WO2020220765A1 - 一种v2x通信方法及装置 - Google Patents

一种v2x通信方法及装置 Download PDF

Info

Publication number
WO2020220765A1
WO2020220765A1 PCT/CN2020/072327 CN2020072327W WO2020220765A1 WO 2020220765 A1 WO2020220765 A1 WO 2020220765A1 CN 2020072327 W CN2020072327 W CN 2020072327W WO 2020220765 A1 WO2020220765 A1 WO 2020220765A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregation level
service
rbg
bandwidth
control channel
Prior art date
Application number
PCT/CN2020/072327
Other languages
English (en)
French (fr)
Inventor
郑石磊
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2020220765A1 publication Critical patent/WO2020220765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • This application relates to the field of communication technology, and in particular to a V2X communication method and device.
  • control channel in the broadcast communication mode is relatively fixed, resulting in low communication flexibility.
  • the embodiments of the present application provide a V2X communication method and device, and provide a communication method with higher flexibility.
  • a V2X communication method for the Internet of Vehicles including:
  • the service requirement of the first service determine the first aggregation level corresponding to the first service from the aggregation level set; wherein, the service requirement includes the reliability requirement of the service and/or the occupied bandwidth requirement of the service;
  • the aggregation level is flexibly adjusted and determined according to the corresponding service requirements of the service, and the corresponding control channel is determined according to the aggregation level, so that the size of the control channel can be changed according to actual service requirements, improving the communication process
  • the size of the medium control channel is flexible, thereby increasing the flexibility of the communication mode.
  • the size of the control channel can be flexibly adjusted according to business requirements to ensure that under normal communication conditions, resource utilization can be relatively improved.
  • determining the first aggregation level corresponding to the first service from the aggregation level set according to the service requirements of the first service includes:
  • the configuration rule includes that the higher the reliability requirement of the service, the higher the aggregation level configured for the service; and/or the larger the occupied bandwidth of the service, the greater the aggregation level configured for the service.
  • the aggregation level can be configured according to the reliability requirement of the service and/or the occupied bandwidth requirement, so that the control channel corresponding to the determined aggregation level can meet the service requirement corresponding to the service.
  • the aggregation level set is pre-configured or configured by radio resource control RRC signaling.
  • the larger the bandwidth occupied by the service the larger the aggregation level configured for the service, which specifically includes:
  • increasing the aggregation level corresponding to the service according to the preset ratio can keep the occupied bandwidth of the service and the size of the control channel corresponding to the service always in a fixed ratio, so that the transmission power of the control channel remains relatively stable.
  • the method when the V2X communication is unicast communication, after determining the first aggregation level corresponding to the first service from the aggregation level set according to the service requirements of the first service, the method includes:
  • the aggregation level is adjusted to an aggregation level greater than the first aggregation level; wherein the second value is less than the first value.
  • the sender in the unicast communication mode, can adjust the aggregation level according to the CQI fed back by the receiver.
  • the aggregation level can be adjusted down accordingly. If the current CQI is too small, the aggregation level can be adjusted accordingly. Larger ensures that the size of the control channel can meet the requirements of normal communication, minimizes unnecessary resource overhead, and relatively improves resource utilization.
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBG resource block groups, and the control channel uses resource block group RBG as the frequency domain granularity; wherein, the RBG is It consists of an integer number of consecutive RB resource blocks.
  • a new aggregation level structure and a new frequency domain granularity of the control channel are provided.
  • Information and the like are all mapped with the RBG as the frequency domain granularity to facilitate data processing.
  • the size of the RBG corresponding to the control channel is determined according to the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the size of the RBG is adjusted according to the currently used BWP, so that continuous communication can be continued without changing the previously determined aggregation level.
  • the relationship between the RBG size and the bandwidth of the active BWP on the current carrier is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • the method when the DMRS mapping position of the data channel partially overlaps the resource position of the control channel, after determining the control channel corresponding to the first aggregation level, the method includes:
  • the DMRS mapping position of the data channel may overlap with the resource position transmission of the control channel.
  • the above scheme truncates the DMRS, and then maps after truncation to avoid Location overlap occurs, which improves the reliability of communication.
  • a method of V2X communication includes:
  • the search space corresponding to each aggregation level in the aggregation level set is determined.
  • the receiving end can determine the corresponding search space according to the pre-configured aggregation level set, and perform blind detection.
  • the receiving end detects the control channel in the corresponding search space to obtain the corresponding SCI.
  • the method includes:
  • channel estimation is performed on the DMRS distribution area.
  • the decoding frequency domain granularity at the receiving end is the same as the mapping frequency domain granularity at the transmitting end. Even when the DMRS of the data channel is truncated, normal decoding is not affected and the corresponding data is obtained. Moreover, in the above scheme, RBG is used as the frequency domain granularity, even though there are multiple possible aggregation levels, compared to using one RB as the frequency domain granularity for blind detection, the above scheme can relatively simplify the blind detection complexity to a certain extent.
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBGs, and the RBG is composed of an integer number of consecutive RB resource blocks.
  • the aggregation level set is pre-configured or configured by RRC signaling.
  • the size of the RBG is determined by the bandwidth of the partial bandwidth BWP that is currently active on the carrier.
  • the relationship between the RBG size and the bandwidth of the active BWP on the current carrier is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • a V2X communication device including: a memory, a processor, and a transceiver, wherein:
  • the memory is used to store instructions
  • the processor is configured to read instructions in the memory and execute the following process:
  • the service requirement of the first service determine the first aggregation level corresponding to the first service from the aggregation level set; wherein, the service requirement includes the reliability requirement of the service and/or the occupied bandwidth requirement of the service;
  • a V2X communication device including: a memory, a processor, and a transceiver, wherein:
  • the memory is used to store instructions
  • the processor is configured to read instructions in the memory and execute the following process:
  • the search space corresponding to each aggregation level in the aggregation level set is determined.
  • a V2X communication device including:
  • the processing module determines the first aggregation level corresponding to the first service from the aggregation level set according to the service requirement of the first service; wherein, the service requirement includes the reliability requirement of the service and/or the occupied bandwidth of the service demand;
  • the processing module is further configured to determine a control channel corresponding to the first aggregation level.
  • a V2X communication device including:
  • the processing module determines the search space corresponding to each aggregation level in the aggregation level set according to the preconfigured aggregation level set.
  • a computer-readable storage medium stores computer instructions.
  • the computer instructions run on a computer, the computer executes any one of the first aspect or the second aspect. The method described in the item.
  • FIG 1 shows the PSCCH and PSSCH multiplexing mode in the prior art
  • FIG. 2 is a schematic diagram of an application scenario of a V2X communication method in an embodiment of the application
  • FIG. 3 is a schematic diagram of an application scenario of a V2X communication method provided by an embodiment of this application;
  • FIG. 4 is a V2X communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the aggregation level according to the occupied bandwidth of the service according to the embodiment of the application;
  • FIG. 6 is a schematic diagram of overlapping DMRS mapping positions of data channels and resource positions of control channels provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of blind detection at the receiving end according to an embodiment of the application.
  • FIG. 8 is a first structural diagram of a V2X communication device provided by an embodiment of the application.
  • FIG. 9 is a second structural diagram of a V2X communication device provided by an embodiment of this application.
  • FIG. 10 is a third structural diagram of a V2X communication device provided by an embodiment of this application.
  • FIG. 11 is a fourth structural diagram of a V2X communication device provided by an embodiment of this application.
  • Network equipment which can also be called access network equipment or base station
  • can be gNB gNode B
  • can be an ordinary base station such as a base station (NodeB, NB) in a WCDMA system, an evolution type in an LTE system Base station (Evolutional NodeB, eNB or eNodeB), base station (Base Transceiver Station, BTS) in GSM or CDMA
  • can be a new radio controller New Radio controller, NR controller
  • It can also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-
  • the terminal device can be a wireless terminal device or a wired terminal device.
  • the wireless terminal device may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a mobile phone.
  • the computer of the terminal device for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • Wireless terminals can also be referred to as systems, subscriber units (Subscriber Unit, SU), subscriber stations (Subscriber Station, SS), mobile stations (Mobile Station, MB), mobile stations (Mobile), remote stations (Remote Station, RS), Access point (Access Point, AP), remote terminal (Remote Terminal, RT), access terminal (Access Terminal, AT), user terminal (User Terminal, UT), user agent (User Agent, UA), terminal equipment ( User Device, UD), or User Equipment (UE).
  • On-board equipment refers to all terminal equipment including on-board unit (OBU).
  • OBU on-board unit
  • the physical sidelink control channel PSCCH (physical sidelink control channel), also referred to as the control channel for short, refers to the channel used to send control information in V2X.
  • the physical sidelink shared channel PSSCH (physical sidelink shared channel), also referred to as the data channel for short, refers to the channel used to send data information in V2X.
  • Search Space is composed of a number of control channels.
  • the receiving end monitors the search space and performs blind detection in the search space to detect the control channel related to the receiving end.
  • a PSCCH can be understood as consisting of M consecutive units, and M is the aggregation level corresponding to the PSCCH. Regardless of the value of the AL corresponding to the PSCCH, the starting position of each AL corresponding to the mapping in the frequency domain is the same.
  • Frequency domain granularity refers to the smallest processing unit for mapping or decoding on PSCCH or PSSCH.
  • the RBG is composed of n consecutive resource blocks (RB).
  • the DMRS mapping pattern includes indication information for indicating demodulation of DMRS, such as the time domain position of DMRS, Frequency domain position etc.
  • the DMRS of the data channel can be understood as the DMRS carried on the data channel, and the DMRS used to demodulate the data can also be understood as the DMRS corresponding to the data.
  • the DMRS of the control channel can be understood as the DMRS carried on the control channel, used to demodulate the DMRS of the SCI, and can also be understood as the direct link downlink control information.
  • the sending end and the receiving end, at least one of the sending end and the receiving end is a vehicle-mounted device, and the other can be a terminal device or a vehicle-mounted device.
  • the sending end and the receiving end are relative, and a device can be either the sending end or the receiving end.
  • the first terminal device sends data to the second terminal device
  • the third terminal device sends data to the first terminal device.
  • the first terminal device is the sender relative to the second terminal device, and the second terminal device is relative to the first terminal device.
  • the network device can actually be used as the sender, but in this application, in order to distinguish the terminal device and the network device as the sender, the sender referred to herein refers to the terminal device.
  • Figure 1 shows that in the existing Internet of Vehicles communication process, each device generally communicates through broadcast, that is, the sender sends sidelink control information (SCI) on PSCCH, and The data is correspondingly mapped on the PSCCH, and the receiving end blindly checks the search space to obtain the corresponding SCI. According to the SCI, the resource of the PSCCH is obtained.
  • SCI sidelink control information
  • PSCCH and PSSCH two channels use the same frequency domain resources
  • PSCCH and PSSCH channels use different frequency domain resources
  • PSCCH and associated PSSCH use non-overlapping frequency domain resources for transmission on all time domain resources, and the time domain resources used by the two channels are exactly the same;
  • Part of the PSCCH and the associated PSSCH are transmitted on non-overlapping frequency domain resources using overlapping time domain resources, but the remaining part of the PSSCH and another part of PSCCH are transmitted on non-overlapping time domain resources.
  • V2X communication the above-mentioned four multiplexing modes are mainly used for communication.
  • the parameters of the control channel are relatively fixed, which leads to the limitation of the communication mode.
  • the current communication methods may not be able to meet the needs of these services. Therefore, there is an urgent need for a more flexible V2X communication method.
  • an embodiment of the present application provides a V2X communication method, and the following describes the application scenarios involved in the embodiment of the present application.
  • this application scenario can be understood as a schematic diagram in the V2X multicast communication mode, or can be understood as a schematic diagram in the broadcast communication mode in V2X.
  • This scenario includes multiple vehicle-mounted devices and network devices, each vehicle-mounted device can communicate with each other, and each vehicle-mounted device and network device can communicate with each other.
  • Figure 2 includes two vehicle-mounted devices and one base station, but in fact, the number of vehicle-mounted devices and base stations is not limited.
  • Figure 2 shows the interaction of two vehicle-mounted devices as an example, which can actually be the interaction between the vehicle-mounted device and any other device.
  • This application scenario is a schematic diagram of a unicast communication mode in V2X.
  • the application scenario includes two vehicle-mounted devices.
  • the unicast communication mode generally does not involve network devices, and two terminal devices perform point-to-point communication.
  • Figure 4 is a schematic flow diagram of the method, below in conjunction with Figure 4, the implementation process of the method is detailed Description.
  • Step 401 The sending end determines the first aggregation level corresponding to the first service from the aggregation level set according to the service requirement of the first service.
  • the service requirements refer to the requirements of various aspects corresponding to the current service, including but not limited to the reliability requirements of the service and/or the bandwidth occupied by the service.
  • Reliability requirements can be understood as the fault tolerance of the service. For example, it can be characterized by block error rate (BLER), that is, the percentage of error blocks in all sent blocks. The higher the reliability, the corresponding The smaller the value of BLER.
  • BLER block error rate
  • the occupied bandwidth requirement of a service refers to the bandwidth required to send the service. Generally speaking, the larger the data that needs to be sent corresponding to the service, the larger the bandwidth consumed corresponding to the service.
  • the aggregation level set is composed of multiple aggregation levels, and the first aggregation level can be understood as a certain aggregation level in the aggregation level set.
  • the aggregation level set is ⁇ AL 0 , AL 1 ,...AL L ⁇ , which includes L types of aggregation levels, and the first aggregation level is the aggregation level AL 0 .
  • the aggregation level set may be configured by a network device through radio resource control (Radio Resource Control, RRC) signaling, or pre-configured in the sender.
  • RRC Radio Resource Control
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBG resource block groups, and the RBG is composed of an integer number of consecutive RB resource blocks.
  • the number of RBs included in the RBG is uncertain, and the size of the RBG is determined according to the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the part of the bandwidth BWP in the active state on the current carrier can be further understood as the BWP currently in the active state in the transmitting end.
  • the relationship between the RBG size and the active partial bandwidth BWP on the current carrier is as follows:
  • M represents the total number of RBGs corresponding to the BWP
  • n represents the number of resource blocks RB corresponding to an RBG
  • N represents the number of resource blocks RB corresponding to the BWP
  • the specific RBG size and BWP bandwidth correspondence relationship can follow the configuration of the RBG size and system bandwidth in the resource allocation scheme in LTE, as shown in Table 1 as an example.
  • Table 1 shows the relationship between RBG size and BWP bandwidth.
  • the sending end may determine the service requirements of the first service according to the type corresponding to the first service, or the first service is configured with corresponding service requirements by default, for example, the corresponding service requirement of the driverless service is BLER less than 3% . After obtaining the service requirements of the first service, the sending end determines the aggregation level matching the first service from the pre-configured aggregation level set.
  • the first aggregation level corresponding to the first service is determined according to the business requirements of the first service and the corresponding relationship, and the corresponding relationship is used to indicate the relationship between different business requirements and different aggregation levels.
  • aggregation levels corresponding to different service requirements are pre-stored in the sending end. After determining the service requirements of the first service currently being processed, the first service corresponding to the first service can be matched according to the corresponding relationship and the service requirements of the first service. Aggregation level.
  • the sending end determines that the service requirement of the first service is BLER of 5%, the sending end determines that the aggregation level corresponding to the first service is AL 1 .
  • the first aggregation level corresponding to the first service is determined according to the service requirements of the first service.
  • the configuration rule includes that the higher the reliability requirement of the service, the higher the aggregation level configured for the service, and/or the larger the bandwidth occupied by the service, the greater the aggregation level configured for the service.
  • the larger the aggregation level can be understood as the greater the number of RBs included in the aggregation level.
  • the reliability requirements of the service and the occupied bandwidth of the service can refer to the content discussed in the previous section, and will not be repeated here.
  • a corresponding configuration rule is pre-stored in the sending end, and after obtaining the business requirements of the first service, the sending end can determine the corresponding set level according to the configuration rule.
  • the first method of the second method is the first method of the second method.
  • the configuration rules include that the higher the reliability requirements of the business, the greater the aggregation level configured for the business.
  • the reliability requirements of different services may be different.
  • the higher the reliability requirement required by the service the larger the aggregation level is configured for the service at the sender to ensure the reliability of the service.
  • the sender can configure a relatively small aggregation level for the service, which reduces the overhead of the control channel while meeting service requirements.
  • the sender since there is no clear correspondence between reliability and aggregation level, the sender needs to determine the aggregation corresponding to the next service configuration based on the size between the reliability of the previous service and the aggregation level. The size of the grade.
  • the configuration rule includes that the larger the occupied bandwidth of the service, the larger the aggregation level configured for the service.
  • the width of the data channel in the frequency domain is variable.
  • the control channel is in the frequency domain If the upper limit is fixed, then as the data channel frequency domain becomes wider, the proportion of the control channel bandwidth in the data channel bandwidth will decrease, which means that the control channel transmission power decreases. Therefore, in the embodiment of the present application, if the occupied bandwidth of the service becomes larger, the aggregation level configured for the service becomes larger, and the frequency domain of the corresponding control channel becomes wider, so as to solve the problem of the transmission power drop.
  • the larger the occupied bandwidth of the service the larger the aggregation level configured for the service relative to the occupied bandwidth of the service by the preset ratio.
  • a preset ratio is pre-stored at the sending end. After the occupied bandwidth of the current service is determined, the corresponding required aggregation level is calculated according to the preset ratio. It can be understood that regardless of the type of service, the occupied bandwidth of the service and the service The ratio between the corresponding aggregation levels remains unchanged.
  • the occupied bandwidth of the first service is 1 bit, corresponding to the aggregation level size of the first service 2 RB (AL), as shown in Figure 5, the second The occupied bandwidth of the service is 2 bits, and the aggregation level size corresponding to the second service is 4 RBs.
  • the third method of the second method is the third method of the second method.
  • the configuration rules include the larger the occupied bandwidth of the service, the higher the aggregation level configured for the service, and the higher the reliability requirement of the service, the greater the aggregation level configured for the service.
  • the sending end determines the aggregation level corresponding to the service according to the occupied bandwidth and reliability requirements of the service. The larger the occupied bandwidth and the higher the service reliability, the higher the corresponding aggregation level.
  • the bandwidth occupied by the service is large, but the reliability requirement of the service is low.
  • a corresponding aggregation level is determined according to the reliability, and the aggregation level between the two aggregation levels is selected as the determined aggregation level.
  • the priority of the reliability requirements and the bandwidth requirements of the service is pre-stored in the sending end, and the sending end mainly satisfies the high priority service requirements first, and determines the corresponding aggregation level based on the high priority service requirements.
  • the business demand category with the highest priority among the business needs is used to determine the corresponding aggregation level.
  • the configuration rules include multiple rules for the selection of aggregation levels, and each of the multiple rules involves a category of business requirements.
  • the service requirement may include different service requirement categories, and the sending end determines the corresponding aggregation level by satisfying the service requirement category with the highest priority.
  • Step 402 Determine the control channel corresponding to the first aggregation level.
  • the sending end may determine the corresponding control channel according to the corresponding aggregation level.
  • the execution end of the network device executes step 401 and step 402, and the execution manner of the network device is the same as the execution manner of the sending end, which will not be repeated here.
  • steps 401 and 402 can be performed by the network device, and in the unicast communication mode, steps 401 and 402 can be performed by the sender.
  • step 401 to step 402 since the service requirements of different services are different, the aggregation levels determined according to different service requirements are not completely the same, and the control channel sizes determined for different aggregation levels are also different.
  • the method of flexibly determining the size of the control channel according to business requirements is realized, and the flexibility of communication is improved.
  • Step 403 The transmitting end performs truncated mapping processing on the DMRS of the data channel.
  • the transmitting end determines that the DMRS mapping position of the data channel partially overlaps the resource position of the control channel
  • the data channel demodulation reference signal DMRS is truncated to obtain the truncated DMRS of the data channel
  • the transmitting end Taking RBG as the granularity of the frequency domain, the DMRS of the truncated data channel is mapped on multiple regions of the data channel; wherein, the resource positions of the multiple regions and the control channel do not overlap.
  • mapping process in the embodiment of the present application is performed with RBG as the frequency domain granularity.
  • the RBG is also used as the processing unit for truncation.
  • the size of the RBG at the receiving end is the same as the size of the RBG at the transmitting end.
  • the content of the RBG can refer to the content discussed in the previous section, which will not be repeated here. Partial overlap can be understood as the resource position of the control channel occupies a part of the DMRS mapping position of the data channel.
  • the DMRS mapping position of the data channel may overlap with the resource position of the control channel.
  • the sender determines whether the mapping position of the DMRS of the data channel on the data channel overlaps with the resource position of the control channel according to the DMRS corresponding to the data channel. If the mapping position of the DMRS of the data channel on the data channel and the control channel The resource location of the data channel overlaps, and the transmitting end truncates the DRMS of the data channel.
  • the DMRS of the data channel after the truncation processing is mapped on multiple regions of the data channel to avoid the data channel and control Channel collision. If the mapping position of the DMRS of the data channel on the data channel does not overlap the resource position of the control channel, there is no need to perform truncation processing on the DMRS of the data channel, and the DMRS of the data channel is mapped to the corresponding data channel.
  • the sender determines that the mapping position of the DMRS of the data channel overlaps with the SCI carried on the control channel (shown in the gray area in Figure 6).
  • the sender truncates the DMRS and maps them to the map respectively. In the a and b areas in 6, thereby avoiding the overlap between the DMRS of the data channel and the DRMS of the control channel.
  • Step 404 The sending end sends the SCI on the control channel and the data DATA on the data channel.
  • SCI includes information such as the demodulation reference channel (Demodulation Reference Signal, DMRS) mapping mode, modulation and coding scheme (Modulation and Coding Scheme, MCS), priority, retransmission indication, and data time-frequency resource location information of the data channel.
  • DMRS Demodulation Reference Signal
  • MCS Modulation and Coding Scheme
  • Priority can be understood as the priority of the business.
  • control channel when the control channel sends the SCI, it also includes the DMRS of the control channel, and the SCI and the DMRS of the control channel are sent together.
  • data channel sends DATA it also includes the DMRS of the data channel, and the DATA and the DMRS of the data channel are sent together.
  • control channel and the data channel overlap in the time domain as an example (you can continue to refer to the multiplexing mode 3 and multiplexing mode 4 in Figure 1).
  • Data is sent sequentially on each Orthogonal Frequency Division Multiplexing (ODFM), so there is no clear sequence of sending SCI and DATA in the embodiment of this application.
  • ODFM Orthogonal Frequency Division Multiplexing
  • the sender first sends the DMRS of the SCI and the control channel, and then sends the data DMRS and DATA of the channel.
  • Step 405 The receiving end determines a search space corresponding to each aggregation level in the aggregation level set according to the pre-configured aggregation level set.
  • the receiving end cannot obtain in advance which control channel corresponding to the aggregation level the transmitting end uses to send the SCI. Therefore, the receiving end will perform a blind check on the search space corresponding to each aggregation level in the aggregation level set according to the preconfigured aggregation level set.
  • the receiving end uses the pre-configured number of time-domain symbols of the control channel and the start position of the time-frequency resource of the control channel. As discussed above, the start position of the frequency domain corresponding to each aggregation level is the same , The receiving end can determine the corresponding multiple search spaces. For example, if the aggregation level set includes N aggregation levels, the receiving end can determine the N search space and the receiving end will perform at most N blind checks, and N is a positive integer.
  • the receiving end uses RBG as the frequency domain granularity to perform blind detection.
  • the start position of the frequency domain mapping corresponding to each aggregation level is the same, so that the receiving end can quickly determine the corresponding search space and reduce blind detection.
  • Complexity. RBG can refer to the previous discussion content, and will not repeat it here.
  • the aggregation level set includes ⁇ AL0, AL1 ⁇
  • the receiving end according to the pre-configured frequency domain starting position is shown in Figure 7 c
  • the receiving end only needs to search for the first search shown in AL0 Space
  • the second search space shown in AL1 performs blind detection.
  • Step 406 the receiving end obtains the first control channel by blindly detecting the control channel on the search space corresponding to each aggregation level in the aggregation level set, and decodes the first control channel to obtain the SCI.
  • the receiving end after determining multiple search spaces, performs blind detection and decoding on the control channel in each search space, and then performs a cyclic redundancy check (Cyclic Redundancy Check) on the information carried by the control channel in the current blind detection area.
  • Redundancy Check CRC
  • CRC Cyclic Redundancy Check
  • the frequency domain granularity of the first control channel is RBG, and the RBG can refer to the foregoing discussion content, which will not be repeated here.
  • Step 407 The receiving end performs channel estimation on the data channel according to the SCI.
  • the DMRS mapping mode of the data channel is carried in the SCI.
  • the receiving end can obtain the DMRS mapping mode of the data channel and the time domain position of the first control channel according to the SCI, and exclude the first control channel.
  • the mapping distribution area of the DMRS of the data channel can be determined.
  • the receiving end performs channel estimation according to the distribution area of the DMRS, and then obtains data.
  • the DMRS mapping mode of the control channel is generally pre-configured.
  • the receiving end determines that the DMRS distribution area of the data channel is in the three areas Z1, Z2, and Z3 in Figure 6, and the receiving end performs channel estimation on the three areas according to the preset RBG as the frequency domain granularity. .
  • the receiving end can perform channel estimation according to the RBG to obtain the corresponding DMRS.
  • Step 408 When in the unicast communication mode in V2X communication, the sender receives a channel quality indication (Channel Quality Indication, CQI).
  • CQI Channel Quality Indication
  • the receiving end tests the current channel quality to obtain the Signal to Interference plus Noise Ratio (SINR), and the receiving end maps the SINR to the corresponding CQI, and periodically or The CQI is reported to the sending end aperiodically, and the sending end thus receives the CQI.
  • SINR Signal to Interference plus Noise Ratio
  • the CQI generally ranges from 0 to 31. The larger the CQI value, the better the current channel quality.
  • Step 409 The sender adjusts the aggregation level in real time according to the CQI.
  • the transmitting end determines that the value of the CQI is greater than the first value, then adjusts the aggregation level to be smaller than the first aggregation level. If it is determined that the value of the CQI is smaller than the second value, the aggregation level is adjusted to an aggregation level greater than the first aggregation level. The first value is greater than the second value.
  • the reduction of the current aggregation level is smaller.
  • the current aggregation level is increased more. If the value of CQI is between the first value and the second value, the aggregation level is not adjusted.
  • the aggregation level can be adjusted to be smaller than the first aggregation level.
  • the aggregation level is adaptively adjusted according to the CQI, which can reduce the overhead of the transmitting end under the condition of ensuring normal data transmission.
  • step 403, step 408-step 409 are optional steps.
  • an embodiment of the present application also provides a V2X communication device. Please refer to FIG. 8.
  • the device includes a memory 801, a processor 802, and a transceiver 803, where:
  • the memory 801 is used to store instructions
  • the processor 802 is configured to read instructions in the memory and execute the following process:
  • the service requirement of the first service determine the first aggregation level corresponding to the first service from the aggregation level set; where the service requirement includes the reliability requirement of the service and/or the occupied bandwidth requirement of the service;
  • the device in the embodiment of this application is equivalent to the sender or network device discussed above.
  • the processor 802 is specifically used to:
  • the first aggregation level corresponding to the first service is determined from the aggregation level set, including:
  • the configuration rule includes that the higher the reliability requirement of the service, the higher the aggregation level configured for the service, and/or the larger the bandwidth occupied by the service, the greater the aggregation level configured for the service.
  • the device in the embodiment of this application is equivalent to the sender or network device discussed above.
  • the aggregation level set is pre-configured or configured by radio resource control RRC signaling.
  • the larger the occupied bandwidth of the service the larger the aggregation level configured for the service, which specifically includes: the larger the occupied bandwidth of the service, the aggregation level configured for the service is a preset ratio to the occupied bandwidth of the service Increase.
  • V2X communication is unicast communication
  • the transceiver 803 is configured to receive the channel quality indicator CQI fed back by the receiving end after determining the first aggregation level corresponding to the first service from the aggregation level set according to the service requirements of the first service;
  • the processor 802 is further configured to, if it is determined that the channel quality indicator CQI is greater than the preset first value, adjust the aggregation level to an aggregation level smaller than the first aggregation level;
  • the processor 802 is further configured to, if it is determined that the channel quality indicator CQI is less than the preset second value, adjust the aggregation level to an aggregation level greater than the first aggregation level; wherein the second value is less than the first value.
  • the device in the embodiment of this application is equivalent to the sending end discussed above.
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBG resource block groups, and the control channel uses the resource block group RBG as the frequency domain granularity; where RBG is an integer number of consecutive RB resources Block composition.
  • the size of the RBG corresponding to the control channel is determined according to the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the relationship between the RBG size and the BWP bandwidth is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • the processor 802 when the DMRS mapping position of the data channel partially overlaps the resource position of the control channel, the processor 802 is further configured to:
  • the DMRS of the truncated data channel is mapped on multiple regions of the data channel; among them, the resource positions of the multiple regions and the control channel do not overlap.
  • processor 802 is taken as an example, but the number of processors 802 is actually not limited.
  • processor 802 and the transceiver 803 in FIG. 8 may be coupled or arranged relatively independently.
  • an embodiment of the present application also provides a V2X communication device. Please refer to FIG. 9. This device is equivalent to the sending end discussed above.
  • the device includes: a memory 901, a processor 902 and transceiver 903, of which:
  • the memory 901 is used to store instructions
  • the processor 902 is configured to read instructions in the memory 901 and execute the following process:
  • the search space corresponding to each aggregation level in the aggregation level set is determined.
  • the processor 902 is also used to:
  • the first control channel is decoded to obtain the direct link control information SCI.
  • the processor 902 is also used to:
  • channel estimation is performed on the DMRS distribution area.
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBGs, and the RBG is composed of an integer number of consecutive RB resource blocks.
  • the aggregation level set is pre-configured or configured by radio resource control RRC signaling.
  • the size of the RBG is determined by the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the relationship between the RBG size and the BWP bandwidth is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • processor 902 is taken as an example, but the number of processors 902 is actually not limited.
  • processor 902 and the transceiver 903 in FIG. 9 may be coupled and arranged, or may be relatively independently arranged.
  • FIG. 10 Based on the V2X communication method discussed in FIG. 4, an embodiment of the present application also provides a V2X communication device. Please refer to FIG. 10, which includes:
  • the processing module 100 determines the first aggregation level corresponding to the first service from the aggregation level set; where the service requirements include the reliability requirements of the service and/or the occupied bandwidth requirements of the service;
  • the processing module 1001 is further configured to determine the control channel corresponding to the first aggregation level.
  • the device in the embodiment of this application is equivalent to the sender or network device discussed above.
  • the processing module 1001 is specifically used to:
  • the first aggregation level corresponding to the first service is determined from the aggregation level set, including:
  • the configuration rule includes that the higher the reliability requirement of the service, the higher the aggregation level configured for the service, and/or the larger the bandwidth occupied by the service, the greater the aggregation level configured for the service.
  • the device in the embodiment of this application is equivalent to the sender or network device discussed above.
  • the aggregation level set is pre-configured or configured by radio resource control RRC signaling.
  • the larger the occupied bandwidth of the service the larger the aggregation level configured for the service, which specifically includes: the larger the occupied bandwidth of the service, the aggregation level configured for the service is a preset ratio to the occupied bandwidth of the service Increase.
  • V2X communication is unicast communication
  • the transceiver module 1002 is configured to receive the channel quality indicator CQI fed back by the receiving end after determining the first aggregation level corresponding to the first service from the aggregation level set according to the service requirements of the first service;
  • the processing module 1001 is further configured to, if it is determined that the channel quality indicator CQI is greater than the preset first value, adjust the aggregation level to be smaller than the first aggregation level;
  • the aggregation level is adjusted to an aggregation level greater than the first aggregation level; wherein the second value is less than the first value.
  • the device in the embodiment of this application is equivalent to the sending end discussed above.
  • each aggregation level in the aggregation level set is composed of multiple consecutive RBG resource block groups, and the control channel uses the resource block group RBG as the frequency domain granularity; where RBG is an integer number of consecutive RB resources Block composition.
  • the size of the RBG corresponding to the control channel is determined according to the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the relationship between the RBG size and the BWP bandwidth is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • the processing module 1002 is also used to:
  • the DMRS of the truncated data channel is mapped on multiple regions of the data channel; wherein, the resource positions of the multiple regions and the control channel do not overlap.
  • processing module 1001 in FIG. 10 may be implemented by the processor 802 in FIG. 8.
  • an embodiment of the present application also provides a V2X communication device. Please refer to FIG. 11.
  • This device is equivalent to the sending end discussed above, and the device includes:
  • the processing module 1101 determines the search space corresponding to each aggregation level in the aggregation level set according to the pre-configured aggregation level set.
  • the transceiver module 1102 after determining the search space corresponding to each aggregation level in the aggregation level set, is used to obtain the first control channel by blindly detecting the control channel on the search space corresponding to each aggregation level in the aggregation level set;
  • the processing module 1101 is also used to decode the first control channel to obtain the direct link control information SCI.
  • processing module 1101 is also used to:
  • channel estimation is performed on the DMRS distribution area.
  • Each aggregation level in the aggregation level set is composed of multiple consecutive RBGs, and the RBG is composed of an integer number of consecutive RB resource blocks.
  • the aggregation level set is pre-configured or configured by radio resource control RRC signaling.
  • the size of the RBG is determined by the bandwidth of the active partial bandwidth BWP on the current carrier.
  • the relationship between the RBG size and the BWP bandwidth is as follows:
  • M represents the total number of RBGs corresponding to the bandwidth of the BWP
  • n represents the number of resource blocks RB corresponding to one RBG
  • N represents the number of resource blocks RB corresponding to the bandwidth of the BWP
  • processing module 1101 in FIG. 11 may be implemented by the processor 902 in FIG. 9.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions run on the computer, the computer executes The method shown in Figure 4.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

本申请提供一种V2X通信方法及装置,用于提供一种灵活性更高的通信方法。该方法包括:根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;确定与所述第一聚合等级对应的控制信道。

Description

一种V2X通信方法及装置
相关申请的交叉引用
本申请要求在2019年04月28日提交中国专利局、申请号为201910351384.4、申请名称为“一种V2X通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种V2X通信方法及装置。
背景技术
在现有的长期演进(long term evolution,LTE)车联网(vehicle to everything,V2X)通信系统中,各个设备之间一般通过广播的方式进行通信。但是随着车联网技术的不断发展,出现一些新的应用场景,例如车辆编队、高级驾驶、传感器信息共享、以及远程控制等,多种应用场景对应的业务需求也不一样。
目前,广播通信方式中控制信道相对固定,导致通信灵活性低。
发明内容
本申请实施例提供一种V2X通信方法及装置,提供一种灵活性更高的通信方法。
第一方面,提供一种车联网V2X通信方法,包括:
根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
确定与所述第一聚合等级对应的控制信道。
在上述方案中,在V2X通信过程中,根据业务对应的业务需求,灵活调 整确定聚合等级,根据聚合等级再确定对应的控制信道,使得控制信道的大小可以根据实际业务需求进行变化,提高通信过程中控制信道大小灵活,进而提高通信方式的灵活性。且,根据业务需求来灵活调整控制信道大小,保证正常通信情况下,可以相对提高资源利用率。
在一种可能的设计中,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级,包括:
按照预设的配置规则,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;
其中,所述配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大;和/或,业务的占用带宽越大,为业务配置的聚合等级越大。
在上述方案中,可以根据业务的可靠性需求和/或占用带宽需求来配置聚合等级,使得确定出的聚合等级对应的控制信道能够满足业务对应的业务需求。
在一种可能的设计中,所述聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
在上述方案中,提供多种配置聚合等级集合的方式。
在一种可能的设计中,业务的占用带宽越大,为业务配置的聚合等级越大,具体包括:
业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成预设比例增大。
在上述方案中,按照预设比例来增大业务对应的聚合等级,可以使得业务的占用带宽与该业务对应的控制信道大小始终保持固定比例,使得控制信道的发送功率保持相对稳定。
在一种可能的设计中,当所述V2X通信为单播通信时,在根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级之后,包括:
接收所述接收端反馈的信道质量指示CQI;
若确定所述信道质量指示CQI大于预设第一值,则将聚合等级调整为比所述第一聚合等级小的聚合等级;
若确定所述信道质量指示CQI小于预设第二值,则将聚合等级调整为比所述第一聚合等级大的聚合等级;其中,所述第二值小于所述第一值。
在上述方案中,在单播通信模式下,发送端可以根据接收端反馈的CQI来调整聚合等级,当前CQI过大时,可以相应将聚合等级调小,当前CQI过小时,可以相应将聚合等级调大,保证了控制信道大小能够满足正常通信所需,且尽量降低了不必要的资源开销,相对提高资源利用率。
在一种可能的设计中,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,所述控制信道以资源块组RBG为频域粒度;其中,所述RBG是由整数个连续RB资源块组成。
在上述方案中,提供一种新的聚合等级的结构,以及一种新的控制信道的频域粒度,信息等均以RBG为频域粒度进行映射,方便对数据的处理。
在一种可能的设计中,所述控制信道对应的RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。
在上述方案中,当激活的BWP变化时,根据当前使用的BWP来调整RBG的大小,从而在不改变之前确定的聚合等级的情况下,也能继续持续通信。
在一种可能的设计中,所述RBG大小与当前载波上处于激活状态的BWP的带宽之间的关系如下:
Figure PCTCN2020072327-appb-000001
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000002
表示对N除以n后的值进行向上取整运算。
在上述方案中,提供一种RBG大小与激活状态的BWP带宽的具体计算方式,发送端可以根据该计算方式确定对应的RBG大小。
在一种可能的设计中,当数据信道的DMRS映射位置与所述控制信道的资源位置部分重叠时,在确定与所述第一聚合等级对应的控制信道之后,包 括:
对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS;
以所述RBG为频域粒度,将所述截短后的数据信道的DMRS映射在所述数据信道的多个区域上;其中,所述多个区域与所述控制信道的资源位置不重叠。
在上述方案中,由于控制信道的大小是灵活变化的,因此可能出现数据信道的DMRS映射位置与控制信道的资源位置发送部分重叠,上述方案对DMRS进行截短处理,截短之后再映射,避免发生位置重叠,提高通信的可靠性。
第二方面,一种V2X通信的方法,包括:
根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
在上述方案中,接收端可以根据预配置的聚合等级集合,确定对应的搜索空间,进行盲检。
在一种可能的设计中,在确定所述聚合等级集合中每种聚合等级对应的搜索空间之后,包括:
在所述聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道;
对所述第一控制信道进行译码获得直通链路控制信息SCI。
在上述方案中,接收端在对应的搜索空间上,检测控制信道,获得对应的SCI。
在一种可能的设计中,在对所述第一控制信道进行译码获得直通链路控制信息SCI之后,包括:
根据所述SCI,获得数据信道的DMRS映射模式;
根据所述数据信道的DMRS映射模式,以及所述第一控制信道的时域位置,获得所述数据信道中的DMRS分布区域;
以预配置的RBG为频域粒度,对所述DMRS分布区域进行信道估计。
接收端解码频域粒度与发送端的映射频域粒度相同,即使在数据信道的DMRS在被截短的情况下,也不影响正常解码,获得对应的数据。且,上述方案中以RBG为频域粒度,即使聚合等级有多种可能,相较于以一个RB为频域粒度进行盲检,上述方案在一定程度上可以相对简化盲检复杂度。
在一种可能的设计中,所述聚合等级集合中每种聚合等级是由多个连续的RBG构成,所述RBG是由整数个连续RB资源块组成。
在一种可能的设计中,所述聚合等级集合是预配置的,或者由RRC信令配置的。
在一种可能的设计中,所述RBG的大小是当前载波上处于激活状态的部分带宽BWP的带宽确定的。
在一种可能的设计中,所述RBG大小与当前载波上处于激活状态的BWP的带宽之间的关系如下:
Figure PCTCN2020072327-appb-000003
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000004
表示对N除以n后的值进行向上取整运算。
第三方面,提供一种V2X通信的装置,包括:存储器、处理器和收发机,其中:
所述存储器,用于存储指令;
所述处理器,用于读取所述存储器中的指令,执行下列过程:
根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
确定与所述第一聚合等级对应的控制信道。
第四方面,提供一种V2X通信的装置,包括:存储器、处理器和收发机,其中:
所述存储器,用于存储指令;
所述处理器,用于读取所述存储器中的指令,执行下列过程:
根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
第五方面,提供一种V2X通信的装置,包括:
处理模块,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
所述处理模块,还用于确定与所述第一聚合等级对应的控制信道。
第六方面,提供一种V2X通信的装置,包括:
处理模块,根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如第一方面或第二方面中任一项所述的方法。
附图说明
图1为现有技术中PSCCH和PSSCH复用方式;
图2为本申请实施例中一种V2X通信方法的应用场景示意图;
图3为本申请实施例提供的一种V2X通信方法的应用场景示意图;
图4为本申请实施例提供的一种V2X通信方法;
图5为本申请实施例提供的聚合等级随着业务的占用带宽与之间变化示意图;
图6为本申请实施例提供的数据信道的DMRS映射位置与控制信道的资源位置重叠的示意图;
图7为本申请实施例提供的一种接收端盲检的示意图;
图8为本申请实施例提供的一种V2X通信装置的结构示意图一;
图9为本申请实施例提供的一种V2X通信装置的结构示意图二;
图10为本申请实施例提供的一种V2X通信装置的结构示意图三;
图11为本申请实施例提供的一种V2X通信装置的结构示意图四。
具体实施方式
为了更好的理解本申请实施例提供的技术方案,下面将结合说明书附图以及具体的实施方式进行详细的说明。
为了便于更清楚地理解本申请实施例,下面对本申请实施例涉及的专有名词进行介绍。
(1)网络设备,也可以称之为接入网设备或者基站,可以是gNB(gNode B),可以是普通的基站(例如WCDMA系统中的基站(NodeB,NB),LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),GSM或CDMA中的基站(Base Transceiver Station,BTS)),可以是新无线控制器(New Radio controller,NR controller),可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来新空口(New Radio,NR)直通链路(sidelink)网络中的网络设备或者未来演进的PLMN网络中的网络设备或者任何其它无线接入设备,但本发明实施例不限于此。
(2)终端设备,可以是无线终端设备也可以是有线终端设备。无线终端设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算 机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit,SU)、订户站(Subscriber Station,SS),移动站(Mobile Station,MB)、移动台(Mobile)、远程站(Remote Station,RS)、接入点(Access Point,AP)、远程终端(Remote Terminal,RT)、接入终端(Access Terminal,AT)、用户终端(User Terminal,UT)、用户代理(User Agent,UA)、终端设备(User Device,UD)、或用户装备(User Equipment,UE)。
(3)车载设备,泛指一切包括车载单元(On board Unit,OBU)的终端设备。
(4)物理直通链路控制信道PSCCH(physical sidelink control channel),又简称为控制信道,是指V2X中用于发送控制信息的信道。
(5)物理直通链路数据信道PSSCH(physical sidelink shared channel),又简称为数据信道,是指V2X中用于发送数据信息的信道。
(4)搜索空间(SS,Search Space),由若干个控制信道构成,接收端对搜索空间进行监听,并在搜索空间内进行盲检,检测出与该接收端相关的控制信道。
(5)聚合等级(Aggregation Level,AL),一个PSCCH可以理解为M个连续的单元组成,M即为该PSCCH对应的聚合等级。无论PSCCH对应的AL的取值为多少,各个AL对应在频域上映射的起始位置都是相同的。
(6)频域粒度,是指在PSCCH或PSSCH上进行映射或者译码的最小处理单元。
(7)资源块组(Resource block group,RBG),RBG是由连续的n个资源块(Resource block,RB)构成。
(8)解调参考信号映射模式(Demodulation Reference Signal pattern),又 可以称为解调参考信号图样,DMRS映射模式中包括用于指示解调DMRS的指示信息,例如DMRS的时域位置、DMRS的频域位置等。数据信道的DMRS可以理解为承载在数据信道上的DMRS,且用于解调数据的DMRS,也可以理解为数据对应的DMRS。控制信道的DMRS可以理解为承载在控制信道上的DMRS,用于解调SCI的DMRS,也可以理解为直通链路下行控制信息。
(9)发送端和接收端,发送端和接收端中至少有一个为车载设备,另一个可以是终端设备,也可以是车载设备。发送端和接收端是相对的,且一个设备既可以为发送端,也可以为接收端。例如,第一终端设备向第二终端设备发送数据,第三终端设备向第一终端设备发送数据,第一终端设备相对于第二终端设备就是发送端,第二终端设备相对与第一终端设备就是接收端,第一终端设备相对于第三终端设备就是接收端,第三终端设备相对于第一终端设备则为发送端。应当说明的是,网络设备实际上也可以作为发送端,但是本申请中为了区分终端设备和网络设备作为发送端的情况,本文所指的发送端是指终端设备。
下面对本申请实施例中涉及的背景技术进行介绍。
请参照图1,图1表示现有的车联网通信过程中,各个设备之间一般通过广播的方式进行通信,即发送端在PSCCH上发送直通链路控制信息(sidelink control information,SCI),将数据对应映射在PSCCH,接收端在搜索空间上盲检,获得对应的SCI,根据SCI,获得PSCCH的资源。
其中,PSCCH关联的PSSCH复用的四种方式(如图1中的①、②、③和④)。下面对四种复用方式分别进行说明。
①:PSCCH和PSSCH两个信道使用相同的频域资源;
②:PSCCH和PSSCH两个信道使用不同的频域资源;
③:PSCCH与相关联的PSSCH在所有的时域资源上均使用非交叠的频域资源进行传输,两个信道所使用的时域资源是完全相同的;
④:部分PSCCH和相关联的PSSCH在非交叠的频域资源上使用交叠的时域资源进行传输,但是其余部分的PSSCH和另一部分的PSCCH在非 交叠的时域资源上进行发送。
V2X通信中主要用上述四种复用方式进行通信,但是目前的V2X通信中,控制信道的参数是相对固定的,导致通信方式的局限性较大。在未来NR sidelink通信出现的不同需求的业务,目前通信方式可能无法满足这些业务的需求。因此,亟需一种灵活性更高的V2X通信方法。
鉴于此,本申请实施例提供一种V2X通信方法,下面对本申请实施例涉及的应用场景进行说明。
请参照图2,该应用场景可以理解为V2X组播通信模式下的一种示意图,或者可以理解为V2X中广播通信模式下的一种示意图。在该场景中包括多个车载设备和网络设备,各个车载设备之间可以相互通信,各个车载设备与网络设备可以相互通信。图2中包括两个车载设备和一个基站,但是实际上不限制车载设备和基站的数量。图2中是以两个车载设备交互为例,实际上可以是车载设备与其他任意设备之间的交互。
请参照图3,该应用场景为V2X中单播通信模式下的示意图,该应用场景中包括两个车载设备。单播通信模式下一般不涉及网络设备,两个终端设备进行点对点的通信。
应当说明的是,本申请实施例在没有特殊说明的情况下,本申请实施例涉及的通信方法能够适用于上述两种场景。
在图2和3的基础上,下面对本申请实施例提供的一种V2X通信的方法,请参照图4,图4为该方法的流程示意图,下面结合图4,对该方法的执行过程进行具体说明。
步骤401,发送端根据第一业务的业务需求,从聚合等级集合中确定出与第一业务对应的第一聚合等级。
其中,业务需求是指当前业务对应的各个方面的需求,包括但不限于业务的可靠性需求和/或业务的占用带宽大小需求。可靠性需求可以理解为处理该业务的容错,例如可以用误块率(block error rate,BLER)来表征,即出错的块在所有发送的块中所占的百分比,可靠性越高,对应的BLER的取值就越 小。业务的占用带宽大小需求是指发送该业务所需要消耗的带宽大小,一般来说该业务对应的需要发送的数据越大,则对应该业务所需要消耗的带宽就越大。
其中,聚合等级集合由多个聚合等级构成,第一聚合等级可以理解为聚合等级集合中的某一个聚合等级。例如聚合等级集合为{AL 0,AL 1,……AL L},即包括L种聚合等级,第一聚合等级为聚合等级AL 0
作为一种实施例,聚合等级集合可以是网络设备通过无线资源控制(Radio Resource Control,RRC)信令配置的,或者发送端中预配置的。
作为一种实施例,聚合等级集合中每个聚合等级均是由多个连续的RBG资源块组构成,RBG是由整数个连续RB资源块组成。
作为一种实施例,RBG中包括的RB的数量是不确定的,RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。当前载波上处于激活状态的部分带宽BWP可以进一步理解为发送端中当前处于激活状态的BWP。
作为一种实施例,RBG大小与当前载波上处于激活状态的部分带宽BWP之间的关系如下:
Figure PCTCN2020072327-appb-000005
其中,M表示该BWP中对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示该BWP中对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000006
表示对N除以n后的值进行向上取整运算。
作为一种实施例,具体的RBG大小与BWP带宽对应关系可以沿用LTE中资源分配方案中RBG大小与系统带宽的配置,如表1所示为例。
表1
BWPN(RB) RBG size n(RB)
<=10 1
11-26 2
27-63 3
64-110 4
表1表示RBG大小与BWP带宽的关系。
具体的,发送端可以根据第一业务对应的类型,确定第一业务的业务需求,或者第一业务默认配置有对应的业务需求,例如无人驾驶业务的对应的业务需求为BLER低于3%。发送端在获得第一业务的业务需求之后从预配置的聚合等级集合中确定出与第一业务匹配的聚合等级。
确定聚合等级的方式有多种,下面进行示例说明。
方式一:
根据第一业务的业务需求和对应关系,确定与第一业务对应的第一聚合等级,对应关系用于表示不同业务需求与不同聚合等级之间的关系。
具体的,发送端中预存有不同业务需求对应的聚合等级,在确定当前处理的第一业务的业务需求之后,可以根据对应关系和第一业务的业务需求匹配出与第一业务对应的第一聚合等级。
例如,对应关系如下表1所示:
表2
业务需求(BLER) 聚合等级
0-3% AL 0
3%-7% AL 1
7%以上 AL 2
如上表1所示,当发送端确定第一业务的业务需求为BLER为5%,则发送端确定第一业务对应的聚合等级为AL 1
方式二:
按照配置规则,根据第一业务的业务需求,确定与第一业务对应的第一聚合等级。
其中,配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大,和/或,业务的占用带宽越大,为业务配置的聚合等级越大。聚合等级越大可以理解为聚合等级中包括的RB数量越多。业务的可靠性需求、业务的占用带宽可以参照前文论述的内容,此处不再赘述。
具体的,发送端中预先存储有对应的配置规则,发送端在获取第一业务的业务需求之后,可以根据该配置规则确定出相应的集合等级。
方式二的第一种:
配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大。
具体的,由于NR sidelink通信中,可能不同业务的可靠性要求有所不同。业务所需的可靠性需求越高,发送端对应为该业务配置更大的聚合等级,以保证该业务的可靠性。当该业务的可靠性需求相对小,发送端可以为该业务配置相对小的聚合等级,在满足业务需求的同时,降低控制信道的开销。
作为一种实施例,由于可靠性与聚合等级之间没有明确的对应关系,因此,发送端需要根据上一个业务的可靠性与聚合等级之间的大小,来确定为下一个业务配置对应的聚合等级的大小。
例如,安全类消息或者无人驾驶,远程假设等高级场景等,对于可靠性要求是极高的,需要BLER达到1%及以下,此时需要比较大的聚合等级才能满足这一性能要求。但是有些其他类消息对于可靠性没有过高的要求,只需要BLER性能达到5%-10%,则可以配置较小的聚合等级即可。
方式二的第二种:
配置规则包括业务的占用带宽越大,为业务配置的聚合等级越大。
具体的,在V2X通信中可能存在不同大小的业务,数据信道在频域的宽度是可变的,请继续参照图1的③中的PSCCH与PSSCH的复用的示意图,如果控制信道在频域上固定,那么随着数据信道频域变宽,控制信道带宽在数据信道带宽上的占比就会下降,也就表示控制信道发送功率下降。因此, 本申请实施例中,如果业务的占用带宽变大,则为业务配置的聚合等级也就越大,那么对应的控制信道的频域变宽,从而解决发送功率下降的情况。
作为一种实施例,业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成该预设比例增大。
具体的,发送端预存有预设比例,当确定当前业务的占用带宽之后,根据该预设比例计算出对应所需的聚合等级,可以理解为无论是哪种业务,业务的占用带宽与该业务对应的聚合等级之间的比例是保持不变的。
请参照图5,如图5中的①所示,第一业务的占用带宽为1比特,对应第一业务的聚合等级大小2个RB(AL),如图5中的②所示,第二业务的占用带宽为2比特,对应第二业务的聚合等级大小为4个RB。
方式二的第三种:
配置规则包括业务的占用带宽越大,为业务配置的聚合等级越大,以及业务的可靠性需求越高,为业务配置的聚合等级越大。
具体的,发送端根据业务的占用带宽以及可靠性需求,确定与该业务对应的聚合等级。占用带宽越大,业务可靠性越高,则对应的聚合等级也就越大。
但是这种情况下,可能存在业务的占用带宽与业务的可靠性需求低的相矛盾的情况,例如业务占用的带宽大,但是业务的可靠性要求低,此时,发送端可以根据占用带宽一个对应的聚合等级,根据可靠性确定出一个对应的聚合等级,选择两个聚合等级中间的聚合等级作为确定的聚合等级。或者发送端中预存可靠性需求和业务的占用带宽需求的优先级高低,发送端以先满足优先级高的业务需求为主,以优先级高的业务需求确定出对应的聚合等级。
方式二的第四种:
根据预存的业务需求类别的优先级,以业务需求中最高优先级的业务需求类别来确定对应的聚合等级。
具体的,配置规则中包括针对选用聚合等级的多种规则,多种规则中每种规则涉及一种业务需求类别。在确定第一业务的业务需求之后,该业务需 求可能包括不同的业务需求类别,发送端以满足优先级最高的业务需求类别来确定对应的聚合等级。
步骤402,确定与第一聚合等级对应的控制信道。
具体的,发送端在确定第一聚合等级之后,可以根据对应的聚合等级确定出对应的控制信道。
作为一种实施例,网络设备执行端执行步骤401和步骤402,网络设备的执行方式与发送端的执行方式相同,此处不再赘述。
作为一种实施例,在组播和广播通信模式下,可以由网络设备执行步骤401和步骤402,在单播通信模式下,可以由发送端来执行步骤401和402。
在步骤401~步骤402所述的实施例中,由于不同业务的业务需求不同,所以根据不同业务需求确定出的聚合等级也就不完全相同,不同的聚合等级确定出的控制信道大小也不同,实现了根据业务需求灵活确定控制信道大小的方式,提高通信的灵活性。
步骤403,发送端对数据信道的DMRS进行截短映射处理。
具体的,发送端确定数据信道的DMRS映射位置与所述控制信道的资源位置部分重叠时,对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS,发送端以RBG为频域粒度,将截短后的数据信道的DMRS映射在数据信道的多个区域上;其中,多个区域与控制信道的资源位置不重叠。
应当说明的是,本申请实施例中的映射过程是以RBG为频域粒度进行的,自然,对数据信道的DRMS进行截短时,也是以RBG为处理单元进行截短处理的。
其中,接收端的RBG的大小与发送端的RBG的大小相同。RBG的内容可以参照前文论述的内容,此处不再赘述。部分重叠可以理解为控制信道的资源位置占用了部分数据信道的DMRS的映射位置。
具体的,由于本申请实施例中,控制信道的大小是可变的,数据信道的大小也是可变的,因此,数据信道的DMRS映射位置可能会与控制信道的资 源位置发生重叠,在本申请实施中,发送端根据数据信道对应的DMRS,确定数据信道的DMRS在数据信道上的映射位置与控制信道的资源位置是否会有重叠,如果数据信道的DMRS在数据信道上的映射位置与控制信道的资源位置有重叠,发送端对数据信道的DRMS进行截短处理,截短处理之后,再将截短处理之后的数据信道的DMRS映射在数据信道的多个区域上,以避免数据信道与控制信道碰撞。如果数据信道的DMRS在数据信道上的映射位置与控制信道的资源位置没有重叠,无需对数据信道的DMRS进行截短处理,将数据信道的DMRS映射到相应的数据信道。
例如,请参照图6,发送端确定数据信道的DMRS的映射位置与控制信道上承载的SCI(图6中灰色区域所示)存在部分重叠,发送端将DMRS截短,并分别映射在为图6中的a和b区域中,从而避免了数据信道的DMRS与控制信道的DRMS之间的重叠。
步骤404,发送端在控制信道上发送SCI和在数据信道上发送数据DATA。
发送端确定发送当前业务所需的控制信道之后,或者网络设备为发送端配置相应的控制信道之后,发送端在控制信道发送SCI,并在数据信道上发送DATA。SCI包括数据信道的解调参考信道(Demodulation Reference Signal,DMRS)映射模式、调制和编码方案(Modulation and Coding Scheme,MCS)、优先级、重传指示以及数据时频资源位置信息等信息。优先级可以理解为业务的优先级。
其中,在控制信道发送SCI的同时,还包括控制信道的DMRS,会将SCI以及控制信道的DMRS一并发送出去。且,在数据信道发送DATA的同时,还包括数据信道的DMRS,会将DATA以及数据信道的DMRS一并发送出去。
应当说明的是,在本申请实施例中,是以控制信道和数据信道在时域上重叠为例(可以继续参照图1中的复用方式③和复用方式④)进行说明的,发送端是在每个正交频分复用(Orthogonal Frequency Division Multiplexing,ODFM)上依次发送数据,所以本申请实施例中SCI和DATA没有明确的先后发送顺序。
如果是图1中的复用方式①和复用方式②中,即数据信道和控制信道在时域上没有重叠,那么一般来说,发送端是先发送SCI和控制信道的DMRS,再发送数据信道的DMRS和DATA。
步骤405,接收端根据预配置的聚合等级集合,确定与聚合等级集合中每种聚合等级对应的搜索空间。
具体的,接收端不能提前获取发送端到底使用的是哪一个聚合等级对应的控制信道发送SCI。因此,接收端会根据预配置的聚合等级集合,对与该聚合等级集合中每个聚合等级对应的搜索空间均进行盲检。
接收端进行盲检时,接收端根据预配置好的控制信道时域符号数,以及控制信道的时频资源起始位置,如前文论述的每个聚合等级对应的频域起始位置是相同的,接收端就能确定出对应多个搜索空间。例如,聚合等级集合包括N个聚合等级,接收端就能确定出N个搜索空间接收端就最多进行N次盲检,N为正整数。
同样的,接收端在进行盲检时,以RBG为频域粒度进行盲检,各个聚合等级对应的频域映射的起始位置相同,从而接收端可以快速确定出对应的搜索空间,降低盲检的复杂程度。RBG可以参照前文论述内容,此处不再赘述。
例如,请参照图7,聚合等级集合包括{AL0,AL1},接收端根据预配置的频域起始位置为图7中的c所示,接收端则只需对AL0所示的第一搜索空间,AL1所示的第二搜索空间进行盲检。
步骤406,接收端在聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道,对第一控制信道进行译码获得SCI。
具体的,接收端在确定出多个搜索空间之后,在每个搜索空间上,对控制信道进行盲检译码,然后对当前盲检区域的控制信道承载的信息进行循环冗余校验(Cyclic Redundancy Check,CRC),如果校验后得到的CRC值与当前盲检区域的CRC位置的比特相同,则确定该控制信道为第一控制信道,对应获得SCI。
其中,第一控制信道的频域粒度为RBG,RBG可以参照前文论述内容, 此处不再赘述。
步骤407,接收端根据SCI,对数据信道进行信道估计。
具体的,接收端在获得SCI之后,如前文论述SCI中携带有数据信道的DMRS映射模式,接收端可以根据SCI获得数据信道的DMRS映射模式,以及第一控制信道的时域位置,排除第一控制信道的分布区域,从而就能确定出数据信道的DMRS的映射分布区域。接收端根据预配置的RBG为频域粒度,根据DMRS的分布区域进行信道估计,进而获得数据。
其中,RBG、频域粒度可以参照前文论述的内容,此处不再赘述。控制信道的DMRS映射模式一般是预先配置好的。
例如,请继续参照图6,接收端确定数据信道的DMRS分布区域在图6中的Z1、Z2和Z3三个区域,接收端根据预设的RBG为频域粒度,对三个区域进行信道估计。
本申请实施例中,由于数据信道的DMRS映射是以RBG为频域粒度进行处理的,即使再DMRS进行截短处理的情况下,接收端能够按照RBG进行信道估计,获得相应的DMRS。
步骤408、当处于V2X通信中的单播通信模式下,发送端接收信道质量指示(Channel Quality Indication,CQI)。
具体的,在单播通信模式下,接收端对当前的信道质量进行测试,获得信噪比(Signal to Interference plus Noise Ratio,SINR),接收端根据该SINR映射到对应的CQI,并周期性或非周期性地向发送端上报CQI,发送端从而接收到CQI。CQI一般的取值范围为0~31,CQI的取值越大,表示当前的信道质量越好。
步骤409,发送端根据CQI,实时调整聚合等级。
具体的,发送端在获得CQI之后,如果确定CQI的取值大于第一值,则将聚合等级调整为比第一聚合等级小的聚合等级。如果确定CQI的取值小于第二值,则将聚合等级调整为比第一聚合等级大的聚合等级。第一值大于第二值。
作为一种实施例,当CQI的取值比第一值大得越多,则将当前聚合等级的减少得越小。当CQI的取值与第二值小得越多,则将当前聚合等级增加得越大。如果CQI的取值位于第一值与第二值之间,则不调整聚合等级的大小。
例如,预设的第一值为20,预设第二值为10,当前的CQI为27,则可以将聚合等级调整为比第一聚合等级小的聚合等级。
本申请实施例中,根据CQI自适应调整聚合等级,可以在保证正常传输数据的情况下,降低发送端的开销。
作为一种实施例,步骤403、步骤408-步骤409为可选的步骤。
在图4论述的一种V2X通信方法的基础上,本申请实施例还提供一种V2X通信装置,请参照图8,该装置包括:存储器801、处理器802和收发机803,其中:
存储器801,用于存储指令;
处理器802,用于读取存储器中的指令,执行下列过程:
根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级;其中,业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
确定与第一聚合等级对应的控制信道。
本申请实施例中的装置相当于前文论述的发送端或网络设备。
在一种可能的设计中,处理器802具体用于:
根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级,包括:
按照预设的配置规则,根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级;
其中,配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大,和/或,业务的占用带宽越大,为业务配置的聚合等级越大。
本申请实施例中的装置相当于前文论述的发送端或网络设备。
在一种可能的设计中,聚合等级集合是预配置的,或者由无线资源控制 RRC信令配置的。
在一种可能的设计中,业务的占用带宽越大,为业务配置的聚合等级越大,具体包括:业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成预设比例增大。
在一种可能的设计中,当V2X通信为单播通信时,
收发机803,用于在根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级之后,接收接收端反馈的信道质量指示CQI;
处理器802,还用于若确定信道质量指示CQI大于预设第一值,则将聚合等级调整为比第一聚合等级小的聚合等级;
处理器802,还用于若确定信道质量指示CQI小于预设第二值,则将聚合等级调整为比第一聚合等级大的聚合等级;其中,第二值小于第一值。
本申请实施例中的装置相当于前文论述的发送端。
在一种可能的设计中,聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,控制信道以资源块组RBG为频域粒度;其中,RBG是由整数个连续RB资源块组成。
在一种可能的设计中,控制信道对应的RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。
在一种可能的设计中,RBG大小与BWP带宽之间的关系如下:
Figure PCTCN2020072327-appb-000007
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000008
表示对N除以n后的值进行向上取整运算。
在一种可能的设计中,当数据信道的DMRS映射位置与控制信道的资源位置部分重叠时,处理器802还用于:
在确定与第一聚合等级对应的控制信道之后,对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS;
以RBG为频域粒度,将截短后的数据信道的DMRS映射在数据信道的多 个区域上;其中,多个区域与控制信道的资源位置不重叠。
应当说明的是,图8中是以一个处理器802为例,但是实际上不限制处理器802的数量。
其中,图8中的处理器802和收发机803可以是耦合设置的,也可以是相对独立设置的。
在图4论述的一种V2X通信方法的基础上,本申请实施例还提供一种V2X通信装置,请参照图9,该装置相当于前文论述的发送端,该装置包括:存储器901、处理器902和收发机903,其中:
存储器901,用于存储指令;
处理器902,用于读取存储器901中的指令,执行下列过程:
根据预配置的聚合等级集合,确定聚合等级集合中每种聚合等级对应的搜索空间。
在一种可能的设计中,处理器902还用于:
在确定聚合等级集合中每种聚合等级对应的搜索空间之后,在聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道;
对第一控制信道进行译码获得直通链路控制信息SCI。
在一种可能的设计中,处理器902还用于:
根据SCI,获得数据信道的DMRS映射模式;
根据数据信道的DMRS映射模式,以及第一控制信道的时域位置,获得数据信道中的DMRS分布区域;
以预配置的RBG为频域粒度,对DMRS分布区域进行信道估计。
在一种可能的设计中,聚合等级集合中每种聚合等级是由多个连续的RBG构成,RBG是由整数个连续RB资源块组成。
在一种可能的设计中,聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
在一种可能的设计中,RBG的大小是当前载波上处于激活状态的部分带 宽BWP的带宽确定的。
在一种可能的设计中,RBG大小与BWP带宽之间的关系如下:
Figure PCTCN2020072327-appb-000009
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000010
表示对N除以n后的值进行向上取整运算。
应当说明的是,图9中是以一个处理器902为例,但是实际上不限制处理器902的数量。
其中,图9中的处理器902和收发机903可以是耦合在设置的,也可以是相对独立设置的。
在图4论述的一种V2X通信方法的基础上,本申请实施例还提供一种V2X通信的装置,请参照图10,该装置包括:
处理模块1001,根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级;其中,业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
处理模块1001,还用于确定与第一聚合等级对应的控制信道。
本申请实施例中的装置相当于前文论述的发送端或网络设备。
在一种可能的设计中,处理模块1001具体用于:
根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级,包括:
按照预设的配置规则,根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级;
其中,配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大,和/或,业务的占用带宽越大,为业务配置的聚合等级越大。
本申请实施例中的装置相当于前文论述的发送端或网络设备。
在一种可能的设计中,聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
在一种可能的设计中,业务的占用带宽越大,为业务配置的聚合等级越大,具体包括:业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成预设比例增大。
在一种可能的设计中,当V2X通信为单播通信时,
收发模块1002,用于在根据第一业务的业务需求,从聚合等级集合中确定与第一业务对应的第一聚合等级之后,接收接收端反馈的信道质量指示CQI;
处理模块1001,还用于若确定信道质量指示CQI大于预设第一值,则将聚合等级调整为比第一聚合等级小的聚合等级;
若确定信道质量指示CQI小于预设第二值,则将聚合等级调整为比第一聚合等级大的聚合等级;其中,第二值小于第一值。
本申请实施例中的装置相当于前文论述的发送端。
在一种可能的设计中,聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,控制信道以资源块组RBG为频域粒度;其中,RBG是由整数个连续RB资源块组成。
在一种可能的设计中,控制信道对应的RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。
在一种可能的设计中,RBG大小与BWP带宽之间的关系如下:
Figure PCTCN2020072327-appb-000011
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000012
表示对N除以n后的值进行向上取整运算。
在一种可能的设计中,在一种可能的设计中,处理模块1002还用于:
在确定与第一聚合等级对应的控制信道之后,对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS;
以RBG为频域粒度,将截短后的数据信道的DMRS映射在数据信道的多个区域上;其中,多个区域与控制信道的资源位置不重叠。
作为一种实施例,图10中的处理模块1001可以通过图8中的处理器802 来实现。
在图4论述的一种V2X通信方法的基础上,本申请实施例还提供一种V2X通信装置,请参照图11,该装置相当于前文论述的发送端,该装置包括:
处理模块1101,根据预配置的聚合等级集合,确定聚合等级集合中每种聚合等级对应的搜索空间。
在一种可能的设计中,
收发模块1102,在确定聚合等级集合中每种聚合等级对应的搜索空间之后,用于在聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道;
处理模块1101,还用于对第一控制信道进行译码获得直通链路控制信息SCI。
在一种可能的设计中,处理模块1101还用于:
根据SCI,获得数据信道的DMRS映射模式;
根据数据信道的DMRS映射模式,以及第一控制信道的时域位置,获得数据信道中的DMRS分布区域;
以预配置的RBG为频域粒度,对DMRS分布区域进行信道估计。
聚合等级集合中每种聚合等级是由多个连续的RBG构成,RBG是由整数个连续RB资源块组成。
在一种可能的设计中,聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
在一种可能的设计中,RBG的大小是当前载波上处于激活状态的部分带宽BWP的带宽确定的。
在一种可能的设计中,RBG大小与BWP带宽之间的关系如下:
Figure PCTCN2020072327-appb-000013
其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
Figure PCTCN2020072327-appb-000014
表示对N除以n后的值进行向上取整运算。
作为一种实施例,图11中的处理模块1101可以通过图9中的处理器902来实现。
在图4论述的一种V2X通信方法的基础上,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行如图4中的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了 基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种车联网V2X通信方法,其特征在于,包括:
    根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
    确定与所述第一聚合等级对应的控制信道。
  2. 如权利要求1所述的方法,其特征在于,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级,包括:
    按照预设的配置规则,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;
    其中,所述配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大,和/或,业务的占用带宽越大,为业务配置的聚合等级越大。
  3. 如权利要求1所述的方法,其特征在于,所述聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
  4. 如权利要求2所述的方法,其特征在于,业务的占用带宽越大,为业务配置的聚合等级越大,具体包括:
    业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成预设比例增大。
  5. 如权利要求1-4任一所述的方法,其特征在于,当所述V2X通信为单播通信时,在根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级之后,包括:
    接收所述接收端反馈的信道质量指示CQI;
    若确定所述信道质量指示CQI大于预设第一值,则将聚合等级调整为比所述第一聚合等级小的聚合等级;
    若确定所述信道质量指示CQI小于预设第二值,则将聚合等级调整为比所述第一聚合等级大的聚合等级;其中,所述第二值小于所述第一值。
  6. 如权利要求1-4任一所述的方法,其特征在于,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,所述控制信道以资源块组RBG为频域粒度;其中,所述RBG是由整数个连续RB资源块组成。
  7. 如权利要求6所述的方法,其特征在于,所述控制信道对应的RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。
  8. 如权利要求6所述的方法,其特征在于,所述RBG大小与当前载波上处于激活状态的BWP的带宽之间的关系如下:
    Figure PCTCN2020072327-appb-100001
    其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
    Figure PCTCN2020072327-appb-100002
    表示对N除以n后的值进行向上取整运算。
  9. 如权利要求6所述的方法,其特征在于,当数据信道的DMRS映射位置与所述控制信道的资源位置部分重叠时,在确定与所述第一聚合等级对应的控制信道之后,包括:
    对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS;
    以所述RBG为频域粒度,将所述截短后的数据信道的DMRS映射在所述数据信道的多个区域上;其中,所述多个区域与所述控制信道的资源位置不重叠。
  10. 一种V2X通信的方法,其特征在于,包括:
    根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
  11. 如权利要求10所述的方法,其特征在于,在确定所述聚合等级集合中每种聚合等级对应的搜索空间之后,包括:
    在所述聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道;
    对所述第一控制信道进行译码获得直通链路控制信息SCI。
  12. 如权利要求11所述的方法,其特征在于,在对所述第一控制信道进行译码获得直通链路控制信息SCI之后,包括:
    根据所述SCI,获得数据信道的DMRS映射模式;
    根据所述数据信道的DMRS映射模式,以及所述第一控制信道的时域位置,获得所述数据信道中的DMRS分布区域;
    以预配置的RBG为频域粒度,对所述DMRS分布区域进行信道估计。
  13. 如权利要求10所述的方法,其特征在于,所述聚合等级集合是预配置的,或者由RRC信令配置的。
  14. 如权利要求10-13任一所述的方法,其特征在于,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成;其中,所述RBG是由整数个连续RB资源块组成。
  15. 如权利要求14任一所述的方法,其特征在于,所述RBG的大小是当前载波上处于激活状态的部分带宽BWP的带宽确定的。
  16. 如权利要求14所述的方法,其特征在于,所述RBG大小与当前载波上处于激活状态的BWP的带宽之间的关系如下:
    Figure PCTCN2020072327-appb-100003
    其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
    Figure PCTCN2020072327-appb-100004
    表示对N除以n后的值进行向上取整运算。
  17. 一种V2X通信的装置,其特征在于,包括:存储器、处理器和收发机,其中:
    所述存储器,用于存储指令;
    所述处理器,用于读取所述存储器中的指令,执行下列过程:
    根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
    确定与所述第一聚合等级对应的控制信道。
  18. 如权利要求17所述的装置,其特征在于,所述处理器具体用于:
    按照预设的配置规则,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;
    其中,所述配置规则包括业务的可靠性需求越高,为业务配置的聚合等级越大,和/或,业务的占用带宽越大,为业务配置的聚合等级越大。
  19. 如权利要求17所述的装置,其特征在于,所述聚合等级集合是预配置的,或者由无线资源控制RRC信令配置的。
  20. 如权利要求18所述的装置,其特征在于,业务的占用带宽越大,为业务配置的聚合等级越大,具体包括:
    业务的占用带宽越大,为业务配置的聚合等级相对于业务的占用带宽成预设比例增大。
  21. 如权利要求17-20任一所述的装置,其特征在于,当所述V2X通信为单播通信时,
    所述收发机用于,在根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级之后,接收所述接收端反馈的信道质量指示CQI;
    所述处理器还用于,若确定所述信道质量指示CQI大于预设第一值,则将聚合等级调整为比所述第一聚合等级小的聚合等级;
    所述处理器还用于,若确定所述信道质量指示CQI小于预设第二值,则将聚合等级调整为比所述第一聚合等级大的聚合等级;其中,所述第二值小于所述第一值。
  22. 如权利要求17-20任一所述的装置,其特征在于,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,所述控制信道以资源块组RBG为频域粒度;其中,所述RBG是由整数个连续RB资源块组成。
  23. 如权利要求22所述的装置,其特征在于,所述控制信道对应的RBG的大小是根据当前载波上处于激活状态的部分带宽BWP的带宽确定的。
  24. 如权利要求22所述的装置,其特征在于,所述RBG大小与当前载 波上处于激活状态的BWP的带宽之间的关系如下:
    Figure PCTCN2020072327-appb-100005
    其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
    Figure PCTCN2020072327-appb-100006
    表示对N除以n后的值进行向上取整运算。
  25. 如权利要求22所述的装置,其特征在于,当数据信道的DMRS映射位置与所述控制信道的资源位置部分重叠时,所述处理器还用于:
    在确定与所述第一聚合等级对应的控制信道之后,对数据信道的解调参考信号DMRS进行截短处理,获得截短后的数据信道的DMRS;
    以所述RBG为频域粒度,将所述截短后的数据信道的DMRS映射在所述数据信道的多个区域上;其中,所述多个区域与所述控制信道的资源位置不重叠。
  26. 一种V2X通信的装置,其特征在于,包括:存储器、处理器和收发机,其中:
    所述存储器,用于存储指令;
    所述处理器,用于读取所述存储器中的指令,执行下列过程:
    根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
  27. 如权利要求26所述的装置,其特征在于,处理器还用于:
    在确定所述聚合等级集合中每种聚合等级对应的搜索空间之后,在所述聚合等级集合中每种聚合等级对应的搜索空间上,通过盲检控制信道,获得第一控制信道;
    对所述第一控制信道进行译码获得直通链路控制信息SCI。
  28. 如权利要求27所述的装置,其特征在于,所述处理器还用于:
    在对所述第一控制信道进行译码获得直通链路控制信息SCI之后,根据所述SCI,获得数据信道的DMRS映射模式;
    根据所述数据信道的DMRS映射模式,以及所述第一控制信道的时域位 置,获得所述数据信道中的DMRS分布区域;
    以预配置的RBG为频域粒度,对所述DMRS分布区域进行信道估计。
  29. 如权利要求27所述的装置,其特征在于,所述聚合等级集合是预配置的,或者由RRC信令配置的。
  30. 如权利要求27-29任一所述的装置,其特征在于,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成;其中,所述RBG是由整数个连续RB资源块组成。
  31. 如权利要求30所述的装置,其特征在于,所述RBG的大小是当前载波上处于激活状态的部分带宽BWP的带宽确定的。
  32. 如权利要求30所述的装置,其特征在于,所述RBG大小与当前载波上处于激活状态的BWP的带宽之间的关系如下:
    Figure PCTCN2020072327-appb-100007
    其中,M表示所述BWP的带宽对应的RBG的总数量,n表示一个RBG中对应的资源块RB的数量,N表示所述BWP的带宽对应的资源块RB的数量,
    Figure PCTCN2020072327-appb-100008
    表示对N除以n后的值进行向上取整运算。
  33. 一种V2X通信的装置,其特征在于,包括:
    处理模块,根据第一业务的业务需求,从聚合等级集合中确定与所述第一业务对应的第一聚合等级;其中,所述业务需求包括业务的可靠性需求和/或业务的占用带宽大小需求;
    所述处理模块,还用于确定与所述第一聚合等级对应的控制信道。
  34. 如权利要求33所述的装置,其特征在于,所述聚合等级集合中每个聚合等级是由多个连续的RBG资源块组构成,所述控制信道以资源块组RBG为频域粒度;其中,所述RBG是由整数个连续RB资源块组成。
  35. 一种V2X通信的装置,其特征在于,包括:
    处理模块,根据预配置的聚合等级集合,确定所述聚合等级集合中每种聚合等级对应的搜索空间。
  36. 如权利要求35所述的装置,其特征在于,所述聚合等级集合中每个 聚合等级是由多个连续的RBG资源块组构成;其中,所述RBG是由整数个连续RB资源块组成。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-9或10-16中任一项所述的方法。
PCT/CN2020/072327 2019-04-28 2020-01-15 一种v2x通信方法及装置 WO2020220765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351384.4 2019-04-28
CN201910351384.4A CN111865519B (zh) 2019-04-28 2019-04-28 一种v2x通信方法及装置

Publications (1)

Publication Number Publication Date
WO2020220765A1 true WO2020220765A1 (zh) 2020-11-05

Family

ID=72966418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072327 WO2020220765A1 (zh) 2019-04-28 2020-01-15 一种v2x通信方法及装置

Country Status (2)

Country Link
CN (1) CN111865519B (zh)
WO (1) WO2020220765A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255688A (zh) * 2011-07-06 2011-11-23 合肥东芯通信股份有限公司 Ltepdcch盲检控制方法和装置
CN103178937A (zh) * 2013-03-21 2013-06-26 上海华为技术有限公司 一种物理信道资源管理方法及基站
CN104038331A (zh) * 2014-06-27 2014-09-10 华为技术有限公司 控制信道的聚合级别调整方法和基站
EP2978157A1 (en) * 2014-07-24 2016-01-27 Alcatel Lucent Control channel resource allocation in wireless communication networks
CN105471560A (zh) * 2014-09-05 2016-04-06 普天信息技术有限公司 一种pdcch cce聚合等级确定方法
CN107566102A (zh) * 2016-07-01 2018-01-09 英特尔Ip公司 用于控制信道解码的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106079B2 (ja) * 2011-03-31 2017-03-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法、及び受信方法
CN103391151B (zh) * 2012-05-10 2016-09-28 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
CN103546233B (zh) * 2012-07-12 2016-12-28 电信科学技术研究院 一种盲检方式确定方法、盲检方法及装置
WO2016028126A1 (ko) * 2014-08-22 2016-02-25 엘지전자(주) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
US11071136B2 (en) * 2016-08-25 2021-07-20 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
CN108631912B (zh) * 2017-03-23 2021-09-28 大唐移动通信设备有限公司 一种传输方法和装置
CN108811138B (zh) * 2017-05-05 2023-11-24 北京三星通信技术研究有限公司 传输控制信息的方法及设备
CN109548149B (zh) * 2017-09-21 2020-11-10 电信科学技术研究院 一种rbg的划分方法和用户终端
US10721765B2 (en) * 2017-09-29 2020-07-21 Kt Corporation Method and apparatus for switching bandwidth part in new radio
CN109041229B (zh) * 2017-11-10 2019-09-20 华为技术有限公司 一种通信方法、装置以及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255688A (zh) * 2011-07-06 2011-11-23 合肥东芯通信股份有限公司 Ltepdcch盲检控制方法和装置
CN103178937A (zh) * 2013-03-21 2013-06-26 上海华为技术有限公司 一种物理信道资源管理方法及基站
CN104038331A (zh) * 2014-06-27 2014-09-10 华为技术有限公司 控制信道的聚合级别调整方法和基站
EP2978157A1 (en) * 2014-07-24 2016-01-27 Alcatel Lucent Control channel resource allocation in wireless communication networks
CN105471560A (zh) * 2014-09-05 2016-04-06 普天信息技术有限公司 一种pdcch cce聚合等级确定方法
CN107566102A (zh) * 2016-07-01 2018-01-09 英特尔Ip公司 用于控制信道解码的方法和设备

Also Published As

Publication number Publication date
CN111865519A (zh) 2020-10-30
CN111865519B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
US20200092033A1 (en) Method and apparatus for determining transport block size
US7885211B2 (en) Selective rank CQI and PMI feedback in wireless networks
CN107846373B (zh) 发送或接收物理下行控制信道的方法和设备
KR20200145212A (ko) 통신 시스템에서 사이드링크 피드백 송수신 방법 및 장치
CN109392022B (zh) 传输数据的方法、终端设备和网络设备
US8755344B2 (en) Method and apparatus for granting wireless connection resources to a wireless communications device within a communication system
CN106664702A (zh) 一种数据传输方法、装置及系统
WO2018202163A1 (zh) 一种资源指示方法及装置
US20130107848A1 (en) Method and apparatus for performing client cooperation transmission through a group resource allocation scheme in a wireless access system
CN107889233B (zh) 一种资源配置的方法及装置
WO2018228579A1 (zh) 确定传输块大小的方法及装置
EP3398283B1 (en) Method, and apparatus for selecting downlink control information format
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN115104277B (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
CN111819871A (zh) 用于执行无线通信的方法和装置
WO2018196555A1 (zh) 资源分配指示方法、装置、网络侧设备及用户设备
WO2020220765A1 (zh) 一种v2x通信方法及装置
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
CN115567890A (zh) 通信方法和通信装置
CN107707286B (zh) 一种信道质量信息的反馈方法及装置
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
WO2023159646A1 (zh) 一种无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799007

Country of ref document: EP

Kind code of ref document: A1