WO2020221154A1 - Srs功率控制方法和设备 - Google Patents

Srs功率控制方法和设备 Download PDF

Info

Publication number
WO2020221154A1
WO2020221154A1 PCT/CN2020/086976 CN2020086976W WO2020221154A1 WO 2020221154 A1 WO2020221154 A1 WO 2020221154A1 CN 2020086976 W CN2020086976 W CN 2020086976W WO 2020221154 A1 WO2020221154 A1 WO 2020221154A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
srs
control parameter
power
additional
Prior art date
Application number
PCT/CN2020/086976
Other languages
English (en)
French (fr)
Inventor
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020221154A1 publication Critical patent/WO2020221154A1/zh
Priority to US17/515,283 priority Critical patent/US20220053427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a sounding reference signal (Sounding Reference Symbol, SRS) power control method and device.
  • Sounding Reference Signal Sounding Reference Symbol, SRS
  • the uplink power control in the wireless system is very important. Through reasonable uplink power control, the quality of the uplink data can be ensured, while the interference to other users in the system can be minimized, and the battery life of the terminal equipment can be prolonged.
  • an additional (Additional) SRS was introduced in LTE Rel-16.
  • the extra SRS can be transmitted with the legacy (Legacy) SRS in a transmission time interval (Transmission Time Interval, TTI).
  • TTI Transmission Time Interval
  • the purpose of the embodiments of the present disclosure is to provide an SRS power control method and device to perform power control on an additional SRS.
  • an SRS power control method is provided.
  • the method is executed by a terminal device.
  • the method includes: receiving a power control parameter; wherein the power control parameter is used to determine the transmission power of an additional SRS;
  • the power control parameter determines the transmission power of the additional SRS.
  • an SRS power control method is provided, the method is executed by a network device, and the method includes: transmitting a power control parameter; wherein the power control parameter is used for a terminal device to determine the transmission power of an additional SRS.
  • a terminal device in a third aspect, includes: a receiving module for receiving power control parameters; wherein the power control parameter is used for determining the transmission power of the additional SRS; The power control parameter determines the transmission power of the additional SRS.
  • a network device in a fourth aspect, includes: a sending module configured to send power control parameters; wherein the power control parameters are used by a terminal device to determine the transmission power of an additional SRS.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program When the computer program is executed by the processor, Implement the steps of the SRS power control method as described in the first aspect.
  • a network device in a sixth aspect, includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program When the computer program is executed by the processor, Implement the steps of the SRS power control method as described in the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the SRS power control as described in the first and second aspects is implemented. Method steps.
  • the terminal device receives the power control parameter used to determine the transmission power of the additional SRS, and determines the transmission power of the additional SRS according to the power control parameter, thereby realizing the power control of the additional SRS.
  • the embodiments of the present disclosure can avoid the problem of poor quality of the additional SRS signal caused by inaccurate power control of the additional SRS or interference caused by the additional SRS to other users in the communication system, and improve the effectiveness and reliability of communication.
  • Fig. 1 is a flow chart of an SRS power control method according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a power control parameter receiving process according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a power control parameter receiving process according to another embodiment of the present disclosure.
  • Fig. 4 is a flowchart of an SRS power control method according to another embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • LTE Time Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • NR New Radio
  • terminal devices may include, but are not limited to, mobile stations (Mobile Station, MS), mobile terminals (Mobile Terminal), mobile phones (Mobile Telephone), User Equipment (UE), and mobile phones (handset) And portable equipment (portable equipment), vehicles (vehicle), etc.
  • the terminal equipment can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), for example, the terminal equipment can be a mobile phone (or It is called a "cellular" phone), a computer with wireless communication function, etc.
  • the terminal device can also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, and access points.
  • the names of devices with base station functions may be different.
  • an LTE network it is called an evolved NodeB (evolved NodeB, eNB, or eNodeB)
  • eNB evolved NodeB
  • 3G third generation
  • Node B Node B
  • Network equipment, etc. the wording does not constitute a restriction.
  • an embodiment of the present disclosure provides an SRS power control method 100, which may be executed by a terminal device, and includes the following steps:
  • S102 Receive power control parameters, where the power control parameters are used to determine the transmission power of the additional SRS.
  • Power control parameters are required to determine the transmission power of the additional SRS. Therefore, in this step, the terminal device may first receive the power control parameters from the network device.
  • the aforementioned power control parameters may include at least one of the following:
  • the target received power of the additional SRS (P 0 );
  • Additional SRS path loss calculation reference reference signal (Pathloss reference RS);
  • the closed loop power control process index of the additional SRS (Close loop power control process index).
  • the above-mentioned power control parameters may be configured or indicated by at least one of the following:
  • Radio Resource Control Radio Resource Control
  • MAC CE Media Access Control Element
  • DCI Downlink Control Information
  • S104 Determine the transmission power of the additional SRS according to the received power control parameter.
  • the terminal device After receiving the above-mentioned power control parameter, the terminal device can determine the transmission power of the additional SRS according to the power control parameter.
  • the terminal device receives the power control parameter used to determine the transmission power of the additional SRS, and determines the transmission power of the additional SRS according to the power control parameter, thereby realizing the power control of the additional SRS.
  • the embodiments of the present disclosure can avoid the problem of poor quality of the additional SRS signal caused by inaccurate power control of the additional SRS or interference caused by the additional SRS to other users in the communication system, and improve the effectiveness and reliability of communication.
  • the power control parameters include a first power control parameter and a second power control parameter; wherein, the first power control parameter is through RRC signaling Configuration; the second power control parameter is indicated by DCI.
  • the network device may configure at least one of the following parameters of the additional SRS for the terminal device through RRC signaling: target received power; path loss calculation compensation factor; path loss calculation reference reference signal; and closed-loop power control process identification.
  • the network device can also indicate the closed-loop power control adjustment amount of the additional SRS for the terminal device through the DCI.
  • the additional SRS and the legacy SRS can be transmitted in one TTI.
  • the network equipment can be respectively The additional SRS and the legacy SRS indicate and/or configure power control parameters, that is, the power control parameters of the additional SRS and the legacy SRS are independently configured and/or independently indicated; among them, the power control of the legacy SRS
  • the parameter can be the same type (or called parameter name) of the power control parameter of the additional SRS, but the specific parameter value can be equal or different.
  • the power control parameters of the additional SRS mentioned above include the first power control parameter and the second power control parameter.
  • the second power control parameter is indicated by the DCI.
  • the second power control parameter includes the transmission power control TPC command.
  • the TPC command is used to indicate the closed-loop power control adjustment amount of the additional SRS.
  • the TPC command is used to indicate the closed-loop power control adjustment amount of the legacy SRS.
  • the TPC command is used to indicate the closed-loop power control adjustment amount of the additional SRS and the closed-loop power control adjustment amount of the legacy SRS at the same time.
  • the second power control parameter may also include a closed-loop power control adjustment status indicator; wherein, the closed-loop power control adjustment status indicator is used for Indicates that the TPC command should be used for: additional SRS closed-loop power control adjustment; or legacy SRS closed-loop power control adjustment.
  • a 1-bit indicator field ie, closed-loop power control adjustment status indicator
  • a 1-bit indicator field is added to the TPC field of the DCI received by the terminal device.
  • the TPC command to be applied to additional SRS closed-loop power control adjustment; or applied to legacy SRS closed-loop power control adjustment.
  • 0-TPC is used for legacy SRS closed-loop power control adjustment
  • 1-TPC is used for additional SRS closed-loop power control adjustment.
  • the closed-loop power control adjustment status indication is used to indicate the purpose of the TPC command (that is, specifically used for additional SRS or legacy SRS closed-loop power control adjustment). Therefore, other similar terms can also be used to indicate the closed-loop power control adjustment status indication. For example, TPC command type indication, TPC command status indication, etc.
  • the network equipment can configure power control parameters for the extra SRS and the legacy SRS respectively through RRC signaling.
  • the types of additional SRS power control parameters and legacy SRS power control parameters are shown in Figure 2. Both include target received power; path loss calculation compensation factor; path loss calculation reference RS; and closed-loop power control process identifier (for example, legacy SRS closed-loop power The control process is 0, and the additional SRS closed-loop power control process is 1).
  • the closed-loop power control process identifiers of the additional SRS and the legacy SRS are different.
  • the network device also uses DCI to indicate the closed-loop power control adjustment amounts for the additional SRS and the legacy SRS respectively.
  • DCI DCI to indicate the closed-loop power control adjustment amounts for the additional SRS and the legacy SRS respectively.
  • 1 bit is added to the TPC field of the DCI received by the terminal device, for a total of 3 bits.
  • the added 1bit is used to indicate that the 2bit TPC command should be used for additional SRS closed-loop power control adjustment; or used for legacy SRS closed-loop power control adjustment.
  • 1-TPC in Figure 2 indicates that the TPC command is applied to the additional SRS closed-loop power control adjustment.
  • the terminal device can implement independent power control of the additional SRS and the legacy SRS based on the network device RRC signaling configuration and DCI indication, so that more accurate power control can be achieved.
  • 2 bits are added to the TPC field of the DCI received by the terminal device, for a total of 4 bits.
  • the high 2bit is used to indicate the closed-loop power control adjustment of the legacy SRS; the low 2bit is used to indicate the closed-loop power control adjustment of the additional SRS.
  • the network equipment can configure power control parameters for the extra SRS and the legacy SRS respectively through RRC signaling.
  • additional SRS power control parameters and legacy SRS power control parameters are shown in Figure 3. Both include target received power; path loss calculation compensation factor; path loss calculation reference RS; and closed-loop power control process identifier (for example, legacy SRS closed-loop power The control process is 0, and the additional SRS closed-loop power control process is 1). Optionally, the closed-loop power control process identifiers of the additional SRS and the legacy SRS are different.
  • the network device also uses DCI to indicate the closed-loop power control adjustment amounts for the additional SRS and the legacy SRS respectively. Specifically, as shown in Figure 3, 2 bits are added to the TPC field of the DCI received by the terminal device, for a total of 4 bits. The high 2bit is used to indicate the closed-loop power control adjustment of the legacy SRS; the low 2bit is used to indicate the closed-loop power control adjustment of the additional SRS.
  • the terminal device can implement independent power control of the additional SRS and the legacy SRS based on the network device RRC signaling configuration and DCI indication, so that more accurate power control can be achieved.
  • the terminal device calculates the power headroom based on the following:
  • the power headroom can be calculated based on the difference between the maximum transmission power of the terminal device and the transmission power of the additional SRS; for another example, the power headroom is directly based on the maximum transmission power of the terminal device The difference between the power and the transmission power of the additional SRS is calculated; or the power headroom is directly calculated based on the difference between the maximum transmission power of the terminal device and the transmission power of the legacy SRS.
  • the SRS power control method according to the embodiments of the present disclosure is described in detail above in conjunction with FIG. 1 to FIG. 3.
  • the SRS power control method according to another embodiment of the present disclosure will be described below in conjunction with FIG. 4. It can be understood that the interaction between the network device and the terminal device described from the network device side is the same as the description on the terminal device side in the method shown in FIG. 1, and to avoid repetition, the related description is appropriately omitted.
  • FIG. 4 is a schematic diagram of the implementation process of the SRS power control method according to an embodiment of the present disclosure, which can be applied to the network device side. As shown in FIG. 4, the method 400 includes:
  • S402 transmit power control parameter; wherein, the power control parameter is used for the terminal device to determine the transmit power of the additional SRS.
  • the foregoing power control parameter includes a first power control parameter and a second power control parameter
  • the transmit power control parameter mentioned in S402 includes:
  • the first power control parameter is configured through the RRC signaling, and the second power control parameter is indicated through the DCI.
  • the above-mentioned additional SRS and legacy SRS are transmitted within one TTI; the power control parameters of the additional SRS and the legacy SRS are independently configured and/or independently indicated.
  • the SRS power control method according to the embodiment of the present disclosure has been described in detail above in conjunction with FIGS. 1 to 4.
  • the terminal device according to the embodiment of the present disclosure will be described in detail below with reference to FIG. 5.
  • Fig. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 5, the terminal device 500 includes:
  • the receiving module 502 may be used to receive power control parameters; where the power control parameters are used to determine the transmission power of the additional SRS;
  • the power control module 504 may be configured to determine the transmission power of the additional SRS according to the power control parameter.
  • the terminal device receives the power control parameter used to determine the transmission power of the additional SRS, and determines the transmission power of the additional SRS according to the power control parameter, thereby realizing the power control of the additional SRS.
  • the embodiments of the present disclosure can avoid the problem of poor quality of the additional SRS signal caused by inaccurate power control of the additional SRS or interference caused by the additional SRS to other users in the communication system, and improve the effectiveness and reliability of communication.
  • the power control parameter includes a first power control parameter and a second power control parameter; wherein, the first power control parameter is configured through radio resource control RRC signaling; the second power The control parameter is indicated by the downlink control information DCI.
  • the additional SRS and the legacy SRS are transmitted within a transmission time interval TTI; the power control parameters and the power control parameters of the legacy SRS are independently configured and/or mutually independent instructions of.
  • the second power control parameter includes a transmission power control TPC command
  • the TPC command is used to indicate: the closed-loop power control adjustment amount of the additional SRS; and/or the closed-loop power of the legacy SRS Control the amount of adjustment.
  • the second power control parameter includes a closed-loop power control adjustment status indicator and a TPC command; wherein the closed-loop power control adjustment status indicator is used to indicate that the TPC command is applied to: the additional SRS closed-loop power control adjustment; or legacy SRS closed-loop power control adjustment.
  • the terminal device 500 further includes a power headroom determination module, which is used to determine if the additional SRS and the legacy SRS are transmitted in one TTI, and the terminal device 500 needs to calculate or report in the TTI Power headroom, the power headroom is calculated based on: the maximum of the transmission power of the additional SRS and the transmission power of the legacy SRS; the transmission power of the additional SRS; or the transmission of the legacy SRS power.
  • a power headroom determination module which is used to determine if the additional SRS and the legacy SRS are transmitted in one TTI, and the terminal device 500 needs to calculate or report in the TTI Power headroom, the power headroom is calculated based on: the maximum of the transmission power of the additional SRS and the transmission power of the legacy SRS; the transmission power of the additional SRS; or the transmission of the legacy SRS power.
  • the first power control parameter includes at least one of the following parameters of the additional SRS: target received power; path loss calculation compensation factor; path loss calculation reference signal; and closed loop Power control process ID.
  • the terminal device 500 may refer to the process of the method 100 corresponding to the embodiment of the present disclosure, and each unit/module in the terminal device 500 and the other operations and/or functions mentioned above are used to implement the corresponding methods in the method 100.
  • Fig. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 6, the network device 600 includes:
  • the transmitting module 602 may be used to transmit power control parameters; wherein, the power control parameters are used for the terminal device to determine the transmit power of the additional SRS.
  • the terminal device receives the power control parameter used to determine the transmission power of the additional SRS, and determines the transmission power of the additional SRS according to the power control parameter, thereby realizing the power control of the additional SRS.
  • the embodiments of the present disclosure can avoid the problem of poor quality of the additional SRS signal caused by inaccurate power control of the additional SRS or interference caused by the additional SRS to other users in the communication system, and improve the effectiveness and reliability of communication.
  • the sending module 602 is configured to send RRC signaling; and send DCI; wherein, the first power control parameter is configured through the RRC signaling, and the second power control parameter is configured through the The DCI instructions.
  • the additional SRS and the legacy SRS are transmitted in one TTI; the power control parameters and the power control parameters of the legacy SRS are configured independently of each other and/or independently indicated.
  • the network device 600 can refer to the process of the method 400 corresponding to the embodiment of the present disclosure, and each unit/module in the network device 600 and the other operations and/or functions described above are used to implement the corresponding methods in the method 400.
  • Fig. 7 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 700 shown in FIG. 7 includes: at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in the terminal device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 7.
  • the user interface 703 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel, or a touch screen.
  • a pointing device for example, a mouse, a trackball
  • a touch panel for example, a touch panel, or a touch screen.
  • the memory 702 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 702 of the system and method described in the embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 7021 and an application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 7022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program that implements the method of the embodiments of the present disclosure may be included in the application program 7022.
  • the terminal device 700 further includes: a computer program stored in the memory 702 and capable of running on the processor 701, and the computer program is executed by the processor 701 to implement the steps of the method 100 as follows.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field Programmable Gate Array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer readable storage medium mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 702, and the processor 701 reads information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 701, each step of the above-mentioned method 100 embodiment is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 700 can implement various processes implemented by the terminal device in the foregoing embodiments, and can achieve the same or equivalent technical effects. To avoid repetition, details are not described herein again.
  • FIG. 8 is a structural diagram of a network device applied in an embodiment of the present disclosure, which can implement the details of the method embodiment 400 and achieve the same effect.
  • the network device 800 includes: a processor 801, a transceiver 802, a memory 803, and a bus interface, where:
  • the network device 800 further includes: a computer program stored in the memory 803 and capable of running on the processor 801, and the computer program is executed by the processor 801 to implement the steps of the method 400.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above method embodiment 100 and method embodiment 400 is implemented, and can To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种SRS功率控制方法和设备。该方法包括:终端设备接收功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;根据所述功率控制参数,确定所述额外SRS的发送功率和功率余量。

Description

SRS功率控制方法和设备
相关申请的交叉引用
本申请主张在2019年4月30日在中国提交的中国专利申请号No.201910363053.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种探测参考信号(Sounding Reference Symbol,SRS)功率控制方法和设备。
背景技术
无线系统中的上行功率控制非常重要,通过合理的上行功率控制,可以在保证上行数据质量的同时,又尽可能减少对系统中其他用户的干扰,延长终端设备电池的使用时间。为增加SRS的覆盖和容量,在LTE Rel-16中引入了额外(Additional)SRS。额外SRS可以和遗留(Legacy)SRS在一个传输时间间隔(Transmission Time Interval,TTI)内传输。然而,目前并没有额外SRS功率控制相关的解决方案,因此,有必要提供额外SRS功率控制相关的技术方案,以实现对额外SRS的功率控制。
发明内容
本公开实施例的目的是提供一种SRS功率控制方法和设备,用以对额外SRS进行功率控制。
第一方面,提供了一种SRS功率控制方法,所述方法由终端设备执行,所述方法包括:接收功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;根据所述功率控制参数,确定所述额外SRS的发送功率。
第二方面,提供了一种SRS功率控制方法,所述方法由网络设备执行,所述方法包括:发送功率控制参数;其中,所述功率控制参数用于终端设备确定额外SRS的发送功率。
第三方面,提供了一种终端设备,该终端设备包括:接收模块,用于接收 功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;功率控制模块,用于根据所述功率控制参数,确定所述额外SRS的发送功率。
第四方面,提供了一种网络设备,该网络设备包括:发送模块,用于发送功率控制参数;其中,所述功率控制参数用于终端设备确定额外SRS的发送功率。
第五方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的SRS功率控制方法的步骤。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的SRS功率控制方法的步骤。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面和第二方面所述的SRS功率控制方法的步骤。
在本公开实施例中,终端设备接收用于确定额外SRS发送功率的功率控制参数,并根据该功率控制参数确定额外SRS的发送功率,实现了对额外SRS的功率控制。本公开实施例可以尽量避免因额外SRS功率控制不精确造成的额外SRS信号质量差或额外SRS对通信系统中其他用户造成干扰的问题,提高通信有效性和可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本公开一个实施例的SRS功率控制方法流程图;
图2是根据本公开一个实施例中的功率控制参数接收过程示意图;
图3是根据本公开另一个实施例中的功率控制参数接收过程示意图;
图4是根据本公开另一个实施例的SRS功率控制方法流程图;
图5是根据本公开一个实施例的终端设备的结构示意图;
图6是根据本公开的一个实施例的网络设备的结构示意图;
图7是根据本公开的另一个实施例的终端设备的结构示意图;
图8是根据本公开的另一个实施例的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。说明书中使用和/或表示所连接对象至少其中之一。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统,或者为后续演进通信系统。
在本公开实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本公开实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中, 称为演进的节点B(Evolved NodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信系统中的网络设备等等,然用词并不构成限制。
如图1所示,本公开的一个实施例提供一种SRS功率控制方法100,该方法可以由终端设备执行,包括如下步骤:
S102:接收功率控制参数,该功率控制参数用于确定额外SRS的发送功率。
确定额外SRS的发送功率时需要功率控制参数,因此,该步骤中终端设备可以首先接收来自于网络设备的功率控制参数。
上述功率控制参数可以包括下述至少一种:
额外SRS的目标接收功率(P 0);
额外SRS的路损计算补偿因子(alpha);
额外SRS的路损计算参考参考信号(Pathloss reference RS);
额外SRS的闭环功率控制进程标识(Close loop power control process index);以及
额外SRS的闭环功率控制调整量。
可选地,上述功率控制参数可以通过下述中的至少一种来配置或指示:
无线资源控制(Radio Resource Control,RRC)信令;
媒体访问控制控制单元(Media Access Control Control Element,MAC CE)信令;以及
下行控制信息(Downlink Control Information,DCI)。
S104:根据接收到的功率控制参数,确定额外SRS的发送功率。
终端设备在接收到上述的功率控制参数后,即可根据该功率控制参数确定额外SRS的发送功率。
在本公开实施例中,终端设备接收用于确定额外SRS发送功率的功率控制参数,并根据该功率控制参数确定额外SRS的发送功率,实现了对额外SRS的功率控制。
本公开实施例可以尽量避免因额外SRS功率控制不精确造成的额外SRS信号质量差或额外SRS对通信系统中其他用户造成干扰的问题,提高通信有 效性和可靠性。
对于上述实施例中提到的功率控制参数,可选地,在一个实施例中,该功率控制参数包括第一功率控制参数和第二功率控制参数;其中,第一功率控制参数通过RRC信令配置;第二功率控制参数通过DCI指示。
具体例如,网络设备可以通过RRC信令为终端设备配置额外SRS的下述参数中的至少之一:目标接收功率;路损计算补偿因子;路损计算参考参考信号;以及闭环功率控制进程标识。网络设备还可以通过DCI为终端设备指示额外SRS的闭环功率控制调整量。
对于上述各个实施例中提到的额外SRS,额外SRS可以和遗留(Legacy)SRS在一个TTI内传输,为了精确地实现对额外SRS和遗留SRS进行功率控制,可选地,网络设备可以分别为额外SRS和遗留SRS指示和/或配置功率控制参数,也即,额外SRS的功率控制参数和遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的;其中,遗留SRS的功率控制参数可以与额外SRS的功率控制参数的种类(或称参数名称)相同,但具体的参数值可以相等也可能不等。
上述提到额外SRS的功率控制参数包括第一功率控制参数和第二功率控制参数,第二功率控制参数通过DCI指示,可选地,第二功率控制参数包括传输功率控制TPC命令,以下将分三个实施方式,对该TPC命令的用途进行说明:
1)该TPC命令用于指示额外SRS的闭环功率控制调整量;或
2)该TPC命令用于指示遗留SRS的闭环功率控制调整量;或
3)该TPC命令用于同时指示额外SRS的闭环功率控制调整量和遗留SRS的闭环功率控制调整量。
针对上述实施方式一和实施方式二,可选地,上述第二功率控制参数除了包括有TPC命令之外,还可以包括有闭环功率控制调整状态指示;其中,该闭环功率控制调整状态指示用于指示该TPC命令应用于:额外SRS闭环功率控制调整;或遗留SRS闭环功率控制调整。
针对上述实施方式一和实施方式二,在一个具体的实施例中,终端设备接收到的DCI的TPC域中新增有1比特(bit)的指示域(即闭环功率控制调 整状态指示),用于指示TPC命令应用于额外SRS闭环功率控制调整;或应用于遗留SRS闭环功率控制调整。如:0-TPC用于遗留SRS闭环功率控制调整,1-TPC用于额外SRS闭环功率控制调整。
此处,闭环功率控制调整状态指示是用来指示TPC命令的用途(即具体用于额外SRS或遗留SRS闭环功率控制调整)。因此,还可以使用其它类似的术语来表示闭环功率控制调整状态指示。例如,TPC命令类型指示、TPC命令状态指示等。
为详细说明,以下将结合一个具体的实施例进行说明。如图2所示,网络设备可以通过RRC信令,分别为额外SRS和遗留SRS配置功率控制参数。额外SRS功率控制参数和遗留SRS功率控制参数的种类如图2所示,均包括目标接收功率;路损计算补偿因子;路损计算参考RS;以及闭环功率控制进程标识(例如,遗留SRS闭环功率控制进程为0,额外SRS闭环功率控制进程为1)。可选地,额外SRS和遗留SRS的闭环功率控制进程标识不同。
该实施例中,网络设备还通过DCI,分别为额外SRS和遗留SRS指示闭环功率控制调整量。具体如图2所示,终端设备接收到的DCI的TPC域中增加1bit,共3bit。增加的1bit用于指示2bit的TPC命令应用于额外SRS闭环功率控制调整;或应用于遗留SRS闭环功率控制调整。图2中1-TPC表示该TPC命令应用于额外SRS闭环功率控制调整。
该实施例中,终端设备可以基于网络设备RRC信令配置和DCI指示,实现额外SRS与遗留SRS的独立功率控制,从而能够实现更精准的功率控制。
该实施例通过为额外SRS独立配置功率控制参数,可实现额外SRS精确功率控制,避免额外SRS的覆盖问题或干扰问题。
针对上述实施方式三,在一个具体的实施例中,终端设备接收到的DCI的TPC域中增加2bit,共4bit。高2bit用于指示遗留SRS的闭环功率控制调整量;低2bit用于指示额外SRS的闭环功率控制调整量。
为详细说明,以下将结合一个具体的实施例进行说明,参见图3。
如图3所示,网络设备可以通过RRC信令,分别为额外SRS和遗留SRS配置功率控制参数。
额外SRS功率控制参数和遗留SRS功率控制参数的种类如图3所示,均 包括目标接收功率;路损计算补偿因子;路损计算参考RS;以及闭环功率控制进程标识(例如,遗留SRS闭环功率控制进程为0,额外SRS闭环功率控制进程为1)。可选地,额外SRS和遗留SRS的闭环功率控制进程标识不同。
该实施例中,网络设备还通过DCI,分别为额外SRS和遗留SRS指示闭环功率控制调整量。具体如图3所示,终端设备接收到的DCI的TPC域中增加2bit,共4bit。高2bit用于指示遗留SRS的闭环功率控制调整量;低2bit用于指示额外SRS的闭环功率控制调整量。
该实施例中,终端设备可以基于网络设备RRC信令配置和DCI指示,实现额外SRS与遗留SRS的独立功率控制,从而能够实现更精准的功率控制。
该实施例通过为额外SRS独立配置功率控制参数,可实现额外SRS精确功率控制,避免额外SRS的覆盖问题或干扰问题。
在上述多个实施例中,如果额外SRS和遗留SRS在一个TTI内传输,且终端设备在该TTI内需要计算或上报功率余量,终端设备基于如下一项计算所述功率余量:
1)额外SRS的发送功率和遗留SRS的发送功率中的最大者;
2)额外SRS的发送功率;或
3)遗留SRS的发送功率。
具体例如,额外SRS的发送功率大于遗留SRS的发送功率,功率余量可以基于终端设备的最大发送功率和额外SRS的发送功率之差计算得到;又例如,功率余量直接基于终端设备的最大发送功率和额外SRS的发送功率之差计算;或功率余量直接基于终端设备的最大发送功率和遗留SRS的发送功率之差计算。
以上结合图1至图3详细描述了根据本公开实施例的SRS功率控制方法。下面将结合图4描述根据本公开另一实施例的SRS功率控制方法。可以理解的是,从网络设备侧描述的网络设备与终端设备的交互与图1所示的方法中的终端设备侧的描述相同,为避免重复,适当省略相关描述。
图4是本公开实施例的SRS功率控制方法实现流程示意图,可以应用在网络设备侧。如图4所示,该方法400包括:
S402:发送功率控制参数;其中,所述功率控制参数用于终端设备确定 额外SRS的发送功率。
可选地,作为一个实施例,上述功率控制参数包括第一功率控制参数和第二功率控制参数,S402中提到的发送功率控制参数包括:
发送RRC信令;以及
发送DCI;
其中,所述第一功率控制参数通过所述RRC信令配置,所述第二功率控制参数通过所述DCI指示。
可选地,作为一个实施例,上述额外SRS和遗留SRS在一个TTI内传输;额外SRS的功率控制参数和遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的。
以上结合图1至图4详细描述了根据本公开实施例的SRS功率控制方法。下面将结合图5详细描述根据本公开实施例的终端设备。
图5是根据本公开实施例的终端设备的结构示意图。如图5所示,终端设备500包括:
接收模块502,可以用于接收功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;
功率控制模块504,可以用于根据所述功率控制参数,确定所述额外SRS的发送功率。
在本公开实施例中,终端设备接收用于确定额外SRS发送功率的功率控制参数,并根据该功率控制参数确定额外SRS的发送功率,实现了对额外SRS的功率控制。本公开实施例可以尽量避免因额外SRS功率控制不精确造成的额外SRS信号质量差或额外SRS对通信系统中其他用户造成干扰的问题,提高通信有效性和可靠性。
可选地,作为一个实施例,所述功率控制参数包括第一功率控制参数和第二功率控制参数;其中,所述第一功率控制参数通过无线资源控制RRC信令配置;所述第二功率控制参数通过下行控制信息DCI指示。
可选地,作为一个实施例,所述额外SRS和遗留SRS在一个传输时间间隔TTI内传输;所述功率控制参数和所述遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的。
可选地,作为一个实施例,所述第二功率控制参数包括传输功率控制TPC命令,所述TPC命令用于指示:所述额外SRS的闭环功率控制调整量;和/或遗留SRS的闭环功率控制调整量。
可选地,作为一个实施例,所述第二功率控制参数包括闭环功率控制调整状态指示和TPC命令;其中,所述闭环功率控制调整状态指示用于指示所述TPC命令应用于:所述额外SRS闭环功率控制调整;或遗留SRS闭环功率控制调整。
可选地,作为一个实施例,所述终端设备500还包括功率余量确定模块,用于如果额外SRS和遗留SRS在一个TTI内传输,且所述终端设备500在该TTI内需要计算或上报功率余量,基于如下一项计算所述功率余量:所述额外SRS的发送功率和所述遗留SRS的发送功率中的最大者;所述额外SRS的发送功率;或所述遗留SRS的发送功率。
可选地,作为一个实施例,所述第一功率控制参数包括所述额外SRS的下述参数中的至少之一:目标接收功率;路损计算补偿因子;路损计算参考参考信号;以及闭环功率控制进程标识。
根据本公开实施例的终端设备500可以参照对应本公开实施例的方法100的流程,并且,该终端设备500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图6是根据本公开实施例的网络设备的结构示意图。如图6所述,网络设备600包括:
发送模块602,可以用于发送功率控制参数;其中,所述功率控制参数用于终端设备确定额外SRS的发送功率。
在本公开实施例中,终端设备接收用于确定额外SRS发送功率的功率控制参数,并根据该功率控制参数确定额外SRS的发送功率,实现了对额外SRS的功率控制。本公开实施例可以尽量避免因额外SRS功率控制不精确造成的额外SRS信号质量差或额外SRS对通信系统中其他用户造成干扰的问题,提高通信有效性和可靠性。
可选地,作为一个实施例,发送模块602,用于发送RRC信令;以及发 送DCI;其中,所述第一功率控制参数通过所述RRC信令配置,所述第二功率控制参数通过所述DCI指示。
可选地,作为一个实施例,所述额外SRS和遗留SRS在一个TTI内传输;所述功率控制参数和所述遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的。
根据本公开实施例的网络设备600可以参照对应本公开实施例的方法400的流程,并且,该网络设备600中的各个单元/模块和上述其他操作和/或功能分别为了实现方法400中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图7是本公开另一个实施例的终端设备的框图。图7所示的终端设备700包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。终端设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统705。
其中,用户接口703可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM) 和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序7022中。
在本公开实施例中,终端设备700还包括:存储在存储器上702并可在处理器701上运行的计算机程序,计算机程序被处理器701执行时实现如下方法100的步骤。
上述本公开实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序, 计算机程序被处理器701执行时实现如上述方法100实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备700能够实现前述实施例中终端设备实现的各个过程,并且能够达到相同或等同的技术效果,为避免重复,这里不再赘述。
请参阅图8,图8是本公开实施例应用的网络设备的结构图,能够实现方法实施例400的细节,并达到相同的效果。如图8所示,网络设备800包括:处理器801、收发机802、存储器803和总线接口,其中:
在本公开实施例中,网络设备800还包括:存储在存储器上803并可在处理器801上运行的计算机程序,计算机程序被处理器801、执行时实现方法400的步骤。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例100 和方法实施例400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (15)

  1. 一种探测参考信号SRS功率控制方法,所述方法由终端设备执行,所述方法包括:
    接收功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;
    根据所述功率控制参数,确定所述额外SRS的发送功率。
  2. 如权利要求1所述的方法,其中,所述功率控制参数包括第一功率控制参数和第二功率控制参数;
    其中,所述第一功率控制参数通过无线资源控制RRC信令配置;所述第二功率控制参数通过下行控制信息DCI指示。
  3. 如权利要求1或2所述的方法,其中,
    所述额外SRS和遗留SRS在一个传输时间间隔TTI内传输;
    所述功率控制参数和所述遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的。
  4. 如权利要求2所述的方法,其中,所述第二功率控制参数包括传输功率控制TPC命令,所述TPC命令用于指示:
    所述额外SRS的闭环功率控制调整量;和/或
    遗留SRS的闭环功率控制调整量。
  5. 如权利要求2所述的方法,其中,所述第二功率控制参数包括闭环功率控制调整状态指示和TPC命令;
    其中,所述闭环功率控制调整状态指示用于指示所述TPC命令应用于:
    所述额外SRS闭环功率控制调整;或
    遗留SRS闭环功率控制调整。
  6. 如权利要求1所述的方法,其中,如果所述额外SRS和遗留SRS在一个TTI内传输,且所述终端设备在该TTI内需要计算或上报功率余量,所述方法还包括:基于如下一项计算所述功率余量:
    所述额外SRS的发送功率和所述遗留SRS的发送功率中的最大者;
    所述额外SRS的发送功率;或
    所述遗留SRS的发送功率。
  7. 如权利要求2所述的方法,其中,所述第一功率控制参数包括所述额外SRS的下述参数中的至少之一:
    目标接收功率;
    路损计算补偿因子;
    路损计算参考参考信号;以及
    闭环功率控制进程标识。
  8. 一种SRS功率控制方法,所述方法由网络设备执行,所述方法包括:
    发送功率控制参数;其中,所述功率控制参数用于终端设备确定额外SRS的发送功率。
  9. 如权利要求8所述的方法,其中,所述功率控制参数包括第一功率控制参数和第二功率控制参数,所述发送功率控制参数包括:
    发送RRC信令;以及
    发送DCI;
    其中,所述第一功率控制参数通过所述RRC信令配置,所述第二功率控制参数通过所述DCI指示。
  10. 如权利要求8或9所述的方法,其中,
    所述额外SRS和遗留SRS在一个TTI内传输;
    所述功率控制参数和所述遗留SRS的功率控制参数是相互独立配置的和/或相互独立指示的。
  11. 一种终端设备,包括:
    接收模块,用于接收功率控制参数;其中,所述功率控制参数用于确定额外SRS的发送功率;
    功率控制模块,用于根据所述功率控制参数,确定所述额外SRS的发送功率。
  12. 一种网络设备,包括:
    发送模块,用于发送功率控制参数;其中,所述功率控制参数用于终端设备确定额外SRS的发送功率。
  13. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在 所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的SRS功率控制方法的步骤。
  14. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至10中任一项所述的SRS功率控制方法的步骤。
  15. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的SRS功率控制方法的步骤。
PCT/CN2020/086976 2019-04-30 2020-04-26 Srs功率控制方法和设备 WO2020221154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/515,283 US20220053427A1 (en) 2019-04-30 2021-10-29 Srs power control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363053.2A CN111263430B (zh) 2019-04-30 2019-04-30 Srs功率控制方法和设备
CN201910363053.2 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/515,283 Continuation US20220053427A1 (en) 2019-04-30 2021-10-29 Srs power control method and device

Publications (1)

Publication Number Publication Date
WO2020221154A1 true WO2020221154A1 (zh) 2020-11-05

Family

ID=70953741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086976 WO2020221154A1 (zh) 2019-04-30 2020-04-26 Srs功率控制方法和设备

Country Status (3)

Country Link
US (1) US20220053427A1 (zh)
CN (1) CN111263430B (zh)
WO (1) WO2020221154A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585067A (zh) * 2020-12-02 2022-06-03 维沃移动通信有限公司 Srs的功控指示方法、资源集簇的划分方法和设备
WO2023207652A1 (en) * 2022-04-25 2023-11-02 Mediatek Inc. Method and apparatus for determining transmit power of sounding reference signal in mobile communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379603A (zh) * 2012-04-17 2013-10-30 电信科学技术研究院 功控信息通知及功控方法和设备
CN104518845A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种时分双工系统中测量参考信号功率控制参数配置方法和系统
CN108029118A (zh) * 2015-09-24 2018-05-11 高通股份有限公司 在特殊子帧中增加的上行链路导频时隙长度
WO2018118532A1 (en) * 2016-12-22 2018-06-28 Qualcomm Incorporated Sounding reference signal transmission in low latency wireless transmissions
CN109640385A (zh) * 2016-05-13 2019-04-16 华为技术有限公司 功率控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854924B (zh) * 2012-12-14 2019-04-12 Lg电子株式会社 在无线通信系统中支持传输效率的方法和设备
WO2018176491A1 (en) * 2017-04-01 2018-10-04 Qualcomm Incorporated Enhanced power headroom report for feeding back beamformed srs power scaling
CN109151979B (zh) * 2017-06-16 2020-12-15 华为技术有限公司 功率余量的确定方法及网络设备
MX2019015586A (es) * 2017-06-29 2020-02-26 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento, dispositivo terminal y dispositivo de red para transmitir se?ales.
US10873912B2 (en) * 2017-09-07 2020-12-22 Ofinno, Llc Uplink beam management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379603A (zh) * 2012-04-17 2013-10-30 电信科学技术研究院 功控信息通知及功控方法和设备
CN104518845A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种时分双工系统中测量参考信号功率控制参数配置方法和系统
CN108029118A (zh) * 2015-09-24 2018-05-11 高通股份有限公司 在特殊子帧中增加的上行链路导频时隙长度
CN109640385A (zh) * 2016-05-13 2019-04-16 华为技术有限公司 功率控制方法和装置
WO2018118532A1 (en) * 2016-12-22 2018-06-28 Qualcomm Incorporated Sounding reference signal transmission in low latency wireless transmissions

Also Published As

Publication number Publication date
CN111263430B (zh) 2021-11-09
US20220053427A1 (en) 2022-02-17
CN111263430A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
US11463147B2 (en) Method and apparatus for determining physical uplink channel power control parameter values for use after a beam failure recovery
WO2020034857A1 (zh) Csi报告配置方法、终端设备和网络设备
US11985679B2 (en) Wireless communication method and device
EP3780442A1 (en) Transmission method, terminal device and network device for csi report
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
US20210352682A1 (en) Sidelink Buffer Status Report Sending Method, Sidelink Buffer Status Report Receiving Method, And Device
US20220116882A1 (en) Reference signal determination method and device, and ue
WO2021087828A1 (zh) 激活或者更新srs的路损rs的方法和设备
WO2021147823A1 (zh) 上行传输的方法、移动终端和网络设备
WO2021208958A1 (zh) 一种传输波束报告的方法、移动终端和网络设备
US20220053427A1 (en) Srs power control method and device
WO2020147818A1 (zh) 无线通信方法和设备
US20220141819A1 (en) Parameter determining method, information configuration method, and device
US20220124630A1 (en) Method and device for activating or updating pusch pathloss rs
WO2021218923A1 (zh) 波束报告方法和设备
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
EP4152795A1 (en) Configuration method and device in sidelink relay architecture
CN110881218A (zh) 探测参考信号传输方法和终端设备
US20230027631A1 (en) Method for transmitting power headroom, terminal device, and network device
CA3064964C (en) Method and device for radio communication
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
WO2021218915A1 (zh) 波束报告上报方法、终端设备和网络设备
WO2020169001A1 (zh) 资源配置的方法和设备
CN113543042B (zh) 功率上报方法和设备
CN112217618B (zh) 信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799400

Country of ref document: EP

Kind code of ref document: A1