WO2020222602A1 - Method for reporting csi in wireless communication system and apparatus therefor - Google Patents

Method for reporting csi in wireless communication system and apparatus therefor Download PDF

Info

Publication number
WO2020222602A1
WO2020222602A1 PCT/KR2020/005865 KR2020005865W WO2020222602A1 WO 2020222602 A1 WO2020222602 A1 WO 2020222602A1 KR 2020005865 W KR2020005865 W KR 2020005865W WO 2020222602 A1 WO2020222602 A1 WO 2020222602A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
padding
base station
size
terminal
Prior art date
Application number
PCT/KR2020/005865
Other languages
French (fr)
Korean (ko)
Inventor
박해욱
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020222602A1 publication Critical patent/WO2020222602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present specification relates to a wireless communication system, and more particularly, to a method for reporting CSI in a wireless communication system and an apparatus supporting the same.
  • Wireless communication systems have been widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include Code Division Multiple Access (CDMA) systems, Frequency Division Multiple Access (FDMA) systems, Time Division Multiple Access (TDMA) systems, Orthogonal Frequency Division Multiple Access (OFDMA) systems, and Single Carrier Frequency (SC-FDMA) systems.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • An object of the present invention is to provide a signaling method for configuring an applied padding scheme and an effective feedback reporting method.
  • the present specification provides control information related to determination of a dimension size for a specific domain used for CSI reporting.
  • DFT Discrete Fourier Transform
  • the padding pattern is related to a position of a subband to which the padding is applied.
  • the position of the subband to which the padding is applied is in front of the subband for initial CSI reporting, after the subband for the last CSI report, or in the middle of the subbands for CSI reporting that are set. do.
  • the padding scheme is characterized in that it is zero padding, interpolation-based padding for CSI measured based on CSI-RS, or extrapolation-based padding for CSI measured based on CSI-RS.
  • the zero padding is applied, and when the subbands for the CSI reporting are configured discontinuously, the interpolation-based or extrapolation-based padding is applied. It is characterized.
  • the CSI is characterized in that it is a linear combining-based CSI.
  • the specific region is characterized in that at least one of a spatial domain, a frequency domain, and a time domain.
  • control information is characterized in that it includes information on a bandwidth part (BWP) and information on a subband size.
  • BWP bandwidth part
  • the setting information is characterized in that it includes information about a padding pattern and information about a padding scheme.
  • the size of the DFT vector is determined based on a preset rule.
  • the CSI is characterized in that it includes a precoding matrix indicator (PMI).
  • PMI precoding matrix indicator
  • the padding pattern and the padding scheme are determined when the size of the DFT vector is larger than the dimension size.
  • the size of the DFT vector is greater than 13.
  • the dimension size is characterized in that it is determined by a product of the number of subbands and a scaling parameter used to determine a frequency unit size.
  • the present specification provides a terminal for reporting channel state information (CSI) in a wireless communication system, the terminal comprising: a transceiver for transmitting and receiving a radio signal; And a processor connected to the transceiver, wherein the processor receives, from the base station, control information related to determination of a dimension size for a specific domain used for CSI reporting; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
  • DFT Discrete Fourier Transform
  • the one or more processors are a specific domain used for CSI reporting Receive from the base station control information related to the determination of the dimension size of the base station; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
  • DFT Discrete Fourier Transform
  • the present specification is one or more non-transitory computer-readable medium for storing one or more instructions, the one or more executable (executable) by one or more processors.
  • the command receives, from the base station, control information related to determination of a dimension size for a specific domain used for CSI reporting; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
  • DFT Discrete Fourier Transform
  • This specification sets the padding technique when the dimension size of information related to the spatial domain/frequency domain/time domain used for actual CSI reporting is larger than the size of the DFT vector, thereby solving the ambiguity caused by dimension mismatch. There is an effect.
  • FIG. 1 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
  • FIG. 2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG 3 shows an example of a frame structure in an NR system.
  • FIG. 4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • FIG. 6 illustrates an SSB structure
  • FIG. 9 illustrates physical channels and general signal transmission used in a 3GPP system.
  • FIG. 10 is a diagram illustrating an example of a beam used for beam management.
  • 11 is a flowchart illustrating an example of a downlink beam management procedure.
  • FIG. 12 shows an example of a downlink beam management procedure using a channel state information reference signal.
  • FIG. 13 is a flowchart illustrating an example of a process of determining a reception beam by a terminal.
  • FIG. 14 is a flowchart illustrating an example of a transmission beam determination process of a base station.
  • 15 shows an example of resource allocation in time and frequency domains related to a DL BM procedure using CSI-RS.
  • FIG 16 shows an example of an uplink beam management procedure using a sounding reference signal (SRS).
  • SRS sounding reference signal
  • 17 is a flowchart illustrating an example of an uplink beam management procedure using SRS.
  • FIG. 18 is a flowchart illustrating an example of a CSI-related procedure to which the method proposed in the present specification can be applied.
  • FIG. 19 shows an example of a DMRS configuration type.
  • 20 is a flowchart illustrating an example of a DL DMRS procedure.
  • 21 is a flowchart illustrating an example of a DL PTRS procedure.
  • FIG. 22 is a flowchart illustrating an example of a TRS procedure.
  • FIG. 23 is a flowchart illustrating an example of a downlink transmission/reception operation to which the method proposed in this specification can be applied.
  • 24 is a flowchart illustrating an example of an uplink transmission/reception operation to which the method proposed in the present specification can be applied.
  • FIG. 27 shows a flowchart of an operation of a base station performing a CSI procedure proposed in the present specification.
  • 29 is a flow chart illustrating another example of a method of operating a terminal proposed in the present specification.
  • FIG. 30 is a block diagram illustrating components of a transmitting device and a receiving device for performing the method proposed in the present specification.
  • 31 shows an example of a structure of a signal processing module in a transmission device.
  • FIG. 32 shows another example of the structure of a signal processing module in a transmission device.
  • downlink refers to communication from a base station to a terminal
  • uplink refers to communication from a terminal to a base station
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • the base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device.
  • Base station is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G).
  • BS Base station
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • 5G network
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module , Drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle robot
  • AI module Drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a wireless technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • IEEE 802-20 and E-UTRA
  • Evolved UTRA Evolved UTRA
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • LTE-A pro is an evolved version of 3GPP LTE
  • 3GPP New Radio or New Radio Access Technology (NR) is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR refers to the technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE/NR may be collectively referred to as a 3GPP system.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • CRI channel state information? Reference signal
  • CSI-RS channel state information? reference signal
  • IFDMA interleaved frequency division multiple access
  • IFFT inverse fast Fourier transform
  • L1-RSRP Layer 1 reference signal received power
  • L1-RSRQ Layer 1 reference signal received quality
  • OFDM orthogonal frequency division multiplexing
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • RRC radio resource control
  • SINR signal to interference and noise ratio
  • SSB (or SS/PBCH block): synchronization signal block (including primary synchronization signal, secondary synchronization signal and physical broadcast channel)
  • TDM time division multiplexing
  • TRP transmission and reception point
  • NR is an expression showing an example of a 5G radio access technology (RAT).
  • RAT 5G radio access technology
  • a new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow OFDM parameters different from those of LTE.
  • the new RAT system follows the numerology of the existing LTE/LTE-A as it is, but can have a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of neurology. That is, terminals operating in different neurology can coexist within one cell.
  • Numerology corresponds to one subcarrier spacing in the frequency domain.
  • different numerology can be defined.
  • the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed as an application program simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are increasing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of the uplink data rate.
  • 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and an instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
  • mMTC massive machine type computer
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events. Certain application programs may require special network settings. In the case of VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
  • Another application example in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver is looking through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
  • wireless modules enable communication between vehicles, exchange of information between the vehicle and supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system allows the driver to lower the risk of accidents by guiding alternative courses of action to make driving safer.
  • the next step will be a remote controlled or self-driven vehicle. It is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic abnormalities that the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles call for ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
  • Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • FIG. 1 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
  • the NG-RAN is composed of gNBs that provide a control plane (RRC) protocol termination for an NG-RA user plane (new AS sublayer/PDCP/RLC/MAC/PHY) and a user equipment (UE). do.
  • RRC control plane
  • UE user equipment
  • the gNBs are interconnected through an X n interface.
  • the gNB is also connected to the NGC through the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the neurology may be defined by subcarrier spacing and CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals is an integer N (or, It can be derived by scaling with ). Further, even if it is assumed that a very low subcarrier spacing is not used at a very high carrier frequency, the neurology to be used can be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a number of OFDM neurology supported in the NR system may be defined as shown in Table 1.
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth (wider carrier bandwidth) is supported, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 2 below. Further, FR2 may mean a millimeter wave (mmW).
  • mmW millimeter wave
  • Downlink and uplink transmission It is composed of a radio frame having a section of.
  • each radio frame It consists of 10 subframes having a section of.
  • FIG. 2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
  • the slots are within a subframe Are numbered in increasing order of, within the radio frame Are numbered in increasing order.
  • One slot is Consisting of consecutive OFDM symbols of, Is determined according to the used neurology and slot configuration. Slot in subframe Start of OFDM symbol in the same subframe It is aligned in time with the beginning of.
  • Table 3 shows the number of OFDM symbols per slot in a normal CP ( ), the number of slots per radio frame ( ), the number of slots per subframe ( ), and Table 3 shows the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in an extended CP.
  • 3 shows an example of a frame structure in an NR system. 3 is merely for convenience of description and does not limit the scope of the present invention.
  • 1 subframe may include 4 slots.
  • a mini-slot may be composed of 2, 4 or 7 symbols, or may be composed of more or fewer symbols.
  • an antenna port In relation to the physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined such that a channel carrying a symbol on the antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location) relationship.
  • the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG. 4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid on the frequency domain It is composed of subcarriers, and one subframe Although it is exemplarily described as consisting of OFDM symbols, it is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers and Is described by the OFDM symbols. From here, to be. remind Denotes a maximum transmission bandwidth, which may vary between uplink and downlink as well as neurology.
  • the neurology And one resource grid may be configured for each antenna port p.
  • FIG. 5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • each element of the resource grid for the antenna port p is referred to as a resource element, and an index pair Is uniquely identified by From here, Is the index in the frequency domain, Refers to the position of a symbol within a subframe.
  • an index pair Is used. From here, to be.
  • antenna port p Is a complex value Corresponds to. If there is no risk of confusion or if a specific antenna port or neurology is not specified, the indices p and Can be dropped, resulting in a complex value or Can be
  • the physical resource block (physical resource block) in the frequency domain It is defined as consecutive subcarriers.
  • Point A serves as a common reference point of the resource block grid and can be obtained as follows.
  • -OffsetToPointA for the PCell downlink indicates the frequency offset between the lowest subcarrier of the lowest resource block and point A of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection, and a 15 kHz subcarrier spacing for FR1 It is expressed in resource block units assuming a 60 kHz subcarrier spacing for FR2;
  • -absoluteFrequencyPointA represents the frequency-position of point A expressed as in the absolute radio-frequency channel number (ARFCN).
  • Common resource blocks set the subcarrier interval Numbered from 0 to the top in the frequency domain for.
  • Subcarrier spacing setting The center of subcarrier 0 of the common resource block 0 for is coincided with'point A'.
  • the resource element (k,l) for may be given as in Equation 1 below.
  • Is It can be defined relative to point A so that it corresponds to a subcarrier centered on point A.
  • Physical resource blocks are from 0 in the bandwidth part (BWP) Numbered to, Is the number of the BWP.
  • Physical resource block in BWP i And common resource block The relationship between may be given by Equation 2 below.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB is composed of PSS, SSS and PBCH.
  • the SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol. There are 3 DMRS REs for each RB, and 3 data REs exist between the DMRS REs.
  • DMRS demodulation reference signal
  • Cell search refers to a process in which a UE acquires time/frequency synchronization of a cell and detects a cell identifier (eg, Physical layer Cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as shown in Table 5 below.
  • cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs, and the cell ID may be defined by Equation 3.
  • NcellID represents a cell ID (eg, PCID).
  • N(1)ID represents a cell ID group and is provided/acquired through SSS.
  • N(2)ID represents the cell ID in the cell ID group and is provided/acquired through PSS.
  • the PSS sequence dPSS(n) may be defined to satisfy Equation 4.
  • the SSS sequence dSSS(n) may be defined to satisfy Equation 5.
  • the SSB is transmitted periodically according to the SSB period.
  • the SSB basic period assumed by the UE during initial cell search is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (eg, base station).
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains at most two SSBs.
  • the temporal position of the SSB candidate within the SS burst set may be defined as follows according to the SCS.
  • the temporal position of the SSB candidate is indexed from 0 to L-1 in the temporal order within the SSB burst set (ie, half-frame) (SSB index).
  • -Case A-15 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case B-30 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0.
  • n 0, 1.
  • -Case C-30 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • -Case E-240 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the UE can acquire DL synchronization by detecting the SSB.
  • the terminal may identify the structure of the SSB burst set based on the detected SSB index, and accordingly, may detect a symbol/slot/half-frame boundary.
  • the number of the frame/half-frame to which the detected SSB belongs can be identified using SFN information and half-frame indication information.
  • the UE may obtain 10-bit SFN (System Frame Number) information from the PBCH (s0 to s9).
  • PBCH System Frame Number
  • MIB Master Information Block
  • PBCH TB Transport Block
  • the terminal may acquire 1-bit half-frame indication information (c0).
  • the half-frame indication information may be implicitly signaled using PBCH DMRS.
  • the UE may acquire an SSB index based on the DMRS sequence and PBCH payload.
  • SSB candidates are indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame).
  • L 4 out of 3 bits that can be indicated by using 8 PBCH DMRS sequences, the SSB index is indicated and the remaining 1 bit may be used for half-frame indication (b2).
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the UE receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station to synchronize with the base station and obtain information such as cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check a downlink channel state.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. It can be done (S602).
  • a physical downlink control channel (PDCCH)
  • a physical downlink shared channel (PDSCH)
  • the terminal may perform a random access procedure (RACH) for the base station (S603 to S606).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message)
  • PRACH physical random access channel
  • RAR Random Access Response
  • a contention resolution procedure may be additionally performed (S606).
  • the UE receives PDCCH/PDSCH (S607) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S608) may be performed.
  • the terminal may receive downlink control information (DCI) through the PDCCH.
  • DCI includes control information such as resource allocation information for the terminal, and different formats may be applied according to the purpose of use.
  • control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc.
  • the UE may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • Table 6 shows an example of the DCI format in the NR system.
  • DCI format 0_0 is used for PUSCH scheduling in one cell.
  • DCI format 0_0 is CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI and transmitted. And, DCI format 0_1 is used to reserve a PUSCH in one cell.
  • the information included in DCI format 0_1 is transmitted after being CRC scrambled by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
  • DCI format 1_0 is used for PDSCH scheduling in one DL cell.
  • the information included in DCI format 1_0 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_1 is used for PDSCH scheduling in one cell.
  • DCI Format 1_1 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 2_1 is used to inform the PRB(s) and OFDM symbol(s) which may be assumed to be not intended for transmission by the UE.
  • DCI format 2_1 The following information included in DCI format 2_1 is CRC scrambled by INT-RNTI and transmitted.
  • preemption indication N preemption indication 1
  • the dimension size of information related to the spatial domain/frequency domain/time domain used for actual CSI reporting is less than the size of the DFT vector
  • a signaling scheme and UE/BS behavior for setting/instructing/supporting the padding scheme applied in small cases are proposed.
  • '/' may mean that all the contents separated by / are included (and) or only some of the classified contents are included (or).
  • downlink refers to communication from a base station to a terminal
  • uplink refers to communication from a terminal to a base station
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • the base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device.
  • Base station is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G).
  • BS Base station
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • 5G network
  • AI Artificial Intelligence
  • RSU road side unit
  • robot drone
  • UAV Unmanned Aerial Vehicle
  • AR Augmented Reality
  • VR Virtual Reality
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It can be replaced with terms such as robot, AI (Artificial Intelligence) module, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
  • the BM procedure includes a base station (eg, gNB, TRP, etc.) and/or a terminal (eg, UE) beam set that can be used for downlink (DL) and uplink (uplink, UL) transmission/reception.
  • a base station eg, gNB, TRP, etc.
  • a terminal eg, UE
  • L1 layer 1
  • L2 layer 2
  • -Beam measurement An operation in which the base station or the UE measures the characteristics of the received beamforming signal.
  • Tx beam transmission beam
  • Rx beam reception beam
  • -Beam sweeping An operation of covering a spatial area using a transmit and/or receive beam for a certain time interval in a predetermined manner.
  • -Beam report An operation in which the UE reports information on a beam formed signal based on beam measurement.
  • the BM procedure can be divided into (1) a DL BM procedure using a synchronization signal (SS)/physical broadcast channel (PBCH) block or a CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS).
  • each BM procedure may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
  • DL BM Downlink Beam Management
  • FIG. 10 is a diagram illustrating an example of a beam used for beam management.
  • the DL BM procedure may include (1) transmission of beamformed DL RS (reference signals) (eg, CSI-RS or SS Block (SSB)) of the base station, and (2) beam reporting of the terminal.
  • DL RS reference signals
  • SSB SS Block
  • the beam reporting may include a preferred (preferred) DL RS identifier (s) and a corresponding L1-RSRP (Reference Signal Received Power).
  • s preferred DL RS identifier
  • L1-RSRP Reference Signal Received Power
  • the DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
  • SSBRI SSB Resource Indicator
  • CRI CSI-RS Resource Indicator
  • the SSB beam and the CSI-RS beam may be used for beam management.
  • the measurement metric is L1-RSRP for each resource/block.
  • SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement.
  • SSB can be used for both Tx beam sweeping and Rx beam sweeping.
  • Rx beam sweeping using SSB may be performed while the UE changes the Rx beam for the same SSBRI over a plurality of SSB bursts.
  • one SS burst includes one or more SSBs
  • one SS burst set includes one or more SSB bursts.
  • 11 is a flowchart illustrating an example of a downlink beam management procedure.
  • the setting for the beam report using the SSB is performed during CSI/beam configuration in the RRC connected state (or RRC connected mode).
  • the terminal receives a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList including SSB resources used for BM from the base station (S910).
  • Table 7 shows an example of CSI-ResourceConfig IE, and as shown in Table A, BM configuration using SSB is not separately defined, and SSB is configured as CSI-RS resource.
  • csi-SSB-ResourceSetList parameter represents a list of SSB resources used for beam management and reporting in one resource set.
  • the SSB resource set is ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ... Can be set to ⁇ .
  • SSB index can be defined from 0 to 63.
  • the terminal receives an SSB resource from the base station based on the CSI-SSB-ResourceSetList (S920).
  • the terminal reports the best SSBRI and the corresponding L1-RSRP to the base station (beam) (S930).
  • the UE reports the best SSBRI and the corresponding L1-RSRP to the base station.
  • the UE when the UE is configured with a CSI-RS resource in the same OFDM symbol(s) as SSB (SS/PBCH Block) and'QCL-TypeD' is applicable, the UE has CSI-RS and SSB'QCL-TypeD' 'From the point of view, we can assume that it is quasi co-located.
  • SSB SS/PBCH Block
  • the QCL TypeD may mean that QCL is performed between antenna ports in terms of a spatial Rx parameter.
  • the same reception beam may be applied.
  • the UE does not expect the CSI-RS to be configured in the RE overlapping the RE of the SSB.
  • CSI-RS when a repetition parameter is set in a specific CSI-RS resource set and TRS_info is not set, the CSI-RS is used for beam management. ii) When the repetition parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
  • TRS tracking reference signal
  • Such a repetition parameter may be set only for CSI-RS resource sets linked with L1 RSRP or CSI-ReportConfig having a report of'No Report (or None)'.
  • CSI-ReportConfig in which reportQuantity is set to'cri-RSRP' or'none'
  • CSI-ResourceConfig higher layer parameter resourcesForChannelMeasurement
  • the terminal When repetition is set to'ON', it is related to the Rx beam sweeping procedure of the terminal.
  • the terminal may assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
  • at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols.
  • the UE does not expect to receive different periods in periodicityAndOffset in all CSI-RS resources in the NZP-CSI-RS-Resourceset.
  • Repetition when Repetition is set to'OFF', it is related to the Tx beam sweeping procedure of the base station.
  • repetition when repetition is set to'OFF', the UE does not assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through different Tx beams.
  • CSI-RS Channel State Information-Reference Signal
  • FIG. 12(a) shows the Rx beam determination (or refinement) procedure of the UE
  • FIG. 12(b) shows the Tx beam sweeping procedure of the base station.
  • FIG. 12(a) shows a case where the repetition parameter is set to'ON'
  • FIG. 12(b) shows a case where the repetition parameter is set to'OFF'.
  • FIG. 13 is a flowchart illustrating an example of a process of determining a reception beam by a terminal.
  • the terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1110).
  • the repetition parameter is set to'ON'.
  • the UE repeatedly receives resource(s) in the CSI-RS resource set set to repetition'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the base station (S1120).
  • the terminal determines its own Rx beam (S1130).
  • the UE omits the CSI report (S1140).
  • the reportQuantity of the CSI report config may be set to'No report (or None)'.
  • the CSI report may be omitted.
  • FIG. 14 is a flowchart illustrating an example of a transmission beam determination process of a base station.
  • the terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1210).
  • the repetition parameter is set to'OFF', and is related to the Tx beam sweeping procedure of the base station.
  • the terminal receives resources in the CSI-RS resource set set to repetition'OFF' through different Tx beams (DL spatial domain transmission filters) of the base station (S1220).
  • Tx beams DL spatial domain transmission filters
  • the terminal selects (or determines) the best beam (S1230)
  • the terminal reports the ID and related quality information (eg, L1-RSRP) for the selected beam to the base station (S1240).
  • the reportQuantity of the CSI report config may be set to'CRI + L1-RSRP'.
  • the UE reports the CRI and the L1-RSRP thereof to the base station.
  • 15 shows an example of resource allocation in time and frequency domains related to a DL BM procedure using CSI-RS.
  • the UE may receive a list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication purposes.
  • TCI transmission configuration indication
  • QCL Quadrature Co-location
  • Each TCI state can be set as one RS set.
  • Each ID of a DL RS for spatial QCL purpose (QCL Type D) in at least an RS set may refer to one of DL RS types such as SSB, P-CSI RS, SP-CSI RS, and A-CSI RS. .
  • initialization/update of the ID of the DL RS(s) in the RS set used for spatial QCL purposes may be performed through at least explicit signaling.
  • Table 8 shows an example of the TCI-State IE.
  • the TCI-State IE is associated with one or two DL reference signals (RS) corresponding quasi co-location (QCL) types.
  • RS DL reference signals
  • QCL quasi co-location
  • the bwp-Id parameter indicates the DL BWP where the RS is located
  • the cell parameter indicates the carrier where the RS is located
  • the reference signal parameter is a reference that is a source of quasi co-location for the target antenna port(s). It represents the antenna port(s) or a reference signal including it.
  • the target antenna port(s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
  • a corresponding TCI state ID may be indicated in NZP CSI-RS resource configuration information.
  • a TCI state ID may be indicated in each CORESET setting.
  • the TCI state ID may be indicated through DCI.
  • the antenna port is defined so that a channel carrying a symbol on an antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location). ) It can be said that it is in a relationship.
  • the channel characteristics are delay spread, Doppler spread, frequency/Doppler shift, average received power, and received timing/average delay) and Spatial RX parameter.
  • the Spatial Rx parameter means a spatial (receiving) channel characteristic parameter such as angle of arrival.
  • the UE may be configured as a list of up to M TCI-State configurations in the higher layer parameter PDSCH-Config in order to decode the PDSCH according to the detected PDCCH having DCI intended for the UE and a given serving cell.
  • the M depends on the UE capability.
  • Each TCI-State includes a parameter for setting a quasi co-location relationship between one or two DL reference signals and the DM-RS port of the PDSCH.
  • the Quasi co-location relationship is set with the higher layer parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
  • the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
  • the quasi co-location type corresponding to each DL RS is given by the higher layer parameter qcl-Type of QCL-Info, and can take one of the following values:
  • the corresponding NZP CSI-RS antenna ports may indicate/set that a specific TRS and a specific SSB and a QCL are provided in a QCL-Type A perspective and a QCL-Type D perspective. have.
  • the UE receiving this indication/configuration receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
  • the UE may receive an activation command by MAC CE signaling used to map up to 8 TCI states to the codepoint of the DCI field'Transmission Configuration Indication'.
  • beam reciprocity (or beam correspondence) between Tx beam and Rx beam may or may not be established according to UE implementation. If reciprocity between the Tx beam and the Rx beam is established in both the base station and the terminal, a UL beam pair may be matched through a DL beam pair. However, when the reciprocity between the Tx beam and the Rx beam is not established at either of the base station and the terminal, a UL beam pair determination process is required separately from the DL beam pair determination.
  • the base station can use the UL BM procedure to determine the DL Tx beam without requesting the terminal to report a preferred beam.
  • UL BM may be performed through beamformed UL SRS transmission, and whether to apply UL BM of the SRS resource set is set by (higher layer parameter) usage.
  • usage is set to'Beam Management (BM)', only one SRS resource may be transmitted to each of a plurality of SRS resource sets at a given time instant.
  • BM Beam Management
  • the terminal may receive one or more Sounding Reference Symbol (SRS) resource sets set by the (higher layer parameter) SRS-ResourceSet (through higher layer signaling, RRC signaling, etc.).
  • SRS Sounding Reference Symbol
  • the UE may be configured with K ⁇ 1 SRS resources (higher later parameter SRS-resource).
  • K is a natural number, and the maximum value of K is indicated by SRS_capability.
  • the UL BM procedure can be divided into a Tx beam sweeping of a terminal and an Rx beam sweeping of a base station.
  • FIG. 16 shows an example of an uplink beam management procedure using a sounding reference signal (SRS).
  • SRS sounding reference signal
  • Figure 16 (a) shows the Rx beam determination procedure of the base station
  • Figure 16 (b) shows the Tx beam sweeping procedure of the terminal.
  • 17 is a flowchart illustrating an example of an uplink beam management procedure using SRS.
  • the UE receives RRC signaling (eg, SRS-Config IE) including a usage parameter set to “beam management” from the base station (S1510).
  • RRC signaling eg, SRS-Config IE
  • Table 9 shows an example of an SRS-Config IE (Information Element), and the SRS-Config IE is used for SRS transmission configuration.
  • the SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
  • the network can trigger the transmission of the SRS resource set using the configured aperiodicSRS-ResourceTrigger (L1 DCI).
  • usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management, codebook-based or non-codebook-based transmission.
  • the usage parameter corresponds to the L1 parameter'SRS-SetUse'.
  • 'SpatialRelationInfo' is a parameter indicating the setting of the spatial relation between the reference RS and the target SRS.
  • the reference RS may be SSB, CSI-RS, or SRS corresponding to the L1 parameter'SRS-SpatialRelationInfo'.
  • the usage is set for each SRS resource set.
  • the terminal determines a Tx beam for an SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (S1520).
  • SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beam as the beam used in SSB, CSI-RS or SRS for each SRS resource.
  • SRS-SpatialRelationInfo may or may not be set for each SRS resource.
  • the terminal randomly determines a Tx beam and transmits the SRS through the determined Tx beam (S1530).
  • the UE applies the same spatial domain transmission filter (or generated from the filter) as the spatial domain Rx filter used for SSB/PBCH reception, and the corresponding SRS resource To transmit; or
  • the UE transmits the SRS resource by applying the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS; or
  • the UE transmits the SRS resource by applying the same spatial domain transmission filter used for transmission of periodic SRS.
  • the terminal may or may not receive feedback on the SRS from the base station as in the following three cases (S1540).
  • Spatial_Relation_Info When Spatial_Relation_Info is set for all SRS resources in the SRS resource set, the UE transmits the SRS through a beam indicated by the base station. For example, if Spatial_Relation_Info all indicate the same SSB, CRI, or SRI, the UE repeatedly transmits the SRS with the same beam. In this case, it corresponds to FIG. 14(a) as a use for the base station to select an Rx beam.
  • Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
  • the terminal can freely transmit while changing the SRS beam. That is, in this case, the UE sweeps the Tx beam and corresponds to FIG. 16(b).
  • Spatial_Relation_Info can be set only for some SRS resources in the SRS resource set.
  • the SRS is transmitted through the indicated beam, and for the SRS resource for which Spatial_Relation_Info is not configured, the terminal may arbitrarily apply and transmit a Tx beam.
  • FIG. 18 is a flowchart illustrating an example of a CSI-related procedure to which the method proposed in the present specification can be applied.
  • the channel state information-reference signal (CSI-RS) is time and/or frequency tracking, CSI calculation, and L1 (layer 1)-RSRP (reference signal received). power) is used for computation and mobility.
  • CSI-RS channel state information-reference signal
  • L1 layer 1-RSRP (reference signal received). power
  • a and/or B used herein may be interpreted as having the same meaning as “including at least one of A or B”.
  • the CSI computation is related to CSI acquisition (acquisition), and the L1-RSRP computation is related to beam management (BM).
  • Channel state information collectively refers to information that can indicate the quality of a radio channel (or link) formed between a terminal and an antenna port.
  • a terminal e.g., user equipment, UE transmits configuration information related to CSI to a base station (e.g., general Node B) through radio resource control (RRC) signaling. , gNB) (S1610).
  • RRC radio resource control
  • the configuration information related to the CSI is CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, CSI-RS resource related information Alternatively, it may include at least one of information related to CSI report configuration.
  • CSI-IM interference management
  • the CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
  • the CSI-IM resource set is identified by a CSI-IM resource set ID (identifier), and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • the CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set.
  • NZP non zero power
  • the CSI resource configuration related information includes a CSI-RS resource set list
  • the CSI-RS resource set list is at least one of the NZP CSI-RS resource set list, CSI-IM resource set list, or CSI-SSB resource set list It can contain one.
  • the CSI resource configuration related information may be expressed as CSI-ResourceConfig IE.
  • the CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource.
  • Each CSI-RS resource is identified by a CSI-RS resource ID.
  • parameters indicating the use of CSI-RS for each NZP CSI-RS resource set may be set.
  • Table 10 shows an example of the NZP CSI-RS resource set IE.
  • the repetition parameter is a parameter indicating whether the same beam is repeatedly transmitted, and indicates whether repetition is'ON' or'OFF' for each NZP CSI-RS resource set.
  • Tx beam may be interpreted as a spatial domain transmission filter
  • Rx beam may have the same meaning as a spatial domain reception filter
  • the UE when the repetition parameter in Table 10 is set to'OFF', the UE does not assume that NZP CSI-RS resource(s) in the resource set are transmitted in the same DL spatial domain transmission filter and the same Nrofports in all symbols.
  • the repetition parameter corresponding to the higher layer parameter corresponds to the'CSI-RS-ResourceRep' of the L1 parameter.
  • the CSI report configuration related information includes a report ConfigType parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity for reporting.
  • the time domain behavior may be periodic, aperiodic or semi-persistent.
  • the CSI report configuration related information may be expressed as CSI-ReportConfig IE, and Table 11 below shows an example of the CSI-ReportConfig IE.
  • the terminal measures CSI based on configuration information related to the CSI (S1620).
  • the CSI measurement may include (1) a CSI-RS reception process of the terminal (S1822), and (2) a process of calculating CSI through the received CSI-RS (S1624).
  • Equation 6 The sequence for the CSI-RS is generated by Equation 6 below, and the initialization value of the pseudo-random sequence C(i) is defined by Equation 7.
  • Equations 6 and 7 Represents the slot number in the radio frame, and the pseudo-random sequence generator Is initialized to Cint at the beginning of each OFDM symbol.
  • l is the OFDM symbol number in the slot
  • n ID is the same as the higher-layer parameter scramblingID.
  • RE (resource element) mapping of the CSI-RS resource is set in the time and frequency domains by the higher layer parameter CSI-RS-ResourceMapping.
  • Table 12 shows an example of CSI-RS-ResourceMapping IE.
  • density (D) represents the density of the CSI-RS resource measured in RE/port/PRB (physical resource block), and nrofPorts represents the number of antenna ports.
  • the terminal reports the measured CSI to the base station (S12030).
  • the terminal may omit the report.
  • the terminal may report to the base station.
  • the aperiodic TRS is triggered or the repetition is set.
  • CSI report is'No report','SSB Resource Indicator (SSBRI) and L1-RSRP','CSI-RS Resource Indicator (CRI) and L1- RSRP' could all be possible.
  • SSBRI SSB Resource Indicator
  • CRI CRI-RS Resource Indicator
  • the CSI report of'SSBRI and L1-RSRP' or'CRI and L1-RSRP' is defined to be transmitted, and when the repetition is'ON','No report','SSBRI and L1' -RSRP', or'CRI and L1-RSRP' may be defined to be transmitted.
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a procedure for acquiring CSI by receiving a CSI-RS and computing the received CSI-RS.
  • CM channel measurement
  • IM interference measurement
  • CSI-IM For the configuration of CSI-IM, a 4 port NZP CSI-RS RE pattern is used.
  • NR's CSI-IM-based IMR has a design similar to that of LTE's CSI-IM, and is set independently from ZP CSI-RS resources for PDSCH rate matching.
  • each port emulates an interference layer with a (preferred channel and) precoded NZP CSI-RS.
  • the base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS-based IMR.
  • the UE measures interference by assuming a channel / interference layer for each port in the resource set.
  • a number of resources are set in a set, and the base station or network indicates a subset of NZP CSI-RS resources for channel / interference measurement through DCI.
  • Each CSI resource setting'CSI-ResourceConfig' includes a configuration for an S ⁇ 1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList).
  • the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
  • S represents the number of the set CSI-RS resource set.
  • the configuration for the S ⁇ 1 CSI resource set is the SS/PBCH block (SSB) used for each CSI resource set and L1-RSRP computation including CSI-RS resources (composed of NZP CSI-RS or CSI-IM) ) Includes resource.
  • SSB SS/PBCH block
  • Each CSI resource setting is located in the DL BWP (bandwidth part) identified by the higher layer parameter bwp-id.
  • the time domain behavior of the CSI-RS resource within the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the higher layer parameter resourceType, and may be set to aperiodic, periodic or semi-persistent.
  • the number of set CSI-RS resource sets (S) is limited to '1'.
  • the set periodicity and slot offset are given in the numerology of the associated DL BWP, as given by the bwp-id.
  • the same time domain behavior is configured for CSI-ResourceConfig.
  • the same time domain behavior is configured for CSI-ResourceConfig.
  • CM channel measurement
  • IM interference measurement
  • a channel measurement resource may be an NZP CSI-RS for CSI acquisition
  • an interference measurement resource may be a CSI-IM and an NZP CSI-RS for IM.
  • CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
  • NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-users.
  • the UE may assume that CSI-RS resource(s) for channel measurement and CSI-IM / NZP CSI-RS resource(s) for interference measurement configured for one CSI reporting are'QCL-TypeD' for each resource. .
  • resource setting can mean a list of resource sets.
  • each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is one or more CSI-ReportConfig and each CSI-ReportConfig is linked to a periodic, semi-persistent or aperiodic resource setting.
  • One reporting setting can be connected with up to three resource settings.
  • the resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference)
  • the setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM-based interference measurement
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
  • each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
  • the resource setting is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM. It is used for interference measurement.
  • each CSI-RS resource for channel measurement is associated with each CSI-IM resource and resource according to the order of CSI-RS resources and CSI-IM resources within the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
  • the UE when interference measurement is performed in the NZP CSI-RS, the UE does not expect to be set as one or more NZP CSI-RS resources in the associated resource set within the resource setting for channel measurement.
  • the UE in which the higher layer parameter nzp-CSI-RS-ResourcesForInterference is configured does not expect 18 or more NZP CSI-RS ports to be configured in the NZP CSI-RS resource set.
  • the UE assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to an interfering transport layer.
  • time and frequency resources that can be used by the UE are controlled by the base station.
  • Channel state information is a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CRI), an SS/PBCH block resource indicator (SSBRI), a layer It may include at least one of indicator (LI), rank indicator (RI), or L1-RSRP.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH block resource indicator
  • LI indicator
  • RI rank indicator
  • L1-RSRP L1-RSRP
  • the terminal For CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, the terminal is N ⁇ 1 CSI-ReportConfig reporting setting, M ⁇ 1 CSI-ResourceConfig resource setting and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -Set by higher layer (provided by TriggerStateList).
  • each trigger state includes a channel and an associated CSI-ReportConfigs list indicating selectively interference resource set IDs.
  • each trigger state includes one associated CSI-ReportConfig.
  • time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
  • Periodic CSI reporting is performed on short PUCCH and long PUCCH.
  • Periodic CSI reporting period (periodicity) and slot offset (slot offset) may be set to RRC, refer to CSI-ReportConfig IE.
  • SP CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
  • a period and a slot offset are set to RRC, and CSI reporting is activated/deactivated by a separate MAC CE.
  • the periodicity of SP CSI reporting is set to RRC, but the slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
  • the initial CSI reporting timing follows a PUSCH time domain allocation value indicated by DCI, and the subsequent CSI reporting timing follows a period set by RRC.
  • SP-CSI C-RNTI For SP CSI reporting on PUSCH, a separate RNTI (SP-CSI C-RNTI) is used.
  • DCI format 0_1 includes a CSI request field, and may activate/deactivation a specific configured SP-CSI trigger state.
  • SP CSI reporting has the same or similar activation/deactivation as the mechanism having data transmission on the SPS PUSCH.
  • aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
  • AP CSI-RS timing is set by RRC.
  • the timing for AP CSI reporting is dynamically controlled by DCI.
  • a method of dividing and reporting CSI in a plurality of reporting instances that were applied to PUCCH-based CSI reporting in LTE (eg, transmission in the order of RI, WB PMI/CQI, and SB PMI/CQI) is not applied.
  • the NR limits the setting of a specific CSI report in the short/long PUCCH, and a CSI omission rule is defined.
  • the PUSCH symbol/slot location is dynamically indicated by DCI.
  • candidate slot offsets are set by RRC.
  • a slot offset (Y) is set for each reporting setting.
  • slot offset K2 is set separately.
  • Two CSI latency classes (low latency class, high latency class) are defined in terms of CSI computation complexity.
  • low latency CSI it is a WB CSI including a maximum of 4 ports Type-I codebook or a maximum of 4-ports non-PMI feedback CSI.
  • High latency CSI refers to CSI other than low latency CSI.
  • (Z, Z') is defined in the unit of OFDM symbols.
  • Z represents the minimum CSI processing time until CSI reporting is performed after receiving the Aperiodic CSI triggering DCI.
  • Z' represents the minimum CSI processing time until CSI reporting is performed after receiving the CSI-RS for the channel/interference.
  • the UE reports the number of CSIs that can be simultaneously calculated.
  • Table 13 below shows the CSI reporting configuration defined in TS38.214.
  • Table 14 below is information related to activation/deactivation/trigger by MAC-CE related to Semi-Persistent/Aperiodic CSI reporting defined in TS38.321.
  • the DMRS is characterized in that it is transmitted only when necessary to enhance network energy efficiency and to ensure forward compatibility.
  • the time domain density of the DMRS may vary according to the speed or mobility of the terminal. That is, the density of the DMRS may increase in the time domain in order to track the rapid change of the radio channel in NR.
  • DL refers to signal transmission (or communication) from a base station to a terminal.
  • the terminal When receiving the PDSCH scheduled according to DCI format 1_0, or when receiving the PDSCH before setting any dedicated upper layer among dmrs-AdditionalPosition, maxLength and dmrs-Type parameters, the terminal has a PDSCH mapping type B. In any symbol carrying the DM-RS except for the PDSCH with the allocation duration of 2 symbols, no PDSCH exists, and a single symbol of configuration type 1 on the DM-RS port 1000 front-loaded DM It is assumed that -RS is transmitted, and all remaining orthogonal antenna ports are not related to transmission of PDSCH to other terminals. Additionally,
  • the front-loaded DM-RS symbol is 1st of the PDSCH allocation duration interval.
  • the UE assumes that one additional single symbol DM-RS exists in the 5th or 6th symbol. Otherwise, the UE assumes that there is no additional DM-RS symbol.
  • the terminal assumes that there is no additional DM-RS,
  • the UE assumes that there is no additional DM-RS, and the UE assumes that the PDSCH exists in a symbol carrying the DM-RS.
  • the terminal may be set with the higher layer parameter dmrs-Type, and the configured DM-RS configuration type is used to receive the PDSCH.
  • the terminal may be set to the maximum number of front-loaded DM-RS symbols for the PDSCH by the upper layer parameter maxLength given by DMRS-DownlinkConfig.
  • the terminal may schedule the number of DM-RS ports by the antenna port index of DCI format 1_1.
  • FIG. 19 shows an example of a DMRS configuration type.
  • FIG. 19A shows DMRS configuration type 1
  • FIG. 19B shows DMRS configuration type 2.
  • the DMRS configuration type of FIG. 19 is set by the dmrs-Type parameter in the DMRS-DownlinkConfig IE of Table 15.
  • the DMRS configuration type 1 has a higher RS density in the frequency domain and supports up to 4 (8) ports for single (double)-symbol DMRS.
  • DMRS configuration type 1 supports length 2 F-CDM and FDM for single-symbol DMRS, and length 2 F/T-CDM and FDM for double-symbol DMRS.
  • DMRS configuration type 2 supports more DMRS antenna ports, and supports up to 6 (12) ports for single (double)-symbol DMRS.
  • Table 15 is a table showing an example of the DMRS-DownlinkConfig IE used to configure the downlink DMRS for the PDSCH.
  • the dmrs-AdditionalPosition parameter indicates the position of the additional DM-RS in the DL, and if the parameter does not exist, the terminal applies the pos2 value.
  • the Dmrs-Type parameter indicates selection of the DMRS type to be used for the DL, and if the parameter does not exist, the UE uses DMRS type 1.
  • the Max-Length parameter represents the maximum number of OFDM symbols for DL front loaded DMRS, and len1 corresponds to a value of 1.
  • the PhaseTrackingRS parameter sets the DL PTRS, and if the parameter does not exist or is canceled, it is assumed that the UE does not have a DL PTRS.
  • the antenna port mapping is allocated with indexes of ⁇ 2, 9, 10, 11 or 30 ⁇ , or when the terminal is scheduled with two codewords,
  • the UE may assume that all of the remaining orthogonal antenna ports are not related to transmission of the PDSCH to other UEs.
  • the UE may assume that all of the remaining orthogonal antenna ports are not related to transmission of the PDSCH to other UEs.
  • 20 is a flowchart illustrating an example of a DL DMRS procedure.
  • the base station transmits the DMRS configuration (configuration) information to the terminal (S110).
  • the DMRS configuration information may refer to a DMRS-DownlinkConfig IE.
  • the DMRS-DownlinkConfig IE may include a dmrs-Type parameter, a dmrs-AdditionalPosition parameter, a maxLength parameter, a phaseTrackingRS parameter, and the like.
  • the dmrs-Type parameter is a parameter for selecting a DMRS type to be used for DL.
  • the DMRS can be divided into two configuration types: (1) DMRS configuration type 1 and (2) DMRS configuration type 2.
  • DMRS configuration type 1 is a type having a higher RS density in the frequency domain
  • DMRS configuration type 2 is a type having more DMRS antenna ports.
  • the dmrs-AdditionalPosition parameter is a parameter indicating the position of an additional DMRS in the DL.
  • the first position of the front-loaded DMRS is determined according to the PDSCH mapping type (type A or type B), and an additional DMRS may be configured to support a high speed terminal.
  • the front-loaded DMRS occupies 1 or 2 consecutive OFDM symbols, and is indicated by RRC signaling and downlink control information (DCI).
  • the maxLength parameter is a parameter indicating the maximum number of OFDM symbols for DL front-loaded DMRS.
  • the phaseTrackingRS parameter is a parameter for configuring DL PTRS.
  • the base station generates a sequence used for DMRS (S120).
  • the sequence for the DMRS is generated according to Equation 8 below.
  • the pseudo-random sequence Is defined in 3gpp TS 38.211 5.2.1. In other words, May be a length-31 gold sequence using two m-sequences.
  • the pseudo-random sequence generator is initialized by Equation 9 below.
  • Is the number of OFDM symbols in the slot Is the slot number in the frame.
  • Is if provided, and the PDSCH is scheduled by PDCCH using DCI format 1_1 with CRC scrambled by C-RNTI, MCS-C-RNTI or CS-RNTI, higher-layer parameter in DMRS-DownlinkConfig IE They are given by scramblingID0 and scramblingID1, respectively.
  • the base station maps the generated sequence to a resource element (S130).
  • the resource element may mean including at least one of time, frequency, antenna port, or code.
  • the base station transmits the DMRS to the terminal on the resource element (S140).
  • the terminal receives the PDSCH using the received DMRS.
  • a DMRS-related operation for PUSCH reception will be described.
  • UL refers to signal transmission (or communication) from a terminal to a base station.
  • the UL DMRS-related operation is similar to the Salpin DL DMRS-related operation, and names of parameters related to DL may be replaced with names of parameters related to UL.
  • the DMRS-DownlinkConfig IE may be replaced with a DMRS-UplinkConfig IE
  • the PDSCH mapping type may be replaced with a PUSCH mapping type
  • the PDSCH may be replaced with a PUSCH.
  • the base station may be replaced by a terminal and the terminal may be replaced by a base station.
  • Sequence generation for UL DMRS may be defined differently depending on whether transform precoding is enabled.
  • the DMRS uses a PN sequence when CP-OFDM (cyclic prefix orthogonal frequency division multiplexing) is used (or when transform precoding is not enabled), and a Discrete Fourier Transform-spread-spread-DFT-s-OFDM OFDM) (when transform precoding is enabled), a ZC sequence having a length of 30 or more is used.
  • Table 16 is a table showing an example of a DMRS-UplinkConfig IE used to configure an uplink DMRS for PUSCH.
  • the dmrs-AdditionalPosition parameter indicates the position of the additional DM-RS in the UL, and if the parameter does not exist, the terminal applies the pos2 value.
  • the Dmrs-Type parameter indicates selection of a DMRS type to be used for UL, and if the corresponding parameter does not exist, the UE uses DMRS type 1.
  • the Max-Length parameter represents the maximum number of OFDM symbols for UL front loaded DMRS, and len1 corresponds to a value of 1.
  • the PhaseTrackingRS parameter configures UL PTRS.
  • the tranformPrecodingdisabled parameter indicates DMRS related parameters for Cyclic Prefix OFDM
  • the transformPrecodingEnabled parameter indicates DMRS related parameters for DFT-s-OFDM (Transform Precoding).
  • the terminal is a DM-RS In port 0, a single symbol front-loaded DM-RS of configuration type 1 is used, and the remaining REs not used for the DM-RS in the symbols are allocated OFDM symbols of 2 or less with disabled transform precoding It is not used for any PUSCH transmission except for a PUSCH having a duration period.
  • the additional DM-RS may be transmitted according to a scheduling type and a PUSCH duration period in consideration of whether frequency hopping is enabled.
  • the terminal assumes that dmrs-AdditionalPosition is equal to'pos2' and that up to two additional DM-RSs can be transmitted according to the PUSCH duration.
  • the terminal assumes that dmrs-AdditionalPosition is equal to'pos1' and that at most one additional DM-RS can be transmitted according to the PUSCH duration.
  • the terminal of the configuration type provided by the upper layer parameter dmrs-Type of configuredGrantConfig on DM-RS port 0 A single symbol front-loaded DM-RS is used, and the remaining REs that are not used for the DM-RS in the symbols are PUSCH having an allocation duration interval of two or less OFDM symbols with disabled transform precoding. It is not used for any PUSCH transmission except for, and an additional DM-RS having dmrs-AdditionalPosition from configuredGrantConfig may be transmitted based on a scheduling type and a PUSCH duration in consideration of whether frequency hopping is enabled.
  • the transmitted PUSCH is scheduled according to DCI format 0_1 with CRC scrambled by C-RNTI, CS-RNTI or MCS-RNTI or corresponds to a configured grant,
  • the terminal may be set as the higher layer parameter dmrs-Type in DMRS-UplinkConfig, and the configured DM-RS configuration type is used for PUSCH transmission.
  • the terminal may be set to the maximum number of front-loaded DM-RS symbols for the PUSCH by the upper layer parameter maxLength in the DMRS-UplinkConfig.
  • the UE transmitting the PUSCH is set to the upper layer parameter phaseTrackingRS in the DMRS-UplinkConfig, the UE may assume that the following settings do not occur simultaneously for the transmitted PUSCH.
  • any of 4-7 or 6-11 DM-RS ports are scheduled for each UE, and PT-RS is transmitted from the UE.
  • the UE For PUSCH scheduled according to DCI format 0_1, by activation DCI format 0_1 with CRC scrambled by CS-RNTI or by setting grant type 1, the UE does not use a DM-RS CDM group for data transmission. I assume it does.
  • phase noise causes common phase error (CPE) and inter-carrier interference (ICI) in the frequency domain.
  • CPE common phase error
  • ICI inter-carrier interference
  • PTRS was defined in NR to estimate and compensate for this CPE.
  • 21 is a flowchart illustrating an example of a DL PTRS procedure.
  • the base station transmits PTRS configuration information to the terminal (S110).
  • the PTRS configuration information may refer to PTRS-DownlinkConfig IE.
  • the PTRS-DownlinkConfig IE may include a frequencyDensity parameter, a timeDensity parameter, an epre-Ratio parameter, a resourceElementOffset parameter, and the like.
  • the frequencyDensity parameter is a parameter representing the presence and frequency density of the DL PTRS as a function of the scheduled BW.
  • the timeDensity parameter is a parameter representing the existence and time density of DL PTRS as a function of a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the epre-Ratio parameter is a parameter indicating an energy per resource element (EPRE) between PTRS and PDSCH.
  • EPRE energy per resource element
  • the base station generates a sequence used for PTRS (S120).
  • the sequence for the PTRS is generated using the DMRS sequence of the same subcarrier as shown in Equation 4.1C-3 below.
  • Sequence generation for PTRS may be defined differently depending on whether transform precoding is enabled, and Equation 10 below shows an example of a case in which transform precoding is disabled.
  • the PTRS sequence uses the DMRS sequence, but more specifically, the PTRS sequence in subcarrier k is the same as the DMRS sequence in subcarrier k.
  • the base station maps the generated sequence to a resource element (S130).
  • the resource element may mean including at least one of time, frequency, antenna port, or code.
  • the position of the PTRS in the time domain is mapped at a specific symbol interval starting from the start symbol of PDSCH allocation. If a DMRS symbol exists, mapping is performed from a symbol following the corresponding DMRS symbol.
  • the specific symbol interval may be 1, 2 or 4 symbols.
  • the frequency position of the PTRS is determined by the frequency position of the associated DMRS port and the higher layer parameter UL-PTRS-RE-offset.
  • the UL-PTRS-RE-offset is included in the PTRS configuration, and indicates a subcarrier offset for UL PTRS for CP-OFDM.
  • the PTRS port is associated with the DMRS port of the lowest index among the scheduled DMRS ports.
  • the base station configures which DMRS port is associated with the PTRS port through UL DCI.
  • the base station transmits the PTRS to the terminal on the resource element (S140).
  • the terminal compensates for the phase noise using the received PTRS.
  • the UL PTRS-related operation is similar to the Salpin UL PTRS-related operation, and names of parameters related to DL may be replaced with names of parameters related to UL.
  • the PTRS-DownlinkConfig IE may be replaced with a PTRS-UplinkConfig IE, and in a DL PTRS-related operation, the base station may be replaced with the terminal, and the terminal may be replaced with the base station.
  • sequence generation for PTRS may be defined differently depending on whether transform precoding is enabled.
  • TRS is defined in the NR for the function of the cell-specific reference singal (CRS) used for fine time and frequency tracking in the LTE system.
  • CRS cell-specific reference singal
  • the TRS defined in NR is not always-on, unlike the CRS of the LTE system.
  • the UE can estimate timing offset, delay spread, frequency offset, and Doppler spread.
  • the TRS is supported in both below 6GHz (FR1) and above 6GHz (FR2).
  • Periodic TRS is mandatory in both FR1 and FR2, and aperiodic TRS is optional in both FR1 and FR2.
  • FIG. 22 is a flowchart illustrating an example of a TRS procedure.
  • the terminal receives the NZP-CSI-RS-ResourceSet IE (information element) including the trs-Info parameter from the base station (S110).
  • the trs-Info parameter is a parameter indicating whether the antenna ports for all NZP-CSI-RS resources in the CSI-RS resource set are the same, and is set in units of NZP-CSI-RS resource set.
  • CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' are set as 1-port CSI-RS resources.
  • Periodic CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' have the same period, bandwidth, and subcarrier location.
  • the aperiodic CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' have the same bandwidth and the same number of CSI-RS resources having the same RB location.
  • the QCL reference of the TRS must be associated with the periodic TRS, and the QCL types are'QCL-Type-A' and'QCL-TypeD'.
  • the terminal performs time and/or frequency tracking through CSI-RS resources in the CSI-RS resource set in which the trs-Info is set to “ON” (S120).
  • FIG. 23 is a flowchart illustrating an example of a downlink transmission/reception operation to which the method proposed in this specification can be applied.
  • the base station schedules downlink transmission such as a frequency/time resource, a transport layer, a downlink precoder, and an MCS (S1710).
  • the base station may determine a beam for PDSCH transmission to the terminal through the above-described operations.
  • the terminal receives downlink control information (DCI: Downlink Control Information) for downlink scheduling (ie, including scheduling information of PDSCH) from the base station on the PDCCH (S1720).
  • DCI Downlink Control Information
  • DCI format 1_0 or 1_1 may be used for downlink scheduling, and in particular, DCI format 1_1 includes the following information: DCI format identifier (Identifier for DCI formats), bandwidth part indicator (Bandwidth part indicator), frequency domain Resource allocation (Frequency domain resource assignment), time domain resource assignment (Time domain resource assignment), PRB bundling size indicator (PRB bundling size indicator), rate matching indicator (Rate matching indicator), ZP CSI-RS trigger (ZP CSI-RS trigger), antenna port(s) (Antenna port(s)), transmission configuration indication (TCI), SRS request, Demodulation Reference Signal (DMRS) sequence initialization (DMRS sequence initialization)
  • DCI format identifier Identifier for DCI formats
  • bandwidth part indicator Bandwidth part indicator
  • frequency domain Resource allocation Frequency domain resource assignment
  • time domain resource assignment time domain resource assignment
  • PRB bundling size indicator PRB bundling size indicator
  • rate matching indicator Rate matching indicator
  • ZP CSI-RS trigger ZP CSI-RS
  • the number of DMRS ports may be scheduled according to each state indicated in the antenna port(s) field, and also single-user (SU)/multi-user (MU) transmission Scheduling is possible.
  • SU single-user
  • MU multi-user
  • the TCI field is composed of 3 bits, and the QCL for the DMRS is dynamically indicated by indicating a maximum of 8 TCI states according to the value of the TCI field.
  • the terminal receives downlink data from the base station on the PDSCH (S1730).
  • the PDSCH is decoded according to an indication by the corresponding DCI.
  • the UE when the UE receives the PDSCH scheduled according to DCI format 1, the UE may set the DMRS configuration type according to the higher layer parameter'dmrs-Type', and the DMRS type is used to receive the PDSCH.
  • the terminal may set the maximum number of front-loaded DMRA symbols for the PDSCH by the higher layer parameter'maxLength'.
  • DMRS configuration type 1 when a single codeword is scheduled in the terminal and an antenna port mapped with an index of ⁇ 2, 9, 10, 11 or 30 ⁇ is specified, or when two codewords are scheduled in the terminal, the terminal Assumes that all remaining orthogonal antenna ports are not associated with PDSCH transmission to another terminal.
  • a precoding unit (precoding granularity) P′ is a consecutive resource block in the frequency domain.
  • P' may correspond to one of ⁇ 2, 4, broadband ⁇ .
  • the terminal does not expect to be scheduled with non-contiguous PRBs, and the terminal can assume that the same precoding is applied to the allocated resources.
  • a precoding resource block group PRG is divided into P'consecutive PRBs.
  • the actual number of consecutive PRBs in each PRG may be one or more.
  • the UE may assume that the same precoding is applied to consecutive downlink PRBs in the PRG.
  • the UE In order for the UE to determine the modulation order, target code rate, and transport block size in the PDSCH, the UE first reads a 5-bit MCD field in the DCI, and modulates the order and target code. Determine the rate. Then, the redundancy version field in the DCI is read, and the redundancy version is determined. Then, the UE determines the transport block size using the number of layers and the total number of allocated PRBs before rate matching.
  • 24 is a flowchart illustrating an example of an uplink transmission/reception operation to which the method proposed in the present specification can be applied.
  • the base station schedules uplink transmission such as a frequency/time resource, a transport layer, an uplink precoder, and MCS (S1810).
  • the base station may determine a beam for PUSCH transmission by the terminal through the above-described operations.
  • the UE receives the DCI for uplink scheduling (ie, including scheduling information of the PUSCH) from the base station on the PDCCH (S1820).
  • DCI format 0_0 or 0_1 may be used for uplink scheduling, and in particular, DCI format 0_1 includes the following information: DCI format identifier (Identifier for DCI formats), UL/SUL (Supplementary uplink) indicator (UL/ SUL indicator), bandwidth part indicator, frequency domain resource assignment, time domain resource assignment, frequency hopping flag, modulation and coding scheme (MCS) : Modulation and coding scheme), SRS resource indicator (SRI), precoding information and number of layers, antenna port(s) (Antenna port(s)), SRS request (SRS request), DMRS sequence initialization, UL-SCH (Uplink Shared Channel) indicator (UL-SCH indicator)
  • SRS resources set in the SRS resource set associated with the upper layer parameter'usage' may be indicated by the SRS resource indicator field.
  • SRS resource indicator field may indicate SRS resource indicator field.
  • patialRelationInfo' can be set for each SRS resource, and its value can be one of ⁇ CRI, SSB, SRI ⁇ .
  • the terminal transmits uplink data to the base station on the PUSCH (S1830).
  • the UE When the UE detects a PDCCH including DCI format 0_0 or 0_1, it transmits a corresponding PUSCH according to an indication by the corresponding DCI.
  • codebook-based transmission For PUSCH transmission, two transmission schemes are supported: codebook-based transmission and non-codebook-based transmission:
  • the PUSCH may be scheduled in DCI format 0_0, DCI format 0_1, or semi-statically.
  • the UE transmits PUSCH based on SRI, Transmit Precoding Matrix Indicator (TPMI) and transmission rank from DCI, as given by the SRS resource indicator field and the Precoding information and number of layers field.
  • TPMI Transmit Precoding Matrix Indicator
  • the TPMI is used to indicate the precoder to be applied across the antenna port, and corresponds to the SRS resource selected by the SRI when multiple SRS resources are configured.
  • the TPMI is used to indicate a precoder to be applied across the antenna port, and corresponds to the single SRS resource.
  • a transmission precoder is selected from an uplink codebook having the same number of antenna ports as the upper layer parameter'nrofSRS-Ports'.
  • the terminal is configured with at least one SRS resource.
  • the SRI indicated in slot n is associated with the most recent transmission of the SRS resource identified by the SRI, where the SRS resource precedes the PDCCH carrying the SRI (ie, slot n).
  • the PUSCH may be scheduled in DCI format 0_0, DCI format 0_1, or semi-statically.
  • the UE can determine the PUSCH precoder and transmission rank based on the wideband SRI, where the SRI is given by the SRS resource indicator in the DCI or by the upper layer parameter'srs-ResourceIndicator'. Is given.
  • the UE uses one or multiple SRS resources for SRS transmission, where the number of SRS resources may be set for simultaneous transmission within the same RB based on UE capability. Only one SRS port is configured for each SRS resource.
  • Only one SRS resource may be set to the upper layer parameter'usage' set to'nonCodebook'.
  • the maximum number of SRS resources that can be configured for non-codebook-based uplink transmission is 4.
  • the SRI indicated in slot n is associated with the most recent transmission of the SRS resource identified by the SRI, where the SRS transmission precedes the PDCCH carrying the SRI (ie, slot n).
  • the size of the DFT vector may be larger than the dimension size of information related to the spatial domain (SD)/frequency domain (FD)/time domain (TD) used for actual CSI reporting.
  • SD spatial domain
  • FD frequency domain
  • TD time domain
  • the size of the actual DFT vector is 14, and according to the above rule (product of powers of 2, 3 and/or 5), a codebook must be constructed using a DFT vector of length 15. Due to this, ambiguity due to dimension mismatch occurs. In order to resolve such ambiguity, this specification is applied when the size of the DFT vector is larger than the dimension size of information related to the spatial domain (SD)/frequency domain (FD)/time domain (TD) used for actual CSI reporting.
  • SD spatial domain
  • FD frequency domain
  • TD time domain
  • a signaling scheme and a terminal/base station operation (UE/BS behavior) for setting (or indicating or supporting) a padding scheme are proposed.
  • Discrete Fourier Transform may be replaced (or changed) applied to Discrete Cosine Transform (DCT).
  • N is the number of SB CQI subbands.
  • N SB is the number of CQI subbands.
  • Alt1 N 3 is the smallest multiple of 2, 3 or 5 with ⁇ N SB ⁇ R.
  • N 3 is a multiple of 2, 3, or 5. Segment into 2 parts with overlapping between 2 parts. No padding is required to fit the DFT size to a multiple of 2, 3, or 5.
  • the dimension of information eg, 2*N1*N2 or N3 related to spatial domain (SD)/frequency domain (FD)/time domain (TD) used for CSI reporting
  • SD spatial domain
  • FD frequency domain
  • TD time domain
  • Y the size of the DFT vector used for the codebook configuration
  • TD time domain
  • CSI information for (YX) is reported by the base station and the terminal in advance or a rule set (or applied) by the base station or the terminal.
  • a codebook can be constructed using a padding technique based on one method.
  • N1, N2 and N3 are as follows.
  • N1 number of antenna ports in the first spatial domain (# of antenna port in 1st spatial domain (e.g., horizontal domain))
  • N2 number of antenna ports in 2nd spatial domain (e.g., vertical domain)
  • N3 Number of frequency domain units in Rel-16 Type II CSI (# of frequency domain unit in Rel-16 Type II CSI)
  • the first embodiment can also be applied to SD/TD, but hereinafter, for convenience of explanation, a description will be made focusing on a codebook related to FD.
  • the sub-band size is defined as shown in Table 17 below according to the number of physical resource blocks (PRBs) constituting the set bandwidth part (BWP).
  • PRBs physical resource blocks
  • BWP set bandwidth part
  • N3 is the smallest multiple of 2, 3 or 5 greater than or equal to NSB*R
  • Table 18 the actual N SB *R and the DFT based on Table 18
  • the maximum difference from size has a value of 1 or 2.
  • N SB is the number of SBs
  • R is a scaling parameter used to determine the frequency unit size
  • Table 18 shows the possible DFT lengths (N SB *R>13).
  • FIG. 25(a) it is a method of considering padding before the set first CSI reporting SB, in the case of FIG.
  • padding is zero-padding
  • CSI measured based on CSI-RS is interpolated (eg, in the case of FIG. 25(c), it can be configured by interpolating CSI of SB7 and SB8) or CSI calculated by extrapolation, etc. It refers to a method of padding information to the corresponding frequency position.
  • zero-padding is applied as shown in FIG. 25(b), the same effect as oversampling may be obtained.
  • the terminal and the base station may perform codebook configuration and decoding using a padding technique based on a rule set (or applied) by the base station or a rule set by the base station or reported by the base station. .
  • the padding portion may occur in two places as described above, so that more implementation patterns may be implemented.
  • FIG. 26(a) a method of considering padding for two PMI values before the set first CSI reporting SB
  • FIG. 26(b) a method for considering padding for two PMI values after the set last CSI reporting SB
  • Fig. 26(c) a method of performing padding for one PMI value, respectively, before and after the set SB.
  • FIGS. 26(d) and 26(e) show two PMI values in the middle of the set SB.
  • the embodiments of FIGS. 26(d) and 26(e) show a pattern in which the positions of padding are uniformly distributed.
  • the position of the padding may be determined by Equation 11 below.
  • Equation 12 Equation 12
  • Equation 13 Equation 13
  • Equation 14 Equation 14
  • Patterns represented by the above examples may be promised in advance, and in the case of zero-padding, when the reporting SB indicated by RRC (signaling) is continuous, its performance may be good (due to the effect of oversampling). If the reporting SB indicated by RRC (signaling) is discontinuous, it may be promised to use a padding scheme that uses an interpolation/extrapolation method instead of zero-padding. That is, the padding scheme may be applied differently by the information of the reporting SB indicated by RRC (signaling).
  • the terminal may report information on the most preferred pattern (eg, bit-map) and/or any padding scheme (zero-padding or extrapolation-based or interpolation-based) information to the base station among the patterns.
  • the information on the pattern may be included in Part 2 CSI.
  • the base station transmits the configuration information related to the padding pattern and/or padding scheme to the terminal to the terminal.
  • the terminal reports to the base station on its preferred padding pattern and/or padding scheme.
  • the padding pattern may be preset by the base station to the terminal or the terminal may report to the base station.
  • the padding scheme may be promised in advance to apply zero padding when the reporting SB indicated by the base station is continuous, and to apply interpolation/extrapolation when the reporting SB is discontinuous.
  • extrapolation may be applied when the padding position is located at both ends of the (reported) sub-band, and interpolation may be applied when the padding is located between each sub-band (reported).
  • D If the DFT vector is used as it is (without combining) as in Type I CSI, interpolation or extrapolation of simple indices may be used.
  • the CSI (e.g., PMI) corresponding to the padding position may be used by copying the CSI value of the nearest SB or the nearest frequency domain as it is.
  • the meaning of nearest SB or frequency domain is, for example, a position of a frequency domain corresponding to an index that is +1 or -1 than the frequency index of the padding position, or to an index that adds or subtracts a predetermined value.
  • the base station is set to a higher layer (eg, RRC signaling or MAC CE) or dynamic signaling (eg, DCI) to the terminal (or Instruction).
  • a higher layer eg, RRC signaling or MAC CE
  • dynamic signaling eg, DCI
  • Whether to apply the padding scheme in the first embodiment is defined when the value of a specific N SB *R is greater than or equal to a specific value. This is large in order to reduce the implementation complexity of the terminal, but in the case of the second embodiment, the base station may indicate whether to apply the padding scheme to the terminal for the purpose of monitoring the flexibility of scheduling and the channel condition of the terminal. For example, as in the TS 38.331 spec of Table 19 below, the base station instructs the terminal to information about a specific SB to which the terminal will report CSI in a bitmap manner.
  • the terminal when the base station instructs the terminal to use Rel-16 Type II CSI (by RRC (signaling) or MAC CE or DCI), and reports CSI with Rel-16 Type II CSI, the terminal is “csi-ReportingBand Ignoring the information indicated by "(eg csi-ReportingBand in Table 19), it is assumed that the N SB value is always the maximum size of the DL BWP set in the terminal, and N 3 is calculated.
  • the location of the SB / frequency domain to perform padding or inter-/extra-polation operation is implicitly determined according to the reporting band configuration set by the base station in the terminal.
  • the N3 value set in the terminal is more than a specific value (eg, 13)
  • the Rel-16 Type II CSI may occupy a larger CSI processing unit (CPU) than the Rel-15 Type II CSI (e.g., 2 CPU).
  • Rel-16 Type II CSI is a case in which only ranks 1 and 2 can be reported when it is possible to report rank 3-4 by an indicator (eg, ri-Restriction, typeII-RI-Restriction) indicated by RI restriction.
  • the CSI processing unit can occupy a larger value (eg, 2CPU).
  • typeII-RI-Restriction is indicated as “1100” with 4 bits (in this case, transmission up to rank 2) is indicated as “1111” (in this case, transmission up to rank 4 is possible)
  • Value can occupy the CPU.
  • the embodiment 3-3 it is assumed that a high-capability (advanced) terminal occupies the same number of CPUs regardless of the rank to be reported.
  • the third embodiment, the 3-1 embodiment, and the 3-2 embodiment may be each or a combination thereof.
  • CSI processing criteria can be briefly described as follows.
  • Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Embodiment 3-2 / Embodiment 3-3
  • PUCCH Physical Uplink Control Channel
  • FIGS. 27 and 28 are for convenience of description and do not limit the scope of the present invention.
  • some of the steps described in FIGS. 27 and 28 may be merged or omitted.
  • the above-described CSI-related operation may be considered/applied.
  • FIG. 27 shows a flow chart of an operation of a base station performing a CSI procedure based on the above proposals.
  • the base station provides system information (SI) and/or scheduling information and/or CSI related Configuration (eg CSI reporting setting, CSI-RS resource setting, etc.) as a higher layer (eg, RRC or MAC CE) to the terminal.
  • SI system information
  • CSI related Configuration eg CSI reporting setting, CSI-RS resource setting, etc.
  • a higher layer eg, RRC or MAC CE
  • the CSI related configuration is based on the above-described proposed methods (eg 1st embodiment / 2nd embodiment / 2-1 embodiment / 3rd embodiment / 3-1 embodiment / 3-2 implementation).
  • Yes / CSI-related information eg padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting
  • Etc. e.g padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting
  • the base station may transmit an RS (e.g., SSB/CSI-RS/TRS/PT-RS) to the terminal in order to receive the channel status report of the terminal (D10).
  • the base station may transmit the MAC-CE related to the indication of CSI reporting to the terminal (D15).
  • the MAC-CE may include information related to the trigger of the corresponding AP CSI reporting, and the corresponding AP CSI reporting may be triggered through additional triggering DCI (eg, see CSI reporting). ).
  • the MAC-CE may include information for activation/deactivation of the corresponding SP CSI reporting (see e.g. CSI reporting).
  • steps D10 and D15 may be changed in order or merged into one step.
  • the base station may report and receive the channel state CSI (e.g., CRI/RI/CQI/PMI/LI) from the terminal (D20).
  • the BS may receive AP CSI reporting based on trigger-related information included in the MAC-CE from the UE, or may receive SP CSI reporting activated by the MAC-CE.
  • the base station uses the above-described proposed methods (eg, the first embodiment / the second embodiment / the 2-1 embodiment / the third embodiment / the 3-1 embodiment / the 3-2 embodiment / the third embodiment).
  • 3-3 The CSI determined/calculated based on the embodiment) may be reported from the terminal.
  • the base station may determine/calculate data scheduling and precoding based on the CSI reported from the terminal (and/or the CSI reported from the terminal and a situation in which the base station serves other terminals) (D25), and the precoding RS (eg DMRS, TRS, PT-RS) for applied data and data decoding may be transmitted to the (scheduled) terminal (D30).
  • the precoding RS eg DMRS, TRS, PT-RS
  • step D30 may not be considered an essential step of the present invention.
  • the UE transmits system information (SI) and/or scheduling information and/or CSI related Configuration (eg CSI reporting setting, CSI-RS resource setting, etc.) to a higher layer (eg, RRC or MAC CE) from the base station.
  • SI system information
  • CSI related Configuration eg CSI reporting setting, CSI-RS resource setting, etc.
  • a higher layer eg, RRC or MAC CE
  • the CSI related configuration is based on the above-described proposed methods (eg 1st embodiment / 2nd embodiment / 2-1 embodiment / 3rd embodiment / 3-1 embodiment / 3-2 implementation).
  • Yes / CSI-related information eg padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting
  • Etc. eg padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting
  • the UE may receive an RS (e.g., SSB/CSI-RS/TRS/PT-RS) related to the channel status report from the base station (E10).
  • the terminal may receive the MAC-CE related to the indication of CSI reporting from the base station (E15).
  • the MAC-CE may include information related to the trigger of the corresponding AP CSI reporting, and the corresponding AP CSI reporting may be triggered through additional triggering DCI (eg, see CSI reporting). ).
  • the MAC-CE may include information for activation/deactivation of the corresponding SP CSI reporting (see e.g. CSI reporting).
  • steps D10 and D15 may be changed in order or merged into one step.
  • the UE determines/calculates CSI based on information set from the RS and the base station (eg CSI related Configuration, information of reporting setting/information indicated by DCI, etc.), and may report the CSI to the base station. (E25).
  • the UE may transmit AP CSI reporting based on trigger related information included in the MAC-CE to the BS, or may transmit SP CSI reporting activated by the MAC-CE.
  • the UE determines/calculates the above-described proposed methods (eg, Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Embodiment 3) Embodiment 3-2 / Embodiment 3-3) can be applied, and information (eg CQI, PMI, RI, LI, etc.) included in the reported CSI is also included in the above-described proposed methods (eg Embodiment 1 / The second embodiment / the 2-1 embodiment / the third embodiment / the 3-1 embodiment / the 3-2 embodiment / the 3-3 embodiment).
  • the terminal may receive data/RS (for data decoding) according to Data Scheduling information from the base station (E30).
  • data scheduling and precoding to be applied to data may be determined/calculated by the base station based on the CSI reported by the UE, but may not be considered only the CSI reported by the UE.
  • step E30 may not be considered an essential step of the present invention.
  • the above-described proposed methods for the operation of the base station and/or the terminal may be implemented by an apparatus (eg, Figs. 30 to 34) to be described below.
  • a base station may correspond to a transmitting device
  • a terminal may correspond to a receiving device, and vice versa may be considered.
  • 29 is a flow chart illustrating another example of a method of operating a terminal proposed in the present specification.
  • FIG. 29 relates to a method of reporting channel state information (CSI) by a terminal in a wireless communication system.
  • CSI channel state information
  • the terminal receives from the base station control information related to the determination of the dimension size for a specific domain used for CSI reporting (S2910).
  • the CSI may be CSI based on linear combining, and in particular, may be Type II CSI.
  • the specific region may be at least one of a spatial domain, a frequency domain, and a time domain.
  • the control information may include information on a bandwidth part (BWP) and information on a subband size.
  • the CSI may include a precoding matrix indicator (PMI).
  • the dimensional size may be determined as a product of the number of subbands and a scaling parameter used to determine a frequency unit size.
  • the terminal receives configuration information related to padding to be applied to one or more subbands for the CSI report from the base station (S2920).
  • the setting information may include information on a padding pattern and information on a padding scheme.
  • the UE compares the size of a dimension determined based on the control information with the size of a Discrete Fourier Transform (DFT) vector used for configuring a codebook (S2930).
  • DFT Discrete Fourier Transform
  • the size of the DFT vector may be determined based on a preset rule.
  • the UE determines a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension (S2940).
  • the padding pattern and the padding scheme may be determined when the size of the DFT vector is larger than the dimension size.
  • the size of the DFT vector may be greater than 13.
  • the padding pattern is related to the position of the subband to which the padding is applied, and the position of the subband to which the padding is applied is before the subband for initial CSI reporting, after the subband for last CSI reporting, or a set CSI It may be in the middle of subbands for reporting.
  • the position of the subband to which the padding is applied is before the subband for initial CSI reporting, after the subband for last CSI reporting, or a set CSI It may be in the middle of subbands for reporting.
  • the padding scheme may be zero padding, interpolation-based padding for CSI measured based on CSI-RS, or extrapolation-based padding for CSI measured based on CSI-RS.
  • the zero padding is applied, and when the subbands for the CSI reporting are discontinuously configured, the interpolation-based or extrapolation-based padding may be applied.
  • the terminal reports the CSI to the base station based on the padding pattern and the padding scheme (S2950).
  • downlink refers to communication from a base station to a terminal
  • uplink refers to communication from a terminal to a base station
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • the base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device.
  • Base station is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G).
  • BS Base station
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • 5G network
  • AI Artificial Intelligence
  • RSU road side unit
  • robot drone
  • UAV Unmanned Aerial Vehicle
  • AR Augmented Reality
  • VR Virtual Reality
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It can be replaced with terms such as robot, AI (Artificial Intelligence) module, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
  • the transmitting device and the receiving device may be a base station or a terminal, respectively.
  • the transmitting device 10 and the receiving device 20 are transceivers 13 and 23 capable of transmitting or receiving wireless signals carrying information and/or data, signals, messages, etc., and various information related to communication within a wireless communication system. Is connected to components such as memories 12 and 22, the transceivers 13 and 23, and the memories 12 and 22, and controls the components so that the corresponding device is one of the above-described embodiments of the present invention.
  • Each of the processors 11 and 21 may be configured to control the memories 12 and 22 and/or the transceivers 13 and 23 to perform at least one.
  • the memories 12 and 22 may store programs for processing and control of the processors 11 and 21, and may temporarily store input/output information.
  • the memories 12 and 22 can be utilized as buffers.
  • the processors 11 and 21 generally control the overall operation of various modules in the transmitting device or the receiving device. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 11 and 21 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs configured to perform the present invention field programmable gate arrays
  • firmware or software when the present invention is implemented using firmware or software, firmware or software may be configured to include a module, procedure, or function that performs functions or operations of the present invention, and configured to perform the present invention.
  • Firmware or software may be provided in the processors 11 and 21 or stored in the memories 12 and 22 and driven by the processors 11 and 21.
  • the processor 11 of the transmission device 10 may perform predetermined coding and modulation on a signal and/or data to be transmitted to the outside and then transmit it to the transceiver 13.
  • the processor 11 may generate a codeword through demultiplexing, channel encoding, scrambling, and modulation processes to be transmitted.
  • the codeword may include information equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) may be encoded with one codeword.
  • Each codeword may be transmitted to a receiving device through one or more layers.
  • the transceiver 13 may include an oscillator.
  • the transceiver 13 may include one or a plurality of transmit antennas.
  • the signal processing process of the reception device 20 may be configured as the reverse of the signal processing process of the transmission device 10.
  • the transceiver 23 of the receiving device 20 can receive a radio signal transmitted by the transmitting device 10.
  • the transceiver 23 may include one or a plurality of receive antennas.
  • the transceiver 23 may frequency down-convert each of the signals received through the reception antenna and restore a baseband signal.
  • the transceiver 23 may include an oscillator for frequency down conversion.
  • the processor 21 may perform decoding and demodulation of a radio signal received through a receiving antenna to restore data originally intended to be transmitted by the transmitting device 10.
  • the transceivers 13 and 23 may include one or a plurality of antennas.
  • the antenna transmits a signal processed by the transceivers 13 and 23 to the outside, or receives a radio signal from the outside, according to an embodiment of the present invention under the control of the processors 11 and 21, It can perform the function of passing to ).
  • the antenna may also be referred to as an antenna port.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna element. The signal transmitted from each antenna can no longer be decomposed by the receiving device 20.
  • a reference signal (RS) transmitted corresponding to the antenna defines an antenna viewed from the viewpoint of the receiving device 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna Regardless of whether the channel is a composite channel from a plurality of physical antenna elements, the reception device 20 may enable channel estimation for the antenna. That is, the antenna may be defined so that a channel through which a symbol on the antenna is transmitted can be derived from the channel through which another symbol on the same antenna is transmitted. In the case of a transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, it may be connected to two or more antennas.
  • MIMO multi-input multi-output
  • a single transmission device 10 having a structure in which a plurality of transmitters 13 are controlled by a single processor 11 or a transmitter 13 composed of a plurality of antennas
  • a single transmission device 10 configured with may transmit a signal to the single reception device 20, and a transmission panel may be configured in units of antennas (groups) within each Transceiver or Transceiver.
  • each transmission panel When a plurality of antennas are mounted on each transmission panel, input signals to elements (eg phase shifters, power amplifiers) for controlling the phase (and magnitude) of signals transmitted from each antenna to form a transmission beam from each panel Can be configured, and a separate processor for controlling input values (eg phase shift values) for the elements is mounted or a single processor inputs control signals for input values for the elements.
  • elements eg phase shifters, power amplifiers
  • a separate processor for controlling input values (eg phase shift values) for the elements is mounted or a single processor inputs control signals for input values for the elements.
  • the structure of the transmitting device and the structure of the receiving device may be configured correspondingly. That is, one transmission panel may correspond to one reception panel, and in this case, an antenna of each panel may serve as both a transmission and reception antenna.
  • signal processing may be performed in a processor of the base station/terminal such as the processor 11 of FIG. 30.
  • a transmission device 10 in a terminal or a base station includes a scrambler 301, a modulator 302, a layer mapper 303, an antenna port mapper 304, a resource block mapper 305, and a signal generator 306. ) Can be included.
  • the transmission device 10 may transmit one or more codewords. Coded bits in each codeword are each scrambled by the scrambler 301 and transmitted on a physical channel.
  • the codeword may be referred to as a data string, and may be equivalent to a transport block, which is a data block provided by the MAC layer.
  • the scrambled bits are modulated by the modulator 302 into complex-valued modulation symbols.
  • the modulator 302 modulates the scrambled bits according to a modulation method and may be arranged as a complex modulation symbol representing a position on a signal constellation. There is no restriction on the modulation scheme, and m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM) may be used for modulation of the encoded data.
  • m-PSK m-Phase Shift Keying
  • m-QAM m-Quadrature Amplitude Modulation
  • the modulator may be referred to as a modulation mapper.
  • the complex modulation symbol may be mapped to one or more transport layers by the layer mapper 303.
  • the complex modulation symbols on each layer may be mapped by the antenna port mapper 304 for transmission on the antenna port.
  • the resource block mapper 305 may map a complex modulation symbol for each antenna port to an appropriate resource element in a virtual resource block allocated for transmission.
  • the resource block mapper may map the virtual resource block to a physical resource block according to an appropriate mapping scheme.
  • the resource block mapper 305 may allocate a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.
  • the signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by a specific modulation method, for example, an Orthogonal Frequency Division Multiplexing (OFDM) method, and a complex-valued time domain.
  • An OFDM symbol signal can be generated.
  • the signal generator may perform Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a Cyclic Prefix (CP) may be inserted into a time domain symbol on which IFFT is performed.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • the OFDM symbol is transmitted to a receiving device through each transmit antenna through digital-to-analog conversion and frequency up-conversion.
  • the signal generator may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.
  • signal processing may be performed by a processor of the terminal/base station such as the processor 11 of FIG. 30.
  • a terminal or base station transmission device 10 includes a scrambler 401, a modulator 402, a layer mapper 403, a precoder 404, a resource block mapper 405, and a signal generator 406. It may include.
  • the transmission device 10 may scramble coded bits within the codeword by the scrambler 401 and then transmit them through a physical channel.
  • the scrambled bits are modulated by modulator 402 into complex modulation symbols.
  • the modulator may modulate the scrambled bits according to a predetermined modulation method and arrange them as a complex modulation symbol representing a position on a signal constellation.
  • a predetermined modulation method There are no restrictions on the modulation scheme, and pi/2-BPSK (pi/2-Binary Phase Shift Keying), m-PSK (m-Phase Shift Keying) or m-QAM (m-Quadrature Amplitude Modulation) It can be used for modulation of the encoded data.
  • the complex modulation symbol may be mapped to one or more transport layers by the layer mapper 403.
  • the complex modulation symbols on each layer may be precoded by the precoder 404 for transmission on the antenna port.
  • the precoder may perform precoding after performing transform precoding on the complex modulation symbol.
  • the precoder may perform precoding without performing transform precoding.
  • the precoder 404 may process the complex modulation symbols in a MIMO scheme according to multiple transmission antennas, output antenna specific symbols, and distribute the antenna specific symbols to a corresponding resource block mapper 405.
  • the output z of the precoder 404 can be obtained by multiplying the output y of the layer mapper 403 by the precoding matrix W of N ⁇ M.
  • N is the number of antenna ports
  • M is the number of layers.
  • the resource block mapper 405 maps a demodulation modulation symbol for each antenna port to an appropriate resource element in a virtual resource block allocated for transmission.
  • the resource block mapper 405 allocates a complex modulation symbol to an appropriate subcarrier and multiplexes it according to a user.
  • the signal generator 406 may generate a complex-valued time domain orthogonal frequency division multiplexing (OFDM) symbol signal by modulating the complex modulation symbol using a specific modulation method, such as an OFDM method.
  • the signal generator 406 may perform Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a Cyclic Prefix (CP) may be inserted into a time domain symbol on which IFFT is performed.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • the OFDM symbol is transmitted to a receiving device through each transmission antenna through digital-to-analog conversion and frequency up-conversion.
  • the signal generator 406 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.
  • the signal processing process of the reception device 20 may be configured as the reverse of the signal processing process of the transmitter.
  • the processor 21 of the transmission device 10 performs decoding and demodulation on the radio signal received through the antenna port(s) of the transceiver 23 from the outside.
  • the receiving device 20 may include a plurality of multiple receiving antennas, and each signal received through the receiving antenna is restored to a baseband signal and then subjected to multiplexing and MIMO demodulation to be transmitted by the transmitting device 10 originally.
  • the receiving apparatus 20 may include a signal restorer for restoring a received signal into a baseband signal, a multiplexer for combining and multiplexing the received signal, and a channel demodulator for demodulating the multiplexed signal sequence into a corresponding codeword.
  • the signal restorer, multiplexer, and channel demodulator may be configured as one integrated module or each independent module performing their functions. More specifically, the signal restorer includes an analog-to-digital converter (ADC) that converts an analog signal into a digital signal, a CP remover that removes CP from the digital signal, and a fast Fourier transform (FFT) on the signal from which CP is removed.
  • ADC analog-to-digital converter
  • FFT fast Fourier transform
  • An FFT module for outputting a frequency domain symbol by applying the FFT module, and a resource element demapper/equalizer for restoring the frequency domain symbol into an antenna specific symbol may be included.
  • the antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by a transmitting apparatus by a channel demodulator.
  • a wireless communication device for example, a terminal, includes a processor 2310 such as a digital signal processor (DSP) or a microprocessor, a transceiver 2335, a power management module 2305, and an antenna 2340. ), battery 2355, display 2315, keypad 2320, GPS (Global Positioning System) chip 2360, sensor 2365, memory 2330, SIM (Subscriber Identification Module) card 2325, speaker It may include at least one of 2345 and the microphone 2350. There may be a plurality of antennas and processors.
  • DSP digital signal processor
  • the processor 2310 may implement the functions, procedures, and methods described herein.
  • the processor 2310 of FIG. 33 may be the processors 11 and 21 of FIG. 30.
  • the memory 2330 is connected to the processor 2310 and stores information related to the operation of the processor.
  • the memory may be located inside or outside the processor, and may be connected to the processor through various technologies such as wired connection or wireless connection.
  • the memory 2330 of FIG. 33 may be the memories 12 and 22 of FIG. 30.
  • a user may input various types of information such as a phone number using various technologies such as pressing a button on the keypad 2320 or activating a sound using the microphone 2350.
  • the processor 2310 may receive and process the user's information, and perform an appropriate function, such as dialing the input phone number.
  • data may be retrieved from SIM card 2325 or memory 2330 to perform an appropriate function.
  • the processor 2310 may display various types of information and data on the display 2315 for user convenience.
  • the transceiver 2335 is connected to the processor 2310 and transmits and/or receives a radio signal such as a radio frequency (RF) signal.
  • the processor may control the transceiver to initiate communication or transmit wireless signals including various types of information or data such as voice communication data.
  • the transceiver includes a transmitter and a receiver for transmission and reception of radio signals.
  • the antenna 2340 may facilitate transmission and reception of wireless signals.
  • the transceiver upon receiving the radio signal, the transceiver may forward and convert the signal to a baseband frequency for processing by a processor.
  • the processed signal can be processed by various techniques, such as being converted into audible or readable information to be output through the speaker 2345.
  • the transceiver of FIG. 33 may be the transceivers 13 and 23 of FIG. 30.
  • various components such as a camera and a USB (Universal Serial Bus) port may be additionally included in the terminal.
  • the camera may be connected to the processor 2310.
  • the terminal does not necessarily have to include all the elements of FIG. 33. That is, some components, for example, a keypad 2320, a global positioning system (GPS) chip 2360, a sensor 2365, and a SIM card 2325 may not be essential elements, and in this case, they are not included in the terminal. May not.
  • GPS global positioning system
  • the wireless communication system may include a first device 9010 and a second device 9020.
  • the first device 9010 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) Module, Robot, Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G service, or a device related to the fourth industrial revolution field.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • Robot Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device
  • Hologram Device Augmented Reality
  • MTC Device Virtual Reality
  • IoT Device Medical Device
  • Pin It may be a tech device (or financial device),
  • the second device 9020 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) Module, Robot, Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G service, or a device related to the fourth industrial revolution field.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • Robot Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device
  • Hologram Device Augmented Reality
  • MTC Device Virtual Reality
  • IoT Device Medical Device
  • Pin It may be a tech device (or financial device),
  • the terminal is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and a tablet.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • PC tablet PC
  • ultrabook ultrabook
  • wearable device wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display)
  • the HMD may be a display device worn on the head.
  • HMD can be used to implement VR, AR or MR.
  • a drone may be a vehicle that is not human and is flying by a radio control signal.
  • the VR device may include a device that implements an object or a background of a virtual world.
  • the AR device may include a device that connects and implements an object or background of a virtual world, such as an object or background of the real world.
  • the MR device may include a device that combines and implements an object or background of a virtual world, such as an object or background of the real world.
  • the hologram device may include a device that implements a 360-degree stereoscopic image by recording and reproducing stereoscopic information by utilizing an interference phenomenon of light generated by the encounter of two laser lights called holography.
  • the public safety device may include an image relay device or an image device wearable on a user's human body.
  • the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation.
  • the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, or various sensors.
  • the medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating or preventing a disease.
  • the medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder.
  • a medical device may be a device used for the purpose of examining, replacing or modifying a structure or function.
  • the medical device may be a device used for the purpose of controlling pregnancy.
  • the medical device may include a device for treatment, a device for surgery, a device for (extra-corporeal) diagnosis, a device for hearing aid or a procedure.
  • the security device may be a device installed to prevent a risk that may occur and maintain safety.
  • the security device may be a camera, CCTV, recorder, or black box.
  • the fintech device may be a device capable of providing financial services such as mobile payment.
  • the fintech device may include a payment device or a point of sales (POS).
  • the climate/environment device may include a device that monitors or predicts the climate/environment.
  • the first device 9010 may include at least one or more processors such as the processor 9011, at least one or more memories such as the memory 9012, and at least one or more transceivers such as the transceiver 9013.
  • the processor 9011 may perform the functions, procedures, and/or methods described above.
  • the processor 9011 may perform one or more protocols.
  • the processor 9011 may perform one or more layers of an air interface protocol.
  • the memory 9012 is connected to the processor 9011 and may store various types of information and/or commands.
  • the transceiver 9013 may be connected to the processor 9011 and controlled to transmit and receive wireless signals.
  • the second device 9020 may include at least one processor such as the processor 9021, at least one memory device such as the memory 9022, and at least one transceiver such as the transceiver 9023.
  • the processor 9021 may perform the functions, procedures, and/or methods described above.
  • the processor 9021 may implement one or more protocols.
  • the processor 9021 may implement one or more layers of an air interface protocol.
  • the memory 9022 is connected to the processor 9021 and may store various types of information and/or commands.
  • the transceiver 9023 is connected to the processor 9021 and may be controlled to transmit and receive radio signals.
  • the memory 9012 and/or the memory 9022 may be connected inside or outside the processor 9011 and/or the processor 9021, respectively, or other processors through various technologies such as wired or wireless connection. It can also be connected to.
  • the first device 9010 and/or the second device 9020 may have one or more antennas.
  • the antenna 9014 and/or the antenna 9024 may be configured to transmit and receive wireless signals.
  • a specific operation described as being performed by a base station in this document may be performed by its upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • an embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention is one or more ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, etc.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor through various known means.
  • a specific operation described as being performed by a base station in this document may be performed by an upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, Node B, eNode B (eNB), and access point, and the name of the base station is RRH (remote radio head), eNB, transmission point (TP). ), RP (reception point), repeater (relay) can be used as a generic term.
  • the proposed method is not limited only to uplink or downlink communication, and direct communication between terminals, a base station, a vehicle, a relay node, etc. may use the proposed method.
  • examples of the above-described proposed method may also be included as one of the implementation methods of the present invention, it is obvious that they may be regarded as a kind of proposed method.
  • the above-described proposed schemes may be implemented independently, but may be implemented in the form of a combination (or merge) of some of the proposed schemes.
  • Information on whether the proposed methods are applied is notified by the base station to the terminal or the transmitting terminal to the receiving terminal through a predefined signal (eg, a physical layer signal or a higher layer signal).
  • the rule may be defined so that it may be defined as a fixed rule between the base station and the terminal.
  • the method of transmitting and receiving data in the wireless communication system of the present invention has been described mainly in an example applied to a 3GPP LTE/LTE-A system and a 5G system (New RAT system), but it can be applied to various wireless communication systems.

Abstract

The present specification provides a method for reporting CSI in a wireless communication system. More particularly, the method, performed by a terminal, may comprise the steps of: receiving, from a base station, control information related to determination of a dimension size for a specific domain used for CIS reporting; receiving, from the base station, configuration information related to padding to be applied to one or more subbands for the CIS reporting; comparing the dimension size determined on the basis of the control information and the size of a DFT vector used for codebook configuration; determining a padding pattern and a padding scheme to be applied to as many subbands as a value of a difference between the size of the DFT vector and the dimension size; and reporting the CSI to the base station on the basis of the padding pattern and the padding scheme.

Description

무선 통신 시스템에서 CSI를 보고하기 위한 방법 및 이를 위한 장치Method for reporting CSI in wireless communication system and apparatus therefor
본 명세서는 무선 통신 시스템에 관한 것으로써, 보다 상세하게 무선 통신 시스템에서 CSI를 보고하기 위한 방법 및 이를 지원하는 장치에 관한 것이다. The present specification relates to a wireless communication system, and more particularly, to a method for reporting CSI in a wireless communication system and an apparatus supporting the same.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(Code Division Multiple Access) 시스템, FDMA(Frequency Division Multiple Access) 시스템, TDMA(Time Division Multiple Access) 시스템, OFDMA(Orthogonal Frequency Division Multiple Access) 시스템, SC-FDMA(Single Carrier Frequency Division Multiple Access) 시스템 등이 있다.Wireless communication systems have been widely deployed to provide various types of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include Code Division Multiple Access (CDMA) systems, Frequency Division Multiple Access (FDMA) systems, Time Division Multiple Access (TDMA) systems, Orthogonal Frequency Division Multiple Access (OFDMA) systems, and Single Carrier Frequency (SC-FDMA) systems. Division Multiple Access) system.
본 명세서는 CSI acquisition 또는 reporting과 관련하여 DFT vector를 사용하여 코드북을 구성하는 경우, 실제 CSI reporting에 사용되는 spatial domain/frequency domain/time domain과 관련된 정보의 dimension size가 DFT vector의 크기보다 큰 경우에 적용하는 padding 기법을 설정하기 위한 signaling 방법과, 효과적인 피드백 보고 방법을 제공함에 목적이 있다.This specification describes when a codebook is configured using a DFT vector in relation to CSI acquisition or reporting, and the dimension size of information related to the spatial domain/frequency domain/time domain used for actual CSI reporting is larger than the size of the DFT vector. An object of the present invention is to provide a signaling method for configuring an applied padding scheme and an effective feedback reporting method.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present specification are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. I will be able to.
본 명세서는 무선 통신 시스템에서 단말에 의해 CSI(channel state information)을 보고(report)하는 방법에 있어서, CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하는 단계; 상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하는 단계; 상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하는 단계; 상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하는 단계; 및 상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 단계를 포함하는 것을 특징으로 한다.In a method for reporting channel state information (CSI) by a terminal in a wireless communication system, the present specification provides control information related to determination of a dimension size for a specific domain used for CSI reporting. Receiving from the base station; Receiving, from the base station, configuration information related to padding to be applied to one or more subbands for the CSI report; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
또한, 본 명세서에서 상기 패딩 패턴은 상기 패딩이 적용될 서브밴드의 위치와 관련되는 것을 특징으로 한다.In addition, in the present specification, the padding pattern is related to a position of a subband to which the padding is applied.
또한, 본 명세서에서 상기 패딩이 적용될 서브밴드의 위치는 처음(initial) CSI 보고를 위한 서브밴드의 앞, 마지막 CSI 보고를 위한 서브밴드의 뒤 또는 설정된 CSI 보고를 위한 서브밴드들 중간인 것을 특징으로 한다.In addition, in the present specification, the position of the subband to which the padding is applied is in front of the subband for initial CSI reporting, after the subband for the last CSI report, or in the middle of the subbands for CSI reporting that are set. do.
또한, 본 명세서에서 상기 패딩 스킴은 제로 패딩, CSI-RS에 기초하여 측정된 CSI에 대한 interpolation 기반 패딩 또는 CSI-RS에 기초하여 측정된 CSI에 대한 extrapolation 기반 패딩인 것을 특징으로 한다.In addition, in the present specification, the padding scheme is characterized in that it is zero padding, interpolation-based padding for CSI measured based on CSI-RS, or extrapolation-based padding for CSI measured based on CSI-RS.
또한, 본 명세서에서 상기 CSI 보고를 위한 서브밴드들이 연속적으로 설정된 경우, 상기 제로 패딩이 적용되며, 상기 CSI 보고를 위한 서브밴드들이 불연속적으로 설정된 경우, 상기 interpolation 기반 또는 extrapolation 기반 패딩이 적용되는 것을 특징으로 한다.In addition, in the present specification, when the subbands for CSI reporting are continuously configured, the zero padding is applied, and when the subbands for the CSI reporting are configured discontinuously, the interpolation-based or extrapolation-based padding is applied. It is characterized.
또한, 본 명세서에서 상기 CSI는 선형 결합(linear combining) 기반의 CSI인 것을 특징으로 한다.In addition, in the present specification, the CSI is characterized in that it is a linear combining-based CSI.
또한, 본 명세서에서 상기 특정 영역은 공간 영역(spatial domain), 주파수 영역(frequency domain) 또는 시간 영역(time domain) 중 적어도 하나인 것을 특징으로 한다.In addition, in the present specification, the specific region is characterized in that at least one of a spatial domain, a frequency domain, and a time domain.
또한, 본 명세서에서 상기 제어 정보는 BWP(bandwidth part)에 대한 정보 및 서브밴드 사이즈에 대한 정보를 포함하는 것을 특징으로 한다.In addition, in the present specification, the control information is characterized in that it includes information on a bandwidth part (BWP) and information on a subband size.
또한, 본 명세서에서 상기 설정 정보는 패딩 패턴에 대한 정보 및 패딩 스킴에 대한 정보를 포함하는 것을 특징으로 한다.In addition, in the present specification, the setting information is characterized in that it includes information about a padding pattern and information about a padding scheme.
또한, 본 명세서에서 상기 DFT 벡터의 크기는 기 설정된 규칙(rule)에 기초하여 결정되는 것을 특징으로 한다.In addition, in the present specification, the size of the DFT vector is determined based on a preset rule.
또한, 본 명세서에서 상기 CSI는 PMI(precoding matrix indicator)를 포함하는 것을 특징으로 한다.In addition, in the present specification, the CSI is characterized in that it includes a precoding matrix indicator (PMI).
또한, 본 명세서에서 상기 패딩 패턴 및 상기 패딩 스킴은 상기 DFT 벡터의 크기가 상기 차원 크기보다 큰 경우 결정되는 것을 특징으로 한다.In addition, in the present specification, the padding pattern and the padding scheme are determined when the size of the DFT vector is larger than the dimension size.
또한, 본 명세서에서 상기 DFT 벡터의 크기는 13보다 큰 것을 특징으로 한다.In addition, in the present specification, the size of the DFT vector is greater than 13.
또한, 본 명세서에서 상기 차원 크기는 서브밴드의 수 및 주파수 유닛 크기(frequency unit size)를 결정하는데 사용되는 스케일링(scaling) 파라미터의 곱으로 결정되는 것을 특징으로 한다.In addition, in the present specification, the dimension size is characterized in that it is determined by a product of the number of subbands and a scaling parameter used to determine a frequency unit size.
또한, 본 명세서는 무선 통신 시스템에서 CSI(channel state information)을 보고(report)하는 단말(terminal)에 있어서, 상기 단말은, 무선 신호를 송수신하기 위한 송수신기; 및 상기 송수신기와 연결되는 프로세서를 포함하고, 상기 프로세서는, CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며; 상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며; 상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며; 상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및 상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 한다.In addition, the present specification provides a terminal for reporting channel state information (CSI) in a wireless communication system, the terminal comprising: a transceiver for transmitting and receiving a radio signal; And a processor connected to the transceiver, wherein the processor receives, from the base station, control information related to determination of a dimension size for a specific domain used for CSI reporting; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
또한, 본 명세서는 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 상기 하나 이상의 프로세서들은 상기 장치가, CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며; 상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며; 상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며; 상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및 상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 한다.In addition, in the present specification, in an apparatus including one or more memories and one or more processors functionally connected to the one or more memories, the one or more processors are a specific domain used for CSI reporting Receive from the base station control information related to the determination of the dimension size of the base station; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
또한, 본 명세서는 하나 이상의 명령어(instructions)을 저장하는 하나 이상의 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 하나 이상의 프로세서에 의해 실행 가능한(executable) 상기 하나 이상의 명령어는, CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며; 상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며; 상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며; 상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및 상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 한다.In addition, the present specification is one or more non-transitory computer-readable medium for storing one or more instructions, the one or more executable (executable) by one or more processors. The command receives, from the base station, control information related to determination of a dimension size for a specific domain used for CSI reporting; Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station; Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook; Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And reporting the CSI to the base station based on the padding pattern and the padding scheme.
본 명세서는 실제 CSI reporting에 사용되는 spatial domain/frequency domain/time domain과 관련된 정보의 dimension size가 DFT vector의 크기보다 큰 경우에 padding 기법을 설정함으로써, 차원 불일치(dimension mismatch)에 의한 모호함을 해결할 수 있는 효과가 있다.This specification sets the padding technique when the dimension size of information related to the spatial domain/frequency domain/time domain used for actual CSI reporting is larger than the size of the DFT vector, thereby solving the ambiguity caused by dimension mismatch. There is an effect.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present specification are not limited to the above-mentioned effects, and other effects not mentioned can be clearly understood by those of ordinary skill in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description to aid in understanding of the present invention, provide embodiments of the present invention, and describe technical features of the present invention together with the detailed description.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.1 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다.3 shows an example of a frame structure in an NR system.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드의 일례를 나타낸다.4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
도 6은 SSB 구조를 예시한다.6 illustrates an SSB structure.
도 7은 SSB 전송을 예시한다.7 illustrates SSB transmission.
도 8은 단말이 DL 시간 동기에 관한 정보를 획득하는 것을 예시한다.8 illustrates that the terminal obtains information on DL time synchronization.
도 9는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.9 illustrates physical channels and general signal transmission used in a 3GPP system.
도 10은 빔 관리를 위해 사용되는 빔의 일 예를 나타내는 도면이다.10 is a diagram illustrating an example of a beam used for beam management.
도 11은 하향링크 빔 관리 절차의 일 예를 나타내는 흐름도이다.11 is a flowchart illustrating an example of a downlink beam management procedure.
도 12는 채널 상태 정보 참조 신호를 이용한 하향링크 빔 관리 절차의 일 예를 나타낸다.12 shows an example of a downlink beam management procedure using a channel state information reference signal.
도 13은 단말의 수신 빔 결정 과정의 일 예를 나타내는 흐름도이다.13 is a flowchart illustrating an example of a process of determining a reception beam by a terminal.
도 14는 기지국의 전송 빔 결정 과정의 일 예를 나타내는 흐름도이다.14 is a flowchart illustrating an example of a transmission beam determination process of a base station.
도 15는 CSI-RS를 이용한 DL BM 절차와 관련된 시간 및 주파수 영역에서의 자원 할당의 일 예를 나타낸다.15 shows an example of resource allocation in time and frequency domains related to a DL BM procedure using CSI-RS.
도 16은 사운딩 참조 신호(Sounding Reference Signal: SRS)를 이용한 상향링크 빔 관리 절차의 일 예를 나타낸다.16 shows an example of an uplink beam management procedure using a sounding reference signal (SRS).
도 17은 SRS를 이용한 상향링크 빔 관리 절차의 일 예를 나타내는 흐름도이다.17 is a flowchart illustrating an example of an uplink beam management procedure using SRS.
도 18은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 관련 절차의 일 예를 나타내는 흐름도이다.18 is a flowchart illustrating an example of a CSI-related procedure to which the method proposed in the present specification can be applied.
도 19는 DMRS 설정 타입의 일례를 나타낸다.19 shows an example of a DMRS configuration type.
도 20은 DL DMRS 절차의 일례를 나타낸 흐름도이다.20 is a flowchart illustrating an example of a DL DMRS procedure.
도 21은 DL PTRS 절차의 일례를 나타낸 흐름도이다.21 is a flowchart illustrating an example of a DL PTRS procedure.
도 22는 TRS 절차의 일례를 나타낸 흐름도이다.22 is a flowchart illustrating an example of a TRS procedure.
도 23은 본 명세서에서 제안하는 방법이 적용될 수 있는 하향링크 송수신 동작의 일 예를 나타내는 흐름도이다.23 is a flowchart illustrating an example of a downlink transmission/reception operation to which the method proposed in this specification can be applied.
도 24는 본 명세서에서 제안하는 방법이 적용될 수 있는 상향링크 송수신 동작의 일 예를 나타내는 흐름도이다.24 is a flowchart illustrating an example of an uplink transmission/reception operation to which the method proposed in the present specification can be applied.
도 25는 본 명세서에서 제안하는 N3 구성의 일례를 나타낸다.25 shows an example of an N3 configuration proposed in the present specification.
도 26은 본 명세서에서 제안하는 N3 구성의 또 다른 일례를 나타낸다.26 shows another example of the N3 configuration proposed in the present specification.
도 27은 본 명세서에서 제안하는 CSI 절차를 수행하는 기지국 동작의 흐름도를 나타낸다.27 shows a flowchart of an operation of a base station performing a CSI procedure proposed in the present specification.
도 28은 본 명세서에서 제안하는 CSI 절차를 수행하는 단말 동작의 흐름도를 나타낸다.28 shows a flowchart of an operation of a terminal performing a CSI procedure proposed in the present specification.
도 29는 본 명세서에서 제안하는 단말 동작 방법의 또 다른 일례를 나타낸 순서도이다.29 is a flow chart illustrating another example of a method of operating a terminal proposed in the present specification.
도 30은 본 명세서에서 제안하는 방법을 수행하기 위한 전송 장치 및 수신 장치의 구성 요소를 나타내는 블록도이다.30 is a block diagram illustrating components of a transmitting device and a receiving device for performing the method proposed in the present specification.
도 31은 전송 장치 내 신호 처리 모듈 구조의 일 예를 도시한 것이다.31 shows an example of a structure of a signal processing module in a transmission device.
도 32는 전송 장치 내 신호 처리 모듈 구조의 다른 예를 도시한 것이다.32 shows another example of the structure of a signal processing module in a transmission device.
도 33은 본 발명의 구현 예에 따른 무선 통신 장치의 일 예를 도시한 것이다.33 illustrates an example of a wireless communication device according to an embodiment of the present invention.
도 34는 본 발명의 일 실시 예에 따른 무선 통신 장치를 나타낸다.34 illustrates a wireless communication device according to an embodiment of the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description to be disclosed hereinafter together with the accompanying drawings is intended to describe exemplary embodiments of the present invention, and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. In some cases, in order to avoid obscuring the concept of the present invention, well-known structures and devices may be omitted, or may be shown in a block diagram form centering on core functions of each structure and device.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI 시스템, RSU(road side unit), 차량(vehicle), 로봇, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.Hereinafter, downlink (DL) refers to communication from a base station to a terminal, and uplink (UL) refers to communication from a terminal to a base station. In downlink, the transmitter may be part of the base station, and the receiver may be part of the terminal. In the uplink, the transmitter may be part of the terminal, and the receiver may be part of the base station. The base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device. Base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G). Network), AI system, RSU (road side unit), vehicle, robot, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device, etc. have. In addition, the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module , Drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다. The following techniques can be used in various wireless access systems such as CDMA, FDMA, TDMA, OFDMA, SC-FDMA, and the like. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with a wireless technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA). UTRA is a part of Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA, and Advanced (LTE-A)/LTE-A pro is an evolved version of 3GPP LTE. 3GPP New Radio or New Radio Access Technology (NR) is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.To clarify the description, the description is based on a 3GPP communication system (eg, LTE-A, NR), but the technical idea of the present invention is not limited thereto. LTE refers to technology after 3GPP TS 36.xxx Release 8. In detail, LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro. 3GPP NR refers to the technology after TS 38.xxx Release 15. LTE/NR may be referred to as a 3GPP system. "xxx" means standard document detail number. LTE/NR may be collectively referred to as a 3GPP system. Background art, terms, abbreviations, and the like used in the description of the present invention may refer to matters described in standard documents published before the present invention. For example, you can refer to the following document:
3GPP LTE3GPP LTE
- 36.211: Physical channels and modulation-36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding-36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures-36.213: Physical layer procedures
- 36.300: Overall description-36.300: Overall description
- 36.331: Radio Resource Control (RRC)-36.331: Radio Resource Control (RRC)
3GPP NR3GPP NR
- 38.211: Physical channels and modulation-38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding-38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control-38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data-38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description-38.300: NR and NG-RAN Overall Description
- 36.331: Radio Resource Control (RRC) protocol specification-36.331: Radio Resource Control (RRC) protocol specification
Definition and AbbreviationsDefinition and Abbreviations
BM: beam managementBM: beam management
CQI: channel quality indicatorCQI: channel quality indicator
CRI: CSI-RS (channel state information ? reference signal) resource indicatorCRI: CSI-RS (channel state information? Reference signal) resource indicator
CSI: channel state informationCSI: channel state information
CSI-IM: channel state information ? interference measurement CSI-IM: channel state information? interference measurement
CSI-RS: channel state information ? reference signalCSI-RS: channel state information? reference signal
DMRS: demodulation reference signalDMRS: demodulation reference signal
FDM: frequency division multiplexingFDM: frequency division multiplexing
FFT: fast Fourier transformFFT: fast Fourier transform
IFDMA: interleaved frequency division multiple accessIFDMA: interleaved frequency division multiple access
IFFT: inverse fast Fourier transformIFFT: inverse fast Fourier transform
L1-RSRP: Layer 1 reference signal received powerL1-RSRP: Layer 1 reference signal received power
L1-RSRQ: Layer 1 reference signal received qualityL1-RSRQ: Layer 1 reference signal received quality
MAC: medium access controlMAC: medium access control
NZP: non-zero powerNZP: non-zero power
OFDM: orthogonal frequency division multiplexingOFDM: orthogonal frequency division multiplexing
PDCCH: physical downlink control channelPDCCH: physical downlink control channel
PDSCH: physical downlink shared channelPDSCH: physical downlink shared channel
PMI: precoding matrix indicatorPMI: precoding matrix indicator
RE: resource elementRE: resource element
RI: Rank indicatorRI: Rank indicator
RRC: radio resource controlRRC: radio resource control
RSSI: received signal strength indicatorRSSI: received signal strength indicator
Rx: ReceptionRx: Reception
QCL: quasi co-locationQCL: quasi co-location
SINR: signal to interference and noise ratioSINR: signal to interference and noise ratio
SSB (or SS/PBCH block): synchronization signal block (including primary synchronization signal, secondary synchronization signal and physical broadcast channel)SSB (or SS/PBCH block): synchronization signal block (including primary synchronization signal, secondary synchronization signal and physical broadcast channel)
TDM: time division multiplexingTDM: time division multiplexing
TRP: transmission and reception pointTRP: transmission and reception point
TRS: tracking reference signalTRS: tracking reference signal
Tx: transmissionTx: transmission
UE: user equipmentUE: user equipment
ZP: zero powerZP: zero power
NR (NR Radio access)NR (NR Radio access)
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology 에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology 의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 technology 를 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.As more communication devices require a larger communication capacity, there is a need for improved mobile broadband communication compared to the existing radio access technology. In addition, massive MTC (Machine Type Communications), which connects multiple devices and objects to provide various services anytime, anywhere, is one of the major issues to be considered in next-generation communications. In addition, a communication system design that considers a service/terminal sensitive to reliability and latency is being discussed. In this way, the introduction of a next-generation radio access technology considering enhanced mobile broadband communication (eMBB), massive MTC (Mmtc), and ultra-reliable and low latency communication (URLLC) is being discussed, and in this specification, the technology is referred to as NR for convenience. . NR is an expression showing an example of a 5G radio access technology (RAT).
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다. A new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme. The new RAT system may follow OFDM parameters different from those of LTE. Alternatively, the new RAT system follows the numerology of the existing LTE/LTE-A as it is, but can have a larger system bandwidth (eg, 100 MHz). Alternatively, one cell may support a plurality of neurology. That is, terminals operating in different neurology can coexist within one cell.
뉴머로러지(numerology)는 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.Numerology corresponds to one subcarrier spacing in the frequency domain. By scaling the reference subcarrier spacing to an integer N, different numerology can be defined.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.The three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.In some use cases, multiple areas may be required for optimization, and other use cases may be focused on only one key performance indicator (KPI). 5G supports these various use cases in a flexible and reliable way.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era. In 5G, voice is expected to be processed as an application program simply using the data connection provided by the communication system. The main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user. Cloud storage and applications are increasing rapidly in mobile communication platforms, which can be applied to both work and entertainment. And, cloud storage is a special use case that drives the growth of the uplink data rate. 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used. Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes. Another use case is augmented reality and information retrieval for entertainment. Here, augmented reality requires very low latency and an instantaneous amount of data.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.In addition, one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC. By 2020, potential IoT devices are expected to reach 20.4 billion. Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure. The level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, look at a number of examples in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions as well as virtual and augmented reality. Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events. Certain application programs may require special network settings. In the case of VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed. Another application example in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver is looking through the front window, and displays information that tells the driver about the distance and movement of the object overlaid. In the future, wireless modules enable communication between vehicles, exchange of information between the vehicle and supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians). The safety system allows the driver to lower the risk of accidents by guiding alternative courses of action to make driving safer. The next step will be a remote controlled or self-driven vehicle. It is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic abnormalities that the vehicle itself cannot identify. The technical requirements of self-driving vehicles call for ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart society, will be embedded with high-density wireless sensor networks. A distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home. A similar setup can be done for each household. Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. The smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way. The smart grid can also be viewed as another low-latency sensor network.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. The communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies. A wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
시스템 일반System general
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.1 shows an example of an overall system structure of an NR to which the method proposed in the present specification can be applied.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.1, the NG-RAN is composed of gNBs that provide a control plane (RRC) protocol termination for an NG-RA user plane (new AS sublayer/PDCP/RLC/MAC/PHY) and a user equipment (UE). do.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.The gNBs are interconnected through an X n interface.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.The gNB is also connected to the NGC through the NG interface.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조NR (New Rat) Numerology and Frame Structure
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2020005865-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
In the NR system, multiple numerologies can be supported. Here, the neurology may be defined by subcarrier spacing and CP (Cyclic Prefix) overhead. In this case, the plurality of subcarrier intervals is an integer N (or,
Figure PCTKR2020005865-appb-I000001
It can be derived by scaling with ). Further, even if it is assumed that a very low subcarrier spacing is not used at a very high carrier frequency, the neurology to be used can be selected independently of the frequency band.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.In addition, in the NR system, various frame structures according to a number of neurology may be supported.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.Hereinafter, an Orthogonal Frequency Division Multiplexing (OFDM) neurology and frame structure that can be considered in an NR system will be described.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.A number of OFDM neurology supported in the NR system may be defined as shown in Table 1.
Figure PCTKR2020005865-appb-T000001
Figure PCTKR2020005865-appb-T000001
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth (wider carrier bandwidth) is supported, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다. The NR frequency band is defined as a frequency range of two types (FR1, FR2). FR1 and FR2 may be configured as shown in Table 2 below. Further, FR2 may mean a millimeter wave (mmW).
Figure PCTKR2020005865-appb-T000002
Figure PCTKR2020005865-appb-T000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2020005865-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2020005865-appb-I000003
이고,
Figure PCTKR2020005865-appb-I000004
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
Figure PCTKR2020005865-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2020005865-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
Regarding the frame structure in the NR system, the sizes of various fields in the time domain are
Figure PCTKR2020005865-appb-I000002
Is expressed as a multiple of the unit of time. From here,
Figure PCTKR2020005865-appb-I000003
ego,
Figure PCTKR2020005865-appb-I000004
to be. Downlink and uplink transmission
Figure PCTKR2020005865-appb-I000005
It is composed of a radio frame having a section of. Here, each radio frame
Figure PCTKR2020005865-appb-I000006
It consists of 10 subframes having a section of. In this case, there may be one set of frames for uplink and one set of frames for downlink.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification can be applied.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2020005865-appb-I000007
이전에 시작해야 한다.
As shown in Figure 2, the transmission of the uplink frame number i from the terminal (User Equipment, UE) than the start of the downlink frame in the corresponding terminal
Figure PCTKR2020005865-appb-I000007
You have to start before.
뉴머롤로지
Figure PCTKR2020005865-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2020005865-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2020005865-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2020005865-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2020005865-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2020005865-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2020005865-appb-I000014
의 시작과 시간적으로 정렬된다.
Numerology
Figure PCTKR2020005865-appb-I000008
For, the slots are within a subframe
Figure PCTKR2020005865-appb-I000009
Are numbered in increasing order of, within the radio frame
Figure PCTKR2020005865-appb-I000010
Are numbered in increasing order. One slot is
Figure PCTKR2020005865-appb-I000011
Consisting of consecutive OFDM symbols of,
Figure PCTKR2020005865-appb-I000012
Is determined according to the used neurology and slot configuration. Slot in subframe
Figure PCTKR2020005865-appb-I000013
Start of OFDM symbol in the same subframe
Figure PCTKR2020005865-appb-I000014
It is aligned in time with the beginning of.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.Not all UEs can simultaneously transmit and receive, which means that all OFDM symbols of a downlink slot or an uplink slot cannot be used.
표 3은 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
Figure PCTKR2020005865-appb-I000015
), 무선 프레임 별 슬롯의 개수(
Figure PCTKR2020005865-appb-I000016
), 서브프레임 별 슬롯의 개수(
Figure PCTKR2020005865-appb-I000017
)를 나타내며, 표 3은 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
Table 3 shows the number of OFDM symbols per slot in a normal CP (
Figure PCTKR2020005865-appb-I000015
), the number of slots per radio frame (
Figure PCTKR2020005865-appb-I000016
), the number of slots per subframe (
Figure PCTKR2020005865-appb-I000017
), and Table 3 shows the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in an extended CP.
Figure PCTKR2020005865-appb-T000003
Figure PCTKR2020005865-appb-T000003
Figure PCTKR2020005865-appb-T000004
Figure PCTKR2020005865-appb-T000004
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다. 도 3은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.3 shows an example of a frame structure in an NR system. 3 is merely for convenience of description and does not limit the scope of the present invention.
표 4의 경우, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 3을 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 3에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 3과 같이 정의될 수 있다.In the case of Table 4, as an example of a case where μ=2, that is, a subcarrier spacing (SCS) of 60 kHz, referring to Table 3, 1 subframe (or frame) may include 4 slots. , 1 subframe={1,2,4} slots shown in FIG. 3 are examples, and the number of slot(s) that may be included in 1 subframe may be defined as shown in Table 3.
또한, 미니-슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수도 있다.Also, a mini-slot may be composed of 2, 4 or 7 symbols, or may be composed of more or fewer symbols.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.In relation to the physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.Hereinafter, the physical resources that can be considered in the NR system will be described in detail.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.First, with respect to the antenna port, the antenna port is defined such that a channel carrying a symbol on the antenna port can be inferred from a channel carrying another symbol on the same antenna port. When the large-scale property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or quasi co-location) relationship. Here, the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
도 4를 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2020005865-appb-I000018
서브캐리어들로 구성되고, 하나의 서브프레임이
Figure PCTKR2020005865-appb-I000019
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
Referring to Figure 4, the resource grid on the frequency domain
Figure PCTKR2020005865-appb-I000018
It is composed of subcarriers, and one subframe
Figure PCTKR2020005865-appb-I000019
Although it is exemplarily described as consisting of OFDM symbols, it is not limited thereto.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2020005865-appb-I000020
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2020005865-appb-I000021
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2020005865-appb-I000022
이다. 상기
Figure PCTKR2020005865-appb-I000023
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
In the NR system, the transmitted signal is
Figure PCTKR2020005865-appb-I000020
One or more resource grids composed of subcarriers and
Figure PCTKR2020005865-appb-I000021
Is described by the OFDM symbols. From here,
Figure PCTKR2020005865-appb-I000022
to be. remind
Figure PCTKR2020005865-appb-I000023
Denotes a maximum transmission bandwidth, which may vary between uplink and downlink as well as neurology.
이 경우, 도 5와 같이, 뉴머롤로지
Figure PCTKR2020005865-appb-I000024
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
In this case, as shown in Fig. 5, the neurology
Figure PCTKR2020005865-appb-I000024
And one resource grid may be configured for each antenna port p.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
뉴머롤로지
Figure PCTKR2020005865-appb-I000025
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2020005865-appb-I000026
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2020005865-appb-I000027
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2020005865-appb-I000028
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2020005865-appb-I000029
이 이용된다. 여기에서,
Figure PCTKR2020005865-appb-I000030
이다.
Numerology
Figure PCTKR2020005865-appb-I000025
And each element of the resource grid for the antenna port p is referred to as a resource element, and an index pair
Figure PCTKR2020005865-appb-I000026
Is uniquely identified by From here,
Figure PCTKR2020005865-appb-I000027
Is the index in the frequency domain,
Figure PCTKR2020005865-appb-I000028
Refers to the position of a symbol within a subframe. When referring to a resource element in a slot, an index pair
Figure PCTKR2020005865-appb-I000029
Is used. From here,
Figure PCTKR2020005865-appb-I000030
to be.
뉴머롤로지
Figure PCTKR2020005865-appb-I000031
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2020005865-appb-I000032
는 복소 값(complex value)
Figure PCTKR2020005865-appb-I000033
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2020005865-appb-I000034
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2020005865-appb-I000035
또는
Figure PCTKR2020005865-appb-I000036
이 될 수 있다.
Numerology
Figure PCTKR2020005865-appb-I000031
And resource elements for antenna port p
Figure PCTKR2020005865-appb-I000032
Is a complex value
Figure PCTKR2020005865-appb-I000033
Corresponds to. If there is no risk of confusion or if a specific antenna port or neurology is not specified, the indices p and
Figure PCTKR2020005865-appb-I000034
Can be dropped, resulting in a complex value
Figure PCTKR2020005865-appb-I000035
or
Figure PCTKR2020005865-appb-I000036
Can be
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2020005865-appb-I000037
연속적인 서브캐리어들로 정의된다.
In addition, the physical resource block (physical resource block) in the frequency domain
Figure PCTKR2020005865-appb-I000037
It is defined as consecutive subcarriers.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.Point A serves as a common reference point of the resource block grid and can be obtained as follows.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;-OffsetToPointA for the PCell downlink indicates the frequency offset between the lowest subcarrier of the lowest resource block and point A of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection, and a 15 kHz subcarrier spacing for FR1 It is expressed in resource block units assuming a 60 kHz subcarrier spacing for FR2;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.-absoluteFrequencyPointA represents the frequency-position of point A expressed as in the absolute radio-frequency channel number (ARFCN).
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정
Figure PCTKR2020005865-appb-I000038
에 대한 주파수 영역에서 0부터 위쪽으로 넘버링(numbering)된다.
Common resource blocks set the subcarrier interval
Figure PCTKR2020005865-appb-I000038
Numbered from 0 to the top in the frequency domain for.
서브캐리어 간격 설정
Figure PCTKR2020005865-appb-I000039
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
Figure PCTKR2020005865-appb-I000040
와 서브캐리어 간격 설정
Figure PCTKR2020005865-appb-I000041
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
Subcarrier spacing setting
Figure PCTKR2020005865-appb-I000039
The center of subcarrier 0 of the common resource block 0 for is coincided with'point A'. Common resource block number (number) in the frequency domain
Figure PCTKR2020005865-appb-I000040
And subcarrier spacing
Figure PCTKR2020005865-appb-I000041
The resource element (k,l) for may be given as in Equation 1 below.
Figure PCTKR2020005865-appb-M000001
Figure PCTKR2020005865-appb-M000001
여기에서,
Figure PCTKR2020005865-appb-I000042
Figure PCTKR2020005865-appb-I000043
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
Figure PCTKR2020005865-appb-I000044
까지 번호가 매겨지고,
Figure PCTKR2020005865-appb-I000045
는 BWP의 번호이다. BWP i에서 물리 자원 블록
Figure PCTKR2020005865-appb-I000046
와 공통 자원 블록
Figure PCTKR2020005865-appb-I000047
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
From here,
Figure PCTKR2020005865-appb-I000042
Is
Figure PCTKR2020005865-appb-I000043
It can be defined relative to point A so that it corresponds to a subcarrier centered on point A. Physical resource blocks are from 0 in the bandwidth part (BWP)
Figure PCTKR2020005865-appb-I000044
Numbered to,
Figure PCTKR2020005865-appb-I000045
Is the number of the BWP. Physical resource block in BWP i
Figure PCTKR2020005865-appb-I000046
And common resource block
Figure PCTKR2020005865-appb-I000047
The relationship between may be given by Equation 2 below.
Figure PCTKR2020005865-appb-M000002
Figure PCTKR2020005865-appb-M000002
여기에서,
Figure PCTKR2020005865-appb-I000048
는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록일 수 있다.
From here,
Figure PCTKR2020005865-appb-I000048
May be a common resource block in which the BWP starts relative to the common resource block 0.
SSB(Synchronization Signal Block) 전송 및 관련 동작SSB (Synchronization Signal Block) transmission and related operations
도 6은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.6 illustrates an SSB structure. The UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB. SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
도 6을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다. Referring to Figure 6, the SSB is composed of PSS, SSS and PBCH. The SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol. The PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers. Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH. The PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol. There are 3 DMRS REs for each RB, and 3 data REs exist between the DMRS REs.
셀 탐색(search)Cell search
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.Cell search refers to a process in which a UE acquires time/frequency synchronization of a cell and detects a cell identifier (eg, Physical layer Cell ID, PCID) of the cell. PSS is used to detect a cell ID within a cell ID group, and SSS is used to detect a cell ID group. PBCH is used for SSB (time) index detection and half-frame detection.
단말의 셀 탐색 과정은 하기 표 5와 같이 정리될 수 있다.The cell search process of the terminal may be summarized as shown in Table 5 below.
Figure PCTKR2020005865-appb-T000005
Figure PCTKR2020005865-appb-T000005
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재하며, 셀 ID는 수학식 3에 의해 정의될 수 있다.There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs, and the cell ID may be defined by Equation 3.
Figure PCTKR2020005865-appb-M000003
Figure PCTKR2020005865-appb-M000003
여기서, NcellID는 셀 ID(예, PCID)를 나타낸다. N(1)ID는 셀 ID 그룹을 나타내며 SSS를 통해 제공/획득된다. N(2)ID는 셀 ID 그룹 내의 셀 ID를 나타내며 PSS를 통해 제공/획득된다.Here, NcellID represents a cell ID (eg, PCID). N(1)ID represents a cell ID group and is provided/acquired through SSS. N(2)ID represents the cell ID in the cell ID group and is provided/acquired through PSS.
PSS 시퀀스 dPSS(n)는 수학식 4를 만족하도록 정의될 수 있다.The PSS sequence dPSS(n) may be defined to satisfy Equation 4.
Figure PCTKR2020005865-appb-M000004
Figure PCTKR2020005865-appb-M000004
SSS 시퀀스 dSSS(n)는 수학식 5를 만족하도록 정의될 수 있다.The SSS sequence dSSS(n) may be defined to satisfy Equation 5.
Figure PCTKR2020005865-appb-M000005
Figure PCTKR2020005865-appb-M000005
도 7은 SSB 전송을 예시한다.7 illustrates SSB transmission.
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.SSB is transmitted periodically according to the SSB period. The SSB basic period assumed by the UE during initial cell search is defined as 20 ms. After cell access, the SSB period may be set to one of {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} by the network (eg, base station). At the beginning of the SSB period, a set of SSB bursts is constructed. The SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set. The maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains at most two SSBs.
- For frequency range up to 3 GHz, L = 4-For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8-For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64-For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).The temporal position of the SSB candidate within the SS burst set may be defined as follows according to the SCS. The temporal position of the SSB candidate is indexed from 0 to L-1 in the temporal order within the SSB burst set (ie, half-frame) (SSB index).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.-Case A-15 kHz SCS: The index of the start symbol of the candidate SSB is given as {2, 8} + 14*n. When the carrier frequency is 3 GHz or less, n=0, 1. When the carrier frequency is 3 GHz to 6 GHz, n = 0, 1, 2, 3.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.-Case B-30 kHz SCS: The index of the start symbol of the candidate SSB is given as {4, 8, 16, 20} + 28*n. When the carrier frequency is 3 GHz or less, n=0. When the carrier frequency is 3 GHz to 6 GHz, n=0, 1.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.-Case C-30 kHz SCS: The index of the start symbol of the candidate SSB is given as {2, 8} + 14*n. When the carrier frequency is 3 GHz or less, n=0, 1. When the carrier frequency is 3 GHz to 6 GHz, n = 0, 1, 2, 3.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.-Case D-120 kHz SCS: The index of the start symbol of the candidate SSB is given as {4, 8, 16, 20} + 28*n. When the carrier frequency is greater than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.-Case E-240 kHz SCS: The index of the start symbol of the candidate SSB is given as {8, 12, 16, 20, 32, 36, 40, 44} + 56*n. When the carrier frequency is greater than 6 GHz, n = 0, 1, 2, 3, 5, 6, 7, 8.
도 8은 단말이 DL 시간 동기에 관한 정보를 획득하는 것을 예시한다.8 illustrates that the terminal obtains information on DL time synchronization.
단말은 SSB를 검출함으로써 DL 동기를 획득할 수 있다. 단말은 검출된 SSB 인덱스에 기반하여 SSB 버스트 세트의 구조를 식별할 수 있고, 이에 따라 심볼/슬롯/하프-프레임 경계를 검출할 수 있다. 검출된 SSB가 속하는 프레임/하프-프레임의 번호는 번호는 SFN 정보와 하프-프레임 지시 정보를 이용하여 식별될 수 있다.The UE can acquire DL synchronization by detecting the SSB. The terminal may identify the structure of the SSB burst set based on the detected SSB index, and accordingly, may detect a symbol/slot/half-frame boundary. The number of the frame/half-frame to which the detected SSB belongs can be identified using SFN information and half-frame indication information.
구체적으로, 단말은 PBCH로부터 10 비트 SFN(System Frame Number) 정보를 획득할 수 있다(s0~s9). 10 비트 SFN 정보 중 6 비트는 MIB(Master Information Block)로부터 얻어지고, 나머지 4 비트는 PBCH TB(Transport Block)으로부터 얻어진다.Specifically, the UE may obtain 10-bit SFN (System Frame Number) information from the PBCH (s0 to s9). Of the 10-bit SFN information, 6 bits are obtained from MIB (Master Information Block), and the remaining 4 bits are obtained from PBCH TB (Transport Block).
다음으로, 단말은 1 비트 하프-프레임 지시 정보를 획득할 수 있다(c0). 반송파 주파수가 3GHz 이하인 경우, 하프-프레임 지시 정보는 PBCH DMRS를 이용하여 묵시적으로(implicitly) 시그널링 될 수 있다. PBCH DMRS는 8개의 PBCH DMRS 시퀀스들 중 하나를 사용함으로써 3 비트 정보를 지시한다. 따라서, L=4의 경우, 8개의 PBCH DMRS 시퀀스를 이용하여 지시될 수 있는 3 비트 중 SSB 인덱스를 지시하고 남는 1 비트는 하프-프레임 지시 용도로 사용될 수 있다 Next, the terminal may acquire 1-bit half-frame indication information (c0). When the carrier frequency is 3 GHz or less, the half-frame indication information may be implicitly signaled using PBCH DMRS. The PBCH DMRS indicates 3-bit information by using one of 8 PBCH DMRS sequences. Therefore, in the case of L=4, the SSB index is indicated among 3 bits that can be indicated using 8 PBCH DMRS sequences, and the remaining 1 bit may be used for half-frame indication.
마지막으로, 단말은 DMRS 시퀀스와 PBCH 페이로드에 기반하여 SSB 인덱스를 획득할 수 있다. SSB 후보는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다. L = 8 또는 64인 경우, SSB 인덱스의 LSB(Least Significant Bit) 3 비트는 8개의 서로 다른 PBCH DMRS 시퀀스를 이용하여 지시될 수 있다(b0~b2). L = 64인 경우, SSB 인덱스의 MSB(Most Significant Bit) 3 비트는 PBCH를 통해 지시된다(b3~b5). L = 2인 경우, SSB 인덱스의 LSB 2 비트는 4개의 서로 다른 PBCH DMRS 시퀀스를 이용하여 지시될 수 있다(b0, b1). L = 4인 경우, 8개의 PBCH DMRS 시퀀스를 이용하여 지시할 수 있는 3 비트 중 SSB 인덱스를 지시하고 남는 1 비트는 하프-프레임 지시 용도로 사용될 수 있다(b2).Finally, the UE may acquire an SSB index based on the DMRS sequence and PBCH payload. SSB candidates are indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame). When L = 8 or 64, 3 bits of the LSB (Least Significant Bit) of the SSB index may be indicated using 8 different PBCH DMRS sequences (b0 to b2). When L = 64, 3 bits of the MSB (Most Significant Bit) of the SSB index are indicated through the PBCH (b3 to b5). When L = 2, the LSB 2 bits of the SSB index may be indicated using four different PBCH DMRS sequences (b0, b1). When L = 4, out of 3 bits that can be indicated by using 8 PBCH DMRS sequences, the SSB index is indicated and the remaining 1 bit may be used for half-frame indication (b2).
물리 채널 및 일반적인 신호 전송Physical channel and general signal transmission
도 9는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.9 illustrates physical channels and general signal transmission used in a 3GPP system. In a wireless communication system, a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL). The information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the UE receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station to synchronize with the base station and obtain information such as cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check a downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. It can be done (S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S603 내지 S606). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S606).Meanwhile, when accessing the base station for the first time or when there is no radio resource for signal transmission, the terminal may perform a random access procedure (RACH) for the base station (S603 to S606). To this end, the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message) In the case of contention-based RACH, a contention resolution procedure may be additionally performed (S606).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다. After performing the above-described procedure, the UE receives PDCCH/PDSCH (S607) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure. Control Channel; PUCCH) transmission (S608) may be performed. In particular, the terminal may receive downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and different formats may be applied according to the purpose of use.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.On the other hand, the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc. The UE may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
표 6은 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.Table 6 shows an example of the DCI format in the NR system.
Figure PCTKR2020005865-appb-T000006
Figure PCTKR2020005865-appb-T000006
표 6을 참고하면, DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다.Referring to Table 6, DCI format 0_0 is used for PUSCH scheduling in one cell.
DCI format 0_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. 그리고, DCI format 0_1은 하나의 셀에서 PUSCH를 예약하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI 포맷 2_1은 단말이 전송을 의도하지 않은 것으로 가정할 수 있는 PRB(들) 및 OFDM 심볼(들)을 알리는데 사용된다.The information included in DCI format 0_0 is CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI and transmitted. And, DCI format 0_1 is used to reserve a PUSCH in one cell. The information included in DCI format 0_1 is transmitted after being CRC scrambled by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI. DCI format 1_0 is used for PDSCH scheduling in one DL cell. The information included in DCI format 1_0 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI. DCI format 1_1 is used for PDSCH scheduling in one cell. Information included in DCI format 1_1 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI. DCI format 2_1 is used to inform the PRB(s) and OFDM symbol(s) which may be assumed to be not intended for transmission by the UE.
DCI 포맷 2_1에 포함되는 다음 정보는 INT-RNTI에 의해 CRC 스크램블링되어 전송된다.The following information included in DCI format 2_1 is CRC scrambled by INT-RNTI and transmitted.
- preemption indication 1, preemption indication 2, ..., preemption indication N.-preemption indication 1, preemption indication 2, ..., preemption indication N.
본 발명에서는 CSI acquisition/reporting과 관련하여 DFT vector를 사용하여 코드북을 구성하는 경우, 구현상의 이유로 실제 CSI reporting에 사용되는 spatial domain/frequency domain/time domain과 관련된 정보의 dimension size가 DFT vector의 크기보다 작은 경우에 적용하는 padding 기법을 설정/지시/지원하기 위한 signaling 방식 및 단말/기지국 동작(UE/BS behavior)에 대해 제안한다.In the present invention, when a codebook is configured using a DFT vector in relation to CSI acquisition/reporting, for implementation reasons, the dimension size of information related to the spatial domain/frequency domain/time domain used for actual CSI reporting is less than the size of the DFT vector A signaling scheme and UE/BS behavior for setting/instructing/supporting the padding scheme applied in small cases are proposed.
본 명세서에서 '/'는 /로 구분된 내용을 모두 포함(and)하거나 구분된 내용 중 일부만 포함(or)하는 것을 의미할 수 있다.In the present specification,'/' may mean that all the contents separated by / are included (and) or only some of the classified contents are included (or).
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.Hereinafter, downlink (DL) refers to communication from a base station to a terminal, and uplink (UL) refers to communication from a terminal to a base station. In downlink, the transmitter may be part of the base station, and the receiver may be part of the terminal. In the uplink, the transmitter may be part of the terminal, and the receiver may be part of the base station. The base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device. Base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G). Network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device, etc. Can be replaced by In addition, the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It can be replaced with terms such as robot, AI (Artificial Intelligence) module, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
빔 관리(Beam Management, BM)Beam Management (BM)
BM 절차는 다운링크(downlink, DL) 및 업링크(uplink, UL) 송/수신에 사용될 수 있는 기지국(예: gNB, TRP 등) 및/또는 단말(예: UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.The BM procedure includes a base station (eg, gNB, TRP, etc.) and/or a terminal (eg, UE) beam set that can be used for downlink (DL) and uplink (uplink, UL) transmission/reception. As L1 (layer 1)/L2 (layer 2) procedures for obtaining and maintaining, the following procedures and terms may be included.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.-Beam measurement: An operation in which the base station or the UE measures the characteristics of the received beamforming signal.
- 빔 결정(beam determination): 기지국 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.-Beam determination: An operation in which the base station or the UE selects its own transmission beam (Tx beam) / reception beam (Rx beam).
- 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작.-Beam sweeping: An operation of covering a spatial area using a transmit and/or receive beam for a certain time interval in a predetermined manner.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.-Beam report: An operation in which the UE reports information on a beam formed signal based on beam measurement.
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다. 또한, 각 BM 절차는 Tx beam을 결정하기 위한 Tx beam sweeping과 Rx beam을 결정하기 위한 Rx beam sweeping을 포함할 수 있다.The BM procedure can be divided into (1) a DL BM procedure using a synchronization signal (SS)/physical broadcast channel (PBCH) block or a CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS). In addition, each BM procedure may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
하향링크 빔 관리(Downlink Beam Management, DL BM)Downlink Beam Management (DL BM)
도 10은 빔 관리(beam management)를 위해 사용되는 빔의 일 예를 나타내는 도면이다.10 is a diagram illustrating an example of a beam used for beam management.
DL BM 절차는 (1) 기지국의 beamformed DL RS(reference signal)들(예: CSI-RS 또는 SS Block(SSB))에 대한 전송과, (2) 단말의 beam reporting을 포함할 수 있다.The DL BM procedure may include (1) transmission of beamformed DL RS (reference signals) (eg, CSI-RS or SS Block (SSB)) of the base station, and (2) beam reporting of the terminal.
여기서, beam reporting은 선호되는(preferred) DL RS ID(identifier)(s) 및 이에 대응하는 L1-RSRP(Reference Signal Received Power)를 포함할 수 있다.Here, the beam reporting may include a preferred (preferred) DL RS identifier (s) and a corresponding L1-RSRP (Reference Signal Received Power).
상기 DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.The DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
도 10에 도시된 바와 같이, SSB 빔과 CSI-RS 빔은 빔 관리를 위해서 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다. SSB는 coarse한 beam measurement를 위해 사용되며, CSI-RS는 fine한 beam measurement를 위해 사용될 수 있다. SSB는 Tx beam sweeping과 Rx beam sweeping 모두에 사용될 수 있다.As shown in FIG. 10, the SSB beam and the CSI-RS beam may be used for beam management. The measurement metric is L1-RSRP for each resource/block. SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement. SSB can be used for both Tx beam sweeping and Rx beam sweeping.
SSB를 이용한 Rx beam sweeping은 다수의 SSB bursts에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx beam을 변경하면서 수행될 수 있다. 여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS burst set은 하나 또는 그 이상의 SSB burst들을 포함한다.Rx beam sweeping using SSB may be performed while the UE changes the Rx beam for the same SSBRI over a plurality of SSB bursts. Here, one SS burst includes one or more SSBs, and one SS burst set includes one or more SSB bursts.
SSB를 이용한 DL BMDL BM using SSB
도 11은 하향링크 빔 관리 절차의 일 예를 나타내는 흐름도이다.11 is a flowchart illustrating an example of a downlink beam management procedure.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC connected state(또는 RRC connected mode)에서 CSI/beam configuration 시에 수행된다.The setting for the beam report using the SSB is performed during CSI/beam configuration in the RRC connected state (or RRC connected mode).
- 단말은 BM을 위해 사용되는 SSB resource들을 포함하는 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 기지국으로부터 수신한다(S910).-The terminal receives a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList including SSB resources used for BM from the base station (S910).
표 7은 CSI-ResourceConfig IE의 일례를 나타내며, 표 A와 같이, SSB를 이용한 BM configuration은 별도로 정의되지 않고, SSB를 CSI-RS resource처럼 설정한다.Table 7 shows an example of CSI-ResourceConfig IE, and as shown in Table A, BM configuration using SSB is not separately defined, and SSB is configured as CSI-RS resource.
Figure PCTKR2020005865-appb-T000007
Figure PCTKR2020005865-appb-T000007
표 7에서, csi-SSB-ResourceSetList parameter는 하나의 resource set에서 beam management 및 reporting을 위해 사용되는 SSB resource들의 리스트를 나타낸다. 여기서, SSB resource set은 {SSBx1, SSBx2, SSBx3, SSBx4, …}으로 설정될 수 있다. SSB index는 0부터 63까지 정의될 수 있다.In Table 7, csi-SSB-ResourceSetList parameter represents a list of SSB resources used for beam management and reporting in one resource set. Here, the SSB resource set is {SSBx1, SSBx2, SSBx3, SSBx4, ... Can be set to }. SSB index can be defined from 0 to 63.
- 단말은 상기 CSI-SSB-ResourceSetList에 기초하여 SSB resource를 상기 기지국으로부터 수신한다(S920).-The terminal receives an SSB resource from the base station based on the CSI-SSB-ResourceSetList (S920).
- SSBRI 및 L1-RSRP에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 단말은 best SSBRI 및 이에 대응하는 L1-RSRP를 기지국으로 (빔) report한다(S930).-When the CSI-RS reportConfig related to reporting for SSBRI and L1-RSRP is configured, the terminal reports the best SSBRI and the corresponding L1-RSRP to the base station (beam) (S930).
즉, 상기 CSI-RS reportConfig IE의 reportQuantity가 ‘ssb-Index-RSRP’로 설정된 경우, 단말은 기지국으로 best SSBRI 및 이에 대응하는 L1-RSRP를 보고한다.That is, when the reportQuantity of the CSI-RS reportConfig IE is set to'ssb-Index-RSRP', the UE reports the best SSBRI and the corresponding L1-RSRP to the base station.
그리고, 단말은 SSB(SS/PBCH Block)와 동일한 OFDM 심볼(들)에서 CSI-RS resource가 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 단말은 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 quasi co-located라고 가정할 수 있다.And, when the UE is configured with a CSI-RS resource in the same OFDM symbol(s) as SSB (SS/PBCH Block) and'QCL-TypeD' is applicable, the UE has CSI-RS and SSB'QCL-TypeD' 'From the point of view, we can assume that it is quasi co-located.
여기서, 상기 QCL TypeD는 spatial Rx parameter 관점에서 antenna port들 간에 QCL되어 있음을 의미할 수 있다. 단말이 QCL Type D 관계에 있는 복수의 DL antenna port들을 수신 시에는 동일한 수신 빔을 적용하여도 무방하다. 또한, 단말은 SSB의 RE와 중첩하는 RE에서 CSI-RS가 설정될 것으로 기대하지 않는다.Here, the QCL TypeD may mean that QCL is performed between antenna ports in terms of a spatial Rx parameter. When the UE receives a plurality of DL antenna ports in QCL Type D relationship, the same reception beam may be applied. In addition, the UE does not expect the CSI-RS to be configured in the RE overlapping the RE of the SSB.
CSI-RS를 이용한 DL BMDL BM using CSI-RS
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS resource set에 repetition parameter가 설정되고, TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) repetition parameter가 설정되지 않고, TRS_info가 설정된 경우, CSI-RS는 TRS(tracking reference signal)을 위해 사용된다. iii) repetition parameter가 설정되지 않고, TRS_info가 설정되지 않은 경우, CSI-RS는 CSI acquisition을 위해 사용된다.Looking at the use of CSI-RS, i) when a repetition parameter is set in a specific CSI-RS resource set and TRS_info is not set, the CSI-RS is used for beam management. ii) When the repetition parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
이러한, repetition parameter는 L1 RSRP 또는 ‘No Report(또는 None)’의 report를 가지는 CSI-ReportConfig와 연계된 CSI-RS resource set들에 대해서만 설정될 수 있다.Such a repetition parameter may be set only for CSI-RS resource sets linked with L1 RSRP or CSI-ReportConfig having a report of'No Report (or None)'.
만약 단말이 reportQuantity가 ‘cri-RSRP’ 또는 ‘none’으로 설정된 CSI-ReportConfig를 설정받고, 채널 측정을 위한 CSI-ResourceConfig (higher layer parameter resourcesForChannelMeasurement)가 higher layer parameter ‘trs-Info’를 포함하지 않고, higher layer parameter ‘repetition’이 설정된 NZP-CSI-RS-ResourceSet를 포함하는 경우, 상기 단말은 NZP-CSI-RS-ResourceSet 내의 모든 CSI-RS resource들에 대해 higher layer parameter ‘nrofPorts’를 가지는 동일한 번호의 포트(1-port 또는 2-port)로만 구성될 수 있다.If the UE is configured with CSI-ReportConfig in which reportQuantity is set to'cri-RSRP' or'none', CSI-ResourceConfig (higher layer parameter resourcesForChannelMeasurement) for channel measurement does not include the higher layer parameter'trs-Info', When the higher layer parameter'repetition' includes the configured NZP-CSI-RS-ResourceSet, the UE of the same number having a higher layer parameter'nrofPorts' for all CSI-RS resources in the NZP-CSI-RS-ResourceSet It can only be configured as a port (1-port or 2-port).
(higher layer parameter) repetition이 'ON'으로 설정된 경우, 단말의 Rx beam sweeping 절차와 관련된다. 이 경우, 단말이 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 단말은 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 동일한 downlink spatial domain transmission filter로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 동일한 Tx beam을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 서로 다른 OFDM 심볼로 전송될 수 있다. 또한, 단말은 NZP-CSI-RS-Resourceset 내의 모든 CSI-RS resource들에서 periodicityAndOffset에 서로 다른 주기(periodicity)를 수신할 것으로 기대하지 않는다. (higher layer parameter) When repetition is set to'ON', it is related to the Rx beam sweeping procedure of the terminal. In this case, when the terminal receives the NZP-CSI-RS-ResourceSet, the terminal may assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam. Here, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols. In addition, the UE does not expect to receive different periods in periodicityAndOffset in all CSI-RS resources in the NZP-CSI-RS-Resourceset.
반면, Repetition이 ‘OFF’로 설정된 경우는 기지국의 Tx beam sweeping 절차와 관련된다. 이 경우, repetition이 'OFF'로 설정되면, 단말은 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource가 동일한 downlink spatial domain transmission filter로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 서로 다른 Tx beam을 통해 전송된다.On the other hand, when Repetition is set to'OFF', it is related to the Tx beam sweeping procedure of the base station. In this case, when repetition is set to'OFF', the UE does not assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through different Tx beams.
도 12는 채널 상태 정보 참조 신호(Channel State Information-Reference Signal: CSI-RS)를 이용한 하향링크 빔 관리 절차의 일 예를 나타낸다.12 shows an example of a downlink beam management procedure using a Channel State Information-Reference Signal (CSI-RS).
도 12(a)는 단말의 Rx beam 결정(또는 refinement) 절차를 나타내며, 도 12(b)는 기지국의 Tx beam sweeping 절차를 나타낸다. 또한, 도 12(a)는, repetition parameter가 ‘ON’으로 설정된 경우이고, 도 12(b)는, repetition parameter가 ‘OFF’로 설정된 경우이다.12(a) shows the Rx beam determination (or refinement) procedure of the UE, and FIG. 12(b) shows the Tx beam sweeping procedure of the base station. In addition, FIG. 12(a) shows a case where the repetition parameter is set to'ON', and FIG. 12(b) shows a case where the repetition parameter is set to'OFF'.
도 12(a) 및 도 13을 참고하여, 단말의 Rx beam 결정 과정에 대해 살펴본다.Referring to FIGS. 12(a) and 13, a process of determining an Rx beam of a terminal will be described.
도 13은 단말의 수신 빔 결정 과정의 일 예를 나타내는 흐름도이다.13 is a flowchart illustrating an example of a process of determining a reception beam by a terminal.
- 단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1110). 여기서, 상기 repetition parameter는 ‘ON’으로 설정된다.-The terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1110). Here, the repetition parameter is set to'ON'.
- 단말은 repetition ‘ON’으로 설정된 CSI-RS resource set 내의 resource(들)을 기지국의 동일 Tx beam(또는 DL spatial domain transmission filter)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S1120). -The UE repeatedly receives resource(s) in the CSI-RS resource set set to repetition'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the base station (S1120).
- 단말은 자신의 Rx beam을 결정한다(S1130). -The terminal determines its own Rx beam (S1130).
- 단말은 CSI report를 생략한다(S1140). 이 경우, CSI report config의 reportQuantity는 ‘No report(또는 None)’로 설정될 수 있다. -The UE omits the CSI report (S1140). In this case, the reportQuantity of the CSI report config may be set to'No report (or None)'.
즉, 상기 단말은 repetition ‘ON’으로 설정된 경우, CSI report를 생략할 수 있다.That is, when the terminal is set to repetition'ON', the CSI report may be omitted.
도 12(b) 및 도 14를 참고하여, 기지국의 Tx beam 결정 과정에 대해 살펴본다.Referring to FIGS. 12(b) and 14, a process of determining a Tx beam of a base station will be described.
도 14는 기지국의 전송 빔 결정 과정의 일 예를 나타내는 흐름도이다.14 is a flowchart illustrating an example of a transmission beam determination process of a base station.
- 단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1210). 여기서, 상기 repetition parameter는 ‘OFF’로 설정되며, 기지국의 Tx beam sweeping 절차와 관련된다.-The terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1210). Here, the repetition parameter is set to'OFF', and is related to the Tx beam sweeping procedure of the base station.
- 단말은 repetition ‘OFF’로 설정된 CSI-RS resource set 내의 resource들을 기지국의 서로 다른 Tx beam(DL spatial domain transmission filter)을 통해 수신한다(S1220). -The terminal receives resources in the CSI-RS resource set set to repetition'OFF' through different Tx beams (DL spatial domain transmission filters) of the base station (S1220).
- 단말은 최상의(best) beam을 선택(또는 결정)한다(S1230)-The terminal selects (or determines) the best beam (S1230)
- 단말은 선택된 빔에 대한 ID 및 관련 품질 정보(예: L1-RSRP)를 기지국으로 보고한다(S1240). 이 경우, CSI report config의 reportQuantity는 ‘CRI + L1-RSRP’로 설정될 수 있다.-The terminal reports the ID and related quality information (eg, L1-RSRP) for the selected beam to the base station (S1240). In this case, the reportQuantity of the CSI report config may be set to'CRI + L1-RSRP'.
즉, 상기 단말은 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 L1-RSRP를 기지국으로 보고한다.That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and the L1-RSRP thereof to the base station.
도 15는 CSI-RS를 이용한 DL BM 절차와 관련된 시간 및 주파수 영역에서의 자원 할당의 일 예를 나타낸다.15 shows an example of resource allocation in time and frequency domains related to a DL BM procedure using CSI-RS.
구체적으로, CSI-RS resource set에 repetition ‘ON’이 설정된 경우, 복수의 CSI-RS resource들이 동일한 송신 빔을 적용하여 반복하여 사용되고, CSI-RS resource set에 repetition ‘OFF’가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 송신 빔으로 전송되는 것을 볼 수 있다.Specifically, when repetition'ON' is set in the CSI-RS resource set, a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam, and when repetition'OFF' is set in the CSI-RS resource set, different It can be seen that CSI-RS resources are transmitted in different transmission beams.
DL BM 관련 빔 지시(beam indication)DL BM related beam indication
단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정받을 수 있다. 여기서, M은 64일 수 있다.The UE may receive a list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication purposes. Here, M may be 64.
각 TCI state는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.Each TCI state can be set as one RS set. Each ID of a DL RS for spatial QCL purpose (QCL Type D) in at least an RS set may refer to one of DL RS types such as SSB, P-CSI RS, SP-CSI RS, and A-CSI RS. .
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다. At least, initialization/update of the ID of the DL RS(s) in the RS set used for spatial QCL purposes may be performed through at least explicit signaling.
표 8은 TCI-State IE의 일례를 나타낸다.Table 8 shows an example of the TCI-State IE.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다.The TCI-State IE is associated with one or two DL reference signals (RS) corresponding quasi co-location (QCL) types.
Figure PCTKR2020005865-appb-T000008
Figure PCTKR2020005865-appb-T000008
표 8에서, bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.In Table 8, the bwp-Id parameter indicates the DL BWP where the RS is located, the cell parameter indicates the carrier where the RS is located, and the reference signal parameter is a reference that is a source of quasi co-location for the target antenna port(s). It represents the antenna port(s) or a reference signal including it. The target antenna port(s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS. For example, in order to indicate QCL reference RS information for NZP CSI-RS, a corresponding TCI state ID may be indicated in NZP CSI-RS resource configuration information. As another example, in order to indicate QCL reference information for the PDCCH DMRS antenna port(s), a TCI state ID may be indicated in each CORESET setting. As another example, in order to indicate QCL reference information for the PDSCH DMRS antenna port(s), the TCI state ID may be indicated through DCI.
QCL(Quasi-Co Location)Quasi-Co Location (QCL)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.The antenna port is defined so that a channel carrying a symbol on an antenna port can be inferred from a channel carrying another symbol on the same antenna port. When the property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or quasi co-location). ) It can be said that it is in a relationship.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수/도플러 쉬프트(Frequency/Doppler shift), 평균 수신 파워(Average received power), 수신 타이밍/평균지연(Received Timing / average delay), Spatial RX parameter 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 angle of arrival과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다. Here, the channel characteristics are delay spread, Doppler spread, frequency/Doppler shift, average received power, and received timing/average delay) and Spatial RX parameter. Here, the Spatial Rx parameter means a spatial (receiving) channel characteristic parameter such as angle of arrival.
단말은 해당 단말 및 주어진 serving cell에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, higher layer parameter PDSCH-Config 내 M 개까지의 TCI-State configuration의 리스트로 설정될 수 있다. 상기 M은 UE capability에 의존한다.The UE may be configured as a list of up to M TCI-State configurations in the higher layer parameter PDSCH-Config in order to decode the PDSCH according to the detected PDCCH having DCI intended for the UE and a given serving cell. The M depends on the UE capability.
각각의 TCI-State는 하나 또는 두 개의 DL reference signal과 PDSCH의 DM-RS port 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.Each TCI-State includes a parameter for setting a quasi co-location relationship between one or two DL reference signals and the DM-RS port of the PDSCH.
Quasi co-location 관계는 첫 번째 DL RS에 대한 higher layer parameter qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다. 두 개의 DL RS의 경우, reference가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL type은 동일하지 않다.The Quasi co-location relationship is set with the higher layer parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set). In the case of two DL RSs, the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
각 DL RS에 대응하는 quasi co-location type은 QCL-Info의 higher layer parameter qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:The quasi co-location type corresponding to each DL RS is given by the higher layer parameter qcl-Type of QCL-Info, and can take one of the following values:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}-'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}-'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}-'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}-'QCL-TypeD': {Spatial Rx parameter}
예를 들어, target antenna port가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS antenna ports는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.For example, if the target antenna port is a specific NZP CSI-RS, the corresponding NZP CSI-RS antenna ports may indicate/set that a specific TRS and a specific SSB and a QCL are provided in a QCL-Type A perspective and a QCL-Type D perspective. have. The UE receiving this indication/configuration receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 codepoint에 매핑하기 위해 사용되는 MAC CE signaling에 의한 activation command를 수신할 수 있다.The UE may receive an activation command by MAC CE signaling used to map up to 8 TCI states to the codepoint of the DCI field'Transmission Configuration Indication'.
UL BMUL BM
UL BM은 단말 구현에 따라 Tx beam - Rx beam 간 beam reciprocity(또는 beam correspondence)가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL beam pair를 통해 UL beam pair를 맞출 수 있다. 하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.In the UL BM, beam reciprocity (or beam correspondence) between Tx beam and Rx beam may or may not be established according to UE implementation. If reciprocity between the Tx beam and the Rx beam is established in both the base station and the terminal, a UL beam pair may be matched through a DL beam pair. However, when the reciprocity between the Tx beam and the Rx beam is not established at either of the base station and the terminal, a UL beam pair determination process is required separately from the DL beam pair determination.
또한, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.In addition, even when both the base station and the terminal maintain beam correspondence, the base station can use the UL BM procedure to determine the DL Tx beam without requesting the terminal to report a preferred beam.
UL BM은 beamformed UL SRS 전송을 통해 수행될 수 있으며, SRS resource set의 UL BM의 적용 여부는 (higher layer parameter) usage에 의해 설정된다. usage가 'BeamManagement(BM)'로 설정되면, 주어진 time instant에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다. UL BM may be performed through beamformed UL SRS transmission, and whether to apply UL BM of the SRS resource set is set by (higher layer parameter) usage. When usage is set to'Beam Management (BM)', only one SRS resource may be transmitted to each of a plurality of SRS resource sets at a given time instant.
단말은 (higher layer parameter) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 Sounding Reference Symbol (SRS) resource set들을 (higher layer signaling, RRC signaling 등을 통해) 설정받을 수 있다. 각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (higher later parameter SRS-resource)이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다. The terminal may receive one or more Sounding Reference Symbol (SRS) resource sets set by the (higher layer parameter) SRS-ResourceSet (through higher layer signaling, RRC signaling, etc.). For each SRS resource set, the UE may be configured with K≥1 SRS resources (higher later parameter SRS-resource). Here, K is a natural number, and the maximum value of K is indicated by SRS_capability.
DL BM과 마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.Like the DL BM, the UL BM procedure can be divided into a Tx beam sweeping of a terminal and an Rx beam sweeping of a base station.
도 16은 사운딩 참조 신호(Sounding Reference Signal: SRS)를 이용한 상향링크 빔 관리 절차의 일 예를 나타낸다. 도 16(a)는 기지국의 Rx beam 결정 절차를 나타내고, 도 16(b)는 단말의 Tx beam sweeping 절차를 나타낸다.16 shows an example of an uplink beam management procedure using a sounding reference signal (SRS). Figure 16 (a) shows the Rx beam determination procedure of the base station, Figure 16 (b) shows the Tx beam sweeping procedure of the terminal.
도 17은 SRS를 이용한 상향링크 빔 관리 절차의 일 예를 나타내는 흐름도이다.17 is a flowchart illustrating an example of an uplink beam management procedure using SRS.
- 단말은 ‘beam management’로 설정된 (higher layer parameter) usage parameter를 포함하는 RRC signaling(예: SRS-Config IE)를 기지국으로부터 수신한다(S1510).-The UE receives RRC signaling (eg, SRS-Config IE) including a usage parameter set to “beam management” from the base station (S1510).
표 9는 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 list와 SRS-ResourceSet들의 list를 포함한다. 각 SRS resource set는 SRS-resource들의 set를 의미한다.Table 9 shows an example of an SRS-Config IE (Information Element), and the SRS-Config IE is used for SRS transmission configuration. The SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거할 수 있다.The network can trigger the transmission of the SRS resource set using the configured aperiodicSRS-ResourceTrigger (L1 DCI).
Figure PCTKR2020005865-appb-T000009
Figure PCTKR2020005865-appb-T000009
Figure PCTKR2020005865-appb-I000049
Figure PCTKR2020005865-appb-I000049
표 9에서, usage는 SRS resource set이 beam management를 위해 사용되는지, codebook 기반 또는 non-codebook 기반 전송을 위해 사용되는지를 지시하는 higher layer parameter를 나타낸다. usage parameter는 L1 parameter 'SRS-SetUse'에 대응한다. ‘spatialRelationInfo’는 reference RS와 target SRS 사이의 spatial relation의 설정을 나타내는 parameter이다. 여기서, reference RS는 L1 parameter 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다. 상기, usage는 SRS resource set 별로 설정된다.In Table 9, usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management, codebook-based or non-codebook-based transmission. The usage parameter corresponds to the L1 parameter'SRS-SetUse'. 'SpatialRelationInfo' is a parameter indicating the setting of the spatial relation between the reference RS and the target SRS. Here, the reference RS may be SSB, CSI-RS, or SRS corresponding to the L1 parameter'SRS-SpatialRelationInfo'. The usage is set for each SRS resource set.
- 단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S1520). 여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다. 또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.-The terminal determines a Tx beam for an SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (S1520). Here, SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beam as the beam used in SSB, CSI-RS or SRS for each SRS resource. In addition, SRS-SpatialRelationInfo may or may not be set for each SRS resource.
- 만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다. 하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S1530). -If the SRS-SpatialRelationInfo is set in the SRS resource, the same beam as the beam used in SSB, CSI-RS or SRS is applied and transmitted. However, if the SRS-SpatialRelationInfo is not set in the SRS resource, the terminal randomly determines a Tx beam and transmits the SRS through the determined Tx beam (S1530).
보다 구체적으로, ‘SRS-ResourceConfigType’가 ’periodic’으로 설정된 P-SRS에 대해:More specifically, for P-SRS in which'SRS-ResourceConfigType' is set to'periodic':
i) SRS-SpatialRelationInfo가 ‘SSB/PBCH’로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 spatial domain Rx filter와 동일한 (혹은 해당 filter로부터 생성된) spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다; 또는i) When SRS-SpatialRelationInfo is set to'SSB/PBCH', the UE applies the same spatial domain transmission filter (or generated from the filter) as the spatial domain Rx filter used for SSB/PBCH reception, and the corresponding SRS resource To transmit; or
ii) SRS-SpatialRelationInfo가 ‘CSI-RS’로 설정되는 경우, UE는 periodic CSI-RS 또는 SP CSI-RS의 수신을 위해 사용되는 동일한 spatial domain transmission filter를 적용하여 SRS resource를 전송한다; 또는ii) When SRS-SpatialRelationInfo is set to'CSI-RS', the UE transmits the SRS resource by applying the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS; or
iii) SRS-SpatialRelationInfo가 ‘SRS’로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용된 동일한 spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.iii) When SRS-SpatialRelationInfo is set to'SRS', the UE transmits the SRS resource by applying the same spatial domain transmission filter used for transmission of periodic SRS.
‘SRS-ResourceConfigType’이 ‘SP-SRS’ 또는 ‘AP-SRS’로 설정된 경우에도 위와 유사하게 빔 결정 및 전송 동작이 적용될 수 있다.Even when'SRS-ResourceConfigType' is set to'SP-SRS' or'AP-SRS', a beam determination and transmission operation may be applied similarly to the above.
- 추가적으로, 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S1540).-Additionally, the terminal may or may not receive feedback on the SRS from the base station as in the following three cases (S1540).
i) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다. 이 경우는, 기지국이 Rx beam을 selection하는 용도로서 도 14(a)에 대응한다.i) When Spatial_Relation_Info is set for all SRS resources in the SRS resource set, the UE transmits the SRS through a beam indicated by the base station. For example, if Spatial_Relation_Info all indicate the same SSB, CRI, or SRI, the UE repeatedly transmits the SRS with the same beam. In this case, it corresponds to FIG. 14(a) as a use for the base station to select an Rx beam.
ii) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다. 즉, 이 경우는 단말이 Tx beam을 sweeping하는 용도로서, 도 16(b)에 대응한다.ii) Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set. In this case, the terminal can freely transmit while changing the SRS beam. That is, in this case, the UE sweeps the Tx beam and corresponds to FIG. 16(b).
iii) SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.iii) Spatial_Relation_Info can be set only for some SRS resources in the SRS resource set. In this case, for the configured SRS resource, the SRS is transmitted through the indicated beam, and for the SRS resource for which Spatial_Relation_Info is not configured, the terminal may arbitrarily apply and transmit a Tx beam.
CSI 관련 절차(Channel State Information related Procedure)CSI related procedure (Channel State Information related Procedure)
도 18은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 관련 절차의 일 예를 나타내는 흐름도이다.18 is a flowchart illustrating an example of a CSI-related procedure to which the method proposed in the present specification can be applied.
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), L1(layer 1)-RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다.In the NR (New Radio) system, the channel state information-reference signal (CSI-RS) is time and/or frequency tracking, CSI calculation, and L1 (layer 1)-RSRP (reference signal received). power) is used for computation and mobility.
본 명세서에서 사용되는 ‘A 및/또는 B’는 ‘A 또는 B 중 적어도 하나를 포함한다’와 동일한 의미로 해석될 수 있다."A and/or B" used herein may be interpreted as having the same meaning as "including at least one of A or B".
상기 CSI computation은 CSI 획득(acquisition)과 관련되며, L1-RSRP computation은 빔 관리(beam management, BM)와 관련된다.The CSI computation is related to CSI acquisition (acquisition), and the L1-RSRP computation is related to beam management (BM).
CSI(channel state information)은 단말과 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.Channel state information (CSI) collectively refers to information that can indicate the quality of a radio channel (or link) formed between a terminal and an antenna port.
상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, 단말(예: user equipment, UE)은 CSI와 관련된 설정(configuration) 정보를 RRC(radio resource control) signaling을 통해 기지국(예: general Node B, gNB)으로부터 수신한다(S1610).In order to perform one of the uses of the CSI-RS as described above, a terminal (e.g., user equipment, UE) transmits configuration information related to CSI to a base station (e.g., general Node B) through radio resource control (RRC) signaling. , gNB) (S1610).
상기 CSI와 관련된 configuration 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.The configuration information related to the CSI is CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, CSI-RS resource related information Alternatively, it may include at least one of information related to CSI report configuration.
상기 CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다.The CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
CSI-IM resource set은 CSI-IM resource set ID(identifier)에 의해 식별되며, 하나의 resource set은 적어도 하나의 CSI-IM resource를 포함한다.The CSI-IM resource set is identified by a CSI-IM resource set ID (identifier), and one resource set includes at least one CSI-IM resource.
각각의 CSI-IM resource는 CSI-IM resource ID에 의해 식별된다.Each CSI-IM resource is identified by a CSI-IM resource ID.
상기 CSI resource configuration 관련 정보는 NZP(non zero power) CSI-RS resource set, CSI-IM resource set 또는 CSI-SSB resource set 중 적어도 하나를 포함하는 그룹을 정의한다.The CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set.
즉, 상기 CSI resource configuration 관련 정보는 CSI-RS resource set list를 포함하며, 상기 CSI-RS resource set list는 NZP CSI-RS resource set list, CSI-IM resource set list 또는 CSI-SSB resource set list 중 적어도 하나를 포함할 수 있다.That is, the CSI resource configuration related information includes a CSI-RS resource set list, and the CSI-RS resource set list is at least one of the NZP CSI-RS resource set list, CSI-IM resource set list, or CSI-SSB resource set list It can contain one.
상기 CSI resource configuration 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다.The CSI resource configuration related information may be expressed as CSI-ResourceConfig IE.
CSI-RS resource set은 CSI-RS resource set ID에 의해 식별되고, 하나의 resource set은 적어도 하나의 CSI-RS resource를 포함한다.The CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource.
각각의 CSI-RS resource는 CSI-RS resource ID에 의해 식별된다.Each CSI-RS resource is identified by a CSI-RS resource ID.
표 8에서와 같이, NZP CSI-RS resource set 별로 CSI-RS의 용도를 나타내는 parameter들(예: BM 관련 ‘repetition’ parameter, tracking 관련 ‘trs-Info’ parameter)이 설정될 수 있다.As shown in Table 8, parameters indicating the use of CSI-RS for each NZP CSI-RS resource set (eg, a “repetition” parameter related to BM, a “trs-Info” parameter related to tracking) may be set.
표 10은 NZP CSI-RS resource set IE의 일례를 나타낸다.Table 10 shows an example of the NZP CSI-RS resource set IE.
Figure PCTKR2020005865-appb-T000010
Figure PCTKR2020005865-appb-T000010
표 10에서, repetition parameter는 동일한 beam의 반복 전송 여부를 나타내는 parameter로, NZP CSI-RS resource set 별로 repetition이 ‘ON’ 또는 ‘OFF’인지를 지시한다.In Table 10, the repetition parameter is a parameter indicating whether the same beam is repeatedly transmitted, and indicates whether repetition is'ON' or'OFF' for each NZP CSI-RS resource set.
본 명세서에서 사용되는 전송 빔(Tx beam)은 spatial domain transmission filter와, 수신 빔(Rx beam)은 spatial domain reception filter와 동일한 의미로 해석될 수 있다.The transmission beam used in the present specification (Tx beam) may be interpreted as a spatial domain transmission filter, and a reception beam (Rx beam) may have the same meaning as a spatial domain reception filter.
예를 들어, 표 10의 repetition parameter가 ‘OFF’로 설정된 경우, 단말은 resource set 내의 NZP CSI-RS resource(들)이 모든 심볼에서 동일한 DL spatial domain transmission filter와 동일한 Nrofports로 전송된다고 가정하지 않는다.For example, when the repetition parameter in Table 10 is set to'OFF', the UE does not assume that NZP CSI-RS resource(s) in the resource set are transmitted in the same DL spatial domain transmission filter and the same Nrofports in all symbols.
그리고, higher layer parameter에 해당하는 repetition parameter는 L1 parameter의 'CSI-RS-ResourceRep'에 대응한다.And, the repetition parameter corresponding to the higher layer parameter corresponds to the'CSI-RS-ResourceRep' of the L1 parameter.
상기 CSI 보고 설정(report configuration) 관련 정보는 시간 영역 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) parameter 및 보고하기 위한 CSI 관련 quantity를 나타내는 보고량(reportQuantity) parameter를 포함한다.The CSI report configuration related information includes a report ConfigType parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity for reporting.
상기 시간 영역 행동(time domain behavior)은 periodic, aperiodic 또는 semi-persistent일 수 있다.The time domain behavior may be periodic, aperiodic or semi-persistent.
그리고, 상기 CSI report configuration 관련 정보는 CSI-ReportConfig IE로 표현될 수 있으며, 아래 표 11은 CSI-ReportConfig IE의 일례를 나타낸다.In addition, the CSI report configuration related information may be expressed as CSI-ReportConfig IE, and Table 11 below shows an example of the CSI-ReportConfig IE.
Figure PCTKR2020005865-appb-T000011
Figure PCTKR2020005865-appb-T000011
그리고, 상기 단말은 상기 CSI와 관련된 configuration 정보에 기초하여 CSI를 측정(measurement)한다(S1620).In addition, the terminal measures CSI based on configuration information related to the CSI (S1620).
상기 CSI 측정은 (1) 단말의 CSI-RS 수신 과정(S1822)과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정(S1624)을 포함할 수 있다.The CSI measurement may include (1) a CSI-RS reception process of the terminal (S1822), and (2) a process of calculating CSI through the received CSI-RS (S1624).
상기 CSI-RS에 대한 시퀀스(sequence)는 아래 수학식 6에 의해 생성되며, pseudo-random sequence C(i)의 초기값(initialization value)는 수학식 7에 의해 정의된다.The sequence for the CSI-RS is generated by Equation 6 below, and the initialization value of the pseudo-random sequence C(i) is defined by Equation 7.
Figure PCTKR2020005865-appb-M000006
Figure PCTKR2020005865-appb-M000006
Figure PCTKR2020005865-appb-M000007
Figure PCTKR2020005865-appb-M000007
수학식 6 및 7에서,
Figure PCTKR2020005865-appb-I000050
는 radio frame 내 슬롯 번호(slot number)를 나타내고, pseudo-random sequence generator는
Figure PCTKR2020005865-appb-I000051
인 각 OFDM 심볼의 시작에서 Cint로 초기화된다.
In Equations 6 and 7,
Figure PCTKR2020005865-appb-I000050
Represents the slot number in the radio frame, and the pseudo-random sequence generator
Figure PCTKR2020005865-appb-I000051
Is initialized to Cint at the beginning of each OFDM symbol.
그리고, l은 슬롯 내 OFDM symbol number이며, nID는 higher-layer parameter scramblingID와 동일하다.And, l is the OFDM symbol number in the slot, and n ID is the same as the higher-layer parameter scramblingID.
그리고, 상기 CSI-RS는 higher layer parameter CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 영역에서 CSI-RS resource의 RE(resource element) 매핑이 설정된다.In addition, in the CSI-RS, RE (resource element) mapping of the CSI-RS resource is set in the time and frequency domains by the higher layer parameter CSI-RS-ResourceMapping.
표 12는 CSI-RS-ResourceMapping IE의 일례를 나타낸다.Table 12 shows an example of CSI-RS-ResourceMapping IE.
Figure PCTKR2020005865-appb-T000012
Figure PCTKR2020005865-appb-T000012
표 12에서, 밀도(density, D)는 RE/port/PRB(physical resource block)에서 측정되는 CSI-RS resource의 density를 나타내며, nrofPorts는 안테나 포트의 개수를 나타낸다.In Table 12, density (D) represents the density of the CSI-RS resource measured in RE/port/PRB (physical resource block), and nrofPorts represents the number of antenna ports.
그리고, 상기 단말은 상기 측정된 CSI를 기지국으로 보고(report)한다(S12030).And, the terminal reports the measured CSI to the base station (S12030).
여기서, 표 12의 CSI-ReportConfig의 quantity가 ‘none(또는 No report)’로 설정된 경우, 상기 단말은 상기 report를 생략할 수 있다.Here, when the quantity of CSI-ReportConfig in Table 12 is set to'none (or No report)', the terminal may omit the report.
다만, 상기 quantity가 ‘none(또는 No report)’로 설정된 경우에도 상기 단말은 기지국으로 report를 할 수도 있다.However, even when the quantity is set to'none (or No report)', the terminal may report to the base station.
상기 quantity가 ‘none’으로 설정된 경우는 aperiodic TRS를 trigger하는 경우 또는 repetition이 설정된 경우이다.When the quantity is set to'none', the aperiodic TRS is triggered or the repetition is set.
여기서, repetition이 ‘ON’으로 설정된 경우에만 상기 단말의 report를 생략하도록 정의할 수도 있다.Here, it may be defined to omit the report of the terminal only when repetition is set to'ON'.
정리하면, repetition이 ‘ON’ 및 ‘OFF’로 설정되는 경우, CSI report는 ‘No report’, ‘SSBRI(SSB Resource Indicator) 및 L1-RSRP’, ‘CRI(CSI-RS Resource Indicator) 및 L1-RSRP’ 모두 가능할 수 있다.In summary, when repetition is set to'ON' and'OFF', CSI report is'No report','SSB Resource Indicator (SSBRI) and L1-RSRP','CSI-RS Resource Indicator (CRI) and L1- RSRP' could all be possible.
또는, repetition이 ‘OFF’일 경우에는 ‘SSBRI 및 L1-RSRP’ 또는 ‘CRI 및 L1-RSRP’의 CSI report가 전송되도록 정의되고, repetition ‘ON’일 경우에는 ‘No report’, ‘SSBRI 및 L1-RSRP’, 또는 ‘CRI 및 L1-RSRP’가 전송되도록 정의될 수 있다.Alternatively, when the repetition is'OFF', the CSI report of'SSBRI and L1-RSRP' or'CRI and L1-RSRP' is defined to be transmitted, and when the repetition is'ON','No report','SSBRI and L1' -RSRP', or'CRI and L1-RSRP' may be defined to be transmitted.
CSI 측정 및 보고(CSI measurement and reporting) 절차CSI measurement and reporting procedure
NR 시스템은 보다 유연하고 동적인 CSI measurement 및 reporting을 지원한다.The NR system supports more flexible and dynamic CSI measurement and reporting.
상기 CSI measurement는 CSI-RS를 수신하고, 수신된 CSI-RS를 computation하여 CSI를 acquisition하는 절차를 포함할 수 있다.The CSI measurement may include a procedure for acquiring CSI by receiving a CSI-RS and computing the received CSI-RS.
CSI measurement 및 reporting의 time domain behavior로서, aperiodic/semi-persistent/periodic CM(channel measurement) 및 IM(interference measurement)이 지원된다.As the time domain behavior of CSI measurement and reporting, aperiodic/semi-persistent/periodic CM (channel measurement) and IM (interference measurement) are supported.
CSI-IM의 설정을 위해 4 port NZP CSI-RS RE pattern을 이용한다.For the configuration of CSI-IM, a 4 port NZP CSI-RS RE pattern is used.
NR의 CSI-IM 기반 IMR은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH rate matching을 위한 ZP CSI-RS resource들과는 독립적으로 설정된다.NR's CSI-IM-based IMR has a design similar to that of LTE's CSI-IM, and is set independently from ZP CSI-RS resources for PDSCH rate matching.
그리고, NZP CSI-RS 기반 IMR에서 각각의 port는 (바람직한 channel 및) precoded NZP CSI-RS를 가진 interference layer를 emulate한다.And, in the NZP CSI-RS-based IMR, each port emulates an interference layer with a (preferred channel and) precoded NZP CSI-RS.
이는, multi-user case에 대해 intra-cell interference measurement에 대한 것으로, MU interference를 주로 target 한다.This is for intra-cell interference measurement in the multi-user case, and mainly targets MU interference.
기지국은 설정된 NZP CSI-RS 기반 IMR의 각 port 상에서 precoded NZP CSI-RS를 단말로 전송한다.The base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS-based IMR.
단말은 resource set에서 각각의 port에 대해 channel / interference layer를 가정하고 interference를 측정한다.The UE measures interference by assuming a channel / interference layer for each port in the resource set.
채널에 대해, 어떤 PMI 및 RI feedback도 없는 경우, 다수의 resource들은 set에서 설정되며, 기지국 또는 네트워크는 channel / interference measurement에 대해 NZP CSI-RS resource들의 subset을 DCI를 통해 지시한다.For a channel, when there is no PMI and RI feedback, a number of resources are set in a set, and the base station or network indicates a subset of NZP CSI-RS resources for channel / interference measurement through DCI.
resource setting 및 resource setting configuration에 대해 보다 구체적으로 살펴본다.Look at the resource setting and resource setting configuration in more detail.
자원 세팅(resource setting)Resource setting
각각의 CSI resource setting ‘CSI-ResourceConfig’는 (higher layer parameter csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI resource set에 대한 configuration을 포함한다.Each CSI resource setting'CSI-ResourceConfig' includes a configuration for an S≥1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList).
여기서, CSI resource setting은 CSI-RS- resourcesetlist에 대응한다.Here, the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
여기서, S는 설정된 CSI-RS resource set의 수를 나타낸다.Here, S represents the number of the set CSI-RS resource set.
여기서, S≥1 CSI resource set에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS resource들을 포함하는 각각의 CSI resource set과 L1-RSRP computation에 사용되는 SS/PBCH block (SSB) resource를 포함한다.Here, the configuration for the S≥1 CSI resource set is the SS/PBCH block (SSB) used for each CSI resource set and L1-RSRP computation including CSI-RS resources (composed of NZP CSI-RS or CSI-IM) ) Includes resource.
각 CSI resource setting은 higher layer parameter bwp-id로 식별되는 DL BWP(bandwidth 파트)에 위치된다.Each CSI resource setting is located in the DL BWP (bandwidth part) identified by the higher layer parameter bwp-id.
그리고, CSI reporting setting에 링크된 모든 CSI resource setting들은 동일한 DL BWP를 갖는다.And, all CSI resource settings linked to the CSI reporting setting have the same DL BWP.
CSI-ResourceConfig IE에 포함되는 CSI resource setting 내에서 CSI-RS resource의 time domain behavior는 higher layer parameter resourceType에 의해 지시되며, aperiodic, periodic 또는 semi-persistent로 설정될 수 있다.The time domain behavior of the CSI-RS resource within the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the higher layer parameter resourceType, and may be set to aperiodic, periodic or semi-persistent.
Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 CSI-RS resource set의 수(S)는 ‘1’로 제한된다.For periodic and semi-persistent CSI resource settings, the number of set CSI-RS resource sets (S) is limited to '1'.
Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 주기(periodicity) 및 슬롯 오프셋(slot offset)은 bwp-id에 의해 주어지는 것과 같이, 연관된 DL BWP의 numerology에서 주어진다.For periodic and semi-persistent CSI resource settings, the set periodicity and slot offset are given in the numerology of the associated DL BWP, as given by the bwp-id.
UE가 동일한 NZP CSI-RS resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.When the UE is configured with multiple CSI-ResourceConfigs including the same NZP CSI-RS resource ID, the same time domain behavior is configured for CSI-ResourceConfig.
UE가 동일한 CSI-IM resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.When the UE is configured with multiple CSI-ResourceConfigs including the same CSI-IM resource ID, the same time domain behavior is configured for CSI-ResourceConfig.
다음은 channel measurement (CM) 및 interference measurement(IM)을 위한 하나 또는 그 이상의 CSI resource setting들은 higher layer signaling을 통해 설정된다.Next, one or more CSI resource settings for channel measurement (CM) and interference measurement (IM) are set through higher layer signaling.
- interference measurement에 대한 CSI-IM resource.-CSI-IM resource for interference measurement.
- interference measurement에 대한 NZP CSI-RS 자원.-NZP CSI-RS resource for interference measurement.
- channel measurement에 대한 NZP CSI-RS 자원.-NZP CSI-RS resources for channel measurement.
즉, CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.That is, a channel measurement resource (CMR) may be an NZP CSI-RS for CSI acquisition, and an interference measurement resource (IMR) may be a CSI-IM and an NZP CSI-RS for IM.
여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 inter-cell interference measurement에 대해 사용된다.Here, CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
그리고, IM을 위한 NZP CSI-RS는 주로 multi-user로부터 intra-cell interference measurement를 위해 사용된다.And, NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-users.
UE는 채널 측정을 위한 CSI-RS resource(들) 및 하나의 CSI reporting을 위해 설정된 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)이 자원 별로 'QCL-TypeD'라고 가정할 수 있다.The UE may assume that CSI-RS resource(s) for channel measurement and CSI-IM / NZP CSI-RS resource(s) for interference measurement configured for one CSI reporting are'QCL-TypeD' for each resource. .
자원 세팅 설정(resource setting configuration)Resource setting configuration
살핀 것처럼, resource setting은 resource set list를 의미할 수 있다.As you can see, resource setting can mean a list of resource sets.
aperiodic CSI에 대해, higher layer parameter CSI-AperiodicTriggerState를 사용하여 설정되는 각 트리거 상태(trigger state)는 각각의 CSI-ReportConfig가 periodic, semi-persistent 또는 aperiodic resource setting에 링크되는 하나 또는 다수의 CSI-ReportConfig와 연관된다.For aperiodic CSI, each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is one or more CSI-ReportConfig and each CSI-ReportConfig is linked to a periodic, semi-persistent or aperiodic resource setting. Related.
하나의 reporting setting은 최대 3개까지의 resource setting과 연결될 수 있다.One reporting setting can be connected with up to three resource settings.
- 하나의 resource setting이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) resource setting 은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.-When one resource setting is set, the resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
- 두 개의 resource setting들이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 interference measurement를 위한 것이다.-If two resource settings are set, the first resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference) The setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
- 세 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 기반 interference measurement를 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 resource setting 은 NZP CSI-RS 기반 interference measurement를 위한 것이다.-When three resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM-based interference measurement , The third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
Semi-persistent 또는 periodic CSI에 대해, 각 CSI-ReportConfig는 periodic 또는 semi-persistent resource setting에 링크된다.For semi-persistent or periodic CSI, each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 resource setting 이 설정되면, 상기 resource setting은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.-When one resource setting (given by resourcesForChannelMeasurement) is set, the resource setting is for channel measurement for L1-RSRP computation.
- 두 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이며, (higher layer parameter csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 상에서 수행되는 interference measurement를 위해 사용된다.-When two resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM. It is used for interference measurement.
CSI measurement 관련 CSI computation에 대해 살펴본다.Let's look at CSI computation related to CSI measurement.
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS resource는 대응하는 resource set 내에서 CSI-RS resource들 및 CSI-IM resource들의 순서에 의해 CSI-IM resource와 자원 별로 연관된다.When interference measurement is performed on CSI-IM, each CSI-RS resource for channel measurement is associated with each CSI-IM resource and resource according to the order of CSI-RS resources and CSI-IM resources within the corresponding resource set. .
채널 측정을 위한 CSI-RS resource의 수는 CSI-IM resource의 수와 동일하다.The number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
그리고, interference measurement가 NZP CSI-RS에서 수행되는 경우, UE는 채널 측정을 위한 resource setting 내에서 연관된 resource set에서 하나 이상의 NZP CSI-RS resource로 설정될 것으로 기대하지 않는다.And, when interference measurement is performed in the NZP CSI-RS, the UE does not expect to be set as one or more NZP CSI-RS resources in the associated resource set within the resource setting for channel measurement.
Higher layer parameter nzp-CSI-RS-ResourcesForInterference가 설정된 단말은 NZP CSI-RS resource set 내에 18 개 이상의 NZP CSI-RS port가 설정될 것으로 기대하지 않는다.The UE in which the higher layer parameter nzp-CSI-RS-ResourcesForInterference is configured does not expect 18 or more NZP CSI-RS ports to be configured in the NZP CSI-RS resource set.
CSI 측정을 위해, 단말은 아래 사항을 가정한다.For CSI measurement, the UE assumes the following.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS port는 간섭 전송 계층에 해당한다.-Each NZP CSI-RS port configured for interference measurement corresponds to an interfering transport layer.
- 간섭 측정을 위한 NZP CSI-RS port의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.-All interfering transport layers of the NZP CSI-RS port for interference measurement take into account the energy per resource element (EPRE) ratio.
- 채널 측정을 위한 NZP CSI-RS resource의 RE(s) 상에서 다른 간섭 신호, 간섭 측정을 위한 NZP CSI-RS resource 또는 간섭 측정을 위한 CSI-IM resource.-Another interference signal on the RE(s) of the NZP CSI-RS resource for channel measurement, an NZP CSI-RS resource for interference measurement or a CSI-IM resource for interference measurement.
CSI 보고(Reporting) 절차에 대해 보다 구체적으로 살펴본다.Let's look at the CSI reporting procedure in more detail.
CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다.For CSI reporting, time and frequency resources that can be used by the UE are controlled by the base station.
CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI) 또는 L1-RSRP 중 적어도 하나를 포함할 수 있다.Channel state information (CSI) is a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CRI), an SS/PBCH block resource indicator (SSBRI), a layer It may include at least one of indicator (LI), rank indicator (RI), or L1-RSRP.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP에 대해, 단말은 N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting 및 하나 또는 두 개의 trigger state들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)로 higher layer에 의해 설정된다.For CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, the terminal is N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -Set by higher layer (provided by TriggerStateList).
상기 aperiodicTriggerStateList에서 각 trigger state는 channel 및 선택적으로 interference 대한 resource set ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. In the aperiodicTriggerStateList, each trigger state includes a channel and an associated CSI-ReportConfigs list indicating selectively interference resource set IDs.
상기 semiPersistentOnPUSCH-TriggerStateList에서 각 trigger state는 하나의 연관된 CSI-ReportConfig가 포함된다.In the semiPersistentOnPUSCH-TriggerStateList, each trigger state includes one associated CSI-ReportConfig.
그리고, CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다.And, the time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
이하, periodic, semi-persistent (SP), aperiodic CSI reporting에 대해 각각 설명한다.Hereinafter, periodic, semi-persistent (SP), and aperiodic CSI reporting will be described, respectively.
periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다.Periodic CSI reporting is performed on short PUCCH and long PUCCH.
Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다.Periodic CSI reporting period (periodicity) and slot offset (slot offset) may be set to RRC, refer to CSI-ReportConfig IE.
다음, SP CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다.Next, SP CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE로 CSI 보고가 activation/deactivation 된다.In the case of SP CSI on a short/long PUCCH, a period and a slot offset are set to RRC, and CSI reporting is activated/deactivated by a separate MAC CE.
PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다.In the case of SP CSI on PUSCH, the periodicity of SP CSI reporting is set to RRC, but the slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다.The initial CSI reporting timing follows a PUSCH time domain allocation value indicated by DCI, and the subsequent CSI reporting timing follows a period set by RRC.
PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다.For SP CSI reporting on PUSCH, a separate RNTI (SP-CSI C-RNTI) is used.
DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다.DCI format 0_1 includes a CSI request field, and may activate/deactivation a specific configured SP-CSI trigger state.
그리고, SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다.In addition, SP CSI reporting has the same or similar activation/deactivation as the mechanism having data transmission on the SPS PUSCH.
다음, aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다.Next, aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정된다.In the case of AP CSI having AP CSI-RS, AP CSI-RS timing is set by RRC.
여기서, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.Here, the timing for AP CSI reporting is dynamically controlled by DCI.
NR은 LTE에서 PUCCH 기반 CSI 보고에 적용되었던 다수의 reporting instance들에서 CSI를 나누어 보고하는 방식 (예를 들어, RI, WB PMI/CQI, SB PMI/CQI 순서로 전송)이 적용되지 않는다.In the NR, a method of dividing and reporting CSI in a plurality of reporting instances that were applied to PUCCH-based CSI reporting in LTE (eg, transmission in the order of RI, WB PMI/CQI, and SB PMI/CQI) is not applied.
대신, NR은 short/long PUCCH에서 특정 CSI 보고를 설정하지 못하도록 제한하고, CSI omission rule이 정의된다.Instead, the NR limits the setting of a specific CSI report in the short/long PUCCH, and a CSI omission rule is defined.
그리고, AP CSI reporting timing과 관련하여, PUSCH symbol/slot location은 DCI에 의해 동적으로 지시된다. 그리고, candidate slot offset들은 RRC에 의해 설정된다.And, in relation to the AP CSI reporting timing, the PUSCH symbol/slot location is dynamically indicated by DCI. And, candidate slot offsets are set by RRC.
CSI reporting에 대해, slot offset(Y)는 reporting setting 별로 설정된다.For CSI reporting, a slot offset (Y) is set for each reporting setting.
UL-SCH에 대해, slot offset K2는 별개로 설정된다.For UL-SCH, slot offset K2 is set separately.
2개의 CSI latency class(low latency class, high latency class)는 CSI computation complexity의 관점에서 정의된다.Two CSI latency classes (low latency class, high latency class) are defined in terms of CSI computation complexity.
Low latency CSI의 경우, 최대 4 ports Type-I codebook 또는 최대 4-ports non-PMI feedback CSI를 포함하는 WB CSI이다.In the case of low latency CSI, it is a WB CSI including a maximum of 4 ports Type-I codebook or a maximum of 4-ports non-PMI feedback CSI.
High latency CSI는 low latency CSI를 제외한 다른 CSI를 말한다.High latency CSI refers to CSI other than low latency CSI.
Normal 단말에 대해, (Z, Z’)는 OFDM symbol들의 unit에서 정의된다.For a normal terminal, (Z, Z') is defined in the unit of OFDM symbols.
Z는 Aperiodic CSI triggering DCI를 수신한 후 CSI 보고를 수행하기 까지의 최소 CSI processing time을 나타낸다.Z represents the minimum CSI processing time until CSI reporting is performed after receiving the Aperiodic CSI triggering DCI.
Z’는 channel/interference에 대한 CSI-RS를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다.Z'represents the minimum CSI processing time until CSI reporting is performed after receiving the CSI-RS for the channel/interference.
추가적으로, 단말은 동시에 calculation할 수 있는 CSI의 개수를 report한다.Additionally, the UE reports the number of CSIs that can be simultaneously calculated.
이하 표 13은 TS38.214에서 정의하고 있는 CSI reporting configuration 이다.Table 13 below shows the CSI reporting configuration defined in TS38.214.
Figure PCTKR2020005865-appb-T000013
Figure PCTKR2020005865-appb-T000013
또한, 이하 표 14는 TS38.321에서 정의하고 있는 Semi-Persistent/Aperiodic CSI reporting와 관련된 MAC-CE에 의한 activation/deactivation/trigger와 관련된 정보이다.In addition, Table 14 below is information related to activation/deactivation/trigger by MAC-CE related to Semi-Persistent/Aperiodic CSI reporting defined in TS38.321.
Figure PCTKR2020005865-appb-T000014
Figure PCTKR2020005865-appb-T000014
MIMO (Multi-Input Multi-Output) operation 관련 RSRS related to MIMO (Multi-Input Multi-Output) operation
DMRS (demodulation reference signal)DMRS (demodulation reference signal)
NR에서 DMRS는 네트워크 에너지 효율성(network energy efficiency)를 강화하고, 상위 호환성(forward compatibility)를 보장하기 위해 필요할 때에만 전송되는 것이 특징이다. DMRS의 시간 영역 밀도(time domain density)는 단말의 속도(speed)또는 이동성(mobility)에 따라 다양할 수 있다. 즉, NR에서 무선 채널의 빠른 변화를 추적하기 위해 시간 영역에서 DMRS에 대한 density가 증가될 수 있다.In NR, the DMRS is characterized in that it is transmitted only when necessary to enhance network energy efficiency and to ensure forward compatibility. The time domain density of the DMRS may vary according to the speed or mobility of the terminal. That is, the density of the DMRS may increase in the time domain in order to track the rapid change of the radio channel in NR.
DM-RS 수신 절차DM-RS reception procedure
PDSCH 수신을 위한 DMRS 관련 동작에 대해 살펴본다. 살핀 것처럼, DL는 기지국에서 단말로의 신호 전송(또는 통신)을 의미한다.A DMRS-related operation for PDSCH reception will be described. Like Salpin, DL refers to signal transmission (or communication) from a base station to a terminal.
DCI format 1_0에 의해 스케쥴된 PDSCH를 수신할 때 또는 dmrs-AdditionalPosition, maxLength 및 dmrs-Type 파라미터들 중 임의의 전용 상위 계층 설정 전에 PDSCH를 수신할 때, 단말은 PDSCH 매핑 타입(mapping type) B를 가진 2 심볼들의 할당 지속 구간(duration)을 가진 PDSCH를 제외한 DM-RS를 운반하는 임의의 심볼에서 PDSCH가 존재하지 않고, DM-RS 포트 1000 상에서 설정 타입(configuration type) 1의 단일 심볼 front-loaded DM-RS가 전송되고, 남아있는 직교 안테나 포트들 모두가 다른 단말로의 PDSCH의 전송과 관련되지 않는다고 가정한다. 추가적으로,When receiving the PDSCH scheduled according to DCI format 1_0, or when receiving the PDSCH before setting any dedicated upper layer among dmrs-AdditionalPosition, maxLength and dmrs-Type parameters, the terminal has a PDSCH mapping type B. In any symbol carrying the DM-RS except for the PDSCH with the allocation duration of 2 symbols, no PDSCH exists, and a single symbol of configuration type 1 on the DM-RS port 1000 front-loaded DM It is assumed that -RS is transmitted, and all remaining orthogonal antenna ports are not related to transmission of PDSCH to other terminals. Additionally,
- 매핑 타입 A를 가진 PDSCH에 대해, 단말은 DCI에서 지시된 PDSCH 지속 구간에 따라 슬롯에서 dmrs-AdditionalPosition='pos2'와 최대 2개까지의 additional 단일-심볼 DM-RS가 존재한다고 가정한다.-For a PDSCH with mapping type A, it is assumed that the UE has dmrs-AdditionalPosition='pos2' and up to two additional single-symbol DM-RSs in the slot according to the PDSCH duration indicated by the DCI.
- 매핑 타입 B를 갖는 일반(normal) CP에 대한 7 심볼들 또는 확장(extended) CP에 대한 6 심볼들의 할당 지속 구간을 가진 PDSCH에 대해, front-loaded DM-RS 심볼이 PDSCH 할당 지속 구간의 1st 또는 2nd 심볼 각각에 있을 때, 단말은 5th 또는 6th 심볼에서 하나의 additional 단일 심볼 DM-RS가 존재한다고 가정한다. 그렇지 않으면, 단말은 additional DM-RS 심볼이 존재하지 않는다고 가정한다. 그리고,-For a PDSCH having an allocation duration interval of 7 symbols for a normal CP having a mapping type B or 6 symbols for an extended CP, the front-loaded DM-RS symbol is 1st of the PDSCH allocation duration interval. Alternatively, when in each of the 2nd symbols, the UE assumes that one additional single symbol DM-RS exists in the 5th or 6th symbol. Otherwise, the UE assumes that there is no additional DM-RS symbol. And,
- 매핑 타입 B를 갖는 4 심볼들의 할당 지속 구간을 갖는 PDSCH에 대해, 단말은 더 이상 additional DM-RS가 존재하지 않는다고 가정하고,-For a PDSCH having an allocation duration interval of 4 symbols having a mapping type B, the terminal assumes that there is no additional DM-RS,
- 매핑 타입 B를 갖는 2 심볼들의 할당 지속 구간을 갖는 PDSCH에 대해, 단말은 additional DM-RS가 존재하지 않는다고 가정하고, 단말은 PDSCH가 DM-RS를 운반하는 심볼 내에 존재한다고 가정한다.-For a PDSCH having an allocation duration interval of 2 symbols having a mapping type B, the UE assumes that there is no additional DM-RS, and the UE assumes that the PDSCH exists in a symbol carrying the DM-RS.
C-RNTI, MCS-C-RNTI 또는 CS(configured scheduling)-RNTI에 의해 스크램블된 CRC를 갖는 PDCCH에 의해 DCI 포맷 1_1에 의해 스케줄링된 PDSCH를 수신할 때,When receiving a PDSCH scheduled according to DCI format 1_1 by a PDCCH having a CRC scrambled by C-RNTI, MCS-C-RNTI or CS (configured scheduling)-RNTI,
- 단말은 상위 계층 파라미터 dmrs-Type으로 설정될 수 있으며, 설정된 DM-RS 설정 타입은 PDSCH를 수신하기 위해 사용된다.-The terminal may be set with the higher layer parameter dmrs-Type, and the configured DM-RS configuration type is used to receive the PDSCH.
- 단말은 DMRS-DownlinkConfig에 의해 주어진 상위 계층 파라미터 maxLength에 의해 PDSCH에 대한 front-loaded DM-RS 심볼들의 최대 개수로 설정될 수 있다.-The terminal may be set to the maximum number of front-loaded DM-RS symbols for the PDSCH by the upper layer parameter maxLength given by DMRS-DownlinkConfig.
단말은 DCI 포맷 1_1의 안테나 포트 인덱스에 의해 DM-RS 포트들의 개수가 스케줄링될 수 있다.The terminal may schedule the number of DM-RS ports by the antenna port index of DCI format 1_1.
도 19는 DMRS 설정 타입의 일례를 나타낸다.19 shows an example of a DMRS configuration type.
도 19의 (a)는 DMRS 설정 타입 1을 나타내며, 도 19의 (b)는 DMRS 설정 타입 2를 나타낸다.FIG. 19A shows DMRS configuration type 1, and FIG. 19B shows DMRS configuration type 2.
도 19의 DMRS 설정 타입은 표 15의 DMRS-DownlinkConfig IE 내의 dmrs-Type 파라미터에 의해 설정된다. DMRS 설정 타입 1은 주파수 영역에서 더 높은 RS 밀도를 가지고, single(double)-symbol DMRS에 대해 최대 4(8) 포트들까지 지원한다. 그리고, DMRS 설정 타입 1은 single-symbol DMRS에 대해 길이 2 F-CDM 및 FDM을 지원하고, double-symbol DMRS에 대해 길이 2 F/T-CDM 및 FDM을 지원한다. DMRS 설정 타입 2는 더 많은 DMRS 안테나 포트들을 지원하며, single(double)-symbol DMRS에 대해 최대 6(12) 포트들을 지원한다.The DMRS configuration type of FIG. 19 is set by the dmrs-Type parameter in the DMRS-DownlinkConfig IE of Table 15. The DMRS configuration type 1 has a higher RS density in the frequency domain and supports up to 4 (8) ports for single (double)-symbol DMRS. In addition, DMRS configuration type 1 supports length 2 F-CDM and FDM for single-symbol DMRS, and length 2 F/T-CDM and FDM for double-symbol DMRS. DMRS configuration type 2 supports more DMRS antenna ports, and supports up to 6 (12) ports for single (double)-symbol DMRS.
표 15는 PDSCH에 대해 하향링크 DMRS를 설정하기 위해 사용되는 DMRS-DownlinkConfig IE의 일례를 나타낸 표이다.Table 15 is a table showing an example of the DMRS-DownlinkConfig IE used to configure the downlink DMRS for the PDSCH.
Figure PCTKR2020005865-appb-T000015
Figure PCTKR2020005865-appb-T000015
표 15에서, dmrs-AdditionalPosition 파라미터는 DL에서 additional DM-RS에 대한 위치를 나타내며, 해당 파라미터가 존재하지 않는 경우, 단말은 pos2 값을 적용한다. Dmrs-Type 파라미터는 DL에 대해 사용될 DMRS 타입의 선택을 나타내며, 해당 파라미터가 존재하지 않는 경우, 단말은 DMRS type 1을 사용한다. Max-Length 파라미터는 DL front loaded DMRS에 대해 OFDM 심볼들의 최대 개수를 나타내며, len1은 1 값에 해당한다. PhaseTrackingRS 파라미터는 DL PTRS를 설정하며, 해당 파라미터가 존재하지 않거나 또는 해지된 경우, 단말은 DL PTRS가 없다고 가정한다.In Table 15, the dmrs-AdditionalPosition parameter indicates the position of the additional DM-RS in the DL, and if the parameter does not exist, the terminal applies the pos2 value. The Dmrs-Type parameter indicates selection of the DMRS type to be used for the DL, and if the parameter does not exist, the UE uses DMRS type 1. The Max-Length parameter represents the maximum number of OFDM symbols for DL front loaded DMRS, and len1 corresponds to a value of 1. The PhaseTrackingRS parameter sets the DL PTRS, and if the parameter does not exist or is canceled, it is assumed that the UE does not have a DL PTRS.
DM-RS 설정 타입 1에 대해,For DM-RS setting type 1,
- 단말이 하나의 코드 워드로 스케줄링되고, 안테나 포트 매핑이 {2, 9, 10, 11 또는 30}의 인덱스들로 할당된 경우, 또는 단말이 2 개의 코드워드들로 스케줄링된 경우,-When the terminal is scheduled with one code word, and the antenna port mapping is allocated with indexes of {2, 9, 10, 11 or 30}, or when the terminal is scheduled with two codewords,
단말은 남아있는 직교 안테나 포트들 모두가 다른 단말로의 PDSCH의 전송과 연관되지 않는다고 가정할 수 있다.The UE may assume that all of the remaining orthogonal antenna ports are not related to transmission of the PDSCH to other UEs.
DM-RS 설정 타입 2에 대해,For DM-RS setting type 2,
- 단말이 하나의 코드워드로 스케줄링되고, 안테나 포트 매핑이 {2,10,23}의 인덱스들로 할당된 경우, 또는 단말이 2 개의 코드워드들로 스케줄링된 경우,-When the terminal is scheduled with one codeword, and the antenna port mapping is allocated with indexes of {2,10,23}, or when the terminal is scheduled with two codewords,
단말은 남아있는 직교 안테나 포트들 모두가 다른 단말로의 PDSCH의 전송과 연관되지 않는다고 가정할 수 있다.The UE may assume that all of the remaining orthogonal antenna ports are not related to transmission of the PDSCH to other UEs.
도 20은 DL DMRS 절차의 일례를 나타낸 흐름도이다.20 is a flowchart illustrating an example of a DL DMRS procedure.
- 기지국은 단말로 DMRS 설정(configuration) 정보를 전송한다(S110).-The base station transmits the DMRS configuration (configuration) information to the terminal (S110).
상기 DMRS 설정 정보는 DMRS-DownlinkConfig IE를 지칭할 수 있다. 상기 DMRS-DownlinkConfig IE는 dmrs-Type 파라미터, dmrs-AdditionalPosition 파라미터, maxLength 파라미터, phaseTrackingRS 파라미터 등을 포함할 수 있다. 상기 dmrs-Type 파라미터는 DL를 위해 사용될 DMRS type의 선택을 위한 파라미터이다.The DMRS configuration information may refer to a DMRS-DownlinkConfig IE. The DMRS-DownlinkConfig IE may include a dmrs-Type parameter, a dmrs-AdditionalPosition parameter, a maxLength parameter, a phaseTrackingRS parameter, and the like. The dmrs-Type parameter is a parameter for selecting a DMRS type to be used for DL.
NR에서, DMRS는 (1) DMRS configuration type 1과 (2) DMRS configuration type 2의 2가지 configuration type으로 구분될 수 있다. DMRS configuration type 1은 주파수 영역에서 보다 높은 RS density를 가지는 type이며, DMRS configuration type 2는 더 많은 DMRS antenna port들을 가지는 type이다. 상기 dmrs-AdditionalPosition 파라미터는 DL에서 추가적인(additional) DMRS의 위치를 나타내는 파라미터이다. DMRS는 PDSCH mapping type(type A 또는 type B)에 따라 front-loaded DMRS의 첫 번째 위치가 결정되며, 높은 속도(high speed)의 단말을 지원하기 위해 추가적인(additional) DMRS가 설정될 수 있다. 상기 front-loaded DMRS는 1 또는 2의 연속하는 OFDM symbol들을 점유하며, RRC signaling 및 DCI(downlink control information)에 의해 지시된다. 상기 maxLength 파라미터는 DL front-loaded DMRS에 대한 OFDM symbol의 최대 개수를 나타내는 파라미터이다. 상기 phaseTrackingRS 파라미터는 DL PTRS를 설정하는 파라미터이다.In NR, the DMRS can be divided into two configuration types: (1) DMRS configuration type 1 and (2) DMRS configuration type 2. DMRS configuration type 1 is a type having a higher RS density in the frequency domain, and DMRS configuration type 2 is a type having more DMRS antenna ports. The dmrs-AdditionalPosition parameter is a parameter indicating the position of an additional DMRS in the DL. In the DMRS, the first position of the front-loaded DMRS is determined according to the PDSCH mapping type (type A or type B), and an additional DMRS may be configured to support a high speed terminal. The front-loaded DMRS occupies 1 or 2 consecutive OFDM symbols, and is indicated by RRC signaling and downlink control information (DCI). The maxLength parameter is a parameter indicating the maximum number of OFDM symbols for DL front-loaded DMRS. The phaseTrackingRS parameter is a parameter for configuring DL PTRS.
- 상기 기지국은 DMRS에 사용되는 시퀀스를 생성한다(S120).-The base station generates a sequence used for DMRS (S120).
상기 DMRS에 대한 시퀀스는 아래 수학식 8에 따라 생성된다.The sequence for the DMRS is generated according to Equation 8 below.
Figure PCTKR2020005865-appb-M000008
Figure PCTKR2020005865-appb-M000008
상기 슈도-랜덤 시퀀스(pseudo-random sequence)
Figure PCTKR2020005865-appb-I000052
는 3gpp TS 38.211 5.2.1에 정의되어 있다. 즉,
Figure PCTKR2020005865-appb-I000053
는 2개의 m-sequence들을 이용하는 길이-31의 골드 시퀀스일 수 있다. 슈도-랜덤 시퀀스 생성기(pseudo-random sequence generator)는 아래 수학식 9에 의해 초기화된다.
The pseudo-random sequence
Figure PCTKR2020005865-appb-I000052
Is defined in 3gpp TS 38.211 5.2.1. In other words,
Figure PCTKR2020005865-appb-I000053
May be a length-31 gold sequence using two m-sequences. The pseudo-random sequence generator is initialized by Equation 9 below.
Figure PCTKR2020005865-appb-M000009
Figure PCTKR2020005865-appb-M000009
여기서,
Figure PCTKR2020005865-appb-I000054
은 슬롯 내 OFDM 심볼의 넘버(number)이며,
Figure PCTKR2020005865-appb-I000055
는 프레임 내 슬롯 넘버이다.
here,
Figure PCTKR2020005865-appb-I000054
Is the number of OFDM symbols in the slot,
Figure PCTKR2020005865-appb-I000055
Is the slot number in the frame.
그리고,
Figure PCTKR2020005865-appb-I000056
는, 만약 제공되고, PDSCH가 C-RNTI, MCS-C-RNTI 또는 CS-RNTI에 의해 스크램블된 CRC를 가진 DCI format 1_1을 사용하는 PDCCH에 의해 스케쥴된 경우, DMRS-DownlinkConfig IE 내 higher-layer parameter scramblingID0 및 scramblingID1에 의해 각각 주어진다.
And,
Figure PCTKR2020005865-appb-I000056
Is, if provided, and the PDSCH is scheduled by PDCCH using DCI format 1_1 with CRC scrambled by C-RNTI, MCS-C-RNTI or CS-RNTI, higher-layer parameter in DMRS-DownlinkConfig IE They are given by scramblingID0 and scramblingID1, respectively.
-
Figure PCTKR2020005865-appb-I000057
는 만약 제공되고, PDSCH가 C-RNTI, MCS-C-RNTI, 또는 CS-RNTI에 의해 스크램블된 CRC를 가진 DCI format 1_0을 사용하는 PDCCH에 의해 스케쥴된 경우 DMRS-DownlinkConfig IE 내 higher-layer parameter scramblingID0에 의해 주어진다.
-
Figure PCTKR2020005865-appb-I000057
Is provided, if the PDSCH is scheduled by PDCCH using DCI format 1_0 with CRC scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI, higher-layer parameter scramblingID0 in DMRS-DownlinkConfig IE Is given by
-
Figure PCTKR2020005865-appb-I000058
, 그렇지 않으면, quantity
Figure PCTKR2020005865-appb-I000059
는 DCI format 1_1이 사용되는 경우, PDSCH 전송과 연관된 DCI 내 DMRS 시퀀스 초기화 필드에 의해 주어진다.
-
Figure PCTKR2020005865-appb-I000058
, Otherwise, quantity
Figure PCTKR2020005865-appb-I000059
When DCI format 1_1 is used, is given by the DMRS sequence initialization field in the DCI associated with PDSCH transmission.
- 상기 기지국은 상기 생성된 시퀀스를 자원 요소(resource element)에 매핑한다(S130). 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.-The base station maps the generated sequence to a resource element (S130). Here, the resource element may mean including at least one of time, frequency, antenna port, or code.
- 상기 기지국은 상기 자원 요소 상에서 상기 DMRS를 단말로 전송한다(S140). 상기 단말은 상기 수신된 DMRS를 이용하여 PDSCH를 수신하게 된다.-The base station transmits the DMRS to the terminal on the resource element (S140). The terminal receives the PDSCH using the received DMRS.
UE DM-RS 전송 절차UE DM-RS transmission procedure
PUSCH 수신을 위한 DMRS 관련 동작에 대해 살펴본다. 살핀 것처럼, UL는 단말에서 기지국으로의 신호 전송(또는 통신)을 의미한다. UL DMRS 관련 동작은 앞서 살핀 DL DMRS 관련 동작과 유사하며, DL와 관련된 파라미터들의 명칭이 UL와 관련된 파라미터들의 명칭으로 대체될 수 있다.A DMRS-related operation for PUSCH reception will be described. Like salpin, UL refers to signal transmission (or communication) from a terminal to a base station. The UL DMRS-related operation is similar to the Salpin DL DMRS-related operation, and names of parameters related to DL may be replaced with names of parameters related to UL.
즉, DMRS-DownlinkConfig IE는 DMRS-UplinkConfig IE로, PDSCH mapping type은 PUSCH mapping type으로, PDSCH는 PUSCH로 대체될 수 있다. 그리고, DL DMRS 관련 동작에서 기지국은 단말로, 단말은 기지국으로 대체될 수 있다. UL DMRS에 대한 시퀀스 생성은 transform precoding이 enable되었는지에 따라 다르게 정의될 수 있다.That is, the DMRS-DownlinkConfig IE may be replaced with a DMRS-UplinkConfig IE, the PDSCH mapping type may be replaced with a PUSCH mapping type, and the PDSCH may be replaced with a PUSCH. And, in the DL DMRS-related operation, the base station may be replaced by a terminal and the terminal may be replaced by a base station. Sequence generation for UL DMRS may be defined differently depending on whether transform precoding is enabled.
보다 구체적으로, DMRS는 CP-OFDM(cyclic prefix orthogonal frequency division multiplexing)을 사용하는 경우(또는 transform precoding이 enable되지 않은 경우), PN 시퀀스를 사용하며, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)을 사용하는 경우(transform precoding이 enable된 경우), 30 이상의 길이를 가지는 ZC 시퀀스를 사용한다.More specifically, the DMRS uses a PN sequence when CP-OFDM (cyclic prefix orthogonal frequency division multiplexing) is used (or when transform precoding is not enabled), and a Discrete Fourier Transform-spread-spread-DFT-s-OFDM OFDM) (when transform precoding is enabled), a ZC sequence having a length of 30 or more is used.
표 16은 PUSCH에 대해 상향링크 DMRS를 설정하기 위해 사용되는 DMRS-UplinkConfig IE의 일례를 나타낸 표이다.Table 16 is a table showing an example of a DMRS-UplinkConfig IE used to configure an uplink DMRS for PUSCH.
Figure PCTKR2020005865-appb-T000016
Figure PCTKR2020005865-appb-T000016
표 16에서, dmrs-AdditionalPosition 파라미터는 UL에서 additional DM-RS에 대한 위치를 나타내며, 해당 파라미터가 존재하지 않는 경우, 단말은 pos2 값을 적용한다. Dmrs-Type 파라미터는 UL에 대해 사용될 DMRS 타입의 선택을 나타내며, 해당 파라미터가 존재하지 않는 경우, 단말은 DMRS type 1을 사용한다. Max-Length 파라미터는 UL front loaded DMRS에 대해 OFDM 심볼들의 최대 개수를 나타내며, len1은 1 값에 해당한다. PhaseTrackingRS 파라미터는 UL PTRS를 설정한다. tranformPrecodingdisabled 파라미터는 Cyclic Prefix OFDM에 대한 DMRS 관련 파라미터들을 나타내며, transformPrecodingEnabled 파라미터는 DFT-s-OFDM(Transform Precoding)에 대한 DMRS 관련 파라미터들을 나타낸다.In Table 16, the dmrs-AdditionalPosition parameter indicates the position of the additional DM-RS in the UL, and if the parameter does not exist, the terminal applies the pos2 value. The Dmrs-Type parameter indicates selection of a DMRS type to be used for UL, and if the corresponding parameter does not exist, the UE uses DMRS type 1. The Max-Length parameter represents the maximum number of OFDM symbols for UL front loaded DMRS, and len1 corresponds to a value of 1. The PhaseTrackingRS parameter configures UL PTRS. The tranformPrecodingdisabled parameter indicates DMRS related parameters for Cyclic Prefix OFDM, and the transformPrecodingEnabled parameter indicates DMRS related parameters for DFT-s-OFDM (Transform Precoding).
이하, UE DM-RS 전송 절차에 대해 보다 구체적으로 살펴본다.Hereinafter, the UE DM-RS transmission procedure will be described in more detail.
전송된 PUSCH가 C-RNTI, CS-RNTI 또는 MCS-C-RNTI에 의해 스크램블된 CRC를 갖는 DCI 포맷 0_1에 의해 스케줄링되지도 않고 설정된 그랜트(configured grant)에 해당하지도 않는 경우, 단말은 DM-RS port 0에서 configuration type 1의 단일 심볼 front-loaded DM-RS를 사용하고, 상기 심볼들에서 DM-RS에 대해 사용되지 않는 나머지 RE는 디스에이블된 트랜스폼 프리코딩을 가지는 2 이하의 OFDM 심볼의 할당 지속 구간을 갖는 PUSCH를 제외한 어떤 PUSCH 전송에도 사용되지 않는다. Additional DM-RS는 주파수 호핑의 인에이블 여부를 고려하여 스케쥴링 타입과 PUSCH 지속 구간에 따라 전송될 수 있다.If the transmitted PUSCH is not scheduled by DCI format 0_1 with CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI and does not correspond to a configured grant, the terminal is a DM-RS In port 0, a single symbol front-loaded DM-RS of configuration type 1 is used, and the remaining REs not used for the DM-RS in the symbols are allocated OFDM symbols of 2 or less with disabled transform precoding It is not used for any PUSCH transmission except for a PUSCH having a duration period. The additional DM-RS may be transmitted according to a scheduling type and a PUSCH duration period in consideration of whether frequency hopping is enabled.
주파수 호핑이 디스에이블된 경우: 단말은 dmrs-AdditionalPosition이 'pos2'와 같고 최대 2 개의 additional DM-RS가 PUSCH 지속 구간에 따라 전송될 수 있다고 가정한다.When frequency hopping is disabled: The terminal assumes that dmrs-AdditionalPosition is equal to'pos2' and that up to two additional DM-RSs can be transmitted according to the PUSCH duration.
주파수 호핑이 인에이블된 경우: 단말은 dmrs-AdditionalPosition이 'pos1'과 같고 최대 하나의 additional DM-RS가 PUSCH 지속 구간에 따라 전송될 수 있다고 가정한다.When frequency hopping is enabled: The terminal assumes that dmrs-AdditionalPosition is equal to'pos1' and that at most one additional DM-RS can be transmitted according to the PUSCH duration.
전송된 PUSCH가 CS-RNTI에 의해 스크램블된 CRC를 갖는 활성화(activation) DCI 포맷 0_0에 의해 스케쥴될 때, 단말은 DM-RS 포트 0 상에서 configuredGrantConfig의 상위 계층 파라미터 dmrs-Type에 의해 제공되는 configuration type의 단일 심볼 front-loaded DM-RS를 사용하고, 상기 심볼들에서 DM-RS를 위해 사용되지 않는 남아 있는 RE들은 디스에이블된 트랜스폼 프리코딩을 가지는 2개 이하의 OFDM 심볼의 할당 지속 구간을 갖는 PUSCH를 제외한 어떤 PUSCH 전송을 위해서도 사용되지 않고, configuredGrantConfig로부터 dmrs-AdditionalPosition을 갖는 additional DM-RS가 주파수 호핑의 인에이블 여부를 고려하여 스케줄링 타입과 PUSCH 지속 구간에 기초하여 전송될 수 있다.When the transmitted PUSCH is scheduled by activation DCI format 0_0 with a CRC scrambled by CS-RNTI, the terminal of the configuration type provided by the upper layer parameter dmrs-Type of configuredGrantConfig on DM-RS port 0 A single symbol front-loaded DM-RS is used, and the remaining REs that are not used for the DM-RS in the symbols are PUSCH having an allocation duration interval of two or less OFDM symbols with disabled transform precoding. It is not used for any PUSCH transmission except for, and an additional DM-RS having dmrs-AdditionalPosition from configuredGrantConfig may be transmitted based on a scheduling type and a PUSCH duration in consideration of whether frequency hopping is enabled.
전송된 PUSCH가 C-RNTI, CS-RNTI 또는 MCS-RNTI에 의해 스크램블된 CRC를 갖는 DCI 포맷 0_1에 의해 스케쥴되거나 또는 설정된 그랜트(configured grant)에 대응할 때,When the transmitted PUSCH is scheduled according to DCI format 0_1 with CRC scrambled by C-RNTI, CS-RNTI or MCS-RNTI or corresponds to a configured grant,
- 단말은 DMRS-UplinkConfig에서 상위 계층 파라미터 dmrs-Type으로 설정될 수 있으며, 설정된 DM-RS configuration type은 PUSCH 전송을 위해 사용된다.-The terminal may be set as the higher layer parameter dmrs-Type in DMRS-UplinkConfig, and the configured DM-RS configuration type is used for PUSCH transmission.
- 단말은 DMRS-UplinkConfig에서 상위 계층 파라미터 maxLength에 의해 PUSCH에 대한 front-loaded DM-RS 심볼들의 최대 개수로 설정될 수 있다.-The terminal may be set to the maximum number of front-loaded DM-RS symbols for the PUSCH by the upper layer parameter maxLength in the DMRS-UplinkConfig.
PUSCH를 전송하는 단말이 DMRS-UplinkConfig에서 상위 계층 파라미터 phaseTrackingRS로 설정되면, 단말은 다음의 설정들이 전송된 PUSCH에 대해 동시에 발생하지 않는다고 가정할 수 있다.When the UE transmitting the PUSCH is set to the upper layer parameter phaseTrackingRS in the DMRS-UplinkConfig, the UE may assume that the following settings do not occur simultaneously for the transmitted PUSCH.
- DM-RS configuration type 1 및 type 2에 대해 4-7 또는 6-11 중 임의의 DM-RS 포트가 각각 UE에 대해 스케쥴되고, PT-RS가 단말로부터 전송된다.-DM-RS configuration For type 1 and type 2, any of 4-7 or 6-11 DM-RS ports are scheduled for each UE, and PT-RS is transmitted from the UE.
DCI 포맷 0_1에 의해 스케줄된 PUSCH에 대해, CS-RNTI에 의해 스크램블된 CRC를 갖는 활성화 DCI 포맷 0_1에 의해 또는 설정된 그랜트 타입 1 설정에 의해, 단말은 DM-RS CDM 그룹이 데이터 전송을 위해 사용되지 않는다고 가정한다.For PUSCH scheduled according to DCI format 0_1, by activation DCI format 0_1 with CRC scrambled by CS-RNTI or by setting grant type 1, the UE does not use a DM-RS CDM group for data transmission. I assume it does.
PTRS (Phase Tracking Reference Signal)PTRS (Phase Tracking Reference Signal)
mmWave의 경우, 위상 잡음(phase noise)의 영향이 RF 하드웨어(hardware)의 손상으로 인해 크기 때문에, 전송 또는 수신되는 신호는 시간 영역에서 왜곡된다.In the case of mmWave, since the influence of phase noise is large due to damage to the RF hardware, the transmitted or received signal is distorted in the time domain.
이러한 위상 잡음은 주파수 영역에서 common phase error (CPE) 및 inter-carrier interference (ICI)를 야기시키게 된다.This phase noise causes common phase error (CPE) and inter-carrier interference (ICI) in the frequency domain.
특히 높은 carrier frequency에서 오실레이터(oscillator) 위상 잡음의 보상을 가능하게 하며, 위상 잡음에 의해 모든 subcarrier들에 대한 동일한 위상 회전이 발생한다. 따라서, 이러한 CPE를 추정 및 보상하기 위해 NR에서 PTRS가 정의되었다.Particularly, it is possible to compensate for the oscillator phase noise at a high carrier frequency, and the phase noise causes the same phase rotation for all subcarriers. Thus, PTRS was defined in NR to estimate and compensate for this CPE.
DL PTRS 관련 동작DL PTRS related operation
도 21은 DL PTRS 절차의 일례를 나타낸 흐름도이다.21 is a flowchart illustrating an example of a DL PTRS procedure.
기지국은 단말로 PTRS 설정(configuration) 정보를 전송한다(S110).The base station transmits PTRS configuration information to the terminal (S110).
상기 PTRS 설정 정보는 PTRS-DownlinkConfig IE를 지칭할 수 있다.The PTRS configuration information may refer to PTRS-DownlinkConfig IE.
상기 PTRS-DownlinkConfig IE는 frequencyDensity 파라미터, timeDensity 파라미터, epre-Ratio 파라미터, resourceElementOffset 파라미터 등을 포함할 수 있다.The PTRS-DownlinkConfig IE may include a frequencyDensity parameter, a timeDensity parameter, an epre-Ratio parameter, a resourceElementOffset parameter, and the like.
상기 frequencyDensity 파라미터는 스케쥴된 BW의 기능(function)으로서 DL PTRS의 존재(presence) 및 주파수 밀도를 나타내는 파라미터이다.The frequencyDensity parameter is a parameter representing the presence and frequency density of the DL PTRS as a function of the scheduled BW.
상기 timeDensity 파라미터는 MCS(modulation and coding scheme)의 기능으로서 DL PTRS의 존재 및 시간 밀도를 나타내는 파라미터이다.The timeDensity parameter is a parameter representing the existence and time density of DL PTRS as a function of a modulation and coding scheme (MCS).
상기 epre-Ratio 파라미터는 PTRS와 PDSCH 간의 EPRE(Energy Per Resource Element)를 나타내는 파라미터이다.The epre-Ratio parameter is a parameter indicating an energy per resource element (EPRE) between PTRS and PDSCH.
다음, 상기 기지국은 PTRS에 사용되는 시퀀스를 생성한다(S120).Next, the base station generates a sequence used for PTRS (S120).
상기 PTRS에 대한 시퀀스는 아래 수학식 4.1C-3과 같이 동일한 subcarrier의 DMRS 시퀀스를 이용하여 생성된다.The sequence for the PTRS is generated using the DMRS sequence of the same subcarrier as shown in Equation 4.1C-3 below.
PTRS에 대한 시퀀스 생성은 transform precoding이 enable되었는지에 따라 다르게 정의될 수 있으며, 아래 수학식 10은 transform precoding이 disable된 경우의 일례를 나타낸다.Sequence generation for PTRS may be defined differently depending on whether transform precoding is enabled, and Equation 10 below shows an example of a case in which transform precoding is disabled.
Figure PCTKR2020005865-appb-M000010
Figure PCTKR2020005865-appb-M000010
여기서,
Figure PCTKR2020005865-appb-I000060
는 위치
Figure PCTKR2020005865-appb-I000061
및 서브캐리어 k에서 주어진 DMRS이다.
here,
Figure PCTKR2020005865-appb-I000060
The location
Figure PCTKR2020005865-appb-I000061
And the DMRS given in subcarrier k.
즉, PTRS의 시퀀스는 DMRS의 시퀀스를 이용하되 보다 구체적으로, subcarrier k에서 PTRS의 시퀀스는 subcarrier k에서의 DMRS의 시퀀스와 동일하다.That is, the PTRS sequence uses the DMRS sequence, but more specifically, the PTRS sequence in subcarrier k is the same as the DMRS sequence in subcarrier k.
다음, 상기 기지국은 상기 생성된 시퀀스를 자원 요소(resource element)에 매핑한다(S130).Next, the base station maps the generated sequence to a resource element (S130).
여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.Here, the resource element may mean including at least one of time, frequency, antenna port, or code.
PTRS의 시간 영역에서의 위치는 PDSCH 할당의 시작 심볼부터 시작하여 특정 심볼 간격으로 매핑되되, DMRS 심볼이 존재하는 경우, 해당 DMRS 심볼 다음 심볼부터 매핑이 수행된다. 상기 특정 심볼 간격은 1, 2 또는 4 symbol일 수 있다.The position of the PTRS in the time domain is mapped at a specific symbol interval starting from the start symbol of PDSCH allocation. If a DMRS symbol exists, mapping is performed from a symbol following the corresponding DMRS symbol. The specific symbol interval may be 1, 2 or 4 symbols.
그리고, PTRS의 resource element 매핑과 관련하여 PTRS의 주파수 위치는 연관된 DMRS 포트의 주파수 위치와 higher layer parameter UL-PTRS-RE-offset에 의해 결정된다.And, in relation to the resource element mapping of PTRS, the frequency position of the PTRS is determined by the frequency position of the associated DMRS port and the higher layer parameter UL-PTRS-RE-offset.
여기서, UL-PTRS-RE-offset는 PTRS configuration에 포함되며, CP-OFDM에 대한 UL PTRS에 대한 subcarrier offset을 지시한다.Here, the UL-PTRS-RE-offset is included in the PTRS configuration, and indicates a subcarrier offset for UL PTRS for CP-OFDM.
DL에 대해, PTRS port는 스케쥴된 DMRS port들 사이에서 가장 낮은 인덱스의 DMRS port와 연관된다.For DL, the PTRS port is associated with the DMRS port of the lowest index among the scheduled DMRS ports.
그리고, UL에 대해, 기지국은 UL DCI를 통해 어떤 DMRS port가 PTRS port와 연관되어 있는지를 설정한다.And, for UL, the base station configures which DMRS port is associated with the PTRS port through UL DCI.
다음, 상기 기지국은 상기 자원 요소 상에서 상기 PTRS를 단말로 전송한다(S140). 상기 단말은 상기 수신된 PTRS를 이용하여 위상 잡음에 대한 보상을 수행한다.Next, the base station transmits the PTRS to the terminal on the resource element (S140). The terminal compensates for the phase noise using the received PTRS.
UL PTRS 관련 동작UL PTRS related operation
UL PTRS 관련 동작은 앞서 살핀 UL PTRS 관련 동작과 유사하며, DL와 관련된 파라미터들의 명칭이 UL와 관련된 파라미터들의 명칭으로 대체될 수 있다.The UL PTRS-related operation is similar to the Salpin UL PTRS-related operation, and names of parameters related to DL may be replaced with names of parameters related to UL.
즉, PTRS-DownlinkConfig IE는 PTRS-UplinkConfig IE로, DL PTRS 관련 동작에서 기지국은 단말로, 단말은 기지국으로 대체될 수 있다.That is, the PTRS-DownlinkConfig IE may be replaced with a PTRS-UplinkConfig IE, and in a DL PTRS-related operation, the base station may be replaced with the terminal, and the terminal may be replaced with the base station.
마찬가지로, PTRS에 대한 시퀀스 생성은 transform precoding이 enable되었는지에 따라 다르게 정의될 수 있다.Likewise, sequence generation for PTRS may be defined differently depending on whether transform precoding is enabled.
TRS (tracking reference signal)TRS (tracking reference signal)
LTE 시스템에서 미세한(fine) 시간 및 주파수 트래킹(tracking)을 위해 사용되었던 CRS(cell-specific reference singal)의 기능을 위해 NR에서 TRS가 정의되었다.TRS is defined in the NR for the function of the cell-specific reference singal (CRS) used for fine time and frequency tracking in the LTE system.
다만, NR에서 정의되는 TRS는 LTE 시스템의 CRS와 달리 always-on 방식이 아니다.However, the TRS defined in NR is not always-on, unlike the CRS of the LTE system.
NR에서 정의된 TRS로 인해, 단말은 timing offset, delay spread, frequency offset, Doppler spread의 추정이 가능하다.Due to the TRS defined in NR, the UE can estimate timing offset, delay spread, frequency offset, and Doppler spread.
상기 TRS는 below 6GHz(FR1) 및 above 6GHz(FR2) 모두에서 지원된다.The TRS is supported in both below 6GHz (FR1) and above 6GHz (FR2).
주기적(periodic) TRS는 FR1 및 FR2에서 모두 mandatory이며, 비주기적(aperiodic) TRS는 FR1 및 FR2에서 모두 optional이다.Periodic TRS is mandatory in both FR1 and FR2, and aperiodic TRS is optional in both FR1 and FR2.
도 22는 TRS 절차의 일례를 나타낸 흐름도이다.22 is a flowchart illustrating an example of a TRS procedure.
단말은 기지국으로부터 trs-Info 파라미터를 포함하는 NZP-CSI-RS-ResourceSet IE(information element)를 수신한다(S110).The terminal receives the NZP-CSI-RS-ResourceSet IE (information element) including the trs-Info parameter from the base station (S110).
상기 trs-Info 파라미터는 CSI-RS resource set 내 모든 NZP-CSI-RS resource들에 대한 안테나 포트가 동일한지를 나타내는 파라미터이며, NZP-CSI-RS resource set 단위로 설정된다.The trs-Info parameter is a parameter indicating whether the antenna ports for all NZP-CSI-RS resources in the CSI-RS resource set are the same, and is set in units of NZP-CSI-RS resource set.
상기 trs-Info 파라미터가 ‘ON’으로 설정된 CSI-RS resource set 내 CSI-RS resource들은 1-port CSI-RS resource들로 설정된다.CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' are set as 1-port CSI-RS resources.
상기 trs-Info 파라미터가 ‘ON’으로 설정된 CSI-RS resource set 내 주기적(periodic) CSI-RS resource들은 동일한 주기(periodicity), 대역폭(bandwidth) 및 서브캐리어 위치(subcarrier location)을 갖는다.Periodic CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' have the same period, bandwidth, and subcarrier location.
그리고, 상기 trs-Info 파라미터가 ‘ON’으로 설정된 CSI-RS resource set 내 비주기적(aperiodic) CSI-RS resource들은 동일한 RB 위치를 가지는 동일한 대역폭 및 동일한 CSI-RS resource의 개수를 갖는다.In addition, the aperiodic CSI-RS resources in the CSI-RS resource set in which the trs-Info parameter is set to'ON' have the same bandwidth and the same number of CSI-RS resources having the same RB location.
만약 비주기적 TRS가 설정된 경우, TRS의 QCL reference는 주기적 TRS와 연관되어야 하며, QCL type들은 ‘QCL-Type-A’ 및 ‘QCL-TypeD’이다.If aperiodic TRS is set, the QCL reference of the TRS must be associated with the periodic TRS, and the QCL types are'QCL-Type-A' and'QCL-TypeD'.
다음, 상기 단말은 상기 trs-Info가 ‘ON’으로 설정된 CSI-RS resource set 내의 CSI-RS resource들을 통해 시간 및/또는 주파수 트래킹을 수행한다(S120).Next, the terminal performs time and/or frequency tracking through CSI-RS resources in the CSI-RS resource set in which the trs-Info is set to “ON” (S120).
도 23은 본 명세서에서 제안하는 방법이 적용될 수 있는 하향링크 송수신 동작의 일 예를 나타내는 흐름도이다.23 is a flowchart illustrating an example of a downlink transmission/reception operation to which the method proposed in this specification can be applied.
- 기지국은 주파수/시간 자원, 전송 레이어, 하향링크 프리코더, MCS 등과 같은 하향링크 전송을 스케줄링한다(S1710). 특히, 기지국은 앞서 설명한 동작들을 통해 단말에게 PDSCH전송을 위한 빔을 결정할 수 있다. -The base station schedules downlink transmission such as a frequency/time resource, a transport layer, a downlink precoder, and an MCS (S1710). In particular, the base station may determine a beam for PDSCH transmission to the terminal through the above-described operations.
- 단말은 기지국으로부터 하향링크 스케줄링을 위한(즉, PDSCH의 스케줄링 정보를 포함하는) 하향링크 제어 정보(DCI: Downlink Control Information)를 PDCCH 상에서 수신한다(S1720).-The terminal receives downlink control information (DCI: Downlink Control Information) for downlink scheduling (ie, including scheduling information of PDSCH) from the base station on the PDCCH (S1720).
하향링크 스케줄링을 위해DCI 포맷 1_0 또는 1_1이 이용될 수 있으며, 특히 DCI 포맷 1_1에서는 다음과 같은 정보를 포함한다: DCI 포맷 식별자(Identifier for DCI formats), 대역폭 부분 지시자(Bandwidth part indicator), 주파수 도메인 자원 할당(Frequency domain resource assignment), 시간 도메인 자원 할당(Time domain resource assignment), PRB 번들링 크기 지시자(PRB bundling size indicator), 레이트 매칭 지시자(Rate matching indicator), ZP CSI-RS 트리거(ZP CSI-RS trigger), 안테나 포트(들)(Antenna port(s)), 전송 설정 지시(TCI: Transmission configuration indication), SRS 요청(SRS request), DMRS(Demodulation Reference Signal) 시퀀스 초기화(DMRS sequence initialization)DCI format 1_0 or 1_1 may be used for downlink scheduling, and in particular, DCI format 1_1 includes the following information: DCI format identifier (Identifier for DCI formats), bandwidth part indicator (Bandwidth part indicator), frequency domain Resource allocation (Frequency domain resource assignment), time domain resource assignment (Time domain resource assignment), PRB bundling size indicator (PRB bundling size indicator), rate matching indicator (Rate matching indicator), ZP CSI-RS trigger (ZP CSI-RS trigger), antenna port(s) (Antenna port(s)), transmission configuration indication (TCI), SRS request, Demodulation Reference Signal (DMRS) sequence initialization (DMRS sequence initialization)
특히, 안테나 포트(들)(Antenna port(s)) 필드에서 지시되는 각 상태(state)에 따라, DMRS 포트의 수가 스케줄링될 수 있으며, 또한 SU(Single-user)/MU(Multi-user) 전송 스케줄링이 가능하다. In particular, the number of DMRS ports may be scheduled according to each state indicated in the antenna port(s) field, and also single-user (SU)/multi-user (MU) transmission Scheduling is possible.
또한, TCI 필드는 3 비트로 구성되고, TCI 필드 값에 따라 최대 8 TCI 상태를 지시함으로써 동적으로 DMRS에 대한 QCL이 지시된다.In addition, the TCI field is composed of 3 bits, and the QCL for the DMRS is dynamically indicated by indicating a maximum of 8 TCI states according to the value of the TCI field.
- 단말은 기지국으로부터 하향링크 데이터를 PDSCH 상에서 수신한다(S1730). -The terminal receives downlink data from the base station on the PDSCH (S1730).
단말이 DCI 포맷 1_0 또는 1_1을 포함하는 PDCCH를 검출(detect)하면, 해당 DCI에 의한 지시에 따라 PDSCH를 디코딩한다.When the UE detects a PDCCH including DCI format 1_0 or 1_1, the PDSCH is decoded according to an indication by the corresponding DCI.
여기서, 단말이 DCI 포맷 1에 의해 스케줄링된 PDSCH를 수신할 때, 단말은 상위 계층 파라미터 'dmrs-Type'에 의해 DMRS 설정 타입이 설정될 수 있으며, DMRS 타입은 PDSCH를 수신하기 위해 사용된다. 또한, 단말은 상위 계층 파라미터 'maxLength'에 의해 PDSCH을 위한 앞에 삽입되는(front-loaded) DMRA 심볼의 최대 개수가 설정될 수 있다.Here, when the UE receives the PDSCH scheduled according to DCI format 1, the UE may set the DMRS configuration type according to the higher layer parameter'dmrs-Type', and the DMRS type is used to receive the PDSCH. In addition, the terminal may set the maximum number of front-loaded DMRA symbols for the PDSCH by the higher layer parameter'maxLength'.
DMRS 설정 타입 1의 경우, 단말이 단일의 코드워드가 스케줄링되고 {2, 9, 10, 11 또는 30}의 인덱스와 매핑된 안테나 포트가 지정되면, 또는 단말이 2개의 코드워드가 스케줄링되면, 단말은 모든 남은 직교한 안테나 포트가 또 다른 단말으로의 PDSCH 전송과 연관되지 않는다고 가정한다.In the case of DMRS configuration type 1, when a single codeword is scheduled in the terminal and an antenna port mapped with an index of {2, 9, 10, 11 or 30} is specified, or when two codewords are scheduled in the terminal, the terminal Assumes that all remaining orthogonal antenna ports are not associated with PDSCH transmission to another terminal.
또는, DMRS 설정 타입 2의 경우, 단말이 단일의 코드워드가 스케줄링되고 {2, 10 또는 23}의 인덱스와 매핑된 안테나 포트가 지정되면, 또는 단말이 2개의 코드워드가 스케줄링되면, 단말은 모든 남은 직교한 안테나 포트가 또 다른 단말으로의 PDSCH 전송과 연관되지 않는다고 가정한다.Or, in case of DMRS configuration type 2, when a single codeword is scheduled in the terminal and an antenna port mapped with an index of {2, 10 or 23} is specified, or when two codewords are scheduled in the terminal, the terminal It is assumed that the remaining orthogonal antenna ports are not associated with PDSCH transmission to another terminal.
단말이 PDSCH를 수신할 때, 프리코딩 단위(precoding granularity) P'를 주파수 도메인에서 연속된(consecutive) 자원 블록으로 가정할 수 있다. 여기서, P'는 {2, 4, 광대역} 중 하나의 값에 해당할 수 있다.When the UE receives the PDSCH, it may be assumed that a precoding unit (precoding granularity) P′ is a consecutive resource block in the frequency domain. Here, P'may correspond to one of {2, 4, broadband}.
P'가 광대역으로 결정되면, 단말은 불연속적인(non-contiguous) PRB들로 스케줄링되는 것을 예상하지 않고, 단말은 할당된 자원에 동일한 프리코딩이 적용된다고 가정할 수 있다.If P'is determined to be broadband, the terminal does not expect to be scheduled with non-contiguous PRBs, and the terminal can assume that the same precoding is applied to the allocated resources.
반면, P'가 {2, 4} 중 어느 하나로 결정되면, 프리코딩 자원 블록 그룹(PRG: Precoding Resource Block Group)은 P' 개의 연속된 PRB로 분할된다. 각 PRG 내 실제 연속된 PRB의 개수는 하나 또는 그 이상일 수 있다. UE는 PRG 내 연속된 하향링크 PRB에는 동일한 프리코딩이 적용된다고 가정할 수 있다.On the other hand, if P'is determined to be one of {2, 4}, a precoding resource block group (PRG) is divided into P'consecutive PRBs. The actual number of consecutive PRBs in each PRG may be one or more. The UE may assume that the same precoding is applied to consecutive downlink PRBs in the PRG.
단말이 PDSCH 내 변조 차수(modulation order), 목표 코드 레이트(target code rate), 전송 블록 크기(transport block size)를 결정하기 위해, 단말은 우선 DCI 내 5 비트 MCD 필드를 읽고, modulation order 및 target code rate를 결정한다. 그리고, DCI 내 리던던시 버전 필드를 읽고, 리던던시 버전을 결정한다. 그리고, 단말은 레이트 매칭 전에 레이어의 수, 할당된 PRB의 총 개수를 이용하여, transport block size를 결정한다.In order for the UE to determine the modulation order, target code rate, and transport block size in the PDSCH, the UE first reads a 5-bit MCD field in the DCI, and modulates the order and target code. Determine the rate. Then, the redundancy version field in the DCI is read, and the redundancy version is determined. Then, the UE determines the transport block size using the number of layers and the total number of allocated PRBs before rate matching.
도 24는 본 명세서에서 제안하는 방법이 적용될 수 있는 상향링크 송수신 동작의 일 예를 나타내는 흐름도이다.24 is a flowchart illustrating an example of an uplink transmission/reception operation to which the method proposed in the present specification can be applied.
기지국은 주파수/시간 자원, 전송 레이어, 상향링크 프리코더, MCS 등과 같은 상향링크 전송을 스케줄링한다(S1810). 특히, 기지국은 앞서 설명한 동작들을 통해 단말이 PUSCH 전송을 위한 빔을 결정할 수 있다. The base station schedules uplink transmission such as a frequency/time resource, a transport layer, an uplink precoder, and MCS (S1810). In particular, the base station may determine a beam for PUSCH transmission by the terminal through the above-described operations.
단말은 기지국으로부터 상향링크 스케줄링을 위한(즉, PUSCH의 스케줄링 정보를 포함하는) DCI를 PDCCH 상에서 수신한다(S1820).The UE receives the DCI for uplink scheduling (ie, including scheduling information of the PUSCH) from the base station on the PDCCH (S1820).
상향링크 스케줄링을 위해DCI 포맷 0_0 또는 0_1이 이용될 수 있으며, 특히 DCI 포맷 0_1에서는 다음과 같은 정보를 포함한다: DCI 포맷 식별자(Identifier for DCI formats), UL/SUL(Supplementary uplink) 지시자(UL/SUL indicator), 대역폭 부분 지시자(Bandwidth part indicator), 주파수 도메인 자원 할당(Frequency domain resource assignment), 시간 도메인 자원 할당(Time domain resource assignment), 주파수 호핑 플래그(Frequency hopping flag), 변조 및 코딩 방식(MCS: Modulation and coding scheme), SRS 자원 지시자(SRI: SRS resource indicator), 프리코딩 정보 및 레이어 수(Precoding information and number of layers), 안테나 포트(들)(Antenna port(s)), SRS 요청(SRS request), DMRS 시퀀스 초기화(DMRS sequence initialization), UL-SCH(Uplink Shared Channel) 지시자(UL-SCH indicator)DCI format 0_0 or 0_1 may be used for uplink scheduling, and in particular, DCI format 0_1 includes the following information: DCI format identifier (Identifier for DCI formats), UL/SUL (Supplementary uplink) indicator (UL/ SUL indicator), bandwidth part indicator, frequency domain resource assignment, time domain resource assignment, frequency hopping flag, modulation and coding scheme (MCS) : Modulation and coding scheme), SRS resource indicator (SRI), precoding information and number of layers, antenna port(s) (Antenna port(s)), SRS request (SRS request), DMRS sequence initialization, UL-SCH (Uplink Shared Channel) indicator (UL-SCH indicator)
특히, SRS resource indicator 필드에 의해 상위 계층 파라미터 'usage'와 연관된 SRS 자원 세트 내 설정된 SRS 자원들이 지시될 수 있다. 또한, 각 SRS resource별로 'spatialRelationInfo'를 설정받을 수 있고 그 값은 {CRI, SSB, SRI}중에 하나일 수 있다.In particular, SRS resources set in the SRS resource set associated with the upper layer parameter'usage' may be indicated by the SRS resource indicator field. In addition,'spatialRelationInfo' can be set for each SRS resource, and its value can be one of {CRI, SSB, SRI}.
단말은 기지국에게 상향링크 데이터를 PUSCH 상에서 전송한다(S1830). The terminal transmits uplink data to the base station on the PUSCH (S1830).
단말이 DCI 포맷 0_0 또는 0_1을 포함하는 PDCCH를 검출(detect)하면, 해당 DCI에 의한 지시에 따라 해당 PUSCH를 전송한다.When the UE detects a PDCCH including DCI format 0_0 or 0_1, it transmits a corresponding PUSCH according to an indication by the corresponding DCI.
PUSCH 전송을 위해 코드북(codebook) 기반 전송 및 비-코드북(non-codebook) 기반 전송2가지의 전송 방식이 지원된다:For PUSCH transmission, two transmission schemes are supported: codebook-based transmission and non-codebook-based transmission:
i) 상위 계층 파라미터 'txConfig'가 'codebook'으로 셋팅될 때, 단말은 codebook 기반 전송으로 설정된다. 반면, 상위 계층 파라미터 'txConfig'가 'nonCodebook'으로 셋팅될 때, 단말은 non-codebook 기반 전송으로 설정된다. 상위 계층 파라미터 'txConfig'가 설정되지 않으면, 단말은 DCI 포맷 0_1에 의해 스케줄링되는 것을 예상하지 않는다. DCI 포맷 0_0에 의해 PUSCH가 스케줄링되면, PUSCH 전송은 단일 안테나 포트에 기반한다. i) When the upper layer parameter'txConfig' is set to'codebook', the terminal is set to codebook-based transmission. On the other hand, when the upper layer parameter'txConfig' is set to'nonCodebook', the terminal is set to non-codebook based transmission. If the upper layer parameter'txConfig' is not set, the UE does not expect to be scheduled according to DCI format 0_1. When PUSCH is scheduled according to DCI format 0_0, PUSCH transmission is based on a single antenna port.
codebook 기반 전송의 경우, PUSCH는 DCI 포맷 0_0, DCI 포맷 0_1 또는 반정적으로(semi-statically) 스케줄링될 수 있다. 이 PUSCH가 DCI 포맷 0_1에 의해 스케줄링되면, 단말은 SRS resource indicator 필드 및 Precoding information and number of layers 필드에 의해 주어진 바와 같이, DCI로부터 SRI, TPMI(Transmit Precoding Matrix Indicator) 및 전송 랭크를 기반으로 PUSCH 전송 프리코더를 결정한다. TPMI는 안테나 포트에 걸쳐서 적용될 프리코더를 지시하기 위해 이용되고, 다중의 SRS 자원이 설정될 때 SRI에 의해 선택된 SRS 자원에 상응한다. 또는, 단일의 SRS 자원이 설정되면, TPMI는 안테나 포트에 걸쳐 적용될 프리코더를 지시하기 위해 이용되고, 해당 단일의 SRS 자원에 상응한다. 상위 계층 파라미터 'nrofSRS-Ports'와 동일한 안테나 포트의 수를 가지는 상향링크 코드북으로부터 전송 프리코더가 선택된다. 단말이 'codebook'으로 셋팅된 상위 계층이 파라미터 'txConfig'로 설정될 때, 단말은 적어도 하나의 SRS 자원이 설정된다. 슬롯 n에서 지시된 SRI는 SRI에 의해 식별된 SRS 자원의 가장 최근의 전송과 연관되고, 여기서 SRS 자원은 SRI를 나르는 PDCCH (즉, 슬롯 n)에 앞선다.In the case of codebook-based transmission, the PUSCH may be scheduled in DCI format 0_0, DCI format 0_1, or semi-statically. When this PUSCH is scheduled according to DCI format 0_1, the UE transmits PUSCH based on SRI, Transmit Precoding Matrix Indicator (TPMI) and transmission rank from DCI, as given by the SRS resource indicator field and the Precoding information and number of layers field. Determine the precoder. The TPMI is used to indicate the precoder to be applied across the antenna port, and corresponds to the SRS resource selected by the SRI when multiple SRS resources are configured. Alternatively, when a single SRS resource is configured, the TPMI is used to indicate a precoder to be applied across the antenna port, and corresponds to the single SRS resource. A transmission precoder is selected from an uplink codebook having the same number of antenna ports as the upper layer parameter'nrofSRS-Ports'. When the upper layer in which the terminal is set as'codebook' is set with the parameter'txConfig', the terminal is configured with at least one SRS resource. The SRI indicated in slot n is associated with the most recent transmission of the SRS resource identified by the SRI, where the SRS resource precedes the PDCCH carrying the SRI (ie, slot n).
ii) non-codebook 기반 전송의 경우, PUSCH는 DCI 포맷 0_0, DCI 포맷 0_1 또는 반정적으로(semi-statically) 스케줄링될 수 있다. 다중의 SRS 자원이 설정될 때, 단말은 광대역 SRI를 기반으로 PUSCH 프리코더 및 전송 랭크를 결정할 수 있으며, 여기서 SRI는 DCI 내 SRS resource indicator에 의해 주어지거나 또는 상위 계층 파라미터 'srs-ResourceIndicator'에 의해 주어진다. 단말은 SRS 전송을 위해 하나 또는 다중의 SRS 자원을 이용하고, 여기서 SRS 자원의 수는, UE 능력에 기반하여 동일한 RB 내에서 동시 전송을 위해 설정될 수 있다. 각 SRS 자원 별로 단 하나의 SRS 포트만이 설정된다. 단 하나의 SRS 자원만이 'nonCodebook'으로 셋팅된 상위 계층 파라미터 'usage'로 설정될 수 있다. non-codebook 기반 상향링크 전송을 위해 설정될 수 있는 SRS 자원의 최대의 수는 4이다. 슬롯 n에서 지시된 SRI는 SRI에 의해 식별된 SRS 자원의 가장 최근의 전송과 연관되고, 여기서 SRS 전송은 SRI를 나르는 PDCCH (즉, 슬롯 n)에 앞선다.ii) In the case of non-codebook-based transmission, the PUSCH may be scheduled in DCI format 0_0, DCI format 0_1, or semi-statically. When multiple SRS resources are configured, the UE can determine the PUSCH precoder and transmission rank based on the wideband SRI, where the SRI is given by the SRS resource indicator in the DCI or by the upper layer parameter'srs-ResourceIndicator'. Is given. The UE uses one or multiple SRS resources for SRS transmission, where the number of SRS resources may be set for simultaneous transmission within the same RB based on UE capability. Only one SRS port is configured for each SRS resource. Only one SRS resource may be set to the upper layer parameter'usage' set to'nonCodebook'. The maximum number of SRS resources that can be configured for non-codebook-based uplink transmission is 4. The SRI indicated in slot n is associated with the most recent transmission of the SRS resource identified by the SRI, where the SRS transmission precedes the PDCCH carrying the SRI (ie, slot n).
Rel-15에서 지원되는 Type II CSI 또는 Rel-16에서 논의되고 있는 Type II CSI의 경우, 하나의 layer에 대한 CSI 구성을 위하여 다수의 DFT vector와 이에 상응(또는 적용)되는 amplitude 및/또는 phase coefficient들을 이용하여 linear combining하여 코드북을 구성한다. 이 때, 구현상의 이유로 실제 CSI reporting에 사용되는 spatial domain (SD)/frequency domain (FD)/time domain (TD)과 관련된 정보의 dimension size보다 DFT vector의 크기가 커질 수 있다. 예를 들어, 아래 3GPP RAN1 NR Adhoc 1901 회의에서, 특정 dimension size 이상에서 단말의 구현 복잡도를 낮추기 위하여 DFT size는 2, 3 and/or 5의 멱수들의 곱으로 나타내어지는 값을 사용하기로 합의되었다. 이 경우, 실제 DFT vector의 size는 14인데, 위의 rule에 따라(2, 3 and/or 5의 멱수들의 곱) 길이가 15인 DFT vector를 사용해 코드북을 구성해야 한다. 이로 인해, dimension mismatch에 의한 모호성이 발생하게 된다. 본 명세서는 이와 같은 모호성을 해결하기 위하여, 실제 CSI reporting에 사용되는 spatial domain (SD)/frequency domain (FD)/time domain (TD)과 관련된 정보의 dimension size보다 DFT vector의 크기가 큰 경우에 적용하는 padding 기법을 설정(또는 지시 또는 지원)하기 위한 signaling 방식 및 단말/기지국 동작(UE/BS behavior)에 대해 제안한다.In the case of Type II CSI supported by Rel-15 or Type II CSI discussed in Rel-16, multiple DFT vectors and corresponding (or applied) amplitude and/or phase coefficients for CSI configuration for one layer The codebook is constructed by linear combining using In this case, for implementation reasons, the size of the DFT vector may be larger than the dimension size of information related to the spatial domain (SD)/frequency domain (FD)/time domain (TD) used for actual CSI reporting. For example, at the 3GPP RAN1 NR Adhoc 1901 meeting below, it was agreed to use a value represented by the product of the powers of 2, 3 and/or 5 for the DFT size in order to reduce the implementation complexity of the UE in a specific dimension size or more. In this case, the size of the actual DFT vector is 14, and according to the above rule (product of powers of 2, 3 and/or 5), a codebook must be constructed using a DFT vector of length 15. Due to this, ambiguity due to dimension mismatch occurs. In order to resolve such ambiguity, this specification is applied when the size of the DFT vector is larger than the dimension size of information related to the spatial domain (SD)/frequency domain (FD)/time domain (TD) used for actual CSI reporting. A signaling scheme and a terminal/base station operation (UE/BS behavior) for setting (or indicating or supporting) a padding scheme are proposed.
본 명세서에서 DFT(Discrete Fourier Transform)은 DCT(Discrete Cosine Transform) 으로 대체(또는 변경) 적용될 수 있다.In the present specification, Discrete Fourier Transform (DFT) may be replaced (or changed) applied to Discrete Cosine Transform (DCT).
(3GPP RAN1 NR Adhoc 1901 회의)(3GPP RAN1 NR Adhoc 1901 meeting)
Values of N3:
Figure PCTKR2020005865-appb-I000062
에 대해 그리고, NSB CQI subbands의 수이다.
Figure PCTKR2020005865-appb-I000063
일 때,
Figure PCTKR2020005865-appb-I000064
Values of N 3 :
Figure PCTKR2020005865-appb-I000062
And, N is the number of SB CQI subbands.
Figure PCTKR2020005865-appb-I000063
when,
Figure PCTKR2020005865-appb-I000064
Values of N3:
Figure PCTKR2020005865-appb-I000065
에 대해 그리고, NSB는 CQI subbands의 수이다.
Figure PCTKR2020005865-appb-I000066
일 때, RAN1#96에서 다음 대안들 중 선택한다.
Values of N 3 :
Figure PCTKR2020005865-appb-I000065
For and, N SB is the number of CQI subbands.
Figure PCTKR2020005865-appb-I000066
When, RAN1#96 selects one of the following alternatives.
대안1(Alt1): N3는 ≥NSB×R인 2, 3 또는 5 중 가장 작은 배수(multiple)이다.Alt1: N 3 is the smallest multiple of 2, 3 or 5 with ≥N SB × R.
대안(Alt2): N3는 2, 3, 또는 5의 배수이다. 두 부분이 겹치는 부분으로 두 부분으로 분할한다(Segment into 2 parts with overlapping between 2 parts). DFT 크기를 2, 3, 또는 5의 배수에 맞추기 위해 패딩이 필요하지 않다.Alternative (Alt2): N 3 is a multiple of 2, 3, or 5. Segment into 2 parts with overlapping between 2 parts. No padding is required to fit the DFT size to a multiple of 2, 3, or 5.
(3GPP RAN1#96bis 회의)(3GPP RAN1#96bis meeting)
Figure PCTKR2020005865-appb-I000067
>13에 대한 N3의 값:
Figure PCTKR2020005865-appb-I000067
Value of N 3 for >13:
대안(Alt1)에 대해: For alternative (Alt1):
RAN1#97 (Reno)에서 패딩 방식에 대한 대안 식별(identify)Identify alternatives to padding in RAN1#97 (Reno)
RAN1#98 (Prague)에 의해 패딩 방식에 대한 대안들 중에서 하나를 선택Select one of the alternatives to the padding method by RAN1#98 (Prague)
대안(Alt2)에 대해: For alternative (Alt2):
RAN1#97 (Reno)에서 대안들에 대해 식별(identify)Identify alternatives in RAN1#97 (Reno)
RAN1#98 (Prague)에 의해 대안들 중에서 하나를 선택Select one of the alternatives by RAN1#98 (Prague)
또한, 3GPP RAN1#95 회의에서 Rel-15 CSI enhancement의 일환으로 아래의 코드북의 framework가 합의되었다.In addition, at the 3GPP RAN1#95 conference, the following codebook framework was agreed as part of Rel-15 CSI enhancement.
Figure PCTKR2020005865-appb-I000068
Figure PCTKR2020005865-appb-I000068
제 1 실시 예 Embodiment 1
Type II CSI와 같은 Linear combining 기반 코드북의 경우, CSI reporting에 사용되는 spatial domain (SD)/frequency domain (FD)/time domain (TD)과 관련된 정보(e.g., 2*N1*N2 or N3)의 dimension size (X) 보다 코드북 구성에 사용되는 DFT vector의 크기(Y)가 큰 경우, (Y-X)에 대한 CSI 정보는 기지국과 단말이 사전에 약속하거나 기지국이 설정(또는 적용)한 rule 혹은 단말이 reporting한 방식에 기반한 padding 기법을 이용하여 코드북을 구성할 수 있다. In the case of a linear combining-based codebook such as Type II CSI, the dimension of information (eg, 2*N1*N2 or N3) related to spatial domain (SD)/frequency domain (FD)/time domain (TD) used for CSI reporting If the size (Y) of the DFT vector used for the codebook configuration is larger than the size (X), the CSI information for (YX) is reported by the base station and the terminal in advance or a rule set (or applied) by the base station or the terminal. A codebook can be constructed using a padding technique based on one method.
여기서, N1, N2 및 N3의 정의는 다음과 같다.Here, the definitions of N1, N2 and N3 are as follows.
N1: 첫 번째 공간 영역에서 안테나 포트의 수(# of antenna port in 1st spatial domain (e.g., horizontal domain))N1: number of antenna ports in the first spatial domain (# of antenna port in 1st spatial domain (e.g., horizontal domain))
N2: 두 번째 공간 영역에서 안테나 포트의 수(# of antenna port in 2nd spatial domain (e.g., vertical domain))N2: number of antenna ports in 2nd spatial domain (e.g., vertical domain)
N3: Rel-16 Type II CSI에서 주파수 영역 유닛의 수(# of frequency domain unit in Rel-16 Type II CSI)N3: Number of frequency domain units in Rel-16 Type II CSI (# of frequency domain unit in Rel-16 Type II CSI)
상기 제 1 실시 예는 SD/TD에도 적용이 가능하지만, 이하에서는 설명의 편의를 위하여 FD과 관련된 코드북을 중심으로 설명을 하기로 한다. 현재 TS 38.214에서, sub-band size는 설정된 BWP(bandwidth part)를 구성하는 PRB(physical resource block)의 수에 따라서 아래 표 17과 같이 정의된다. 표 17은 설정 가능한 sub-band 크기들의 일례를 나타낸 표이다. The first embodiment can also be applied to SD/TD, but hereinafter, for convenience of explanation, a description will be made focusing on a codebook related to FD. In the current TS 38.214, the sub-band size is defined as shown in Table 17 below according to the number of physical resource blocks (PRBs) constituting the set bandwidth part (BWP). Table 17 is a table showing an example of configurable sub-band sizes.
Figure PCTKR2020005865-appb-T000017
Figure PCTKR2020005865-appb-T000017
표 17을 변형하여, N3(N3는 NSB*R보다 크거나 같은 2, 3 또는 5의 가장 작은 배수)에 기반한 DFT size는 아래 표 18과 같으며, 실제 NSB*R과 표 18에 기반한 DFT size와의 최대 차이값은 1 또는 2의 값을 갖는다. (상기 최대 차이값은 시작 PRB의 grid에 따라서 3이 될 수도 있다.) 여기서, NSB는 SB의 개수, R은 frequency unit size를 결정하는데 사용되는 scaling parameter로, R=1 또는 2로 설정(또는 적용)될 수 있다. NSB*R<=13 인 경우, DFT size는 NSB*R과 동일하게 사용될 수 있다. 표 18은 가능한 DFT 길이(NSB*R>13)를 나타낸다.By modifying Table 17, the DFT size based on N3 (N3 is the smallest multiple of 2, 3 or 5 greater than or equal to NSB*R) is shown in Table 18 below, and the actual N SB *R and the DFT based on Table 18 The maximum difference from size has a value of 1 or 2. (The maximum difference value may be 3 depending on the grid of the starting PRB.) Here, N SB is the number of SBs, R is a scaling parameter used to determine the frequency unit size, and R=1 or 2 is set ( Or apply). When N SB *R<=13, the DFT size may be the same as N SB *R. Table 18 shows the possible DFT lengths (N SB *R>13).
Figure PCTKR2020005865-appb-T000018
Figure PCTKR2020005865-appb-T000018
예를 들어, 도 25에 도시된 바와 같이, 105 PRBs로 구성되는 BWP, SB size가 8, 그리고 R=1인 경우, SB의 수는 14이므로, 상기 rule에 의하여 FD domain의 DFT size는 15를 사용해야 한다. 이 경우, 도 25의 세 가지로 대표되는 패턴으로 Y-X=1의 정보에 대해서 padding을 고려해야 한다. 도 25는 본 명세서에서 제안하는 N3 구성의 일례를 나타낸다. 즉, 도 25는 105 PRBs, R=1, SB size=4, NSB=14, N3=15인 경우의 N3 구성의 일례를 나타낸다. 도 25(a)의 경우, 설정된 첫 번째 CSI reporting SB 앞에 padding을 고려하는 방법이고, 도 25(b)의 경우, 설정된 마지막 CSI reporting SB 뒤에 padding을 고려하는 방법이고, 도 25(c)의 경우, 설정된 CSI reporting SB 중간에 padding을 고려하는 방법이다. 여기서, padding은 zero-padding, CSI-RS를 기반으로 측정된 CSI를 interpolation (e.g., 도 25(c)의 경우, SB7과 SB8의 CSI를 interpolation하여 구성할 수 있음) 또는 extrapolation 등으로 계산한 CSI 정보를 해당 frequency 위치에 padding하는 방식을 의미한다. 여기서, Zero-padding을 도 25(b)와 같이 적용하는 경우, oversampling과 동일한 효과를 가져올 수 있다.For example, as shown in FIG. 25, when the BWP composed of 105 PRBs, the SB size is 8, and R=1, the number of SBs is 14, so the DFT size of the FD domain is 15 according to the rule. Should be used. In this case, padding should be considered for information of Y-X=1 as a pattern represented by three of FIG. 25. 25 shows an example of an N3 configuration proposed in the present specification. That is, FIG. 25 shows an example of the configuration of N3 when 105 PRBs, R=1, SB size=4, NSB=14, and N3=15. In the case of FIG. 25(a), it is a method of considering padding before the set first CSI reporting SB, in the case of FIG. 25(b), it is a method of considering padding after the last set CSI reporting SB, and in the case of FIG. 25(c) , This is a method of considering padding in the middle of the set CSI reporting SB. Here, padding is zero-padding, CSI measured based on CSI-RS is interpolated (eg, in the case of FIG. 25(c), it can be configured by interpolating CSI of SB7 and SB8) or CSI calculated by extrapolation, etc. It refers to a method of padding information to the corresponding frequency position. Here, when zero-padding is applied as shown in FIG. 25(b), the same effect as oversampling may be obtained.
제 1 실시 예에서 언급한 것과 같이, 단말과 기지국은 서로 사전에 약속하거나 기지국이 설정(또는 적용)한 rule 혹은 단말이 reporting한 방식에 기반한 padding 기법을 이용하여 코드북 구성 및 복호를 수행할 수 있다.As mentioned in the first embodiment, the terminal and the base station may perform codebook configuration and decoding using a padding technique based on a rule set (or applied) by the base station or a rule set by the base station or reported by the base station. .
도 26은 본 명세서에서 제안하는 N3 구성의 또 다른 일례를 나타낸다. 즉, 도 26은 42 PRBs, R=2, SB size=4, NSB=11, N3=24인 경우의 N3 구성의 일례를 나타낸다.26 shows another example of the N3 configuration proposed in the present specification. That is, FIG. 26 shows an example of the N3 configuration in the case of 42 PRBs, R=2, SB size=4, NSB=11, and N3=24.
도 26의 경우, 42 PRBs로 구성되는 BWP, SB size가 4, R=2인 경우, SB의 수는 11 (R*NSB=22)이므로, 상기 rule에 의하여 FD domain의 DFT size는 24를 사용해야 한다. 이 경우, padding 부분이 위와 같이 두 군데가 생길 수 있어서, 보다 많은 실시 pattern의 실시 예를 가질 수 있다. 도 26(a)의 경우, 설정된 첫 번째 CSI reporting SB 앞에 두 개의 PMI 값에 대한 padding을 고려하는 방법, 도 26(b)의 경우, 설정된 마지막 CSI reporting SB 뒤에 두 개의 PMI 값에 padding을 고려하는 방법, 도 26(c)의 경우, 설정된 SB 앞과 뒤에 각각 하나의 PMI 값에 대한 padding을 수행하는 방법, 도 26(d) 및 도 26(e)는 설정된 SB 중간에 두 개의 PMI 값이 padding되는 것으로 나타내며, 특히 상기 도 26(d)와 도 26(e)의 실시 예는 padding의 위치가 uniform하게 distribute되는 pattern을 나타낸다. 특히, 도 25(c)와 도 26(e)의 경우, 아래 수학식 11에 의해서 Padding의 위치가 결정될 수 있다.In the case of FIG. 26, when the BWP composed of 42 PRBs, the SB size is 4, and R=2, the number of SBs is 11 (R*NSB=22), so according to the rule, the DFT size of the FD domain should be 24. do. In this case, the padding portion may occur in two places as described above, so that more implementation patterns may be implemented. In the case of FIG. 26(a), a method of considering padding for two PMI values before the set first CSI reporting SB, and in the case of FIG. 26(b), a method for considering padding for two PMI values after the set last CSI reporting SB In the case of Fig. 26(c), a method of performing padding for one PMI value, respectively, before and after the set SB. Figs. 26(d) and 26(e) show two PMI values in the middle of the set SB. In particular, the embodiments of FIGS. 26(d) and 26(e) show a pattern in which the positions of padding are uniformly distributed. In particular, in the case of FIGS. 25(c) and 26(e), the position of the padding may be determined by Equation 11 below.
Figure PCTKR2020005865-appb-M000011
Figure PCTKR2020005865-appb-M000011
도 26(d)의 경우, 상기 수학식 10을 변형 적용하여, 아래 수학식 12와 같이 표현할 수 있다.In the case of FIG. 26(d), by applying Equation 10, it can be expressed as Equation 12 below.
Figure PCTKR2020005865-appb-M000012
Figure PCTKR2020005865-appb-M000012
상기 예제 외에, ceiling operation을 floor operation으로 대체하여 변형된 수학식으로 아래 수학식 13 및 수학식 14와 같이 표현할 수 있다.In addition to the above example, it can be expressed as Equation 13 and Equation 14 below as a modified equation by replacing the ceiling operation with a floor operation.
Figure PCTKR2020005865-appb-M000013
Figure PCTKR2020005865-appb-M000013
Figure PCTKR2020005865-appb-M000014
Figure PCTKR2020005865-appb-M000014
상기 예제들로 대표되는 pattern들은 사전에 약속될 수 있으며, Zero-padding의 경우, RRC (signaling)으로 지시되는 reporting SB가 연속적인 경우 그 성능이 (oversampling의 효과로 인하여) 좋을 수 있다. 만약 RRC (signaling)로 지시되는 reporting SB가 불연속적인 경우, zero-padding이 아닌 interpolation/extrapolation 방식을 사용하는 padding scheme을 사용하는 것으로 약속할 수 있다. 즉, RRC (signaling)으로 지시되는 reporting SB의 정보에 의하여, padding scheme이 상이하게 적용될 수 있다.Patterns represented by the above examples may be promised in advance, and in the case of zero-padding, when the reporting SB indicated by RRC (signaling) is continuous, its performance may be good (due to the effect of oversampling). If the reporting SB indicated by RRC (signaling) is discontinuous, it may be promised to use a padding scheme that uses an interpolation/extrapolation method instead of zero-padding. That is, the padding scheme may be applied differently by the information of the reporting SB indicated by RRC (signaling).
혹은, 기지국이 단말에 어떠한 padding pattern을 사용할지 그리고/또는 어떠한 padding scheme (zero-padding 또는 extrapolation 기반 또는 interpolation 기반)를 higher layer signaling (e.g., RRC signaling, MAC CE(control element)) 또는 dynamic signaling (e.g., DCI)로 단말에 지시할 수 있다. 혹은, 단말이 상기 pattern들 중에서 가장 선호한(preferred) pattern에 대한 정보 (e.g., bit-map) 그리고/또는 어떠한 padding scheme (zero-padding 또는 extrapolation 기반 또는 interpolation 기반)의 정보를 기지국에 reporting할 수 있으며, 상기 pattern에 대한 정보는 Part 2 CSI에 포함될 수 있다.Or, what padding pattern the base station uses for the terminal and/or what padding scheme (zero-padding or extrapolation-based or interpolation-based) higher layer signaling (eg, RRC signaling, MAC CE (control element)) or dynamic signaling ( eg, DCI) to the terminal. Alternatively, the terminal may report information on the most preferred pattern (eg, bit-map) and/or any padding scheme (zero-padding or extrapolation-based or interpolation-based) information to the base station among the patterns. And, the information on the pattern may be included in Part 2 CSI.
앞서 설명한 내용을 기지국과 단말의 동작 관점에서 다시 정리하면 다음과 같다. The above-described contents are summarized as follows from the viewpoint of operation of the base station and the terminal.
먼저, 기지국은 단말에게 padding pattern 그리고/또는 padding scheme 관련 설정 정보를 단말에게 전송한다.First, the base station transmits the configuration information related to the padding pattern and/or padding scheme to the terminal to the terminal.
그리고, 단말은 자신이 선호하는 padding 패턴 그리고/또는 padding scheme에 대해 기지국으로 reporting한다.In addition, the terminal reports to the base station on its preferred padding pattern and/or padding scheme.
여기서, padding pattern은 기지국이 단말에게 미리 설정하거나 단말이 기지국에게 보고할 수 있다. 그리고, padding scheme은 기지국이 지시한 reporting SB가 연속적인 경우 zero padding을 적용하고, reporting SB가 불연속적인 경우 interpolation/extrapolation을 적용하도록 사전에 약속될 수 있다.Here, the padding pattern may be preset by the base station to the terminal or the terminal may report to the base station. In addition, the padding scheme may be promised in advance to apply zero padding when the reporting SB indicated by the base station is continuous, and to apply interpolation/extrapolation when the reporting SB is discontinuous.
(A) 또 다른 실시예로, padding의 위치가 (reporting 되는) sub-band의 양 끝에 위치하는 경우 extrapolation, (reporting 되는) 각 sub-band 사이에 위치하는 경우 interpolation이 적용될 수 있다.(A) In another embodiment, extrapolation may be applied when the padding position is located at both ends of the (reported) sub-band, and interpolation may be applied when the padding is located between each sub-band (reported).
(B) 여기서, interpolation이나 extrapolation의 경우, padding 지점의 몇 개의 sample 값을 이용할 수 있다. 이때, 적용되는 특정 weight 값은 또한, 사전에 약속되거나 기지국이 단말에게 알려줄 수 있다. Interpolation의 경우, 예를 들어 도 25(c)의 경우, padding 위치 근방의 PMI는 PMI 6, 7, 8, 9가 될 수 있다. 만약 기지국이 2개의 sample들을 이용하여 해당 padding 위치 값을 결정하는 경우, PMI7+PMI8의 평균값을 이용하거나, w7*PMI7 + w8*PMI8 where w7^2 + w8^2 =1 등과 같이 weighted sum으로 상기 padding 위치 값을 계산할 수 있다.(B) Here, in the case of interpolation or extrapolation, several sample values of padding points can be used. At this time, the applied specific weight value may also be promised in advance or the base station may inform the terminal. In the case of interpolation, for example, in the case of FIG. 25(c), PMIs near the padding position may be PMIs 6, 7, 8, and 9. If the base station determines the corresponding padding position value using two samples, the average value of PMI7 + PMI8 is used, or the weighted sum is described as w7*PMI7 + w8*PMI8 where w7^2 + w8^2 =1, etc. The padding position value can be calculated.
(C) 채널의 방향성은 각 SB / frequency 별 채널의 covariance matrix에 의하여 결정되므로, 앞의 (B)와 같이 계산된 PMI를 그대로 사용하는 것은 바람직하지 않을 수 있다. 이 경우, Cov7 및 Cov8 (여기서, Cov7 and Cov8는 각각 frequency index 7 및 index 8에 대한 covariance matrix이다.)을 이용하여 평균 혹은 weighted sum을 통하여 새로운 Cov를 계산하여, 이를 기반으로 eigen value decomposition 등을 이용하여 새로운 PMI를 도출할 수 있다. (C) Since the channel directionality is determined by the covariance matrix of the channel for each SB / frequency, it may not be desirable to use the PMI calculated as in (B) above. In this case, Cov7 and Cov8 (where Cov7 and Cov8 are covariance matrices for frequency index 7 and index 8, respectively) are used to calculate a new Cov through an average or weighted sum, and based on this, eigen value decomposition, etc. Can be used to derive a new PMI.
(D) 만약 Type I CSI과 같이 DFT vector를 그대로 (combining하지 않고) 사용하는 경우, 단순 index들의 interpolation 혹은 extrapolation 등을 이용할 수도 있다. (D) If the DFT vector is used as it is (without combining) as in Type I CSI, interpolation or extrapolation of simple indices may be used.
Padding pattern과 무관하게, padding되는 위치에 상응하는 CSI (e.g., PMI)는 가장 가까운(nearest) SB 혹은 가장 가까운(nearest) frequency domain의 CSI 값을 그대로 복사해서 사용할 수도 있다. 여기서, nearest SB 혹은 frequency domain의 의미는 예를 들어, padding이 되는 위치의 frequency index보다 +1 혹은 -1인 혹은 사전에 약속된 값을 더하거나 뺀 index에 상응하는 frequency domain의 위치이다.Regardless of the padding pattern, the CSI (e.g., PMI) corresponding to the padding position may be used by copying the CSI value of the nearest SB or the nearest frequency domain as it is. Here, the meaning of nearest SB or frequency domain is, for example, a position of a frequency domain corresponding to an index that is +1 or -1 than the frequency index of the padding position, or to an index that adds or subtracts a predetermined value.
제 2 실시 예Example 2
앞서 살핀 제 1 실시 예에서 설명된 padding scheme의 적용 여부 그리고/또는 padding pattern 및 padding scheme은 기지국이 단말에 higher layer (e.g., RRC signaling 또는 MAC CE) 또는 dynamic signaling (e.g., DCI)로 설정(또는 지시)할 수 있다.Whether to apply the padding scheme and/or the padding pattern and padding scheme described in the first embodiment of salpin, the base station is set to a higher layer (eg, RRC signaling or MAC CE) or dynamic signaling (eg, DCI) to the terminal (or Instruction).
제 1 실시 예에서의 padding scheme의 적용 여부는 특정 NSB*R의 값이 특정 값 이상인 경우에 정의되었다. 이는 단말의 구현 complexity를 낮추기 위함이 크지만, 제 2 실시 예의 경우, 기지국이 scheduling의 flexibility 및 단말의 채널 condition의 monitoring 용도로 단말에 padding scheme의 적용 여부를 지시할 수 있다. 예를 들어, 아래 표 19의 TS 38.331 spec에서와 같이 기지국은 단말이 CSI 를 report할 특정 SB에 대한 정보를 bitmap 방식으로 단말에 지시한다. 하지만, 제 2 실시 예와 같이 padding scheme의 적용 지시자가 단말에 지시되면, 단말은 하기 csi-ReportingBand로 지시되는 SB에 따른 N3 값을 계산하여 코드북을 구성하는 것이 아니라, 단말에 DL BWP의 크기에 의해서 결정되는 전체 SB의 수로 N3를 계산한다. 예를 들어, DL BWP의 최대 SB의 수가 10인 경우, 기지국은 단말에 10bit bitmap으로 reporting SB를 지시한다. 예를 들어, “1011001110”인 경우, reporting SB의 수는 6이므로 N3=6으로 CSI reporting을 수행하는데, padding scheme의 적용 지시자가 적용(enable)되는 경우, 단말은 N3=10으로 가정하여 코드북을 계산한다.Whether to apply the padding scheme in the first embodiment is defined when the value of a specific N SB *R is greater than or equal to a specific value. This is large in order to reduce the implementation complexity of the terminal, but in the case of the second embodiment, the base station may indicate whether to apply the padding scheme to the terminal for the purpose of monitoring the flexibility of scheduling and the channel condition of the terminal. For example, as in the TS 38.331 spec of Table 19 below, the base station instructs the terminal to information about a specific SB to which the terminal will report CSI in a bitmap manner. However, as in the second embodiment, when the application indicator of the padding scheme is instructed to the terminal, the terminal does not construct a codebook by calculating the N 3 value according to the SB indicated by the following csi-ReportingBand, but the size of the DL BWP in the terminal. Calculate N 3 with the total number of SBs determined by. For example, when the maximum number of SBs of the DL BWP is 10, the base station indicates the reporting SB to the terminal in a 10-bit bitmap. For example, in the case of “1011001110”, since the number of reporting SBs is 6, CSI reporting is performed with N 3 =6. When the application indicator of the padding scheme is enabled, the UE assumes N 3 =10 Compute the codebook.
상기 0에 해당하는 CSI는 상기 제 1 실시 예와 마찬가지로, CSI-RS 기반으로 측정된 값을 이용하거나, reporting SB에 해당하는 CSI를 먼저 계산한 후 제 1 실시 예의 방식 (e.g, interpolation or extrapolation or zero-padding or copy 방식)등의 방식으로 계산된 값을 이용하여 N3=10을 적용하여 코드북을 구성할 수 있다. As in the first embodiment, the CSI corresponding to 0 uses a value measured based on CSI-RS, or the CSI corresponding to the reporting SB is first calculated and then the method of the first embodiment (eg, interpolation or extrapolation or A codebook can be constructed by applying N 3 =10 using a value calculated by a method such as zero-padding or copy method).
또는, 기지국이 단말에 Rel-16 Type II CSI를 사용하라고 지시 (by RRC (signaling) or MAC CE or DCI)를 하여, Rel-16 Type II CSI로 CSI를 reporting하는 경우, 단말은 “csi-ReportingBand”(e.g. 표 19의 csi-ReportingBand)로 지시되는 정보를 무시하고, 항상 NSB 값은 단말에 설정되는 DL BWP의 최대 크기로 가정하여, N3를 계산하는 것으로 가정한다. Or, when the base station instructs the terminal to use Rel-16 Type II CSI (by RRC (signaling) or MAC CE or DCI), and reports CSI with Rel-16 Type II CSI, the terminal is “csi-ReportingBand Ignoring the information indicated by "(eg csi-ReportingBand in Table 19), it is assumed that the N SB value is always the maximum size of the DL BWP set in the terminal, and N 3 is calculated.
Figure PCTKR2020005865-appb-T000019
Figure PCTKR2020005865-appb-T000019
(제 2-1 실시 예)(Example 2-1)
제 2-1 실시 예의 경우, padding 혹은 inter-/extra-polation 동작을 수행할 SB / frequency domain의 위치는 기지국이 단말에 설정하는 reporting band 설정에 따라 implicit하게 결정된다.In the case of the 2-1 embodiment, the location of the SB / frequency domain to perform padding or inter-/extra-polation operation is implicitly determined according to the reporting band configuration set by the base station in the terminal.
예를 들어, 단말에 설정한 N3 값이 특정 값 (e.g, 13) 이상인 경우, bit-map으로 지시되는 reporting band의 MSB/LSB (most/lowest significant bit)를 기준으로 첫 (Y-X)개의 위치에 padding이 적용된다. 예를 들어, N3=15인데, “01111100111110110101” 로 reporting band(e.g. 표 19의 csi-ReportingBand)가 지시되는 경우, 시작점의 위치에 (첫 “0”)에 padding이 적용된다. For example, if the N3 value set in the terminal is more than a specific value (eg, 13), the first (YX) positions based on the MSB/LSB (most/lowest significant bit) of the reporting band indicated by the bit-map padding is applied. For example, if N3=15, and the reporting band (e.g. csi-ReportingBand in Table 19) is indicated as “01111100111110110101”, padding is applied to (first “0”) at the position of the starting point.
제 3 실시 예Third embodiment
Rel-16 Type II CSI를 위해서 R=2로 지시되는 경우, 단말의 CSI processing unit (CPU)은 R=1인 경우에 비해 큰 값의 CPU (e.g 2)가 소요되는 것으로 가정한다.For Rel-16 Type II CSI, when R=2 is indicated, it is assumed that the CSI processing unit (CPU) of the terminal requires a larger CPU (e.g. 2) than when R=1.
Rel-16 Type II CSI의 경우, R=1 혹은 2의 값을 가질 수가 있다. R=1의 경우, PMI의 reporting granularity는 CQI의 SB size와 동일함을 의미하며, R=2인 경우, PMI의 SB size는 CQI SB size의 절반이 됨을 의미한다. 이는, PMI reporting을 위한 CSI 측정/계산 복잡도가 크게 증가함을 의미한다. 따라서, R=2인 경우, 단말의 CSI processing unit (CPU)은 R=1인 경우에 비해 두 배가 소요되는 것으로 가정한다. 혹은 high-capability (advanced) 단말의 경우, R=1 또는 R=2에 상관없이 Rel-15 Type II CSI와 동일한 수의 CPU를 점유할 수 있다.In the case of Rel-16 Type II CSI, it may have a value of R=1 or 2. In the case of R=1, it means that the reporting granularity of the PMI is the same as the SB size of the CQI, and when R=2, it means that the SB size of the PMI is half of the CQI SB size. This means that the CSI measurement/calculation complexity for PMI reporting is greatly increased. Therefore, when R=2, it is assumed that the CSI processing unit (CPU) of the terminal takes twice as much as when R=1. Alternatively, in the case of a high-capability (advanced) terminal, it may occupy the same number of CPUs as the Rel-15 Type II CSI regardless of R=1 or R=2.
(제 3-1 실시 예)(Example 3-1)
제 3-1 실시 예의 경우, Rel-16 Type II CSI는 Rel-15 Type II CSI에 비하여 CSI processing unit (CPU)를 큰 값 (e.g.,2 CPU)을 점유할 수 있다.In the case of the 3-1 embodiment, the Rel-16 Type II CSI may occupy a larger CSI processing unit (CPU) than the Rel-15 Type II CSI (e.g., 2 CPU).
제 3-1 실시 예에서도 high-capability (advanced)단말의 경우, Rel-15 Type II CSI 인지 Rel-16 Type II CSI와 상관없이 동일한 수의 CPU를 점유할 수 있다.Even in the 3-1 embodiment, in the case of a high-capability (advanced) terminal, the same number of CPUs may be occupied regardless of Rel-15 Type II CSI or Rel-16 Type II CSI.
(제 3-2 실시 예)(Example 3-2)
Rel-16 Type II CSI는 RI=3 또는 4를 report하는 경우, RI=1 또는 2를 report 하는 경우에 비해 CSI processing unit (CPU)를 큰 값 (e.g.,2CPU)을 점유할 수 있다.Rel-16 Type II CSI may occupy a larger value (e.g., 2CPU) of the CSI processing unit (CPU) than when reporting RI = 3 or 4 or reporting RI = 1 or 2.
(제 3-3 실시 예)(Example 3-3)
Rel-16 Type II CSI는, RI restriction으로 지시되는 지시자 (e.g., ri-Restriction, typeII-RI-Restriction)에 의하여, rank 3-4를 report할수 있는 경우가 rank 1,2 까지만 report할 수 있는 경우에 비해 CSI processing unit (CPU)를 큰 값 (e.g.,2CPU)을 점유할 수 있다. 예를 들어, typeII-RI-Restriction 가 4bit으로 “1100”으로 지시되는 경우 (이 경우, rank 2까지 전송 가능)가 “1111”로 지시되는 경우 (이 경우, rank 4까지 전송 가능)에 비하여 적은 값의 CPU를 점유할 수 있다. Rel-16 Type II CSI is a case in which only ranks 1 and 2 can be reported when it is possible to report rank 3-4 by an indicator (eg, ri-Restriction, typeII-RI-Restriction) indicated by RI restriction. Compared to that, the CSI processing unit (CPU) can occupy a larger value (eg, 2CPU). For example, when typeII-RI-Restriction is indicated as “1100” with 4 bits (in this case, transmission up to rank 2) is indicated as “1111” (in this case, transmission up to rank 4 is possible) Value can occupy the CPU.
제 3-3 실시 예에서도 high-capability (advanced) 단말의 경우, report하는 rank에 상관없이 동일한 수의 CPU를 점유하는 것으로 가정한다. 상기 제 3 실시 예, 제 3-1 실시 예 및 제 3-2 실시 예는 각각 또는 이의 조합으로 구성될 수도 있다. In the embodiment 3-3, it is assumed that a high-capability (advanced) terminal occupies the same number of CPUs regardless of the rank to be reported. The third embodiment, the 3-1 embodiment, and the 3-2 embodiment may be each or a combination thereof.
참고로, CSI processing criteria는 아래와 같이 간략히 설명될 수 있다.For reference, the CSI processing criteria can be briefly described as follows.
CSI processing criteriaCSI processing criteria
The UE indicates the number of supported simultaneous CSI calculations NCPU. If a UE supports N_CPU simultaneous CSI calculations it is said to have NCPU CSI processing units for processing CSI reports across all configured cells. If L CPUs are occupied for calculation of CSI reports in a given OFDM symbol, the UE has NCPU-L unoccupied CPUs. If N CSI reports start occupying their respective CPUs on the same OFDM symbol on which NCPU-L CPUs are unoccupied, where each CSI report n=0,…,N-1 corresponds to
Figure PCTKR2020005865-appb-I000069
, the UE is not required to update the N-M requested CSI reports with lowest priority (according to Subclause 5.2.5), where 0≤M≤N is the largest value such that
Figure PCTKR2020005865-appb-I000070
holds.
The UE indicates the number of supported simultaneous CSI calculations N CPU . If a UE supports N_CPU simultaneous CSI calculations it is said to have N CPU CSI processing units for processing CSI reports across all configured cells. If L CPUs are occupied for calculation of CSI reports in a given OFDM symbol, the UE has N CPU -L unoccupied CPUs. If N CSI reports start occupying their respective CPUs on the same OFDM symbol on which N CPU -L CPUs are unoccupied, where each CSI report n=0,… ,N-1 corresponds to
Figure PCTKR2020005865-appb-I000069
, the UE is not required to update the NM requested CSI reports with lowest priority (according to Subclause 5.2.5), where 0≤M≤N is the largest value such that
Figure PCTKR2020005865-appb-I000070
holds.
(UE는 지원되는 동시 CSI 계산 N_CPU의 수를 지시한다. 만약 UE가 NCPU개의 동시 CSI 계산을 지원하는 경우, 설정된 모든 셀들에 대해 CSI 보고를 프로세싱하기 위해 NCPU개의 CSI processing unit을 가진다. 만약 L개의 CPU들이 주어진 OFDM 심볼에서 CSI 보고의 계산을 위해 점유되는 경우, UE는 NCPU-L개의 점유되지 않은 CPU들을 가진다. 만약 N개의 CSI 보고가 NCPU-L개가 점유되지 않은 동일한 OFDM 심볼 상에서 각각의 CPU들을 점유하기 시작하면, 각 CSI 보고 n=0,…,N-1는
Figure PCTKR2020005865-appb-I000071
에 대응하고, UE는 가장 낮은 우선순위를 가지는 N-M개의 요청된 CSI 보고를 업데이트할 필요가 없다.)
(The UE indicates the number of supported simultaneous CSI calculation N_CPU. If the UE supports N CPU simultaneous CSI calculation, it has N CPU CSI processing units in order to process CSI reports for all configured cells. When L CPUs are occupied for the calculation of CSI reports in a given OFDM symbol, the UE has N CPUs -L unoccupied CPUs, if N CSI reports are on the same OFDM symbol where N CPUs -L are not occupied. When starting to occupy each CPU, each CSI report n=0,...,N-1
Figure PCTKR2020005865-appb-I000071
Corresponding to, the UE does not need to update the NM number of requested CSI reports having the lowest priority.)
상기 제안들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)는 PUCCH/PUSCH based reporting에 적용될 수 있으며, 주로 UL 위주로 설명하였지만, 유사하게 DL codebook 구성에도 확장하여 적용될 수 있음은 물론이다.The above proposals (eg Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Embodiment 3-2 / Embodiment 3-3) are PUCCH It can be applied to /PUSCH based reporting, and has been mainly described based on UL, but it is of course that it can be similarly applied to a DL codebook configuration.
본 발명 관련 기지국 및 단말의 operationOperation of base stations and terminals related to the present invention
상기 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)에 대한 기지국과 단말의 동작 flow의 각 예시는 아래의 도 27 및 도 28과 같을 수 있다. 도 27 및 도 28은 설명의 편의를 위한 것으로, 본 발명의 범위를 제한하는 것이 아니다. 또한, 도 27 및 도 28에서 설명되는 step들 중 일부는 병합되거나, 생략될 수도 있다. 또한, 이하 설명되는 절차들을 수행함에 있어, 상술한 CSI 관련 동작이 고려/적용될 수 있다.To the above proposed methods (eg, Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Embodiment 3-2 / Embodiment 3-3) Each example of the operation flow of the base station and the terminal may be as shown in FIGS. 27 and 28 below. 27 and 28 are for convenience of description and do not limit the scope of the present invention. In addition, some of the steps described in FIGS. 27 and 28 may be merged or omitted. In addition, in performing the procedures described below, the above-described CSI-related operation may be considered/applied.
도 27은 상기 제안들 기반의 CSI 절차를 수행하는 기지국 동작의 flow chart를 나타낸다.27 shows a flow chart of an operation of a base station performing a CSI procedure based on the above proposals.
먼저, 기지국은 단말로 higher layer (e.g., RRC or MAC CE)로 system 정보(system information, SI) and/or scheduling 정보 and/or CSI related Configuration(e.g. CSI reporting setting, CSI-RS resource setting 등)를 전송할 수 있다(D05). 예를 들어, 상기 CSI related Configuration은 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)에서 기술하고 있는 기지국이 단말에게 전송하는 CSI 관련 정보(e.g. padding pattern / padding scheme / RI restriction으로 지시되는 지시자 / Type I CSI feedback 관련 설정 / Type II CSI feedback 관련 설정 등)를 포함할 수 있다. First, the base station provides system information (SI) and/or scheduling information and/or CSI related Configuration (eg CSI reporting setting, CSI-RS resource setting, etc.) as a higher layer (eg, RRC or MAC CE) to the terminal. Can be transmitted (D05). For example, the CSI related configuration is based on the above-described proposed methods (eg 1st embodiment / 2nd embodiment / 2-1 embodiment / 3rd embodiment / 3-1 embodiment / 3-2 implementation). Yes / CSI-related information (eg padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting) transmitted from the base station to the UE by the base station described in Example 3-3) Etc.).
기지국은 단말의 채널 상태 보고를 수신하기 위하여 RS (e.g., SSB/CSI-RS/TRS/PT-RS)를 단말로 전송할 수 있다(D10). 또한, 기지국은 CSI reporting의 지시와 관련된 MAC-CE를 단말에게 전송할 수도 있다(D15). 일례로, aperiodic (AP) CSI reporting의 경우 상기 MAC-CE는 해당 AP CSI reporting의 trigger와 관련된 정보를 포함할 수 있으며, 해당 AP CSI reporting은 추가적인 triggering DCI를 통해 trigger될 수 있다(e.g. CSI 보고 참고). 또는, semi-persistent (SP) CSI reporting의 경우, 상기 MAC-CE는 해당 SP CSI reporting을 activation/deactivation하는 정보를 포함할 수 있다(e.g. CSI 보고 참고). 또한, D10 단계와 D15 단계는 순서가 바뀌거나 하나의 단계로 merge될 수도 있다.The base station may transmit an RS (e.g., SSB/CSI-RS/TRS/PT-RS) to the terminal in order to receive the channel status report of the terminal (D10). In addition, the base station may transmit the MAC-CE related to the indication of CSI reporting to the terminal (D15). For example, in the case of aperiodic (AP) CSI reporting, the MAC-CE may include information related to the trigger of the corresponding AP CSI reporting, and the corresponding AP CSI reporting may be triggered through additional triggering DCI (eg, see CSI reporting). ). Alternatively, in the case of semi-persistent (SP) CSI reporting, the MAC-CE may include information for activation/deactivation of the corresponding SP CSI reporting (see e.g. CSI reporting). In addition, steps D10 and D15 may be changed in order or merged into one step.
기지국은 단말로부터 채널 상태 CSI (e.g., CRI/RI/CQI/PMI/LI)를 보고 받을 수 있다(D20). 이 경우, BS는 UE로부터 상기 MAC-CE에 포함된 trigger 관련 정보에 기반하는 AP CSI reporting를 수신하거나, 상기 MAC-CE에 의해 activation된 SP CSI reporting을 수신할 수 있다. 예를 들어, 기지국은 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)에 기반하여 결정/산출된 CSI를 단말로부터 보고 받을 수 있다.The base station may report and receive the channel state CSI (e.g., CRI/RI/CQI/PMI/LI) from the terminal (D20). In this case, the BS may receive AP CSI reporting based on trigger-related information included in the MAC-CE from the UE, or may receive SP CSI reporting activated by the MAC-CE. For example, the base station uses the above-described proposed methods (eg, the first embodiment / the second embodiment / the 2-1 embodiment / the third embodiment / the 3-1 embodiment / the 3-2 embodiment / the third embodiment). 3-3 The CSI determined/calculated based on the embodiment) may be reported from the terminal.
이후, 기지국은 단말로부터 보고 받은 CSI(그리고/또는 단말로부터 보고 받은 CSI 및 기지국이 serving 하는 다른 단말들을 고려한 상황)를 바탕으로 data scheduling 및 precoding을 결정/산출할 수 있으며(D25), 상기 precoding을 적용한 data 및 data decoding을 위한 RS (e.g. DMRS, TRS, PT-RS)를 (scheduling된) 단말로 전송할 수 있다(D30). 또한, D30 단계는 본 발명의 필수 단계로 고려되지 않을 수 있다.Thereafter, the base station may determine/calculate data scheduling and precoding based on the CSI reported from the terminal (and/or the CSI reported from the terminal and a situation in which the base station serves other terminals) (D25), and the precoding RS (eg DMRS, TRS, PT-RS) for applied data and data decoding may be transmitted to the (scheduled) terminal (D30). In addition, step D30 may not be considered an essential step of the present invention.
도 28은 상기 제안들 기반의 CSI 절차를 수행하는 단말 동작의 flow chart를 나타낸다.28 shows a flow chart of an operation of a terminal performing a CSI procedure based on the above proposals.
먼저, 단말은 기지국으로부터 higher layer (e.g., RRC or MAC CE)로 system 정보(system information, SI) and/or scheduling 정보 and/or CSI related Configuration(e.g. CSI reporting setting, CSI-RS resource setting 등)를 수신할 수 있다(E05). 예를 들어, 상기 CSI related Configuration은 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)에서 기술하고 있는 기지국이 단말에게 전송하는 CSI 관련 정보(e.g. padding pattern / padding scheme / RI restriction으로 지시되는 지시자 / Type I CSI feedback 관련 설정 / Type II CSI feedback 관련 설정 등)를 포함할 수 있다. First, the UE transmits system information (SI) and/or scheduling information and/or CSI related Configuration (eg CSI reporting setting, CSI-RS resource setting, etc.) to a higher layer (eg, RRC or MAC CE) from the base station. Can receive (E05). For example, the CSI related configuration is based on the above-described proposed methods (eg 1st embodiment / 2nd embodiment / 2-1 embodiment / 3rd embodiment / 3-1 embodiment / 3-2 implementation). Yes / CSI-related information (eg padding pattern / padding scheme / indicator indicated by RI restriction / Type I CSI feedback related setting / Type II CSI feedback related setting) transmitted from the base station to the UE by the base station described in Example 3-3) Etc.).
단말은 기지국으로부터 채널 상태 보고와 관련된 RS (e.g., SSB/CSI-RS/TRS/PT-RS)를 수신할 수 있다(E10). 또한, 단말은 CSI reporting의 지시와 관련된 MAC-CE를 기지국으로부터 수신할 수도 있다(E15). 일례로, aperiodic (AP) CSI reporting의 경우 상기 MAC-CE는 해당 AP CSI reporting의 trigger와 관련된 정보를 포함할 수 있으며, 해당 AP CSI reporting은 추가적인 triggering DCI를 통해 trigger될 수 있다(e.g. CSI 보고 참고). 또는, semi-persistent (SP) CSI reporting의 경우, 상기 MAC-CE는 해당 SP CSI reporting을 activation/deactivation하는 정보를 포함할 수 있다(e.g. CSI 보고 참고). 또한, D10 단계와 D15 단계는 순서가 바뀌거나 하나의 단계로 merge될 수도 있다.The UE may receive an RS (e.g., SSB/CSI-RS/TRS/PT-RS) related to the channel status report from the base station (E10). In addition, the terminal may receive the MAC-CE related to the indication of CSI reporting from the base station (E15). For example, in the case of aperiodic (AP) CSI reporting, the MAC-CE may include information related to the trigger of the corresponding AP CSI reporting, and the corresponding AP CSI reporting may be triggered through additional triggering DCI (eg, see CSI reporting). ). Alternatively, in the case of semi-persistent (SP) CSI reporting, the MAC-CE may include information for activation/deactivation of the corresponding SP CSI reporting (see e.g. CSI reporting). In addition, steps D10 and D15 may be changed in order or merged into one step.
단말은 상기 RS 및 기지국으로부터 설정 받은 정보 (e.g. CSI related Configuration, reporting setting의 정보/DCI로 지시되는 정보 등)를 바탕으로 CSI를 결정/산출하고(E20), 기지국에 상기 CSI를 보고할 수 있다(E25). 이 경우, UE는 BS로 상기 MAC-CE에 포함된 trigger 관련 정보에 기반하는 AP CSI reporting를 전송하거나, 상기 MAC-CE에 의해 activation된 SP CSI reporting을 전송할 수 있다. 예를 들어, 단말은 CSI를 결정/산출함에 있어 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)을 적용할 수 있으며, 보고되는 CSI에 포함된 정보(e.g. CQI, PMI, RI, LI 등)도 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예)에 기반하여 설정/결정될 수 있다.The UE determines/calculates CSI based on information set from the RS and the base station (eg CSI related Configuration, information of reporting setting/information indicated by DCI, etc.), and may report the CSI to the base station. (E25). In this case, the UE may transmit AP CSI reporting based on trigger related information included in the MAC-CE to the BS, or may transmit SP CSI reporting activated by the MAC-CE. For example, in determining/calculating the CSI, the UE determines/calculates the above-described proposed methods (eg, Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Embodiment 3) Embodiment 3-2 / Embodiment 3-3) can be applied, and information (eg CQI, PMI, RI, LI, etc.) included in the reported CSI is also included in the above-described proposed methods (eg Embodiment 1 / The second embodiment / the 2-1 embodiment / the third embodiment / the 3-1 embodiment / the 3-2 embodiment / the 3-3 embodiment).
이후, 단말은 기지국으로부터 Data Scheduling 정보에 따라서 data/RS(for data decoding)를 수신할 수 있다(E30). 이 경우, data scheduling 및 data에 적용될 precoding은 단말이 보고한 CSI 등에 기반하여 기지국에 의해 결정/산출될 수 있으나 단말이 보고한 CSI만을 고려한 것은 아닐 수 있다. 또한, E30 단계는 본 발명의 필수 단계로 고려되지 않을 수 있다.Thereafter, the terminal may receive data/RS (for data decoding) according to Data Scheduling information from the base station (E30). In this case, data scheduling and precoding to be applied to data may be determined/calculated by the base station based on the CSI reported by the UE, but may not be considered only the CSI reported by the UE. Also, step E30 may not be considered an essential step of the present invention.
이와 관련하여 기지국 및/또는 단말의 동작에 대한 상술한 제안 방법들(e.g. 제 1 실시 예 / 제 2 실시 예 / 제 2-1 실시 예 / 제 3 실시 예 / 제 3-1 실시 예 / 제 3-2 실시 예 / 제 3-3 실시 예 / 도 27 / 도 28)은 이하 설명될 장치(예: 도 30 내지 도 34)에 의해 구현될 수 있다. 예를 들어, 기지국은 전송 장치에 해당하며, 단말은 수신 장치 해당할 수 있고, 그 반대의 경우도 고려될 수 있다.In this regard, the above-described proposed methods for the operation of the base station and/or the terminal (eg, Embodiment 1 / Embodiment 2 / Embodiment 2-1 / Embodiment 3 / Embodiment 3-1 / Third Embodiment) -2 embodiment / 3-3 embodiment / Fig. 27 / Fig. 28) may be implemented by an apparatus (eg, Figs. 30 to 34) to be described below. For example, a base station may correspond to a transmitting device, a terminal may correspond to a receiving device, and vice versa may be considered.
도 29는 본 명세서에서 제안하는 단말 동작 방법의 또 다른 일례를 나타낸 순서도이다.29 is a flow chart illustrating another example of a method of operating a terminal proposed in the present specification.
즉, 도 29는 무선 통신 시스템에서 단말에 의해 CSI(channel state information)을 보고(report)하는 방법에 관한 것이다.That is, FIG. 29 relates to a method of reporting channel state information (CSI) by a terminal in a wireless communication system.
먼저, 단말은 CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신한다(S2910).First, the terminal receives from the base station control information related to the determination of the dimension size for a specific domain used for CSI reporting (S2910).
상기 CSI는 선형 결합(linear combining) 기반의 CSI일 수 있으며, 특히 타입 II CSI일 수 있다. 상기 특정 영역은 공간 영역(spatial domain), 주파수 영역(frequency domain) 또는 시간 영역(time domain) 중 적어도 하나일 수 있다. 상기 제어 정보는 BWP(bandwidth part)에 대한 정보 및 서브밴드 사이즈에 대한 정보를 포함할 수 있다. 상기 CSI는 PMI(precoding matrix indicator)를 포함할 수 있다. 상기 차원 크기는 서브밴드의 수 및 주파수 유닛 크기(frequency unit size)를 결정하는데 사용되는 스케일링(scaling) 파라미터의 곱으로 결정될 수 있다.The CSI may be CSI based on linear combining, and in particular, may be Type II CSI. The specific region may be at least one of a spatial domain, a frequency domain, and a time domain. The control information may include information on a bandwidth part (BWP) and information on a subband size. The CSI may include a precoding matrix indicator (PMI). The dimensional size may be determined as a product of the number of subbands and a scaling parameter used to determine a frequency unit size.
그리고, 상기 단말은 상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신한다(S2920). 상기 설정 정보는 패딩 패턴에 대한 정보 및 패딩 스킴에 대한 정보를 포함할 수 있다.In addition, the terminal receives configuration information related to padding to be applied to one or more subbands for the CSI report from the base station (S2920). The setting information may include information on a padding pattern and information on a padding scheme.
그리고, 상기 단말은 상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교한다(S2930).In addition, the UE compares the size of a dimension determined based on the control information with the size of a Discrete Fourier Transform (DFT) vector used for configuring a codebook (S2930).
상기 DFT 벡터의 크기는 기 설정된 규칙(rule)에 기초하여 결정될 수 있다.The size of the DFT vector may be determined based on a preset rule.
그리고, 상기 단말은 상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정한다(S2940). 상기 패딩 패턴 및 상기 패딩 스킴은 상기 DFT 벡터의 크기가 상기 차원 크기보다 큰 경우 결정될 수 있다. 상기 DFT 벡터의 크기는 13보다 큰 경우일 수 있다.In addition, the UE determines a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension (S2940). The padding pattern and the padding scheme may be determined when the size of the DFT vector is larger than the dimension size. The size of the DFT vector may be greater than 13.
상기 패딩 패턴은 상기 패딩이 적용될 서브밴드의 위치와 관련되며, 상기 패딩이 적용될 서브밴드의 위치는 처음(initial) CSI 보고를 위한 서브밴드의 앞, 마지막 CSI 보고를 위한 서브밴드의 뒤 또는 설정된 CSI 보고를 위한 서브밴드들 중간일 수 있다. 보다 구체적인 내용은 앞서 살핀 도 25 및 도 26과 이와 관련된 내용을 참고하기로 한다.The padding pattern is related to the position of the subband to which the padding is applied, and the position of the subband to which the padding is applied is before the subband for initial CSI reporting, after the subband for last CSI reporting, or a set CSI It may be in the middle of subbands for reporting. For more detailed information, reference will be made to Salpin FIGS. 25 and 26 and related contents.
상기 패딩 스킴은 제로 패딩, CSI-RS에 기초하여 측정된 CSI에 대한 interpolation 기반 패딩 또는 CSI-RS에 기초하여 측정된 CSI에 대한 extrapolation 기반 패딩일 수 있다.The padding scheme may be zero padding, interpolation-based padding for CSI measured based on CSI-RS, or extrapolation-based padding for CSI measured based on CSI-RS.
그리고, 상기 CSI 보고를 위한 서브밴드들이 연속적으로 설정된 경우, 상기 제로 패딩이 적용되며, 상기 CSI 보고를 위한 서브밴드들이 불연속적으로 설정된 경우, 상기 interpolation 기반 또는 extrapolation 기반 패딩이 적용될 수 있다.And, when the subbands for CSI reporting are continuously configured, the zero padding is applied, and when the subbands for the CSI reporting are discontinuously configured, the interpolation-based or extrapolation-based padding may be applied.
그리고, 상기 단말은 상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고한다(S2950).In addition, the terminal reports the CSI to the base station based on the padding pattern and the padding scheme (S2950).
Device to Implement the Embodiment(s)Device to Implement the Embodiment(s)
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.Hereinafter, downlink (DL) refers to communication from a base station to a terminal, and uplink (UL) refers to communication from a terminal to a base station. In downlink, the transmitter may be part of the base station, and the receiver may be part of the terminal. In the uplink, the transmitter may be part of the terminal, and the receiver may be part of the base station. The base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device. Base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G). Network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device, etc. Can be replaced by In addition, the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It can be replaced with terms such as robot, AI (Artificial Intelligence) module, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
도 30은 본 발명을 수행하는 전송 장치(10) 및 수신 장치(20)의 구성 요소를 나타내는 블록도이다. 여기서, 상기 전송 장치 및 수신 장치는 각각 기지국 또는 단말일 수 있다.30 is a block diagram showing the components of the transmission device 10 and the reception device 20 for implementing the present invention. Here, the transmitting device and the receiving device may be a base station or a terminal, respectively.
전송 장치(10) 및 수신 장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 트랜시버(13, 23)와, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 트랜시버(13, 23) 및 메모리(12, 22) 등의 구성요소와 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 트랜시버(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함할 수 있다.The transmitting device 10 and the receiving device 20 are transceivers 13 and 23 capable of transmitting or receiving wireless signals carrying information and/or data, signals, messages, etc., and various information related to communication within a wireless communication system. Is connected to components such as memories 12 and 22, the transceivers 13 and 23, and the memories 12 and 22, and controls the components so that the corresponding device is one of the above-described embodiments of the present invention. Each of the processors 11 and 21 may be configured to control the memories 12 and 22 and/or the transceivers 13 and 23 to perform at least one.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)는 버퍼로서 활용될 수 있다.The memories 12 and 22 may store programs for processing and control of the processors 11 and 21, and may temporarily store input/output information. The memories 12 and 22 can be utilized as buffers.
프로세서(11, 21)는 통상적으로 전송 장치 또는 수신 장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.The processors 11 and 21 generally control the overall operation of various modules in the transmitting device or the receiving device. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention. The processors 11 and 21 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. The processors 11 and 21 may be implemented by hardware, firmware, software, or a combination thereof. When the present invention is implemented using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs configured to perform the present invention field programmable gate arrays) and the like may be provided in the processors 11 and 21. On the other hand, when the present invention is implemented using firmware or software, firmware or software may be configured to include a module, procedure, or function that performs functions or operations of the present invention, and configured to perform the present invention. Firmware or software may be provided in the processors 11 and 21 or stored in the memories 12 and 22 and driven by the processors 11 and 21.
전송 장치(10)의 프로세서(11)는, 외부로 전송할 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 트랜시버(13)에 전송할 수 있다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 코드워드를 생성할 수 있다. 코드워드는 MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가의 정보들을 포함할 수 있다. 하나의 전송 블록(transport block, TB)은 하나의 코드워드로 부호화될 수 있다. 각 코드워드는 하나 이상의 레이어를 통해 수신 장치에 전송될 수 있다. 주파수 상향 변환(frequency up-convert)을 위해 트랜시버(13)는 오실레이터(oscillator)를 포함할 수 있다. 트랜시버(13)는 하나의 또는 복수의 전송 안테나들을 포함할 수 있다.The processor 11 of the transmission device 10 may perform predetermined coding and modulation on a signal and/or data to be transmitted to the outside and then transmit it to the transceiver 13. For example, the processor 11 may generate a codeword through demultiplexing, channel encoding, scrambling, and modulation processes to be transmitted. The codeword may include information equivalent to a transport block, which is a data block provided by the MAC layer. One transport block (TB) may be encoded with one codeword. Each codeword may be transmitted to a receiving device through one or more layers. For frequency up-convert, the transceiver 13 may include an oscillator. The transceiver 13 may include one or a plurality of transmit antennas.
수신 장치(20)의 신호 처리 과정은 전송 장치(10)의 신호 처리 과정의 역으로 구성될 수 있다. 프로세서(21)의 제어 하에, 수신 장치(20)의 트랜시버(23)는 전송 장치(10)에 의해 전송된 무선 신호를 수신할 수 있다. 상기 트랜시버(23)는 하나 또는 복수개의 수신 안테나를 포함할 수 있다. 상기 트랜시버(23)는 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원할 수 있다. 트랜시버(23)는 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송 장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.The signal processing process of the reception device 20 may be configured as the reverse of the signal processing process of the transmission device 10. Under the control of the processor 21, the transceiver 23 of the receiving device 20 can receive a radio signal transmitted by the transmitting device 10. The transceiver 23 may include one or a plurality of receive antennas. The transceiver 23 may frequency down-convert each of the signals received through the reception antenna and restore a baseband signal. The transceiver 23 may include an oscillator for frequency down conversion. The processor 21 may perform decoding and demodulation of a radio signal received through a receiving antenna to restore data originally intended to be transmitted by the transmitting device 10.
트랜시버(13, 23)는 하나 또는 복수개의 안테나를 구비할 수 있다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, 트랜시버(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 트랜시버(13, 23)으로 전달하는 기능을 수행할 수 있다. 안테나는 안테나 포트로 칭할 수도 있다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신 장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신 장치(20)의 관점에서 본 안테나를 정의하며, 채널이 하나의 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신 장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 할 수 있다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의될 수 있다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 트랜시버의 경우에는 2개 이상의 안테나와 연결될 수 있다.The transceivers 13 and 23 may include one or a plurality of antennas. The antenna transmits a signal processed by the transceivers 13 and 23 to the outside, or receives a radio signal from the outside, according to an embodiment of the present invention under the control of the processors 11 and 21, It can perform the function of passing to ). The antenna may also be referred to as an antenna port. Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna element. The signal transmitted from each antenna can no longer be decomposed by the receiving device 20. A reference signal (RS) transmitted corresponding to the antenna defines an antenna viewed from the viewpoint of the receiving device 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna Regardless of whether the channel is a composite channel from a plurality of physical antenna elements, the reception device 20 may enable channel estimation for the antenna. That is, the antenna may be defined so that a channel through which a symbol on the antenna is transmitted can be derived from the channel through which another symbol on the same antenna is transmitted. In the case of a transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, it may be connected to two or more antennas.
본 발명에서 제안하는 방식의 적용에 있어, 장치 10이 단말이라 하면 복수 개의 Transceiver(13)를 단일 프로세서(11)가 제어하는 구조를 가진 단일 전송 장치(10) 혹은 복수 개의 안테나로 구성된 Transceiver(13)로 구성된 단일 전송 장치(10)가 단일 수신 장치(20)로 신호를 전송할 수 있고, 각 Transceiver 혹은 Transceiver내의 안테나 (그룹) 단위로 전송 패널을 구성할 수 있다. 각 전송 패널에 복수 개의 안테나가 장착된 경우, 각 패널에서의 송신 빔을 구성하기 위해 각 안테나에서 송신하는 신호의 위상 (및 크기)를 제어하기 위한 소자(e.g. phase shifter, power amplifier)들로의 입력 신호를 구성할 수 있으며, 상기 소자들에 대한 입력값(e.g. phase shift값)을 제어하기 위한 별도의 프로세서를 장착하거나 단일 프로세서에서 상기 소자들에 대한 입력값에 대한 제어 신호를 입력하는 구조로 구성될 수 있다. 이 때, 장치 10의 Transceiver구조에 있어서 송신 장치 구조와 수신 장치 구조는 대응적으로 구성될 수 있다. 즉, 하나의 전송 패널은 하나의 수신 패널에 대응될 수 있으며 이 때 각 패널의 안테나는 송신 및 수신 안테나 역할을 모두 수행할 수도 있다. In the application of the scheme proposed in the present invention, if the device 10 is a terminal, a single transmission device 10 having a structure in which a plurality of transmitters 13 are controlled by a single processor 11 or a transmitter 13 composed of a plurality of antennas A single transmission device 10 configured with) may transmit a signal to the single reception device 20, and a transmission panel may be configured in units of antennas (groups) within each Transceiver or Transceiver. When a plurality of antennas are mounted on each transmission panel, input signals to elements (eg phase shifters, power amplifiers) for controlling the phase (and magnitude) of signals transmitted from each antenna to form a transmission beam from each panel Can be configured, and a separate processor for controlling input values (eg phase shift values) for the elements is mounted or a single processor inputs control signals for input values for the elements. I can. In this case, in the transceiver structure of the device 10, the structure of the transmitting device and the structure of the receiving device may be configured correspondingly. That is, one transmission panel may correspond to one reception panel, and in this case, an antenna of each panel may serve as both a transmission and reception antenna.
도 31은 전송 장치(10) 내 신호 처리 모듈 구조의 일 예를 도시한 것이다. 여기서, 신호 처리는 도 30의 프로세서(11)와 같은 기지국/단말의 프로세서에서 수행될 수 있다.31 shows an example of a structure of a signal processing module in the transmission device 10. Here, signal processing may be performed in a processor of the base station/terminal such as the processor 11 of FIG. 30.
도 31을 참조하면, 단말 또는 기지국 내의 전송 장치(10)는 스크램블러(301), 모듈레이터(302), 레이어 맵퍼(303), 안테나 포트 맵퍼(304), 자원 블록 맵퍼(305), 신호 생성기(306)를 포함할 수 있다.Referring to FIG. 31, a transmission device 10 in a terminal or a base station includes a scrambler 301, a modulator 302, a layer mapper 303, an antenna port mapper 304, a resource block mapper 305, and a signal generator 306. ) Can be included.
전송 장치(10)는 하나 이상의 코드워드(codeword)를 전송할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터 열로 지칭될 수도 있으며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가일 수 있다. The transmission device 10 may transmit one or more codewords. Coded bits in each codeword are each scrambled by the scrambler 301 and transmitted on a physical channel. The codeword may be referred to as a data string, and may be equivalent to a transport block, which is a data block provided by the MAC layer.
스크램블된 비트는 모듈레이터(302)에 의해 복소 변조 심볼(Complex-valued modulation symbols)로 변조된다. 모듈레이터 (302)는 상기 스크램블된 비트를 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소 변조 심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다. 모듈레이터는 모듈레이션 맵퍼(modulation mapper)로 지칭될 수 있다. The scrambled bits are modulated by the modulator 302 into complex-valued modulation symbols. The modulator 302 modulates the scrambled bits according to a modulation method and may be arranged as a complex modulation symbol representing a position on a signal constellation. There is no restriction on the modulation scheme, and m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM) may be used for modulation of the encoded data. The modulator may be referred to as a modulation mapper.
상기 복소 변조 심볼은 레이어 맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑될 수 있다. 각 레이어 상의 복소 변조 심볼은 안테나 포트 상에서의 전송을 위해 안테나 포트 맵퍼(304)에 의해 맵핑될 수 있다.The complex modulation symbol may be mapped to one or more transport layers by the layer mapper 303. The complex modulation symbols on each layer may be mapped by the antenna port mapper 304 for transmission on the antenna port.
자원 블록 맵퍼(305)는 각 안테나 포트에 대한 복소 변조 심볼을 전송을 위해 할당된 가상 자원 블록(Virtual Resource Block) 내의 적절한 자원 요소에 맵핑할 수 있다. 자원 블록 맵퍼는 상기 가상 자원 블록을 적절한 맵핑 기법(mapping scheme)에 따라 물리 자원 블록(Physical Resource Block)에 맵핑할 수 있다. 상기 자원 블록 맵퍼(305)는 상기 각 안테나 포트에 대한 복소 변조 심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.The resource block mapper 305 may map a complex modulation symbol for each antenna port to an appropriate resource element in a virtual resource block allocated for transmission. The resource block mapper may map the virtual resource block to a physical resource block according to an appropriate mapping scheme. The resource block mapper 305 may allocate a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.
신호 생성기(306)는 상기 각 안테나 포트에 대한 복소 변조 심볼, 즉, 안테나 특정 심볼을 특정 변조 방식, 예컨대, OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조하여, 복소 시간 도메인(complex-valued time domain) OFDM 심볼 신호를 생성할 수 있다. 신호 생성기는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향 변환 등을 거쳐 각 송신 안테나를 통해 수신 장치로 송신된다. 신호 생성기는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by a specific modulation method, for example, an Orthogonal Frequency Division Multiplexing (OFDM) method, and a complex-valued time domain. An OFDM symbol signal can be generated. The signal generator may perform Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a Cyclic Prefix (CP) may be inserted into a time domain symbol on which IFFT is performed. The OFDM symbol is transmitted to a receiving device through each transmit antenna through digital-to-analog conversion and frequency up-conversion. The signal generator may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.
도 32는 전송 장치(10) 내 신호 처리 모듈 구조의 다른 예를 도시한 것이다. 여기서, 신호 처리는 도 30의 프로세서(11) 등 단말/기지국의 프로세서에서 수행될 수 있다.32 illustrates another example of the structure of a signal processing module in the transmission device 10. Here, signal processing may be performed by a processor of the terminal/base station such as the processor 11 of FIG. 30.
도 32를 참조하면, 단말 또는 기지국 내 전송 장치(10)는 스크램블러(401), 모듈레이터(402), 레이어 맵퍼(403), 프리코더(404), 자원 블록 맵퍼(405), 신호 생성기(406)를 포함할 수 있다.Referring to FIG. 32, a terminal or base station transmission device 10 includes a scrambler 401, a modulator 402, a layer mapper 403, a precoder 404, a resource block mapper 405, and a signal generator 406. It may include.
전송 장치(10)는 하나의 코드워드에 대해, 코드워드 내 부호화된 비트(coded bits)를 스크램블러(401)에 의해 스크램블링한 후 물리 채널을 통해 전송할 수 있다.For one codeword, the transmission device 10 may scramble coded bits within the codeword by the scrambler 401 and then transmit them through a physical channel.
스크램블된 비트는 모듈레이터(402)에 의해 복소 변조 심볼로 변조된다. 상기 모듈레이터는 상기 스크램블된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소 변조 심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다.The scrambled bits are modulated by modulator 402 into complex modulation symbols. The modulator may modulate the scrambled bits according to a predetermined modulation method and arrange them as a complex modulation symbol representing a position on a signal constellation. There are no restrictions on the modulation scheme, and pi/2-BPSK (pi/2-Binary Phase Shift Keying), m-PSK (m-Phase Shift Keying) or m-QAM (m-Quadrature Amplitude Modulation) It can be used for modulation of the encoded data.
상기 복소 변조 심볼은 상기 레이어 맵퍼(403)에 의해 하나 이상의 전송 레이어로 맵핑될 수 있다.The complex modulation symbol may be mapped to one or more transport layers by the layer mapper 403.
각 레이어 상의 복소 변조 심볼은 안테나 포트상에서의 전송을 위해 프리코더(404)에 의해 프리코딩될 수 있다. 여기서, 프리코더는 복소 변조 심볼에 대한 트랜스폼 프리코딩(transform precoding)을 수행한 이후에 프리코딩을 수행할 수도 있다. 또는, 프리코더는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수도 있다. 프리코더(404)는 상기 복소 변조 심볼을 다중 송신 안테나에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원 블록 맵퍼(405)로 분배할 수 있다. 프리코더(404)의 출력 z는 레이어 맵퍼(403)의 출력 y를 NХM의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 레이어의 개수이다.The complex modulation symbols on each layer may be precoded by the precoder 404 for transmission on the antenna port. Here, the precoder may perform precoding after performing transform precoding on the complex modulation symbol. Alternatively, the precoder may perform precoding without performing transform precoding. The precoder 404 may process the complex modulation symbols in a MIMO scheme according to multiple transmission antennas, output antenna specific symbols, and distribute the antenna specific symbols to a corresponding resource block mapper 405. The output z of the precoder 404 can be obtained by multiplying the output y of the layer mapper 403 by the precoding matrix W of NХM. Here, N is the number of antenna ports, and M is the number of layers.
자원 블록 맵퍼(405)는 각 안테나 포트에 대한 복조 변조 심볼을 전송을 위해 할당된 가상 자원 블록 내에 있는 적절한 자원 요소에 맵핑한다. The resource block mapper 405 maps a demodulation modulation symbol for each antenna port to an appropriate resource element in a virtual resource block allocated for transmission.
자원 블록 맵퍼(405)는 복소 변조 심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.The resource block mapper 405 allocates a complex modulation symbol to an appropriate subcarrier and multiplexes it according to a user.
신호 생성기(406)는 복소 변조 심볼을 특정 변조 방식 예컨대, OFDM 방식으로 변조하여 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호를 생성할 수 있다. 신호 생성기(406)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 송신 안테나를 통해 수신장치로 송신된다. 신호 생성기(406)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The signal generator 406 may generate a complex-valued time domain orthogonal frequency division multiplexing (OFDM) symbol signal by modulating the complex modulation symbol using a specific modulation method, such as an OFDM method. The signal generator 406 may perform Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a Cyclic Prefix (CP) may be inserted into a time domain symbol on which IFFT is performed. The OFDM symbol is transmitted to a receiving device through each transmission antenna through digital-to-analog conversion and frequency up-conversion. The signal generator 406 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.
수신장치(20)의 신호 처리 과정은 송신기의 신호 처리 과정의 역으로 구성될 수 있다. 구체적으로, 전송장치(10)의 프로세서(21)는 외부에서 트랜시버(23)의 안테나 포트(들)을 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행한다. 상기 수신장치(20)는 복수개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 전송장치(10)가 본래 전송하고자 했던 데이터열로 복원된다. 수신장치(20)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호 복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호 복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호 복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 송신장치가 전송하고자 했던 코드워드로 복원된다.The signal processing process of the reception device 20 may be configured as the reverse of the signal processing process of the transmitter. Specifically, the processor 21 of the transmission device 10 performs decoding and demodulation on the radio signal received through the antenna port(s) of the transceiver 23 from the outside. The receiving device 20 may include a plurality of multiple receiving antennas, and each signal received through the receiving antenna is restored to a baseband signal and then subjected to multiplexing and MIMO demodulation to be transmitted by the transmitting device 10 originally. It is restored to the previous data string The receiving apparatus 20 may include a signal restorer for restoring a received signal into a baseband signal, a multiplexer for combining and multiplexing the received signal, and a channel demodulator for demodulating the multiplexed signal sequence into a corresponding codeword. . The signal restorer, multiplexer, and channel demodulator may be configured as one integrated module or each independent module performing their functions. More specifically, the signal restorer includes an analog-to-digital converter (ADC) that converts an analog signal into a digital signal, a CP remover that removes CP from the digital signal, and a fast Fourier transform (FFT) on the signal from which CP is removed. An FFT module for outputting a frequency domain symbol by applying the FFT module, and a resource element demapper/equalizer for restoring the frequency domain symbol into an antenna specific symbol may be included. The antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by a transmitting apparatus by a channel demodulator.
도 33은 본 발명의 구현 예에 따른 무선 통신 장치의 일 예를 도시한 것이다.33 illustrates an example of a wireless communication device according to an embodiment of the present invention.
도 33에 따르면, 무선 통신 장치, 예를 들어, 단말은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로프로세서 등의 프로세서(2310), 트랜시버(2335), 전력 관리 모듈(2305), 안테나(2340), 배터리(2355), 디스플레이(2315), 키패드(2320), GPS(Global Positioning System) 칩(2360), 센서(2365), 메모리(2330), SIM(Subscriber Identification Module) 카드(2325), 스피커(2345), 마이크로폰(2350) 중 적어도 하나를 포함할 수 있다. 상기 안테나 및 프로세서는 복수 개일 수 있다.Referring to FIG. 33, a wireless communication device, for example, a terminal, includes a processor 2310 such as a digital signal processor (DSP) or a microprocessor, a transceiver 2335, a power management module 2305, and an antenna 2340. ), battery 2355, display 2315, keypad 2320, GPS (Global Positioning System) chip 2360, sensor 2365, memory 2330, SIM (Subscriber Identification Module) card 2325, speaker It may include at least one of 2345 and the microphone 2350. There may be a plurality of antennas and processors.
프로세서(2310)는 본 명세서에서 설명한 기능, 절차, 방법들을 구현할 수 있다. 도 33의 프로세서(2310)는 도 30의 프로세서(11, 21)일 수 있다.The processor 2310 may implement the functions, procedures, and methods described herein. The processor 2310 of FIG. 33 may be the processors 11 and 21 of FIG. 30.
메모리(2330)는 프로세서(2310)와 연결되어, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서의 내부 또는 외부에 위치할 수 있고, 유선 연결 또는 무선 연결과 같은 다양한 기술을 통해 프로세서와 연결될 수 있다. 도 33의 메모리(2330)는 도 30의 메모리(12, 22)일 수 있다.The memory 2330 is connected to the processor 2310 and stores information related to the operation of the processor. The memory may be located inside or outside the processor, and may be connected to the processor through various technologies such as wired connection or wireless connection. The memory 2330 of FIG. 33 may be the memories 12 and 22 of FIG. 30.
사용자는 키패드(2320)의 버튼을 누르거나 마이크로폰(2350)을 이용하여 소리를 활성화시키는 등 다양한 기술을 이용하여 전화 번호와 같은 다양한 종류의 정보를 입력할 수 있다. 프로세서(2310)는 사용자의 정보를 수신하여 프로세싱하고, 입력된 전화 번호에 전화를 거는 등 적절한 기능을 수행할 수 있다. 일부 시나리오에서는, 데이터가 적절한 기능을 수행하기 위해 SIM 카드(2325) 또는 메모리(2330)로부터 검색될 수 있다. 일부 시나리오에서는, 프로세서(2310)는 사용자의 편의를 위해 디스플레이(2315)에 다양한 종류의 정보와 데이터를 표시할 수 있다.A user may input various types of information such as a phone number using various technologies such as pressing a button on the keypad 2320 or activating a sound using the microphone 2350. The processor 2310 may receive and process the user's information, and perform an appropriate function, such as dialing the input phone number. In some scenarios, data may be retrieved from SIM card 2325 or memory 2330 to perform an appropriate function. In some scenarios, the processor 2310 may display various types of information and data on the display 2315 for user convenience.
트랜시버(2335)는 프로세서(2310)와 연결되어, RF(Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하거나 음성 통신 데이터 등 다양한 종류의 정보 또는 데이터를 포함한 무선 신호를 전송하기 위해 트랜시버를 제어할 수 있다. 트랜시버는 무선 신호의 송신 및 수신을 위해 송신기 및 수신기를 포함한다. 안테나(2340)는 무선 신호의 송신 및 수신을 용이하게 할 수 있다. 일부 구현 예에서, 트랜시버는 무선 신호를 수신하면 프로세서에 의한 처리를 위해 신호를 기저대역 주파수로 포워딩하고 변환할 수 있다. 처리된 신호는 스피커(2345)를 통해 출력되도록 가청 또는 판독 가능한 정보로 변환되는 등 다양한 기술에 의해 처리될 수 있다. 도 33의 트랜시버는 도 30의 트랜시버(13, 23)일 수 있다.The transceiver 2335 is connected to the processor 2310 and transmits and/or receives a radio signal such as a radio frequency (RF) signal. The processor may control the transceiver to initiate communication or transmit wireless signals including various types of information or data such as voice communication data. The transceiver includes a transmitter and a receiver for transmission and reception of radio signals. The antenna 2340 may facilitate transmission and reception of wireless signals. In some implementations, upon receiving the radio signal, the transceiver may forward and convert the signal to a baseband frequency for processing by a processor. The processed signal can be processed by various techniques, such as being converted into audible or readable information to be output through the speaker 2345. The transceiver of FIG. 33 may be the transceivers 13 and 23 of FIG. 30.
도 33에 도시되어 있지는 않지만, 카메라, USB(Universal Serial Bus) 포트 등 다양한 구성 요소가 단말에 추가적으로 포함될 수 있다. 예를 들어, 카메라는 프로세서(2310)와 연결될 수 있다. Although not shown in FIG. 33, various components such as a camera and a USB (Universal Serial Bus) port may be additionally included in the terminal. For example, the camera may be connected to the processor 2310.
도 33은 단말에 대한 하나의 구현 예일 뿐이고, 구현 예는 이에 제한되지 않는다. 단말은 도 33의 모든 요소들을 필수적으로 포함해야 하는 것은 아니다. 즉, 일부 구성 요소 예를 들어, 키패드(2320), GPS(Global Positioning System) 칩(2360), 센서(2365), SIM 카드(2325) 등은 필수적인 요소가 아닐 수도 있으며 이 경우, 단말에 포함되지 않을 수도 있다. 33 is only one implementation example of a terminal, and the implementation example is not limited thereto. The terminal does not necessarily have to include all the elements of FIG. 33. That is, some components, for example, a keypad 2320, a global positioning system (GPS) chip 2360, a sensor 2365, and a SIM card 2325 may not be essential elements, and in this case, they are not included in the terminal. May not.
도 34는 본 발명의 일 실시 예에 따른 무선 통신 장치를 나타낸다.34 illustrates a wireless communication device according to an embodiment of the present invention.
도 34를 참조하면, 무선 통신 시스템은 제 1 장치(9010)와 제 2 장치(9020)를 포함할 수 있다. Referring to FIG. 34, the wireless communication system may include a first device 9010 and a second device 9020.
상기 제 1 장치(9010)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.The first device 9010 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) Module, Robot, Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G service, or a device related to the fourth industrial revolution field.
상기 제 2 장치(9020)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.The second device 9020 includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) Module, Robot, Augmented Reality (AR) Device, Virtual Reality (VR) Device, Mixed Reality (MR) Device, Hologram Device, Public Safety Device, MTC Device, IoT Device, Medical Device, Pin It may be a tech device (or financial device), a security device, a climate/environment device, a device related to 5G service, or a device related to the fourth industrial revolution field.
예를 들어, 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다.For example, the terminal is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and a tablet. PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display)), and the like may be included. . For example, the HMD may be a display device worn on the head. For example, HMD can be used to implement VR, AR or MR.
예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, VR 장치는 가상 세계의 객체 또는 배경 등을 구현하는 장치를 포함할 수 있다. 예를 들어, AR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 연결하여 구현하는 장치를 포함할 수 있다. 예를 들어, MR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 융합하여 구현하는 장치를 포함할 수 있다. 예를 들어, 홀로그램 장치는 홀로그래피라는 두 개의 레이저 광이 만나서 발생하는 빛의 간섭현상을 활용하여, 입체 정보를 기록 및 재생하여 360도 입체 영상을 구현하는 장치를 포함할 수 있다. 예를 들어, 공공 안전 장치는 영상 중계 장치 또는 사용자의 인체에 착용 가능한 영상 장치 등을 포함할 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락 또는 각종 센서 등을 포함할 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 상해 또는 장애를 진단, 치료, 경감 또는 보정할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 임신을 조절할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 진료용 장치, 수술용 장치, (체외) 진단용 장치, 보청기 또는 시술용 장치 등을 포함할 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치일 수 있다. 예를 들어, 보안 장치는 카메라, CCTV, 녹화기(recorder) 또는 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치일 수 있다. 예를 들어, 핀테크 장치는 결제 장치 또는 POS(Point of Sales) 등을 포함할 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링 또는 예측하는 장치를 포함할 수 있다.For example, a drone may be a vehicle that is not human and is flying by a radio control signal. For example, the VR device may include a device that implements an object or a background of a virtual world. For example, the AR device may include a device that connects and implements an object or background of a virtual world, such as an object or background of the real world. For example, the MR device may include a device that combines and implements an object or background of a virtual world, such as an object or background of the real world. For example, the hologram device may include a device that implements a 360-degree stereoscopic image by recording and reproducing stereoscopic information by utilizing an interference phenomenon of light generated by the encounter of two laser lights called holography. For example, the public safety device may include an image relay device or an image device wearable on a user's human body. For example, the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation. For example, the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, or various sensors. For example, the medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating or preventing a disease. For example, the medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder. For example, a medical device may be a device used for the purpose of examining, replacing or modifying a structure or function. For example, the medical device may be a device used for the purpose of controlling pregnancy. For example, the medical device may include a device for treatment, a device for surgery, a device for (extra-corporeal) diagnosis, a device for hearing aid or a procedure. For example, the security device may be a device installed to prevent a risk that may occur and maintain safety. For example, the security device may be a camera, CCTV, recorder, or black box. For example, the fintech device may be a device capable of providing financial services such as mobile payment. For example, the fintech device may include a payment device or a point of sales (POS). For example, the climate/environment device may include a device that monitors or predicts the climate/environment.
상기 제 1 장치(9010)는 프로세서(9011)와 같은 적어도 하나 이상의 프로세서와, 메모리(9012)와 같은 적어도 하나 이상의 메모리와, 송수신기(9013)과 같은 적어도 하나 이상의 송수신기를 포함할 수 있다. 상기 프로세서(9011)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(9011)는 하나 이상의 프로토콜을 수행할 수 있다. 예를 들어, 상기 프로세서(9011)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 수행할 수 있다. 상기 메모리(9012)는 상기 프로세서(9011)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(9013)는 상기 프로세서(9011)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.The first device 9010 may include at least one or more processors such as the processor 9011, at least one or more memories such as the memory 9012, and at least one or more transceivers such as the transceiver 9013. The processor 9011 may perform the functions, procedures, and/or methods described above. The processor 9011 may perform one or more protocols. For example, the processor 9011 may perform one or more layers of an air interface protocol. The memory 9012 is connected to the processor 9011 and may store various types of information and/or commands. The transceiver 9013 may be connected to the processor 9011 and controlled to transmit and receive wireless signals.
상기 제 2 장치(9020)는 프로세서(9021)와 같은 적어도 하나의 프로세서와, 메모리(9022)와 같은 적어도 하나 이상의 메모리 장치와, 송수신기(9023)와 같은 적어도 하나의 송수신기를 포함할 수 있다. 상기 프로세서(9021)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(9021)는 하나 이상의 프로토콜을 구현할 수 있다. 예를 들어, 상기 프로세서(9021)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 구현할 수 있다. 상기 메모리(9022)는 상기 프로세서(9021)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(9023)는 상기 프로세서(9021)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다. The second device 9020 may include at least one processor such as the processor 9021, at least one memory device such as the memory 9022, and at least one transceiver such as the transceiver 9023. The processor 9021 may perform the functions, procedures, and/or methods described above. The processor 9021 may implement one or more protocols. For example, the processor 9021 may implement one or more layers of an air interface protocol. The memory 9022 is connected to the processor 9021 and may store various types of information and/or commands. The transceiver 9023 is connected to the processor 9021 and may be controlled to transmit and receive radio signals.
상기 메모리(9012) 및/또는 상기 메모리(9022)는, 상기 프로세서(9011) 및/또는 상기 프로세서(9021)의 내부 또는 외부에서 각기 연결될 수도 있고, 유선 또는 무선 연결과 같이 다양한 기술을 통해 다른 프로세서에 연결될 수도 있다.The memory 9012 and/or the memory 9022 may be connected inside or outside the processor 9011 and/or the processor 9021, respectively, or other processors through various technologies such as wired or wireless connection. It can also be connected to.
상기 제 1 장치(9010) 및/또는 상기 제 2 장치(9020)는 하나 이상의 안테나를 가질 수 있다. 예를 들어, 안테나(9014) 및/또는 안테나(9024)는 무선 신호를 송수신하도록 구성될 수 있다.The first device 9010 and/or the second device 9020 may have one or more antennas. For example, the antenna 9014 and/or the antenna 9024 may be configured to transmit and receive wireless signals.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which components and features of the present invention are combined in a predetermined form. Each component or feature should be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, it is also possible to constitute an embodiment of the present invention by combining some components and/or features. The order of operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments. It is obvious that the embodiments may be configured by combining claims that do not have an explicit citation relationship in the claims or may be included as new claims by amendment after filing.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. A specific operation described as being performed by a base station in this document may be performed by its upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. The base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.The embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of implementation by hardware, an embodiment of the present invention is one or more ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor through various known means.
한편, 본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. Meanwhile, although this specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, this is an example and the embodiment of the present invention can be applied to any communication system corresponding to the above definition.
또한, 본 명세서는 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있으며, 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다. 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, in this specification, a specific operation described as being performed by a base station in this document may be performed by an upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. The base station may be replaced by terms such as a fixed station, Node B, eNode B (eNB), and access point, and the name of the base station is RRH (remote radio head), eNB, transmission point (TP). ), RP (reception point), repeater (relay) can be used as a generic term. It will be apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the features of the present invention. Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.
상기 제안의 특정 예시에서 DL 또는 UL에 대한 경우만을 도시한 경우에도 DL 또는 UL로 기술 적용을 한정한다고 명시하지 않은 경우, 본 제안은 DL/UL 모든 경우에 대해서 적용이 가능함은 자명하겠다. 또한, 제안방식이 상향링크, 혹은 하향링크 통신에만 제한되는 것은 아니며, 단말간 직접 통신, 기지국, 차량, relay node 등이 상기 제안한 방법을 사용할 수 있겠다.In a specific example of the above proposal, even if only the case of DL or UL is shown, if it is not specified that the technology application is limited to DL or UL, it will be apparent that this proposal is applicable to all DL/UL cases. In addition, the proposed method is not limited only to uplink or downlink communication, and direct communication between terminals, a base station, a vehicle, a relay node, etc. may use the proposed method.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다. 상기 제안 방법들의 적용 여부 정보 (혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 혹은 송신 단말이 수신 단말에게 사전에 정의된 시그널 (e.g., 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의되거나, 기지국과 단말 사이에 고정적인 규칙으로 정의될 수 있겠다. Since examples of the above-described proposed method may also be included as one of the implementation methods of the present invention, it is obvious that they may be regarded as a kind of proposed method. In addition, the above-described proposed schemes may be implemented independently, but may be implemented in the form of a combination (or merge) of some of the proposed schemes. Information on whether the proposed methods are applied (or information on the rules of the proposed methods) is notified by the base station to the terminal or the transmitting terminal to the receiving terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). The rule may be defined so that it may be defined as a fixed rule between the base station and the terminal.
본 발명의 무선 통신 시스템에서 데이터를 송수신하는 방안은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.The method of transmitting and receiving data in the wireless communication system of the present invention has been described mainly in an example applied to a 3GPP LTE/LTE-A system and a 5G system (New RAT system), but it can be applied to various wireless communication systems.

Claims (17)

  1. 무선 통신 시스템에서 단말에 의해 CSI(channel state information)을 보고(report)하는 방법에 있어서,In a method for reporting channel state information (CSI) by a terminal in a wireless communication system,
    CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하는 단계;Receiving control information related to determination of a dimension size for a specific domain used for CSI reporting from the base station;
    상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하는 단계;Receiving, from the base station, configuration information related to padding to be applied to one or more subbands for the CSI report;
    상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하는 단계;Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook;
    상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하는 단계; 및Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And
    상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 단계를 포함하는 것을 특징으로 하는 방법.And reporting the CSI to the base station based on the padding pattern and the padding scheme.
  2. 제 1항에 있어서,The method of claim 1,
    상기 패딩 패턴은 상기 패딩이 적용될 서브밴드의 위치와 관련되는 것을 특징으로 하는 방법.The method of claim 1, wherein the padding pattern is related to a position of a subband to which the padding is applied.
  3. 제 2항에 있어서,The method of claim 2,
    상기 패딩이 적용될 서브밴드의 위치는 처음(initial) CSI 보고를 위한 서브밴드의 앞, 마지막 CSI 보고를 위한 서브밴드의 뒤 또는 설정된 CSI 보고를 위한 서브밴드들 중간인 것을 특징으로 하는 방법.The position of the subband to which the padding is to be applied is in front of the subband for initial CSI reporting, after the subband for last CSI reporting, or in the middle of the subbands for CSI reporting.
  4. 제 1항에 있어서,The method of claim 1,
    상기 패딩 스킴은 제로 패딩, CSI-RS에 기초하여 측정된 CSI에 대한 interpolation 기반 패딩 또는 CSI-RS에 기초하여 측정된 CSI에 대한 extrapolation 기반 패딩인 것을 특징으로 하는 방법.The padding scheme is zero padding, interpolation-based padding for CSI measured based on CSI-RS, or extrapolation-based padding for CSI measured based on CSI-RS.
  5. 제 4항에 있어서,The method of claim 4,
    상기 CSI 보고를 위한 서브밴드들이 연속적으로 설정된 경우, 상기 제로 패딩이 적용되며,When the subbands for the CSI report are continuously set, the zero padding is applied,
    상기 CSI 보고를 위한 서브밴드들이 불연속적으로 설정된 경우, 상기 interpolation 기반 또는 extrapolation 기반 패딩이 적용되는 것을 특징으로 하는 방법.When the subbands for the CSI report are configured discontinuously, the interpolation-based or extrapolation-based padding is applied.
  6. 제 1항에 있어서,The method of claim 1,
    상기 CSI는 선형 결합(linear combining) 기반의 CSI인 것을 특징으로 하는 방법.The CSI, characterized in that the CSI based on linear combining.
  7. 제 1항에 있어서,The method of claim 1,
    상기 특정 영역은 공간 영역(spatial domain), 주파수 영역(frequency domain) 또는 시간 영역(time domain) 중 적어도 하나인 것을 특징으로 하는 방법.The specific region is at least one of a spatial domain, a frequency domain, and a time domain.
  8. 제 1항에 있어서,The method of claim 1,
    상기 제어 정보는 BWP(bandwidth part)에 대한 정보 및 서브밴드 사이즈에 대한 정보를 포함하는 것을 특징으로 하는 방법.Wherein the control information includes information on a bandwidth part (BWP) and information on a subband size.
  9. 제 1항에 있어서,The method of claim 1,
    상기 설정 정보는 패딩 패턴에 대한 정보 및 패딩 스킴에 대한 정보를 포함하는 것을 특징으로 하는 방법.Wherein the setting information includes information on a padding pattern and information on a padding scheme.
  10. 제 1항에 있어서,The method of claim 1,
    상기 DFT 벡터의 크기는 기 설정된 규칙(rule)에 기초하여 결정되는 것을 특징으로 하는 방법.The size of the DFT vector is determined based on a preset rule.
  11. 제 1항에 있어서,The method of claim 1,
    상기 CSI는 PMI(precoding matrix indicator)를 포함하는 것을 특징으로 하는 방법.The method according to claim 1, wherein the CSI includes a precoding matrix indicator (PMI).
  12. 제 1항에 있어서,The method of claim 1,
    상기 패딩 패턴 및 상기 패딩 스킴은 상기 DFT 벡터의 크기가 상기 차원 크기보다 큰 경우 결정되는 것을 특징으로 하는 방법.The padding pattern and the padding scheme are determined when the size of the DFT vector is larger than the dimension size.
  13. 제 12항에 있어서,The method of claim 12,
    상기 DFT 벡터의 크기는 13보다 큰 것을 특징으로 하는 방법.The method of claim 1, wherein the size of the DFT vector is greater than 13.
  14. 제 1항에 있어서,The method of claim 1,
    상기 차원 크기는 서브밴드의 수 및 주파수 유닛 크기(frequency unit size)를 결정하는데 사용되는 스케일링(scaling) 파라미터의 곱으로 결정되는 것을 특징으로 하는 방법.The dimensional size is determined by a product of a number of subbands and a scaling parameter used to determine a frequency unit size.
  15. 무선 통신 시스템에서 CSI(channel state information)을 보고(report)하는 단말(terminal)에 있어서, 상기 단말은,In a terminal for reporting channel state information (CSI) in a wireless communication system, the terminal,
    무선 신호를 송수신하기 위한 송수신기; 및A transceiver for transmitting and receiving radio signals; And
    상기 송수신기와 연결되는 프로세서를 포함하고, 상기 프로세서는,And a processor connected to the transceiver, wherein the processor,
    CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며;Receive from the base station control information related to determination of a dimension size for a specific domain used for CSI reporting;
    상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며;Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station;
    상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며;Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook;
    상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And
    상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 하는 단말.The terminal, characterized in that for reporting the CSI to the base station based on the padding pattern and the padding scheme.
  16. 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서,An apparatus comprising one or more memories and one or more processors functionally connected to the one or more memories,
    상기 하나 이상의 프로세서들은 상기 장치가,The one or more processors the device,
    CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며;Receive from the base station control information related to determination of a dimension size for a specific domain used for CSI reporting;
    상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며;Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station;
    상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며;Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook;
    상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And
    상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 하는 장치.And reporting the CSI to the base station based on the padding pattern and the padding scheme.
  17. 하나 이상의 명령어(instructions)을 저장하는 하나 이상의 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 하나 이상의 프로세서에 의해 실행 가능한(executable) 상기 하나 이상의 명령어는,In one or more non-transitory computer-readable medium storing one or more instructions, wherein the one or more instructions are executable by one or more processors,
    CSI 보고에 사용되는 특정 영역(domain)에 대한 차원 크기(dimension size)의 결정과 관련된 제어 정보를 기지국으로부터 수신하며;Receive from the base station control information related to determination of a dimension size for a specific domain used for CSI reporting;
    상기 CSI 보고를 위해 하나 또는 그 이상의 서브밴드(subband)들에 적용될 패딩(padding)과 관련된 설정(configuration) 정보를 상기 기지국으로부터 수신하며;Receiving configuration information related to padding to be applied to one or more subbands for the CSI report from the base station;
    상기 제어 정보에 기초하여 결정되는 차원 크기와 코드북 구성에 사용되는 DFT(Discrete Fourier Transform) 벡터의 크기를 비교하며;Comparing the size of a dimension determined based on the control information and a size of a Discrete Fourier Transform (DFT) vector used for constructing a codebook;
    상기 DFT 벡터의 크기와 상기 차원 크기의 차이 값만큼의 서브밴드에 적용될 패딩 패턴(padding pattern)과 패딩 스킴(padding scheme)을 결정하며; 및Determining a padding pattern and a padding scheme to be applied to a subband equal to a difference between the size of the DFT vector and the size of the dimension; And
    상기 패딩 패턴 및 패딩 스킴에 기초하여 상기 CSI를 상기 기지국으로 보고하는 것을 특징으로 하는 컴퓨터 판독 가능 매체.And reporting the CSI to the base station based on the padding pattern and the padding scheme.
PCT/KR2020/005865 2019-05-01 2020-05-04 Method for reporting csi in wireless communication system and apparatus therefor WO2020222602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962841820P 2019-05-01 2019-05-01
US62/841,820 2019-05-01

Publications (1)

Publication Number Publication Date
WO2020222602A1 true WO2020222602A1 (en) 2020-11-05

Family

ID=73029027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005865 WO2020222602A1 (en) 2019-05-01 2020-05-04 Method for reporting csi in wireless communication system and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2020222602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002438A1 (en) * 2021-07-21 2023-01-26 Lenovo (Singapore) Pte. Ltd. Transmitting a channel state information report
WO2023010388A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Systems and methods for csi processing unit determination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012120A (en) * 2015-07-21 2017-02-02 삼성전자주식회사 Higher rank codebooks for advanced wireless communication systems
WO2018228425A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Channel state information feedback for flexible uplink control signaling
KR20190028351A (en) * 2017-09-08 2019-03-18 엘지전자 주식회사 Method and apparatus for reporting channel state information in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012120A (en) * 2015-07-21 2017-02-02 삼성전자주식회사 Higher rank codebooks for advanced wireless communication systems
WO2018228425A1 (en) * 2017-06-16 2018-12-20 Qualcomm Incorporated Channel state information feedback for flexible uplink control signaling
KR20190028351A (en) * 2017-09-08 2019-03-18 엘지전자 주식회사 Method and apparatus for reporting channel state information in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CSI enhancement for MU-MIMO", R1-1903223, 3GPP TSG RAN WG1 #96, 27 February 2019 (2019-02-27), Athens, Greece, pages 1 - 2, XP051600918 *
APPLE: "Considerations on CSI enhancement for MU-MIMO support", R1-1902766, 3GPP TSG RAN WG1 #96, vol. 1, no. 3, 16 February 2019 (2019-02-16), Athens, Greece, pages 5 - 6, XP051600461 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002438A1 (en) * 2021-07-21 2023-01-26 Lenovo (Singapore) Pte. Ltd. Transmitting a channel state information report
WO2023010388A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Systems and methods for csi processing unit determination

Similar Documents

Publication Publication Date Title
WO2020167071A1 (en) Method for transmitting/receiving data in wireless communication system, and device therefor
WO2020167070A1 (en) Method for transmitting/receiving uplink data in wireless communication system and device therefor
WO2021034069A1 (en) Method for transmitting uplink signal on basis of codebook in wireless communication system, and apparatus therefor
WO2020246819A1 (en) Method for transmitting and receiving uplink signal in wireless communication system, and device therefor
WO2020162716A1 (en) Method for performing uplink transmission in wireless communication system, and device for same
WO2020091576A1 (en) Method for performing beam-related reporting in wireless communication system and apparatus therefor
WO2020222606A1 (en) Method for transmitting and receiving phase tracking reference signal in wireless communication system, and apparatus therefor
WO2021034071A1 (en) Uplink signal transmission method based on codebook in wireless communication system, and apparatus therefor
WO2021034070A1 (en) Method for transmitting uplink signal on basis of codebook in wireless communication system, and device therefor
WO2020122686A1 (en) Method for transmitting/receiving data in wireless communication system, and device therefor
WO2021020847A1 (en) Method and apparatus for transmitting and receiving physical uplink shared channel in wireless communication system
WO2021029749A1 (en) Mehod for transmitting and receiving physical downlink shared channel in wireless communication system, and device therefor
WO2020162728A1 (en) Method and device for transmitting and receiving physical uplink shared channel in wireless communication system
WO2020209597A1 (en) Apparatus and method for reporting channel state information in wireless communication system
WO2021029748A1 (en) Method for transmitting/receiving downlink data in wireless communication system, and device therefor
WO2020122687A1 (en) Method for transmitting and receiving data in wireless communication system and apparatus therefor
WO2021066622A1 (en) Method for transmitting and receiving phase tracking reference signal in wireless communication system, and apparatus therefor
WO2020222605A1 (en) Method for transmitting and receiving data channel in wireless communication system, and apparatus therefor
WO2021066635A1 (en) Method for transmitting and receiving physical downlink shared channel in wireless communication system, and apparatus therefor
WO2021029752A1 (en) Method for transmitting and receiving downlink data in wireless communication system, and device for same
WO2021029711A1 (en) Method and device for transmitting/receiving uplink signal in wireless communication system
WO2020197357A1 (en) Method for transmitting and receiving sounding reference signal in wireless communication system and device therefor
WO2020060339A1 (en) Method for transmitting and receiving uplink taking into account multiple beams and/or multiple panels in wireless communication system, and device for same
WO2020122685A1 (en) Method for transmitting and receiving data in wireless communication system and apparatus therefor
WO2020197353A1 (en) Method for transmitting and receiving sounding reference signal in wireless communication system, and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799421

Country of ref document: EP

Kind code of ref document: A1