WO2020220695A1 - 气体脉冲器固体润滑转子副及其工艺方法 - Google Patents

气体脉冲器固体润滑转子副及其工艺方法 Download PDF

Info

Publication number
WO2020220695A1
WO2020220695A1 PCT/CN2019/125063 CN2019125063W WO2020220695A1 WO 2020220695 A1 WO2020220695 A1 WO 2020220695A1 CN 2019125063 W CN2019125063 W CN 2019125063W WO 2020220695 A1 WO2020220695 A1 WO 2020220695A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
solid
solid lubrication
lubricated
gas
Prior art date
Application number
PCT/CN2019/125063
Other languages
English (en)
French (fr)
Inventor
裘钧
魏加华
王光谦
Original Assignee
清华大学
青海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 青海大学 filed Critical 清华大学
Publication of WO2020220695A1 publication Critical patent/WO2020220695A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder

Definitions

  • the application relates to a solid-lubricated rotor pair of a gas pulser and a process method thereof.
  • gas pulsers gas pulse generators
  • a method for obtaining gas pulses by high-speed control of the high-pressure gas source switch by a solenoid valve is proposed, and a mechanical rotary pulse gas generator is also proposed.
  • the existing bimetal solid lubricating bearings are generally used for polar speed rotating pairs, so as to get rid of the wear failure and gluing failure of non-liquid friction sliding bearings.
  • the radius of the rotating pair is relatively large, the rotation speed is relatively high, and the relative sliding speed between the bimetallic sliding surfaces reaches 6-10m/s, which belongs to high-speed sliding in the design of non-liquid friction sliding bearings. It is necessary to prevent the accelerated wear of the sliding surface caused by the excessively high sliding speed.
  • the gas pulser emits high-pressure pulsed air flow, the pulser rotor is in asymmetrical stress state.
  • the high-pressure gas tens of times the standard atmospheric pressure causes the bearing to bear a large radial force, which will also cause excessive wear of the sliding bearing.
  • the bearing sliding speed level is high and the radial load is also large, the PV value that controls the heat generation of the bearing is also at a high level, and the bearing is very prone to overheating and bonding. That is, the application of bimetallic solid lubrication bearings in gas pulsers faces the problems of wear failure and bonding failure at the same time.
  • This application is proposed in view of the above problems, and aims to provide a solid-lubricated rotor pair of a gas pulser, which can successfully avoid the problem of gluing failure of high-speed large-diameter bimetal solid-lubricated bearings through clever design and effectively reduce the problem of wear failure.
  • Another object of the present application is to provide a solid-lubricated rotor pair for a gas pulser, which can effectively reduce the calorific value of the bimetallic oil-free bearing and has a cooling effect.
  • the purpose of the present application is also to provide a gas pulser solid lubrication rotor pair process method, which can ensure the simple and reliable installation of the gas pulser solid lubricated rotor pair and the simple and reliable installation in the gas pulser housing.
  • the solid lubrication rotor pair of the gas pulser is characterized in that it adopts the bimetal oil-free sliding bearing form, including an inlaid solid lubrication rotor sleeve with vent holes and the same number of vent holes
  • the distribution phase of the exhaust holes on the sleeve of the embedded solid lubrication rotor along the circumferential direction is the same as the distribution phase of the exhaust holes on the solid lubrication rotor.
  • the solid lubrication rotor sleeve inlaid adopts a high-profit brass CuZn 25 A1 6 Fe 3 Mn 3 matrix, and solid lubricant is embedded on the matrix.
  • the solid lubricant is graphite Or boron nitride or niobium diselenide.
  • the solid-lubricated rotor sleeve inlaid in the rotor pair of the gas pulser acts as a stator to play the role of a bearing. Lubricate the rotor together to realize the high-pressure gas pulse switch function.
  • the solid-lubricated rotor pair of the gas pulser of the present application preferably, adopts beryllium bronze QBe1.9 hard material, or chooses the material CuSn 10 Zn 2 or stainless steel to prevent corrosion and affinity, especially Prevent the occurrence of affinity with the high-profit brass, which is the base material of the embedded solid lubricating rotor sleeve.
  • the driving end of the solid lubrication rotor has a square dimple, and the square dimple is formed by extrusion molding or machining, and the radius of the cutter head during machining cannot be greater than 1 mm , In order to process the small rounded corners of the square dimple.
  • the solid-lubricated rotor sleeve and the exhaust holes of the solid-lubricated rotor are square holes, and the square holes are formed by machining or formed by wire cutting or by electric spark forming.
  • the solid-lubricated rotor pair of the gas pulser of the present application preferably, the solid-lubricated rotor allows normal wear and is designed to be periodically replaced; the embedded solid-lubricated rotor sleeve is not allowed to wear, and is pressed in at one time through interference fit Inside the housing of the gas pulser.
  • the shaft end of the solid-lubricated rotor is in interference fit with the shaft ring of the one-way thrust ball bearing, and the shaft ring of the one-way thrust ball bearing is slowly passed through the hydraulic press. Press into the solid lubrication rotor drive end or adopt the rotor cold shrink assembly.
  • the gas pulser solid lubrication rotor pair process method includes: adopting the bimetal oil-free sliding bearing form to form a solid lubrication rotor sleeve with vent holes and a solid lubrication rotor with the same number of vent holes.
  • the distribution phase of the exhaust holes on the solid lubrication rotor sleeve in the circumferential direction is the same as the distribution phase of the exhaust holes on the solid lubrication rotor;
  • the high-profit brass CuZn 25 in the solid lubrication rotor sleeve A1 6 Fe 3 Mn 3 matrix is embedded with a solid lubricant, the solid lubricant includes graphite or boron nitride or niobium diselenide;
  • the solid lubrication rotor sleeve is assembled in the gas pulser shell by cold shrinkage, which means The solid lubrication rotor sleeve is placed in liquid nitrogen at -70°C for 2 hours and then installed on the shell.
  • the end with an assembly introduction angle is the inner end; the installation makes the solid lubrication rotor sleeve embedded in the gas pulser solid lubrication rotor pair As a stator part, the embedded solid lubrication rotor sleeve is not allowed to be worn, and is pressed into the gas pulser housing at one time through an interference fit; the installation allows the solid lubrication rotor to allow normal wear, and is designed to It can be replaced regularly.
  • the embedded solid-lubricated rotor sleeve and the solid-lubricated rotor realize the high-pressure gas pulse switch function together.
  • the solid lubrication rotor adopts beryllium bronze QBe1.9 hard material, or chooses the material CuSn 10 Zn 2 or stainless steel to prevent corrosion and affinity , Especially to prevent the affinity with the high-yield brass of the embedded solid lubricating rotor sleeve base material.
  • the square recesses at the driving end of the solid lubrication rotor are formed by extrusion molding or machining, and the radius of the cutter head cannot be greater than 1mm during machining, so as to form a square shape.
  • the small rounded corners of the dimple are formed by extrusion molding or machining, and the radius of the cutter head cannot be greater than 1mm during machining, so as to form a square shape.
  • the solid lubrication rotor sleeve and the exhaust holes of the solid lubrication rotor are square holes, and the square holes are formed by machining or formed by wire cutting or EDM.
  • the shaft end of the solid-lubricated rotor and the shaft ring of the one-way thrust ball bearing are interference fit, and the shaft ring of the one-way thrust ball bearing passes The hydraulic machine is slowly pressed into the driving end of the solid lubrication rotor or the rotor is assembled by cold shrinking.
  • the gas pulser solid lubrication rotor pair and its process method of the present application since it includes a rotor with exhaust holes and a rotor sleeve with the same exhaust holes, the distribution of the exhaust holes on the rotor sleeve in the circumferential direction is in phase with The distribution phase of the exhaust holes on the rotor is the same, and the rotor sleeve and the rotor adopt inlaid solid lubrication, etc.
  • the structure of the present application not only has the function of bearing with excellent sealing performance, but also has the function of high-pressure gas pulse switch, which can successfully avoid high-speed and large-diameter
  • the problem of gluing failure of the bimetal solid lubrication bearing and the effective reduction of the wear failure problem can achieve the technical effect of effectively reducing the heat generation and temperature of the bimetal oil-free bearing.
  • the high-pressure gas jet generates strong intermittent pulses, which can generate strong sound waves, which can be applied but not limited to fields such as strong sound waves for rain enhancement, fog reduction, and dust removal.
  • Fig. 1 is a schematic structural diagram of a gas pulser adopting a solid-lubricated rotor pair of a gas pulser according to the present application.
  • Fig. 2 is a schematic diagram of a solid-lubricated rotor pair of a gas pulser according to the present application.
  • Fig. 3 is a schematic diagram of a solid-lubricated rotor sleeve embedded with a vent hole according to the present application.
  • Fig. 4 shows a schematic diagram of the fit of the embedded solid lubrication rotor sleeve and the bearing seat, that is, the gas pulser housing according to the present application.
  • Fig. 5 is a schematic diagram of a solid-lubricated rotor of a gas pulser according to the present application.
  • Fig. 6 is a diagram of a design example of a gas pulser adopting the solid-lubricated rotor pair of the gas pulser according to the present application.
  • Fig. 1 is a schematic structural diagram of a gas pulser adopting a solid-lubricated rotor pair of a gas pulser according to the present application.
  • the structure of the gas pulser of the present application includes: motor assembly 1; fastening bolts 2; housing fastening bolts 3; bracket 4; rotor connecting plate 5; rotor assembly 6; Paper pad 7; inlet end cover 8; housing assembly 9; outlet end cover grease-resistant paper pad 10; outlet end cover 11, etc.
  • the motor assembly 1 may include a DC servo motor 100 for driving a rotor in a housing of the gas pulse generator of the gas pulser to rotate.
  • the housing fastening bolt 3 is used to fasten the housing of the gas pulse generator of the gas pulser to the bracket (or support frame) 4.
  • the bracket (or support frame) 4 is used to firmly support the motor assembly 1 and the gas pulse generator of the gas pulser.
  • the rotor connecting plate 5 is used to transmit torque between the motor shaft of the motor assembly 1 and the rotor in the gas pulse generator housing of the gas pulse generator through the motor shaft coupling sleeve.
  • the rotor assembly 6 includes a solid-lubricated rotor pair for a gas pulser according to the present application.
  • the rotor pair includes a rotor with a vent hole and a solid-lubricated rotor sleeve with the same vent hole, and is located in the housing of the gas pulse generator of the gas pulser internal.
  • Fig. 6 is a diagram of a design example of a gas pulser adopting the solid-lubricated rotor pair of the gas pulser according to the present application.
  • the gas pulser includes an inlet end cover 104, an inlet port, an outlet end cover 103, an outlet port, a housing 102, a support frame 101, and a DC servo motor.
  • the inlet end cover, the inlet port, the outlet end cover, the gas outlet, the casing and the components inside the casing are assumed to be the gas pulse generator of the gas pulse generator.
  • the working principle of the gas pulser of the present application is: continuous high-pressure gas is blown in from the air inlet of the gas pulser, the constant pressure is continuously compressed air, and the motor is driven by a motor to turn on and off.
  • the vented rotor and the solid-lubricated rotor with vents in a static state open and close regularly to form a pulse jet.
  • high-pressure gas forms a pulse jet from the gas pulser through the rotor pair; when the gas pulser rotor opening and the rotor sleeve opening are misaligned, the high-pressure gas is sealed in Inside the gas pulser, jet discontinuities are formed; jets and discontinuities appear repeatedly to form gas pulse jets.
  • the gas pulse is emitted from the gas outlet of the gas pulser.
  • the gas pulser includes a pulser solid-lubricated rotor pair, an elastic connection system, a motor and a control system (not shown), and its pulse generation principle is based on a pair of pulser rotor pairs with gas stop switches.
  • the rotor pair is composed of a rotor with a vent hole and a solid lubrication rotor sleeve with the same vent hole.
  • the high-pressure gas pulse frequency can be controlled by controlling the rotating speed of the gas pulser rotor; the intensity of the gas pulse can be controlled by setting the pressure and flow rate of the gas flowing through the pulser.
  • the gas pulser can generate strong intermittent pulses from the high-pressure gas jet, causing strong oscillations in the air near the exit of the pulser, thereby causing strong sound waves.
  • Fig. 2 is a schematic diagram of a solid-lubricated rotor pair of a gas pulser according to the present application.
  • the solid-lubricated rotor pair includes an inlaid solid-lubricated rotor sleeve 1 and a solid-lubricated rotor 2.
  • a one-way thrust ball bearing 3 On the drive end of the solid-lubricated rotor 2, a one-way thrust ball bearing 3, an elastic connecting plate 4 and a motor shaft are installed.
  • the solid lubrication rotor pair of the gas pulser adopts the bimetal oil-free sliding bearing form, which includes the pulser solid lubrication rotor sleeve with vent holes and the pulser solid lubrication rotor with the same number of vent holes.
  • the distribution phase of the exhaust holes on the solid lubrication rotor sleeve in the circumferential direction is the same as the distribution phase of the exhaust holes on the solid lubrication rotor, and only a very small gap remains between the solid lubrication rotor and the solid lubrication rotor sleeve.
  • the effect of the solid-lubricated rotor pair of the gas pulser is that it can be used as a pair of rotor pairs, and has the function of high-pressure gas pulse switch, and can make the high-pressure gas be efficiently sealed in the rotor pair when the vent is closed, and the discharge of intermittent pulsed gas is also It can take away the heat of the sliding bearing and has a cooling effect.
  • Fig. 3 is a schematic diagram of a solid-lubricated rotor sleeve embedded with a vent hole according to the present application.
  • the gas pulser inlaid solid lubrication rotor sleeve of the present application is realized by opening the exhaust port on the solid inlaid lubrication bearing. Its characteristic is that it can have a larger diameter and axial size. Its effect is that the gas pulser solid lubrication rotor sleeve It not only has the function of lubricating the bearing, but also has a channel for pulse gas release.
  • the solid-lubricated rotor shown in Fig. 3 has four exhaust ports, and the four exhaust ports form a pulse gas release channel.
  • the solid-lubricated rotor sleeve of the present application can also be provided with n exhaust ports, and n can be designed as 2, 3, 4, etc.
  • the n exhaust ports on the solid-lubricated rotor sleeve are arranged along the circumference
  • the distribution phase of the direction should be the same as the distribution phase of the n exhaust ports on the corresponding rotor that together constitute the rotor pair.
  • the embedded solid lubrication rotor sleeve adopts a high-profit brass (CuZn 25 A1 6 Fe 3 Mn 3 ) matrix, and solid lubricants are embedded on the matrix (as shown in the circle on the matrix as shown in Figure 3).
  • the solid lubricant is preferably graphite, Boron nitride or niobium diselenide.
  • the embedded solid-lubricated rotor sleeve of the present application is used as a stator component in the gas pulser rotor pair, which functions as a bearing, and realizes the high-pressure gas pulse switch function together with the solid-lubricated rotor.
  • the embedded solid lubrication rotor sleeve is fixed and statically installed in the housing, and an exhaust port on it must be installed directly opposite to the gas pulser.
  • the corresponding exhaust ports on the rotor and the rotor sleeve are opened or closed at the same time.
  • the gas After the gas is discharged from the n exhaust ports of the rotor sleeve, it passes through the gas between the rotor sleeve and the casing.
  • the channels are connected to the outlet of the pulser in parallel, and are ejected from the outlet along the direction of the airflow to form a pulse jet.
  • the technical effect of this multi-channel parallel structure design is: under the same pulsed air flow intensity, the diameter of the rotor can be reduced, that is, when the rotor is rotating, the n pairs of the exhaust ports on the rotor and the rotor sleeve are opened or simultaneously Closed to realize multi-channel parallel operation, thereby increasing the gas pulse intensity.
  • the gas After the gas is discharged from the n exhaust ports of the rotor sleeve, it passes through the air passage between the rotor sleeve and the casing, and is collected in parallel to the pulser outlet, and ejected from the outlet to form a pulse jet.
  • Fig. 4 shows a schematic diagram of the fit of the embedded solid lubrication rotor sleeve with the bearing seat, ie the housing, according to the present application.
  • reference numeral 1 represents a bearing seat or housing
  • 2 represents a rotor sleeve embedded with solid lubrication.
  • the solid-lubricated rotor is sleeved in the rotor pair of the gas pulser as a static component, which is fixed and statically installed in the shell, and an exhaust port on it must be installed directly opposite the gas pulser gas outlet.
  • Fig. 5 is a schematic diagram of a solid-lubricated rotor of a gas pulser according to the present application.
  • the solid lubrication rotor of the gas pulser adopts beryllium bronze QBe1.9 (hard state) material.
  • the effect of material selection is anti-corrosion and anti-affinity, especially to prevent the affinity with the high-profit brass inlaid solid lubrication rotor sleeve base material effect.
  • the material CuSn 10 Zn 2 or stainless steel with poorer mechanical properties but better affinity resistance can also be preferred.
  • the solid-lubricated rotor has 4 vents on a circle (it can also be n vents as needed, and n can be designed as 2, 3, 4, etc.). These 4 vents on the solid-lubricated rotor
  • the distribution phase along the circumferential direction should be the same as the distribution phase of the n vent holes on the corresponding solid lubrication rotor sleeve that together constitute the rotor pair. The reason is the same as the above and will not be repeated.
  • the vent hole on the solid lubrication rotor of the gas pulser is preferably a square hole, and the square hole can be formed by machining, wire cutting, or electric spark.
  • the solid lubrication rotor of the gas pulser is formed with a square dimple at its driving end.
  • the square dimple can be formed by extrusion or machining.
  • the advantage of machining is that it can ensure a straight edge. degree.
  • the radius of the cutter head cannot be greater than 1 mm during machining, so that small rounded corners of the four corners of the square dimple can be processed.
  • the solid-lubricated rotor of the gas pulser allows normal wear and is designed to be replaced regularly; the sleeve of the solid-lubricated rotor embedded in the solid lubrication is not allowed to wear, and is pressed into the pulser housing at one time through interference fit.
  • the solid-lubricated rotor pair of the gas pulser according to the present application has the characteristics of large radius and long length.
  • the outer diameter of the rotor sleeve embedded with solid lubrication is 180 mm and the length is 150 mm.
  • the solid-lubricated rotor shaft end of the gas pulser has an interference fit with the shaft ring of the one-way thrust ball bearing.
  • the shaft ring of the one-way thrust ball bearing is slowly pressed into the driving end of the gas pulser rotor through a hydraulic machine or the rotor is cold-shrinked assembly.
  • the gas pulser solid lubrication rotor pair process method of the present application includes: adopting a bimetal oil-free sliding bearing form to form a solid lubrication rotor sleeve with vent holes and opening the same number
  • the solid lubrication rotor pair of the solid lubrication rotor of the exhaust hole, the distribution phase of the exhaust hole on the solid lubrication rotor sleeve in the circumferential direction is the same as the distribution phase of the exhaust hole on the solid lubrication rotor;
  • the high-profit brass CuZn 25 A1 6 Fe 3 Mn 3 matrix for lubricating the rotor sleeve is embedded with a solid lubricant, the solid lubricant includes graphite or boron nitride or niobium diselenide; the solid lubrication rotor sleeve is cold-shrinked Assembled in the gas pulser housing, that is, the solid lubric
  • the end with the assembly introduction angle is the inner end;
  • the solid-lubricated rotor sleeve acts as a bearing in the solid-lubricated rotor pair of the gas pulser, and the inlaid solid-lubricated rotor sleeve is not allowed to wear and is pressed into the gas pulser housing at one time through interference fit; installation;
  • the solid lubrication rotor allows normal wear and tear, and is designed to be replaced regularly.
  • the embedded solid lubrication rotor sleeve and the solid lubrication rotor realize the high-pressure gas pulse switch function together.
  • the solid lubrication rotor is made of beryllium bronze QBe1.9 (hard state) material, or the material is CuSn 10 Zn 2 or stainless steel to prevent rust and affinity, In particular, it prevents the occurrence of affinity with the high-profit brass that is the base material of the embedded solid lubricating rotor sleeve.
  • the square recess at the driving end of the solid lubrication rotor is formed by extrusion molding or machining, and the radius of the cutter head cannot be greater than 1mm during machining, so as to process the four corners of the square recess Of small fillets.
  • the solid-lubricated rotor sleeve and the exhaust holes of the solid-lubricated rotor are square holes, and the square holes are formed by machining or formed by wire cutting or formed by EDM .
  • the shaft end of the solid-lubricated rotor is in interference fit with the shaft ring of the one-way thrust ball bearing, and the shaft ring of the one-way thrust ball bearing is slowly pressed by a hydraulic press Insert the solid lubrication rotor drive end or adopt the rotor cold shrink assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

本发明提供一种气体脉冲器固体润滑转子副及其工艺方法。所述固体润滑转子副采用了双金属无油滑动轴承形式,包括开了排气孔的镶嵌固体润滑转子套和开同样数目排气孔的固体润滑转子,所述镶嵌固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同。本发明能够成功规避高速大口径双金属固体润滑轴承的胶合失效问题和有效减轻磨损失效问题,能够获得有效减小双金属无油轴承发热量和降温的技术效果。

Description

气体脉冲器固体润滑转子副及其工艺方法
交叉引用
本申请要求于2019年04月28日递交的中国申请的优先权,申请号为201910350263.8,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种气体脉冲器固体润滑转子副及其工艺方法。
背景技术
现有技术中,气体脉冲器(气体脉冲发生器)具有广泛的应用,人们也进行了很多研究。例如,提出了通过电磁阀高速控制高压气源开关来获得气体脉冲的方法,也提出了机械旋转式脉冲气发生器的方案等。
对于通过电磁阀获得气体脉冲的方法,一般认为其存在密封不可靠有泄露现象、电磁阀高频切换的频率有限适用范围窄以及寿命短、工作可靠性差等缺点。
对于机械旋转式脉冲气发生器,一般来说,现有技术的结构比较复杂等。
参考文献:专利文献CN107402194A,CN102966643A
在现有技术中,本发明人注意到,存在固体镶嵌润滑轴承,但是所有固体镶嵌润滑轴承都没有高压气体脉冲开关功能;存在气体脉冲开关器,但是脉冲开关器都不能同时具有封严性能优异的轴承功能。本发明人研究了双金属固体润滑轴承在气体脉冲器中的应用。
目前既有的双金属固体润滑轴承一般用于极地速度的转动副,从而摆脱非液体摩擦滑动轴承的磨损失效和胶合失效问题。在本申请的气体脉冲器中,转动副半径相对较大,转速也相对较高,双金属滑动面之间的相对滑动速度达到6~10m/s,在非液体摩擦滑动轴承设计中属于高速滑动,需要防止滑动副速度过高引起的滑动面加速磨损问题。 气体脉冲器在发射高压脉冲气流时,脉冲器转子处于非对称受力状态,几十倍标准大气压的高压气体使轴承承受很大的径向作用力,也会导致滑动轴承过度磨损。当轴承滑动速度水平较高,径向载荷也较大时,控制轴承发热量的PV值也处于较高水平,轴承非常容易产生过热胶合问题。即双金属固体润滑轴承在气体脉冲器中的应用同时面临磨损失效和胶合失效问题。
而且,在强声波应用技术领域,特别是强声增雨技术,需要一种结构简单、性能可靠安全、能够迅速产生强大的连续气体脉冲的气体脉冲发生器。
发明内容
本申请是鉴于上述问题提出的,目的在于提供一种气体脉冲器固体润滑转子副,通过巧妙设计,其能够成功规避高速大口径双金属固体润滑轴承的胶合失效问题,并有效减轻磨损失效问题。
本申请的又一目的在于提供一种气体脉冲器固体润滑转子副,其能够有效减小双金属无油轴承的发热量,具有降温作用。
本申请的目的还在于提供一种气体脉冲器固体润滑转子副工艺方法,其能够确保气体脉冲器固体润滑转子副的制造和在气体脉冲器壳体中的简单可靠安装。
为了实现上述目的,根据本申请的气体脉冲器固体润滑转子副,其特征在于,采用了双金属无油滑动轴承形式,包括开了排气孔的镶嵌固体润滑转子套和开同样数目排气孔的固体润滑转子,所述镶嵌固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述镶嵌固体润滑转子套采用高利黄铜CuZn 25A1 6Fe 3Mn 3基体,基体上镶嵌固体润滑剂,所述固体润滑剂选用石墨或氮化硼或二硒化铌。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述镶嵌固体润滑转子套在所述气体脉冲器转子副中作为静子件起到轴承作用,所述镶嵌固体润滑转子套与所述固体润滑转子一起实现高压气体脉 冲开关功能。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述固体润滑转子采用铍青铜QBe1.9硬态材料,或者选用材料CuSn 10Zn 2或者不锈钢,以防锈蚀和防亲和作用,特别防止与所述镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述固体润滑转子驱动端具有方形凹窝,所述方形凹窝通过挤压成型或者机加工成型,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述固体润滑转子套和所述固体润滑转子的排气孔为方孔,方孔用机加工成型或者用线切割成型或者用电火花成型。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述固体润滑转子允许正常磨损,设计成可以定期更换;所述镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入气体脉冲器的壳体内。
根据本申请的气体脉冲器固体润滑转子副,优选地,所述固体润滑转子的轴端与单向推力球轴承的轴圈进行过盈配合,所述单向推力球轴承的轴圈通过油压机缓慢压入所述固体润滑转子驱动端或采用转子冷缩装配。
根据本申请的气体脉冲器固体润滑转子副工艺方法,包括:采用双金属无油滑动轴承形式,形成包括开了排气孔的固体润滑转子套和开同样数目排气孔的固体润滑转子的固体润滑转子副,所述固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同;在所述固体润滑转子套的高利黄铜CuZn 25A1 6Fe 3Mn 3基体上镶嵌固体润滑剂,所述固体润滑剂包括石墨或氮化硼或二硒化铌;将所述固体润滑转子套采用冷缩方式装配于气体脉冲器壳体内,即将所述固体润滑转子套置于-70℃的液氮中2h后装入所述壳体上,有装配引入角的一端为内端;安装使得镶嵌固体润滑转子套在气体脉冲器固体润滑转子副中作为静子件起到轴承作用,所述镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入所述气 体脉冲器壳体内;安装使得所述固体润滑转子允许正常磨损,设计成可以定期更换。
根据本申请的气体脉冲器固体润滑转子副工艺方法,优选地,所述镶嵌固体润滑转子套与所述固体润滑转子一起实现高压气体脉冲开关功能。
根据本申请的气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子采用铍青铜QBe1.9硬态材料,或者选用材料CuSn 10Zn 2或者不锈钢,以防锈蚀和防亲和作用,特别防止与所述镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。
根据本申请的气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子驱动端的方形凹窝通过挤压成型或者机加工成型,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
根据本申请的气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子套和所述固体润滑转子的排气孔为方孔,方孔用机加工成型或者用线切割成型或者用电火花成型。
根据本申请的气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子的轴端与单向推力球轴承的轴圈进行过盈配合,所述单向推力球轴承的轴圈通过油压机缓慢压入所述固体润滑转子驱动端或采用转子冷缩装配。
技术效果:
根据本申请的气体脉冲器固体润滑转子副及其工艺方法,由于包括开有排气孔的转子与同样开有排气孔的转子套,转子套上的排气孔沿周向的分布相位与转子上的排气孔的分布相位相同,转子套和转子采用镶嵌固体润滑等,因此本申请的结构既具有封严性能优异的轴承功能,又具有高压气体脉冲开关功能,能够成功规避高速大口径双金属固体润滑轴承的胶合失效问题和有效减轻磨损失效问题,能够获得有效减小双金属无油轴承的发热量和降低温度的技术效果,使用本申请固体润滑转子副的气体脉冲器,能够使高压气体射流产生强间断脉冲,从而能够产生强声波,能应用但不限于强声波增雨、消雾、除尘等领域。
从以下结合附图对实施例的描述中,本申请的上述和/或其它方面将变得清楚和更容易理解。
附图说明
图1是采用根据本申请的气体脉冲器固体润滑转子副的气体脉冲器的结构示意图。
图2是根据本申请的气体脉冲器固体润滑转子副的示意图。
图3是根据本申请的开通气孔的镶嵌固体润滑转子套的示意图。
图4示出根据本申请的镶嵌固体润滑转子套与轴承座即气体脉冲器壳体的配合的示意图。
图5是根据本申请的气体脉冲器固体润滑转子的示意图。
图6是采用根据本申请的气体脉冲器固体润滑转子副的气体脉冲器的一个设计实例图。
具体实施方式
下面结合附图说明本申请的具体实施例,但是本申请的范围不局限于说明的具体实施例。
图1是采用根据本申请的气体脉冲器固体润滑转子副的气体脉冲器的结构示意图。如图1所示,本申请的气体脉冲器的结构包括:电机组件1;紧固螺栓2;壳体紧固螺栓3;托架4;转子连接板5;转子组件6;进气端盖耐油纸垫7;进气端盖8;壳体组件9;出气端盖耐油纸垫10;出气端盖11等。
电机组件1可以包括直流伺服电机100,用于驱动气体脉冲器的气体脉冲发生部壳体内的转子旋转。壳体紧固螺栓3用于将气体脉冲器的气体脉冲发生部的壳体紧固在托架(或者支撑架)4上。托架(或者支撑架)4用于牢固支撑电机组件1和气体脉冲器的气体脉冲发生部。转子连接板5用于通过与电机轴连轴套配合在电机组件1的电机轴与气体脉冲器的气体脉冲发生部壳体内的转子之间传递扭矩。转子组件6包括根据本申请的气体脉冲器固体润滑转子副,转子副包括开有通气孔的转子与同样开有通气孔的镶嵌固体润滑转子套,位于气体 脉冲器的气体脉冲发生部的壳体的内部。
图6是采用根据本申请的气体脉冲器固体润滑转子副的气体脉冲器的一个设计实例图。如图6所示,气体脉冲器包括进气端盖104、进气口、出气端盖103、出气口、壳体102、支撑架101和直流伺服电机等部分。在本说明书中,将进气端盖、进气口、出气端盖、出气口、壳体以及壳体内部的各组件部分假设为气体脉冲器的气体脉冲产生部。
参考图1和图6,本申请气体脉冲器的工作原理是:连续高压气体从气体脉冲器的进气口中吹入,将该恒压连续压缩空气,通过由电机驱动处于旋转状态的开有通气孔的转子和处于静止状态的同样开有通气孔的固体润滑转子套上通气孔的规律开闭,形成脉冲射流。当气体脉冲器转子开孔与转子套开孔存在重叠时,高压气体从气体脉冲器内部通过转子副形成脉冲射流;当气体脉冲器转子开孔与转子套开孔错位时,高压气体被密闭在气体脉冲器内部,形成射流间断;射流和间断重复出现形成气体脉冲射流。气体脉冲从气体脉冲器的出气口射出。
根据本申请的气体脉冲器,其包括脉冲器固体润滑转子副、弹性连接系统、电机及控制系统(未图示),其脉冲发生原理是基于一对具有气体止开开关作用的脉冲器转子副,转子副由开有通气孔的转子与同样开有通气孔的固体润滑转子套构成。根据本申请,可以通过控制气体脉冲器转子的转速,来控制高压气体脉冲频率;可以通过设定流经脉冲器气体的压强和流量,来控制气体脉冲的强度。气体脉冲器能够使高压气体射流产生强间断脉冲,引起脉冲器出口附近空气发生强振荡,从而引起强声波。
图2是根据本申请的气体脉冲器固体润滑转子副的示意图。如图2所示,固体润滑转子副包括镶嵌固体润滑转子套1和固体润滑转子2,在固体润滑转子2的驱动端侧安装有单向推力球轴承3、弹性连接板4和电机轴连轴套5。
根据本申请的气体脉冲器固体润滑转子副,采用了双金属无油滑动轴承形式,其包括开了排气孔的脉冲器固体润滑转子套和开同样数 目排气孔的脉冲器固体润滑转子,固体润滑转子套上的排气孔沿周向的分布相位与固体润滑转子上的排气孔的分布相位相同,固体润滑转子与固体润滑转子套之间仅保留极小间隙。气体脉冲器固体润滑转子副的效果是能够作为一对转子副,而且有高压气体脉冲开关功能,并能使高压气体在通气孔关闭时高效地密封在转子副中,间歇性脉冲气体的排出也能带走滑动轴承的热量,起到降温作用。
图3是根据本申请的开通气孔的镶嵌固体润滑转子套的示意图。本申请的气体脉冲器镶嵌固体润滑转子套采用在固体镶嵌润滑轴承上开排气口的方式实现,其特点是可以有较大的直径和轴向尺寸,其效果是气体脉冲器固体润滑转子套既具有润滑轴承作用,又具有可供脉冲气体释放的通道。图3示出的镶嵌固体润滑转子套开有四个排气口,这四个排气口构成脉冲气体释放通道。当然,根据需要,本申请的镶嵌固体润滑转子套上也可以开有n个排气口,n可设计为2,3,4等,镶嵌固体润滑转子套上的这n个排气口沿周向的分布相位应当与一起构成转子副的对应转子上的n个排气口的分布相位相同。
根据本申请的镶嵌固体润滑转子套采用高利黄铜(CuZn 25A1 6Fe 3Mn 3)基体,基体上(如图3所示基体上圆圈处)镶嵌固体润滑剂,固体润滑剂优选选用石墨、氮化硼或二硒化铌。
本申请的镶嵌固体润滑转子套在气体脉冲器转子副中作为静子件,起到轴承作用,与固体润滑转子一起实现高压气体脉冲开关功能。在气体脉冲器中,镶嵌固体润滑转子套固定静止地安装在壳体内,其上的一个排气口必须正对气体脉冲器出气口安装。当转子在转子套内转动过程中,转子和转子套上的对应排气口会同时开启或者同时关闭,气体从转子套的n个排气口排出后,经过转子套和壳体之间的气道,以并联形式汇集到脉冲器出口,沿气流方向从出口喷出,形成脉冲射流。这种多通道并联结构设计的技术效果是:在相同脉冲气流强度下,可以降低转子直径,也就是说,当转子在转动过程中,n对转子和转子套上的排气口同时开启或者同时关闭,实现多通道并联工作,由此增大气体脉冲强度。气体从转子套的n个排气口排出后,经过转子套和壳体之间的气道,以并联形式汇集到脉冲器出口,从出口喷出,形 成脉冲射流。
根据本申请的固体润滑转子套采用冷缩方式装配于壳体内,即将固体润滑转子套置于-70℃的液氮中2h后装入壳体上,有装配引入角的一端为内端。图4示出根据本申请的镶嵌固体润滑转子套与轴承座即壳体的配合的示意图。图4中,附图标记1代表轴承座即壳体,2代表镶嵌固体润滑转子套。镶嵌固体润滑转子套在气体脉冲器转子副中作为静子件,被固定静止地安装在壳体内,其上的一个排气口必须正对气体脉冲器出气口安装。
图5是根据本申请的气体脉冲器固体润滑转子的示意图。气体脉冲器固体润滑转子采用铍青铜QBe1.9(硬态)材料,材料选择的效果是防锈蚀和防亲和作用,特别是防止与镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。根据本申请,还可优选材料CuSn 10Zn 2或者机械性能较差、但防亲和性能更好的不锈钢。
如图5所示,固体润滑转子一周开有4个通气孔(根据需要,也可为n个通气孔,n可设计为2、3、4等),固体润滑转子上的这4个通气孔沿周向的分布相位应当与一起构成转子副的对应固体润滑转子套上的n个通气孔的分布相位相同,原因同上,不再赘述。气体脉冲器固体润滑转子上的通气孔优选为方孔,该方孔可以机加工成型,也可以用线切割成型,也可以用电火花成型。
如图5所示,气体脉冲器固体润滑转子在其驱动端被形成有方形凹窝,该方形凹窝可以通过挤压成型,也可以机加工成型,机加工的好处是能保证直边的直线度。根据本申请,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
根据本申请,气体脉冲器固体润滑转子允许正常磨损,设计成可以定期更换;镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入脉冲器壳体内。
根据本申请的气体脉冲器固体润滑转子副具有半径大、长度长的特点。本申请的设计实例中,优选地,镶嵌固体润滑转子套外径达180mm,长度达150mm。
根据本申请,气体脉冲器固体润滑转子轴端与单向推力球轴承的 轴圈进行过盈配合。单向推力球轴承的轴圈通过油压机缓慢压入气体脉冲器转子驱动端或采用转子冷缩装配。
作为本申请的又一个实施例,即本申请的气体脉冲器固体润滑转子副工艺方法,包括:采用双金属无油滑动轴承形式,形成包括开了排气孔的固体润滑转子套和开同样数目排气孔的固体润滑转子的固体润滑转子副,所述固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同;在所述固体润滑转子套的高利黄铜CuZn 25A1 6Fe 3Mn 3基体上镶嵌固体润滑剂,所述固体润滑剂包括石墨或氮化硼或二硒化铌;将所述固体润滑转子套采用冷缩方式装配于气体脉冲器壳体内,即将所述固体润滑转子套置于-70℃的液氮中2h(小时)后装入所述壳体上,有装配引入角的一端为内端;安装使得镶嵌固体润滑转子套在气体脉冲器固体润滑转子副中作为静子件起到轴承作用,所述镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入所述气体脉冲器壳体内;安装使得所述固体润滑转子允许正常磨损,设计成可以定期更换。
根据气体脉冲器固体润滑转子副工艺方法,优选地,所述镶嵌固体润滑转子套与所述固体润滑转子一起实现高压气体脉冲开关功能。
根据气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子采用铍青铜QBe1.9(硬态)材料,或者选用材料CuSn 10Zn 2或者不锈钢,以防锈蚀和防亲和作用,特别防止与所述镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。
根据气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子驱动端的方形凹窝通过挤压成型或者机加工成型,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
根据气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子套和所述固体润滑转子的排气孔为方孔,方孔用机加工成型或者用线切割成型或者用电火花成型。
根据气体脉冲器固体润滑转子副工艺方法,优选地,所述固体润滑转子的轴端与单向推力球轴承的轴圈进行过盈配合,所述单向推力球轴承的轴圈通过油压机缓慢压入所述固体润滑转子驱动端或采用 转子冷缩装配。
上面结合具体实施例说明了本申请,应当理解,本申请不限于公开的具体实施例。能够改进本申请以进行改变、替换或者等同配置,但是其是与本申请的精神和范围相当。因此,本申请范围不应被前述说明书限制。

Claims (14)

  1. 一种气体脉冲器固体润滑转子副,其特征在于,采用了双金属无油滑动轴承形式,包括开了排气孔的镶嵌固体润滑转子套和开同样数目排气孔的固体润滑转子,所述镶嵌固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同。
  2. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述镶嵌固体润滑转子套采用高利黄铜CuZn 25A1 6Fe 3Mn 3基体,基体上镶嵌固体润滑剂,所述固体润滑剂选用石墨或氮化硼或二硒化铌。
  3. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述镶嵌固体润滑转子套在所述气体脉冲器转子副中作为静子件起到轴承作用,所述镶嵌固体润滑转子套与所述固体润滑转子一起实现高压气体脉冲开关功能。
  4. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述固体润滑转子采用铍青铜QBe1.9硬态材料,或者选用材料CuSn 10Zn 2或者不锈钢,以防锈蚀和防亲和作用,特别防止与所述镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。
  5. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述固体润滑转子驱动端具有方形凹窝,所述方形凹窝通过挤压成型或者机加工成型,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
  6. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述固体润滑转子套和所述固体润滑转子的排气孔为方孔,方 孔用机加工成型或者用线切割成型或者用电火花成型。
  7. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述固体润滑转子允许正常磨损,设计成可以定期更换;所述镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入气体脉冲器的壳体内。
  8. 根据权利要求1所述的气体脉冲器固体润滑转子副,其特征在于,所述固体润滑转子的轴端与单向推力球轴承的轴圈进行过盈配合,所述单向推力球轴承的轴圈通过油压机缓慢压入所述固体润滑转子驱动端或采用转子冷缩装配。
  9. 一种气体脉冲器固体润滑转子副工艺方法,包括:
    采用双金属无油滑动轴承形式,形成包括开了排气孔的固体润滑转子套和开同样数目排气孔的固体润滑转子的固体润滑转子副,所述固体润滑转子套上的排气孔沿周向的分布相位与所述固体润滑转子上的排气孔的分布相位相同;
    在所述固体润滑转子套的高利黄铜CuZn 25A1 6Fe 3Mn 3基体上镶嵌固体润滑剂,所述固体润滑剂包括石墨或氮化硼或二硒化铌;
    将所述固体润滑转子套采用冷缩方式装配于气体脉冲器壳体内,即将所述固体润滑转子套置于-70℃的液氮中2h后装入所述壳体上,有装配引入角的一端为内端;
    安装使得镶嵌固体润滑转子套在气体脉冲器固体润滑转子副中作为静子件起到轴承作用,所述镶嵌固体润滑转子套不允许发生磨损,通过过盈配合一次性压入所述气体脉冲器壳体内;
    安装使得所述固体润滑转子允许正常磨损,设计成可以定期更换。
  10. 根据权利要求9所述的气体脉冲器固体润滑转子副工艺方法,其特征在于,所述镶嵌固体润滑转子套与所述固体润滑转子一起实现高压气体脉冲开关功能。
  11. 根据权利要求9所述的气体脉冲器固体润滑转子副工艺方法,其特征在于,所述固体润滑转子采用铍青铜QBe1.9硬态材料,或者选用材料CuSn 10Zn 2或者不锈钢,以防锈蚀和防亲和作用,特别防止与所述镶嵌固体润滑转子套基体材料高利黄铜之间发生亲和作用。
  12. 根据权利要求9所述的气体脉冲器固体润滑转子副工艺方法,其特征在于,所述固体润滑转子驱动端的方形凹窝通过挤压成型或者机加工成型,机加工时刀头半径不能大于1mm,以便加工出方形凹窝四角的小圆角。
  13. 根据权利要求9所述的气体脉冲器固体润滑转子副工艺方法,其特征在于,所述固体润滑转子套和所述固体润滑转子的排气孔为方孔,方孔用机加工成型或者用线切割成型或者用电火花成型。
  14. 根据权利要求9所述的气体脉冲器固体润滑转子副工艺方法,其特征在于,所述固体润滑转子的轴端与单向推力球轴承的轴圈进行过盈配合,所述单向推力球轴承的轴圈通过油压机缓慢压入所述固体润滑转子驱动端或采用转子冷缩装配。
PCT/CN2019/125063 2019-04-28 2019-12-13 气体脉冲器固体润滑转子副及其工艺方法 WO2020220695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910350263.8A CN110410419A (zh) 2019-04-28 2019-04-28 气体脉冲器固体润滑转子副及其工艺方法
CN201910350263.8 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220695A1 true WO2020220695A1 (zh) 2020-11-05

Family

ID=68357717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125063 WO2020220695A1 (zh) 2019-04-28 2019-12-13 气体脉冲器固体润滑转子副及其工艺方法

Country Status (2)

Country Link
CN (1) CN110410419A (zh)
WO (1) WO2020220695A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410419A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器固体润滑转子副及其工艺方法
CN110410387A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595015A (zh) * 2004-06-29 2005-03-16 西安交通大学 背压式轴流气波制冷机
DE10062106B4 (de) * 2000-12-13 2011-01-13 Rieter Ingolstadt Gmbh Offenend-Spinnvorrichtung mit einem aerostatischen Axiallager
CN106768830A (zh) * 2016-11-30 2017-05-31 中国航空工业集团公司沈阳飞机设计研究所 一种用于飞行器缩比模型试验的气体脉冲发生器
CN107884119A (zh) * 2017-11-08 2018-04-06 中国航空工业集团公司北京长城计量测试技术研究所 一种中低压气体脉冲压力发生器
CN109571062A (zh) * 2018-10-26 2019-04-05 广州市昊志机电股份有限公司 一种小孔-多孔质节流组合式气浮主轴
CN110410387A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器
CN110410419A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器固体润滑转子副及其工艺方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789989B1 (ko) * 2006-06-23 2008-01-02 주식회사 에스.오.비 고체윤활제 매립형 미끄럼베어링 제조 방법
CN201826834U (zh) * 2010-11-01 2011-05-11 中国石油集团钻井工程技术研究院 磁力耦合型连续波压力脉冲发生器
US9528592B2 (en) * 2012-06-26 2016-12-27 Kinetech Power Company Llc Solid-lubricated bearing assembly
CN211525349U (zh) * 2019-04-28 2020-09-18 清华大学 气体脉冲器固体润滑转子副

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062106B4 (de) * 2000-12-13 2011-01-13 Rieter Ingolstadt Gmbh Offenend-Spinnvorrichtung mit einem aerostatischen Axiallager
CN1595015A (zh) * 2004-06-29 2005-03-16 西安交通大学 背压式轴流气波制冷机
CN106768830A (zh) * 2016-11-30 2017-05-31 中国航空工业集团公司沈阳飞机设计研究所 一种用于飞行器缩比模型试验的气体脉冲发生器
CN107884119A (zh) * 2017-11-08 2018-04-06 中国航空工业集团公司北京长城计量测试技术研究所 一种中低压气体脉冲压力发生器
CN109571062A (zh) * 2018-10-26 2019-04-05 广州市昊志机电股份有限公司 一种小孔-多孔质节流组合式气浮主轴
CN110410387A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器
CN110410419A (zh) * 2019-04-28 2019-11-05 清华大学 气体脉冲器固体润滑转子副及其工艺方法

Also Published As

Publication number Publication date
CN110410419A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2020220695A1 (zh) 气体脉冲器固体润滑转子副及其工艺方法
US10161530B2 (en) Valve assembly
US4123069A (en) Mechanical sealing device
WO2020220693A1 (zh) 气体脉冲器
US8177236B2 (en) Seal assembly
JP2006226199A (ja) 遠心羽根車
CN211778973U (zh) 一种用于变桨轴承中的单向预紧密封装置
CN211525349U (zh) 气体脉冲器固体润滑转子副
CN110735795B (zh) 一种罗茨鼓风机转子端面环形密封结构
WO2019095950A1 (zh) 一种带辅助润滑装置的机械密封
CN211550160U (zh) 气体脉冲器
CN109253260A (zh) 一种燃气轮机用带旗形槽动环的滑油密封装置
KR101532439B1 (ko) 배기 가스 터보 과급기용 스러스트 베어링 시일
CN211778975U (zh) 一种用于变桨轴承中的双向预紧密封装置
CN211715184U (zh) 一种组合式流体动压型干气密封后置隔离密封装置
WO2016063456A1 (ja) 浮動ブシュ軸受及び舶用排気タービン
CN110242596A (zh) 一种高压磁力泵
CN207960981U (zh) 离心式增压机装置
JP2006183475A (ja) 遠心圧縮機
CN201209565Y (zh) 防颗粒磨损的磁力泵
CN114321372A (zh) 复合动力槽高温高压机械密封装置及其使用方法
CN220081738U (zh) 叶轮与泵壳体密封组件及具有该密封组件的泵机组
CN220081737U (zh) 叶轮与泵壳体耐磨组件及具有该耐磨组件的泵机组
CN101893005B (zh) 用推力调整板调整轴向力的方法
CN210230331U (zh) 一种高压旋转喷嘴安装头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927080

Country of ref document: EP

Kind code of ref document: A1