WO2020220946A1 - 基于经典-量子极化信道的高效量子密钥分发方法与系统 - Google Patents

基于经典-量子极化信道的高效量子密钥分发方法与系统 Download PDF

Info

Publication number
WO2020220946A1
WO2020220946A1 PCT/CN2020/083622 CN2020083622W WO2020220946A1 WO 2020220946 A1 WO2020220946 A1 WO 2020220946A1 CN 2020083622 W CN2020083622 W CN 2020083622W WO 2020220946 A1 WO2020220946 A1 WO 2020220946A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
quantum
receiver
sender
qubit
Prior art date
Application number
PCT/CN2020/083622
Other languages
English (en)
French (fr)
Inventor
方俊彬
易正中
王轩
蒋琳
温晓军
Original Assignee
哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) filed Critical 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Publication of WO2020220946A1 publication Critical patent/WO2020220946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords

Definitions

  • the invention relates to a quantum key distribution method, in particular to an efficient quantum key distribution method and system based on a classical-quantum polarized channel.
  • the present invention provides an efficient quantum key distribution method and system based on the classical-quantum polarized channel.
  • the present invention provides an efficient quantum key distribution system based on a classical-quantum polarization channel, which includes a sender and a receiver.
  • the sender includes a quantum channel parameter estimation module, a polarization code construction module, and a polarization code encoding module , Qubit preparation module, qubit transmission module, qubit screening module, security detection module and final key generation module, the output end of the quantum channel parameter estimation module of the sender and the polarization code structure of the sender
  • the input end of the module is connected, the output end of the polarization code construction module of the sender is connected to the input end of the polarization code encoding module of the sender, and the output end of the polarization code encoding module of the sender is connected to the
  • the input end of the qubit preparation module of the sender is connected, and the output end of the qubit preparation module of the sender is connected to the input end of the qubit transmission module of the sender.
  • the output terminal is connected to the input terminal of the qubit filtering module of the sender, and the output terminal of the qubit filtering module of the sender is connected to the input terminal of the security detection module of the sender.
  • the output end of the sex detection module is connected to the input end of the final key generation module of the sender, and the receiver includes a quantum channel parameter estimation module, a polarization code construction module, a qubit transmission module, a qubit screening module, and a security
  • the output end of the quantum channel parameter estimation module of the receiver is connected to the input end of the polarization code construction module of the receiver, and the receiver
  • the output terminal of the polarization code construction module is connected to the input terminal of the receiver's qubit transmission module, and the output terminal of the receiver's qubit transmission module is connected to the input terminal of the receiver's qubit filtering module
  • the output terminal of the qubit screening module of the receiver is connected to the input terminal of the security detection module of the receiver, and the output terminal of the security detection module of the
  • the quantum channel parameter estimation module of the sender sends a random qubit string to the quantum channel parameter estimation module of the receiver, and the quantum channel parameter estimation module of the receiver sends a random qubit string to the sender.
  • the quantum channel parameter estimation module returns the inherent quantum error rate of the channel
  • the quantum channel parameter estimation module of the receiver sets the error rate safety threshold
  • the polarization code construction module of the sender and the polarization code construction of the receiver The modules jointly confirm the polarization code structure used.
  • the qubit screening module of the sender sends the modulation base signal to the qubit screening module of the receiver, and the qubit screening module of the receiver sends the qubit screening module of the sender to the qubit screening module of the sender. Return whether the result of this communication is reserved.
  • the sender and receiver respectively disclose the modulation base and the measurement base. If the base selected by the receiver is the same, the communication result will be retained; if it is different, it will be discarded.
  • the security detection module of the receiver randomly selects several N-bit strings obtained through key screening in several block communications with the sender
  • the security detection module performs public comparison and calculates the quantum error rate of each selected bit string; if the quantum error rate of any one of the bit strings is higher than or equal to the error rate safety threshold, it means that the transmission channel If there is eavesdropping, immediately terminate the communication and check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety threshold, enter the polarization code decoding module of the receiver and discard the selected
  • the bit string for security detection; the polarization code decoding module of the receiver decodes the N-bit bit string obtained in each communication; the final key generation module of the sender and the final secret code of the receiver
  • the key generation module uses M N-bit strings obtained by Q block communication, Q ⁇ M, and selects one bit from each bit string according to the set rules to generate a final key of length M, which can be generated in total
  • the present invention also provides an efficient quantum key distribution method based on the classical-quantum polarization channel, which includes the following steps:
  • step S1 after determining the quantum channel used by the sender and the receiver, they communicate first, so as to determine the actual channel inherent quantum error rate of the system without eavesdropping, and Use the system's actual channel inherent quantum error rate to set the channel error rate safety threshold l max ; in step S2, the sender and receiver of the communication evaluate the channel performance based on the channel inherent quantum error rate determined in step S1, and generate a corresponding polarization code structure, generating a respective polarization coding structure, comprising determining the polarization code length N, the number of bits N a message bits and transmitting the position coordinates of the sub-message bit.
  • step S3 in each block communication, the sender randomly generates a message bit sequence of N A , that is, the original key, sets the frozen bit to zero or 1, and completes the length to Encoding of N polarization codes;
  • the code length N 2 n , n is an integer, Is the input variable, u i is the i-th input variable, Is the polarization code obtained after encoding the input variable, x i is the i-th bit in the polarization code, the specific encoding process is:
  • R N is the bit reversal rearrangement operation:
  • G N is the generator matrix of the polarization code
  • B N is the sorting matrix
  • step S4 for each block communication, the sender randomly selects a certain fixed base, under which the preparation of each qubit in the block communication is completed according to the polarization encoding result. Then transmit it to the receiver; in step S5, the qubit string generated in S4 is input into the quantum channel and sent to the receiver; in step S6, the sender and the receiver perform preliminary screening of the transmission results of the key; In each block communication, the receiver randomly selects a fixed base, under which the N-bit qubits transmitted by the sender are measured. After each N-bit qubit transmission and measurement, the receiver communicates with each other through an open channel. The sender performs base comparison.
  • step S8 the receiver randomly selects 1/2 of the base
  • the reserved block communication results are compared with the sender publicly to calculate the bit error rate of each bit string in the block communication; if the bit error rate of any one of the bit strings is higher than or equal to the bit error rate
  • the security threshold indicates that there is eavesdropping in the transmission channel. At this time, the communication is immediately terminated and the transmission channel is checked; if the quantum error rate of all selected bit strings is less than the error rate security threshold, the next step is entered, and the selected use is discarded Bit string for security detection.
  • step S9 the receiver decodes the N bits in each communication according to the measurement result, so as to obtain the estimated value of the original key;
  • the receiver obtains an estimate of the bits sent by the sender through decoding
  • the subscript sequence set of message bits is A
  • the subscript sequence set of frozen bits is Ac
  • the channel model adopted by the polarization code decoding module is a binary discrete memoryless channel
  • 0) is the posterior probability that the sender sends 0 and the receiver receives y j
  • 1) is the posterior probability that the sender sends 1 and the receiver receives y j ;
  • the path metric value calculation method in this step is as follows:
  • step S10 after steps S1-S9, the sender and receiver use M N-bit strings obtained by Q times of communication, Q ⁇ M, and select each bit string from each bit string according to a certain rule agreed upon by both parties in advance One bit generates a final key of length M, a total of N final keys can be generated
  • the beneficial effects of the present invention are: through the above-mentioned scheme, by precoding the transmitted key with the polarization code before transmission, the channel capacity reachability and error correction capability of the polarization code are fully utilized, and the final communication process is improved. Security key generation rate.
  • Fig. 1 is a schematic diagram of an efficient quantum key distribution system based on the classical-quantum polarized channel of the present invention.
  • an efficient quantum key distribution system based on classical-quantum polarization channel includes a sender and a receiver.
  • the party includes a quantum channel parameter estimation module 101, a polarization code construction module 102, a polarization code encoding module 103, a qubit preparation module 104, a qubit transmission module 105, a qubit screening module 106, a security detection module 107, and a final key
  • the generating module 108, the quantum channel parameter estimation module is preferably a quantum error rate measurement module 101, and the output end of the sender's quantum error rate measurement module 101 is connected to the input end of the sender's polarization code construction module 102
  • the output terminal of the polarization code construction module 102 of the transmitter is connected to the input terminal of the polarization code encoding module 103 of the transmitter, and the output terminal of the polarization code encoding module 103 of the transmitter is connected to the transmitter
  • the input is preferably a quantum error rate measurement module 101, and the output end of the
  • the output end of the security detection module 107 of the sender is connected to the input end of the final key generation module 108 of the sender, and the receiver includes a quantum channel parameter estimation module 201, a polarization code construction module 202, and a qubit
  • the quantum channel parameter estimation module is preferably the quantum error rate measurement module 201, and the receiver
  • the output terminal of the quantum error rate measurement module 201 is connected to the input terminal of the receiver’s polar code construction module 202, and the output terminal of the receiver’s polar code construction module 202 is connected to the receiver’s qubit
  • the input end of the transmission module 203 is connected, the output end of the qubit transmission module 203 of the receiver is connected to the input end of the qubit filter module 204 of the receiver, and the output end of the qubit filter module 204 of the receiver Is connected to the input end of the receiver’s security detection module 205, the output end of the receiver’s security detection module 205 is connected to the input end of the receiver’s polarization code decoding module 206, and the receiver
  • the output terminal of the polarization code decoding module 206 of the party is connected to the input terminal of the final key generation module 207 of the receiver.
  • the sender’s quantum error rate measurement module 101 and the receiver’s quantum error rate measurement module 201 use the BB84 protocol to transmit multiple times to the channel. Under the condition of eliminating eavesdropping, determine the actual inherent quantum error rate of the system, and use The latter sets the channel's bit error rate safety threshold l max .
  • the polarization code construction module 102 and the polarization code construction module 202 of the two communication parties evaluate the channel performance according to the actual erasure probability and inherent quantum error rate of the system, and generate the corresponding polarization code structure, including determine the polarization code length N, the number of bits N a message bits and transmitting the position coordinates of the sub-message bit.
  • the polarization code encoding module 103 of the sender wants to transmit a complete polarization code of length N, it randomly selects the value of each message bit, and sets the frozen bit to zero (or 1), and then completes it.
  • Encode the N-bit polarization code define "one block communication" as the sender completely transmits a piece of polarization code of length N, and it is received by the receiver completely; define "original codeword” in this module, A bit string formed by randomly selected message bits.
  • the qubit preparation module 104 of the sender randomly selects a certain substrate for each polarization code of length N, and prepares a corresponding qubit for the polarization code of length N under this substrate.
  • the qubit transmission module 105 of the sender sends the qubit input quantum channel prepared by the qubit preparation module 104 to the qubit transmission module 203 of the receiver.
  • the qubit filtering module 106 of the sender and the qubit filtering module 204 of the receiver respectively disclose the modulation base and the measurement base. If the bases selected by both parties are the same, the communication result will be retained; if they are different, they will be discarded.
  • the security detection module 205 of the receiver randomly selects a number of N-bit strings obtained through key screening in several block communications for public comparison with the security detection module 107 of the sender , And calculate the quantum error rate of each selected bit string; if the quantum error rate of any one of the bit strings is higher than or equal to the error rate safety threshold, it means that there is eavesdropping in the transmission channel, and the communication is terminated immediately. And check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety threshold, enter the polarization code decoding module, and discard the bit strings selected for security detection.
  • the polarization code decoding module 206 of the receiver decodes the N-bit bit string obtained in each communication.
  • the adopted decoding method can be an algorithm suitable for polarization code decoding, such as continuous cancellation (SC, Successive Cancellation) or list continuous cancellation (SCL, Successive Cancellation List).
  • the final key generation module 108 of the sender and the final key generation module 207 of the receiver obtain M (due to the existence of the polarization code screening module and the security detection module, Q ⁇ M) N-bit string obtained by Q-time block communication , According to certain rules, one bit is selected from each bit string to generate a final key of length M, a total of N A final keys can be generated.
  • N 2 n , n is an integer. Is the input variable, u i is the i-th input variable, Is the polarization code obtained after encoding the input variable, and x i is the i-th bit in the polarization code.
  • R N is the bit reversal rearrangement operation:
  • the mathematical expression of the polarization code decoding module 206 is as follows:
  • the receiver obtains an estimate of the bits sent by the sender through decoding
  • the subscript sequence set of message bits is A
  • the subscript sequence set of frozen bits is Ac .
  • the channel model adopted by the polarization code decoding module 206 is a binary discrete memoryless channel.
  • the receiver's estimate of the received bits is determined by the following rules:
  • 0) is the posterior probability that the sender sends 0 and the receiver receives y j
  • 1) is the posterior probability that the sender sends 1 and the receiver receives y j .
  • the recurrence is as follows:
  • the path metric value PM and the search width L are introduced on the basis of the SC decoding method.
  • the decoding still starts from the root node u 1 of the code tree, and performs path search to the leaf node layer u i (i ⁇ 2) layer by layer. After each level of expansion, select the L with the smallest path metric value PM, save it in a list, and wait for the next level of expansion.
  • the path metric value of each layer is calculated as follows:
  • the present invention also provides an efficient quantum key distribution method based on the classical-quantum polarization channel, and the specific implementation steps are:
  • the communication channel both intrinsic quantum bit error rate performance evaluation channel S1 determined polarization generates a corresponding code structure, generating a respective polarization coding structure, comprising determining the polarization code length N, the number of bits N A and the message bits transferred The position of the coordinate sub-channel of the message bit;
  • the sender is N A randomly generates a long message bit sequence (i.e., the original key), frozen bit set to zero (or set), and complete the code length N of the polarization encoding;
  • the code length N 2 n , and n is an integer.
  • the specific coding process is:
  • R N is the bit reversal rearrangement operation:
  • G N is the generator matrix of the polarization code
  • B N is the sorting matrix
  • the receiver randomly selects 1/2 of the block communication results that are retained after the preliminary key screening, and compares it with the sender publicly, and calculates the bit error rate of the bit string in each block communication; if any of the bits is If the error rate of the string is higher than or equal to the error rate safety threshold, it means that there is eavesdropping in the transmission channel. At this time, immediately terminate the communication and check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety Threshold goes to the next step, and discards the bit string selected for security detection;
  • Polarization code decoding According to the measurement results, the receiver decodes the N bits in each communication to obtain an estimate of the original key; the decoding method used can be continuous cancellation (SC, Successive Cancellation) or list continuous cancellation ( SCL, Successful Cancellation List) and other decoding algorithms suitable for polarization codes;
  • SC Successive Cancellation
  • SCL Successful Cancellation List
  • the receiver obtains an estimate of the bits sent by the sender through decoding
  • the subscript sequence set of message bits is A
  • the subscript sequence set of frozen bits is Ac .
  • the channel model adopted by the polarization code decoding module is a binary discrete memoryless channel;
  • 0) is the posterior probability that the sender sends 0 and the receiver receives y j
  • 1) is the posterior probability that the sender sends 1 and the receiver receives y j ;
  • the path metric value calculation method in this step is as follows:
  • the invention provides an efficient quantum key distribution method and system based on the classical-quantum polarization channel, which relates to the field of quantum information technology and information security technology, in particular to quantum key distribution in the cross-field of quantum information technology and information security technology Technology improves the key distribution rate in the quantum key distribution system.
  • precoding the transmitted key with polarization code before transmission it makes full use of the channel capacity reachability and error correction capability of the polarization code, and improves The final security key generation rate during the communication process.
  • the invention provides an efficient quantum key distribution method and system based on the classical-quantum polarized channel.
  • the decoding process of the receiver is equivalent to
  • the error correction process saves time and overhead for the error correction link in the post-processing process; at the same time, the feature of the accessibility of the polarization code channel capacity can increase the coding rate of the system, thereby further increasing the final security key generation rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明提供了一种基于经典-量子极化信道的高效量子密钥分发系统,包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块。本发明还提供了一种基于经典-量子极化信道的高效量子密钥分发方法。本发明的有益效果是:通过在传输前对所传密钥进行极化码预编码,充分利用了极化码的信道容量可达特性和纠错能力,提高了通信过程中最终安全密钥的生成速率。

Description

基于经典-量子极化信道的高效量子密钥分发方法与系统 技术领域
本发明涉及量子密钥分发方法,尤其涉及一种基于经典-量子极化信道的高效量子密钥分发方法与系统。
背景技术
在量子力学定律的保障下,量子密钥分发与“一次一密”的加密方案相结合的保密通信系统,具有理论上可证明的无条件安全性。然而,在实际量子密钥分发系统中,由于存在物理缺陷和环境噪声,由系统分发的原始密钥将存在一定比例的错误比特。为了消除这些错误比特,系统将在公开信道上进行一系列后处理,包括基比对、误码纠错、数据校验和密性放大等,以得到最终安全密钥。这些后处理过程会引入时间延迟和比特开销,限制了量子密钥分发的最终密钥生成速率进一步提高,成为了发展下一代高速量子密钥分发系统的“瓶颈”。
发明内容
为了解决现有技术中的问题,本发明提供了一种基于经典-量子极化信道的高效量子密钥分发方法与系统。
本发明提供了一种基于经典-量子极化信道的高效量子密钥分发系统,包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述发送方的量子信道参数估计模块的输出端与所述发送方的极化码构造模块的输入端连接,所述发送方的极化码构造模块的输出端与所述发送方的极化码编码模块的输入端连接,所述发送方的极化码编码模块的输出端与所述发送方的量子比特制备模块的输入端连接,所述发送方的量子比特制备模块的输出端与所述发送方的量子比特传输模块的输入端连接,所述发送方的量子比特传输模块的输出端与所述发送方的量子比特筛选模块的输入端连接,所述发送方的量子比特筛选模块的输出端与所述发送方的安全性检测模块的输入端连接,所述发送方的安全性检测模块的输出端与所述发送方的最终密钥生成模块的输入端连接,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块,所述接收方的量子信道参数估计模块的输出端与所述接收方的极化码构造模块的输入端连接,所述接收方 的极化码构造模块的输出端与所述接收方的量子比特传输模块的输入端连接,所述接收方的量子比特传输模块的输出端与所述接收方的量子比特筛选模块的输入端连接,所述接收方的量子比特筛选模块的输出端与所述接收方的安全性检测模块的输入端连接,所述接收方的安全性检测模块的输出端与所述接收方的极化码译码模块的输入端连接,所述接收方的极化码译码模块的输出端与所述接收方的最终密钥生成模块的输入端连接。
作为本发明的进一步改进,所述发送方的量子信道参数估计模块向所述接收方的量子信道参数估计模块发送随机量子比特串,所述接收方的量子信道参数估计模块向所述发送方的量子信道参数估计模块返回信道固有量子误码率,述接收方的量子信道参数估计模块设定误码率安全阈值,所述发送方的极化码构造模块与所述接收方的极化码构造模块共同确认所使用的极化码构造。
作为本发明的进一步改进,所述发送方的极化码编码模块每欲传送一条完整的长度为N的极化码,都随机地选择每一位消息比特的值,并对冻结比特置零或置1,之后完成对N位比特极化码编码;定义“一次块通信”为发送方完整地传输了一条长度为N的极化码,并由接收方完整地接收;定义“原始码字”为此模块中,经过随机取值后的消息比特构成的比特串;所述发送方的量子比特制备模块对每条长度为N的极化码,都随机地选取某一个基底,在此基底下对该条长为N的极化码制备相应的量子比特;所述发送方的量子比特传输模块将所述发送方的发量子比特制备模块所制备的量子比特输入量子信道发送给接收方的量子比特传输模块。
作为本发明的进一步改进,所述发送方的量子比特筛选模块向所述接收方的量子比特筛选模块发送调制基信,所述接收方的量子比特筛选模块向所述发送方的量子比特筛选模块返回本次通信结果是否保留,对每次块通信,在发送方和接收方完成量子信道上的N位量子比特信息传输之后,发送方和接收方分别公开调制基与测量基,若发送方与接收方选取的基底相同,则保留此次通信结果;若不同,则舍去。
作为本发明的进一步改进,在需要检查通信过程的安全性时,所述接收方的安全性检测模块随机挑选若干次块通信中经过密钥筛选得到的若干条N位比特串与所述发送方的安全性检测模块进行公开比对,并计算每一条被选中的比特串的量子误码率;若其中任何一条比特串的量子误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈 值则进入接收方的极化码译码模块,并舍弃被选中用于安全性检测的比特串;所述接收方的极化码译码模块对每次通信得到的N位比特串进行译码;所述发送方的最终密钥生成模块和所述接收方的最终密钥生成模块利用Q次块通信得到的M条N位比特串,Q≥M,按设定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N A条最终密钥。
本发明还提供了一种基于经典-量子极化信道的高效量子密钥分发方法,包括以下步骤:
S1、量子信道参数估计;
S2、极化码构造;
S3、极化码编码;
S4、量子比特制备;
S5、量子比特传输;
S6、量子比特筛选;
S7、重复多次块通信操作S3-S6;
S8、安全性检测;
S9、极化码译码;
S10、最终密钥生成。
作为本发明的进一步改进,在步骤S1中,发送方与接收方在确定其所使用的量子信道后,首先进行通信,从而在排除窃听的情况下确定系统实际的信道固有量子误码率,并利用系统实际的信道固有量子误码率设定信道误码率安全阈值l max;在步骤S2中,通信的发送方与接收方根据步骤S1确定的信道固有量子误码率评估信道性能,产生相应的极化码结构,产生相应的极化编码结构,包括确定极化码码长N、消息比特的位数N A以及传递消息比特的坐标子信道的位置。
作为本发明的进一步改进,在步骤S3中,在每一次块通信中,发送方随机生成长为N A的消息比特序列,即原始密钥,将冻结比特置零或置1,并完成长为N的极化码的编码;
本步骤中,码长N=2 n,n为整数,
Figure PCTCN2020083622-appb-000001
为输入变量,u i为第 i个输入变量,
Figure PCTCN2020083622-appb-000002
为输入变量经过编码后得到的极化码,x i为极化码中的第i位,具体的编码过程为:
S31、根据下述数学方法构造生成矩阵G N
Figure PCTCN2020083622-appb-000003
Figure PCTCN2020083622-appb-000004
Figure PCTCN2020083622-appb-000005
Figure PCTCN2020083622-appb-000006
R N为比特反转重排操作:
R N(u 1,u 2,u 3,u 4,...,u N-1,u N)=(u 1,u 3,...,u N-1,u 2,u 4,...,u N);
其中,G N为极化码的生成矩阵,B N为排序矩阵,
Figure PCTCN2020083622-appb-000007
S32、根据上述公式所生成的矩阵G N,生成相应的经典/量子编码线路;
S33、将
Figure PCTCN2020083622-appb-000008
输入编码线路,由
Figure PCTCN2020083622-appb-000009
生成具体的极化码编码。
作为本发明的进一步改进,在步骤S4中,对每一次块通信,发送方随机选择某一固定基底,在此基底下根据极化编码结果完成此次块通信中每一位量子比特的制备,随后将其传送给接收方;在步骤S5中,将S4中生成的量子比特串输入量子信道,发送给接收方;在步骤S6中,发送方与接收方对密钥的传输结果进行初步筛选;在每一次块通信中,接收方随机选取一个固定的基底,在此基底下测量由发送方传输的N位量子比特,每次完成N位量子比特的传输和测量后,接收方通过公开信道与发送方进行基比对,若发送方与接收方所选用的基底相同,则保留此次通信结果,若不相同,则舍弃;在步骤S8中,接收方随机挑选1/2的在经过初步密钥筛选后被保留的块通信结果,并与发送方进行公开比对,计算每一次块通信中的比特串的误码率;若其中任何一条比特串的误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入下一步 骤,并舍弃被选中用于安全性检测的比特串。
作为本发明的进一步改进,在步骤S9中,接收方根据测量结果,对每次通信中的N位比特进行译码,从而获得对原始密钥的估计值;
设接收方接收到的各位比特为
Figure PCTCN2020083622-appb-000010
接收方通过译码得到对发送方发送的比特的估计值
Figure PCTCN2020083622-appb-000011
消息比特的下标序列集合为A,冻结比特的下标序列集合为A c,极化码译码模块采用的信道模型为二进制离散无记忆信道;
本步骤若采用连续消除译码方式,则具体过程为:
S91、计算对数似然比
Figure PCTCN2020083622-appb-000012
其中W(y j|0)为发送方发送0而接收方接收到y j的后验概率,W(y j|1)为发送方发送1而接收方接收到y j的后验概率;
S92、根据下述递推式计算对数似然比
Figure PCTCN2020083622-appb-000013
Figure PCTCN2020083622-appb-000014
Figure PCTCN2020083622-appb-000015
其中,
Figure PCTCN2020083622-appb-000016
表示已译码序列中奇数下标位的估计值,
Figure PCTCN2020083622-appb-000017
表示已译码序列中偶数下标位的估计值;并且,
Figure PCTCN2020083622-appb-000018
f 2(a,b,u)=(-1) ua+b
S93、按下述规则确定每一位比特的估计值:
Figure PCTCN2020083622-appb-000019
Figure PCTCN2020083622-appb-000020
本步骤若采用列表连续消除译码方式,则具体过程如下:
S91、按照连续消除译码方式中的步骤计算与第一个比特相关的对数似然比;
S92、计算候选译码路径的路径度量值;
本步骤中的路径度量值计算方式如下:
Figure PCTCN2020083622-appb-000021
式中,
Figure PCTCN2020083622-appb-000022
下标l∈{1,2,...,L}表示第l条搜索路径;
S93、根据搜索宽度L进行搜索路径拓展,保留目前截至该层的PM值最小的L条搜索路径;
S94、进行下一层的对数似然比和路径度量值的计算,以此类推,直至最后一层;
S95、在最后一层中选择路径度量值最小的搜索路径作为最后的译码路径;
在步骤S10中,经过步骤S1-S9,发送方和接收方利用Q次通信得到的M条N位比特串,Q≥M,按通信双方事先约定的一定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N条最终密钥
本发明的有益效果是:通过上述方案,通过在传输前对所传密钥进行极化码预编码,充分利用了极化码的信道容量可达特性和纠错能力,提高了通信过程中最终安全密钥的生成速率。
附图说明
图1是本发明一种基于经典-量子极化信道的高效量子密钥分发系统的示意图。
具体实施方式
下面结合附图说明及具体实施方式对本发明作进一步说明。
如图1所示,一种基于经典-量子极化信道的高效量子密钥分发系统(又称基于极化码的短距离无线量子密钥分发协议),包括发送方和接收方,所述发送方包括量子信道参数估计模块101、极化码构造模块102、极化码编码模块103、量子比特制备模块104、量子比特传输模块105、量子比特筛选模块106、安全性检测模块107以及最终密钥生成模块108,量子信道参数估计模块优选为量子误码率测量模块101,所述发送方的量子误码率测量模块101的输出端与所述发送方的极化码构造模块102的输入端连接,所述发送方的极化码构造模块102的输出端与所述发送方的极化码编码模块103的输入端连接,所述发送方的极化码编码模块103的输出端与所述发送方的量子比特制备模块104的输入端连接,所述发送方的量子比特制备模块104的输出端与所述发送方的量子比特传输模块105的输入端连接,所述发送方的量子比特传输模块105的输出端与所述发送方的量子比特筛选模块106的输入端连接,所述发送方的量子比特筛选模块106的输出端与所述发送方的安全性检测模块107的输入端连接,所述发送方的安全性检测模块107的输出端与所述发送方的最终密钥生成模块108的输入端连接,所述接收方包括量子信道参数估计模块201、极化码构造模块202、量子比特传输模块203、量子比特筛选模块204、安全性检测模块205、极化码译码模块206以及最终密钥生成模块207,量子信道参数估计模块优选为量子误码率测量模块201,所述接收方的量子误码率测量模块201的输出端与所述接收方的极化码构造模块202的输入端连接,所述接收方的极化码构造模块202的输出端与所述接收方的量子比特传输模块203的输入端连接,所述接收方的量子比特传输模块203的输出端与所述接收方的量子比特筛选模块204的输入端连接,所述接收方的量子比特筛选模块204的输出端与所述接收方的安全性检测模块205的输入端连接,所述接收方的安全性检测模块205的输出端与所述接收方的极化码译码模块206的输入端连接,所述接收方的极化码译码模块206的输出端与所述接收方的最终密钥生成模块207的输入端连接。
发送方的量子误码率测量模块101与接收方的量子误码率测量模块201利用BB84协议对信道进行多次传输,在排除窃听的条件下,确定系统实际 的固有量子误码率,并利用后者设定信道的误码率安全阈值l max
通信双方(即发送方与接收方)的极化码构造模块102、极化码构造模块202根据系统实际的擦除概率和固有量子误码率评估信道性能,产生相应的极化编码结构,包括确定极化码码长N、消息比特的位数N A以及传递消息比特的坐标子信道的位置。
发送方的极化码编码模块103每欲传送一条完整的长度为的N的极化码,都随机地选择每一位消息比特的值,并对冻结比特置零(或置1),之后完成对N位比特极化码编码;定义“一次块通信”为发送方完整地传输了一条长度为N的极化码,并由接收方完整地接收;定义“原始码字”为此模块中,经过随机取值后的消息比特构成的比特串。
发送方的量子比特制备模块104对每条长度为N的极化码,都随机地选取某一个基底,在此基底下对该条长为N的极化码制备相应的量子比特。
发送方的量子比特传输模块105发送发量子比特制备模块104所制备的量子比特输入量子信道发送给接收方的量子比特传输模块203。
发送方的量子比特筛选模块106和接收方的的量子比特筛选模块204分别公开调制基与测量基,若双方选取的基底相同,则保留此次通信结果;若不同,则舍去。
在需要检查通信过程的安全性时,接收方的安全性检测模块205随机挑选若干次块通信中经过密钥筛选得到的若干条N位比特串与发送方的安全性检测模块107进行公开比对,并计算每一条被选中的比特串的量子误码率;若其中任何一条比特串的量子误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入极化码译码模块,并舍弃被选中用于安全性检测的比特串。
接收方的极化码译码模块206对每次通信得到的N位比特串进行译码。所采用的译码方式可为连续消除(SC,Successive Cancellation)或列表连续消除(SCL,Successive Cancellation List)等适用于极化码译码的算法。
发送方的最终密钥生成模块108和接收方的最终密钥生成模块207利用Q次块通信得到的M(由于存在极化码筛选模块和安全性检测模块,Q≥M)条N位比特串,按一定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N A条最终密钥。
所述极化码编码模块103的数学表述如下:
码长N=2 n,n为整数。
Figure PCTCN2020083622-appb-000023
为输入变量,u i为第i个输入变量,
Figure PCTCN2020083622-appb-000024
为输入变量经过编码后得到的极化码,x i为极化码中的第i位。R N为比特反转重排操作:
R N(u 1,u 2,u 3,u 4,...,u N-1,u N)=(u 1,u 3,...,u N-1,u 2,u 4,...,u N)
极化码与输入变量之间的关系可表示为:
Figure PCTCN2020083622-appb-000025
其中,
Figure PCTCN2020083622-appb-000026
Figure PCTCN2020083622-appb-000027
Figure PCTCN2020083622-appb-000028
Figure PCTCN2020083622-appb-000029
所述极化码译码模块206的数学表述如下:
设接收方接收到的各位比特为
Figure PCTCN2020083622-appb-000030
接收方通过译码得到对发送方发送的比特的估计值
Figure PCTCN2020083622-appb-000031
消息比特的下标序列集合为A,冻结比特的下标序列集合为A c。所述极化码译码模块206采用的信道模型为二进制离散无记忆信道。
对所述SC译码方法,接收方对接收到的各位比特估计值由下述规则确定:
Figure PCTCN2020083622-appb-000032
Figure PCTCN2020083622-appb-000033
其中,
Figure PCTCN2020083622-appb-000034
为对数似然比。
Figure PCTCN2020083622-appb-000035
其中W(y j|0)为发送方发送0而接收方接收到y j的后验概率,W(y j|1)为发送方发送1而接收方接收到y j的后验概率。
Figure PCTCN2020083622-appb-000036
的递推式如下:
Figure PCTCN2020083622-appb-000037
Figure PCTCN2020083622-appb-000038
其中,
Figure PCTCN2020083622-appb-000039
表示已译码序列中奇数下标位的估计值,
Figure PCTCN2020083622-appb-000040
表示已译码序列中偶数下标位的估计值。并且,
Figure PCTCN2020083622-appb-000041
f 2(a,b,u)=(-1) ua+b
对所述SCL译码方法,在SC译码方法基础上引入路径度量值PM和搜索宽度L。译码依旧从码树根节点u 1开始,逐层依次向叶子节点层u i(i≥2)进行路径搜索。每一层扩展后,选择路径度量值PM最小的L条,保存在一个列表中,等待进行下一层的扩展。
每一层的路径度量值的计算方式如下:
Figure PCTCN2020083622-appb-000042
式中,
Figure PCTCN2020083622-appb-000043
下标l∈{1,2,...,L}表示第l条搜索路径。搜索至最后一层u N,选取PM值最小的搜索路径作为译码路径。
本发明还提供了一种基于经典-量子极化信道的高效量子密钥分发方法,具体的实施步骤为:
S1、量子信道参数估计。发送方与接收方在确定其所使用的量子信道后,首先利用BB84协议进行通信,从而在排除窃听的情况下确定系统实际的固有量子误码率,并利用后者设定信道的误码率安全阈值l max
S2、极化码构造。通信双方根据S1确定的信道固有量子误码率评估信道性能,产生相应的极化码结构,产生相应的极化编码结构,包括确定极化码码长N、消息比特的位数N A以及传递消息比特的坐标子信道的位置;
S3、极化码编码。则在每一次块通信中,发送方随机生成长为N A的消息比特序列(即原始密钥),将冻结比特置零(或置1),并完成长为N的极化码的编码;
本步骤中,码长N=2 n,n为整数。
Figure PCTCN2020083622-appb-000044
为输入变量,u i为第i个输入变量,
Figure PCTCN2020083622-appb-000045
为输入变量经过编码后得到的极化码,x i为极化码中的第i位。具体的编码过程为:
S31、根据下述数学方法构造生成矩阵G N
Figure PCTCN2020083622-appb-000046
Figure PCTCN2020083622-appb-000047
Figure PCTCN2020083622-appb-000048
Figure PCTCN2020083622-appb-000049
R N为比特反转重排操作:
R N(u 1,u 2,u 3,u 4,...,u N-1,u N)=(u 1,u 3,...,u N-1,u 2,u 4,...,u N);
其中,G N为极化码的生成矩阵,B N为排序矩阵,
Figure PCTCN2020083622-appb-000050
S32、根据上述公式所生成的矩阵G N,生成相应的经典(针对经典-量 子信道)/量子(针对纯量子信道)编码线路。
S33、将
Figure PCTCN2020083622-appb-000051
输入编码线路,由
Figure PCTCN2020083622-appb-000052
生成具体的极化码编码;
S4、量子比特制备。对每一次块通信,发送方随机选择某一固定基底,在此基底下根据极化编码结果完成此次块通信中每一位量子比特的制备,随后将其传送给接收方;
S5、量子比特传输。将S4中生成的量子比特串输入量子信道,发送给接收方;
S6、量子比特筛选。双方对密钥的传输结果进行初步筛选。在每一次块通信中,接收方随机选取一个固定的基底,在此基底下测量由发送方传输的N位量子比特,每次完成N位量子比特的传输和测量后,接收方通过公开信道与发送方进行基比对,若双方所选用的基底相同,则保留此次通信结果,若不相同,则舍弃;
S7、重复多次块通信操作S3-S6;
S8、安全性检测。接收方随机挑选1/2的在经过初步密钥筛选后被保留的块通信结果,并与发送方进行公开比对,计算每一次块通信中的比特串的误码率;若其中任何一条比特串的误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入下一步骤,并舍弃被选中用于安全性检测的比特串;
S9、极化码译码。接收方根据测量结果,对每次通信中的N位比特进行译码,从而获得对原始密钥的估计值;所采用的译码方式可为连续消除(SC,Successive Cancellation)或列表连续消除(SCL,Successive Cancellation List)等适用于极化码的译码算法;
设接收方接收到的各位比特为
Figure PCTCN2020083622-appb-000053
接收方通过译码得到对发送方发送的比特的估计值
Figure PCTCN2020083622-appb-000054
消息比特的下标序列集合为A,冻结比特的下标序列集合为A c。所述极化码译码模块采用的信道模型为二进制离散无记忆信道;
本步骤若采用SC译码方式,则具体过程为:
S91、计算对数似然比
Figure PCTCN2020083622-appb-000055
其中W(y j|0)为发送方发送0而接收方接收到y j的后验概率,W(y j|1)为发送方发送1而接收方接收到y j的后验概率;
S92、根据下述递推式计算对数似然比
Figure PCTCN2020083622-appb-000056
Figure PCTCN2020083622-appb-000057
Figure PCTCN2020083622-appb-000058
其中,
Figure PCTCN2020083622-appb-000059
表示已译码序列中奇数下标位的估计值,
Figure PCTCN2020083622-appb-000060
表示已译码序列中偶数下标位的估计值;并且,
Figure PCTCN2020083622-appb-000061
f 2(a,b,u)=(-1) ua+b
S93、按下述规则确定每一位比特的估计值:
Figure PCTCN2020083622-appb-000062
Figure PCTCN2020083622-appb-000063
本步骤若采用SCL译码方式,具体过程如下:
S91、按照SC译码方式中的步骤计算与第一个比特相关的对数似然比;
S92、计算候选译码路径的路径度量值;
本步骤中的路径度量值计算方式如下:
Figure PCTCN2020083622-appb-000064
式中,
Figure PCTCN2020083622-appb-000065
下标l∈{1,2,...,L}表示第l条搜索路径。
S93、根据搜索宽度L进行搜索路径拓展,保留目前截至该层的PM值最小的L条搜索路径;
S94、进行下一层的对数似然比和路径度量值的计算,以此类推,直至最后一层;
S95、在最后一层中选择路径度量值最小的搜索路径作为最后的译码路径。
本步骤如采用其他适合极化码的译码算法,只需用所采用的算法的译码步骤替换上述译码步骤。
S10、最终密钥生成。经过S1-S9,发送方和接收方利用Q次通信得到的M(由于存在极化码筛选、安全性检测和一致性校验等步骤,Q≥M)条N位比特串,按通信双方事先约定的一定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N条最终密钥。
本发明提供的一种基于经典-量子极化信道的高效量子密钥分发方法与系统,涉及量子信息技术领域和信息安全技术领域,尤其涉及量子信息技术和信息安全技术交叉领域的量子密钥分发技术,提高了在量子密钥分发系统的密钥分发速率,通过在传输前对所传密钥进行极化码预编码,充分利用了极化码的信道容量可达特性和纠错能力,提高了通信过程中最终安全密钥的生成速率。
本发明提供的一种基于经典-量子极化信道的高效量子密钥分发方法与系统,通过对所需发送的比特在通信开始前预先进行极化码编码,接收方的译码过程就相当于纠错过程,从而为后处理过程中的纠错环节节省时间开销;与此同时,极化码信道容量可达的特性可以提高系统的编码率,从而进一步提高最终安全密钥的生成速率。
本实施例是对高速量子密钥分发技术进行了研究与攻关,提出了一种 基于极化码的高效量子密钥分发协议,对推进量子密钥分发技术在移动通信领域中的应用具有积极作用,具有广阔的市场前景与积极的社会效益。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解的是,在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种等效的变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述发送方的量子信道参数估计模块的输出端与所述发送方的极化码构造模块的输入端连接,所述发送方的极化码构造模块的输出端与所述发送方的极化码编码模块的输入端连接,所述发送方的极化码编码模块的输出端与所述发送方的量子比特制备模块的输入端连接,所述发送方的量子比特制备模块的输出端与所述发送方的量子比特传输模块的输入端连接,所述发送方的量子比特传输模块的输出端与所述发送方的量子比特筛选模块的输入端连接,所述发送方的量子比特筛选模块的输出端与所述发送方的安全性检测模块的输入端连接,所述发送方的安全性检测模块的输出端与所述发送方的最终密钥生成模块的输入端连接,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块,所述接收方的量子信道参数估计模块的输出端与所述接收方的极化码构造模块的输入端连接,所述接收方的极化码构造模块的输出端与所述接收方的量子比特传输模块的输入端连接,所述接收方的量子比特传输模块的输出端与所述接收方的量子比特筛选模块的输入端连接,所述接收方的量子比特筛选模块的输出端与所述接收方的安全性检测模块的输入端连接,所述接收方的安全性检测模块的输出端与所述接收方的极化码译码模块的输入端连接,所述接收方的极化码译码模块的输出端与所述接收方的最终密钥生成模块的输入端连接。
  2. 根据权利要求1所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:所述发送方的量子信道参数估计模块向所述接收方的量子信道参数估计模块发送随机量子比特串,所述接收方的量子信道参数估计模块向所述发送方的量子信道参数估计模块返回信道固有量子误码率,所述接收方的量子信道参数估计模块设定误码率安全阈值,所述发送方的极化码构造模块与所述接收方的极化码构造模块共同确认所使用的极化码构造。
  3. 根据权利要求2所述的基于经典-量子极化信道的高效量子密钥分发系 统,其特征在于:所述发送方的极化码编码模块每欲传送一条完整的长度为N的极化码,都随机地选择每一位消息比特的值,并对冻结比特置零或置1,之后完成对N位比特极化码编码;定义“一次块通信”为发送方完整地传输了一条长度为N的极化码,并由接收方完整地接收;定义“原始码字”为此模块中,经过随机取值后的消息比特构成的比特串;所述发送方的量子比特制备模块对每条长度为N的极化码,都随机地选取某一个基底,在此基底下对该条长为N的极化码制备相应的量子比特;所述发送方的量子比特传输模块将所述发送方的发量子比特制备模块所制备的量子比特输入量子信道发送给接收方的量子比特传输模块。
  4. 根据权利要求3所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:所述发送方的量子比特筛选模块向所述接收方的量子比特筛选模块发送调制基信,所述接收方的量子比特筛选模块向所述发送方的量子比特筛选模块返回本次通信结果是否保留,对每次块通信,在发送方和接收方完成量子信道上的N位量子比特信息传输之后,发送方和接收方分别公开调制基与测量基,若发送方与接收方选取的基底相同,则保留此次块通信结果;若不同,则舍去。
  5. 根据权利要求4所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:在需要检查通信过程的安全性时,所述接收方的安全性检测模块随机挑选若干次块通信中经过密钥筛选得到的若干条N位比特串与所述发送方的安全性检测模块进行公开比对,并计算每一条被选中的比特串的量子误码率;若其中任何一条比特串的量子误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入接收方的极化码译码模块,并舍弃被选中用于安全性检测的比特串;所述接收方的极化码译码模块对每次通信得到的N位比特串进行译码;所述发送方的最终密钥生成模块和所述接收方的最终密钥生成模块利用Q次块通信得到的M条N位比特串,Q≥M,按设定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N A条最终密钥。
  6. 一种基于经典-量子极化信道的高效量子密钥分发方法,其特征在于,包括以下步骤:
    S1、量子信道参数估计;
    S2、极化码构造;
    S3、极化码编码;
    S4、量子比特制备;
    S5、量子比特传输;
    S6、量子比特筛选;
    S7、重复多次块通信操作S3-S6;
    S8、安全性检测;
    S9、极化码译码;
    S10、最终密钥生成。
  7. 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S1中,发送方与接收方在确定其所使用的量子信道后,首先进行通信,从而在排除窃听的情况下确定系统实际的信道固有量子误码率,并利用系统实际的信道固有量子误码率设定信道误码率安全阈值l max;在步骤S2中,通信的发送方与接收方根据步骤S1确定的信道固有量子误码率评估信道性能,产生相应的极化码结构,产生相应的极化编码结构,包括确定极化码码长N、消息比特的位数N A以及传递消息比特的坐标子信道的位置。
  8. 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S3中,在每一次块通信中,发送方随机生成长为N A的消息比特序列,即原始密钥,将冻结比特置零或置1,并完成长为N的极化码的编码;
    本步骤中,码长N=2 n,n为整数,
    Figure PCTCN2020083622-appb-100001
    为输入变量,u i为第i个输入变量,
    Figure PCTCN2020083622-appb-100002
    为输入变量经过编码后得到的极化码,x i为极化码中的第i位,具体的编码过程为:
    S31、根据下述数学方法构造生成矩阵G N
    Figure PCTCN2020083622-appb-100003
    Figure PCTCN2020083622-appb-100004
    Figure PCTCN2020083622-appb-100005
    Figure PCTCN2020083622-appb-100006
    R N为比特反转重排操作:
    R N(u 1,u 2,u 3,u 4,...,u N-1,u N)=(u 1,u 3,...,u N-1,u 2,u 4,...,u N);
    其中,G N为极化码的生成矩阵,B N为排序矩阵,
    Figure PCTCN2020083622-appb-100007
    S32、根据上述公式所生成的矩阵G N,生成相应的经典/量子编码线路;
    S33、将
    Figure PCTCN2020083622-appb-100008
    输入编码线路,由
    Figure PCTCN2020083622-appb-100009
    生成具体的极化码编码。
  9. 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S4中,对每一次块通信,发送方随机选择某一固定基底,在此基底下根据极化编码结果完成此次块通信中每一位量子比特的制备,随后将其传送给接收方;在步骤S5中,将S4中生成的量子比特串输入量子信道,发送给接收方;在步骤S6中,发送方与接收方对密钥的传输结果进行初步筛选;在每一次块通信中,接收方随机选取一个固定的基底,在此基底下测量由发送方传输的N位量子比特,每次完成N位量子比特的传输和测量后,接收方通过公开信道与发送方进行基比对,若发送方与接收方所选用的基底相同,则保留此次通信结果,若不相同,则舍弃;在步骤S8中,接收方随机挑选1/2的在经过初步密钥筛选后被保留的块通信结果,并与发送方进行公开比对,计算每一次块通信中的比特串的误码率;若其中任何一条比特串的误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入下一步骤,并舍弃被选中用于安全性检测的比特串。
  10. 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S9中,接收方根据测量结果,对每次通信中的N位比特进行译码,从而获得对原始密钥的估计值;
    设接收方接收到的各位比特为
    Figure PCTCN2020083622-appb-100010
    接收方通过译码得到对发送方发送的比特的估计值
    Figure PCTCN2020083622-appb-100011
    消息比特的下标序列集合为A,冻结比特的下标序列集合为A c,极化码译码模块采用的信道模型为二进制离散无记忆信道;
    本步骤若采用连续消除译码方式,则具体过程为:
    S91、计算对数似然比
    Figure PCTCN2020083622-appb-100012
    其中W(y j|0)为发送方发送0而接收方接收到y j的后验概率,W(y j|1)为发送方发送1而接收方接收到y j的后验概率;
    S92、根据下述递推式计算对数似然比
    Figure PCTCN2020083622-appb-100013
    Figure PCTCN2020083622-appb-100014
    Figure PCTCN2020083622-appb-100015
    其中,
    Figure PCTCN2020083622-appb-100016
    表示已译码序列中奇数下标位的估计值,
    Figure PCTCN2020083622-appb-100017
    表示已译码序列中偶数下标位的估计值;并且,
    Figure PCTCN2020083622-appb-100018
    f 2(a,b,u)=(-1) ua+b
    S93、按下述规则确定每一位比特的估计值:
    Figure PCTCN2020083622-appb-100019
    Figure PCTCN2020083622-appb-100020
    本步骤若采用列表连续消除译码方式,则具体过程如下:
    S91、按照连续消除译码方式中的步骤计算与第一个比特相关的对数似然比;
    S92、计算候选译码路径的路径度量值;
    本步骤中的路径度量值计算方式如下:
    Figure PCTCN2020083622-appb-100021
    式中,
    Figure PCTCN2020083622-appb-100022
    下标l∈{1,2,...,L}表示第l条搜索路径;
    S93、根据搜索宽度L进行搜索路径拓展,保留目前截至该层的PM值最小的L条搜索路径;
    S94、进行下一层的对数似然比和路径度量值的计算,以此类推,直至最后一层;
    S95、在最后一层中选择路径度量值最小的搜索路径作为最后的译码路径;
    在步骤S10中,经过步骤S1-S9,发送方和接收方利用Q次通信得到的M条N位比特串,Q≥M,按通信双方事先约定的一定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N条最终密钥。
PCT/CN2020/083622 2019-04-28 2020-04-08 基于经典-量子极化信道的高效量子密钥分发方法与系统 WO2020220946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910348801.XA CN109921904B (zh) 2019-04-28 2019-04-28 基于经典-量子极化信道的高效量子密钥分发方法
CN201910348801.X 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220946A1 true WO2020220946A1 (zh) 2020-11-05

Family

ID=66978795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083622 WO2020220946A1 (zh) 2019-04-28 2020-04-08 基于经典-量子极化信道的高效量子密钥分发方法与系统

Country Status (2)

Country Link
CN (1) CN109921904B (zh)
WO (1) WO2020220946A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921904B (zh) * 2019-04-28 2021-03-16 哈尔滨工业大学(深圳) 基于经典-量子极化信道的高效量子密钥分发方法
CN114553400B (zh) * 2020-11-26 2023-12-26 国网新疆电力有限公司信息通信公司 基于极化码的电力系统长距离量子密钥分发方法、系统和存储介质
CN114531233B (zh) * 2021-12-31 2023-06-30 华南师范大学 一种用于多自由度调制qkd后处理系统及纠错译码方法
CN115118417B (zh) * 2022-06-24 2023-07-04 中国人民解放军国防科技大学 一种极化码在信息协调中的擦除译码配置方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106161012A (zh) * 2016-08-26 2016-11-23 暨南大学 一种基于极化码纠错的量子密钥分发后处理系统和方法
WO2017039394A1 (en) * 2015-09-04 2017-03-09 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting on pucch
CN106685656A (zh) * 2017-01-18 2017-05-17 北京邮电大学 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法
CN109921904A (zh) * 2019-04-28 2019-06-21 哈尔滨工业大学(深圳) 基于经典-量子极化信道的高效量子密钥分发方法与系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039394A1 (en) * 2015-09-04 2017-03-09 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting on pucch
CN106161012A (zh) * 2016-08-26 2016-11-23 暨南大学 一种基于极化码纠错的量子密钥分发后处理系统和方法
CN106685656A (zh) * 2017-01-18 2017-05-17 北京邮电大学 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法
CN109921904A (zh) * 2019-04-28 2019-06-21 哈尔滨工业大学(深圳) 基于经典-量子极化信道的高效量子密钥分发方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YOUMING; WANG CHAO; HUANG DUAN; HUANG PENG; FENG XIAOYI; PENG JINYE; CAO ZHENGWEN; ZENG GUIHUA: "Study of Synchronous Technology in High-Speed Continuous Variable Quantum Key Distribution System", ACTA OPTICA SINICA, vol. 35, no. 1, 15 January 2015 (2015-01-15), pages 96 - 105, XP009524129, ISSN: 0253-2239, DOI: 10.3788/AOS201535.0106006 *

Also Published As

Publication number Publication date
CN109921904B (zh) 2021-03-16
CN109921904A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020220946A1 (zh) 基于经典-量子极化信道的高效量子密钥分发方法与系统
CN106161012B (zh) 一种基于极化码纠错的量子密钥分发后处理系统和方法
CN104468097B (zh) 一种基于量子密钥分发的安全数据通信实现方法
CN110011792B (zh) 基于极化码的单步量子密钥分发后处理方法、系统、介质和设备
CN106685656A (zh) 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法
CN104640110B (zh) 一种终端直通通信中基于信道特性的对称密钥生成方法
CN106059758A (zh) 一种确保无线通信安全的密钥生成方法
CN106027230B (zh) 一种在量子密钥分发后的处理中进行误码纠错的方法
CN103888225B (zh) 一种二进制删除信道下的喷泉码方法
CN103501221B (zh) 一种用于量子通信的误码协商算法的评估方法
JPWO2005076520A1 (ja) 量子鍵配送方法および通信装置
CN107231215A (zh) 一种并行信道下基于极化码的安全传输方法
CN114448621A (zh) 一种多方双场量子密钥分发协议实现方法及系统
Yan et al. Information reconciliation protocol in quantum key distribution system
CN110365474A (zh) 密钥协商方法及通信设备
CN103200088A (zh) 一种基于喷泉编码下的改进型mmrs固定中继节点选择的信号传输方法
CN112688780A (zh) 一种基于离散变量的qkd密钥协商方法
CN114422081A (zh) 基于crc-scl译码算法的qkd后处理系统及方法
CN110071801A (zh) 一种结合bbbss协议与bch码的生成密钥部分调和方法
CN104993927A (zh) 一种对称密钥生成方法及其应用
CN109194421A (zh) 一种高斯窃听信道下基于有限长极化码的安全编码方法
Wen et al. Rotation based slice error correction protocol for continuous-variable quantum key distribution and its implementation with polar codes
CN116961952A (zh) 一种基于双向熵提取技术的安全通信方法
Zhang et al. An adaptive information reconciliation protocol for physical-layer based secret key generation
CN112564715B (zh) 连续变量量子密钥分发自适应协调方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798678

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20798678

Country of ref document: EP

Kind code of ref document: A1