WO2020220832A1 - 实现投影画面拼接的方法、装置及投影系统 - Google Patents

实现投影画面拼接的方法、装置及投影系统 Download PDF

Info

Publication number
WO2020220832A1
WO2020220832A1 PCT/CN2020/078368 CN2020078368W WO2020220832A1 WO 2020220832 A1 WO2020220832 A1 WO 2020220832A1 CN 2020078368 W CN2020078368 W CN 2020078368W WO 2020220832 A1 WO2020220832 A1 WO 2020220832A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
small
area
splicing
Prior art date
Application number
PCT/CN2020/078368
Other languages
English (en)
French (fr)
Inventor
钟波
肖适
王鑫
张立造
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Publication of WO2020220832A1 publication Critical patent/WO2020220832A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3188Scale or resolution adjustment

Definitions

  • the invention relates to the technical field of projection splicing, and specifically discloses a method, a device and a projection system for realizing splicing of projection pictures.
  • the existing large-frame projection methods usually use the following three methods: The first is to use a single high-power projection device to project a complete image on a large screen.
  • the second is the optical splicing method, which uses multiple projection devices to project optical images on a single large screen, and each projected image is connected to each other to form a complete, high-resolution projected image.
  • the third is to use multi-unit splicing to form a large screen. Each unit has its own projector and projection screen. The optical screen can improve consistency.
  • the present application provides a method, device, and projection system for realizing projection screen splicing.
  • a small-scale feature map is projected to a projection surface through a projection device, and a camera captures images of the projection surface to obtain the actual projection area positions of multiple projection devices.
  • the actual projection area can be transformed to the desired projection area, and the projection screen splicing of multiple projection devices can be realized.
  • the technical solution provided by the present invention is a method for realizing projection screen splicing, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices.
  • the method includes:
  • S11 Send an image projection command to each projection device, so that each of the projection devices respectively project their small-scale feature maps on the projection surface, and the small-scale feature images on the projection surface do not overlap;
  • S12 Send an image acquisition command to the image acquisition device, so that the image acquisition device acquires a projection surface image, where the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • S14 Send the splicing adjustment parameter of each of the projection devices to the corresponding projection device, so that each of the projection devices adjusts the projected image according to the corresponding splicing adjustment parameter.
  • step S13 includes:
  • S134 Calculate the splicing projection area formed by all the projection devices in the projection surface image and the splicing adjustment parameters of each projection device according to the actual projection area of each projection device in the projection surface image.
  • step S131 includes:
  • Identify the feature pattern in each small-scale feature image in the projection surface image obtain the number information of the projection device corresponding to each small-scale feature image, and identify the small-scale feature corresponding to each small-scale feature image in the projection surface image Image area
  • a correspondence relationship between the number information of the projection device and the small-scale characteristic image area is established.
  • step S132 includes:
  • the small-scale feature map and the original feature map preset by each of the projection devices are acquired, and the feature pattern reduction ratio of the small-scale feature map of each projection device to the original feature map is calculated.
  • step S133 includes:
  • step S134 includes:
  • the stitching adjustment parameter of each projection device is calculated.
  • the present invention also provides a device for realizing projection screen splicing, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices.
  • the device includes:
  • An image projection module configured to send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on a projection surface, and each small-scale feature image on the projection surface does not overlap;
  • An image acquisition module configured to send an image acquisition command to an image acquisition device, so that the image acquisition device acquires a projection surface image, the projection surface image being an overall image including all small-scale feature images on the projection surface;
  • a parameter calculation module configured to calculate the stitching adjustment parameters of each projection device according to the projection surface image
  • the parameter sending module is configured to send the splicing adjustment parameters of each of the projection devices to the corresponding projection devices, so that each of the projection devices adjusts the projected image according to the corresponding splicing adjustment parameters.
  • the parameter calculation module includes:
  • a projection area acquiring unit configured to acquire a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image
  • a reduction ratio obtaining unit configured to obtain a feature pattern reduction ratio of a small-scale feature map of each of the projection devices
  • the actual area calculation unit is configured to calculate the location of each projection device based on the small-scale feature image area corresponding to each projection device in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device.
  • the adjustment parameter calculation unit is configured to calculate the spliced projection area formed by all the projection devices in the projection surface image and the splicing adjustment parameter of each of the projection devices according to the actual projection area of each projection device in the projection surface image .
  • the projection area acquiring unit includes:
  • the image information acquisition component is used to identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to each small-scale feature image, and identify each small-scale feature image on the projection surface The corresponding small-scale feature image area in the image;
  • the correspondence relationship establishment component is used to establish the correspondence relationship between the number information of the projection device and the small-scale characteristic image area.
  • the method of the reduction ratio obtaining unit includes:
  • the actual area calculation unit includes:
  • the coordinate relationship acquisition component is used to acquire the four corner pixel coordinate transformation relationships of the small-scale feature map of each of the projection devices to the original feature map;
  • a corner point coordinate acquisition component configured to acquire four corner point pixel coordinates of a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image;
  • the actual coordinate calculation component is used to transform the four corner pixel coordinate transformation relationships of the small-scale feature map of each projection device into the original feature map and the corresponding small-scale feature of each projection device in the projection surface image
  • the four corner pixel coordinates of the image area are calculated, and the four corner pixel coordinates of the actual projection area of each projection device in the projection surface image are calculated.
  • the adjustment parameter calculation unit includes:
  • the stitching area calculation component is used to calculate the maximum inscribed area of the maximum projection area composed of the actual projection areas of all the projection devices in the projection surface image based on the actual projection area of each projection device in the projection surface image
  • the rectangular area is used as the splicing projection area
  • the desired area calculation component is used to calculate the intersection of the actual projection area of each projection device in the projection surface image and the spliced projection area to obtain the expected projection area of each projection device in the projection surface image ;
  • the splicing parameter calculation component is used to calculate the splicing adjustment parameters of each projection device according to the expected projection area and the actual projection area of each projection device in the projection surface image.
  • the present invention also provides a device for realizing splicing of projection images, including a memory, a processor, and a computer program stored on the memory and running on the processor, wherein the processor executes the computer program
  • the program implements the method for splicing projection screens as described above.
  • the present invention also provides a projection system, which includes an image acquisition device, at least two projection devices, and the above-mentioned device for realizing projection screen splicing.
  • the device for realizing projection screen splicing is connected to the image acquisition device and each of the projection screens. The device establishes communication.
  • the projection device is preset with a small-scale feature map, and the small-scale feature map is projected in response to an image projection command sent by the device for implementing projection screen splicing.
  • the projection device is preset with an original feature map and a feature pattern reduction ratio, and in response to an image projection command sent by the device for implementing projection screen splicing, the feature pattern in the original feature map is set in the original pixel ratio Next, a small-scale feature map is generated according to the feature pattern reduction ratio, and the small-scale feature map is projected.
  • this application uses multiple projection devices to respectively project small-scale feature maps to the projection surface, avoiding the superimposition of projection images.
  • the projection surface image is captured by the image acquisition device to obtain
  • the small-scale projection area of each projection device is calculated, and the actual projection area of each projection device is calculated, and then the actual projection area of each projection device is transformed to the desired projection area, which realizes the precise splicing of the projection screen pixels of multiple projection devices and reduces the realization The difficulty and low cost of splicing projection images of multiple projection devices.
  • FIG. 1 is a schematic flowchart of a method for splicing projection images provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a small-scale feature map projected by a projection device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a small-scale feature map projected by two projection devices according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of actual projection area splicing of two projection devices provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of splicing actual projection areas of three projection devices according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for realizing splicing projection pictures provided by an embodiment of the present invention.
  • FIG. 7 is an architectural diagram of a projection system provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a method for realizing projection screen splicing, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices.
  • Each projection device is provided with its own original feature map and Small-scale feature maps, or each projection device is provided with its own small-scale feature maps and feature pattern reduction ratios, where the original feature maps include feature patterns, and the feature patterns in the original feature maps are full-screen feature pattern maps, small-scale features
  • the figure is a figure obtained by reducing the feature pattern in the original feature map at the original pixel ratio according to the feature pattern reduction ratio.
  • a small-scale feature map is a figure with the feature pattern in the center of the figure and a transparent image around it.
  • the feature pattern includes a projection device
  • the specific methods include:
  • S11 Send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on the projection surface, and the small-scale feature images on the projection surface do not overlap;
  • S12 Send an image acquisition command to the image acquisition device, so that the image acquisition device acquires an image of the projection surface, and the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • each projection device is provided with an original feature map.
  • the actual projection area of the projection device can be seen, but if each projection device projects the original feature map to the projection surface , Will cause the original feature images on the projection surface to overlap, and bring great difficulty to image processing and calculation when the projection images are stitched. Therefore, the feature patterns in the original feature maps are reduced by a certain reduction ratio (1 > Reducing ratio> 0) Reducing, that is, reducing and projecting according to the reduction ratio of the characteristic pattern, so as to avoid the overlapping of projection images of multiple projection devices and causing mutual interference.
  • the feature pattern reduction ratio can be set according to the actual needs of customers.
  • the original feature map is reduced by a certain feature pattern reduction ratio to obtain a small-scale feature map.
  • the essence of the small-scale feature map is to reduce the feature pattern and place it in the middle of the small-scale feature map.
  • the small-scale feature image and the original feature image have the same pattern content, but the size of the pattern area is different.
  • the original feature map can be a map with a border, a map with a corner mark or a plane geometric figure.
  • it can be a map with only a border (the image area is determined by identifying the corners of the border), or it can be a Identification mark two-dimensional code map (identify the image area by identifying the position of the two-dimensional code map, the identification mark two-dimensional code map also contains corners and borders), it can also be a map containing regular geometric patterns (circles, rectangles, etc.), identification After the pattern is calculated, the positions of the four corner points of the entire projection screen are calculated.
  • These are pictures with obvious boundary features (lines, corner points, etc.), which are the original feature maps referred to in this application.
  • the original feature map and the small-scale feature map of each projection device include the identification mark of the corresponding projection device, because in image recognition, it is necessary to determine which projection device corresponds to which projection area on the projection surface to calculate the actual projection area and stitch adjustment Parameters, the small-scale feature map may include the identification mark of the projection device, or the identification mark of the projection device can be directly used as the small-scale feature map.
  • An identification mark can be placed in the center of the small-scale feature map, as shown in Figure 2, taking the Aruco code as an example, or it can be other easily recognizable marks such as QRcode. For higher image accuracy, a small-scale feature map can also be specially designed.
  • step S11 an image projection command is sent to each projection device, so that each projection device projects its small-scale feature map to the projection surface, but the small-scale feature images on the projection surface cannot be separated from each other. Overlap, otherwise it will affect the result of image recognition.
  • the small-scale feature maps projected by each projection device will not overlap on the projection surface.
  • the image acquisition device refers to a device with an image shooting function, which may be a camera, a smart phone, a tablet computer, a notebook computer, and the like.
  • the shooting position of the image acquisition device is not limited. It is only required that all small-scale feature images on the projection surface can be taken as a whole for subsequent calculations. Of course, the definition also needs to meet the requirements of conventional pixels.
  • step S13 includes:
  • S133 Calculate the actual projection area of each projection device in the projection surface image according to the small-scale feature image area corresponding to each projection device in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device;
  • S134 Calculate the splicing projection area formed by all the projection devices in the projection surface image and the splicing adjustment parameters of each projection device according to the actual projection area of each projection device in the projection surface image.
  • step S131 includes:
  • S1311 Identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to each small-scale feature image, and identify the small-scale feature image area corresponding to each small-scale feature image in the projection surface image ;
  • S1312 Establish a correspondence relationship between the number information of the projection device and the small-scale feature image area.
  • the method of step S132 includes: acquiring the feature pattern reduction ratio of the small-scale feature map preset by each projection device; or acquiring the small-scale feature map and the original feature map of each projection device, and calculating the small-scale feature map of each projection device The characteristic pattern of the figure is reduced by the ratio.
  • step S133 includes
  • the identification mark of the projection device is a small-scale feature map of the projection device
  • existing mature algorithms can be used to identify the identification mark, and the size and position of the identification mark can be obtained, as well as the projection device number information corresponding to the identification mark. Since the number information of each projection device is unique, the number information of the identified projection device can be correlated with the position of the identified identification area, and the correspondence between the number information of each projection device and the projection area can be obtained. After using the same method to obtain the correspondence between the number information of the projection device and the small-scale feature image area, subsequent calculations can be performed.
  • the original feature map and the small-scale feature map of the projection device may be stored in the projection device, or it may be Stored in the device that realizes the splicing of the projection images, or may be stored on the remote server.
  • the map information calculates the feature pattern reduction ratio.
  • the projection system shown in Figure 3 includes two projection devices, namely projection device C1 and projection device C2.
  • the small-scale feature image of the projection surface is used to calculate the actual projection area positions of the two projection devices, that is, the projection in the figure
  • the specific calculation method includes: Since the small-scale feature map of C1 and the original feature map are known, the pixels of the small-scale feature map in the original feature map The coordinates are known.
  • the homography transformation matrix H1 that is, H1 represents the coordinate transformation relationship from the small-scale feature map of C1 to the original feature map.
  • the specific search method can be used here There are no specific requirements for corner search or image template matching. There is no restriction here.
  • (u1, v1), (u2, v2) are the pixel coordinates of the corresponding points of the original feature map and the small-scale feature map, and S is a constant scale factor. Therefore, the positions of the four corner points of the original feature image can be calculated from the positions of the four corner points of the C1 small-scale feature image on the projection surface, that is, ABCD is obtained from the H1 transformation by abcd. Similarly, assuming that H2 represents the C2 small-scale feature image According to the coordinate transformation relationship of the original feature map, efgh obtains EFGH according to H2 transformation, so as to find the complete projection area/actual projection area of C1 and C2.
  • step S134 includes:
  • S1342 Calculate the intersection of the actual projection area of each projection device in the projection surface image and the spliced projection area to obtain the expected projection area of each projection device in the projection surface image;
  • S1343 Calculate the stitching adjustment parameters of each projection device according to the expected projection area and the actual projection area of each projection device in the projection surface image.
  • the specific calculation methods include: using the least square method to calculate the homography transformation matrix H1 from abcd to ABCD, and the homography transformation matrix H2 from efgh to EFGH, respectively acting on the projection devices C1 and C2, then the desired projection image area AFCH can be obtained , The splicing process is completed.
  • the calculation methods of homography change matrix include least square method or DLT method.
  • the projection devices C1, C2, and C3 can be calculated.
  • the maximum coverage area of the three projection devices can be obtained (that is, the area obtained by taking the union of the actual projection areas of the three projection devices), and pass RANSAC within the maximum coverage area
  • the method takes the largest inscribed rectangle to maximize the area of the rectangular area, and the ABCD area as shown in Figure 5 can be obtained. Then, by calculating the intersection of the ABCD area and the actual projection area of each projection device, the expected projection area of each projection device can be obtained.
  • the technical solution of the present application uses small-scale feature images to locate the projection areas of multiple projection devices, and uses an external/external image acquisition device to take pictures and homography transformation methods to splice the projection images of multiple projection devices.
  • the operation is simple and the calculation is The difficulty is small and it is very suitable for wide promotion.
  • the following describes the device for implementing projection screen splicing provided by the embodiment of the present invention. It should be noted that the description of the device for implementing projection screen splicing can refer to the above method for implementing projection screen splicing, which will not be repeated here.
  • an embodiment of the present invention provides a device for realizing splicing of projection images, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices.
  • the device includes:
  • the image projection module 21 is configured to send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on a projection surface, and the small-scale feature images on the projection surface do not overlap;
  • the image acquisition module 22 is configured to send an image acquisition command to the image acquisition device, so that the image acquisition device acquires a projection surface image, and the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • the parameter calculation module 23 is configured to calculate the stitching adjustment parameters of each of the projection devices according to the projection surface image
  • the parameter sending module 24 is configured to send the splicing adjustment parameters of each of the projection devices to the corresponding projection devices, so that each of the projection devices adjusts the projected image according to the corresponding splicing adjustment parameters.
  • parameter calculation module 23 includes:
  • a projection area acquiring unit configured to acquire a small-scale characteristic image area corresponding to each projection device in the projection surface image
  • the reduction ratio obtaining unit is used to obtain the feature pattern reduction ratio of the small-scale feature map of each projection device
  • the actual area calculation unit is used to calculate the actual projection of each projection device in the projection surface image according to the small-scale feature image area corresponding to each projection device in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device area;
  • the adjustment parameter calculation unit is used to calculate the splicing projection area formed by all the projection devices in the projection surface image and the splicing adjustment parameters of each projection device according to the actual projection area of each projection device in the projection surface image.
  • the projection area acquisition unit includes:
  • the image information acquisition component is used to identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to each small-scale feature image, and identify each small-scale feature image in the projection surface image Corresponding small-scale feature image area;
  • the correspondence relationship establishment component is used to establish the correspondence relationship between the number information of the projection device and the small-scale characteristic image area.
  • the method of the reduction ratio acquisition unit includes: acquiring the feature pattern reduction ratio of the small-scale feature map preset by each projection device; or acquiring the small-scale feature map and the original feature map of each projection device, and calculating the The feature pattern reduction ratio of the small-scale feature map.
  • the actual area calculation unit includes:
  • the coordinate relationship acquisition component is used to acquire the 4 corner pixel coordinate transformation relationships of the small-scale feature map of each projection device to the original feature map;
  • the corner point coordinate acquisition component is used to acquire the four corner point pixel coordinates of the small-scale characteristic image area corresponding to each projection device in the projection surface image;
  • the actual coordinate calculation component is used to transform the four corner pixel coordinate transformation relations of the small-scale feature map of each projection device to the original feature map and the four corners of the small-scale feature image area corresponding to each projection device in the projection surface image Point pixel coordinates, calculate the four corner pixel coordinates of the actual projection area of each projection device in the projection surface image.
  • the adjustment parameter calculation unit includes:
  • the mosaic area calculation component is used to calculate the maximum inscribed rectangular area of the maximum projection area composed of the actual projection area of all the projection devices in the projection surface image according to the actual projection area of each projection device in the projection surface image as the mosaic projection area ;
  • the desired area calculation component is used to calculate the intersection of the actual projection area of each projection device in the projection surface image and the spliced projection area to obtain the expected projection area of each projection device in the projection surface image;
  • the splicing parameter calculation component is used to calculate the splicing adjustment parameters of each projection device according to the expected projection area and the actual projection area of each projection device in the projection surface image.
  • the embodiment of the present invention also provides a device for realizing projection screen splicing, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • a device for realizing projection screen splicing including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the foregoing device for realizing projection screen splicing is implemented. method.
  • an embodiment of the present invention also provides a projection system, including an image acquisition device, at least two projection devices, and the above-mentioned device for realizing projection screen splicing.
  • the device for realizing projection screen splicing is respectively connected to the image acquisition device and each The projection device establishes communication.
  • the projection device may be preset with a small-scale feature map, and the projection device projects the small-scale feature map in response to an image projection command sent by the device for implementing projection screen splicing.
  • the projection device can also be preset with the original feature map and the feature pattern reduction ratio.
  • the projection device In response to the image projection command sent by the device that realizes the projection screen splicing, the projection device reduces the feature pattern in the original feature map at the original pixel ratio according to the feature pattern reduction ratio. Reduce to generate a small-scale feature map, and project a small-scale feature map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Projection Apparatus (AREA)

Abstract

本发明涉及投影拼接技术领域,实施例具体公开一种实现投影画面拼接的方法、装置及投影系统。本申请采用多个投影装置分别向投影面投射小比例特征图,避免了投影画面的叠加,通过图像采集装置拍摄投影面图像,获取各个投影装置的小比例投影区域,计算各个投影装置的实际投影区域,再将各个投影装置的实际投影区域变换到期望投影区域,实现了多个投影装置的投影画面像素的精确拼接,降低了实现多个投影装置的投影画面拼接的难度且成本低。

Description

实现投影画面拼接的方法、装置及投影系统 技术领域
本发明涉及投影拼接技术领域,具体公开一种实现投影画面拼接的方法、装置及投影系统。
背景技术
现有的大画幅投影方式通常是采用下列三种方法的:第一种为使用单一的高功率投影装置在一个大屏幕上投射出一幅完整的图像。第二种为光学拼接方法,即在单一的大屏幕上使用多个投影装置进行光学图像的投射,各个投射影像之间互相衔接,形成一个完整的、高分辨率的投射影像。第三种是采用多单元的形式拼接成为大屏幕,各个单元有自己的投影机和投影屏幕,通过光学屏幕可以改善一致性。
在采用第二种光学拼接方法时,如何方便快速的完成多个投影装置的投影画面拼接是目前亟需解决的问题。
发明内容
有鉴于此,本申请提供一种实现投影画面拼接的方法、装置和投影系统,通过投影装置向投影面投射小比例特征图,摄像头拍摄投影面图像,获取多个投影装置的实际投影区域的位置,可以将实际投影区域变换到期望投影区域,可以实现多个投影装置的投影画面拼接。
为解决以上技术问题,本发明提供的技术方案是一种实现投影画面拼接的方法,应用于投影系统,所述投影系统包括图像采集装置和至少2个投影装置,所述方法包括:
S11:向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
S12:向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面 图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
S13:根据所述投影面图像分别计算各个所述投影装置的拼接调整参数;
S14:将各个所述投影装置的拼接调整参数发送给对应的投影装置,以使各个所述投影装置按对应的拼接调整参数调整投射图像。
更优的,所述步骤S13的方法包括:
S131:获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
S132:获取各个所述投影装置的小比例特征图的特征图案缩小比值;
S133:根据各个投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
S134:根据各个所述投影装置在所述投影面图像中的实际投影区域计算所有投影装置在所述投影面图像中组成的拼接投影区域及各个所述投影装置的拼接调整参数。
更优的,所述步骤S131的方法包括:
识别所述投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
建立所述投影装置的编号信息与小比例特征图像区域的对应关系。
更优的,所述步骤S132的方法包括:
获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
获取各个所述投影装置预设的小比例特征图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
更优的,所述步骤S133的方法包括:
获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
更优的,所述步骤S134的方法包括:
根据各个所述投影装置在所述投影面图像中的实际投影区域,计算由所有投影装置在所述投影面图像中的实际投影区域组成的最大投影区域的最大内接矩形区域作为拼接投影区域;
计算各个所述投影装置在所述投影面图像中的实际投影区域与所述拼接投影区域的交集,获得各个所述投影装置在所述投影面图像中的期望投影区域;
根据各个所述投影装置在所述投影面图像中的期望投影区域与实际投影区域,计算各个所述投影装置的拼接调整参数。
本发明还提供一种实现投影画面拼接的装置,应用于投影系统,所述投影系统包括图像采集装置和至少2个投影装置,所述装置包括:
图像投射模块,用于向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
图像采集模块,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
参数计算模块,用于根据所述投影面图像分别计算各个所述投影装置的拼接调整参数;
参数发送模块,用于将各个所述投影装置的拼接调整参数发送给对应的投影装置,以使各个所述投影装置按对应的拼接调整参数调整投射图像。
更优的,所述参数计算模块包括:
投影区域获取单元,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
缩小比值获取单元,用于获取各个所述投影装置的小比例特征图的特征图案缩小比值;
实际区域计算单元,用于根据各个投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
调整参数计算单元,用于根据各个所述投影装置在所述投影面图像中的实际投影区域计算所有投影装置在所述投影面图像中组成的拼接投影区域及各个所述投影装置的拼接调整参数。
更优的,所述投影区域获取单元包括:
图像信息获取组件,用于识别所述投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
对应关系建立组件,用于建立所述投影装置的编号信息与小比例特征图像区域的对应关系。
更优的,所述缩小比值获取单元的方法包括:
获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
获取各个所述投影装置预设的小比例特征图和原始特征图,计算所述各个所述 投影装置的小比例特征图的特征图案缩小比值。
更优的,所述实际区域计算单元包括:
坐标关系获取组件,用于获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
角点坐标获取组件,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
实际坐标计算组件,用于根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
更优的,所述调整参数计算单元包括:
拼接区域计算组件,用于根据各个所述投影装置在所述投影面图像中的实际投影区域,计算由所有投影装置在所述投影面图像中的实际投影区域组成的最大投影区域的最大内接矩形区域作为拼接投影区域;
期望区域计算组件,用于计算各个所述投影装置在所述投影面图像中的实际投影区域与所述拼接投影区域的交集,获得各个所述投影装置在所述投影面图像中的期望投影区域;
拼接参数计算组件,用于根据各个所述投影装置在所述投影面图像中的期望投影区域与实际投影区域,计算各个所述投影装置的拼接调整参数。
本发明还提供一种实现投影画面拼接的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上述的实现投影画面拼接的方法。
本发明还提供一种投影系统,包括图像采集装置、至少2个投影装置和如上述的实现投影画面拼接的装置,所述实现投影画面拼接的装置分别与所述图像采集装 置和各个所述投影装置建立通信。
更优的,所述投影装置预设有小比例特征图,响应于所述实现投影画面拼接的装置发送的图像投射命令,投射所述小比例特征图。
更优的,所述投影装置预设有原始特征图和特征图案缩小比值,响应于所述实现投影画面拼接的装置发送的图像投射命令,将所述原始特征图中的特征图案在原始像素比例下按所述特征图案缩小比值缩小生成小比例特征图,投射所述小比例特征图。
本申请与现有技术相比,其有益效果详细说明如下:本申请采用多个投影装置分别向投影面投射小比例特征图,避免了投影画面的叠加,通过图像采集装置拍摄投影面图像,获取各个投影装置的小比例投影区域,计算各个投影装置的实际投影区域,再将各个投影装置的实际投影区域变换到期望投影区域,实现了多个投影装置的投影画面像素的精确拼接,降低了实现多个投影装置的投影画面拼接的难度且成本低。
附图说明
图1为本发明实施例提供的实现投影画面拼接的方法的流程示意图;
图2为本发明实施例提供的投影装置投射的小比例特征图的示意图;
图3为本发明实施例提供的2个投影装置投射的小比例特征图的示意图;
图4为本发明实施例提供的2个投影装置的实际投影区域拼接示意图;
图5为本发明实施例提供的3个投影装置的实际投影区域拼接示意图;
图6为本发明实施例提供的实现投影画面拼接的装置的结构示意图;
图7为本发明实施例提供的投影系统架构图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1所示,本发明实施例提供一种实现投影画面拼接的方法,应用于投影系统,该投影系统包括图像采集装置和至少2个投影装置,各个投影装置设有各自的原始特征图和小比例特征图,或者各个投影装置设有各自的小比例特征图和特征图案缩小比值,其中,原始特征图包括特征图案,原始特征图中的特征图案为满屏的特征图案图,小比例特征图是将原始特征图中的特征图案在原始像素比例下按特征图案缩小比值缩小后得到的图,小比例特征图是特征图案在图中心,周围为透明图的图,特征图案中包含投影装置的识别标识,具体的方法包括:
S11:向各个投影装置发送图像投射命令,以使各个投影装置分别向投影面投射各自的小比例特征图,投影面上的各个小比例特征图像未重叠;
S12:向图像采集装置发送图像采集命令,以使图像采集装置采集投影面图像,投影面图像是包含投影面上所有小比例特征图像的整体图像;
S13:根据投影面图像分别计算各个投影装置的拼接调整参数;
S14:将各个投影装置的拼接调整参数发送给对应的投影装置,以使各个投影装置按对应的拼接调整参数调整投射图像。
如图2所示,各个投影装置设置有原始特征图,当投影装置向投影面投射原始特征图时可以看到该投影装置的实际投影区域,但是如果各个投影装置都向投影面投射原始特征图,会造成投影面上的原始特征图像重叠,在投影画面拼接时给图像处理和计算带来很大的难度,因此将原始特征图中的特征图案在原始像素比例下按一定的缩小比例(1>缩小比例>0)缩小,即按特征图案缩小比值缩小再投射,避免多个投影装置的投影画面叠加而造成相互干扰。特征图案缩小比值可以根据客户实际需求设定,将原始特征图按一定特征图案缩小比值缩小后得到小比例特征图,小比例特征图的实质是将特征图案缩小后置于小比例特征图中部,而周围为透明图像的图,小比例特征图与原始特征图中的图案内容是一致的,只是图案区域的大小不一样。其中,原始特征图可以是设有边框的图、设有角点标识的图或者平面几何 图形图,例如可以是一个只有边框的图(通过识别边框的角点确定图像区域),也可以是一个识别标志二维码图(通过识别二维码图的位置确定图像区域,识别标志二维码图也包含角点和边框),还可以是包含规则几何图案(圆,矩形等)的图,识别图案后再推算整个投影画面的四个角点位置,这些都是边界特征比较明显(线条,角点等)的图,即是本申请所指的原始特征图。
各个投影装置的原始特征图和小比例特征图均包含对应投影装置的识别标识,因为在图像识别时,需要确定哪个投影装置对应投影面上的哪块投影区域才能计算出实际投影区域及拼接调整参数,小比例特征图中可以包含投影装置的识别标识,或者将投影装置的识别标识直接作为小比例特征图。可以在小比例特征图中心放置一个识别标识,如图2中所示以Aruco码为例,也可以是其他易于识别的标志如QRcode。为了更高的图像精度,也可以特别设计小比例特征图。
需要说明的是,在步骤S11中,向各个投影装置发送图像投射命令,以使各个投影装置分别向投影面投射各自的小比例特征图,但是在投影面上的各个小比例特征图像之间不能重叠,否则会影响图像识别的结果。一般情况下,将需要拼接的投影装置依次正常摆放后,各个投影装置投射的小比例特征图在投影面不会重叠。
需要说明的是,在步骤S12中,图像采集装置是指具备图像拍摄功能的装置,可以是摄像头,智能手机,平板电脑,笔记本电脑等。图像采集装置的拍摄位置并未限定,只要求能够整体拍摄投影面上的所有小比例特征图像用于后续的计算,当然清晰度也需要满足常规像素要求。
具体的,步骤S13的方法包括:
S131:获取各个投影装置在投影面图像中对应的小比例特征图像区域;
S132:获取各个投影装置的小比例特征图的特征图案缩小比值;
S133:根据各个投影装置在投影面图像中对应的小比例特征图像区域和各个投影装置的小比例特征图的特征图案缩小比值,计算各个投影装置在投影面图像中的 实际投影区域;
S134:根据各个投影装置在投影面图像中的实际投影区域计算所有投影装置在投影面图像中组成的拼接投影区域及各个投影装置的拼接调整参数。
具体的,步骤S131的方法,包括:
S1311:识别投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在投影面图像中对应的小比例特征图像区域;
S1312:建立投影装置的编号信息与小比例特征图像区域的对应关系。
具体的,步骤S132的方法,包括:获取各个投影装置预设的小比例特征图的特征图案缩小比值;或者获取各个投影装置的小比例特征图和原始特征图,计算各个投影装置的小比例特征图的特征图案缩小比值。
具体的,步骤S133的方法,包括
S1331:获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
S1332:获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
S1333:根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
需要说明的是,当投影装置的识别标识为投影装置的小比例特征图时,可以采用现有成熟算法去识别识别标识,可以得到识别标识的大小位置,以及识别标识对应的投影装置编号信息,由于各个投影装置的编号信息是唯一的,因此可以把识别到的投影装置编号信息和识别到的识别标识区域位置对应起来,获得各个投影装置 的编号信息与投影区域的对应关系,各个投影装置都采用相同的方法获得投影装置的编号信息与小比例特征图像区域的对应关系后,可以进行后续的计算。
接下来,要通过投影装置的编号信息获得投影装置的原始特征图和小比例特征图,或者获取特征图案缩小比值,投影装置的原始特征图和小比例特征图可能存储在投影装置内,也可能存储在实现投影画面拼接的装置内,也可能存储在远程服务器上,在进行计算前,需要根据投影装置的编号信息获取各个投影装置的特征图案缩小比值,或者通过获取原始特征图和小比例特征图信息计算特征图案缩小比值。
举例说明,如图3所示的投影系统包括2个投影装置,即投影装置C1和投影装置C2,利用投影面的小比例特征图像计算2个投影装置的实际投影区域的位置,即图中投影装置C1的实际投影区域ABCD,投影装置C2的实际投影区域EFGH,具体计算方法包括:由于C1的小比例特征图与原始特征图是已知的,因此小比例特征图在原始特征图中的像素坐标是已知的。根据小比例特征图的4个角点像素坐标和原始特征图的4个角点像素坐标,即根据八个角点的对应关系,利用直接线性变换法(Direct Linear Transform)或者最小二乘法计算出单应变换矩阵H1,即H1表征了C1的小比例特征图到原始特征图的坐标变换关系。根据图像采集装置拍摄的包含C1,C2投射的小比例特征图的投影面图像,在投影面图像中找到C1小比例特征图像区域abcd,找到C2小比例特征图像区域efgh,这里具体查找办法可以用角点查找,或者用图像模板匹配等方法,没有具体要求,这里不做限制。利用单应矩阵对应关系
Figure PCTCN2020078368-appb-000001
其中(u1,v1),(u2,v2)分别为原始特征图和小比例特征图对应点的像素坐标,S为一个常数比例因子。因此可以由投影面上的C1小比例特征图像四个角点的位置 计算出原始特征图像4个角点的位置,即由abcd根据H1变换得到ABCD,类似的,假设H2表征C2小比例特征图和原始特征图的坐标变换关系,efgh根据H2变换得到EFGH,从而找到C1和C2的完整投影区域/实际投影区域。
需要说明的是,步骤S134的方法,包括:
S1341:根据各个投影装置在所述投影面图像中的实际投影区域,计算由所有投影装置在投影面图像中的实际投影区域组成的最大投影区域的最大内接矩形区域作为拼接投影区域;
S1342:计算各个投影装置在投影面图像中的实际投影区域与拼接投影区域的交集,获得各个投影装置在投影面图像中的期望投影区域;
S1343:根据各个投影装置在投影面图像中的期望投影区域与实际投影区域,计算各个投影装置的拼接调整参数。
举例说明2个投影装置拼接,如图4所示,假设期望投影装置C1C2拼接投影区域为AFCH,则相应的投影装置C1需要将投影区域范围从abcd变换到ABCD,投影装置C2需要将投影区域范围从efgh变换到EFGH。具体计算方法包括:用最小二乘法计算从abcd到ABCD的单应变换矩阵H1,从efgh到EFGH的单应变换矩阵H2,分别作用于投影装置C1和C2,则可以得到期望的投影画面区域AFCH,即完成拼接过程。单应变化矩阵计算方法包括最小二乘法或者DLT方法。
举例说明3个投影装置拼接,如图5所示,以3个投影装置为例描述各个投影装置查找自己的期望投影区域的方法,根据上面介绍的方法可以求出投影装置C1、C2和C3各自的实际投影区域,根据3个投影装置的实际投影区域,可以得到3个投影装置的最大覆盖区域(即3个投影装置的实际投影区域取并集得到的区域),在最大覆盖区域内通过RANSAC方法取最大内接矩形,使该矩形区域面积最大,可以得到如图5所示ABCD区域。然后计算ABCD区域与各个投影装置的实际投影区域的交集,就可以得到各个投影装置的期望投影区域。
本申请的技术方案通过小比例特征图像进行多个投影装置的投影区域定位,通过外接/外部图像采集装置拍照和单应性变换方法进行多个投影装置的投影画面的拼接,操作简单,且计算难度小,非常适于广泛推广。
下面对本发明实施例提供的实现投影画面拼接的装置进行介绍,需要说明的是,有关实现投影画面拼接的装置的说明可参见上文的实现投影画面拼接的方法,以下并不做赘述。
如图6所示,本发明实施例提供一种实现投影画面拼接的装置,应用于投影系统,该投影系统包括图像采集装置和至少2个投影装置,装置包括:
图像投射模块21,用于向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
图像采集模块22,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
参数计算模块23,用于根据所述投影面图像分别计算各个所述投影装置的拼接调整参数;
参数发送模块24,用于将各个所述投影装置的拼接调整参数发送给对应的投影装置,以使各个所述投影装置按对应的拼接调整参数调整投射图像。
需要说明的是,参数计算模块23包括:
投影区域获取单元,用于获取各个投影装置在所述投影面图像中对应的小比例特征图像区域;
缩小比值获取单元,用于获取各个投影装置的小比例特征图的特征图案缩小比值;
实际区域计算单元,用于根据各个投影装置在投影面图像中对应的小比例特征 图像区域和各个投影装置的小比例特征图的特征图案缩小比值,计算各个投影装置在投影面图像中的实际投影区域;
调整参数计算单元,用于根据各个投影装置在投影面图像中的实际投影区域计算所有投影装置在投影面图像中组成的拼接投影区域及各个投影装置的拼接调整参数。
需要说明的是,投影区域获取单元包括:
图像信息获取组件,用于识别投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
对应关系建立组件,用于建立投影装置的编号信息与小比例特征图像区域的对应关系。
需要说明的是,缩小比值获取单元的方法包括:获取各个投影装置预设的小比例特征图的特征图案缩小比值;或者获取各个投影装置的小比例特征图和原始特征图,计算各个投影装置的小比例特征图的特征图案缩小比值。
需要说明的是,实际区域计算单元包括:
坐标关系获取组件,用于获取各个投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
角点坐标获取组件,用于获取各个投影装置在投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
实际坐标计算组件,用于根据各个投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个投影装置在投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个投影装置在投影面图像中的实际投影区域的4个角点像素坐标。
需要说明的是,调整参数计算单元包括:
拼接区域计算组件,用于根据各个投影装置在投影面图像中的实际投影区域,计算由所有投影装置在投影面图像中的实际投影区域组成的最大投影区域的最大内接矩形区域作为拼接投影区域;
期望区域计算组件,用于计算各个投影装置在投影面图像中的实际投影区域与拼接投影区域的交集,获得各个投影装置在所述投影面图像中的期望投影区域;
拼接参数计算组件,用于根据各个所述投影装置在所述投影面图像中的期望投影区域与实际投影区域,计算各个所述投影装置的拼接调整参数。
本发明实施例还提供一种实现投影画面拼接的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的实现投影画面拼接的方法。
如图7所示,本发明实施例还提供一种投影系统,包括图像采集装置、至少2个投影装置和上述的实现投影画面拼接的装置,实现投影画面拼接的装置分别与图像采集装置和各个投影装置建立通信。其中,投影装置可以预设有小比例特征图,响应于实现投影画面拼接的装置发送的图像投射命令,投影装置投射小比例特征图。投影装置也可以预设有原始特征图和特征图案缩小比值,响应于实现投影画面拼接的装置发送的图像投射命令,投影装置将原始特征图中的特征图案在原始像素比例下按特征图案缩小比值缩小生成小比例特征图,投射小比例特征图。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、 物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种实现投影画面拼接的方法,其特征在于,应用于投影系统,所述投影系统包括图像采集装置和至少2个投影装置,所述方法包括:
    S11:向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
    S12:向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
    S13:根据所述投影面图像分别计算各个所述投影装置的拼接调整参数;
    S14:将各个所述投影装置的拼接调整参数发送给对应的投影装置,以使各个所述投影装置按对应的拼接调整参数调整投射图像。
  2. 根据权利要求1所述的实现投影画面拼接的方法,其特征在于,所述步骤S13的方法包括:
    S131:获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
    S132:获取各个所述投影装置的小比例特征图的特征图案缩小比值;
    S133:根据各个投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
    S134:根据各个所述投影装置在所述投影面图像中的实际投影区域计算所有投影装置在所述投影面图像中组成的拼接投影区域及各个所述投影装置的拼接调整参数。
  3. 根据权利要求2所述的实现投影画面拼接的方法,其特征在于,所述步骤S131的方法包括:
    识别所述投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图 像中对应的小比例特征图像区域;
    建立所述投影装置的编号信息与小比例特征图像区域的对应关系。
  4. 根据权利要求2所述的实现投影画面拼接的方法,其特征在于,所述步骤S132的方法包括:
    获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
    获取各个所述投影装置预设的小比例特征图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
  5. 根据权利要求2所述的实现投影画面拼接的方法,其特征在于,所述步骤S133的方法包括:
    获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
    获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
    根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
  6. 根据权利要求2所述的实现投影画面拼接的方法,其特征在于,所述步骤S134的方法包括:
    根据各个所述投影装置在所述投影面图像中的实际投影区域,计算由所有投影装置在所述投影面图像中的实际投影区域组成的最大投影区域的最大内接矩形区域作为拼接投影区域;
    计算各个所述投影装置在所述投影面图像中的实际投影区域与所述拼接投影区域的交集,获得各个所述投影装置在所述投影面图像中的期望投影区域;
    根据各个所述投影装置在所述投影面图像中的期望投影区域与实际投影区域,计算各个所述投影装置的拼接调整参数。
  7. 一种实现投影画面拼接的装置,其特征在于,应用于投影系统,所述投影系统包括图像采集装置和至少2个投影装置,所述装置包括:
    图像投射模块,用于向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
    图像采集模块,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
    参数计算模块,用于根据所述投影面图像分别计算各个所述投影装置的拼接调整参数;
    参数发送模块,用于将各个所述投影装置的拼接调整参数发送给对应的投影装置,以使各个所述投影装置按对应的拼接调整参数调整投射图像。
  8. 根据权利要求7所述的实现投影画面拼接的装置,其特征在于,所述参数计算模块包括:
    投影区域获取单元,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
    缩小比值获取单元,用于获取各个所述投影装置的小比例特征图的特征图案缩小比值;
    实际区域计算单元,用于根据各个投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
    调整参数计算单元,用于根据各个所述投影装置在所述投影面图像中的实际投 影区域计算所有投影装置在所述投影面图像中组成的拼接投影区域及各个所述投影装置的拼接调整参数。
  9. 一种实现投影画面拼接的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-6中任一项所述的实现投影画面拼接的方法。
  10. 一种投影系统,其特征在于,包括图像采集装置、至少2个投影装置和如权利要求7-8中任一项所述的实现投影画面拼接的装置,所述实现投影画面拼接的装置分别与所述图像采集装置和各个所述投影装置建立通信。
PCT/CN2020/078368 2019-04-30 2020-03-09 实现投影画面拼接的方法、装置及投影系统 WO2020220832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365124.2 2019-04-30
CN201910365124.2A CN110769228B (zh) 2019-04-30 2019-04-30 实现投影画面拼接的方法、装置及投影系统

Publications (1)

Publication Number Publication Date
WO2020220832A1 true WO2020220832A1 (zh) 2020-11-05

Family

ID=69328664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078368 WO2020220832A1 (zh) 2019-04-30 2020-03-09 实现投影画面拼接的方法、装置及投影系统

Country Status (2)

Country Link
CN (1) CN110769228B (zh)
WO (1) WO2020220832A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727080A (zh) * 2022-04-01 2022-07-08 福建卓航特种设备有限公司 便携式影像融屏设备、系统、方法及装置
CN115190280A (zh) * 2022-06-30 2022-10-14 海宁奕斯伟集成电路设计有限公司 确定融合投影图像面积装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314680B (zh) * 2019-04-30 2021-08-17 成都极米科技股份有限公司 实现投影画面叠加的方法、装置及投影系统
CN110769228B (zh) * 2019-04-30 2022-05-06 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影系统
CN117061717B (zh) * 2023-10-12 2024-01-09 杭州罗莱迪思科技股份有限公司 投影拼接视频有效控制方法、系统及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170118451A1 (en) * 2015-10-26 2017-04-27 Daisuke Sakai Information processing apparatus, image projection system, and computer program product
US20170163948A1 (en) * 2015-12-03 2017-06-08 Canon Kabushiki Kaisha Projection apparatus and control method thereof, and projection system
CN107071376A (zh) * 2017-03-29 2017-08-18 海信集团有限公司 一种投影拼接显示校正方法及装置
CN107454371A (zh) * 2016-05-30 2017-12-08 中兴通讯股份有限公司 投影区域的适配方法、装置及系统
CN109104596A (zh) * 2017-06-21 2018-12-28 中强光电股份有限公司 投影系统以及显示影像的校正方法
CN109257583A (zh) * 2018-11-23 2019-01-22 四川长虹电器股份有限公司 投影设备图像的无缝拼接方法及系统
CN109495729A (zh) * 2018-11-26 2019-03-19 青岛海信激光显示股份有限公司 投影画面校正方法和系统
CN110769228A (zh) * 2019-04-30 2020-02-07 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533276B (zh) * 2013-10-21 2017-01-18 北京理工大学 一种平面多投影快速拼接方法
JP2017044870A (ja) * 2015-08-26 2017-03-02 株式会社リコー 画像表示装置、画像表示ユニット
CN106372702B (zh) * 2016-09-06 2020-05-01 深圳市欢创科技有限公司 一种定位标识及其定位方法
CN108683897B (zh) * 2018-05-07 2020-05-19 长春理工大学 多投影显示系统畸变的智能校正方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170118451A1 (en) * 2015-10-26 2017-04-27 Daisuke Sakai Information processing apparatus, image projection system, and computer program product
US20170163948A1 (en) * 2015-12-03 2017-06-08 Canon Kabushiki Kaisha Projection apparatus and control method thereof, and projection system
CN107454371A (zh) * 2016-05-30 2017-12-08 中兴通讯股份有限公司 投影区域的适配方法、装置及系统
CN107071376A (zh) * 2017-03-29 2017-08-18 海信集团有限公司 一种投影拼接显示校正方法及装置
CN109104596A (zh) * 2017-06-21 2018-12-28 中强光电股份有限公司 投影系统以及显示影像的校正方法
CN109257583A (zh) * 2018-11-23 2019-01-22 四川长虹电器股份有限公司 投影设备图像的无缝拼接方法及系统
CN109495729A (zh) * 2018-11-26 2019-03-19 青岛海信激光显示股份有限公司 投影画面校正方法和系统
CN110769228A (zh) * 2019-04-30 2020-02-07 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727080A (zh) * 2022-04-01 2022-07-08 福建卓航特种设备有限公司 便携式影像融屏设备、系统、方法及装置
CN115190280A (zh) * 2022-06-30 2022-10-14 海宁奕斯伟集成电路设计有限公司 确定融合投影图像面积装置及方法
CN115190280B (zh) * 2022-06-30 2024-02-20 海宁奕斯伟集成电路设计有限公司 确定融合投影图像面积装置及方法

Also Published As

Publication number Publication date
CN110769228A (zh) 2020-02-07
CN110769228B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2020220832A1 (zh) 实现投影画面拼接的方法、装置及投影系统
JP7231306B2 (ja) イメージ内のターゲットオブジェクトに自動的にアノテーションするための方法、装置およびシステム
US10593014B2 (en) Image processing apparatus, image processing system, image capturing system, image processing method
US8818101B1 (en) Apparatus and method for feature matching in distorted images
CN110300292B (zh) 投影畸变校正方法、装置、系统及存储介质
US10915998B2 (en) Image processing method and device
US8228378B2 (en) Real-time composite image comparator
US20160371855A1 (en) Image based measurement system
TWI703870B (zh) 投影裝置、投影系統及影像校正方法
US11282232B2 (en) Camera calibration using depth data
CN102484724A (zh) 投影图像区域检测装置
JP2020187358A (ja) 投影システム、投影装置及びその表示画像の校正方法
TWI587241B (zh) Method, device and system for generating two - dimensional floor plan
WO2016155110A1 (zh) 图像透视畸变校正的方法及系统
CN104170371A (zh) 实现自助合影的方法和照相设备
JP6686547B2 (ja) 画像処理システム、プログラム、画像処理方法
TWI615808B (zh) 全景即時影像處理方法
JPH03200007A (ja) ステレオ計測装置
JP2015176251A (ja) 画像処理装置および画像処理方法
TW201820295A (zh) 拼接螢幕顯示方法及系統
WO2020220827A1 (zh) 实现投影画面叠加的方法、装置及投影系统
WO2020220831A1 (zh) 实现投影画面叠加的方法、装置及投影系统
CN115174878A (zh) 投影画面校正方法、装置和存储介质
WO2021208630A1 (zh) 标定方法、标定装置及应用其的电子设备
Au et al. Ztitch: A mobile phone application for immersive panorama creation, navigation, and social sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799546

Country of ref document: EP

Kind code of ref document: A1