WO2020220322A1 - Timer control in discontinuous reception - Google Patents

Timer control in discontinuous reception Download PDF

Info

Publication number
WO2020220322A1
WO2020220322A1 PCT/CN2019/085331 CN2019085331W WO2020220322A1 WO 2020220322 A1 WO2020220322 A1 WO 2020220322A1 CN 2019085331 W CN2019085331 W CN 2019085331W WO 2020220322 A1 WO2020220322 A1 WO 2020220322A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
type
suspended
indication
period
Prior art date
Application number
PCT/CN2019/085331
Other languages
French (fr)
Inventor
Chunli Wu
Samuli Turtinen
Jussi-Pekka Koskinen
Benoist Sebire
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2019/085331 priority Critical patent/WO2020220322A1/en
Priority to CN201980095912.2A priority patent/CN113767673A/en
Publication of WO2020220322A1 publication Critical patent/WO2020220322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium for timer control in discontinuous reception.
  • Discontinuous reception is a method for reducing battery consumption by allowing a communication device to discontinuously receive information from another communication device.
  • UE user equipment
  • one or more timers may be configured to indicate when a device is in an active status for the reception and/or when the device is in a sleep status where the monitoring or reception is not performed.
  • example embodiments of the present disclosure provide a solution for timer control in discontinuous reception.
  • a method comprising receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and in response to determining that the timer is to be suspended, suspending the timer for the period of time.
  • a device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to receive, at the device configured with discontinuous reception, a skipping indication from a further device, the skipping indication indicating to the device to skip monitoring of control information from the further device for a period of time; in response to the skipping indication, determine, based on a predetermined criterion, whether to suspend a timer running at the device for the discontinuous reception; and in response to determining that the timer is to be suspended, suspend the timer for the period of time.
  • an apparatus comprising means for receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; means for in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and means for in response to determining that the timer is to be suspended, suspending the timer for the period of time.
  • a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above first aspect.
  • Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented
  • Fig. 2 illustrates a signaling chart illustrating a process for timer control in DRX according to some example embodiments of the present disclosure
  • Fig. 3A illustrates DRX cycles and DRX timers configured for a device according to some example embodiments of the present disclosure
  • Fig. 3B illustrates DRX cycles and DRX timers when skipping indications are received according to some example embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of a method implemented at a device according to some example embodiments of the present disclosure
  • Fig. 5 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 6 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the a
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the network 100 includes a first device 110 and a second device 120 that can communicate with each other.
  • the first device 110 is illustrated as a terminal device
  • the second device 120 is illustrated as a network device serving the terminal device.
  • the serving area of the second device 120 is called as a cell 102.
  • the system 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the cell 102 and served by the second device 120.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • the first device 110 and the second device 120 can communicate data and control information to each other.
  • a link from the second device 120 to the first device 110 is referred to as a downlink (DL)
  • a link from the first device 110 to the second device 120 is referred to as an uplink (UL) .
  • the first device 110 and the second device 120 may be configured with discontinuous communication for the purpose of power saving.
  • the discontinuous communication may include discontinuous reception (DRX) and/or discontinuous transmission (DTX) .
  • DRX discontinuous reception
  • DTX discontinuous transmission
  • Either or both of the first and second devices 110 and 120 can be configured with DRX and/or DTX.
  • the first device 110 discontinuously monitors information/data (for example, downlink information/data) transmitted from the second device 120.
  • the DTX the first device 110 discontinuously transmits information/data (for example, uplink information/data) to the second device 120.
  • the second device 120 may also be possibly configured with DRX or DTX.
  • a device When DRX is configured, to receive data, a device, for example, the first device 110 may first awake to monitor control information which indicates whether the device is scheduled to receive data and how the data can be received.
  • a DRX cycle specifies the periodic repetition of the on-duration followed by a possible period of inactivity.
  • the DRX cycle includes an on-duration and an off-duration.
  • the on-duration is an active time during which a UE monitors control information within the DRX cycle.
  • the control information may include information communicated in a physical downlink control channel (PDCCH) .
  • PDCCH physical downlink control channel
  • DRX cycles are configured to keep the device awake periodically during an active time indicated by a timer called an onDuration timer in case there is data transmission scheduled.
  • the active time may be extended due to an event occurrence, which may start other timer such as an inactivity timer, a retransmission timer, a contention resolution timer, or a Hybrid Automatic Repeat request (HARQ) Round-Trip-Time (RTT) timer.
  • An active time for the device in a DRX cycle may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence.
  • a device with DRX may skip monitoring of control information for a period of time. Skipping monitoring of control information is especially beneficial in the cases of scheduling gaps due to beam sweeping or other scheduling decision at the side of the transmitter.
  • the DRX timing mechanism may be adjusted to support skipping monitoring of the control information.
  • a network device may have a number of terminal devices to schedule in distinct beams but the scheduling cannot be completed simultaneously.
  • the network device may indicate one or more of the terminal devices to skip monitoring the control information for a while and enter a sleep status because these terminal devices cannot be scheduled until a number of time slots.
  • the period of time for skipping monitoring of the control information may last beyond the active time of DRX. If the timers set for DRX continue running while the control information is not monitored during the period of time for skipping, the device with DRX configured may not be awake for monitoring the control information after the period of time for skipping. Since the control information is generally used to schedule the device, the device has no opportunity to be scheduled after the period of time for skipping.
  • a timer set or DRX can be suspended if the device receives a skipping indication to skip monitoring of control information from a second device for a period of time.
  • the device may determine whether one or more of timers that are currently running at the device for DRX can be suspended based on a predetermined criterion. In this way, instead of simply letting a timer continue to run, the suspending of the timer allows configuring a smaller value for the timer without reducing the opportunity of communication with the second device due to the skipping of monitoring the control information.
  • the suspending of the timer in the example embodiment of the present disclosure reduces the period of time during which the device stays awake unnecessarily.
  • Fig. 2 shows a signaling chart 200 for timer control in DRX according to an example embodiment of the present disclosure.
  • the signaling chart 200 may involve the first device 110 and the second device 120 as illustrated in Fig. 1. It would be appreciated that although the signaling chart 200 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios. It would also be appreciated that although DRX configured for the first device is discussed, a similar process can be applied for DRX configured for the second device (in this case, the first device 110 may be in a mode of DTX) .
  • the first device 110 is configured with DRX.
  • the first device 110 receives 205 a skipping indication from the second device 120.
  • the skipping device indicates to the first device 110 to skip monitoring of control information from the second device 120 for a period of time.
  • the control information to be monitored may be comprised in a PDCCH.
  • the PDCCH is a downlink control channel, and is called a scheduling channel in a sense that it carries scheduling information.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI) .
  • DCI downlink control information
  • the first device 110 may determine when and/or how it is scheduled to receive data from the second device 120.
  • the skipping indication may be transmitted to the first device 110 in control information, such as in PDCCH.
  • the skipping indication may be provided to the first device 110 as a skipping command.
  • the skipping indication may be received in an active time when the first device 110 is monitoring control information from the second device 120.
  • an active time for a device may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence in a DRX cycle. Whether the device is active in DRX is indicated by one or more timers running at the first device 110. To skip monitoring of the control information, one or more timers for DRX may be appropriately controlled by the first device 110.
  • a DRX cycle specifies periodic repetition of the on-duration followed by a possible extended period of time.
  • the DRX cycle includes an on-duration and an off-duration.
  • the on-duration is an active time during which the first device 110 is active to monitor control information within the DRX cycle.
  • the off-duration is a duration in which the first device 110 is in a sleep state and does not monitor the control information.
  • the DRX cycle may be various types.
  • the DRX cycle may be a long DRX cycle or a short DRX cycle.
  • the long DRX cycle which has a long period can minimize battery consumption of the UE.
  • the short DRX cyclic which has a short period can minimize a data transmission delay.
  • An active time for the device in a DRX cycle may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence.
  • the active time may be defined by one or more timers set for DRX. As shown in Fig. 3A, in a DRX cycle 301, an onDuration timer 310 is running. An active time 302 is defined as a duration in which the onDuration timer 310 is running.
  • the onDuration timer 310 may be set to a predetermined timer value and in some examples, may specify the number of consecutive subframe (s) for control information at the beginning of a DRX cycle.
  • a subframe for control information refers to a subframe in which the control information is monitored.
  • a plurality of onDuration timers having the same timer value naay be started at the beginning of DRX cycles. For example, another onDuration timer 320 is started at a next DRX cycle 303.
  • one or more additional timers may be set for DRX depending on certain events happened.
  • the active time in a DRX cycle may be extended due to the additional timers.
  • a length of an active time 304 in the DRX cycle 303 is extended as compared to the active time 302. This is because an inactivity timer 322 is started when the first device 110 receives and successfully decodes control information while the onDuration timer 320 is running.
  • the inactivity timer 322 keeps the first device 110 monitoring the control information (for example, PDCCH) .
  • the inactivity timer 322 indicates a duration after which if no activity is detected over a channel, the first device 110 may enter the off-duration of the DRX cycle 303. If the inactivity timer 322 is running, the first device 110 may continuously monitor the control information.
  • the inactivity timer 322 starts upon receiving in the control information an initial grant for transmission to the second device 120 (for example, an initial UL grant) or a grant for reception from the second device 120 (for example, a DL assignment) .
  • the inactivity timer 322 may be set to a predetermined timer value and may, for example, specify the number of consecutive subframe (s) for control information after successfully decoding previous control information indicating an initial UL or DL data transmission for this device. As shown in Fig. 3A, due to the inactivity timer 322, the active time 304 in the DRX cycle is extended.
  • the first device 110 may operate some other timers in DRX, such as a HARQ RTT timer, a retransmission timer, a contention resolution timer, and the like.
  • a retransmission timer defines a duration in which the first device 110 monitors the control information while expecting retransmission from the second device 120.
  • a HARQ RTT timer defines a minimum duration in which the first device 110 expects HARQ retransmission.
  • the HARQ RTT timer may specify the minimum amount of subframe (s) before a DL HARQ retransmission is expected by the UE.
  • the retransmission timer may specify a maximum number of consecutive control information-subframe (s) for as soon as a retransmission is expected by the first device 110.
  • the first device 110 After an initial transmission from the second device 120, the first device 110 starts the HARQ RTT timer. When the first device 110 cannot correctly decode the initial DL transmission, the first device 110 transmits NACK to the second device 120.
  • the HARQ RTT timer is started after transmission of HARQ feedback to the second device 120 and when it expires, the retransmission timer is started.
  • the first device 110 may monitor the control information for retransmission from the second device 120 while the retransmission timer is running.
  • the contention resolution timer may be started in a random access (RA) procedure of the first device 110, which may specify the number of consecutive subframe (s) during which the first device 110 can monitor the control information after an Msg3 in the RA procedure is transmitted.
  • RA random access
  • the skipping indication may be transmitted from the second device 120 when the first device 110 and the second device 120 are in a connected status, for example, when the first device 110 is in an RRC connected state (also may be referred as an RRC connected mode) with the second device.
  • the first device 110 may be in an RRC idle state (also may be referred as an RRC idle mode) .
  • the first device 110 determines 210 whether to suspend the one or more timers. The determining is based on a predetermined criterion. The first device 110 may check each of the running timer (s) to determine whether the timer can be suspended. The predetermined criterion may depend on information related to the one or more running timers for the DRX, information related to the period of time by the skipping indication for skipping monitoring of the control information, a control indication from the second device 120, and/or other related information.
  • the predetermined criterion may be based on a type of the one or more timers running at the first device 110.
  • the first device 110 may determine to suspend a timer that is preset for monitoring control information.
  • timer may include an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer.
  • the first device 110 may suspend the running timer if a type of a timer running when the skipping indication is received is any of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer.
  • the running timer is not such type of timer, for example, if the running timer is a HARQ RTT timer (preset for transmission from the first device 110 to the second device 120 or transmission from the second device 120 to the first device 110) , the first device 110 may determine that the timer is prevented from being suspended. Thus, such timer may not be suspended even if the skipping indication is received because this timer is not set to monitoring the control information.
  • the first device 110 may receive a type indication which type of timer is allowed to be suspended.
  • the type indication may be received from the second device 120 and indicate at least one type of timer that is allowed to be suspended and/or indicate at least one type of timer that is not allowed to be suspended. If the first device 110 determines that a type of a running timer is one of the at least one type indicated by the type indication, the first device 110 may determine that this timer is to be suspended.
  • the type indication may be transmitted from the second device 120 via radio resource control (RRC) signaling.
  • RRC radio resource control
  • the type indication may be transmitted in PDCCH from the second device 120, for example may be transmitted together with the skipping indication.
  • all the running timers may be taken into account collectively.
  • the first device 110 determines that the type of a running timer is an onDuration timer and there is no further timer running for monitoring the control information, then the running onDuration timer may not be suspended.
  • the skipping indication may be used to confirm that the first device may not be scheduled for the period of skipping time.
  • the first device 110 may stop the running onDuration timer or allow the running onDuration timer to continue running.
  • the first device 110 may directly go to sleep or enter the sleep status after the onDuration timer running out (i.e., expiring) , which may further reduce the power saving.
  • the skipping indication is used as a further control indication to indicate the first device 110 to sleep.
  • whether a running timer may be suspended or not may depend on a length of the period of time indicated by the skipping indication. For example, upon receiving the skipping indication, if the first device 110 determines that the length of the period of time is larger, for example, larger than a length threshold, it indicates that the skipping period may probably last beyond the active time in the current DRX cycle. In this case, the first device 110 may determine that the timer is to be suspended. As such, after the period of time for skipping, the timer can be resumed and the first device 110 may continue monitoring the control information to wait for the opportunity to be scheduled.
  • the length threshold may be set as a further period of time remaining for the timer to run upon receiving of the skipping indication, i.e., the period of time after which the timer expires if it keeps running during the skipping period of time. If there is more than one timer running, the length threshold may be set as the period of active time (which is determined from all the running timers) . If the period of time indicated by the skipping indication exceeds the remaining running period of time (or lasts beyond the period of active time) , the first device 110 may determine to suspend the timer. Otherwise, the timer may not be suspended because it may not expire after the skipping of the monitoring.
  • the first device 110 may receive a suspending indication from the second device 120 which indicates whether one or more timers may be suspended for the period of time for skipping.
  • Such suspending indication may be transmitted from the second device 120 in association with the skipping indication, for example, in PDCCH transmitted from the second device 120.
  • the second device 120 is allowed to decide whether the first device 110 should suspend their timer set for DRX.
  • the first device 110 may determine to suspend the timer. Otherwise, the first device 110 may not suspend the timer, for example, may stop the timer or keep the timer running.
  • some criterion used by the first device 110 to determine whether to suspend one or more timers running upon receipt of the skipping indication may also be applied by the first device 110 to determine the suspending of one or more running timers.
  • the first device 110 determines that at least one of the running timers is to be suspended, the first device 110 suspends 215 the at least one timer for the period of time indicated by the skipping indication for skipping monitoring of the control information.
  • the first device 110 may skip monitoring of the control information as a response to the skipping indication.
  • the first device 110 may start a skip timer which is set to a timer value indicating the period of time.
  • the first device 110 may not monitor control information from the second device before the skip timer expires.
  • the first device 110 may resume 220 the suspended timer (s) . At this time, the first device 110 may restart monitoring the control information from the second device 120 until the timer (s) has expired.
  • Fig. 3B illustrates DRX cycles and DRX timers when skipping indications are received according to some example embodiments of the present disclosure.
  • the first device 110 receives a skipping indication from the second device 120 when the onDuration timer 310 is running in the DRX cycle 301.
  • the first device 110 determines to suspend the onDuration timer 310 for a period of time 332 indicated by the skipping indication.
  • the first device 110 may resume the onDuration timer 310.
  • the onDuration timer 310 may keep running for a remaining period of time indicated by its remaining timer value. As such, although the monitoring of control information is skipped for a period of time 332, the active time 302 remains for the first device 110 in this DRX cycle 301.
  • Fig. 3B also illustrates that the first device 110 receives a further skipping indication from the second device 120 when both the onDuration timer 320 and the inactivity timer 322 are running in the DRX cycle 302.
  • the first device 110 may suspend both the onDuration timer 320 and the inactivity timer 322 when skipping the monitoring of the control information in response to the skipping indication.
  • the first device 110 may resume the onDuration timer 320 and the inactivity timer 322 and the active time 304 also remains for the first device 110 in this DRX cycle 302.
  • Fig. 3B is provided merely for purpose of illustration.
  • only one of the onDuration timer and the inactivity timer are suspended when the skipping indication is received.
  • other or different types of timers may be running when the skipping indication is received and the first device may also determine whether to suspend these timers or not according to some example embodiments described herein.
  • timer control as described in the example embodiments of the present disclosure may equally be applicable to other timers which are not directly related to DRX, such as BWP (Bandwidth Part) inactivity timer (ie., bwp-InactivityTimer) , SCell (Secondary Cell) deactivation timer (ie., sCellDeactivationTimer) , TAT (Time Alignment Timer) (ie., timeAlignmentTimer) , beam failure detection or recovery timers (ie., beamFailureDetectionTimer or beamFailureRecoveryTimer) , and the like.
  • BWP Bandwidth Part
  • SCell Secondary Cell deactivation timer
  • TAT Time Alignment Timer
  • beam failure detection or recovery timers ie., beamFailureDetectionTimer or beamFailureRecoveryTimer
  • Fig. 4 illustrates a flowchart of an example method 400 implemented at a device in accordance with some example embodiments of the present disclosure.
  • the method 400 will be described from the perspective of the first device 110 with reference to Fig. 1. It would be appreciated that the method 400 may also be implemented at the second device 120 in Fig. 1.
  • the first device 110 configured with discontinuous reception receives a skipping indication from the second device 120, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time.
  • the first device 110 determines, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception.
  • the first device 110 suspends the timer for the period of time.
  • the predetermined criterion is based on at least one of the following: a type of the timer, a length of the period of time, or a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the second device.
  • the predetermined criterion is based on the type of the timer.
  • determining whether to suspend the timer comprises: determining whether the type of the timer is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and in response to determining that the type of the timer is a timer set for monitoring the control information, determining that the timer is to be suspended.
  • the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determining that the timer is prevented from being suspended.
  • the predetermined criterion is based on the type of the timer.
  • determining whether to suspend the timer comprises: receiving, from the second device, a type indication indicating at least one type of timer that is allowed to be suspended; and in response to the type of the timer being one of the at least one type indicated by the type indication, determining that the timer is to be suspended.
  • receiving the type indication comprises: receiving the type indication via radio resource control signaling.
  • the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: determining that the type of the timer is an on-duration timer; and in response to absence of a further timer running for monitoring the control information, determining that the timer is prevented from being suspended.
  • the method 400 further comprises in response to determining that the timer is prevented from being suspended, stopping the timer or allowing the timer to continue running.
  • the predetermined criterion is based on the length of the period of time. In some example embodiments, determining whether to suspend the timer comprises: in response to the length of the period of time exceeding a length threshold, determining that the timer is to be suspended.
  • the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
  • the predetermined criterion is based on the suspending indication. In some example embodiments, determining whether to suspend the timer comprises: in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determining that the timer is to be suspended.
  • the suspending indication is received in association with the skipping indication.
  • the method 400 further comprises resuming the timer after the timer is suspended for the first period of time.
  • the first device is a terminal device
  • the second device is a network device
  • control information is comprised in a physical downlink control channel.
  • an apparatus capable of performing any of the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; means for in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and means for in response to determining that the timer is to be suspended, suspending the timer for the period of time.
  • the predetermined criterion is based on at least one of the following: a type of the timer, a length of the period of time, or a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the second device.
  • means for determining whether to suspend the timer comprises: means for determining whether the type of the timer is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and in response to determining that the type of the timer is a timer set for monitoring the control information, determining that the timer is to be suspended.
  • the predetermined criterion is based on the type of the timer.
  • means for determining whether to suspend the timer comprises: means for in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determining that the timer is prevented from being suspended.
  • means for determining whether to suspend the timer comprises: means for receiving, from the second device, a type indication indicating at least one type of timer that is allowed to be suspended; and means for in response to the type of the timer being one of the at least one type indicated by the type indication, determining that the timer is to be suspended.
  • means for receiving the type indication comprises: means for receiving the type indication via radio resource control signaling.
  • the predetermined criterion is based on the type of the timer.
  • means for determining whether to suspend the timer comprises: means for determining that the type of the timer is an on-duration timer; and in response to absence of a further timer running for monitoring the control information, determining that the timer is prevented from being suspended.
  • the apparatus further comprises means for in response to determining that the timer is prevented from being suspended, stopping the timer or allowing the timer to continue running.
  • means for determining whether to suspend the timer comprises: means for in response to the length of the period of time exceeding a length threshold, determining that the timer is to be suspended.
  • the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
  • the predetermined criterion is based on the suspending indication
  • means for determining whether to suspend the timer comprises: means for in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determining that the timer is to be suspended.
  • the suspending indication is received in association with the skipping indication.
  • the apparatus further comprises means for resuming the timer after the timer is suspended for the first period of time.
  • the first device is a terminal device
  • the second device is a network device
  • control information is comprised in a physical downlink control channel.
  • the apparatus further comprises means for performing other steps in some example embodiments of the method 400.
  • the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure.
  • the device 500 may be provided to implement the communication device, for example the first device 110, the first device 111 or the second device 120 as shown in Fig. 1.
  • the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor 510, and one or more communication modules 540 coupled to the processor 510.
  • the communication module 540 is for bidirectional communications.
  • the communication module 540 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 520 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
  • a computer program 530 includes computer executable instructions that are executed by the associated processor 510.
  • the program 530 may be stored in the ROM 524.
  • the processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 522.
  • the embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to Figs. 2 to 4.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500.
  • the device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 7 shows an example of the computer readable medium 600 in form of CD or DVD.
  • the computer readable medium has the program 530 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 400 as described above with reference to Fig. 4.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to timer control in discontinuous reception. A method comprises receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and in response to determining that the timer is to be suspended, suspending the timer for the period of time.

Description

TIMER CONTROL IN DISCONTINUOUS RECEPTION FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium for timer control in discontinuous reception.
BACKGROUND
Discontinuous reception (DRX) is a method for reducing battery consumption by allowing a communication device to discontinuously receive information from another communication device. For example, when the DRX is configured, user equipment (UE) discontinuously monitors a downlink channel from a network device so as to reduce the battery consumption. Otherwise, the UE continuously monitors the downlink channel. With the DRX configured, one or more timers may be configured to indicate when a device is in an active status for the reception and/or when the device is in a sleep status where the monitoring or reception is not performed.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for timer control in discontinuous reception.
In a first aspect, there is provided a method. The method comprises receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and in response to determining that the timer is to be suspended, suspending the timer for the period of time.
In a second aspect, there is provided a device. The device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to receive, at the device configured with discontinuous reception, a  skipping indication from a further device, the skipping indication indicating to the device to skip monitoring of control information from the further device for a period of time; in response to the skipping indication, determine, based on a predetermined criterion, whether to suspend a timer running at the device for the discontinuous reception; and in response to determining that the timer is to be suspended, suspend the timer for the period of time.
In a third aspect, there is provided an apparatus. The apparatus comprises means for receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; means for in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and means for in response to determining that the timer is to be suspended, suspending the timer for the period of time.
In a fourth aspect, there is provided a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above first aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented;
Fig. 2 illustrates a signaling chart illustrating a process for timer control in DRX according to some example embodiments of the present disclosure;
Fig. 3A illustrates DRX cycles and DRX timers configured for a device according to some example embodiments of the present disclosure;
Fig. 3B illustrates DRX cycles and DRX timers when skipping indications are  received according to some example embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of a method implemented at a device according to some example embodiments of the present disclosure;
Fig. 5 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 6 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these  terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and  if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music  storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node may, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The network 100 includes a first device 110 and a second device 120 that can communicate with each other. In this example, the first device 110 is illustrated as a terminal device, and the second device 120 is illustrated as a network device serving the terminal device. Thus, the serving area of the second device 120 is called as a cell 102. It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The system 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the cell 102 and  served by the second device 120.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
In the communication network 100, the first device 110 and the second device 120 can communicate data and control information to each other. In the case that the first device 110 is the terminal device and the second device 120 is the network device, a link from the second device 120 to the first device 110 is referred to as a downlink (DL) , while a link from the first device 110 to the second device 120 is referred to as an uplink (UL) .
The first device 110 and the second device 120 may be configured with discontinuous communication for the purpose of power saving. The discontinuous communication may include discontinuous reception (DRX) and/or discontinuous transmission (DTX) . Either or both of the first and  second devices  110 and 120 can be configured with DRX and/or DTX. For example, when the DRX is configured, the first device 110 discontinuously monitors information/data (for example, downlink information/data) transmitted from the second device 120. When the DTX is configured, the first device 110 discontinuously transmits information/data (for example, uplink information/data) to the second device 120. Similarly, the second device 120 may also be possibly configured with DRX or DTX.
When DRX is configured, to receive data, a device, for example, the first device 110 may first awake to monitor control information which indicates whether the device is scheduled to receive data and how the data can be received. A DRX cycle specifies the  periodic repetition of the on-duration followed by a possible period of inactivity. The DRX cycle includes an on-duration and an off-duration. The on-duration is an active time during which a UE monitors control information within the DRX cycle. The control information may include information communicated in a physical downlink control channel (PDCCH) .
DRX cycles are configured to keep the device awake periodically during an active time indicated by a timer called an onDuration timer in case there is data transmission scheduled. The active time may be extended due to an event occurrence, which may start other timer such as an inactivity timer, a retransmission timer, a contention resolution timer, or a Hybrid Automatic Repeat request (HARQ) Round-Trip-Time (RTT) timer. An active time for the device in a DRX cycle may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence.
To support further power saving, in some example embodiments, a device with DRX configured may skip monitoring of control information for a period of time. Skipping monitoring of control information is especially beneficial in the cases of scheduling gaps due to beam sweeping or other scheduling decision at the side of the transmitter. The DRX timing mechanism may be adjusted to support skipping monitoring of the control information. For example, a network device may have a number of terminal devices to schedule in distinct beams but the scheduling cannot be completed simultaneously. The network device may indicate one or more of the terminal devices to skip monitoring the control information for a while and enter a sleep status because these terminal devices cannot be scheduled until a number of time slots.
However, the period of time for skipping monitoring of the control information may last beyond the active time of DRX. If the timers set for DRX continue running while the control information is not monitored during the period of time for skipping, the device with DRX configured may not be awake for monitoring the control information after the period of time for skipping. Since the control information is generally used to schedule the device, the device has no opportunity to be scheduled after the period of time for skipping.
There has been proposed to stop the onDuration timer and the inactivity timer upon reception of the indication to skip monitoring of the control information and restart  the timers after the period of time for skipping. However, the stopping and restarting of the timers may unnecessarily extend the active time of the device with DRX configured, especially when the skipping is performed almost at the end of the active time.
According to some example embodiments, there is provided an improved solution for timer control in DRX. In an example embodiment, a timer set or DRX can be suspended if the device receives a skipping indication to skip monitoring of control information from a second device for a period of time. The device may determine whether one or more of timers that are currently running at the device for DRX can be suspended based on a predetermined criterion. In this way, instead of simply letting a timer continue to run, the suspending of the timer allows configuring a smaller value for the timer without reducing the opportunity of communication with the second device due to the skipping of monitoring the control information. In addition, as compared to stopping and restarting the timer, the suspending of the timer in the example embodiment of the present disclosure reduces the period of time during which the device stays awake unnecessarily.
Reference is now made to Fig. 2, which shows a signaling chart 200 for timer control in DRX according to an example embodiment of the present disclosure. For the purpose of discussion, the signaling chart 200 will be described with reference to Fig. 1. The signaling chart 200 may involve the first device 110 and the second device 120 as illustrated in Fig. 1. It would be appreciated that although the signaling chart 200 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios. It would also be appreciated that although DRX configured for the first device is discussed, a similar process can be applied for DRX configured for the second device (in this case, the first device 110 may be in a mode of DTX) .
In the signaling chart 200, the first device 110 is configured with DRX. The first device 110 receives 205 a skipping indication from the second device 120. The skipping device indicates to the first device 110 to skip monitoring of control information from the second device 120 for a period of time.
In some example embodiments when the first device 110 is a terminal device and the second device 120 is a network device, the control information to be monitored may be comprised in a PDCCH. The PDCCH is a downlink control channel, and is called a scheduling channel in a sense that it carries scheduling information. Control information  transmitted through the PDCCH is referred to as downlink control information (DCI) . By monitoring the control information, the first device 110 may determine when and/or how it is scheduled to receive data from the second device 120. The skipping indication may be transmitted to the first device 110 in control information, such as in PDCCH. The skipping indication may be provided to the first device 110 as a skipping command.
The skipping indication may be received in an active time when the first device 110 is monitoring control information from the second device 120. As mentioned above, an active time for a device may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence in a DRX cycle. Whether the device is active in DRX is indicated by one or more timers running at the first device 110. To skip monitoring of the control information, one or more timers for DRX may be appropriately controlled by the first device 110.
To better understand the DRX, before discussing how a timer for DRX is controlled, DRX cycles and timers are first introduced with reference to Fig. 3A. As shown, a DRX cycle specifies periodic repetition of the on-duration followed by a possible extended period of time. The DRX cycle includes an on-duration and an off-duration. The on-duration is an active time during which the first device 110 is active to monitor control information within the DRX cycle. The off-duration is a duration in which the first device 110 is in a sleep state and does not monitor the control information. The DRX cycle may be various types. In some examples, the DRX cycle may be a long DRX cycle or a short DRX cycle. The long DRX cycle which has a long period can minimize battery consumption of the UE. The short DRX cyclic which has a short period can minimize a data transmission delay.
An active time for the device in a DRX cycle may include an on-duration in which the control information is periodically monitored and a duration in which the control information is monitored due to an event occurrence. The active time may be defined by one or more timers set for DRX. As shown in Fig. 3A, in a DRX cycle 301, an onDuration timer 310 is running. An active time 302 is defined as a duration in which the onDuration timer 310 is running. The onDuration timer 310 may be set to a predetermined timer value and in some examples, may specify the number of consecutive subframe (s) for control information at the beginning of a DRX cycle. A subframe for control information (for example, for PDCCH) refers to a subframe in which the control  information is monitored. A plurality of onDuration timers having the same timer value naay be started at the beginning of DRX cycles. For example, another onDuration timer 320 is started at a next DRX cycle 303.
In addition to the onDuration timer 320, one or more additional timers may be set for DRX depending on certain events happened. In some example embodiments, the active time in a DRX cycle may be extended due to the additional timers. In the example of Fig. 3A, a length of an active time 304 in the DRX cycle 303 is extended as compared to the active time 302. This is because an inactivity timer 322 is started when the first device 110 receives and successfully decodes control information while the onDuration timer 320 is running.
The inactivity timer 322 keeps the first device 110 monitoring the control information (for example, PDCCH) . The inactivity timer 322 indicates a duration after which if no activity is detected over a channel, the first device 110 may enter the off-duration of the DRX cycle 303. If the inactivity timer 322 is running, the first device 110 may continuously monitor the control information. The inactivity timer 322 starts upon receiving in the control information an initial grant for transmission to the second device 120 (for example, an initial UL grant) or a grant for reception from the second device 120 (for example, a DL assignment) . The inactivity timer 322 may be set to a predetermined timer value and may, for example, specify the number of consecutive subframe (s) for control information after successfully decoding previous control information indicating an initial UL or DL data transmission for this device. As shown in Fig. 3A, due to the inactivity timer 322, the active time 304 in the DRX cycle is extended.
In addition to the inactivity timer or as an alternative, the first device 110 may operate some other timers in DRX, such as a HARQ RTT timer, a retransmission timer, a contention resolution timer, and the like. A retransmission timer defines a duration in which the first device 110 monitors the control information while expecting retransmission from the second device 120. A HARQ RTT timer defines a minimum duration in which the first device 110 expects HARQ retransmission. The HARQ RTT timer may specify the minimum amount of subframe (s) before a DL HARQ retransmission is expected by the UE. The retransmission timer may specify a maximum number of consecutive control information-subframe (s) for as soon as a retransmission is expected by the first device 110. After an initial transmission from the second device 120, the first device 110 starts the HARQ RTT timer. When the first device 110 cannot correctly decode the initial DL  transmission, the first device 110 transmits NACK to the second device 120. The HARQ RTT timer is started after transmission of HARQ feedback to the second device 120 and when it expires, the retransmission timer is started. The first device 110 may monitor the control information for retransmission from the second device 120 while the retransmission timer is running. The contention resolution timer may be started in a random access (RA) procedure of the first device 110, which may specify the number of consecutive subframe (s) during which the first device 110 can monitor the control information after an Msg3 in the RA procedure is transmitted.
Some examples of DRX cycles and DRX timers are discussed above. In some example embodiments, the skipping indication may be transmitted from the second device 120 when the first device 110 and the second device 120 are in a connected status, for example, when the first device 110 is in an RRC connected state (also may be referred as an RRC connected mode) with the second device. In some other embodiments, the first device 110 may be in an RRC idle state (also may be referred as an RRC idle mode) .
Referring back to Fig. 2, if one or more timers set for DRX are running upon receipt of the skipping indication, the first device 110 determines 210 whether to suspend the one or more timers. The determining is based on a predetermined criterion. The first device 110 may check each of the running timer (s) to determine whether the timer can be suspended. The predetermined criterion may depend on information related to the one or more running timers for the DRX, information related to the period of time by the skipping indication for skipping monitoring of the control information, a control indication from the second device 120, and/or other related information.
In some example embodiments, the predetermined criterion may be based on a type of the one or more timers running at the first device 110. Among all the timers started for DRX, the first device 110 may determine to suspend a timer that is preset for monitoring control information. Such timer may include an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer. In this case, if a type of a timer running when the skipping indication is received is any of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer, the first device 110 may suspend the running timer.
In some example embodiments, if the running timer is not such type of timer, for example, if the running timer is a HARQ RTT timer (preset for transmission from the first  device 110 to the second device 120 or transmission from the second device 120 to the first device 110) , the first device 110 may determine that the timer is prevented from being suspended. Thus, such timer may not be suspended even if the skipping indication is received because this timer is not set to monitoring the control information.
In some example embodiments, among all the types of timers set for monitoring control information, the first device 110 may receive a type indication which type of timer is allowed to be suspended. The type indication may be received from the second device 120 and indicate at least one type of timer that is allowed to be suspended and/or indicate at least one type of timer that is not allowed to be suspended. If the first device 110 determines that a type of a running timer is one of the at least one type indicated by the type indication, the first device 110 may determine that this timer is to be suspended. In some example embodiments, the type indication may be transmitted from the second device 120 via radio resource control (RRC) signaling. In other example embodiments, the type indication may be transmitted in PDCCH from the second device 120, for example may be transmitted together with the skipping indication.
In some example embodiments, all the running timers may be taken into account collectively. In an example embodiment, if the first device 110 determines that the type of a running timer is an onDuration timer and there is no further timer running for monitoring the control information, then the running onDuration timer may not be suspended. In other words, if there is only an onDuration timer running, the skipping indication may be used to confirm that the first device may not be scheduled for the period of skipping time. As such, instead of suspending the running onDuration timer, the first device 110 may stop the running onDuration timer or allow the running onDuration timer to continue running. As such, the first device 110 may directly go to sleep or enter the sleep status after the onDuration timer running out (i.e., expiring) , which may further reduce the power saving. In this case, the skipping indication is used as a further control indication to indicate the first device 110 to sleep.
Alternatively, or in addition, whether a running timer may be suspended or not may depend on a length of the period of time indicated by the skipping indication. For example, upon receiving the skipping indication, if the first device 110 determines that the length of the period of time is larger, for example, larger than a length threshold, it indicates that the skipping period may probably last beyond the active time in the current DRX cycle. In this case, the first device 110 may determine that the timer is to be suspended. As such,  after the period of time for skipping, the timer can be resumed and the first device 110 may continue monitoring the control information to wait for the opportunity to be scheduled. In some example embodiments, the length threshold may be set as a further period of time remaining for the timer to run upon receiving of the skipping indication, i.e., the period of time after which the timer expires if it keeps running during the skipping period of time. If there is more than one timer running, the length threshold may be set as the period of active time (which is determined from all the running timers) . If the period of time indicated by the skipping indication exceeds the remaining running period of time (or lasts beyond the period of active time) , the first device 110 may determine to suspend the timer. Otherwise, the timer may not be suspended because it may not expire after the skipping of the monitoring.
In some example embodiments, the first device 110 may receive a suspending indication from the second device 120 which indicates whether one or more timers may be suspended for the period of time for skipping. Such suspending indication may be transmitted from the second device 120 in association with the skipping indication, for example, in PDCCH transmitted from the second device 120. In this way, for each skipping indication, the second device 120 is allowed to decide whether the first device 110 should suspend their timer set for DRX. In response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, the first device 110 may determine to suspend the timer. Otherwise, the first device 110 may not suspend the timer, for example, may stop the timer or keep the timer running.
It has been described in the above example embodiment some criterion used by the first device 110 to determine whether to suspend one or more timers running upon receipt of the skipping indication. It would be appreciated that other criterion may also be applied by the first device 110 to determine the suspending of one or more running timers.
If the first device 110 determines that at least one of the running timers is to be suspended, the first device 110 suspends 215 the at least one timer for the period of time indicated by the skipping indication for skipping monitoring of the control information. In some example embodiments, while the timer (s) is suspended, the first device 110 may skip monitoring of the control information as a response to the skipping indication. The first device 110 may start a skip timer which is set to a timer value indicating the period of time. The first device 110 may not monitor control information from the second device before the skip timer expires.
In some example embodiments, after the period of time for skipping, the first device 110 may resume 220 the suspended timer (s) . At this time, the first device 110 may restart monitoring the control information from the second device 120 until the timer (s) has expired.
To better understand the timer control in DRX, Fig. 3B illustrates DRX cycles and DRX timers when skipping indications are received according to some example embodiments of the present disclosure. In the example of Fig. 3B, the first device 110 receives a skipping indication from the second device 120 when the onDuration timer 310 is running in the DRX cycle 301. In response to the skipping indication and the running onDuration timer, the first device 110 determines to suspend the onDuration timer 310 for a period of time 332 indicated by the skipping indication. After the period of time 332, the first device 110 may resume the onDuration timer 310. The onDuration timer 310 may keep running for a remaining period of time indicated by its remaining timer value. As such, although the monitoring of control information is skipped for a period of time 332, the active time 302 remains for the first device 110 in this DRX cycle 301.
Fig. 3B also illustrates that the first device 110 receives a further skipping indication from the second device 120 when both the onDuration timer 320 and the inactivity timer 322 are running in the DRX cycle 302. The first device 110 may suspend both the onDuration timer 320 and the inactivity timer 322 when skipping the monitoring of the control information in response to the skipping indication. After a period of time 334 indicated by the further skipping indication, the first device 110 may resume the onDuration timer 320 and the inactivity timer 322 and the active time 304 also remains for the first device 110 in this DRX cycle 302.
It would be appreciated that the example of Fig. 3B is provided merely for purpose of illustration. In some other example embodiments, only one of the onDuration timer and the inactivity timer are suspended when the skipping indication is received. In some other example embodiments, other or different types of timers may be running when the skipping indication is received and the first device may also determine whether to suspend these timers or not according to some example embodiments described herein.
It would also be appreciated that although some types of timers are provided as examples above, the timer control as described in the example embodiments of the present disclosure may equally be applicable to other timers which are not directly related to DRX,  such as BWP (Bandwidth Part) inactivity timer (ie., bwp-InactivityTimer) , SCell (Secondary Cell) deactivation timer (ie., sCellDeactivationTimer) , TAT (Time Alignment Timer) (ie., timeAlignmentTimer) , beam failure detection or recovery timers (ie., beamFailureDetectionTimer or beamFailureRecoveryTimer) , and the like. The scope of the example embodiments is not limited in this regard.
Fig. 4 illustrates a flowchart of an example method 400 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the first device 110 with reference to Fig. 1. It would be appreciated that the method 400 may also be implemented at the second device 120 in Fig. 1.
At block 410, the first device 110 configured with discontinuous reception receives a skipping indication from the second device 120, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time. At block 420, in response to the skipping indication, the first device 110 determines, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception. At block 430, in response to determining that the timer is to be suspended, the first device 110 suspends the timer for the period of time.
In some example embodiments, the predetermined criterion is based on at least one of the following: a type of the timer, a length of the period of time, or a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the second device.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: determining whether the type of the timer is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and in response to determining that the type of the timer is a timer set for monitoring the control information, determining that the timer is to be suspended.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determining that the timer is prevented from being  suspended.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: receiving, from the second device, a type indication indicating at least one type of timer that is allowed to be suspended; and in response to the type of the timer being one of the at least one type indicated by the type indication, determining that the timer is to be suspended.
In some example embodiments, receiving the type indication comprises: receiving the type indication via radio resource control signaling.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, determining whether to suspend the timer comprises: determining that the type of the timer is an on-duration timer; and in response to absence of a further timer running for monitoring the control information, determining that the timer is prevented from being suspended.
In some example embodiments, the method 400 further comprises in response to determining that the timer is prevented from being suspended, stopping the timer or allowing the timer to continue running.
In some example embodiments, the predetermined criterion is based on the length of the period of time. In some example embodiments, determining whether to suspend the timer comprises: in response to the length of the period of time exceeding a length threshold, determining that the timer is to be suspended.
In some example embodiments, the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
In some example embodiments, the predetermined criterion is based on the suspending indication. In some example embodiments, determining whether to suspend the timer comprises: in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determining that the timer is to be suspended.
In some example embodiments, the suspending indication is received in association with the skipping indication.
In some example embodiments, the method 400 further comprises resuming the  timer after the timer is suspended for the first period of time.
In some example embodiments, the first device is a terminal device, and the second device is a network device.
In some example embodiments, the control information is comprised in a physical downlink control channel.
In some example embodiments, an apparatus capable of performing any of the method 400 (for example, the first device 110 or the second device 120) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time; means for in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and means for in response to determining that the timer is to be suspended, suspending the timer for the period of time.
In some example embodiments, the predetermined criterion is based on at least one of the following: a type of the timer, a length of the period of time, or a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the second device.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, means for determining whether to suspend the timer comprises: means for determining whether the type of the timer is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and in response to determining that the type of the timer is a timer set for monitoring the control information, determining that the timer is to be suspended.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, means for determining whether to suspend the  timer comprises: means for in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determining that the timer is prevented from being suspended.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, means for determining whether to suspend the timer comprises: means for receiving, from the second device, a type indication indicating at least one type of timer that is allowed to be suspended; and means for in response to the type of the timer being one of the at least one type indicated by the type indication, determining that the timer is to be suspended.
In some example embodiments, means for receiving the type indication comprises: means for receiving the type indication via radio resource control signaling.
In some example embodiments, the predetermined criterion is based on the type of the timer. In some example embodiments, means for determining whether to suspend the timer comprises: means for determining that the type of the timer is an on-duration timer; and in response to absence of a further timer running for monitoring the control information, determining that the timer is prevented from being suspended.
In some example embodiments, the apparatus further comprises means for in response to determining that the timer is prevented from being suspended, stopping the timer or allowing the timer to continue running.
In some example embodiments, the predetermined criterion is based on the length of the period of time. In some example embodiments, means for determining whether to suspend the timer comprises: means for in response to the length of the period of time exceeding a length threshold, determining that the timer is to be suspended.
In some example embodiments, the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
In some example embodiments, the predetermined criterion is based on the suspending indication, and means for determining whether to suspend the timer comprises: means for in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determining that the timer is to be suspended.
In some example embodiments, the suspending indication is received in association with the skipping indication.
In some example embodiments, the apparatus further comprises means for resuming the timer after the timer is suspended for the first period of time.
In some example embodiments, the first device is a terminal device, and the second device is a network device.
In some example embodiments, the control information is comprised in a physical downlink control channel.
In some example embodiments, the apparatus further comprises means for performing other steps in some example embodiments of the method 400. In some example embodiments, the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure. The device 500 may be provided to implement the communication device, for example the first device 110, the first device 111 or the second device 120 as shown in Fig. 1. As shown, the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor 510, and one or more communication modules 540 coupled to the processor 510.
The communication module 540 is for bidirectional communications. The communication module 540 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 520 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories  include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
computer program 530 includes computer executable instructions that are executed by the associated processor 510. The program 530 may be stored in the ROM 524. The processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 522.
The embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to Figs. 2 to 4. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500. The device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 7 shows an example of the computer readable medium 600 in form of CD or DVD. The computer readable medium has the program 530 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry  out the method 400 as described above with reference to Fig. 4. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable  results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (32)

  1. A method, comprising:
    receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time;
    in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and
    in response to determining that the timer is to be suspended, suspending the timer for the period of time.
  2. The method of claim 1, wherein the predetermined criterion is based on at least one of the following:
    a type of the timer,
    a length of the period of time, or
    a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the second device.
  3. The method of claim 2, wherein the predetermined criterion is based on the type of the timer, and wherein determining whether to suspend the timer comprises:
    determining whether the type of the timer is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and
    in response to determining that the type of the timer is a timer set for monitoring the control information, determining that the timer is to be suspended.
  4. The method of claim 2, wherein the predetermined criterion is based on the type of the timer, and wherein determining whether to suspend the timer comprises:
    in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determining that the timer is prevented from being suspended.
  5. The method of claim 2, wherein the predetermined criterion is based on the type of the timer, and wherein determining whether to suspend the timer comprises:
    receiving, from the second device, a type indication indicating at least one type of timer that is allowed to be suspended; and
    in response to the type of the timer being one of the at least one type indicated by the type indication, determining that the timer is to be suspended.
  6. The method of claim 5, wherein receiving the type indication comprises:
    receiving the type indication via radio resource control signaling.
  7. The method of claim 2, wherein the predetermined criterion is based on the type of the timer, and wherein determining whether to suspend the timer comprises:
    determining that the type of the timer is an on-duration timer; and
    in response to absence of a further timer running for monitoring the control information, determining that the timer is prevented from being suspended.
  8. The method of claim 7, further comprising:
    in response to determining that the timer is prevented from being suspended, stopping the timer or allowing the timer to continue running.
  9. The method of claim 2, wherein the predetermined criterion is based on the length of the period of time, and wherein determining whether to suspend the timer comprises:
    in response to the length of the period of time exceeding a length threshold, determining that the timer is to be suspended.
  10. The method of claim 9, wherein the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
  11. The method of claim 2, wherein the predetermined criterion is based on the suspending indication, and wherein determining whether to suspend the timer comprises:
    in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determining that the timer is to be suspended.
  12. The method of claim 11, wherein the suspending indication is received in association with the skipping indication.
  13. The method of claim 1, further comprising:
    resuming the timer after the timer is suspended for the first period of time.
  14. The method of claim 1, wherein the first device is a terminal device, and the second device is a network device.
  15. The method of claim 14, wherein the control information is comprised in a physical downlink control channel.
  16. A device, comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    receive, at the device configured with discontinuous reception, a skipping indication from a further device, the skipping indication indicating to the device to skip monitoring of control information from the further device for a period of time;
    in response to the skipping indication, determine, based on a predetermined criterion, whether to suspend a timer running at the device for the discontinuous reception; and
    in response to determining that the timer is to be suspended, suspend the timer for the period of time.
  17. The device of claim 16, wherein the predetermined criterion is based on at least one of the following:
    a type of the timer,
    a length of the period of time, or
    a suspending indication of whether the timer is allowed to be suspended during the period of time, the suspending indication being received from the further device.
  18. The device of claim 17, wherein the predetermined criterion is based on the  type of the timer, and wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    determine whether the type of the tim er is a timer preset for monitoring the control information, the timer preset for monitoring the control information comprising at least one of an on-duration timer, an inactivity timer, a retransmission timer, or a contention resolution timer; and
    in response to determining that the type of the timer is a timer set for monitoring the control information, determine that the timer is to be suspended.
  19. The device of claim 17, wherein the predetermined criterion is based on the type of the timer, and wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    in response to determining that the type of the timer is a hybrid automatic repeat request round-trip-time timer, determine that the timer is prevented from being suspended.
  20. The device of claim 17, wherein the predetermined criterion is based on the type of the timer, and the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    receive, from the further device, a type indication indicating at least one type of timer that is allowed to be suspended; and
    in response to the type of the timer being one of the at least one type indicated by the type indication, determine that the timer is to be suspended.
  21. The device of claim 20, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    receive the type indication via radio resource control signaling.
  22. The device of claim 17, wherein the predetermined criterion is based on the type of the timer, and wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    determine that the type of the timer is an on-duration timer; and
    in response to absence of a further timer running for monitoring the control information, determine that the timer is prevented from being suspended.
  23. The device of claim 22, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the device to:
    in response to determining that the timer is prevented from being suspended, stop the timer or allow the timer to continue running.
  24. The device of claim 17, wherein the predetermined criterion is based on the length of the period of time, and wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    in response to the length of the period of time exceeding a length threshold, determine that the timer is to be suspended.
  25. The device of claim 24, wherein the length threshold is set as a further period of time remaining for the timer to run upon receiving of the skipping indication.
  26. The device of claim 17, wherein the predetermined criterion is based on the suspending indication, and the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device to:
    in response to the suspending indication indicating that the timer is allowed to be suspended for the period of time, determine that the timer is to be suspended.
  27. The device of claim 26, wherein the suspending indication is received in association with the skipping indication.
  28. The device of claim 16, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the device to:
    resume the timer after the timer is suspended for the first period of time.
  29. The device of claim 16, wherein the device is a terminal device, and the further device is a network device.
  30. The device of claim 29, wherein the control information is comprised in a physical downlink control channel.
  31. An apparatus, comprising:
    means for receiving, at a first device configured with discontinuous reception, a skipping indication from a second device, the skipping indication indicating to the first device to skip monitoring of control information from the second device for a period of time;
    means for in response to the skipping indication, determining, based on a predetermined criterion, whether to suspend a timer running at the first device for the discontinuous reception; and
    means for in response to determining that the timer is to be suspended, suspending the timer for the period of time.
  32. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 1 to 15.
PCT/CN2019/085331 2019-04-30 2019-04-30 Timer control in discontinuous reception WO2020220322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/085331 WO2020220322A1 (en) 2019-04-30 2019-04-30 Timer control in discontinuous reception
CN201980095912.2A CN113767673A (en) 2019-04-30 2019-04-30 Timer control in discontinuous reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085331 WO2020220322A1 (en) 2019-04-30 2019-04-30 Timer control in discontinuous reception

Publications (1)

Publication Number Publication Date
WO2020220322A1 true WO2020220322A1 (en) 2020-11-05

Family

ID=73029602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085331 WO2020220322A1 (en) 2019-04-30 2019-04-30 Timer control in discontinuous reception

Country Status (2)

Country Link
CN (1) CN113767673A (en)
WO (1) WO2020220322A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194000A1 (en) * 2021-03-15 2022-09-22 维沃移动通信有限公司 Uplink sending processing method and apparatus, and terminal and readable storage medium
WO2023014469A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Techniques for aperiodic discontinuous reception mode communications
WO2024016265A1 (en) * 2022-07-21 2024-01-25 Qualcomm Incorporated Artificial intelligence based discontinuous reception configuration
WO2024021980A1 (en) * 2022-07-27 2024-02-01 华为技术有限公司 Discontinuous reception method, and apparatus
US12041000B2 (en) 2021-08-05 2024-07-16 Qualcomm Incorporated Techniques for communicating data channel transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860946A (en) * 2010-05-21 2010-10-13 山东大学 DRX device based on LTE system and control method thereof
US20140321388A1 (en) * 2011-02-21 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
WO2017146535A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method connected mode discontinuous operation in beamformed system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860946A (en) * 2010-05-21 2010-10-13 山东大学 DRX device based on LTE system and control method thereof
US20140321388A1 (en) * 2011-02-21 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
WO2017146535A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method connected mode discontinuous operation in beamformed system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194000A1 (en) * 2021-03-15 2022-09-22 维沃移动通信有限公司 Uplink sending processing method and apparatus, and terminal and readable storage medium
WO2023014469A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Techniques for aperiodic discontinuous reception mode communications
US11985597B2 (en) 2021-08-05 2024-05-14 Qualcomm Incorporated Techniques for aperiodic discontinuous reception mode communications
US12041000B2 (en) 2021-08-05 2024-07-16 Qualcomm Incorporated Techniques for communicating data channel transmissions
WO2024016265A1 (en) * 2022-07-21 2024-01-25 Qualcomm Incorporated Artificial intelligence based discontinuous reception configuration
WO2024021980A1 (en) * 2022-07-27 2024-02-01 华为技术有限公司 Discontinuous reception method, and apparatus

Also Published As

Publication number Publication date
CN113767673A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020220322A1 (en) Timer control in discontinuous reception
US11963104B2 (en) Mechanism for interactions for entering into sleep mode
US11937181B2 (en) Wake up signaling handling in discontinuous reception
WO2021088015A1 (en) Discontinuous reception mechanism supporting blind retransmission
AU2024201320A1 (en) Uplink information based on wake-up signal
US20220295563A1 (en) Skipping Monitoring of Downlink Control Channel During Random Access Procedure
WO2024098227A1 (en) Uplink synchronization with lower power wake-up signals
WO2024060243A1 (en) Conditional skipping monitoring of downlink control channel
WO2023216264A1 (en) Reporting of relaxation status of signal measurement
WO2024092672A1 (en) Enabling (re) transmissions with network discontinuous reception/discontinuous transmission
WO2022147841A1 (en) Rrc state transition reporting
WO2021087884A1 (en) Dynamic active time trigger in contention free random access
WO2024098224A1 (en) Lower power wake-up signal operation
WO2023216271A1 (en) Method and apparatus for small data transmission
WO2024031665A1 (en) Transmission reception point adaptation
WO2023133903A1 (en) Mechanism for configured grant transmission
WO2024098225A1 (en) Lower power wake-up signal operation with discontinuous reception configuration
WO2020258104A1 (en) Notification of status of discontinuous reception configuration
CN118339913A (en) Contention resolution for non-terrestrial networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926970

Country of ref document: EP

Kind code of ref document: A1