WO2020220946A1 - 基于经典-量子极化信道的高效量子密钥分发方法与系统 - Google Patents
基于经典-量子极化信道的高效量子密钥分发方法与系统 Download PDFInfo
- Publication number
- WO2020220946A1 WO2020220946A1 PCT/CN2020/083622 CN2020083622W WO2020220946A1 WO 2020220946 A1 WO2020220946 A1 WO 2020220946A1 CN 2020083622 W CN2020083622 W CN 2020083622W WO 2020220946 A1 WO2020220946 A1 WO 2020220946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- quantum
- receiver
- sender
- qubit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
Definitions
- the invention relates to a quantum key distribution method, in particular to an efficient quantum key distribution method and system based on a classical-quantum polarized channel.
- the present invention provides an efficient quantum key distribution method and system based on the classical-quantum polarized channel.
- the present invention provides an efficient quantum key distribution system based on a classical-quantum polarization channel, which includes a sender and a receiver.
- the sender includes a quantum channel parameter estimation module, a polarization code construction module, and a polarization code encoding module , Qubit preparation module, qubit transmission module, qubit screening module, security detection module and final key generation module, the output end of the quantum channel parameter estimation module of the sender and the polarization code structure of the sender
- the input end of the module is connected, the output end of the polarization code construction module of the sender is connected to the input end of the polarization code encoding module of the sender, and the output end of the polarization code encoding module of the sender is connected to the
- the input end of the qubit preparation module of the sender is connected, and the output end of the qubit preparation module of the sender is connected to the input end of the qubit transmission module of the sender.
- the output terminal is connected to the input terminal of the qubit filtering module of the sender, and the output terminal of the qubit filtering module of the sender is connected to the input terminal of the security detection module of the sender.
- the output end of the sex detection module is connected to the input end of the final key generation module of the sender, and the receiver includes a quantum channel parameter estimation module, a polarization code construction module, a qubit transmission module, a qubit screening module, and a security
- the output end of the quantum channel parameter estimation module of the receiver is connected to the input end of the polarization code construction module of the receiver, and the receiver
- the output terminal of the polarization code construction module is connected to the input terminal of the receiver's qubit transmission module, and the output terminal of the receiver's qubit transmission module is connected to the input terminal of the receiver's qubit filtering module
- the output terminal of the qubit screening module of the receiver is connected to the input terminal of the security detection module of the receiver, and the output terminal of the security detection module of the
- the quantum channel parameter estimation module of the sender sends a random qubit string to the quantum channel parameter estimation module of the receiver, and the quantum channel parameter estimation module of the receiver sends a random qubit string to the sender.
- the quantum channel parameter estimation module returns the inherent quantum error rate of the channel
- the quantum channel parameter estimation module of the receiver sets the error rate safety threshold
- the polarization code construction module of the sender and the polarization code construction of the receiver The modules jointly confirm the polarization code structure used.
- the qubit screening module of the sender sends the modulation base signal to the qubit screening module of the receiver, and the qubit screening module of the receiver sends the qubit screening module of the sender to the qubit screening module of the sender. Return whether the result of this communication is reserved.
- the sender and receiver respectively disclose the modulation base and the measurement base. If the base selected by the receiver is the same, the communication result will be retained; if it is different, it will be discarded.
- the security detection module of the receiver randomly selects several N-bit strings obtained through key screening in several block communications with the sender
- the security detection module performs public comparison and calculates the quantum error rate of each selected bit string; if the quantum error rate of any one of the bit strings is higher than or equal to the error rate safety threshold, it means that the transmission channel If there is eavesdropping, immediately terminate the communication and check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety threshold, enter the polarization code decoding module of the receiver and discard the selected
- the bit string for security detection; the polarization code decoding module of the receiver decodes the N-bit bit string obtained in each communication; the final key generation module of the sender and the final secret code of the receiver
- the key generation module uses M N-bit strings obtained by Q block communication, Q ⁇ M, and selects one bit from each bit string according to the set rules to generate a final key of length M, which can be generated in total
- the present invention also provides an efficient quantum key distribution method based on the classical-quantum polarization channel, which includes the following steps:
- step S1 after determining the quantum channel used by the sender and the receiver, they communicate first, so as to determine the actual channel inherent quantum error rate of the system without eavesdropping, and Use the system's actual channel inherent quantum error rate to set the channel error rate safety threshold l max ; in step S2, the sender and receiver of the communication evaluate the channel performance based on the channel inherent quantum error rate determined in step S1, and generate a corresponding polarization code structure, generating a respective polarization coding structure, comprising determining the polarization code length N, the number of bits N a message bits and transmitting the position coordinates of the sub-message bit.
- step S3 in each block communication, the sender randomly generates a message bit sequence of N A , that is, the original key, sets the frozen bit to zero or 1, and completes the length to Encoding of N polarization codes;
- the code length N 2 n , n is an integer, Is the input variable, u i is the i-th input variable, Is the polarization code obtained after encoding the input variable, x i is the i-th bit in the polarization code, the specific encoding process is:
- R N is the bit reversal rearrangement operation:
- G N is the generator matrix of the polarization code
- B N is the sorting matrix
- step S4 for each block communication, the sender randomly selects a certain fixed base, under which the preparation of each qubit in the block communication is completed according to the polarization encoding result. Then transmit it to the receiver; in step S5, the qubit string generated in S4 is input into the quantum channel and sent to the receiver; in step S6, the sender and the receiver perform preliminary screening of the transmission results of the key; In each block communication, the receiver randomly selects a fixed base, under which the N-bit qubits transmitted by the sender are measured. After each N-bit qubit transmission and measurement, the receiver communicates with each other through an open channel. The sender performs base comparison.
- step S8 the receiver randomly selects 1/2 of the base
- the reserved block communication results are compared with the sender publicly to calculate the bit error rate of each bit string in the block communication; if the bit error rate of any one of the bit strings is higher than or equal to the bit error rate
- the security threshold indicates that there is eavesdropping in the transmission channel. At this time, the communication is immediately terminated and the transmission channel is checked; if the quantum error rate of all selected bit strings is less than the error rate security threshold, the next step is entered, and the selected use is discarded Bit string for security detection.
- step S9 the receiver decodes the N bits in each communication according to the measurement result, so as to obtain the estimated value of the original key;
- the receiver obtains an estimate of the bits sent by the sender through decoding
- the subscript sequence set of message bits is A
- the subscript sequence set of frozen bits is Ac
- the channel model adopted by the polarization code decoding module is a binary discrete memoryless channel
- 0) is the posterior probability that the sender sends 0 and the receiver receives y j
- 1) is the posterior probability that the sender sends 1 and the receiver receives y j ;
- the path metric value calculation method in this step is as follows:
- step S10 after steps S1-S9, the sender and receiver use M N-bit strings obtained by Q times of communication, Q ⁇ M, and select each bit string from each bit string according to a certain rule agreed upon by both parties in advance One bit generates a final key of length M, a total of N final keys can be generated
- the beneficial effects of the present invention are: through the above-mentioned scheme, by precoding the transmitted key with the polarization code before transmission, the channel capacity reachability and error correction capability of the polarization code are fully utilized, and the final communication process is improved. Security key generation rate.
- Fig. 1 is a schematic diagram of an efficient quantum key distribution system based on the classical-quantum polarized channel of the present invention.
- an efficient quantum key distribution system based on classical-quantum polarization channel includes a sender and a receiver.
- the party includes a quantum channel parameter estimation module 101, a polarization code construction module 102, a polarization code encoding module 103, a qubit preparation module 104, a qubit transmission module 105, a qubit screening module 106, a security detection module 107, and a final key
- the generating module 108, the quantum channel parameter estimation module is preferably a quantum error rate measurement module 101, and the output end of the sender's quantum error rate measurement module 101 is connected to the input end of the sender's polarization code construction module 102
- the output terminal of the polarization code construction module 102 of the transmitter is connected to the input terminal of the polarization code encoding module 103 of the transmitter, and the output terminal of the polarization code encoding module 103 of the transmitter is connected to the transmitter
- the input is preferably a quantum error rate measurement module 101, and the output end of the
- the output end of the security detection module 107 of the sender is connected to the input end of the final key generation module 108 of the sender, and the receiver includes a quantum channel parameter estimation module 201, a polarization code construction module 202, and a qubit
- the quantum channel parameter estimation module is preferably the quantum error rate measurement module 201, and the receiver
- the output terminal of the quantum error rate measurement module 201 is connected to the input terminal of the receiver’s polar code construction module 202, and the output terminal of the receiver’s polar code construction module 202 is connected to the receiver’s qubit
- the input end of the transmission module 203 is connected, the output end of the qubit transmission module 203 of the receiver is connected to the input end of the qubit filter module 204 of the receiver, and the output end of the qubit filter module 204 of the receiver Is connected to the input end of the receiver’s security detection module 205, the output end of the receiver’s security detection module 205 is connected to the input end of the receiver’s polarization code decoding module 206, and the receiver
- the output terminal of the polarization code decoding module 206 of the party is connected to the input terminal of the final key generation module 207 of the receiver.
- the sender’s quantum error rate measurement module 101 and the receiver’s quantum error rate measurement module 201 use the BB84 protocol to transmit multiple times to the channel. Under the condition of eliminating eavesdropping, determine the actual inherent quantum error rate of the system, and use The latter sets the channel's bit error rate safety threshold l max .
- the polarization code construction module 102 and the polarization code construction module 202 of the two communication parties evaluate the channel performance according to the actual erasure probability and inherent quantum error rate of the system, and generate the corresponding polarization code structure, including determine the polarization code length N, the number of bits N a message bits and transmitting the position coordinates of the sub-message bit.
- the polarization code encoding module 103 of the sender wants to transmit a complete polarization code of length N, it randomly selects the value of each message bit, and sets the frozen bit to zero (or 1), and then completes it.
- Encode the N-bit polarization code define "one block communication" as the sender completely transmits a piece of polarization code of length N, and it is received by the receiver completely; define "original codeword” in this module, A bit string formed by randomly selected message bits.
- the qubit preparation module 104 of the sender randomly selects a certain substrate for each polarization code of length N, and prepares a corresponding qubit for the polarization code of length N under this substrate.
- the qubit transmission module 105 of the sender sends the qubit input quantum channel prepared by the qubit preparation module 104 to the qubit transmission module 203 of the receiver.
- the qubit filtering module 106 of the sender and the qubit filtering module 204 of the receiver respectively disclose the modulation base and the measurement base. If the bases selected by both parties are the same, the communication result will be retained; if they are different, they will be discarded.
- the security detection module 205 of the receiver randomly selects a number of N-bit strings obtained through key screening in several block communications for public comparison with the security detection module 107 of the sender , And calculate the quantum error rate of each selected bit string; if the quantum error rate of any one of the bit strings is higher than or equal to the error rate safety threshold, it means that there is eavesdropping in the transmission channel, and the communication is terminated immediately. And check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety threshold, enter the polarization code decoding module, and discard the bit strings selected for security detection.
- the polarization code decoding module 206 of the receiver decodes the N-bit bit string obtained in each communication.
- the adopted decoding method can be an algorithm suitable for polarization code decoding, such as continuous cancellation (SC, Successive Cancellation) or list continuous cancellation (SCL, Successive Cancellation List).
- the final key generation module 108 of the sender and the final key generation module 207 of the receiver obtain M (due to the existence of the polarization code screening module and the security detection module, Q ⁇ M) N-bit string obtained by Q-time block communication , According to certain rules, one bit is selected from each bit string to generate a final key of length M, a total of N A final keys can be generated.
- N 2 n , n is an integer. Is the input variable, u i is the i-th input variable, Is the polarization code obtained after encoding the input variable, and x i is the i-th bit in the polarization code.
- R N is the bit reversal rearrangement operation:
- the mathematical expression of the polarization code decoding module 206 is as follows:
- the receiver obtains an estimate of the bits sent by the sender through decoding
- the subscript sequence set of message bits is A
- the subscript sequence set of frozen bits is Ac .
- the channel model adopted by the polarization code decoding module 206 is a binary discrete memoryless channel.
- the receiver's estimate of the received bits is determined by the following rules:
- 0) is the posterior probability that the sender sends 0 and the receiver receives y j
- 1) is the posterior probability that the sender sends 1 and the receiver receives y j .
- the recurrence is as follows:
- the path metric value PM and the search width L are introduced on the basis of the SC decoding method.
- the decoding still starts from the root node u 1 of the code tree, and performs path search to the leaf node layer u i (i ⁇ 2) layer by layer. After each level of expansion, select the L with the smallest path metric value PM, save it in a list, and wait for the next level of expansion.
- the path metric value of each layer is calculated as follows:
- the present invention also provides an efficient quantum key distribution method based on the classical-quantum polarization channel, and the specific implementation steps are:
- the communication channel both intrinsic quantum bit error rate performance evaluation channel S1 determined polarization generates a corresponding code structure, generating a respective polarization coding structure, comprising determining the polarization code length N, the number of bits N A and the message bits transferred The position of the coordinate sub-channel of the message bit;
- the sender is N A randomly generates a long message bit sequence (i.e., the original key), frozen bit set to zero (or set), and complete the code length N of the polarization encoding;
- the code length N 2 n , and n is an integer.
- the specific coding process is:
- R N is the bit reversal rearrangement operation:
- G N is the generator matrix of the polarization code
- B N is the sorting matrix
- the receiver randomly selects 1/2 of the block communication results that are retained after the preliminary key screening, and compares it with the sender publicly, and calculates the bit error rate of the bit string in each block communication; if any of the bits is If the error rate of the string is higher than or equal to the error rate safety threshold, it means that there is eavesdropping in the transmission channel. At this time, immediately terminate the communication and check the transmission channel; if the quantum error rate of all selected bit strings is less than the error rate safety Threshold goes to the next step, and discards the bit string selected for security detection;
- Polarization code decoding According to the measurement results, the receiver decodes the N bits in each communication to obtain an estimate of the original key; the decoding method used can be continuous cancellation (SC, Successive Cancellation) or list continuous cancellation ( SCL, Successful Cancellation List) and other decoding algorithms suitable for polarization codes;
- SC Successive Cancellation
- SCL Successful Cancellation List
- the receiver obtains an estimate of the bits sent by the sender through decoding
- the subscript sequence set of message bits is A
- the subscript sequence set of frozen bits is Ac .
- the channel model adopted by the polarization code decoding module is a binary discrete memoryless channel;
- 0) is the posterior probability that the sender sends 0 and the receiver receives y j
- 1) is the posterior probability that the sender sends 1 and the receiver receives y j ;
- the path metric value calculation method in this step is as follows:
- the invention provides an efficient quantum key distribution method and system based on the classical-quantum polarization channel, which relates to the field of quantum information technology and information security technology, in particular to quantum key distribution in the cross-field of quantum information technology and information security technology Technology improves the key distribution rate in the quantum key distribution system.
- precoding the transmitted key with polarization code before transmission it makes full use of the channel capacity reachability and error correction capability of the polarization code, and improves The final security key generation rate during the communication process.
- the invention provides an efficient quantum key distribution method and system based on the classical-quantum polarized channel.
- the decoding process of the receiver is equivalent to
- the error correction process saves time and overhead for the error correction link in the post-processing process; at the same time, the feature of the accessibility of the polarization code channel capacity can increase the coding rate of the system, thereby further increasing the final security key generation rate.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
Claims (10)
- 一种基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述发送方的量子信道参数估计模块的输出端与所述发送方的极化码构造模块的输入端连接,所述发送方的极化码构造模块的输出端与所述发送方的极化码编码模块的输入端连接,所述发送方的极化码编码模块的输出端与所述发送方的量子比特制备模块的输入端连接,所述发送方的量子比特制备模块的输出端与所述发送方的量子比特传输模块的输入端连接,所述发送方的量子比特传输模块的输出端与所述发送方的量子比特筛选模块的输入端连接,所述发送方的量子比特筛选模块的输出端与所述发送方的安全性检测模块的输入端连接,所述发送方的安全性检测模块的输出端与所述发送方的最终密钥生成模块的输入端连接,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块,所述接收方的量子信道参数估计模块的输出端与所述接收方的极化码构造模块的输入端连接,所述接收方的极化码构造模块的输出端与所述接收方的量子比特传输模块的输入端连接,所述接收方的量子比特传输模块的输出端与所述接收方的量子比特筛选模块的输入端连接,所述接收方的量子比特筛选模块的输出端与所述接收方的安全性检测模块的输入端连接,所述接收方的安全性检测模块的输出端与所述接收方的极化码译码模块的输入端连接,所述接收方的极化码译码模块的输出端与所述接收方的最终密钥生成模块的输入端连接。
- 根据权利要求1所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:所述发送方的量子信道参数估计模块向所述接收方的量子信道参数估计模块发送随机量子比特串,所述接收方的量子信道参数估计模块向所述发送方的量子信道参数估计模块返回信道固有量子误码率,所述接收方的量子信道参数估计模块设定误码率安全阈值,所述发送方的极化码构造模块与所述接收方的极化码构造模块共同确认所使用的极化码构造。
- 根据权利要求2所述的基于经典-量子极化信道的高效量子密钥分发系 统,其特征在于:所述发送方的极化码编码模块每欲传送一条完整的长度为N的极化码,都随机地选择每一位消息比特的值,并对冻结比特置零或置1,之后完成对N位比特极化码编码;定义“一次块通信”为发送方完整地传输了一条长度为N的极化码,并由接收方完整地接收;定义“原始码字”为此模块中,经过随机取值后的消息比特构成的比特串;所述发送方的量子比特制备模块对每条长度为N的极化码,都随机地选取某一个基底,在此基底下对该条长为N的极化码制备相应的量子比特;所述发送方的量子比特传输模块将所述发送方的发量子比特制备模块所制备的量子比特输入量子信道发送给接收方的量子比特传输模块。
- 根据权利要求3所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:所述发送方的量子比特筛选模块向所述接收方的量子比特筛选模块发送调制基信,所述接收方的量子比特筛选模块向所述发送方的量子比特筛选模块返回本次通信结果是否保留,对每次块通信,在发送方和接收方完成量子信道上的N位量子比特信息传输之后,发送方和接收方分别公开调制基与测量基,若发送方与接收方选取的基底相同,则保留此次块通信结果;若不同,则舍去。
- 根据权利要求4所述的基于经典-量子极化信道的高效量子密钥分发系统,其特征在于:在需要检查通信过程的安全性时,所述接收方的安全性检测模块随机挑选若干次块通信中经过密钥筛选得到的若干条N位比特串与所述发送方的安全性检测模块进行公开比对,并计算每一条被选中的比特串的量子误码率;若其中任何一条比特串的量子误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入接收方的极化码译码模块,并舍弃被选中用于安全性检测的比特串;所述接收方的极化码译码模块对每次通信得到的N位比特串进行译码;所述发送方的最终密钥生成模块和所述接收方的最终密钥生成模块利用Q次块通信得到的M条N位比特串,Q≥M,按设定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N A条最终密钥。
- 一种基于经典-量子极化信道的高效量子密钥分发方法,其特征在于,包括以下步骤:S1、量子信道参数估计;S2、极化码构造;S3、极化码编码;S4、量子比特制备;S5、量子比特传输;S6、量子比特筛选;S7、重复多次块通信操作S3-S6;S8、安全性检测;S9、极化码译码;S10、最终密钥生成。
- 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S1中,发送方与接收方在确定其所使用的量子信道后,首先进行通信,从而在排除窃听的情况下确定系统实际的信道固有量子误码率,并利用系统实际的信道固有量子误码率设定信道误码率安全阈值l max;在步骤S2中,通信的发送方与接收方根据步骤S1确定的信道固有量子误码率评估信道性能,产生相应的极化码结构,产生相应的极化编码结构,包括确定极化码码长N、消息比特的位数N A以及传递消息比特的坐标子信道的位置。
- 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S3中,在每一次块通信中,发送方随机生成长为N A的消息比特序列,即原始密钥,将冻结比特置零或置1,并完成长为N的极化码的编码;S31、根据下述数学方法构造生成矩阵G N:R N为比特反转重排操作:R N(u 1,u 2,u 3,u 4,...,u N-1,u N)=(u 1,u 3,...,u N-1,u 2,u 4,...,u N);S32、根据上述公式所生成的矩阵G N,生成相应的经典/量子编码线路;
- 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S4中,对每一次块通信,发送方随机选择某一固定基底,在此基底下根据极化编码结果完成此次块通信中每一位量子比特的制备,随后将其传送给接收方;在步骤S5中,将S4中生成的量子比特串输入量子信道,发送给接收方;在步骤S6中,发送方与接收方对密钥的传输结果进行初步筛选;在每一次块通信中,接收方随机选取一个固定的基底,在此基底下测量由发送方传输的N位量子比特,每次完成N位量子比特的传输和测量后,接收方通过公开信道与发送方进行基比对,若发送方与接收方所选用的基底相同,则保留此次通信结果,若不相同,则舍弃;在步骤S8中,接收方随机挑选1/2的在经过初步密钥筛选后被保留的块通信结果,并与发送方进行公开比对,计算每一次块通信中的比特串的误码率;若其中任何一条比特串的误码率高于或等于误码率安全阈值则说明传输信道中存在窃听,此时立即终止通信,并检查传输信道;若所有被选中的比特串的量子误码率小于误码率安全阈值则进入下一步骤,并舍弃被选中用于安全性检测的比特串。
- 根据权利要求6所述的基于经典-量子极化信道的高效量子密钥分发方法,其特征在于:在步骤S9中,接收方根据测量结果,对每次通信中的N位比特进行译码,从而获得对原始密钥的估计值;本步骤若采用连续消除译码方式,则具体过程为:f 2(a,b,u)=(-1) ua+bS93、按下述规则确定每一位比特的估计值:本步骤若采用列表连续消除译码方式,则具体过程如下:S91、按照连续消除译码方式中的步骤计算与第一个比特相关的对数似然比;S92、计算候选译码路径的路径度量值;本步骤中的路径度量值计算方式如下:S93、根据搜索宽度L进行搜索路径拓展,保留目前截至该层的PM值最小的L条搜索路径;S94、进行下一层的对数似然比和路径度量值的计算,以此类推,直至最后一层;S95、在最后一层中选择路径度量值最小的搜索路径作为最后的译码路径;在步骤S10中,经过步骤S1-S9,发送方和接收方利用Q次通信得到的M条N位比特串,Q≥M,按通信双方事先约定的一定的规则从每条比特串中选出一位比特生成一条长为M的最终密钥,一共可生成N条最终密钥。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910348801.XA CN109921904B (zh) | 2019-04-28 | 2019-04-28 | 基于经典-量子极化信道的高效量子密钥分发方法 |
CN201910348801.X | 2019-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020220946A1 true WO2020220946A1 (zh) | 2020-11-05 |
Family
ID=66978795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/083622 WO2020220946A1 (zh) | 2019-04-28 | 2020-04-08 | 基于经典-量子极化信道的高效量子密钥分发方法与系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109921904B (zh) |
WO (1) | WO2020220946A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109921904B (zh) * | 2019-04-28 | 2021-03-16 | 哈尔滨工业大学(深圳) | 基于经典-量子极化信道的高效量子密钥分发方法 |
CN114553400B (zh) * | 2020-11-26 | 2023-12-26 | 国网新疆电力有限公司信息通信公司 | 基于极化码的电力系统长距离量子密钥分发方法、系统和存储介质 |
CN114531233B (zh) * | 2021-12-31 | 2023-06-30 | 华南师范大学 | 一种用于多自由度调制qkd后处理系统及纠错译码方法 |
CN115118417B (zh) * | 2022-06-24 | 2023-07-04 | 中国人民解放军国防科技大学 | 一种极化码在信息协调中的擦除译码配置方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106161012A (zh) * | 2016-08-26 | 2016-11-23 | 暨南大学 | 一种基于极化码纠错的量子密钥分发后处理系统和方法 |
WO2017039394A1 (en) * | 2015-09-04 | 2017-03-09 | Samsung Electronics Co., Ltd. | Method and apparatus for csi reporting on pucch |
CN106685656A (zh) * | 2017-01-18 | 2017-05-17 | 北京邮电大学 | 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法 |
CN109921904A (zh) * | 2019-04-28 | 2019-06-21 | 哈尔滨工业大学(深圳) | 基于经典-量子极化信道的高效量子密钥分发方法与系统 |
-
2019
- 2019-04-28 CN CN201910348801.XA patent/CN109921904B/zh active Active
-
2020
- 2020-04-08 WO PCT/CN2020/083622 patent/WO2020220946A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017039394A1 (en) * | 2015-09-04 | 2017-03-09 | Samsung Electronics Co., Ltd. | Method and apparatus for csi reporting on pucch |
CN106161012A (zh) * | 2016-08-26 | 2016-11-23 | 暨南大学 | 一种基于极化码纠错的量子密钥分发后处理系统和方法 |
CN106685656A (zh) * | 2017-01-18 | 2017-05-17 | 北京邮电大学 | 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法 |
CN109921904A (zh) * | 2019-04-28 | 2019-06-21 | 哈尔滨工业大学(深圳) | 基于经典-量子极化信道的高效量子密钥分发方法与系统 |
Non-Patent Citations (1)
Title |
---|
LIU YOUMING; WANG CHAO; HUANG DUAN; HUANG PENG; FENG XIAOYI; PENG JINYE; CAO ZHENGWEN; ZENG GUIHUA: "Study of Synchronous Technology in High-Speed Continuous Variable Quantum Key Distribution System", ACTA OPTICA SINICA, vol. 35, no. 1, 15 January 2015 (2015-01-15), pages 96 - 105, XP009524129, ISSN: 0253-2239, DOI: 10.3788/AOS201535.0106006 * |
Also Published As
Publication number | Publication date |
---|---|
CN109921904B (zh) | 2021-03-16 |
CN109921904A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020220946A1 (zh) | 基于经典-量子极化信道的高效量子密钥分发方法与系统 | |
CN106161012B (zh) | 一种基于极化码纠错的量子密钥分发后处理系统和方法 | |
CN104468097B (zh) | 一种基于量子密钥分发的安全数据通信实现方法 | |
CN110011792B (zh) | 基于极化码的单步量子密钥分发后处理方法、系统、介质和设备 | |
CN106685656A (zh) | 一种基于极化码的连续变量量子密钥分发系统中的数据纠错方法 | |
CN104640110B (zh) | 一种终端直通通信中基于信道特性的对称密钥生成方法 | |
CN106059758A (zh) | 一种确保无线通信安全的密钥生成方法 | |
CN106027230B (zh) | 一种在量子密钥分发后的处理中进行误码纠错的方法 | |
CN103888225B (zh) | 一种二进制删除信道下的喷泉码方法 | |
CN103501221B (zh) | 一种用于量子通信的误码协商算法的评估方法 | |
JPWO2005076520A1 (ja) | 量子鍵配送方法および通信装置 | |
CN107231215A (zh) | 一种并行信道下基于极化码的安全传输方法 | |
CN114448621A (zh) | 一种多方双场量子密钥分发协议实现方法及系统 | |
Yan et al. | Information reconciliation protocol in quantum key distribution system | |
CN110365474A (zh) | 密钥协商方法及通信设备 | |
CN103200088A (zh) | 一种基于喷泉编码下的改进型mmrs固定中继节点选择的信号传输方法 | |
CN112688780A (zh) | 一种基于离散变量的qkd密钥协商方法 | |
CN114422081A (zh) | 基于crc-scl译码算法的qkd后处理系统及方法 | |
CN110071801A (zh) | 一种结合bbbss协议与bch码的生成密钥部分调和方法 | |
CN104993927A (zh) | 一种对称密钥生成方法及其应用 | |
CN109194421A (zh) | 一种高斯窃听信道下基于有限长极化码的安全编码方法 | |
Wen et al. | Rotation based slice error correction protocol for continuous-variable quantum key distribution and its implementation with polar codes | |
CN116961952A (zh) | 一种基于双向熵提取技术的安全通信方法 | |
Zhang et al. | An adaptive information reconciliation protocol for physical-layer based secret key generation | |
CN112564715B (zh) | 连续变量量子密钥分发自适应协调方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20798678 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20798678 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20798678 Country of ref document: EP Kind code of ref document: A1 |