1 WO 2020222656A1 NZ 2020050036 W NZ2020050036 W NZ 2020050036W WO 2020222656 A1 WO2020222656 A1 WO 2020222656A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
piston
fluid
diaphragm
pumping system
Prior art date
Application number
PCT/NZ2020/050036
Other languages
French (fr)
Inventor
Graham Ross
Jason Lynch
Original Assignee
Graham Ross
Jason Lynch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NZ753080A external-priority patent/NZ753080B/en
Application filed by Graham Ross, Jason Lynch filed Critical Graham Ross
Publication of WO2020222656A1 publication Critical patent/WO2020222656A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0045Special features with a number of independent working chambers which are actuated successively by one mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0409Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material the pumps being driven by a hydraulic or a pneumatic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0413Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with reciprocating pumps, e.g. membrane pump, piston pump, bellow pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/08Combinations of two or more pumps the pumps being of different types
    • F04B23/10Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type
    • F04B23/106Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type being an axial piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members

Definitions

  • the invention relates to a pumping system.
  • a preferred form of the invention relates to a system for use in applying heat sensitive chemical liquids.
  • piston pumps to transfer liquid chemicals, for example to supply paint to spray equipment.
  • the operation of some known piston pumps generates heat through friction where seals interface with cylinders or rods. It can be a problem that some chemicals, for example UV paint, are heat sensitive and so may be damaged by heat caused by the operation of the piston pump, or heat cured.
  • a pumping system comprising:
  • a piston pump having a piston
  • a first diaphragm pump having a first diaphragm and a load chamber
  • a second diaphragm pump having a second diaphragm and a delivery chamber
  • a first stroke (for example, an upward stroke) of the piston causes:
  • a return stroke (for example, a downward stroke) of the piston causes:
  • valve means opens and closes the load and delivery chambers.
  • valve means comprises a series of one-way valves arranged so that:
  • the piston reciprocates in a piston chamber and is arranged such that:
  • the piston chamber is divided into separate compartments in fluid isolation from one another, one in fluid connection with the first conduit and the other in connection with the second conduit;
  • the diaphragms are driven by oil moved by the piston.
  • the fluid comprises paint.
  • the fluid comprises UV paint.
  • the outlet is associated with a spray head.
  • the load and delivery chambers are each sufficient to receive and deliver about 30-70 cm 3 of the fluid respectively, at a stroke of the piston.
  • the load and delivery chambers are each sufficient to receive and deliver about 40-60 cm 3 of the fluid respectively, at a stroke of the piston.
  • the load and delivery chambers are each sufficient to receive and deliver about 50 cm 3 of the fluid respectively, at a stroke of the piston.
  • the piston may be powered by a pneumatic motor, hydraulic motor or
  • the piston pump comprises an upper chamber and a lower chamber; a first conduit connects the upper chamber with the first diaphragm pump; and a second conduit connects the second chamber with the second diaphragm pump;
  • the pumping system arranged such that the upper chamber, first conduit and first diaphragm pump have a fill of oil and are in fluid connection, and the lower chamber, second conduit and second diaphragm pump have a fill of oil and are in fluid connection.
  • Figure 1 is a side isometric view of a part of a pump
  • Figure 2 is a schematic view of a piston unit and diaphragm module
  • Figure 3 is an alternative schematic view of the piston unit and diaphragm module.
  • a pumping system 1 comprises a motor 2, a piston pump 3, and a diaphragm module 4.
  • the motor 2 provides power to drive the piston pump 3.
  • the motor 2 may be a pneumatic, hydraulic, or reciprocating electric motor, or any other suitable motor.
  • the piston unit 3 comprises an upper chamber 5, a lower chamber 6, a piston 7, an upper shaft seal 8 and a lower shaft seal 9.
  • the diaphragm module 4 comprises a first diaphragm pump, for example a lower cell 11 , a second diaphragm pump, for example an upper cell 10, non-return valves 12 (lower valve 12a, middle valve 12b, upper valve 12c), a pump inlet 13, a load chamber 14, a delivery chamber 15, and a pump outlet 16.
  • the upper cell 10 has a flexible diaphragm 17 and the lower cell 11 has a flexible diaphragm 18.
  • the piston pump 3 and the diaphragm module 4 are linked by a lower channel 19 and an upper channel 20.
  • the piston 7 is positioned in the upper position as shown in figure 2, and a vacuum is applied to remove air and a non-compressible liquid, for example oil, synthetic lubricant or coolant, is added into the lower chamber 6 and the lower cell 11.
  • a non-compressible liquid for example oil, synthetic lubricant or coolant.
  • FIG. 1 shows the piston 7 on the up stroke. As the piston 7 moves into the upper chamber 5 it causes oil to flow along the upper channel 20 in the direction indicated by the arrow 20a causing the diaphragm 17 to flex and creating an area of high pressure in the delivery chamber 15.
  • Figure 3 shows the piston on the down stroke.
  • the piston 7 moves into the lower chamber 6 it causes each diaphragm 17,18 to flex in the opposite direction compared to the up stroke. This creates an area of low pressure in the delivery chamber 15 and an area of high pressure in the load chamber 14. The area of low pressure in the delivery chamber 15 causes the paint to be drawn through the middle valve 12b and into the delivery chamber 15.
  • the piston 7 then moves to the upstroke again as in figure 2, causing the diaphragm 17 to flex into the delivery chamber 15 which causes the paint to move through the upper valve 12c into the outlet 16 while also filling the delivery chamber 15 in preparation for the next stroke.
  • the outlet 16 leads to a dispenser (not shown), for example, a paint dispenser comprising a spray head for applying the paint.
  • a hose (not shown) is connected to the outlet at one end and to the paint dispenser at the other.
  • the piston continues to stroke down and up to move paint from the tank to the inlet 13, through the load chamber 14 and delivery chamber 15, and to the outlet 16 and dispenser.
  • the delivery chamber 15 displaces about 50 cubic centimetres (cm 3 ) of paint while on the down stroke the load chamber 14 displaces about 25 cm 3 .
  • the load and delivery chambers 14,15 are each sufficient to receive and deliver about 30-70 cm 3 of paint respectively.
  • the valves 12a-c are non-return check valves and so control the direction of flow by preventing liquid from flowing back in the direction from which it came by closing at the end of each up or down stroke.
  • the pump 1 is characterised in that it uses two cells 10,11 and creates alternate high and low pressure areas but uses a slow cycle of preferably less than 150 cycles per minute (cpm).
  • the cells 10, 11 of the diaphragm module 4 work in series without either cell being exhausted of oil. The pumping action enables the diaphragm module 4 to fill on the upstroke yet pump on both strokes.
  • Known low pressure diaphragm pumps typically work by exhausting one diaphragm as the other diaphragm is filled, the changeover producing pressure pulse.
  • Known high pressure diaphragm pumps typically work by using a single diaphragm that is pulsed at a relatively high speed, for example at 1 ,450 cpm. Both the exhausting of a cell and a faster pulsation tends to create heat/shear.
  • the effect of not exhausting a given cell and the slower cpm of the invention is that heat/shear is comparatively reduced compared with some known pump systems.
  • some known pumps do not stop pumping when paint flow is stopped which may cause heat to be generated.
  • the speed of the flow of UV paint can be controlled by the speed of the motor 2 moving the piston 7. If the motor speed is slowed then pulsation and the flow of paint is also slowed, so that the pump 1 works on demand which assists in reducing the risk of heat being generated while the pump 1 is being operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

The invention relates to a pumping system for heat sensitive chemical liquids. It comprises a fluid inlet, a piston pump having a piston, a first diaphragm pump having a first diaphragm and a load chamber, a second diaphragm pump having a second diaphragm and a delivery chamber, valve means, and a fluid outlet. These are arranged such that a first stroke of the piston causes the first diaphragm to create a vacuum to draw the fluid into the load chamber via the inlet, and the second diaphragm to drive the fluid from the delivery chamber via the outlet. A return stroke of the piston causes the first diaphragm to drive fluid from the load chamber into the delivery chamber, and the second diaphragm to displace fluid from the load chamber into the delivery chamber, and the valve means opens and closes the load and delivery chambers.

Description

TITLE
A Pumping system.
FIELD OF INVENTION
The invention relates to a pumping system. A preferred form of the invention relates to a system for use in applying heat sensitive chemical liquids.
BACKGROUND
It is known to use piston pumps to transfer liquid chemicals, for example to supply paint to spray equipment. The operation of some known piston pumps generates heat through friction where seals interface with cylinders or rods. It can be a problem that some chemicals, for example UV paint, are heat sensitive and so may be damaged by heat caused by the operation of the piston pump, or heat cured.
OBJECT OF THE INVENTION
It is an object of preferred embodiments of the invention to go at least some way towards addressing the above problem. While this applies to preferred embodiments, it should be understood that the object of the invention perse is simply to provide a useful choice.
Accordingly, any objects applicable to preferred embodiments should not be taken as a limitation on the scope of any claims expressed more broadly.
INTERPRETATION
The term“comprises”, or derivatives thereof, should not be interpreted as excluding other features. For example, if used in relation to a combination of features it indicates that optionally, but not necessarily, there may be additional features that have not been mentioned.
Terms such as“upper” or“lower” when used in relation to certain items in the drawings refer to the orientation those items have in the drawings. Such terms are used for ease of explanation. However, it should be understood that when in storage or use those items may have a different orientation.
SUMMARY OF THE INVENTION
According to one aspect of the invention there is provided a pumping system comprising:
• a fluid inlet;
• a piston pump having a piston; • a first diaphragm pump having a first diaphragm and a load chamber;
• a second diaphragm pump having a second diaphragm and a delivery chamber;
• valve means; and
• a fluid outlet
arranged such that:
o a first stroke (for example, an upward stroke) of the piston causes:
the first diaphragm to create a vacuum to draw the fluid into the load chamber via the inlet; and
the second diaphragm to drive the fluid from the delivery chamber via the outlet;
o a return stroke (for example, a downward stroke) of the piston causes:
the first diaphragm to drive the fluid from the load chamber into the delivery chamber; and
the second diaphragm to displace the fluid from the load chamber into the delivery chamber; and
o the valve means opens and closes the load and delivery chambers.
Optionally the valve means comprises a series of one-way valves arranged so that:
• fluid in the load chamber can only proceed to the delivery chamber; and
• fluid in the delivery chamber can leave that chamber via the outlet but cannot enter the load chamber.
Optionally the piston reciprocates in a piston chamber and is arranged such that:
• a first conduit connects the piston chamber to the first diaphragm pump;
• a second conduit connects the piston chamber to the second diaphragm pump;
• the piston chamber is divided into separate compartments in fluid isolation from one another, one in fluid connection with the first conduit and the other in connection with the second conduit; and
• as the piston reciprocates driving liquid moves in an opposite direction in each
conduit.
Optionally the diaphragms are driven by oil moved by the piston.
Optionally the fluid comprises paint.
Optionally the fluid comprises UV paint. Optionally the outlet is associated with a spray head.
Optionally the load and delivery chambers are each sufficient to receive and deliver about 30-70 cm3 of the fluid respectively, at a stroke of the piston.
Optionally the load and delivery chambers are each sufficient to receive and deliver about 40-60 cm3 of the fluid respectively, at a stroke of the piston.
Optionally the load and delivery chambers are each sufficient to receive and deliver about 50 cm3 of the fluid respectively, at a stroke of the piston.
Optionally the piston may be powered by a pneumatic motor, hydraulic motor or
reciprocating electric motor.
Optionally the piston pump comprises an upper chamber and a lower chamber; a first conduit connects the upper chamber with the first diaphragm pump; and a second conduit connects the second chamber with the second diaphragm pump;
the pumping system arranged such that the upper chamber, first conduit and first diaphragm pump have a fill of oil and are in fluid connection, and the lower chamber, second conduit and second diaphragm pump have a fill of oil and are in fluid connection.
IMAGES
Some preferred embodiments of the invention will now be described by way of example and with reference to the accompanying images, of which:
Figure 1 is a side isometric view of a part of a pump;
Figure 2 is a schematic view of a piston unit and diaphragm module; and
Figure 3 is an alternative schematic view of the piston unit and diaphragm module.
DETAILED DESCRIPTION
Referring to figures 1-3, a pumping system 1 comprises a motor 2, a piston pump 3, and a diaphragm module 4. The motor 2 provides power to drive the piston pump 3. The motor 2 may be a pneumatic, hydraulic, or reciprocating electric motor, or any other suitable motor.
The piston unit 3 comprises an upper chamber 5, a lower chamber 6, a piston 7, an upper shaft seal 8 and a lower shaft seal 9. The diaphragm module 4 comprises a first diaphragm pump, for example a lower cell 11 , a second diaphragm pump, for example an upper cell 10, non-return valves 12 (lower valve 12a, middle valve 12b, upper valve 12c), a pump inlet 13, a load chamber 14, a delivery chamber 15, and a pump outlet 16. The upper cell 10 has a flexible diaphragm 17 and the lower cell 11 has a flexible diaphragm 18.
The piston pump 3 and the diaphragm module 4 are linked by a lower channel 19 and an upper channel 20.
To prepare the pump 1 for use, the piston 7 is positioned in the upper position as shown in figure 2, and a vacuum is applied to remove air and a non-compressible liquid, for example oil, synthetic lubricant or coolant, is added into the lower chamber 6 and the lower cell 11. The piston 7 is then positioned in the lower position as shown in figure 3, and air is removed and oil added into the upper chamber 5 and the upper cell 10. Once all air is evacuated and oil is present, each chamber 5,6 respectively is sealed with the aid of the shaft seals 8,9.
When in use, the motor 2 is activated to start the pumping system 1. Figure 2 shows the piston 7 on the up stroke. As the piston 7 moves into the upper chamber 5 it causes oil to flow along the upper channel 20 in the direction indicated by the arrow 20a causing the diaphragm 17 to flex and creating an area of high pressure in the delivery chamber 15.
At the same time as the piston 7 moves into the upper chamber 5 it causes oil to flow along the lower channel 19 in the direction indicated by the arrow 19a increasing the swept volume of area below the piston 7 and causing the diaphragm 18 to flex and creating an area of low pressure in the load chamber 14. This area of low pressure causes liquid, for example UV paint, adhesives, resins and paints, from a tank (not shown) to be drawn along the pump inlet 13, through the lower valve 12a and into the load chamber 14.
Figure 3 shows the piston on the down stroke. As the piston 7 moves into the lower chamber 6 it causes each diaphragm 17,18 to flex in the opposite direction compared to the up stroke. This creates an area of low pressure in the delivery chamber 15 and an area of high pressure in the load chamber 14. The area of low pressure in the delivery chamber 15 causes the paint to be drawn through the middle valve 12b and into the delivery chamber 15. At the same time this movement is assisted by the high pressure generated in the load chamber 14 by the flexing of the diaphragm 18 which drives paint into the delivery chamber The piston 7 then moves to the upstroke again as in figure 2, causing the diaphragm 17 to flex into the delivery chamber 15 which causes the paint to move through the upper valve 12c into the outlet 16 while also filling the delivery chamber 15 in preparation for the next stroke. The outlet 16 leads to a dispenser (not shown), for example, a paint dispenser comprising a spray head for applying the paint. A hose (not shown) is connected to the outlet at one end and to the paint dispenser at the other. In an alternative embodiment of the invention there is no upper valve 12c.
The piston continues to stroke down and up to move paint from the tank to the inlet 13, through the load chamber 14 and delivery chamber 15, and to the outlet 16 and dispenser.
On the up stroke the delivery chamber 15 displaces about 50 cubic centimetres (cm3) of paint while on the down stroke the load chamber 14 displaces about 25 cm3. Alternatively the load and delivery chambers 14,15 are each sufficient to receive and deliver about 30-70 cm3 of paint respectively.
The valves 12a-c are non-return check valves and so control the direction of flow by preventing liquid from flowing back in the direction from which it came by closing at the end of each up or down stroke.
The pump 1 is characterised in that it uses two cells 10,11 and creates alternate high and low pressure areas but uses a slow cycle of preferably less than 150 cycles per minute (cpm). The cells 10, 11 of the diaphragm module 4 work in series without either cell being exhausted of oil. The pumping action enables the diaphragm module 4 to fill on the upstroke yet pump on both strokes.
Known low pressure diaphragm pumps typically work by exhausting one diaphragm as the other diaphragm is filled, the changeover producing pressure pulse. Known high pressure diaphragm pumps typically work by using a single diaphragm that is pulsed at a relatively high speed, for example at 1 ,450 cpm. Both the exhausting of a cell and a faster pulsation tends to create heat/shear.
The effect of not exhausting a given cell and the slower cpm of the invention is that heat/shear is comparatively reduced compared with some known pump systems. This makes the preferred form of the invention suitable for use with certain liquids that are heat sensitive, for example for use with UV paint because oil is present in each cell 10, 11 during both the down stroke and the upstroke. Also, some known pumps do not stop pumping when paint flow is stopped which may cause heat to be generated. In the preferred form of the present invention, the speed of the flow of UV paint can be controlled by the speed of the motor 2 moving the piston 7. If the motor speed is slowed then pulsation and the flow of paint is also slowed, so that the pump 1 works on demand which assists in reducing the risk of heat being generated while the pump 1 is being operated.
While some preferred embodiments of the invention have been described by way of example, it should be appreciated that modifications and improvements can occur without departing from the scope of the following claims.

Claims

1. A pumping system comprising:
• a fluid inlet;
• a piston pump having a piston;
• a first diaphragm pump having a first diaphragm and a load chamber;
• a second diaphragm pump having a second diaphragm and a delivery chamber;
• valve means; and
• a fluid outlet
arranged such that when in use:
o a first stroke of the piston causes:
the first diaphragm to create a vacuum to draw a fluid into the load
chamber via the inlet; and
the second diaphragm to drive the fluid from the delivery chamber via the outlet;
o a return stroke of the piston causes:
the first diaphragm to drive the fluid from the load chamber into the
delivery chamber; and
the second diaphragm to displace the fluid from the load chamber into the delivery chamber; and
o the valve means opens and closes the load and delivery chambers.
2. A pumping system according to claim 1 , wherein the valve means comprises a series of one-way valves arranged so that:
• fluid in the load chamber can only proceed to the delivery chamber; and
• fluid in the delivery chamber can leave that chamber via the outlet but cannot enter the load chamber.
3. A pumping system according to claim 1 or 2, wherein the piston reciprocates in a piston chamber and is arranged such that:
• a first conduit connects the piston chamber to the first diaphragm pump;
• a second conduit connects the piston chamber to the second diaphragm pump;
• the piston chamber is divided into separate compartments in fluid isolation from one another, one in fluid connection with the first conduit and the other in connection with the second conduit; and • as the piston reciprocates driving liquid moves in an opposite direction in each conduit.
4. A pumping system according to claim 1 , 2 or 3, wherein the diaphragms are driven by oil moved by the piston.
5. A pumping system according to any one of the preceding claims, wherein the fluid
comprises paint.
6. A pumping system according to any one of claims 1-4, wherein the fluid comprises UV paint.
7. A pumping system according to any one of the preceding claims, wherein the outlet is associated with a spray head.
8. A pumping system according to any one of the preceding claims, wherein the load and delivery chambers are each sufficient to receive and deliver about 30-70 cm3 of the fluid respectively, at a stroke of the piston.
9. A pumping system according to any one of claims 1-7, wherein the load and delivery chambers are each sufficient to receive and deliver about 40-60 cm3 of the fluid respectively, at a stroke of the piston.
10. A pumping system according to any one of claims 1-7, wherein the load and delivery chambers are each sufficient to receive and deliver about 50 cm3 of the fluid
respectively, at a stroke of the piston.
11. A pumping system according to any one of the preceding claims, wherein the piston is powered by a pneumatic motor, hydraulic motor or reciprocating electric motor.
12. A pumping system according to claim 1 , wherein the piston pump comprises an upper chamber and a lower chamber; a first conduit connects the upper chamber with the first diaphragm pump; and a second conduit connects the second chamber with the second diaphragm pump;
the pumping system arranged such that the upper chamber, first conduit and first diaphragm pump have a fill of oil and are in fluid connection; and the lower chamber, second conduit and second diaphragm pump have a fill of oil and are in fluid connection.
PCT/NZ2020/050036 2019-05-02 2020-04-16 A pumping system WO2020222656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ753080A NZ753080B (en) 2019-05-02 A Pumping System
NZ753080 2019-05-02

Publications (1)

Publication Number Publication Date
WO2020222656A1 true WO2020222656A1 (en) 2020-11-05

Family

ID=71074668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ2020/050036 WO2020222656A1 (en) 2019-05-02 2020-04-16 A pumping system

Country Status (1)

Country Link
WO (1) WO2020222656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593093A (en) * 2022-03-07 2022-06-07 清华大学 RFD pumping system device with pressure stroke process control function and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1927587A (en) * 1930-07-19 1933-09-19 Marcus L Hacker Diaphragm pump
US4093403A (en) * 1976-09-15 1978-06-06 Outboard Marine Corporation Multistage fluid-actuated diaphragm pump with amplified suction capability
US20090053074A1 (en) * 2007-08-24 2009-02-26 Matthew Babicki Positive displacement pump and method of use thereof
US20140263431A1 (en) * 2011-10-29 2014-09-18 Lumenis Ltd. Fluid reservoir, a system for fluid supply comprising said reservoir and use of said reservoir in a system for supply of ink to an ink jet printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1927587A (en) * 1930-07-19 1933-09-19 Marcus L Hacker Diaphragm pump
US4093403A (en) * 1976-09-15 1978-06-06 Outboard Marine Corporation Multistage fluid-actuated diaphragm pump with amplified suction capability
US20090053074A1 (en) * 2007-08-24 2009-02-26 Matthew Babicki Positive displacement pump and method of use thereof
US20140263431A1 (en) * 2011-10-29 2014-09-18 Lumenis Ltd. Fluid reservoir, a system for fluid supply comprising said reservoir and use of said reservoir in a system for supply of ink to an ink jet printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114593093A (en) * 2022-03-07 2022-06-07 清华大学 RFD pumping system device with pressure stroke process control function and control method thereof

Also Published As

Publication number Publication date
NZ753080A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
US6561774B2 (en) Dual diaphragm pump
US6089837A (en) Pump inlet stabilizer with a control unit for creating a positive pressure and a partial vacuum
JP2009543981A (en) Fluid powered proportional pump and fluid dispensing system including the pump
WO2020222656A1 (en) A pumping system
CN106593970A (en) Fatigue test hydraulic loading device for rigid material
US5186095A (en) Piston assembly and method
NZ753080B (en) A Pumping System
KR101997684B1 (en) High Pressure Fluid System
CA1318217C (en) Pumping system
US5575627A (en) High and low pressure two stage pump and pumping method
CN201513310U (en) Reciprocating piston pump
US3718409A (en) Reciprocating pump control system
EP0486556B1 (en) Pulseless piston pump
EP0451942A1 (en) Double-acting positive displacement pump
CN206338263U (en) A kind of rigid material fatigue test hydraulic loading device
US5152675A (en) Piston pump with anti-leakage control
CN106917732A (en) A kind of pump
JP3701986B2 (en) Liquid pressurizing apparatus and operation method thereof
CN207879573U (en) A kind of oil well pumping-assistant device
CN108757366B (en) Plunger pump for conveying high-viscosity fluid and execution method
CN217518842U (en) Energy-saving multifunctional plunger pump
CN216588973U (en) Novel plunger pump and flush coater
CN201666236U (en) High viscosity pneumatic plunger pump
RU2086807C1 (en) Pneumatically-driven diaphragm pump
WO2000012896A1 (en) Flexible cell assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798197

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798197

Country of ref document: EP

Kind code of ref document: A1