WO2020221016A1 - 信息的发送方法及装置、信息的接收方法及装置 - Google Patents
信息的发送方法及装置、信息的接收方法及装置 Download PDFInfo
- Publication number
- WO2020221016A1 WO2020221016A1 PCT/CN2020/085099 CN2020085099W WO2020221016A1 WO 2020221016 A1 WO2020221016 A1 WO 2020221016A1 CN 2020085099 W CN2020085099 W CN 2020085099W WO 2020221016 A1 WO2020221016 A1 WO 2020221016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resource
- frequency domain
- information
- domain resource
- sending
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Definitions
- This application relates to the field of wireless communication networks, for example, to a method and device for sending information, and a method and device for receiving information.
- the present application provides a method and device for sending information, and a method and device for receiving information, which improve transmission efficiency in a scenario where multiple communication nodes perform joint transmission to a terminal.
- the embodiment of the application provides a method for sending information, including: determining the resource required for sending information, instructing a terminal to receive information on the resource through signaling, or a predefined terminal to receive information on the resource; determining to send information The required way, the way of sending information is indicated to the terminal through signaling, or the way of sending information is predefined.
- An embodiment of the present application provides a method for receiving information, including: determining a resource required to receive information, and receiving information on the resource, where the resource is a resource indicated by signaling by a first communication node and/or a second communication node , Or a predefined resource; determine the method required to receive the information, and receive the information according to the method, the method being the method indicated by the first communication node and/or the second communication node signaling, or the predefined method.
- the embodiment of the present application provides an information sending apparatus, including: at least one processor, configured to determine resources required for sending information, and instruct a terminal to receive information on the resource through signaling, or a predefined terminal is located on the resource.
- the information is received on the resource; the method required to send the information is determined, the method of sending the information is indicated to the terminal through signaling, or the method of sending the information is predefined.
- An embodiment of the present application provides an information receiving device, including: at least one processor, configured to determine a resource required to receive information, and receive information on the resource; determine a method required to receive information, and receive according to the method Information; where the resource is a resource indicated by signaling by the first communication node and/or the second communication node, or a predefined resource.
- the embodiment of the present application provides a first communication node, including: one or more processors; a storage device for storing one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the information sending method in the embodiment of the present application.
- An embodiment of the present application provides a terminal, including: one or more processors;
- the storage device is used to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors realize the information processing as in the embodiments of the present application Receiving method.
- the embodiment of the present application provides a storage medium that stores a computer program that, when executed by a processor, implements the method for sending information provided by the embodiment of the present application or the receiving of information provided by the embodiment of the present application method.
- Fig. 1 is a schematic flowchart of a method for sending information provided by this application
- FIG. 2 is a schematic diagram of discrete resource allocation and continuous resource allocation of the FDM transmission scheme provided by this application;
- FIG. 3 is a schematic flowchart of a method for receiving information provided by this application.
- FIG. 4 is a schematic structural diagram of a first communication node provided by this application.
- Fig. 5 is a schematic structural diagram of a terminal provided by this application.
- FIG. 1 is a schematic flowchart of a method for sending information provided by this application.
- the method can be applied to improve the transmission efficiency in a scenario where multiple communication nodes perform joint transmission to a terminal.
- the method can be executed by the information sending device provided in the present application, and the information sending device can be implemented by software and/or hardware and integrated on the first communication node.
- the first communication node and the second communication node in this application may be a base station of a macro cell, a base station or transmission node of a small cell, a transmission receiving point (TRP), a high
- the terminal can be the third communication node for the sending node in the high-frequency communication system, the sending node in the Internet of Things system, and the satellite in the satellite communication.
- the third communication node can be a User Equipment (UE), mobile phone, portable Nodes, relay nodes, small base stations, etc. in communication systems such as equipment and automobiles.
- UE User Equipment
- the information can be physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or physical layer uplink shared channel (Physical Uplink Shared Channel, PUSCH) information, or physical downlink control channel (PDCCH) or physical uplink Control channel (Physical Uplink Control Channel, PUCCH) information, either a downlink/uplink demodulation reference signal, or an uplink signal for random access, or a channel sounding reference signal (Sounding Reference Signal, SRS) signal, or a phase Tracking reference signals, etc.
- PDSCH Physical Downlink shared channel
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- SRS Sounding Reference Signal
- SDM Space Division Multiplexing
- FDM Frequency-division multiplexing
- TDM time division multiplexing
- scheme 2a is that the transmission block outputs a codeword stream after encoding
- scheme 2b The transmission block outputs 2 codeword streams after encoding.
- the resource allocation method among multiple TRPs of FDM can be a continuous resource allocation method, that is, TRP1 occupies RB0 to RBfloor(N/ 2), namely RB layer (N/2), TRP2 occupies RBfloor(N/2)+1 to RBN; it can also be distributed in a discrete manner, that is, TRP1 occupies RB0, RB2, RB4,..., RBN-1, TRP2 RB1, RB3, RB5,..., RBN.
- the frequency domain resource allocation granularity of FDM can also be a precoding resource block group (PRG) in addition to RB.
- PRG precoding resource block group
- TDM For TDM, it can be time division within a time slot, that is, different TRPs occupy different symbols in a time slot, or inter-slot time division, that is, different TRPs occupy different time slots.
- a method for sending information provided by this application includes S110-S120.
- S110 Determine the resource required for sending information, and instruct the terminal to receive information on the resource through signaling, or predefine the terminal to receive information on the resource.
- one of the communication nodes is determined as the first communication node, and the first communication node instructs the user to receive information required by the information.
- the information required for receiving information includes the following At least one: required resources and required methods.
- the first communication node instructs the user to send information required by the information.
- the first communication node and the terminal may also predefine the resources and/or manners for the terminal to receive information.
- the terminal and the first communication node perform information transmission based on predefined resources.
- the first communication node and the terminal predefine information required for sending information.
- the resources required to send information are resources required by the first communication node to send information to the terminal.
- the resources required for sending information are resources required by the terminal to send information to the first communication node, and the first communication node instructs the terminal to send information on the determined resource through signaling.
- the signaling is not limited. In an embodiment, the signaling is obtained by multiplexing on the basis of related signaling. In an embodiment, newly added signaling is used as the signaling to indicate the terminal.
- the resources may include at least one of the following: frequency domain resources, space domain resources, and time domain resources.
- the first communication node determining the resource required for sending information is determining which of the following resources to use: frequency domain resources, space domain resources, and time domain resources.
- the first communication node determining the resources required to send information includes at least one of the following: determining that the first communication node uses a frequency domain position in the first time domain resource and/or the second communication node uses the first time domain The frequency domain position in the resource; determine that the first communication node uses the slot position in the first time domain resource and/or the second communication node uses the slot position in the first time domain resource; determine that the first communication node uses the first The spatial position in the time domain resource and/or the second communication node uses the spatial position in the first time domain resource.
- the method for the first communication node to determine the required resources is not limited, as long as the terminal can effectively transmit data with each communication node.
- S120 Determine the method required for sending information, and indicate the method of sending information to the terminal through signaling, or predefine the method of sending information.
- the first communication node indicates at least one of the following information of the terminal through signaling: a manner of sending information and a manner of receiving information.
- the first communication node and the terminal may also predefine the way in which the terminal receives information and/or receives information.
- the terminal and the first communication node perform information transmission based on a predefined manner.
- the signaling is not limited, and the signaling indicating the manner of sending information and the signaling indicating the resource for receiving information are the same signaling or different signaling.
- the signaling indicating the resource for receiving information is the first signaling, and the signaling indicating the manner of sending the information is the second signaling.
- the signaling is obtained by multiplexing on the basis of related signaling.
- newly added signaling is used as the signaling to indicate the terminal.
- the first communication node determines the data transmission mode between the first communication node and the second communication node and the terminal.
- the manner includes at least one of the following: a space division manner, a frequency division manner, a time division manner within a time slot, and a time division between time slots.
- S110 and S120 are not limited. In one embodiment, S110 is executed first, and then S120 is executed. In one embodiment, S120 is performed first, and then S110 is performed. In one embodiment, only S110 is performed. In one embodiment, only S120 is executed.
- the method for sending information includes: determining the resource or method required for sending the information; instructing the terminal to receive information on the resource through signaling, or instructing the method of sending information to the terminal through signaling; Or, a predefined terminal receives the information on the resource, or a predefined way of sending information.
- the method for sending information determines the resources required to send information, and instructs the terminal to receive information on the resource through signaling, or pre-defines the terminal to receive information on the resource; and determines what is required for sending information Mode, indicating the way of sending information to the terminal through signaling, or pre-defining the way of sending information.
- the resource for the terminal to receive information or the method for sending information is defined, which improves the transmission efficiency in a scenario where multiple communication nodes perform joint transmission to a terminal.
- the resources include at least one of the following: frequency domain resources and time domain resources.
- DCI Downlink Control Information
- TCI Transmission configuration indication
- the UE determines the transmission mode according to the following conditions: (1) If the resource allocation mode indicated by the DCI is a discrete resource allocation mode, such as indicating that the UE occupies RB 0, RB 2, RB 4,..., RB N-1, the UE can infer In the FDM transmission scheme, the frequency domain resources occupied by another TRP are RB 1, RB 3, RB 5,..., RB N; (2) If the DCI indicates that the resource occupied by the UE is in another way, the UE can infer the transmission scheme For SDM.
- a discrete resource allocation mode such as indicating that the UE occupies RB 0, RB 2, RB 4,..., RB N-1
- the UE can infer In the FDM transmission scheme, the frequency domain resources occupied by another TRP are RB 1, RB 3, RB 5,..., RB N;
- the DCI indicates that the resource occupied by the UE is in another way, the UE can infer the transmission scheme For SDM.
- the frequency domain resource allocation method includes at least one of the following: continuous frequency domain resource allocation and discrete frequency domain resource allocation.
- the manner of sending information includes at least one of the following: a space division manner, a frequency division manner, a time division manner within a time slot, and a time division between time slots.
- determining the resources required for sending information includes at least one of the following: the sending of information is in a frequency division manner and sending the configuration indication field in the downlink control signaling corresponding to the sending configuration indication state.
- the resource is a frequency domain resource and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource, and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource and the frequency
- the domain resources include at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource, and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource.
- the number of TCIs corresponding to the sending configuration indication state (TCI state) indicated by the sending configuration indication field in the downlink control signaling exceeds 1, or the number of quasi-co-located reference signal sets included in the TCI corresponding to the TCI state exceeds 1 Below, the number of communication nodes communicating with the terminal exceeds 1.
- the number of communication nodes that perform data transmission with the terminal is determined according to the number of TCI corresponding to the TCI state or the number of quasi-co-located reference signal sets included in the TCI corresponding to the TCI state.
- the number of communication nodes that perform data transmission with the terminal is equal to the number of TCI corresponding to the TCI state or the number of quasi-co-located reference signal sets included in the TCI corresponding to the TCI state.
- the first frequency domain resource and the second frequency domain resource may be frequency domain resources for data transmission between different communication nodes and terminals.
- the first frequency domain resource is a frequency domain resource for data transmission between the first communication node and the terminal
- the second frequency domain resource is a frequency domain resource for data transmission between the second communication node and the terminal.
- the number of the second frequency domain resource is at least one. Different second frequency domain resources may correspond to different second communication nodes.
- the method for sending information further includes: determining the allocation position of the second frequency domain resource according to the difference or the sum of the allocation position of the first frequency domain resource and the position offset value.
- the first frequency domain resource and the second frequency domain resource satisfy the following relationship: the allocation position of the second frequency domain resource is equal to the allocation position of the first frequency domain resource Add the position offset value or the allocation position of the first frequency domain resource minus the position offset value.
- the number of second frequency domain resources may be at least one.
- the allocation position of each second frequency domain resource is equal to the allocation position of the first frequency domain resource plus the position offset value of the corresponding second communication node or the allocation position of the first frequency domain resource minus the position offset of the corresponding second communication node value.
- Each second communication node has its own corresponding offset value to ensure that the frequency domain positions of each second frequency domain resource and the first frequency domain resource do not overlap.
- the method for determining the first frequency domain resource and the second frequency domain resource includes at least one of the following: determining through downlink control signaling and determining through a predefined manner.
- the first communication node when the first communication node determines the resources required to send information, it determines the first frequency domain resources and the second frequency domain resources required to send the information through downlink control signaling and determines the information to be sent in a predefined manner. Required first frequency domain resources and second frequency domain resources.
- FIG. 2 is a schematic diagram of discrete resource allocation and continuous resource allocation of the FDM transmission scheme provided by this application.
- the resource allocation mode of mode 2a or mode 2b of the FDM transmission scheme is shown in FIG. 2, the first communication node TRP1 and the second communication node TRP2 perform joint transmission with the terminal UE1, and a discrete resource allocation method or a continuous resource allocation method is adopted during transmission.
- TRP1 schedules UE1 through downlink control signaling, and instructs UE1 to receive downlink data from TRP1 on time slot n in the frequency domain position A.
- the first communication node can predefine UE1 to receive downlink data from TRP2 on time slot n.
- TRP1 schedules UE1 through downlink control signaling, and instructs UE1 to send uplink data to TRP1 in the frequency domain position A on time slot n
- the first communication node may predefine UE1 to send uplink data to TRP2 on time slot n
- the frequency domain position of each second communication node is determined according to the frequency domain position of the first communication node and the frequency domain offset value corresponding to each second communication node.
- the corresponding frequency domain position of the first communication node in the first time slot in the downlink control signaling determines the frequency domain of the second communication node according to the frequency domain position of the first communication node Position, the number of the second communication node is at least one, and each of the frequency domain positions does not overlap; continues in the next time slot or the current time slot is the time slot in the time slot group, replace the first communication node and each first communication node 2.
- the frequency domain positions of the first communication node and the second communication node are used to receive or send information.
- the method for determining the first frequency domain resource and the second frequency domain resource includes: when the current time slot or the current time slot is a time slot in a time slot group, the first communication node sends information If the frequency domain resource of is the first frequency domain resource, and the frequency domain resource for sending information by the second communication node is the second frequency domain resource, when the next time slot or the current time slot is the next time slot in the time slot group, exchange Frequency domain resources of the first communication node and the second communication node.
- the time slot group is a group formed by dividing time slots. Divide different time slots into different groups to form different time slot groups, such as a first time slot group and a second time slot group. When the current time slot falls in the first time slot group, the first time slot group is the current time slot group.
- the frequency domain resources of the first communication node and the second communication node are the first frequency domain resource and the second frequency domain resource, respectively.
- the frequency domain resources of the first communication node and the second communication node are exchanged, so that the frequency domain resources of the first communication node and the second communication node are the same as those of the previous time slot.
- the frequency domain resources where the slots are located are different.
- TRP1 schedules UE1 through downlink control signaling, instructs UE1 to receive downlink data from TRP1 on time slot n in the frequency domain position A, and instructs UE1 to receive downlink data from TRP2 on time slot n in frequency domain position B, or
- the predefined frequency domain position at which UE1 receives downlink data from TRP2 in time slot n is B, where frequency domain position A and frequency domain position B do not overlap in the frequency domain.
- the frequency domain position of UE1 receiving downlink data from TRP1 is B
- the frequency domain position of UE1 receiving downlink data from TRP2 is A, that is, the frequency of UE1 receiving TRP1 and TRP2.
- the domain position in the time domain changes alternately with the time slot.
- the first communication node can exchange the frequency domain positions corresponding to each communication node, so that the frequency domain positions corresponding to each communication node in the current time slot and the previous time slot respectively The corresponding frequency domain position is different.
- the resource allocation position can be changed alternately with time.
- the frequency domain position of TRP1 on Layer 0 is The frequency domain resource of the upper half bandwidth
- the frequency domain position of TRP2 on Layer 1 is the frequency domain resource of the lower half bandwidth
- slot n+1 the frequency domain position of TRP1 on Layer 0 is the frequency domain resource of the lower half bandwidth
- the frequency domain position of TRP2 on Layer 1 is the frequency domain resource of the upper half bandwidth.
- the switching between these two methods can be the radio resource control (Radio Resource Control, RRC) configuration, or the DCI dynamic switching (with a dynamic Parameter association), or change with time, for example: in slot n, a continuous resource allocation method is used; in slot n+1, a discrete resource allocation method is used.
- RRC Radio Resource Control
- DCI dynamic switching with a dynamic Parameter association
- the change granularity of the resource allocation method in the time domain can be divided according to odd/even slots, or according to slot set of time slot groups.
- the frequency domain resource used by the first communication node to send the information is the second frequency Domain resource
- the frequency domain resource through which the second communication node sends the information is the first frequency domain resource
- the method for determining the information required for sending information includes: in the case where the allocation position of the frequency domain resources indicated by the signaling meets a set rule, the method for sending information is a frequency division method.
- the setting rule can be determined according to resource blocks, resource block groups or precoding resource block groups.
- the setting rule includes at least one of the following: resource blocks with odd numbered resource blocks, odd numbered resource block groups, odd numbered precoding resource block groups, and even numbered resources at the allocation position of the frequency domain resources. Blocks, even-numbered resource block groups, and even-numbered precoding resource block groups.
- the method for sending information further includes: scrambling the sent information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization value of the scrambling code sequence generator is determined
- n and m are integers.
- the method for sending information further includes: scrambling the sent information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization value of the scrambling code sequence generator is determined
- the high-level signaling may be the signaling sent by the first communication node to the terminal.
- q is related to the CORESET group ID of the control resource set group, that is, the value of q is 0 or 1.
- the value of q can be 1 to x.
- x is a positive number.
- the value of q includes at least one of the following: when the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 is 0, and the value of q corresponding to codeword 1 is 0.
- the value of q is 1; in the case where the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 0;
- the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 0;
- the identifier of the control resource set group is 1, The value of q corresponding to codeword 0 is 0, and the value of q corresponding to codeword 1 is 1.
- the value of q corresponding to codeword 0 is 0, the value of q corresponding to codeword 1 is 1, and the value of q corresponding to codeword 2 is 2.
- ...The value of q corresponding to codeword y is y.
- the value of q corresponding to codeword 0 to codeword y is any value from 0 to y, and the value of each q is different.
- y is a positive number.
- the method for determining the n ID includes at least one of the following: configuring at least two n IDs to the terminal through high-layer signaling, corresponding to the identities of the at least two control resource set groups, respectively.
- the first communication node configures at least two n IDs to the terminal through high-level signaling, and the value of n ID corresponds to the identification of the at least two control resource set groups .
- n ID is 1 to z.
- z is a positive number.
- the value of n ID corresponding to the identifier of each control resource set group is different.
- two n IDs can be configured, corresponding to two CORESET group IDs respectively.
- the n ID is 1 or 0; when the identifier of the control resource set group is 0, the n ID is 1 or 0.
- the time domain resource when the information is sent in time division, includes a first time domain resource and a second time domain resource.
- the first time domain resource and the second time domain resource may be time domain resources for data transmission between different communication nodes and terminals.
- the first time domain resource is a time domain resource for data transmission between the first communication node and the terminal
- the second time domain resource is a time domain resource for data transmission between the second communication node and the terminal.
- the quantity of the second time domain resource is at least one. Different second time domain resources may correspond to different second communication nodes.
- the method for sending information further includes: determining the time domain symbol position of the second time domain resource according to the start symbol and the symbol length of the first time domain resource.
- the position of the time domain symbol corresponding to each second communication node may be determined according to the start symbol and the symbol length of the first time domain resource.
- the second time domain resource is selected for each second transmission node sequentially after the position of the time domain symbol corresponding to the first time domain symbol.
- the time domain positions of the second time domain resources do not overlap.
- the remaining symbol length is determined according to the time domain resource allocation field in the downlink control signaling, where the time domain resource allocation field indicates the symbol length and the starting symbol position; In a case where the remaining symbol length is greater than or equal to the symbol length, the time domain symbol position of at least one second communication node is determined according to the time domain resource allocation domain.
- determining the remaining symbol length according to the time domain resource allocation field in the downlink control signaling includes: subtracting the start symbol position and the symbol length from the number of symbols included in the time slot to obtain the remaining symbol length Symbol length.
- determining the time domain symbol position of at least one second communication node according to the time domain resource allocation domain includes: using the start symbol position plus the symbol length of the symbol position as the end symbol position; Acquire the target time slot indicated by the downlink control information; select the corresponding timing symbol position for at least one second communication node after the termination symbol position of the target time slot, and the timing corresponding to each second communication node
- the symbol positions do not overlap, and the symbol length corresponding to each of the timing symbol positions is the same as the symbol length.
- TRP1 schedules UE1 through downlink control signaling and instructs UE1 to receive downlink data from TRP1 on time slot n.
- the symbol length indicated in the Time domain resource assignment field in DCI is M
- the indicated start symbol is K, that is, the time domain symbol position at which UE1 receives downlink data from TRP1 is symbol K to symbol K+M-1.
- the UE1 receives downlink data from TRP2 in M symbols in the symbol positions K+M to 13 in the time slot n.
- FIG. 3 is a schematic flowchart of an information receiving method provided by this application.
- the method for receiving this information may be suitable for improving the transmission efficiency in a scenario where multiple communication nodes perform joint transmission to a terminal.
- This method can be executed by the information receiving device provided in this application, and the information receiving device can be implemented by software and/or hardware and integrated on the terminal.
- a method for receiving information provided by this application includes S310-S320.
- S310 Determine resources required to receive information, and receive information on the resources, where the resources are resources indicated by signaling by the first communication node and/or the second communication node, or predefined resources.
- the first communication node and the second communication node are communication nodes that communicate with the terminal.
- the means for the second communication node to instruct the terminal may refer to the means for the first communication node to instruct the terminal.
- S320 Determine a method required for receiving information, and receive information according to the method.
- the manner required for receiving the information is a manner indicated by the signaling of the first communication node and/or the second communication node or a predefined manner.
- the terminal is a third communication node.
- the terminal determines the resources required to receive information, and receives information on the resources.
- the terminal determines the method required to receive the information, and receives the information according to the method.
- the resource is a resource indicated by the signaling of the first communication node and/or the second communication node, or a predefined resource;
- the mode is a mode indicated by the signaling of the first communication node and/or the second communication node, or a pre-defined resource. Way of definition.
- S310 and S320 are not limited. In one embodiment, S310 is executed first, and then S320 is executed. In one embodiment, S320 is performed first, and then S310 is performed. In one embodiment, only S310 is performed. In one embodiment, only S320 is executed.
- the process or method for the UE to receive downlink data in the embodiment is also suitable for the UE to send uplink data to the TRP, that is, the technical means for the terminal to determine the resource or method required for receiving information is suitable for the terminal to determine the resource required for sending information Or method.
- TRP1 schedules UE1 through downlink control signaling, instructs UE1 to receive downlink data from TRP1 on time slot n in the frequency domain position A, and instructs UE1 to receive downlink data from TRP2 on time slot n in frequency domain position B, or
- the predefined frequency domain position at which UE1 receives downlink data from TRP2 in time slot n is B, where frequency domain position A and frequency domain position B do not overlap in the frequency domain.
- the frequency domain position of UE1 receiving downlink data from TRP1 is B
- the frequency domain position of UE1 receiving downlink data from TRP2 is A, that is, the frequency of UE1 receiving TRP1 and TRP2.
- the domain position in the time domain changes alternately with the time slot.
- the terminal can exchange the frequency domain position corresponding to each communication node, so that the frequency domain position corresponding to each communication node in the current time slot and the frequency domain position corresponding to the previous time slot respectively The domain location is different.
- the resource allocation position can be changed alternately with time.
- the frequency domain position of TRP1 on Layer 0 is The frequency domain resource of the upper half bandwidth
- the frequency domain position of TRP2 on Layer 1 is the frequency domain resource of the lower half bandwidth
- slot n+1 the frequency domain position of TRP1 on Layer 0 is the frequency domain resource of the lower half bandwidth
- the frequency domain position of TRP2 on Layer 1 is the frequency domain resource of the upper half bandwidth.
- the switching between these two methods can be RRC configuration, or DCI dynamic switching (associated with a dynamic parameter), or over time
- RRC configuration or DCI dynamic switching (associated with a dynamic parameter)
- DCI dynamic switching associated with a dynamic parameter
- the change granularity of the resource allocation method in the time domain can be divided according to odd/even slots, or divided according to slot set.
- the resources include at least one of the following: frequency domain resources and time domain resources.
- rules can be predefined between TRP and UE. If the number of TCIs corresponding to the TCI state indicated by the TCI (Transmission configuration indication) field in DCI When it is greater than 1, or the number of QCL RS sets included in the TCI corresponding to the TCI state is greater than 1, it indicates that multiple TRPs are transmitting to one UE.
- TCI Transmission configuration indication
- the UE determines the transmission mode according to the following conditions: (1) If the resource allocation mode indicated by the DCI is a discrete resource allocation mode, such as indicating that the UE occupies RB 0, RB 2, RB 4,..., RB N-1, the UE can infer In the FDM transmission scheme, the frequency domain resources occupied by another TRP are RB 1, RB 3, RB 5,..., RB N; (2) If the DCI indicates that the resource occupied by the UE is in another way, the UE can infer the transmission scheme For SDM.
- a discrete resource allocation mode such as indicating that the UE occupies RB 0, RB 2, RB 4,..., RB N-1
- the UE can infer In the FDM transmission scheme, the frequency domain resources occupied by another TRP are RB 1, RB 3, RB 5,..., RB N;
- the DCI indicates that the resource occupied by the UE is in another way, the UE can infer the transmission scheme For SDM.
- the frequency domain resource allocation manner includes at least one of the following: continuous frequency domain resource allocation and discrete frequency domain resource allocation.
- the manner of receiving information includes at least one of the following: a space division manner, a frequency division manner, an intra-slot time division manner, and an inter-slot time division manner.
- determining the resources required to receive information includes:
- the resource is a frequency domain resource and the The frequency domain resources include at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource, and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource and the frequency
- the domain resources include at least one of the following: a first frequency domain resource and a second frequency domain resource;
- the resource is a frequency domain resource, and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource.
- TRP1 schedules UE1 through downlink control signaling, and instructs UE1 to receive downlink data from TRP1 on time slot n in the frequency domain position A.
- the first communication node can predefine UE1 to receive downlink data from TRP2 on time slot n.
- TRP1 schedules UE1 through downlink control signaling, and instructs UE1 to send uplink data to TRP1 in the frequency domain position A on time slot n
- the first communication node may predefine UE1 to send uplink data to TRP2 on time slot n
- the frequency domain position of each second communication node is determined according to the frequency domain position of the first communication node and the frequency domain offset value corresponding to each second communication node.
- the method for receiving information further includes:
- the method for determining the first frequency domain resource and the second frequency domain resource includes at least one of the following:
- the method for determining the first frequency domain resource and the second frequency domain resource includes:
- the frequency domain resource for receiving information by the first communication node is the first frequency domain resource
- the frequency domain resource for receiving information by the second communication node is the second In the case of frequency domain resources; when the next time slot or the current time slot is the next time slot in the time slot group, the frequency domain resources of the first communication node and the second communication node are exchanged.
- determining the method required to receive information includes:
- the information receiving mode is a frequency division mode.
- the setting rule includes at least one of the following:
- the numbers of the allocation positions of the frequency domain resources are odd numbered resource blocks, odd numbered resource block groups, odd numbered precoding resource block groups, even numbered resource blocks, even numbered resource block groups, and even numbered precoding resource block groups.
- the method for receiving information further includes: scrambling the received information using a scrambling code sequence, the scrambling code sequence being generated by a scrambling code sequence generator, and determining the initialization value of the scrambling code sequence generator
- the method for receiving information further includes: scrambling the received information using a scrambling code sequence, the scrambling code sequence being generated by a scrambling code sequence generator, and determining the initialization value of the scrambling code sequence generator
- the value of q includes at least one of the following:
- the method for determining the n ID includes at least one of the following: configuring at least two n IDs through high-layer signaling, respectively corresponding to the identities of the at least two control resource set groups.
- the corresponding technical means can refer to the technical means of the first communication node using the scrambling code sequence to scramble the sent information, which will not be repeated here.
- the time domain resource when the way of receiving information is time division, includes a first time domain resource and a second time domain resource.
- the information receiving method further includes:
- TRP1 schedules UE1 through downlink control signaling and instructs UE1 to receive downlink data from TRP1 on time slot n.
- the symbol length indicated in the Time domain resource assignment field in DCI is M
- the indicated start symbol is K, that is, the time domain symbol position at which UE1 receives downlink data from TRP1 is symbol K to symbol K+M-1.
- the UE1 receives downlink data from TRP2 in M symbols in the symbol positions K+M to 13 in the time slot n.
- This application provides a device for sending information, and the device for sending information in an embodiment of this application can be integrated on a first communication node.
- the device includes: at least one processor, configured to determine the resource required for sending information, instruct a terminal to receive information on the resource through signaling, or a predefined terminal to receive information on the resource; determine to send information The required way, the way of sending information is indicated to the terminal through signaling, or the way of sending information is predefined.
- the information sending device provided in this embodiment is used to implement the information sending method.
- the implementation principles and technical effects of the information sending device provided in this embodiment are similar to the information sending method, and will not be repeated here.
- At least one processor is configured such that: the resources include at least one of the following: frequency domain resources and time domain resources.
- At least one processor is configured to: the frequency domain resource allocation manner includes at least one of the following: continuous frequency domain resource allocation and discrete frequency domain resource allocation.
- At least one processor is configured to send information in a manner that includes at least one of the following: a space division manner, a frequency division manner, an intra-slot time division manner, and an inter-slot time division manner.
- At least one processor is configured to determine the resource required for sending information by at least one of the following methods: the information sending mode is frequency division and the downlink control signaling sends the configuration indication field indicated In the case where the number of transmission configuration indications corresponding to the transmission configuration indication state is greater than 1, the resource is a frequency domain resource and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource; When the method of sending information is frequency division and the number of quasi-co-located reference signal sets included in the sending configuration indication corresponding to the sending configuration indication state indicated by the sending configuration indication field in the downlink control signaling is greater than 1, then The resource is a frequency domain resource and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource; when the information is sent in a time division manner, and the configuration indication domain is sent in the downlink control signaling When the number of transmission configuration indications corresponding to the indicated transmission configuration indication state is greater than 1, the resource is a frequency domain resource and the frequency domain
- At least one processor is further configured to determine the allocation position of the second frequency domain resource according to the difference or the sum of the allocation position of the first frequency domain resource and the position offset value .
- At least one processor configured to determine the first frequency domain resource and the second frequency domain resource includes at least one of the following: determining through downlink control signaling and through a predefined manner determine.
- At least one processor is configured such that the method for determining the first frequency domain resource and the second frequency domain resource includes: when the current time slot or the current time slot is a time slot in a time slot group If the frequency domain resource for sending information by the first communication node is the first frequency domain resource, and the frequency domain resource for sending information by the second communication node is the second frequency domain resource, when the next time slot or the current time slot is time The next time slot in the slot group exchanges the frequency domain resources of the first communication node and the second communication node.
- At least one processor is configured to determine the method required to send information in the following manner: when the allocation position of frequency domain resources indicated by the signaling meets a set rule, the method of sending information is Frequency division method.
- At least one processor is configured such that: the setting rule includes at least one of the following: the number of the allocation position of the frequency domain resource is an odd-numbered resource block, an odd-numbered resource block group, and an odd-numbered resource block group. Precoding resource block groups, even-numbered resource blocks, even-numbered resource block groups, and even-numbered pre-coding resource block groups.
- At least one processor is further configured to: scramble the transmitted information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization of the scrambling code sequence generator
- At least one processor is further configured to: scramble the transmitted information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization of the scrambling code sequence generator
- At least one processor is configured such that: the value of q includes at least one of the following: when the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 The value of q corresponding to codeword 1 is 0, and the value of q corresponding to codeword 1 is 1. When the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 1.
- the value is 0; when the identifier of the control resource set group is 1, the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 0; in the control resource set When the group identifier is 1, the value of q corresponding to codeword 0 is 0, and the value of q corresponding to codeword 1 is 1.
- At least one processor is configured to: the method for determining n ID includes at least one of the following: configuring at least two n IDs to the terminal through high-layer signaling, corresponding to at least two control resource set groups respectively logo.
- the at least one processor is configured to: in a case where the method of sending information is time division, the time domain resource includes a first time domain resource and a second time domain resource.
- At least one processor is further configured to determine the position of the time domain symbol of the second time domain resource according to the start symbol and the symbol length of the first time domain resource.
- the device for receiving information includes: at least one processor configured to determine a resource required to receive information, and to receive information on the resource; determine the method required to receive information, according to Information is received in the manner; wherein, the resource is a resource indicated by signaling of the first communication node and/or the second communication node, or a predefined resource.
- the information receiving device provided in this embodiment is used to implement the information receiving method.
- the implementation principles and technical effects of the information receiving device provided in this embodiment are similar to the information receiving method, and will not be repeated here.
- At least one processor is configured such that: the resources include at least one of the following: frequency domain resources and time domain resources.
- At least one processor is configured to: the frequency domain resource allocation manner includes at least one of the following: continuous frequency domain resource allocation and discrete frequency domain resource allocation.
- At least one processor is configured to receive information in a manner that includes at least one of the following: a space division manner, a frequency division manner, an intra-slot time division manner, and an inter-slot time division manner.
- At least one processor is configured to determine the resource required to receive information in the following manner: the method of receiving information is a frequency division method and the sending configuration indicated by the configuration indication field in the downlink control signaling is sent When the number of transmission configuration instructions corresponding to the indication status is greater than 1, the resource is a frequency domain resource and the frequency domain resource includes at least one of the following: a first frequency domain resource and a second frequency domain resource; When the mode is frequency division and the number of quasi-co-located reference signal sets included in the transmission configuration indication corresponding to the transmission configuration indication state indicated by the transmission configuration indication field in the downlink control signaling is greater than 1, the resource is Frequency domain resources, and the frequency domain resources include at least one of the following: a first frequency domain resource and a second frequency domain resource; the method of receiving information is a time division method and sending the transmission indicated by the configuration indication field in the downlink control signaling When the number of sending configuration instructions corresponding to the configuration indication state is greater than 1, the resource is a frequency domain resource and the frequency domain resource includes at least one
- At least one processor is further configured to determine the allocation position of the second frequency domain resource according to the difference or the sum of the allocation position of the first frequency domain resource and the position offset value .
- At least one processor is configured to: the method for determining the first frequency domain resource and the second frequency domain resource includes at least one of the following: determining through downlink control signaling and through predefined The way is ok.
- At least one processor is configured such that the method for determining the first frequency domain resource and the second frequency domain resource includes: when the current time slot or the current time slot is a time slot in a time slot group If the frequency domain resource for receiving information by the first communication node is a first frequency domain resource, and the frequency domain resource for receiving information by the second communication node is a second frequency domain resource; in the next time slot or the current time slot For the next time slot in the time slot group, the frequency domain resources of the first communication node and the second communication node are exchanged.
- At least one processor is configured to determine the method required to receive information in the following manner: when the allocation position of the frequency domain resources indicated by the signaling meets a set rule, the information is received
- the method is frequency division.
- At least one processor is configured such that: the setting rule includes at least one of the following: the number of the allocation position of the frequency domain resource is an odd-numbered resource block, an odd-numbered resource block group, and an odd-numbered resource block group. Precoding resource block groups, even-numbered resource blocks, even-numbered resource block groups, and even-numbered pre-coding resource block groups.
- the at least one processor is further configured to: scramble the received information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization of the scrambling code sequence generator
- the at least one processor is further configured to: scramble the received information using a scrambling code sequence, the scrambling code sequence is generated by a scrambling code sequence generator, and the initialization of the scrambling code sequence generator
- At least one processor is configured such that: the value of q includes at least one of the following: when the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 The value of q corresponding to codeword 1 is 0, and the value of q corresponding to codeword 1 is 1. When the identifier of the control resource set group is 0, the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 1.
- the value is 0; when the identifier of the control resource set group is 1, the value of q corresponding to codeword 0 is 1, and the value of q corresponding to codeword 1 is 0; in the control resource set When the group identifier is 1, the value of q corresponding to codeword 0 is 0, and the value of q corresponding to codeword 1 is 1.
- At least one processor is configured to: the method for determining the n ID includes at least one of the following: configuring at least two n IDs through high-layer signaling, corresponding to the identities of the at least two control resource set groups, respectively .
- the at least one processor is configured to: in a case where the way of receiving information is time division, the time domain resource includes a first time domain resource and a second time domain resource.
- At least one processor is further configured to determine the position of the time domain symbol of the second time domain resource according to the start symbol and the symbol length of the first time domain resource.
- FIG. 4 is a schematic structural diagram of a first communication node provided by this application.
- the first communication node provided by the present application includes one or more processors 41 and a storage device 42; the processors 41 in the first communication node may be one or more, as shown in FIG.
- the processor 41 is an example; the storage device 42 is used to store one or more programs; the one or more programs are executed by the one or more processors 41, so that the one or more processors 41 implement The information sending method described in the embodiment of the invention.
- the processor 41 and the storage device 42 in the first communication node may be connected through a bus or in other ways.
- the connection through a bus is taken as an example.
- the storage device 42 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the information sending method described in the embodiments of the present application (for example, the information sending device At least one processor).
- the storage device 42 may include a storage program area and a storage data area.
- the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the first communication node, and the like.
- the storage device 42 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the storage device 42 may further include memories remotely provided with respect to the processor 41, and these remote memories may be connected to the first communication node through a network.
- Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- FIG. 5 is a schematic structural diagram of a terminal provided in this application.
- the terminal provided by this application includes one or more processors 51 and a storage device 52; there may be one or more processors 51 in the terminal, and one processor 51 is taken as an example in FIG. 5;
- the storage device 52 is configured to store one or more programs; the one or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the same as described in the embodiment of the present invention. How to receive the information.
- the processor 51 and the storage device 52 in the terminal may be connected by a bus or in other ways.
- the connection by a bus is taken as an example.
- the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the information receiving method described in the embodiments of the present application (for example, the information receiving device At least one processor in).
- the storage device 52 may include a program storage area and a data storage area.
- the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
- the storage device 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the storage device 52 may further include a memory remotely provided with respect to the processor 51, and these remote memories may be connected to the terminal through a network.
- networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- the embodiments of the present application also provide a storage medium that stores a computer program, and when the computer program is executed by a processor, it implements any of the information receiving methods described in the embodiments of the present application or any of the described methods. How to send the information.
- the method for sending information includes: determining the resource required to send the information, instructing the terminal to receive information on the resource through signaling, or predefining the terminal to receive information on the resource; determining the method required to send the information, The way of sending information is indicated to the terminal through signaling, or the way of sending information is predefined.
- the method for receiving information includes: determining the resource required to receive the information, and receiving the information on the resource, where the resource is a resource indicated by signaling by the first communication node and/or the second communication node, or a predefined resource;
- the method required to receive the information is to receive the information according to the method, and the method is a method indicated by the first communication node and/or the second communication node via signaling, or a predefined method.
- terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
- the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
- some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
- the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
- Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
- the block diagram of any logic flow in the drawings of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
- the computer program can be stored on the memory.
- the memory can be of any type suitable for the local technical environment and can be implemented by any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
- Computer-readable media may include non-transitory storage media.
- the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
- DSP Digital Signal Processing
- ASICs application specific integrated circuits
- FGPA programmable logic devices
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提出一种信息的发送方法及装置、信息的接收方法及装置,其中,信息的发送方法包括确定发送信息的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
Description
本申请要求在2019年04月30日提交中国专利局、申请号为201910364189.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及无线通信网络领域,例如涉及一种信息的发送方法及装置、信息的接收方法及装置。
在新空口(new radio,NR)Release-15的版本中,多通信节点联合对同一个终端进行联合传输没有进行充分的讨论。所以在多个通信节点对一个终端进行联合传输的情况下,如何增强传输效率是一个待解决的问题。
发明内容
本申请提供一种信息的发送方法及装置、信息的接收方法及装置,提升了多个通信节点对一个终端进行联合传输场景下的传输效率。
本申请实施例提供一种信息的发送方法,包括:确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
本申请实施例提供一种信息的接收方法,包括:确定接收信息所需的资源,在所述资源上接收信息,所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源;确定接收信息所需的方式,根据所述方式接收信息,所述方式为第一通信节点和/或第二通信节点信令指示的方式,或预定义的方式。
本申请实施例提供一种信息的发送装置,包括:至少一个处理器,被配置为:确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
本申请实施例提供一种信息的接收装置,包括:至少一个处理器,设置为确定接收信息所需的资源,在所述资源上接收信息;确定接收信息所需的方式,根据所述方式接收信息;其中,所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源。
本申请实施例提供一种第一通信节点,包括:一个或多个处理器;存储装 置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中的信息的发送方法。
本申请实施例提供一种终端,包括:一个或多个处理器;
存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中的信息的接收方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的信息的发送方法或实现本申请实施例提供的信息的接收方法。
图1为本申请提供的一种信息的发送方法的流程示意图;
图2为本申请提供的FDM传输方案的离散资源分配和连续资源分配的示意图;
图3为本申请提供的一种信息的接收方法的流程示意图;
图4为本申请提供的一种第一通信节点的结构示意图;
图5为本申请提供的一种终端的结构示意图。
下文中将结合附图对本申请的实施例进行详细说明。
在一个示例性实施方式中,图1为本申请提供的一种信息的发送方法的流程示意图。该方法可以适用于提升多个通信节点对一个终端进行联合传输场景下的传输效率的情况。该方法可以由本申请提供的信息的发送装置执行,该信息的发送装置可以由软件和/或硬件实现,并集成在第一通信节点上。
在一实施例中,本申请中的第一通信节点和第二通信节点可以为宏小区的基站、小小区(small cell)的基站或传输节点、传输接收点(transmission receive point,TRP)、高频通信系统中的发送节点、物联网系统中的发送节点等节点、卫星通信中的卫星,终端可以为第三通信节点,第三通信节点可以为用户终端(User Equipment,UE)、手机、便携设备、汽车等通信系统中的节点、中继节点、小基站等。
信息可以为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理层上行共享信道(Physical Uplink Shared Channel,PUSCH)信息,或者为物理下行控制信道(Physical Downlink Control Channel,PDCCH)或物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)信息,或者为下行/上行解调参考信号,或者为进行随机接入的上行信号,或者为信道探测参考信号(Sounding Reference Signal,SRS)信号,或者为相位跟踪参考信号等。
对于多个TRP下的高可靠性与超低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)传输方案,可以分为空分复用(Space Division Multiplexing,SDM),即空分的方式、频分多路复用(Frequency-division multiplexing,FDM),即频分的方式、时分多路复用(Time Division Multiplex,TDM),即时分的方式。
对于FDM的方式,又可以分为方式2a(scheme 2a)和方式2b(scheme 2b),scheme 2a和scheme 2b的主要区别在于:scheme 2a是传输块经过编码后输出1个码字流,scheme 2b是传输块经过编码后输出2个码字流。
假定目标用户占用频域资源的资源块(resource block,RB)为RB0至RBN,FDM的多个TRP之间的资源分配方式,可以是连续的资源分配方式,即TRP1占用RB0至RBfloor(N/2),即RB层(N/2),TRP2占用RBfloor(N/2)+1至RBN;也可以离散的资源分配方式,即TRP1占用RB0、RB2、RB4,…,RBN-1,TRP2占用RB1、RB3、RB5,…,RBN。
FDM的频域资源分配颗粒度,除了RB以外,也可以是预编码资源块组(Precoding resource block group,PRG)。
对于TDM的方式,可以是时隙内时分,即不同的TRP占用时隙内的不同符号,也可以是时隙间时分,即不同的TRP占用不同的时隙。
如图1所示,本申请提供的一种信息的发送方法,包括S110-S120。
S110、确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息。
在多个通信节点对终端进行联合传输的情况下,在各通信节点中确定一个通信节点作为第一通信节点,通过该第一通信节点指示用户接收信息所需信息,接收信息所需信息包括以下至少之一:所需资源和所需方式。
在一实施例中,第一通信节点指示用户发送信息所需信息。
在一实施例中,第一通信节点和终端也可以预定义终端接收信息的资源和/或方式。终端和第一通信节点基于预定义的资源进行信息传输。
在一实施例中,第一通信节点和终端预定义发送信息所需信息。
在一实施例中,发送信息所需的资源为第一通信节点向终端发送信息所需的资源。在一实施例中,发送信息所需的资源为终端向第一通信节点发送信息所需的资源,第一通信节点通过信令指示终端在确定出的资源上发送信息。
信令不作限定,在一实施例中,在相关信令的基础上复用得到所述信令。在一实施例中,新增信令作为所述信令用于指示终端。
资源可以包括以下至少一种:频域资源、空域资源和时域资源。
在一实施例中,第一通信节点确定发送信息所需资源为确定使用如下哪一资源:频域资源、空域资源和时域资源。
在一实施例中,第一通信节点确定发送信息所需资源包括如下至少之一:确定第一通信节点使用第一时域资源中的频域位置和/或第二通信节点使用第一时域资源中的频域位置;确定第一通信节点使用第一时域资源中的时隙位置和/或第二通信节点使用第一时域资源中的时隙位置;确定第一通信节点使用第一时域资源中的空域位置和/或第二通信节点使用第一时域资源中的空域位置。
第一通信节点确定所需资源的方式不作限定,只要保证终端能够有效与各通信节点进行数据传输即可。
S120、确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
在一实施例中,第一通信节点通过信令指示终端如下至少之一信息:发送信息的方式和接收信息的方式。
在一实施例中,第一通信节点和终端也可以预定义终端接收信息和/或接收信息的方式。终端和第一通信节点基于预定义的方式进行信息传输。
信令不作限定,指示发送信息的方式的信令和指示接收信息的资源的信令为同一信令或不同信令。指示接收信息的资源的信令为第一信令,指示发送信息的方式的信令为第二信令。在一实施例中,在相关信令的基础上复用得到所述信令。在一实施例中,新增信令作为所述信令用于指示终端。
第一通信节点确定第一通信节点和第二通信节点与终端进行数据传输的方式。方式包括以下至少一种:空分的方式、频分的方式、时隙内时分的方式和时隙间时分的方式。
需要注意的是,S110和S120的执行顺序不作限定,在一实施例中,先执行S110,再执行S120。在一实施例中,先执行S120,再执行S110。在一实施例中,只执行S110。在一实施例中,只执行S120。
在一实施例中,信息的发送方法,包括:确定发送信息所需的资源或方式;通过信令指示终端在所述资源上接收信息,或者,将发送信息的方式通过信令指示给终端;或者,预定义终端在所述资源上接收所述信息,或预定义发送信息的方式。
本申请提供的一种信息的发送方法,确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。在多个通信节点与终端联合传输的情况下,定义了终端接收信息的资源或发送信息的方式,提升了多个通信节点对一个终端进行联合传输场景下的传输效率。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一实施例中,资源至少包括以下之一:频域资源和时域资源。
示例性的,对于uRLLC的传输方案,为了区分SDM和FDM,TRP和UE之间可以预定义规则,如果下行控制信息(Downlink Control Information,DCI)中TCI(Transmission configuration indication,发送配置指示)域所指示的TCI state对应的TCI的数目大于1或者TCI state对应的TCI中所包括的准共位参考信号集合(Quasi co-location Reference Signal,QCL RS sets)的数目大于1时,则表明多个TRP对1个UE进行传输。再根据以下情况判断传输方式:(1)如果DCI指示的资源分配方式为离散的资源分配方式,比如指示UE占用RB 0、RB 2、RB 4,…,RB N-1,则UE可以推断出传输方案FDM的方式,另外一个TRP占用的频域资源为RB 1、RB 3、RB 5,…,RB N;(2)如果DCI指示UE占用的资源为其他方式,则UE可以推断出传输方案为SDM。
在一实施例中,频域资源的分配方式至少包括以下之一:连续的频域资源分配和离散的频域资源分配。
在一实施例中,发送信息的方式至少包括以下之一:空分的方式、频分的方式、时隙内时分的方式和时隙间时分的方式。
在一实施例中,确定发送信息所需的资源,包括以下至少之一:在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
在下行控制信令中发送配置指示域所指示的发送配置指示状态(TCI state)对应的TCI的数目超过1或者TCI state对应的TCI中所包括的准共位参考信号集合的数目超过1的情况下,与终端通信的通信节点个数超过1。
和终端进行数据传输的通信节点的个数根据TCI state对应的TCI的数目或TCI state对应的TCI中所包括的准共位参考信号集合的数目确定。
在一实施例中,和终端进行数据传输的通信节点的个数与TCI state对应的TCI的数目或TCI state对应的TCI中所包括的准共位参考信号集合的数目相等。
第一频域资源和第二频域资源可以为供不同通信节点与终端进行数据传输的频域资源。在一实施例中,第一频域资源为第一通信节点与终端进行数据传输的频域资源,第二频域资源为第二通信节点与终端进行数据传输的频域资源。其中,第二频域资源的数量为至少一个。不同的第二频域资源可以对应不同的第二通信节点。
在一实施例中,信息的发送方法还包括:根据所述第一频域资源的分配位置和位置偏置值的差值或和值,确定所述第二频域资源的分配位置。
在进行两个通信节点与终端进行数据传输时,所述第一频域资源与所述第二频域资源满足以下的关系:第二频域资源的分配位置等于第一频域资源的分配位置加上位置偏置值或第一频域资源的分配位置减去位置偏置值。
在有至少两个通信节点与终端进行数据传输时,第二频域资源的数量可以为至少一个。各第二频域资源的分配位置等于第一频域资源的分配位置加上相应第二通信节点的位置偏置值或第一频域资源的分配位置减去相应第二通信节点的位置偏置值。各第二通信节点有各自对应的偏置值,以保证各第二频域资源和第一频域资源的频域位置不重叠。
在一实施例中,所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:通过下行控制信令确定和通过预定义的方式确定。
在一实施例中,第一通信节点确定发送信息所需的资源时,通过下行控制信令确定发送信息所需的第一频域资源和第二频域资源和通过预定义的方式确定发送信息所需的第一频域资源和第二频域资源。
示例性的,图2为本申请提供的FDM传输方案的离散资源分配和连续资源分配的示意图。FDM传输方案的方式2a或方式2b的资源分配方式如图2所示,第一通信节点TRP1和第二通信节点TRP2与终端UE1进行联合传输,传输时采用离散资源分配方式或连续资源分配方式。
示例性的,对于uRLLC中的FDM传输方案,假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据的频域位置为A,则第一通信节点可以预定义UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,其中,B=A+频域偏置值,或B=A-频域偏置值,A和B在频域不重叠。
或者,TRP1通过下行控制信令调度UE1,指示UE1在时隙n上向TRP1发送上行数据的频域位置为A,则第一通信节点可以预定义UE1在时隙n上向TRP2发送上行数据的频域位置为B,其中,B=A+频域偏置值,或B=A-频域偏置值,A和B在频域不重叠。
在UE2的数量为多个的情况下,根据所述第一通信节点的频域位置和对应各第二通信节点的频域偏置值,确定各第二通信节点的频域位置。
在一实施例中,读取所述下行控制信令中第一通信节点在第一时隙上对应的频域位置;根据所述第一通信节点的频域位置确定第二通信节点的频域位置,所述第二通信节点的个数为至少一个,各所述频域位置不重叠;持续在下一时隙或当前时隙为时隙组中时隙,更换所述第一通信节点和各第二通信节点的频域位置。第一通信节点和第二通信节点的频域位置用于接收或发送信息。
在一实施例中,所述第一频域资源和所述第二频域资源的确定方式包括:在当前时隙或当前时隙为时隙组中时隙,所述第一通信节点发送信息的频域资源为第一频域资源,第二通信节点发送信息的频域资源为第二频域资源的情况下,在下一个时隙或当前时隙为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
在一实施例中,时隙组为对时隙划分后形成的组。将不同的时隙划分至不同的组,形成不同的时隙组,如第一时隙组和第二时隙组。在当前时隙落在第一时隙组的情况下,第一时隙组为当前时隙组。
在当前时隙或当前时隙为时隙组中时隙,第一通信节点和第二通信节点的频域资源分别为第一频域资源和第二频域资源。在下一个时隙或当前时隙为时隙组中的下一时隙,交换第一通信节点和第二通信节点的频域资源,使第一通信节点和第二通信节点的频域资源与前一时隙所处频域资源不同。
示例性的,对于schemes 2a/2b的资源分配方式,有两种,分别为连续的资源分配方式和离散的资源分配方式。下面分两种情况来讨论:
(1)固定采用一种资源分配方式:
假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据的频域位置为A,指示UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,或者预定义UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,其中,频域位置A和频域位置B在频域不重叠。则可以预定义在下一个时隙n+1上,UE1接收来自TRP1的下行数据的频域位置为B,UE1接收来自TRP2的下行数据的频域位置为A,即UE1接收TRP1和接收TRP2的频域位置在时域上随着时隙的变化而交替改变。
在与终端通信的通信节点的个数为至少两个的情况下,第一通信节点可以交换各通信节点对应的频域位置,使得当前时隙各通信节点对应的频域位置与上一时隙各自对应的频域位置不同。
示例性的,固定采用连续的资源分配方式,为了增加传输的鲁棒性,可以随着时间的变化交替更换资源分配的位置,比如:在时隙slot n,层Layer0上TRP1的频域位置为上半带宽的频域资源;Layer1上TRP2的频域位置为下半带宽的频域资源;在slot n+1,Layer0上TRP1的频域位置为下半带宽的频域资源;Layer1上TRP2的频域位置为上半带宽的频域资源。
(2)采用两种资源分配方式:
假如标准采用了连续的资源分配方式和离散的资源分配方式,这两种方式之间的切换,可以是无线资源控制(Radio Resource Control,RRC)配置,也可以是DCI动态切换(与某个动态参数关联),或者随着时间的变化而发生改变,比如:在slot n,使用连续的资源分配方式;在slot n+1,使用离散的资源分配方式。
资源分配方式在时域的变化颗粒度,可以是按照奇/偶数slot划分,也可以 按照时隙组slot set划分。
在与终端通信的通信节点的数量为两个的情况下,在下一个时隙或当前时隙为时隙组中的下一时隙,第一通信节点发送所述信息的频域资源为第二频域资源,第二通信节点发送所述信息的频域资源为第一频域资源。
在一实施例中,确定发送信息所需的方式包括:在所述信令所指示的频域资源的分配位置满足设定规律的情况下,发送信息的方式为频分的方式。
设定规律可以根据资源块、资源块组或预编码资源块组确定。
在一实施例中,所述设定规律包括以下至少之一:所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇数的预编码资源块组、偶数的资源块、偶数的资源块组和偶数的预编码资源块组。
在一实施例中,信息的发送方法还包括:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+g·2
x+n
ID,其中,x为10或11或12或13;g∈{0,1}与控制资源集组标识关联;q∈{0,1}与传输码字的数量相关联;n
RNTI为无线网络临时标识;n
ID∈{0,1,…,1023}或为小区标识ID。
为了对不同的TRP进行干扰随机化,可以对不同的TRP使用不同的初始化值。在与终端通信的通信节点的个数为至少两个的情况下,g∈{0,1……n}与控制资源集组标识关联;q∈{0,1……m},与控制资源集组标识关联。n的数值与控制资源集组标识关联,m的数值与控制资源集组标识关联。在一实施例中,n和m为整数。
在一实施例中,信息的发送方法还包括:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+n
ID,n
ID∈{0,1,…,1023}或小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
在一实施例中,高层信令可以为第一通信节点发送至终端的信令。
示例性的,如果RRC配置了2个控制资源集组CORESET group,q与控制资源集组的标识CORESET group ID相关,即q的取值为0或1。
在控制资源集组的标识为x个的情况下,q的取值可以为1到x。x为正数。
在一实施例中,所述q的取值包括以下至少之一:在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
在所述控制资源集组的标识为y的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1,码字2对应的q的取值为2……码字y对应的q的取值为y。或,码字0到码字y对应的q的取值为0-y中任一数值,各q的取值不同。y为正数。
在一实施例中,所述n
ID的确定方式包括以下至少之一:通过高层信令向终端配置至少两个n
ID,分别对应至少两个控制资源集组的标识。
在与终端通信的通信节点的个数为至少两个的情况下,第一通信节点通过高层信令向终端配置至少两个n
ID,n
ID的取值对应至少两个控制资源集组的标识。
在控制资源集组的标识为0到z的情况下,n
ID的取值为1到z。z为正数。各控制资源集组的标识对应的n
ID的取值不同。
在与终端通信的通信节点的个数为两个的情况下,n
ID可以配置2个,分别对应2个CORESET group ID。
在所述控制资源集组的标识为1的情况下,n
ID为1或0;在所述控制资源集组的标识为0的情况下,n
ID为1或0。
在一实施例中,在发送信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源。
第一时域资源和第二时域资源可以为供不同通信节点与终端进行数据传输的时域资源。
在一实施例中,第一时域资源为第一通信节点与终端进行数据传输的时域资源,第二时域资源为第二通信节点与终端进行数据传输的时域资源。其中,第二时域资源的数量为至少一个。不同的第二时域资源可以对应不同的第二通信节点。
在一实施例中,信息的发送方法还包括:根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
在第二通信节点的数量为至少两个的情况下,各第二通信节点对应时域符号位置可以根据第一时域资源的起始符号和符号长度确定。
在一实施例中,在第一时域符号对应的时域符号位置后依次为各第二传输节点选取第二时域资源。各第二时域资源的时域位置不重叠。
在一实施例中,在传输方式为时分方式的情况下,根据所述下行控制信令中时域资源分配域确定剩余符号长度,所述时域资源分配域指示符号长度和起始符号位置;在所述剩余符号长度大于或等于所述符号长度的情况下,根据所述时域资源分配域确定至少一个第二通信节点的时域符号位置。
在一实施例中,根据所述下行控制信令中时域资源分配域确定剩余符号长度,包括:使用时隙所包括的符号数减去所述起始符号位置和所述符号长度,得到剩余符号长度。
在一实施例中,根据所述时域资源分配域确定至少一个第二通信节点的时域符号位置,包括:将所述起始符号位置加上所述符号长度的符号位置作为终止符号位置;获取所述下行控制信息所指示的目标时隙;在所述目标时隙的所述终止符号位置后为至少一个第二通信节点选取对应的时序符号位置,各所述第二通信节点对应的时序符号位置不重叠,且各所述时序符号位置对应的符号长度与所述符号长度相同。
示例性的,对于uRLLC中的TDM传输方案,假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据,如果DCI中时域资源分配(Time domain resource assignment)域所指示符号长度为M,所指示起始符号为K,即UE1接收来自TRP1的下行数据的时域符号位置为符号K至符号K+M-1。当满足(14-K-M)大于或等于M时(即2M<=14-K),则UE1在该时隙n上符号位置为K+M至13中的M个符号接收来自TRP2的下行数据。
本申请实施例还提供了一种信息的接收方法,图3为本申请提供的一种信息的接收方法的流程示意图。该信息的接收方法可以适用于提升多个通信节点对一个终端进行联合传输场景下的传输效率的情况。该方法可以由本申请提供的信息的接收装置执行,该信息的接收装置可以由软件和/或硬件实现,并集成在终端上。
如图3所示,本申请提供的一种信息的接收方法,包括S310-S320。
S310、确定接收信息所需的资源,在所述资源上接收信息,所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源。
第一通信节点和第二通信节点为与终端通信的通信节点。当终端接收第二通信节点的情况下,第二通信节点指示终端的手段可以参见第一通信节点指示终端的手段。
S320、确定接收信息所需的方式,根据所述方式接收信息。
接收信息所需的方式为第一通信节点和/或第二通信节点信令指示的方式或预定义的方式。
在一实施例中,终端为第三通信节点。
在一实施例中,终端确定接收信息所需的资源,在所述资源上接收信息。终端确定接收信息所需的方式,根据所述方式接收信息。所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源;所述方式为第一通信节点和/或第二通信节点信令指示的方式,或预定义的方式。
需要注意的是,S310和S320的执行顺序不作限定,在一实施例中,先执行S310,再执行S320。在一实施例中,先执行S320,再执行S310。在一实施例中,只执行S310。在一实施例中,只执行S320。
此外,对于实施例中的UE接收下行数据的流程或方法,也适用于UE向TRP发送上行数据,即终端确定接收信息所需的资源或方法的技术手段适用于终端确定发送信息所需的资源或方法。
示例性的,对于schemes 2a/2b的资源分配方式,有两种,分别为连续的资源分配方式和离散的资源分配方式。下面分两种情况来讨论:
(1)固定采用一种资源分配方式:
假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据的频域位置为A,指示UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,或者预定义UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,其中,频域位置A和频域位置B在频域不重叠。则可以预定义在下一个时隙n+1上,UE1接收来自TRP1的下行数据的频域位置为B,UE1接收来自TRP2的下行数据的频域位置为A,即UE1接收TRP1和接收TRP2的频域位置在时域上随着时隙的变化而交替改变。
在与终端通信的通信节点的个数为至少两个的情况下,终端可以交换各通 信节点对应的频域位置,使得当前时隙各通信节点对应的频域位置与上一时隙各自对应的频域位置不同。
示例性的,固定采用连续的资源分配方式,为了增加传输的鲁棒性,可以随着时间的变化交替更换资源分配的位置,比如:在时隙slot n,层Layer0上TRP1的频域位置为上半带宽的频域资源;Layer1上TRP2的频域位置为下半带宽的频域资源;在slot n+1,Layer0上TRP1的频域位置为下半带宽的频域资源;Layer1上TRP2的频域位置为上半带宽的频域资源。
(2)采用两种资源分配方式:
假如标准采用了连续的资源分配方式和离散的资源分配方式,这两种方式之间的切换,可以是RRC配,也可以是DCI动态切换(与某个动态参数关联),或者随着时间的变化而发生改变,比如:在slot n,使用连续的资源分配方式;在slot n+1,使用离散的资源分配方式。
资源分配方式在时域的变化颗粒度,可以是按照奇/偶数slot划分,也可以按照时隙组slot set划分。
需要注意的是,信息的接收方法中尚未详尽的内容可以参见信息的发送方法,此处不作赘述。
在一实施例中,所述资源至少包括以下之一:频域资源和时域资源。
示例性的,对于uRLLC的传输方案,为了区分SDM和FDM,TRP和UE之间可以预定义规则,如果DCI中TCI(Transmission configuration indication,发送配置指示)域所指示的TCI state对应的TCI的数目大于1或者TCI state对应的TCI中所包括的QCL RS sets的数目大于1时,则表明多个TRP对1个UE进行传输。再根据以下情况判断传输方式:(1)如果DCI指示的资源分配方式为离散的资源分配方式,比如指示UE占用RB 0、RB 2、RB 4,…,RB N-1,则UE可以推断出传输方案FDM的方式,另外一个TRP占用的频域资源为RB 1、RB 3、RB 5,…,RB N;(2)如果DCI指示UE占用的资源为其他方式,则UE可以推断出传输方案为SDM。
在一实施例中,所述频域资源的分配方式至少包括以下之一:连续的频域资源分配和离散的频域资源分配。
在一实施例中,接收信息的方式至少包括以下之一:空分的方式、频分的方式、时隙内时分的方式和时隙间时分的方式。
在一实施例中,确定接收信息所需的资源包括:
在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;
在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
示例性的,对于uRLLC中的FDM传输方案,假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据的频域位置为A,则第一通信节点可以预定义UE1在时隙n上接收来自TRP2的下行数据的频域位置为B,其中,B=A+频域偏置值,或B=A-频域偏置值,A和B在频域不重叠。
或者,TRP1通过下行控制信令调度UE1,指示UE1在时隙n上向TRP1发送上行数据的频域位置为A,则第一通信节点可以预定义UE1在时隙n上向TRP2发送上行数据的频域位置为B,其中,B=A+频域偏置值,或B=A-频域偏置值,A和B在频域不重叠。
在UE2的数量为多个的情况下,根据所述第一通信节点的频域位置和对应各第二通信节点的频域偏置值,确定各第二通信节点的频域位置。
在一实施例中,信息的接收方法,还包括:
根据所述第一频域资源的分配位置和位置偏置值的差值或和值,确定所述第二频域资源的分配位置。
在一实施例中,所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:
通过下行控制信令确定和通过预定义的方式确定。
在一实施例中,所述第一频域资源和所述第二频域资源的确定方式包括:
在当前时隙或当前时隙为时隙组中时隙,所述第一通信节点接收信息的频域资源为第一频域资源,所述第二通信节点接收信息的频域资源为第二频域资源的情况下;在下一个时隙或当前时隙为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
在一实施例中,确定接收信息所需的方式包括:
在所述信令所指示的频域资源的分配位置满足设定规律的情况下,信息的接收方式为频分的方式。
在一实施例中,所述设定规律包括以下至少之一:
所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇数的预编码资源块组、偶数的资源块、偶数的资源块组和偶数的预编码资源块组。
在一实施例中,信息的接收方法还包括:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+g·2
x+n
ID,其中,x为10或11或12或13;g∈{0,1}与控制资源集组标识关联;q∈{0,1}与传输码字的数量相关联;n
RNTI为无线网络临时标识;n
ID∈{0,1,…,1023}或小区标识ID。
在一实施例中,信息的接收方法还包括:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+n
ID,n
ID∈{0,1,…,1023}或小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
在一实施例中,所述q的取值包括以下至少之一:
在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;
在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;
在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;
在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
在一实施例中,所述n
ID的确定方式包括以下至少之一:通过高层信令配置至少两个n
ID,分别对应至少两个控制资源集组的标识。
终端使用扰码序列对接收的信息进行加扰时相应技术手段可以参见第一通信节点使用扰码序列对发送的信息进行加扰的技术手段,此处不作赘述。
在一实施例中,在接收信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源。
在一实施例中,信息的接收方法还包括:
根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
示例性的,对于uRLLC中的TDM传输方案,假定UE1的服务小区为TRP1,TRP2和TRP1之间有理想回程(ideal backhaul)连接。TRP1通过下行控制信令调度UE1,指示UE1在时隙n上接收来自TRP1的下行数据,如果DCI中时域资源分配(Time domain resource assignment)域所指示符号长度为M,所指示起始符号为K,即UE1接收来自TRP1的下行数据的时域符号位置为符号K至符号K+M-1。当满足(14-K-M)大于或等于M时(即2M<=14-K),则UE1在该时隙n上符号位置为K+M至13中的M个符号接收来自TRP2的下行数据。
本申请提供了一种信息的发送装置,本申请实施例中的一种信息的发送装置,可以集成在第一通信节点上。该装置,包括:至少一个处理器,被配置为:确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
本实施例提供的信息的发送装置用于实现信息的发送方法,本实施例提供的信息的发送装置实现原理和技术效果与信息的发送方法类似,此处不再赘述。
在一实施例中,至少一个处理器,被配置为:所述资源至少包括以下之一:频域资源和时域资源。
在一实施例中,至少一个处理器,被配置为:所述频域资源的分配方式至少包括以下之一:连续的频域资源分配和离散的频域资源分配。
在一实施例中,至少一个处理器,被配置为:发送信息的方式至少包括以下之一:空分的方式、频分的方式、时隙内时分的方式和时隙间时分的方式。
在一实施例中,至少一个处理器,被配置为通过如下至少之一方式确定发送信息所需的资源:在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
在一实施例中,至少一个处理器,还被配置为:根据所述第一频域资源的分配位置和位置偏置值的差值或和值,确定所述第二频域资源的分配位置。
在一实施例中,至少一个处理器,被配置为所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:通过下行控制信令确定和通过预定义的方式确定。
在一实施例中,至少一个处理器,被配置为:所述第一频域资源和所述第二频域资源的确定方式包括:在当前时隙或当前时隙为时隙组中时隙,所述第一通信节点发送信息的频域资源为第一频域资源,第二通信节点发送信息的频域资源为第二频域资源的情况下,在下一个时隙或当前时隙为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
在一实施例中,至少一个处理器,被配置为通过如下方式确定发送信息所需的方式:在信令所指示的频域资源的分配位置满足设定规律的情况下,发送信息的方式为频分的方式。
在一实施例中,至少一个处理器,被配置为:所述设定规律包括以下至少之一:所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇 数的预编码资源块组、偶数的资源块、偶数的资源块组和偶数的预编码资源块组。
在一实施例中,至少一个处理器,还被配置为:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+g·2
x+n
ID,其中,x为10或11或12或13;g∈{0,1}与控制资源集组标识关联;q∈{0,1}与传输码字的数量相关联;n
RNTI为无线网络临时标识;n
ID∈{0,1,…,1023}或小区标识ID。
在一实施例中,至少一个处理器,还被配置为:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+n
ID,n
ID∈{0,1,…,1023}或小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
在一实施例中,至少一个处理器,被配置为:所述q的取值包括以下至少之一:在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
在一实施例中,至少一个处理器,被配置为:所述n
ID的确定方式包括以下至少之一:通过高层信令向终端配置至少两个n
ID,分别对应至少两个控制资源集组的标识。
在一实施例中,至少一个处理器,被配置为:在发送信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源。
在一实施例中,至少一个处理器,还被配置为:根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
本申请提供了一种信息的接收装置,该信息的接收装置包括:至少一个处理器,设置为确定接收信息所需的资源,在所述资源上接收信息;确定接收信息所需的方式,根据所述方式接收信息;其中,所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源。
本实施例提供的信息的接收装置用于实现信息的接收方法,本实施例提供的信息的接收装置实现原理和技术效果与信息的接收方法类似,此处不再赘述。
在一实施例中,至少一个处理器,被配置为:所述资源至少包括以下之一:频域资源和时域资源。
在一实施例中,至少一个处理器,被配置为:所述频域资源的分配方式至少包括以下之一:连续的频域资源分配和离散的频域资源分配。
在一实施例中,至少一个处理器,被配置为:接收信息的方式至少包括以下之一:空分的方式、频分的方式、时隙内时分的方式和时隙间时分的方式。
在一实施例中,至少一个处理器,被配置为通过如下方式确定接收信息所需的资源:在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
在一实施例中,至少一个处理器,还被配置为:根据所述第一频域资源的分配位置和位置偏置值的差值或和值,确定所述第二频域资源的分配位置。
在一实施例中,至少一个处理器,被配置为:所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:通过下行控制信令确定和通过预定义的方式确定。
在一实施例中,至少一个处理器,被配置为:所述第一频域资源和所述第二频域资源的确定方式包括:在当前时隙或当前时隙为时隙组中时隙,所述第 一通信节点接收信息的频域资源为第一频域资源,所述第二通信节点接收信息的频域资源为第二频域资源的情况下;在下一个时隙或当前时隙为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
在一实施例中,至少一个处理器,被配置为通过如下方式确定接收信息所需的方式:在所述信令所指示的频域资源的分配位置满足设定规律的情况下,信息的接收方式为频分的方式。
在一实施例中,至少一个处理器,被配置为:所述设定规律包括以下至少之一:所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇数的预编码资源块组、偶数的资源块、偶数的资源块组和偶数的预编码资源块组。
在一实施例中,至少一个处理器,还被配置为:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+g·2
x+n
ID,其中,x为10或11或12或13;g∈{0,1}与控制资源集组标识关联;q∈{0,1}与传输码字的数量相关联;n
RNTI为无线网络临时标识;n
ID∈{0,1,…,1023}或小区标识ID。
在一实施例中,至少一个处理器,还被配置为:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c
init=n
RNTI·2
15+q·2
14+n
ID,n
ID∈{0,1,…,1023}或小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
在一实施例中,至少一个处理器,被配置为:所述q的取值包括以下至少之一:在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
在一实施例中,至少一个处理器,被配置为:所述n
ID的确定方式包括以下至少之一:通过高层信令配置至少两个n
ID,分别对应至少两个控制资源集组的 标识。
在一实施例中,至少一个处理器,被配置为:在接收信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源。
在一实施例中,至少一个处理器,还被配置为:根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
本申请实施例还提供了一种第一通信节点,图4为本申请提供的一种第一通信节点的结构示意图。如图4所示,本申请提供的第一通信节点,包括一个或多个处理器41和存储装置42;该第一通信节点中的处理器41可以是一个或多个,图4中以一个处理器41为例;存储装置42用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器41执行,使得所述一个或多个处理器41实现如本发明实施例中所述的信息的发送方法。
第一通信节点中的处理器41、存储装置42可以通过总线或其他方式连接,图4中以通过总线连接为例。
存储装置42作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信息的发送方法对应的程序指令/模块(例如,信息的发送装置中至少一个处理器)。存储装置42可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第一通信节点的使用所创建的数据等。此外,存储装置42可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置42可进一步包括相对于处理器41远程设置的存储器,这些远程存储器可以通过网络连接至第一通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种终端,图5为本申请提供的一种终端的结构示意图。如图5所示,本申请提供的终端,包括一个或多个处理器51和存储装置52;该终端中的处理器51可以是一个或多个,图5中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本发明实施例中所述的信息的接收方法。
终端中的处理器51、存储装置52可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算 机可执行程序以及模块,如本申请实施例所述信息的接收方法对应的程序指令/模块(例如,信息的接收装置中的至少一个处理器)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的信息的接收方法或任一所述的信息的发送方法。其中,信息的发送方法包括:确定发送信息所需的资源,通过信令指示终端在所述资源上接收信息,或者预定义终端在所述资源上接收信息;确定发送信息所需的方式,将发送信息的方式通过信令指示给终端,或者预定义发送信息的方式。
信息的接收方法包括:确定接收信息所需的资源,在所述资源上接收信息,所述资源为第一通信节点和/或第二通信节点信令指示的资源,或预定义的资源;确定接收信息所需的方式,根据所述方式接收信息,所述方式为第一通信节点和/或第二通信节点信令指示的方式,或预定义的方式。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相 互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
Claims (26)
- 一种信息的发送方法,应用于第一通信节点,包括:确定发送信息的资源,通过第一信令指示终端在所述资源上接收所述信息,或者预定义终端在所述资源上接收所述信息;确定发送信息的方式,将所述发送信息的方式通过第二信令指示给终端,或者预定义所述发送信息的方式。
- 根据权利要求1所述的方法,其中,所述确定发送信息的资源,包括以下至少之一:在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在发送信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
- 根据权利要求2所述的方法,还包括:根据所述第一频域资源的分配位置和位置偏置值的差值或所述第一频域资源的分配位置和位置偏置值的和值,确定所述第二频域资源的分配位置。
- 根据权利要求2所述的方法,其中,所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:通过下行控制信令确定、通过预定义的方式确定。
- 根据权利要求2所述的方法,其中,所述第一频域资源和所述第二频域资源的确定方式包括:在当前时隙或所述当前时隙为时隙组中时隙,所述第一通信节点发送所述信息的频域资源为所述第一频域资源,第二通信节点发送所述信息的频域资源为所述第二频域资源的情况下,在所述当前时隙的下一个时隙或所述当前时隙 为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
- 根据权利要求1所述的方法,其中,所述确定发送信息的方式包括:在信令所指示的频域资源的分配位置满足设定规律的情况下,所述发送信息的方式为频分的方式。
- 根据权利要求6所述的方法,其中,所述设定规律包括以下至少之一:所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇数的预编码资源块组、偶数的资源块、偶数的资源块组、偶数的预编码资源块组。
- 根据权利要求1所述的方法,还包括:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c init=n RNTI·2 15+q·2 14+g·2 x+n ID,其中,x为10、11、12或13;g∈{0,1}且与控制资源集组标识关联;q∈{0,1}且与传输码字的数量相关联;n RNTI为无线网络临时标识;n ID∈{0,1,…,1023}或n ID为小区标识ID。
- 根据权利要求1所述的方法,还包括:使用扰码序列对发送的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c init=n RNTI·2 15+q·2 14+n ID,n ID∈{0,1,…,1023}或n ID为小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
- 根据权利要求9所述的方法,其中,所述q的取值包括以下至少之一:在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
- 根据权利要求9所述的方法,其中,所述n ID的确定方式包括以下至少之一:通过高层信令向终端配置至少两个n ID,所述至少两个n ID分别对应至少两个控制资源集组的标识。
- 根据权利要求1所述的方法,其中,在所述发送信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源;根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
- 一种信息的接收方法,包括:确定接收信息的资源,在所述资源上接收所述信息,所述资源为第一通信节点和第二通信节点中的至少之一的信令指示的资源,或预定义的资源;确定接收信息的方式,根据所述方式接收所述信息,所述方式为第一通信节点和第二通信节点中的至少之一的信令指示的方式,或预定义的方式。
- 根据权利要求13所述的方法,其中,所述确定接收信息的资源包括:在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为频分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源;在接收信息的方式为时分的方式且下行控制信令中发送配置指示域所指示的发送配置指示状态对应的发送配置指示中所包括的准共位参考信号集合的数目大于1的情况下,所述资源为频域资源且所述频域资源包括以下至少之一:第一频域资源和第二频域资源。
- 根据权利要求14所述的方法,还包括:根据所述第一频域资源的分配位置和位置偏置值的差值或所述第一频域资源的分配位置和位置偏置值的和值,确定所述第二频域资源的分配位置。
- 根据权利要求14所述的方法,其中,所述第一频域资源和所述第二频域资源的确定方式包括以下至少之一:通过下行控制信令确定、通过预定义的方式确定。
- 根据权利要求14所述的方法,其中,所述第一频域资源和所述第二频域资源的确定方式包括:在当前时隙或所述当前时隙为时隙组中时隙,所述第一通信节点接收所述信息的频域资源为所述第一频域资源,所述第二通信节点接收所述信息的频域资源为所述第二频域资源的情况下;在所述当前时隙的下一个时隙或所述当前时隙为时隙组中的下一时隙,交换所述第一通信节点和所述第二通信节点的频域资源。
- 根据权利要求13所述的方法,其中,所述确定接收信息的方式包括:在所述信令所指示的频域资源的分配位置满足设定规律的情况下,所述信息的接收方式为频分的方式。
- 根据权利要求18所述的方法,其中,所述设定规律包括以下至少之一:所述频域资源的分配位置的编号是奇数的资源块、奇数的资源块组、奇数的预编码资源块组、偶数的资源块、偶数的资源块组、偶数的预编码资源块组。
- 根据权利要求13所述的方法,还包括:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c init=n RNTI·2 15+q·2 14+g·2 x+n ID,其中,x为10、11、12或13;g∈{0,1}与控制资源集组标识关联;q∈{0,1}与传输码字的数量相关联;n RNTI为无线网络临时标识;n ID∈{0,1,…,1023}或n ID为小区标识ID。
- 根据权利要求13所述的方法,还包括:使用扰码序列对接收的信息进行加扰,所述扰码序列由扰码序列产生器生成,所述扰码序列产生器的初始化值的确定方式包括以下至少之一:c init=n RNTI·2 15+q·2 14+n ID,n ID∈{0,1,…,1023}或n ID为小区标识ID;在高层信令配置了至少两个控制资源集组的情况下,q的取值与控制资源集组的标识关联。
- 根据权利要求21所述的方法,其中,所述q的取值包括以下至少之一:在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1;在所述控制资源集组的标识为0的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为1,码字1对应的q的取值为0;在所述控制资源集组的标识为1的情况下,码字0对应的q的取值为0,码字1对应的q的取值为1。
- 根据权利要求21所述的方法,其中,所述n ID的确定方式包括以下至少之一:通过高层信令配置至少两个n ID,所述至少两个n ID分别对应至少两个控制资源集组的标识。
- 根据权利要求13所述的方法,其中,在所述接收信息的方式为时分的情况下,时域资源包括第一时域资源和第二时域资源;根据所述第一时域资源的起始符号和符号长度,确定所述第二时域资源的时域符号位置。
- 一种信息的发送装置,包括:至少一个处理器,被配置为:确定发送信息的资源,通过第一信令指示终端在所述资源上接收所述信息,或者预定义终端在所述资源上接收所述信息;确定发送信息的方式,将所述发送信息的方式通过第二信令指示给终端,或者预定义所述发送信息的方式。
- 一种信息的接收装置,包括:至少一个处理器,设置为确定接收信息的资源,在所述资源上接收所述信息;确定接收信息的方式,根据所述方式接收所述信息;其中,所述资源为第 一通信节点和第二通信节点中的至少之一的信令指示的资源,或预定义的资源,所述方式为第一通信节点和第二通信节点中的至少之一的信令指示的方式,或预定义的方式。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/607,658 US20220201714A1 (en) | 2019-04-30 | 2020-04-16 | Information sending method and apparatus, and information receiving method and apparatus |
EP20798985.6A EP3952543A4 (en) | 2019-04-30 | 2020-04-16 | METHOD AND APPARATUS FOR SENDING INFORMATION, AND METHOD AND APPARATUS FOR RECEIVING INFORMATION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910364189.5 | 2019-04-30 | ||
CN201910364189.5A CN110536442A (zh) | 2019-04-30 | 2019-04-30 | 一种信息的发送方法、信息的接收方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020221016A1 true WO2020221016A1 (zh) | 2020-11-05 |
Family
ID=68659195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/085099 WO2020221016A1 (zh) | 2019-04-30 | 2020-04-16 | 信息的发送方法及装置、信息的接收方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220201714A1 (zh) |
EP (1) | EP3952543A4 (zh) |
CN (1) | CN110536442A (zh) |
WO (1) | WO2020221016A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110536442A (zh) * | 2019-04-30 | 2019-12-03 | 中兴通讯股份有限公司 | 一种信息的发送方法、信息的接收方法及装置 |
CN113498206B (zh) * | 2020-04-08 | 2023-04-07 | 展讯半导体(南京)有限公司 | 信息传输方法及装置 |
CN115811389A (zh) * | 2021-09-13 | 2023-03-17 | 华为技术有限公司 | 通信方法和通信装置 |
WO2024065890A1 (zh) * | 2022-09-30 | 2024-04-04 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083551A1 (en) * | 2016-11-01 | 2018-05-11 | Nokia Technologies Oy | Flexible beam configurations for disparate deployment scenarios |
CN108111272A (zh) * | 2017-08-09 | 2018-06-01 | 中兴通讯股份有限公司 | 参考信号配置信息的指示方法、基站及终端 |
CN110536442A (zh) * | 2019-04-30 | 2019-12-03 | 中兴通讯股份有限公司 | 一种信息的发送方法、信息的接收方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3639602A4 (en) * | 2017-06-13 | 2021-02-24 | Apple Inc. | HARQ-ACK PLANNING AND FEEDBACK ENHANCEMENT FOR URLLC, MULTIPLEXING DIAGRAM FOR CONTROL / DATA CHANNEL AND DM-RS FOR NR, AND ACTIVATION MECHANISM, PLANNING ASPECTS AND SYNCHRONIZATION (SS) SIGNAL BLOCKS FOR NEW SYSTEM RADIO (NR) WITH MULTIPLE PARTS OF BANDWIDTH (BWP) |
EP3949136A1 (en) * | 2019-03-28 | 2022-02-09 | Nokia Technologies OY | Urllc enhancement with multi-trp/panel/beam using fdm |
WO2020201995A1 (en) * | 2019-03-29 | 2020-10-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for differentiating multiple physical downlink shared channel (pdsch) transmission schemes |
KR102680010B1 (ko) * | 2019-03-29 | 2024-07-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 전송 블록 크기 결정 및 데이터를 송수신하는 방법 및 이에 대한 장치 |
WO2020211095A1 (zh) * | 2019-04-19 | 2020-10-22 | Oppo广东移动通信有限公司 | 一种信号加扰方法及装置、通信设备 |
-
2019
- 2019-04-30 CN CN201910364189.5A patent/CN110536442A/zh active Pending
-
2020
- 2020-04-16 WO PCT/CN2020/085099 patent/WO2020221016A1/zh unknown
- 2020-04-16 US US17/607,658 patent/US20220201714A1/en active Pending
- 2020-04-16 EP EP20798985.6A patent/EP3952543A4/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083551A1 (en) * | 2016-11-01 | 2018-05-11 | Nokia Technologies Oy | Flexible beam configurations for disparate deployment scenarios |
CN108111272A (zh) * | 2017-08-09 | 2018-06-01 | 中兴通讯股份有限公司 | 参考信号配置信息的指示方法、基站及终端 |
CN110536442A (zh) * | 2019-04-30 | 2019-12-03 | 中兴通讯股份有限公司 | 一种信息的发送方法、信息的接收方法及装置 |
Non-Patent Citations (1)
Title |
---|
ZTE: "Considerations on beam management for multi-TRP", 3GPP TSG RAN WG1 #96BIS, XI’AN, CHINA, 8TH-12TH APRIL, 2019,, 30 March 2019 (2019-03-30), XP051691235, DOI: 20200629210609X * |
Also Published As
Publication number | Publication date |
---|---|
US20220201714A1 (en) | 2022-06-23 |
EP3952543A4 (en) | 2022-12-28 |
CN110536442A (zh) | 2019-12-03 |
EP3952543A1 (en) | 2022-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109819520B (zh) | 用户设备带宽部分中的资源块组的确定 | |
WO2020221016A1 (zh) | 信息的发送方法及装置、信息的接收方法及装置 | |
KR102308693B1 (ko) | 참조 신호 송신 방법, 장치 및 시스템 | |
TWI787252B (zh) | 用於週期性和非週期性控制資訊的排程和發送方案 | |
US20160255647A1 (en) | Device-to-device data channel signaling | |
CN108631934B (zh) | 一种数据传输方法、终端设备及基站系统 | |
US11457443B2 (en) | Method for transmitting configuration information and terminal device | |
RU2701202C1 (ru) | Конфигурация передачи нисходящего канала | |
CN114175552B (zh) | 用于物理共享信道的重复次数的指示 | |
WO2017020777A1 (zh) | 一种进行数据传输的方法和设备 | |
JP2020516095A (ja) | 信号伝送方法、端末装置及びネットワーク装置 | |
JP7119097B6 (ja) | Bwpの周波数ホッピング設定方法及びネットワーク装置、端末 | |
JP7451663B2 (ja) | 通信装置、通信方法及び集積回路 | |
CN111418248B (zh) | 增强移动通信中用于urllc的新无线电pusch | |
JP7213190B2 (ja) | リソースを判定する方法および装置ならびに記憶媒体 | |
US10893538B2 (en) | Methods and devices for scheduling uplink data | |
CN112400342B (zh) | 中继节点的资源预留 | |
WO2019061422A1 (en) | TECHNIQUES FOR ROUTING RESOURCE ALLOCATION INFORMATION | |
TW201729630A (zh) | 用於傳輸業務的方法、移動台和網絡設備 | |
EP3986055A1 (en) | Communication method and apparatus | |
KR20230056028A (ko) | 통신 방법 및 통신 장치 | |
JP2018537907A (ja) | スケジューリング情報送信方法および装置 | |
US20220386282A1 (en) | Communications device, infrastructure equipment and methods | |
WO2015168908A1 (zh) | 资源调度方法、装置及系统 | |
CN110417528B (zh) | 一种d2d通信的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20798985 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020798985 Country of ref document: EP Effective date: 20211105 |