WO2020218667A1 - Optical objective lens alignment mount for sample chamber, light-reflecting mirror having electron through-hole and mounted on mount, and correlative light and electron microscope having spectrometer and comprising same - Google Patents

Optical objective lens alignment mount for sample chamber, light-reflecting mirror having electron through-hole and mounted on mount, and correlative light and electron microscope having spectrometer and comprising same Download PDF

Info

Publication number
WO2020218667A1
WO2020218667A1 PCT/KR2019/006109 KR2019006109W WO2020218667A1 WO 2020218667 A1 WO2020218667 A1 WO 2020218667A1 KR 2019006109 W KR2019006109 W KR 2019006109W WO 2020218667 A1 WO2020218667 A1 WO 2020218667A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
electron
objective lens
microscope
Prior art date
Application number
PCT/KR2019/006109
Other languages
French (fr)
Korean (ko)
Inventor
박인용
조복래
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2020218667A1 publication Critical patent/WO2020218667A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/248Base structure objective (or ocular) turrets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor

Definitions

  • the present invention relates to an optical objective lens alignment mount for an optical-electron fusion microscope sample chamber and a light reflecting mirror provided in the mount, and more particularly, to an optical objective lens alignment capable of fine alignment across the inside and outside of the sample chamber while maintaining a vacuum. Equipped with a light-reflecting mirror that allows electron beams to pass through and reflects optical beams on the mount, and a spectrometer equipped with an optical microscope imaging system and a cathodoluminescence spectrometer path to the optical objective lens.
  • Optical-electron fusion microscope technology It is about.
  • luminous bodies such as organic EL, LED, and quantum dots are mainly observed with an optical microscope due to their luminescence characteristics, but the defect causes an abnormality in luminescence or to observe the luminous part in detail.
  • it in order to observe an observation object or fine defect that exceeds the detection limit of an optical microscope, it must be analyzed with an electron microscope having a resolution of nanometers or less than nanometers.
  • Light and electron beams provide complementary information not only to light-emitting devices, but also to defect inspection of biological samples and semiconductors, so by integrating the optical system of an electron microscope and an optical microscope, the sample is observed with near-ultraviolet or visible light, and the region of interest is viewed with an electron microscope. There is a need to develop a fusion microscope that expands and investigates.
  • a fusion microscope in a broader sense involves manufacturing the sample holder of the optical microscope to be shared with the electron microscope, and then finding the coordinates of the part observed in the optical microscope with a separate electron microscope to obtain a high magnification image.
  • various attempts have been made to develop an integrated optical-electron fusion microscope (Correlative Light and Electron Microscope) due to problems such as the hassle and time consuming of moving the sample.
  • Republic of Korea Patent Registration No. 10-1857046 relates to "optical-electron fusion microscope light reflecting mirror having a square pyramid-shaped through hole and a method for manufacturing the same", and the through hole becomes narrower from one side to the other so that the light reflecting mirror is inclined.
  • Disclosed is a technology capable of minimizing light loss by arranging narrow through-holes in the incident direction of light.
  • the light reflecting mirror of the above technology is mounted, it is inclined at 45 degrees to the traveling direction of the electron beam, so the electron beam passage path does not become square when observed with an electron microscope, so there is a problem that it is difficult to obtain an efficient image when fused with an optical microscope image. .
  • Patent Document 1 Korean Patent Registration No. 10-1857046, “Opto-electronic fusion microscope light reflecting mirror having a through hole in the shape of a square pyramid and its manufacturing method”
  • the present invention aims to solve the above problems, and minimizes the opening area of the light reflection surface so that light reflection is maximized when the optical reflection mirror is tilted 45 degrees with respect to the electron beam traveling direction, while securing a space through which the electron beam can pass. It is intended to provide a light-reflecting mirror for an optical-electron fusion microscope that can be used, and a fusion photoelectron microscope sample chamber system in which the light-reflecting mirror is mounted on an optical objective lens mount that precisely aligns the electron beam and the optical beam.
  • the present invention provides an optical-electronic fusion microscope optical objective lens alignment mount for a sample chamber, the alignment mount comprising: a body portion for fixing the optical objective lens through which incident light, reflected light, and cathodoluminescence signal pass; A vacuum holding unit having a motor and an O-ring so as to mount the body part over the inside and outside of the sample chamber and maintain a vacuum while moving in a direction parallel or perpendicular to the optical path; And a light-reflecting mirror mounting part so that a light-reflecting mirror having an electron through-hole having a rectangular pyramid shape having a rectangular bottom surface comes to a position where the light path meets the sample incident electron beam, and an optical objective lens for an optical-electron fusion microscope sample chamber Provides an alignment mount.
  • the light reflecting mirror may include a single crystal silicon plate having a thickness of 0.5 to 1 mm; A through hole in the shape of a square pyramid having a rectangular bottom surface formed in the center of the plate; A double-layer reflective thin film coated on both sides of the plate; And a silicon oxide film (SiO 2 ) 50 to 100 nm thick coating layer for surface protection and oxidation prevention on the double-layer reflective thin film, wherein each side of the square pyramid shape along the crystal direction of the single crystal silicon is on the bottom surface.
  • SiO 2 silicon oxide film
  • the plate is formed at an angle of 50 to 60 degrees, the plate has at least one cut surface parallel to the side of the bottom of the square pyramid shape, the cross-sectional area of the bottom surface of the square pyramid shape is 400 to 500 ⁇ m 2 , and the double layer reflective thin film Silver (Ag) thin film coated with a thickness of 100 to 200 nm on a chromium (Cr) thin film coated with a thickness of 15 to 25 nm, or aluminum coated with a thickness of 100 to 200 nm on a titanium (Ti) thin film coated with a thickness of 15 to 25 nm ( It provides an optical objective lens alignment mount for Al) thin film, optical-electron fusion microscope sample chamber.
  • the through hole is formed in the center of the plate, and in the plate, the cut surface except for the cut surface parallel to the short side of the rectangle, which is the bottom surface of the square pyramid shape, is a curved surface or a square, an optical-electron fusion microscope sample chamber Provides an optical objective lens alignment mount for use.
  • the present invention also provides an optical-electron fusion microscope equipped with a spectroscope, the fusion microscope comprising: a sample chamber having an optical objective lens alignment mount for the sample chamber of any one of claims 1 to 3; An electron microscope unit including an electron beam focusing tube for scanning electron beams into the sample chamber; An optical microscope unit including an illumination system for irradiating light to the optical objective lens and an imaging system for imaging reflected light; A sample stage for adjusting a sample position so that the light reflected by the light reflecting mirror passing through the optical objective lens and the focused beam passing through the through hole of the light reflecting mirror are directed; An optical mode adjustment mirror for adjusting an optical path to be changed at a right angle between the optical objective lens and the imaging system; And it provides an optical-electron fusion microscope equipped with a spectroscope, comprising a spectroscope for analyzing a signal reflected from a sample or cathodoluminescence passing through the optical mode control mirror in the optical objective lens.
  • the present invention also provides an optical-electron fusion microscope equipped with a spectroscope, wherein the optical mode control mirror is adjusted to one of 50-50 reflection transmission modes, reflection modes, and transmission modes.
  • the light reflecting mirror having an electron through hole of the present invention has a rectangular pyramid-shaped bottom surface in a rectangular shape, so that the light reflection is maximized when the light reflection mirror is inclined at 45 degrees with respect to the electron beam traveling direction, while minimizing the opening area of the light reflecting surface.
  • the space through which this can pass can be secured, and the optical objective lens alignment mount for the optical-electron fusion microscope sample chamber equipped with the light reflecting mirror enables precise coaxial alignment of the electron beam and the optical beam.
  • it provides a system capable of analyzing the wavelength of light generated or reflected from the sample by irradiating light from the sample and arranging both the optical microscope system and the spectroscope in the reflected light path centered on the through-hole mirror.
  • FIG. 1 is a conceptual diagram of an optical-electron fusion microscope equipped with a spectroscope including an optical objective lens alignment mount for a sample chamber in an optical-electron fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a light reflecting mirror having an electron through-hole having a curved surface and a straight line according to an embodiment of the present invention.
  • FIG 3 is a conceptual diagram of a light reflecting mirror having an electron through hole having a square cut surface according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a single crystal silicon wafer having a light reflecting mirror having an electron through hole having a curved surface and a straight line according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a single crystal silicon wafer in which a light reflecting mirror having an electron through hole having a square cut surface is formed according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of an optical objective lens alignment mount for a sample chamber of an optical-electron fusion microscope equipped with a light reflection mirror having an electron through hole according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a light reflection path of a light reflection mirror having an electron through hole mounted on an optical objective lens alignment mount for an optical-electron fusion microscope sample chamber according to an embodiment of the present invention.
  • FIG. 8 is obtained when a cathodoluminescence signal is generated in an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber in an optical-electronic fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention.
  • it is an electron microscope image, an electron beam scan area image, and a spectral graph of the signal.
  • 1A is an optical-electronic fusion microscope equipped with an optical-electron fusion microscope equipped with light reflecting mirrors 100 and 101 having an electron through hole according to an embodiment of the present invention; an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber It is a conceptual diagram of. 1B shows an optical mode adjustment mirror 200 described below.
  • the optical-electron fusion microscope equipped with a spectroscope includes: a sample chamber 40 having an optical objective lens alignment mount for a sample chamber; An electron microscope unit 10 including an electron beam focusing tube for scanning electron beams into the sample chamber; An optical microscope unit 20 having an illumination system 21 for irradiating light to the optical objective lens and an imaging system 22 for imaging reflected light; A sample stage (45) for adjusting a sample position so that the light reflected from the light reflecting mirror passing through the optical objective lens and the focused beam passing through the through hole of the light reflecting mirror are directed; An optical mode adjustment mirror 200 for adjusting an optical path to be changed at a right angle between the optical objective lens and the imaging system; And a spectrometer 30 for analyzing cathodoluminescence passing through the optical mode control mirror 200 and the beam splitter and fluorescence filter 500 in the optical objective lens or a signal reflected from the sample.
  • the electron beam focused by the electron beam focusing tube of the electron microscope unit 10 passes through the electron beam through holes of the light reflecting mirrors 100 and 101 having the electron through holes along the electron beam path (a) and is directed toward the sample.
  • the cathodoluminescence signal generated by the electron beam from the sample is reflected from the light reflection mirrors 100 and 101 with electron through holes along the spectral optical path (b), passes through the objective lens 52, the light mode control mirror 200, the beam splitter, and It passes through the fluorescent filter 500 and is directed to the spectrometer 30.
  • the light emitted from the illumination system 21 is reflected by the illumination light reflecting mirror 400, the dichromic mirror 300, and the light mode mirror along the illumination light path c, and has an electron through hole.
  • the light reflected from the sample is reflected from the light reflecting mirrors 100 and 101 having the electron through-hole along the fluorescence optical path (d), passing through the objective lens 52, and reflected from the light mode adjusting mirror 200. After that, the image is formed toward the imaging system by passing through the dichromic mirror 300.
  • the conventional photo-electron fusion microscope (CLEM: Correlative Light and Electron Microscope) fused an electron microscope and an optical microscope to obtain a double image.
  • the photo-electron fusion microscope equipped with a spectroscope proposed in the present invention has an electron microscope function and an optical microscope. It is a system incorporating a microscope function with a fluorescence microscope as well as a spectrometer 30 capable of wavelength analysis of an optical signal (chathodoluminescence) generated from a sample.
  • the beam splitter and the fluorescence filter 200 may be changed to suit the purpose.
  • the sample chamber and the electron microscope unit including the electron beam focusing tube maintain a vacuum with a vacuum pump (not shown). That is, the vacuum view port 53 may move while maintaining the degree of vacuum while transmitting external light into the vacuum chamber.
  • the light mode adjusting mirror 200 is adjusted to one of 50-50 reflection transmission mode, reflection mode, and transmission mode.
  • the light mode control mirror 200 is located in front of the spectrometer 30 in the path of light, and is passed through the 50-50 reflection transmission mode mirror 220, the reflection mode mirror 230, and the transmission mode through hole 210.
  • the mode can be changed to suit various signal acquisition conditions, and electron microscope images can be acquired by default in all modes.
  • the transmission mode is used when analyzing a spectral signal exclusively for a cathodoluminescence signal, which is an optical signal generated by an electron beam.
  • the cathodoluminescence generation signal enters the spectrometer without loss, so it is a very suitable mode when the amount of light is small.
  • the 50-50 reflection transmission mode is suitable for acquiring the scanning area image of the electron beam at the same time as the wavelength spectroscopic analysis of the signal generated by cathodoluminescence.
  • the reflection mode is a mode suitable for simultaneously observing the electron microscope and the optical microscope, and can be used when the optical microscope image of the sample is obtained brightly or the fluorescence signal is weak.
  • FIG. 2 is a conceptual diagram of a light reflecting mirror 100 having an electron through hole 110 having a curved surface and a straight line in a cut surface according to an embodiment of the present invention
  • FIG. 3 is a rectangular cut surface according to an embodiment of the present invention.
  • It is a conceptual diagram of a light reflecting mirror 101 having a phosphorus electron through hole 110.
  • 2A and 3A are perspective views of the mirror
  • FIGS. 2B and 3B are front views
  • FIGS. 2C and 3C are cross-sectional views of AA connection lines shown in the front view.
  • the light-reflecting mirror is manufactured using crystal properties of silicon in order to improve the conventional method of making small holes in a mirror made of metal or glass so that the electron beam passes and the optical beam reflects.
  • a silicon light reflecting mirror according to an embodiment of the present invention includes a single crystal silicon plate having a thickness of 0.5 to 1 mm; A through hole formed in the plate and having a rectangular pyramid shape having a rectangular bottom surface; And a double-layer reflective thin film coated on both sides of the plate.
  • the through hole is manufactured to be formed in the center of the photon beam path when installed in the fusion microscope, and in the plate, the cut surface except for the cut surface parallel to the short side of the rectangle which is the bottom surface of the square pyramid shape is curved. Or square.
  • the through hole may be formed along the crystal direction of the single crystal silicon.
  • each side of the quadrangular pyramid is formed at an angle of 50 to 60 degrees with respect to the bottom surface according to the silicon single crystal structure characteristics, and a preferred angle is 54.74 degrees.
  • the double-layer reflective thin film has a thickness of 100 to 200 nm on a thin film of silver (Ag) coated with a thickness of 100 to 200 nm on a thin film of chromium (Cr) coated with a thickness of 15 to 25 nm, or a thin film of titanium (Ti) coated with a thickness of 15 to 20 nm. It is a coated aluminum (Al) thin film.
  • an oxide film eg, SiO 2
  • the light reflecting mirror having a through hole in the shape of a square pyramid having a rectangular bottom surface enables a square image to be obtained when observing an electron microscope image while inclined at 45 degrees. By doing this, there is an advantage that it becomes convenient to align and synthesize the image of the optical microscope and the image of the electron microscope.
  • the length of the long side is in the range of 1.8 to 2.0 mm
  • the length of the short side is in the range of 1.4 to 1.6 mm, preferably 1.9 mm and 1.5 mm, respectively.
  • silver (Ag) or aluminum that reflects not only long wavelength light but also ultraviolet light well (Al) is used. This is because the cathodoluminescence generated by the electron beam is also generated in the ultraviolet region.
  • chromium (Cr) is used as an adhesion layer
  • titanium (Ti) is used as an adhesion layer.
  • the silicon substrate has a thin thickness of less than 1 mm, it is advantageous in that a through hole does not need to be largely drilled when manufactured for use as a right angle mirror.
  • any type of coating of different metal thin films in two layers or coating of a single metal film may be used as long as it reflects light and prevents charging. It can be deposited in various thicknesses according to the state of the electron beam.
  • FIG. 4 is a conceptual diagram of a single crystal silicon wafer 1000 in which a light reflecting mirror 100 having an electron through hole 110 having a curved surface and a straight line is formed according to an embodiment of the present invention
  • FIG. 5 is an exemplary embodiment of the present invention.
  • a conceptual diagram of a single crystal silicon wafer 1001 having a light reflecting mirror 101 having an electron through hole 110 having a square cut surface according to an embodiment is formed.
  • the light reflection mirror is arranged on an 8-inch or larger silicon wafer in order to manufacture the light reflection mirror.
  • the substrate into a plate unit including one through hole in the light reflecting mirror manufactured using a silicon wet process, wherein the substrate has at least one cut surface parallel to the side of the bottom of the square pyramid shape Including, there is an economical effect that it is possible to obtain a large amount of the light reflecting mirror.
  • the cross-sectional area of the bottom surface of the square-pyramidal through-hole is 400 to 500 ⁇ m 2 , but its size can be changed.
  • the through hole is large enough to pass the electron beam, and is formed small so that reflection loss of the optical beam hardly occurs.
  • the through hole is etched at 54.7°, which is an angle between the ⁇ 111> and ⁇ 100> surfaces, and the through hole becomes narrower from one side to the other (Tapering ), when the light reflecting mirror is arranged inclined at 45°, interference with the electron beam coming down from the top is reduced.
  • the light reflecting mirror having a through hole in the shape of a square pyramid having a rectangular bottom surface enables a square image to be obtained when observing the electron microscope image while inclined at 45 degrees.
  • FIG. 6 is a conceptual diagram of an optical objective lens alignment mount 50 for a sample chamber of an optical-electron fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention.
  • 6A is a perspective view of the alignment mount
  • FIG. 6B is a front view
  • FIG. 6C shows a view port 53 that can be seen from the outside when the mount is mounted in the sample chamber.
  • 6D is a cross-sectional view connecting line A-A of FIG. 6C.
  • the mount is an objective lens alignment mount manufactured to enable precise alignment while maintaining the vacuum degree of the optical objective lens 52 installed inside the vacuum chamber in order to obtain an image of a sample and a fluorescence signal inside the vacuum equipment.
  • the alignment mount includes: a body part 50 for fixing the optical objective lens 52 through which incident light, reflected light, and cathodoluminescence signal pass; A vacuum holding moving part including a motor (not shown) and an O-ring 51 to mount the body part over the inside and outside of the sample chamber and maintain a vacuum while moving in a direction parallel or perpendicular to the optical path; And a light reflection mirror mounting portion 55 such that a light reflection mirror having an electron through hole having a rectangular pyramid shape having a rectangular bottom surface comes to a position where the light path meets the sample incident electron beam.
  • the optical objective lens alignment mount for the sample chamber mounts the body part 50 for fixing the objective lens over the inside and outside of the sample chamber 40, and in a direction parallel or perpendicular to the optical path ( xyz, 3-axis) includes a vacuum holding moving unit having a motor and an O-ring 51 to maintain a vacuum while moving.
  • an optical objective lens is installed inside the vacuum chamber to obtain an image of an optical microscope or a cathodoluminescence signal.
  • Optical objective lens alignment using O-ring and view port 53 so that the objective lens and the light-reflecting mirror with electron through-holes in the shape of a rectangular pyramid can be finely aligned at the same time while maintaining a vacuum. Install the mount.
  • FIG. 7 is a conceptual diagram illustrating a light reflection path of a light reflection mirror 100 having an electron through hole mounted on an optical objective lens alignment mount 50 for an optical-electron fusion microscope sample chamber according to an embodiment of the present invention.
  • the light focused through the optical objective lens proceeds to the incident optical path ⁇ toward the light reflecting mirror. If there is no light reflection mirror, it will go straight to the progress light path ⁇ , but it is reflected by the light reflection mirror and proceeds toward the sample through the reflection light path ⁇ .
  • the size of the light reflecting mirror having an electron through hole may be manufactured to a minimum size in consideration of the numerical aperture of a corresponding optical objective lens. This is because it is possible to shorten the working distance of the objective lens. As shown in the optical path diagram shown in FIG. 5, it is preferable to design the size of the mirror so that all optical paths can be reflected so that there is no light loss due to the aperture angle of the optical objective lens.
  • FIG. 8 is obtained when a cathodoluminescence signal is generated in an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber in an optical-electronic fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention.
  • One is an electron microscope image (a), an electron beam scan area image (b), and a spectral graph (c) of the signal.
  • the cathodoluminescence signal generated by electron beam scanning can be analyzed by a spectroscope, and at this time, it is possible to observe a cathodoluminescence region generated by scanning of an electron beam in an optical microscope in a full field microscope method.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention relates to a technology regarding a correlative light and electron microscope having a spectrometer, wherein a light-reflecting mirror is mounted on an optical objective lens alignment mount capable of making precise alignment inside and outside a sample chamber while maintaining vacuum such that an electron beam is allowed to pass through a rectangular pyramid-shaped through-hole, while an optical beam is reflected, and an optical microscope imaging system and a cathodoluminescence spectrometer path unit are installed on the optical objective lens. The light-reflecting mirror having an electron through-hole according to the present invention has the shape of a quadrangular pyramid, the bottom surface of which is rectangular, and thus can secure a space through which an electron beam can pass while minimizing the area of an opening through a light-reflecting surface such that maximum optical reflection occurs when the light-reflecting mirror is slanted by 45º with regard to the direction of propagation of the electron beam. The optical objective lens alignment mount for a correlative light-and-electron microscope sample chamber, on which the light-reflecting mirror is mounted, can coaxially align an electron beam and an optical beam precisely. In addition, the present invention provides a system wherein an optical microscope system and a spectrometer are all disposed around a through-hole mirror in a light path along which light is emitted from and reflected by a sample, thereby analyzing the wavelength of light produced or reflected by the sample.

Description

시료챔버용 광학대물렌즈 정렬 마운트, 상기 마운트에 장착되는 전자 관통공 구비 광반사 거울, 및 이들을 포함하는 분광기 구비 광-전자 융합현미경Optical objective lens alignment mount for sample chamber, optical-reflecting mirror with electron through-hole mounted on the mount, and optical-electron fusion microscope with spectroscope including these
본 발명은 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트 및 상기 마운트에 구비된 광반사 거울에 관한 것으로, 더욱 상세하게는 진공을 유지하면서 시료챔버내외부에 걸쳐서 미세정렬이 가능한 광학대물렌즈 정렬 마운트에 직사각뿔 형상의 관통공으로 전자빔이 통과하게 하고 광학빔은 반사하도록 한 광반사 거울을 장착하고, 상기 광학대물렌즈에 광학현미경 결상계와 cathodoluminescence 분광기 경로부를 설치한 분광기 구비 광-전자 융합현미경 기술에 관한 것이다.The present invention relates to an optical objective lens alignment mount for an optical-electron fusion microscope sample chamber and a light reflecting mirror provided in the mount, and more particularly, to an optical objective lens alignment capable of fine alignment across the inside and outside of the sample chamber while maintaining a vacuum. Equipped with a light-reflecting mirror that allows electron beams to pass through and reflects optical beams on the mount, and a spectrometer equipped with an optical microscope imaging system and a cathodoluminescence spectrometer path to the optical objective lens. Optical-electron fusion microscope technology It is about.
소자의 결함을 관찰할 때 유기EL, LED, 양자점(quantum dot) 등의 발광체는 발광특성으로 인해 광학현미경을 이용한 관찰이 주로 이루어지지만, 결함으로 발광에 이상이 생기거나 또는 발광부를 자세히 관찰하기 위하여는 그 관찰부위가 마이크로스케일 이하여서 일반 광학현미경으로는 결함원인을 밝혀내거나 고분해능으로 관찰하기 어려운 경우가 많다. 이처럼 광학현미경의 검출한계를 넘는 관찰대상 또는 미세 결함을 관찰하기 위해서는 나노미터 또는 나노미터 이하의 분해능을 갖는 전자현미경으로 분석하여야 한다. 발광소자뿐 아니라, 생물학 시료, 반도체의 결함 검사 등에도 빛과 전자빔은 상보적인 정보를 제공하므로 전자현미경과 광학현미경의 광학계를 통합하여 근자외선 또는 가시광선으로 시료를 관찰하고 관심영역을 전자현미경으로 확대하여 조사하는 융합현미경의 개발이 요구되고 있다.When observing defects in the device, luminous bodies such as organic EL, LED, and quantum dots are mainly observed with an optical microscope due to their luminescence characteristics, but the defect causes an abnormality in luminescence or to observe the luminous part in detail. In many cases, it is difficult to find out the cause of the defect or observe it with high resolution with a general optical microscope because the observation site is less than the microscale. As described above, in order to observe an observation object or fine defect that exceeds the detection limit of an optical microscope, it must be analyzed with an electron microscope having a resolution of nanometers or less than nanometers. Light and electron beams provide complementary information not only to light-emitting devices, but also to defect inspection of biological samples and semiconductors, so by integrating the optical system of an electron microscope and an optical microscope, the sample is observed with near-ultraviolet or visible light, and the region of interest is viewed with an electron microscope. There is a need to develop a fusion microscope that expands and investigates.
넓은 의미의 융합현미경은 광학현미경의 시료홀더를 전자현미경과 공유할 수 있도록 제작한 뒤, 광학현미경에서 관찰한 부위의 좌표를 별도의 전자현미경에서 찾아내어 고배율의 영상을 획득하는 것을 포함한다. 그러나 시료이동의 번거로움과 시간소요 등의 문제점으로 인해 일체화된 형태의 광-전자 융합현미경(Correlative Light and Electron Microscope)을 개발하려는 노력이 다양하게 시도되고 있다. A fusion microscope in a broader sense involves manufacturing the sample holder of the optical microscope to be shared with the electron microscope, and then finding the coordinates of the part observed in the optical microscope with a separate electron microscope to obtain a high magnification image. However, various attempts have been made to develop an integrated optical-electron fusion microscope (Correlative Light and Electron Microscope) due to problems such as the hassle and time consuming of moving the sample.
대한민국 등록특허 제10-1857046호는 “사각뿔 형상의 관통공을 구비한 광-전자 융합현미경 광반사 거울 및 그 제조방법”에 관한 것으로, 관통공이 한쪽에서 다른 쪽으로 갈수록 점점 좁아져서 광반사거울을 경사지게 배열하였을 때 좁은 관통공 부위를 광의 입사방향으로 배치하여 광손실을 최소화할 수 있는 기술을 개시한다. 그러나 상기 기술의 광반사거울이 장착될 경우, 전자빔의 진행방향에 45도 기울어지게 되므로 전자현미경 관찰시에 전자빔 통과경로는 정사각형이 되지 않아서 광학현미경 이미지와 융합할 때 효율적인 영상을 얻기 어려운 문제점이 있다. 또한 광반사거울이 배열되는 시료실의 구조상 2차 전자 영상과 광학영상은 관찰 가능하지만 전자빔에 의한 발광(cathodoluminescence)신호를 분석할 분광기를 함께 설치하기 어렵다는 문제가 있다. 기존 특허에서는 전자현미경 이미지와 광학현미경 이미지는 동시에 얻을 수 있었지만, 융합현미경에 분광기능은 포함되어 있지 않아서 시료에서 발생하거나 반사되는 파장을 정확히 분석하는 것은 불가능하였다.Republic of Korea Patent Registration No. 10-1857046 relates to "optical-electron fusion microscope light reflecting mirror having a square pyramid-shaped through hole and a method for manufacturing the same", and the through hole becomes narrower from one side to the other so that the light reflecting mirror is inclined. Disclosed is a technology capable of minimizing light loss by arranging narrow through-holes in the incident direction of light. However, when the light reflecting mirror of the above technology is mounted, it is inclined at 45 degrees to the traveling direction of the electron beam, so the electron beam passage path does not become square when observed with an electron microscope, so there is a problem that it is difficult to obtain an efficient image when fused with an optical microscope image. . In addition, secondary electron images and optical images can be observed due to the structure of the sample chamber in which the light reflecting mirrors are arranged, but there is a problem that it is difficult to install a spectrometer to analyze a cathodoluminescence signal by an electron beam. In the previous patent, an electron microscope image and an optical microscope image could be obtained at the same time, but the fusion microscope did not include a spectral function, so it was impossible to accurately analyze the wavelength generated or reflected from the sample.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허 제10-1857046호, “사각뿔 형상의 관통공을 구비한 광-전자 융합현미경 광반사 거울 및 그 제조방법”(Patent Document 1) Korean Patent Registration No. 10-1857046, “Opto-electronic fusion microscope light reflecting mirror having a through hole in the shape of a square pyramid and its manufacturing method”
본 발명은 상기와 같은 문제점을 해소하려는 것으로, 광학 반사거울을 전자빔 진행방향에 대해 45도 기울였을 때 광반사가 최대로 되도록 광반사면의 개구부 면적은 최소화하면서, 전자빔이 통과할 수 있는 공간을 확보할 수 있는 광-전자 융합현미경용 광반사거울, 및 상기 광반사거울이 전자빔과 광학빔의 동축정렬을 정밀하게 하는 광학대물렌즈 마운트에 장착되는 융합 광전자현미경 시료챔버 시스템을 제공하고자 한다. 또한 시료에서 빛을 조사하고, 반사되는 광경로에 광학현미경 시스템과 분광기를 관통공 거울을 중심으로 모두 배치하여 시료에서 발생 또는 반사되는 빛의 파장을 분석할 수 있는 시스템을 제공하고자 한다.The present invention aims to solve the above problems, and minimizes the opening area of the light reflection surface so that light reflection is maximized when the optical reflection mirror is tilted 45 degrees with respect to the electron beam traveling direction, while securing a space through which the electron beam can pass. It is intended to provide a light-reflecting mirror for an optical-electron fusion microscope that can be used, and a fusion photoelectron microscope sample chamber system in which the light-reflecting mirror is mounted on an optical objective lens mount that precisely aligns the electron beam and the optical beam. In addition, it is intended to provide a system capable of analyzing the wavelength of light generated or reflected from the sample by irradiating light from the sample and arranging both the optical microscope system and the spectroscope in the reflected light path centering on the through-hole mirror.
본 발명은, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트로, 상기 정렬 마운트는, 입사광, 반사광 및 cathodoluminescence 신호가 통과하는 상기 광학대물렌즈를 고정하는 몸체부; 상기 몸체부를 상기 시료챔버의 내외부에 걸쳐 거치하고, 광경로와 평행 또는 수직방향으로 이동하면서 진공을 유지할 수 있도록 모터와 오링을 구비한 진공유지 이동부; 및 상기 광경로가 시료입사 전자빔과 만나는 위치에, 밑면이 직사각형인 사각뿔 형상의 전자 관통공을 구비하는 광반사거울이 오도록 광반사거울 장착부를 포함하는, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 제공한다.The present invention provides an optical-electronic fusion microscope optical objective lens alignment mount for a sample chamber, the alignment mount comprising: a body portion for fixing the optical objective lens through which incident light, reflected light, and cathodoluminescence signal pass; A vacuum holding unit having a motor and an O-ring so as to mount the body part over the inside and outside of the sample chamber and maintain a vacuum while moving in a direction parallel or perpendicular to the optical path; And a light-reflecting mirror mounting part so that a light-reflecting mirror having an electron through-hole having a rectangular pyramid shape having a rectangular bottom surface comes to a position where the light path meets the sample incident electron beam, and an optical objective lens for an optical-electron fusion microscope sample chamber Provides an alignment mount.
본 발명은 또한, 상기 광반사 거울은, 두께 0.5 내지 1mm 범위의 단결정 실리콘 플레이트; 상기 플레이트의 중앙에 형성된 밑면이 직사각형인 사각뿔 형상의 관통공; 상기 플레이트의 양면에 코팅된 이중층 반사 박막; 및 상기 이중층 반사 박막 위에 표면보호 및 산화방지를 위한 실리콘 산화막(SiO2) 50 내지 100nm 두께의 코팅층을 포함하고, 상기 관통공은 상기 단결정 실리콘의 결정방향을 따라 상기 사각뿔 형상의 각 측면은 밑면에 대해 50 내지 60도의 각도로 형성되며, 상기 플레이트는 상기 사각뿔 형상의 밑면의 변과 평행한 절단면을 적어도 하나 구비하며, 상기 사각뿔 형상의 관통공 밑면의 단면적은 400 내지 500μm2 이고, 상기 이중층 반사 박막은 15 내지 25nm 두께로 코팅된 크롬(Cr) 박막 위에 100 내지 200nm 두께로 코팅된 은(Ag) 박막, 또는 15 내지 25nm 두께로 코팅된 티타늄(Ti) 박막 위에 100 내지 200nm 두께로 코팅된 알루미늄(Al) 박막인, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 제공한다.In the present invention, the light reflecting mirror may include a single crystal silicon plate having a thickness of 0.5 to 1 mm; A through hole in the shape of a square pyramid having a rectangular bottom surface formed in the center of the plate; A double-layer reflective thin film coated on both sides of the plate; And a silicon oxide film (SiO 2 ) 50 to 100 nm thick coating layer for surface protection and oxidation prevention on the double-layer reflective thin film, wherein each side of the square pyramid shape along the crystal direction of the single crystal silicon is on the bottom surface. The plate is formed at an angle of 50 to 60 degrees, the plate has at least one cut surface parallel to the side of the bottom of the square pyramid shape, the cross-sectional area of the bottom surface of the square pyramid shape is 400 to 500 μm 2 , and the double layer reflective thin film Silver (Ag) thin film coated with a thickness of 100 to 200 nm on a chromium (Cr) thin film coated with a thickness of 15 to 25 nm, or aluminum coated with a thickness of 100 to 200 nm on a titanium (Ti) thin film coated with a thickness of 15 to 25 nm ( It provides an optical objective lens alignment mount for Al) thin film, optical-electron fusion microscope sample chamber.
본 발명은 또한, 상기 관통공은 상기 플레이트의 중앙부에 형성되고, 상기 플레이트에서, 사각뿔 형상의 밑면인 직사각형의 짧은 변과 평행한 절단면을 제외한 절단면은 곡면 또는 사각형인, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 제공한다.In the present invention, the through hole is formed in the center of the plate, and in the plate, the cut surface except for the cut surface parallel to the short side of the rectangle, which is the bottom surface of the square pyramid shape, is a curved surface or a square, an optical-electron fusion microscope sample chamber Provides an optical objective lens alignment mount for use.
본 발명은 또한, 분광기를 구비한 광-전자 융합현미경으로, 상기 융합현미경은, 상기 제 1항 내지 제 3항 중 어느 한 항의 시료챔버용 광학대물렌즈 정렬 마운트를 구비한 시료챔버; 상기 시료챔버로 전자빔을 주사하는 전자빔 집속관을 포함하는 전자현미경부; 상기 광학대물렌즈로 광을 조사하는 조명계와 반사광을 결상하는 결상계를 구비한 광학현미경부; 상기 광학대물렌즈를 통과하여 상기 광반사 거울에서 반사된 광과, 상기 광반사 거울의 관통공을 통과한 집속빔이 향하도록 시료위치를 조절하는 시료 스테이지; 상기 광학대물렌즈와 상기 결상계 사이에서 광경로가 직각으로 변경되도록 조절하는 광모드 조절 거울; 및 상기 광학대물렌즈에서 상기 광모드 조절 거울을 통과한 cathodoluminescence 또는 시료에서 반사되는 신호를 분석하는 분광기를 포함하는, 분광기를 구비한 광-전자 융합현미경을 제공한다. The present invention also provides an optical-electron fusion microscope equipped with a spectroscope, the fusion microscope comprising: a sample chamber having an optical objective lens alignment mount for the sample chamber of any one of claims 1 to 3; An electron microscope unit including an electron beam focusing tube for scanning electron beams into the sample chamber; An optical microscope unit including an illumination system for irradiating light to the optical objective lens and an imaging system for imaging reflected light; A sample stage for adjusting a sample position so that the light reflected by the light reflecting mirror passing through the optical objective lens and the focused beam passing through the through hole of the light reflecting mirror are directed; An optical mode adjustment mirror for adjusting an optical path to be changed at a right angle between the optical objective lens and the imaging system; And it provides an optical-electron fusion microscope equipped with a spectroscope, comprising a spectroscope for analyzing a signal reflected from a sample or cathodoluminescence passing through the optical mode control mirror in the optical objective lens.
본 발명은 또한, 상기 광모드 조절 거울은, 50-50 반사투과모드, 반사모드, 및 투과모드 중 하나로 조절되는, 분광기를 구비한 광-전자 융합현미경을 제공한다.The present invention also provides an optical-electron fusion microscope equipped with a spectroscope, wherein the optical mode control mirror is adjusted to one of 50-50 reflection transmission modes, reflection modes, and transmission modes.
본 발명의 전자 관통공 구비 광반사 거울은 사각뿔 형상의 밑면을 직사각형으로 형성해서, 광반사거울을 전자빔 진행방향에 대해 45도 기울였을 때 광반사가 최대로 되도록 광반사면의 개구부 면적은 최소화하면서 전자빔이 통과할 수 있는 공간을 확보할 수 있고, 상기 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트는 전자빔과 광학빔의 정밀 동축정렬이 가능하다. 또한 시료에서 빛을 조사하고, 반사되는 광경로에 광학현미경 시스템과 분광기를 관통공 거울을 중심으로 모두 배치하여 시료에서 발생 또는 반사되는 빛의 파장을 분석할 수 있는 시스템을 제공한다.The light reflecting mirror having an electron through hole of the present invention has a rectangular pyramid-shaped bottom surface in a rectangular shape, so that the light reflection is maximized when the light reflection mirror is inclined at 45 degrees with respect to the electron beam traveling direction, while minimizing the opening area of the light reflecting surface. The space through which this can pass can be secured, and the optical objective lens alignment mount for the optical-electron fusion microscope sample chamber equipped with the light reflecting mirror enables precise coaxial alignment of the electron beam and the optical beam. In addition, it provides a system capable of analyzing the wavelength of light generated or reflected from the sample by irradiating light from the sample and arranging both the optical microscope system and the spectroscope in the reflected light path centered on the through-hole mirror.
도 1은 본 발명의 일 구현예에 따른, 전자 관통공 구비 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 포함하는 분광기 구비 광-전자 융합현미경의 개념도이다.1 is a conceptual diagram of an optical-electron fusion microscope equipped with a spectroscope including an optical objective lens alignment mount for a sample chamber in an optical-electron fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른, 절단면이 곡면과 직선인 전자 관통공 구비 광반사 거울의 개념도이다. 2 is a conceptual diagram of a light reflecting mirror having an electron through-hole having a curved surface and a straight line according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른, 절단면이 사각형인 전자 관통공 구비 광반사 거울의 개념도이다. 3 is a conceptual diagram of a light reflecting mirror having an electron through hole having a square cut surface according to an embodiment of the present invention.
도 4는 본 발명의 일 구현예에 따른, 절단면이 곡면과 직선인 전자 관통공 구비 광반사 거울이 형성된 단결정 실리콘 웨이퍼의 개념도이다.4 is a conceptual diagram of a single crystal silicon wafer having a light reflecting mirror having an electron through hole having a curved surface and a straight line according to an embodiment of the present invention.
도 5는 본 발명의 일 구현예에 따른, 절단면이 사각형인 전자 관통공 구비 광반사 거울이 형성된 단결정 실리콘 웨이퍼의 개념도이다.5 is a conceptual diagram of a single crystal silicon wafer in which a light reflecting mirror having an electron through hole having a square cut surface is formed according to an embodiment of the present invention.
도 6은 본 발명의 일 구현예에 따른, 전자 관통공 구비 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트의 개념도이다.6 is a conceptual diagram of an optical objective lens alignment mount for a sample chamber of an optical-electron fusion microscope equipped with a light reflection mirror having an electron through hole according to an embodiment of the present invention.
도 7은 본 발명의 일 구현예에 따른, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트에 장착된 전자 관통공 구비 광반사 거울의 광반사 경로를 나타내는 개념도이다. 7 is a conceptual diagram illustrating a light reflection path of a light reflection mirror having an electron through hole mounted on an optical objective lens alignment mount for an optical-electron fusion microscope sample chamber according to an embodiment of the present invention.
도 8은 본 발명이 일 구현예에 따른, 전자 관통공 구비 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 포함하는 분광기 구비 광-전자 융합현미경에서 cathodoluminescence 신호 발생시 획득한, 전자현미경 이미지, 전자빔 스캔 영역 이미지 및 상기 신호의 분광그래프이다.FIG. 8 is obtained when a cathodoluminescence signal is generated in an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber in an optical-electronic fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention. First, it is an electron microscope image, an electron beam scan area image, and a spectral graph of the signal.
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 여기서, 본 발명의 실시 형태를 설명하기 위한 전체 도면에 있어서, 동일한 기능을 갖는 것은 동일한 부호를 붙이고, 그에 대한 상세한 설명은 생략하기로 한다.Prior to the detailed description of the present invention, terms or words used in the present specification and claims to be described below should not be construed as being limited to their conventional or dictionary meanings. Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all the technical spirit of the present invention, and thus various alternatives that can be substituted for them at the time of application It should be understood that there may be equivalents and variations. Here, in all drawings for explaining the embodiment of the present invention, those having the same function are denoted by the same reference numerals, and detailed descriptions thereof will be omitted.
도 1a는 본 발명의 일 구현예에 따른, 전자 관통공 구비 광반사 거울(100, 101)을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 포함하는 분광기 구비 광-전자 융합현미경의 개념도이다. 도 1b는 아래 설명하는 광모드 조절 거울(200)을 나타낸다. 본 발명의 일 구현예에서 상기 분광기 구비 광-전자 융합현미경은, 시료챔버용 광학대물렌즈 정렬 마운트를 구비한 시료챔버(40); 상기 시료챔버로 전자빔을 주사하는 전자빔 집속관을 포함하는 전자현미경부(10); 상기 광학대물렌즈로 광을 조사하는 조명계(21)와 반사광을 결상하는 결상계(22)를 구비한 광학현미경부(20); 상기 광학대물렌즈를 통과하여 상기 광반사 거울에서 반사된 광과, 상기 광반사 거울의 관통공을 통과한 집속빔이 향하도록 시료위치를 조절하는 시료 스테이지(45); 상기 광학대물렌즈와 상기 결상계 사이에서 광경로가 직각으로 변경되도록 조절하는 광모드 조절 거울(200); 및 상기 광학대물렌즈에서 상기 광모드 조절 거울(200)과 빔 스플리터 및 형광필터(500)를 통과한 cathodoluminescence 또는 시료에서 반사되는 신호를 분석하는 분광기(30)를 포함한다. 상기 전자현미경부(10)의 전자빔 집속관에서 집속된 전자빔은 전자빔 경로(a)를 따라 상기 전자 관통공 구비 광반사 거울(100, 101)의 전자빔 관통공을 통과하여 시료를 향한다. 전자빔이 시료에서 발생시킨 cathodoluminescence 신호는 분광 광경로(b)를 따라 전자 관통공 구비 광반사 거울(100, 101)에서 반사되고 대물렌즈(52)를 지나 광모드 조절 거울(200)과 빔 스플리터 및 형광필터(500)를 통과하여 분광기(30)로 향한다. 상기 조명계(21)에서 나온 광은 조명 광경로(c)를 따라 조명광 반사거울(400), 이색성(dichromic) 거울(300), 및 광모드 거울에 반사되어 전자 관통공 구비 광반사 거울(100, 101)에 도달하여 시료를 향해 반사된다. 상기 시료에서 반사된 광은 형광 광경로(d)를 따라 상기 전자 관통공 구비 광반사 거울(100, 101)에서 반사되어 상기 대물렌즈(52)를 지나 상기 광모드 조절 거울(200)에서 반사된 뒤, 상기 이색성(dichromic) 거울(300)을 통과하여 상기 결상계로 향해 상을 맺는다. 1A is an optical-electronic fusion microscope equipped with an optical-electron fusion microscope equipped with light reflecting mirrors 100 and 101 having an electron through hole according to an embodiment of the present invention; an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber It is a conceptual diagram of. 1B shows an optical mode adjustment mirror 200 described below. In one embodiment of the present invention, the optical-electron fusion microscope equipped with a spectroscope includes: a sample chamber 40 having an optical objective lens alignment mount for a sample chamber; An electron microscope unit 10 including an electron beam focusing tube for scanning electron beams into the sample chamber; An optical microscope unit 20 having an illumination system 21 for irradiating light to the optical objective lens and an imaging system 22 for imaging reflected light; A sample stage (45) for adjusting a sample position so that the light reflected from the light reflecting mirror passing through the optical objective lens and the focused beam passing through the through hole of the light reflecting mirror are directed; An optical mode adjustment mirror 200 for adjusting an optical path to be changed at a right angle between the optical objective lens and the imaging system; And a spectrometer 30 for analyzing cathodoluminescence passing through the optical mode control mirror 200 and the beam splitter and fluorescence filter 500 in the optical objective lens or a signal reflected from the sample. The electron beam focused by the electron beam focusing tube of the electron microscope unit 10 passes through the electron beam through holes of the light reflecting mirrors 100 and 101 having the electron through holes along the electron beam path (a) and is directed toward the sample. The cathodoluminescence signal generated by the electron beam from the sample is reflected from the light reflection mirrors 100 and 101 with electron through holes along the spectral optical path (b), passes through the objective lens 52, the light mode control mirror 200, the beam splitter, and It passes through the fluorescent filter 500 and is directed to the spectrometer 30. The light emitted from the illumination system 21 is reflected by the illumination light reflecting mirror 400, the dichromic mirror 300, and the light mode mirror along the illumination light path c, and has an electron through hole. , 101) is reached and reflected toward the specimen. The light reflected from the sample is reflected from the light reflecting mirrors 100 and 101 having the electron through-hole along the fluorescence optical path (d), passing through the objective lens 52, and reflected from the light mode adjusting mirror 200. After that, the image is formed toward the imaging system by passing through the dichromic mirror 300.
이는 기존의 광-전자 융합현미경(CLEM: Correlative Light and Electron Microscope)이 전자현미경과 광학현미경을 융합하여 이중 이미지를 얻는데 그쳤으나, 본 발명에서 제안하는 분광기 구비 광-전자 융합현미경은 전자현미경 기능과 광학현미경 기능에 형광현미경은 물론 시료로부터 발생하는 광학 신호(chathodoluminescence)의 파장 분석이 가능한 분광기(30)를 통합한 시스템이다. 본 발명의 분광기 구비 광-전자 융합현미경으로 일반적인 광학현미경이미지 또는 형광현미경 이미지를 얻고자 할 경우에는 빔 스플리터 및 형광필터(200)를 용도에 맞게 변경하면 된다.The conventional photo-electron fusion microscope (CLEM: Correlative Light and Electron Microscope) fused an electron microscope and an optical microscope to obtain a double image. However, the photo-electron fusion microscope equipped with a spectroscope proposed in the present invention has an electron microscope function and an optical microscope. It is a system incorporating a microscope function with a fluorescence microscope as well as a spectrometer 30 capable of wavelength analysis of an optical signal (chathodoluminescence) generated from a sample. In the case of obtaining a general optical microscope image or a fluorescence microscope image with the optical-electron fusion microscope equipped with a spectroscope of the present invention, the beam splitter and the fluorescence filter 200 may be changed to suit the purpose.
상기 시료챔버, 상기 전자빔 집속관을 포함하는 전자현미경부는 진공펌프(미도시)로 진공을 유지한다. 즉, 진공챔버 내부로 외부의 광을 전달하면서도 진공도를 유지하면서 진공 관찰 창(view port)(53)이 움직일 수 있다. 상기와 같은 구성을 통해 광학현미경 이미지로 저배율에서 관찰한 위치 중 정밀관찰이 필요한 곳에는 전자현미경 이미지를 관찰할 수 있도록 하며, 전자현미경 관찰과정에서 분광기를 통해 cathodoluminescence 분석을 함께 하는 것이 가능하다. The sample chamber and the electron microscope unit including the electron beam focusing tube maintain a vacuum with a vacuum pump (not shown). That is, the vacuum view port 53 may move while maintaining the degree of vacuum while transmitting external light into the vacuum chamber. Through the above configuration, it is possible to observe an electron microscope image where precise observation is required among locations observed at low magnification with an optical microscope image, and cathodoluminescence analysis through a spectroscope during the electron microscope observation process is possible.
본 발명의 일 구현예에서 상기 광모드 조절 거울(200)은, 50-50 반사투과모드, 반사모드, 및 투과모드 중 하나로 조절된다. 상기 광모드 조절 거울(200)은 광의 진행 경로상 분광기(30) 앞에 위치하며, 50-50 반사투과모드 거울(220), 반사모드 거울(230) 및 투과모드 관통구멍(210)을 통해 분광기로 들어가는 광학빔 경로에서 조정하면 다양한 신호획득 조건에 맞게 모드 변경이 가능하며, 모든 모드에서 전자현미경 이미지는 기본적으로 획득이 가능하다. 구체적으로 투과모드는 전자빔에 의해서 발생하는 광학 신호인 cathodoluminescence 신호 전용으로 분광신호를 분석할 경우에 사용한다. 이 경우 cathodoluminescence 발생 신호가 손실없이 모두 분광기에 들어가게 되므로 광량이 적을 경우에는 매우 적합한 모드이다. 50-50 반사투과모드는 cathodoluminescence의 발생 신호의 파장 분광 분석과 동시에 전자빔의 스캔 영역 이미지를 동시에 얻고자 하는 경우에 적합하다. 또한, 반사모드는 전자현미경과 광학현미경을 동시에 관찰하는데 적합한 모드로, 시료의 광학현미경 이미지를 밝게 얻거나 형광신호가 미약할 경우에 사용할 수 있다. In one embodiment of the present invention, the light mode adjusting mirror 200 is adjusted to one of 50-50 reflection transmission mode, reflection mode, and transmission mode. The light mode control mirror 200 is located in front of the spectrometer 30 in the path of light, and is passed through the 50-50 reflection transmission mode mirror 220, the reflection mode mirror 230, and the transmission mode through hole 210. By adjusting in the incoming optical beam path, the mode can be changed to suit various signal acquisition conditions, and electron microscope images can be acquired by default in all modes. Specifically, the transmission mode is used when analyzing a spectral signal exclusively for a cathodoluminescence signal, which is an optical signal generated by an electron beam. In this case, the cathodoluminescence generation signal enters the spectrometer without loss, so it is a very suitable mode when the amount of light is small. The 50-50 reflection transmission mode is suitable for acquiring the scanning area image of the electron beam at the same time as the wavelength spectroscopic analysis of the signal generated by cathodoluminescence. In addition, the reflection mode is a mode suitable for simultaneously observing the electron microscope and the optical microscope, and can be used when the optical microscope image of the sample is obtained brightly or the fluorescence signal is weak.
도 2는 본 발명의 일 구현예에 따른, 절단면이 곡면과 직선인 전자 관통공(110) 구비 광반사 거울(100)의 개념도이고, 도 3은 본 발명의 일 구현예에 따른, 절단면이 사각형인 전자 관통공(110) 구비 광반사 거울(101)의 개념도이다. 도 2a와 3a는 상기 거울의 사시도를 나타내며 도 2b와 3b는 정면도이고, 도 2c와 3c는 상기 정면도에 도시된 A-A 연결선의 단면도이다. 본 발명의 일 구현예에서 상기 광반사 거울은, 전자빔은 통과하고 광학빔은 반사시킬 수 있도록 금속이나 유리재질의 거울에 작은 구멍을 내는 종래 방식을 개선하기 위하여 실리콘의 결정특성을 이용하여 제작한 광반사 거울을 제공한다. 본 발명의 일 구현예에 따른 실리콘 광반사 거울은, 두께 0.5 내지 1mm 범위의 단결정 실리콘 플레이트; 상기 플레이트에 형성된 밑면이 직사각형인 사각뿔 형상의 관통공; 및 상기 플레이트의 양면에 코팅된 이중층 반사 박막을 포함한다. 본 발명의 일 구현예에서 상기 관통공은 융합현미경에서 설치시에 광자빔 경로의 중심부에 형성되도록 제작되고, 상기 플레이트에서, 사각뿔 형상의 밑면인 직사각형의 짧은 변과 평행한 절단면을 제외한 절단면은 곡면 또는 사각형이다. 본 발명의 일 구현예에서 상기 관통공은 상기 단결정 실리콘의 결정방향을 따라 형성될 수 있다. 본 발명의 일 구현예에서 실리콘 단결정 구조 특성을 따라 상기 사각뿔 형상의 각 측면은 밑면에 대해 50 내지 60도의 각도로 형성되며, 바람직한 각도는 54.74도이다. 본 발명의 일 구현예에서 상기 플레이트는 상기 사각뿔 형상의 밑면의 변과 평행한 절단면을 적어도 하나 구비하며, 상기 사각뿔 형상의 관통공 밑면의 단면적은 400 내지 500μm2 이고, 바람직한 면적은 0.9 * 0.487 = 0.4383 mm2 이다. 상기 이중층 반사 박막은 15 내지 25nm 두께로 코팅된 크롬(Cr) 박막 위에 100 내지 200nm 두께로 코팅된 은(Ag) 박막, 또는 15 내지 20nm 두께로 코팅된 티타늄(Ti) 박막 위에 100 내지 200nm 두께로 코팅된 알루미늄(Al) 박막이다. 또한 은과 알루미늄의 표면보호 및 산화방지를 위해서 산화막(예; SiO2)을 50 내지 100nm 두께로 코팅한다. 상기 밑면이 직사각형인 사각뿔 형상의 관통공을 구비한 광반사 거울은 45도로 기울인 상태에서 전자현미경 이미지를 관찰할 경우에 정사각형 이미지를 획득할 수 있게 한다. 이렇게 함으로써 광학현미경의 이미지와 전자현미경의 이미지를 정렬하고 합성하기가 편리해지는 장점이 있다. 본 발명의 일 구현예에서 상기 사각뿔 밑면인 직사각형은 긴 변의 길이가 1.8 내지 2.0mm 범위이고, 짧은 변의 길이는 1.4 내지 1.6mm 범위이며, 바람직하게는 각각 1.9mm, 1.5mm이다. 2 is a conceptual diagram of a light reflecting mirror 100 having an electron through hole 110 having a curved surface and a straight line in a cut surface according to an embodiment of the present invention, and FIG. 3 is a rectangular cut surface according to an embodiment of the present invention. It is a conceptual diagram of a light reflecting mirror 101 having a phosphorus electron through hole 110. 2A and 3A are perspective views of the mirror, and FIGS. 2B and 3B are front views, and FIGS. 2C and 3C are cross-sectional views of AA connection lines shown in the front view. In one embodiment of the present invention, the light-reflecting mirror is manufactured using crystal properties of silicon in order to improve the conventional method of making small holes in a mirror made of metal or glass so that the electron beam passes and the optical beam reflects. Provides a light reflecting mirror. A silicon light reflecting mirror according to an embodiment of the present invention includes a single crystal silicon plate having a thickness of 0.5 to 1 mm; A through hole formed in the plate and having a rectangular pyramid shape having a rectangular bottom surface; And a double-layer reflective thin film coated on both sides of the plate. In one embodiment of the present invention, the through hole is manufactured to be formed in the center of the photon beam path when installed in the fusion microscope, and in the plate, the cut surface except for the cut surface parallel to the short side of the rectangle which is the bottom surface of the square pyramid shape is curved. Or square. In one embodiment of the present invention, the through hole may be formed along the crystal direction of the single crystal silicon. In one embodiment of the present invention, each side of the quadrangular pyramid is formed at an angle of 50 to 60 degrees with respect to the bottom surface according to the silicon single crystal structure characteristics, and a preferred angle is 54.74 degrees. In one embodiment of the present invention, the plate has at least one cut surface parallel to the side of the bottom surface of the square pyramid, and the cross-sectional area of the bottom surface of the square pyramid shape is 400 to 500 μm 2 , and the preferred area is 0.9 * 0.487 = It is 0.4383 mm 2 . The double-layer reflective thin film has a thickness of 100 to 200 nm on a thin film of silver (Ag) coated with a thickness of 100 to 200 nm on a thin film of chromium (Cr) coated with a thickness of 15 to 25 nm, or a thin film of titanium (Ti) coated with a thickness of 15 to 20 nm. It is a coated aluminum (Al) thin film. In addition, in order to protect the surface of silver and aluminum and prevent oxidation, an oxide film (eg, SiO 2 ) is coated with a thickness of 50 to 100 nm. The light reflecting mirror having a through hole in the shape of a square pyramid having a rectangular bottom surface enables a square image to be obtained when observing an electron microscope image while inclined at 45 degrees. By doing this, there is an advantage that it becomes convenient to align and synthesize the image of the optical microscope and the image of the electron microscope. In one embodiment of the present invention, the length of the long side is in the range of 1.8 to 2.0 mm, and the length of the short side is in the range of 1.4 to 1.6 mm, preferably 1.9 mm and 1.5 mm, respectively.
본 발명의 일 구현예에서 광반사 층으로는 500nm 미만 파장의 광을 잘 반사하지 못하는 금(Au) 층의 문제를 해결하기 위해서 장파장 광뿐 아니라 자외선 대역의 광까지 잘 반사하는 은(Ag) 또는 알루미늄(Al)을 사용한다. 전자빔이 발생시키는 cathodoluminescence는 자외선 영역까지 생성되기 때문이다. 본 발명의 일 구현예에서 은을 증착할 경우에는 점착 층(adhesion layer)로 크롬(Cr)을 사용하고, 알루미늄을 증착할 경우에는 점착 층으로 타이타늄(Ti)을 사용한다. 상기 실리콘 기판은 1mm 이내의 얇은 두께를 가지므로 직각 거울(right angle mirror)의 용도로 제작할 경우 관통공을 크게 뚫지 않아도 되는 장점이 있다. 본 발명의 또 다른 구현예에서는 빛을 반사하고 전하축적(charging)을 방지할 수 있는 것이라면 어느 종류이든 서로 다른 금속박막을 2단으로 코팅하거나, 단일금속막을 코팅하는 것도 사용가능하며, 증착 두께 또한 전자빔의 상태에 따라 다양한 두께로 증착 가능하다. In one embodiment of the present invention, in order to solve the problem of a gold (Au) layer that does not reflect light of a wavelength of less than 500 nm as a light reflecting layer, silver (Ag) or aluminum that reflects not only long wavelength light but also ultraviolet light well (Al) is used. This is because the cathodoluminescence generated by the electron beam is also generated in the ultraviolet region. In one embodiment of the present invention, when silver is deposited, chromium (Cr) is used as an adhesion layer, and when aluminum is deposited, titanium (Ti) is used as an adhesion layer. Since the silicon substrate has a thin thickness of less than 1 mm, it is advantageous in that a through hole does not need to be largely drilled when manufactured for use as a right angle mirror. In another embodiment of the present invention, any type of coating of different metal thin films in two layers or coating of a single metal film may be used as long as it reflects light and prevents charging. It can be deposited in various thicknesses according to the state of the electron beam.
도 4는 본 발명의 일 구현예에 따른, 절단면이 곡면과 직선인 전자 관통공(110) 구비 광반사 거울(100)이 형성된 단결정 실리콘 웨이퍼(1000)의 개념도이고, 도 5는 본 발명의 일 구현예에 따른, 절단면이 사각형인 전자 관통공(110) 구비 광반사 거울(101)이 형성된 단결정 실리콘 웨이퍼(1001)의 개념도이다. 본 발명의 일 구현예에서, 광반사 거울을 제작하기 위하여 8인치 이상의 실리콘 웨이퍼에 광반사 거울을 배열한다. 실리콘 습식 공정을 이용하여 제작한 광반사 거울은 상기 관통공을 하나씩 포함하는 플레이트 단위로 상기 기판을 절단하되, 상기 기판은 상기 사각뿔 형상의 밑면의 변과 평행한 절단면을 적어도 하나 구비하도록 절단하는 단계를 포함하여, 광반사 거울의 다량 획득이 가능한 경제적인 효과가 있다. 본 발명의 일구현예에서, 상기 사각뿔 형상의 관통공 밑면의 단면적은 400 내지 500 μm2 이나, 그 크기는 변경 가능하다. 상기 관통공은 전자빔이 통과할 수 있을 정도의 크기로, 광학빔의 반사손실이 거의 일어나지 않도록 작게 형성된다. 본 발명은 단결정 실리콘 습식 공정의 특성상 결정구조의 이방성 식각을 이용하므로, 실리콘의 <111> 면과 <100> 면의 각도인 54.7°로 식각이 되어 관통공이 한쪽에서 다른 쪽으로 갈수록 점점 좁아져서(Tapering), 광반사 거울을 45°로 경사지게 배열하였을 때 상부에서 내려오는 전자빔과의 간섭이 적어진다. 이때 상기 밑면이 직사각형인 사각뿔 형상의 관통공을 구비한 광반사 거울은 45도로 기울인 상태에서 전자현미경 이미지를 관찰할 경우에 정사각형 이미지를 획득할 수 있게 한다. 4 is a conceptual diagram of a single crystal silicon wafer 1000 in which a light reflecting mirror 100 having an electron through hole 110 having a curved surface and a straight line is formed according to an embodiment of the present invention, and FIG. 5 is an exemplary embodiment of the present invention. A conceptual diagram of a single crystal silicon wafer 1001 having a light reflecting mirror 101 having an electron through hole 110 having a square cut surface according to an embodiment is formed. In one embodiment of the present invention, the light reflection mirror is arranged on an 8-inch or larger silicon wafer in order to manufacture the light reflection mirror. Cutting the substrate into a plate unit including one through hole in the light reflecting mirror manufactured using a silicon wet process, wherein the substrate has at least one cut surface parallel to the side of the bottom of the square pyramid shape Including, there is an economical effect that it is possible to obtain a large amount of the light reflecting mirror. In one embodiment of the present invention, the cross-sectional area of the bottom surface of the square-pyramidal through-hole is 400 to 500 μm 2 , but its size can be changed. The through hole is large enough to pass the electron beam, and is formed small so that reflection loss of the optical beam hardly occurs. Since the present invention uses anisotropic etching of the crystal structure due to the nature of the single crystal silicon wet process, the through hole is etched at 54.7°, which is an angle between the <111> and <100> surfaces, and the through hole becomes narrower from one side to the other (Tapering ), when the light reflecting mirror is arranged inclined at 45°, interference with the electron beam coming down from the top is reduced. At this time, the light reflecting mirror having a through hole in the shape of a square pyramid having a rectangular bottom surface enables a square image to be obtained when observing the electron microscope image while inclined at 45 degrees.
도 6은 본 발명의 일 구현예에 따른, 전자 관통공 구비 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트(50)의 개념도이다. 도 6a는 상기 정렬 마운트의 사시도이고, 도 6b는 정면도, 도 6c는 상기 마운트가 시료챔버에 장착되었을 때 외부에서 볼 수 있는 관찰 창(view port)(53)을 나타낸다. 도 6d는 상기 도 6c의 A-A선을 연결하는 단면도이다. 상기 마운트는 진공장비 내부에 있는 시료의 이미지 및 형광 신호 등을 얻기 위하여 진공챔버 내부에 설치되어 있는 광학대물렌즈(52)를, 진공도를 유지하면서 정밀 정렬이 가능하도록 제작한 대물렌즈 정렬 마운트이다. 본 발명의 일 구현예에서 상기 정렬 마운트는, 입사광, 반사광 및 cathodoluminescence 신호가 통과하는 상기 광학대물렌즈(52)를 고정하는 몸체부(50); 상기 몸체부를 상기 시료챔버의 내외부에 걸쳐 거치하고, 광경로와 평행 또는 수직방향으로 이동하면서 진공을 유지할 수 있도록 모터(미도시)와 오링(51)을 구비한 진공유지 이동부; 및 상기 광경로가 시료입사 전자빔과 만나는 위치에, 밑면이 직사각형인 사각뿔 형상의 전자 관통공을 구비하는 광반사거울이 오도록 광반사거울 장착부(55)를 포함한다. 본 발명의 일 구현예에서 상기 시료챔버용 광학대물렌즈 정렬 마운트는 대물렌즈를 고정하는 몸체부(50)를 상기 시료챔버(40)의 내외부에 걸쳐 거치하고, 광경로와 평행 또는 수직방향으로(x-y-z, 3축) 이동하면서 진공을 유지할 수 있도록 모터와 오링(51)을 구비한 진공유지 이동부를 포함한다. 본 발명의 일 구현예에서 광학현미경의 이미지 또는 cathodoluminescence 신호를 얻기 위해서 진공챔버 내부에 광학대물렌즈를 설치한다. 대물렌즈와 밑면이 직사각형인 사각뿔 형상의 전자 관통공을 구비하는 광반사 거울이 동시에 미세 정렬이 가능하면서도 진공이 유지될 수 있도록 오링과 관찰 창(view port)(53)을 사용하여 광학대물렌즈 정렬 마운트를 설치한다. 6 is a conceptual diagram of an optical objective lens alignment mount 50 for a sample chamber of an optical-electron fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention. 6A is a perspective view of the alignment mount, FIG. 6B is a front view, and FIG. 6C shows a view port 53 that can be seen from the outside when the mount is mounted in the sample chamber. 6D is a cross-sectional view connecting line A-A of FIG. 6C. The mount is an objective lens alignment mount manufactured to enable precise alignment while maintaining the vacuum degree of the optical objective lens 52 installed inside the vacuum chamber in order to obtain an image of a sample and a fluorescence signal inside the vacuum equipment. In one embodiment of the present invention, the alignment mount includes: a body part 50 for fixing the optical objective lens 52 through which incident light, reflected light, and cathodoluminescence signal pass; A vacuum holding moving part including a motor (not shown) and an O-ring 51 to mount the body part over the inside and outside of the sample chamber and maintain a vacuum while moving in a direction parallel or perpendicular to the optical path; And a light reflection mirror mounting portion 55 such that a light reflection mirror having an electron through hole having a rectangular pyramid shape having a rectangular bottom surface comes to a position where the light path meets the sample incident electron beam. In one embodiment of the present invention, the optical objective lens alignment mount for the sample chamber mounts the body part 50 for fixing the objective lens over the inside and outside of the sample chamber 40, and in a direction parallel or perpendicular to the optical path ( xyz, 3-axis) includes a vacuum holding moving unit having a motor and an O-ring 51 to maintain a vacuum while moving. In one embodiment of the present invention, an optical objective lens is installed inside the vacuum chamber to obtain an image of an optical microscope or a cathodoluminescence signal. Optical objective lens alignment using O-ring and view port 53 so that the objective lens and the light-reflecting mirror with electron through-holes in the shape of a rectangular pyramid can be finely aligned at the same time while maintaining a vacuum. Install the mount.
도 7은 본 발명의 일 구현예에 따른, 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트(50)에 장착된 전자 관통공 구비 광반사 거울(100)의 광반사 경로를 나타내는 개념도이다. 광학대물렌즈를 통과하여 집속된 광은 상기 광반사 거울을 향해 입사 광경로 α로 진행한다. 상기 광반사 거울이 없다면 진행 광경로 γ로 직진하겠지만 광반사 거울로 인해 반사되어 반사 광경로 β로 시료를 향해 진행하게 된다. 본 발명의 일 구현예에서 상기 전자 관통공 구비 광반사 거울의 크기는 대응되는 광학대물렌즈의 개구각(Numerical aperture)을 고려하여 최소의 크기로 제작할 수 있다. 이렇게 함으로써 대물렌즈의 working distance를 짧게 가져갈 수 있도록 할 수 있기 때문이다. 도 5에 도시된 광경로 그림에서 보듯이 광학대물렌즈의 개구각에 의한 빛 손실이 없도록 모든 광경로가 반사될 수 있도록 거울의 크기를 설계하는 것이 바람직하다. 7 is a conceptual diagram illustrating a light reflection path of a light reflection mirror 100 having an electron through hole mounted on an optical objective lens alignment mount 50 for an optical-electron fusion microscope sample chamber according to an embodiment of the present invention. The light focused through the optical objective lens proceeds to the incident optical path α toward the light reflecting mirror. If there is no light reflection mirror, it will go straight to the progress light path γ, but it is reflected by the light reflection mirror and proceeds toward the sample through the reflection light path β. In one embodiment of the present invention, the size of the light reflecting mirror having an electron through hole may be manufactured to a minimum size in consideration of the numerical aperture of a corresponding optical objective lens. This is because it is possible to shorten the working distance of the objective lens. As shown in the optical path diagram shown in FIG. 5, it is preferable to design the size of the mirror so that all optical paths can be reflected so that there is no light loss due to the aperture angle of the optical objective lens.
도 8은 본 발명이 일 구현예에 따른, 전자 관통공 구비 광반사 거울을 장착한 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트를 포함하는 분광기 구비 광-전자 융합현미경에서 cathodoluminescence 신호 발생시 획득한, 전자현미경 이미지(a), 전자빔 스캔 영역 이미지(b) 및 상기 신호의 분광그래프(c)이다. 본 발명의 일 구현예에서 전자빔 스캔에 의해서 생성되는 Cathodoluminescence 신호는 분광기에서 파장을 분석할 수 있으며, 이때 광학현미경에서 full field microscope 방식으로 전자빔의 스캔에 의해서 발생되는 Cathodoluminescence 영역을 관찰하는 것이 가능하다. FIG. 8 is obtained when a cathodoluminescence signal is generated in an optical-electron fusion microscope equipped with a spectrometer including an optical objective lens alignment mount for a sample chamber in an optical-electronic fusion microscope equipped with a light reflecting mirror having an electron through hole according to an embodiment of the present invention. One is an electron microscope image (a), an electron beam scan area image (b), and a spectral graph (c) of the signal. In one embodiment of the present invention, the cathodoluminescence signal generated by electron beam scanning can be analyzed by a spectroscope, and at this time, it is possible to observe a cathodoluminescence region generated by scanning of an electron beam in an optical microscope in a full field microscope method.
이상에서 본 발명의 예시적인 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the exemplary embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concept of the present invention defined in the following claims are also present. It is within the scope of the invention.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless otherwise defined, are used in the same sense as those of ordinary skill in the art generally understand in the related field of the present invention. The contents of all publications referred to herein by reference are incorporated into the present invention.

Claims (5)

  1. 광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트로, 상기 정렬 마운트는, An optical objective lens alignment mount for an optical-electronic fusion microscope sample chamber, wherein the alignment mount comprises:
    입사광, 반사광 및 cathodoluminescence 신호가 통과하는 상기 광학대물렌즈를 고정하는 몸체부;A body portion for fixing the optical objective lens through which incident light, reflected light and cathodoluminescence signal pass;
    상기 몸체부를 상기 시료챔버의 내외부에 걸쳐 거치하고, 광경로와 평행 또는 수직방향으로 이동하면서 진공을 유지할 수 있도록 모터와 오링을 구비한 진공유지 이동부; 및A vacuum holding unit having a motor and an O-ring so as to mount the body part over the inside and outside of the sample chamber and maintain a vacuum while moving in a direction parallel or perpendicular to the optical path; And
    상기 광경로가 시료입사 전자빔과 만나는 위치에, 밑면이 직사각형인 사각뿔 형상의 전자 관통공을 구비하는 광반사거울이 오도록 광반사거울 장착부를 포함하는, Including a light reflection mirror mounting portion so that the light reflection mirror having an electron through hole of a rectangular pyramid shape having a rectangular bottom surface comes to a position where the light path meets the sample incident electron beam,
    광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트.Optical objective lens alignment mount for the sample chamber of the optical-electronic fusion microscope.
  2. 제 1항에 있어서, The method of claim 1,
    상기 광반사 거울은,The light reflecting mirror,
    두께 0.5 내지 1mm 범위의 단결정 실리콘 플레이트;A single crystal silicon plate with a thickness ranging from 0.5 to 1 mm;
    상기 플레이트의 중앙에 형성된 밑면이 직사각형인 사각뿔 형상의 관통공; A through hole in the shape of a square pyramid having a rectangular bottom surface formed in the center of the plate;
    상기 플레이트의 양면에 코팅된 이중층 반사 박막; 및A double-layer reflective thin film coated on both sides of the plate; And
    상기 이중층 반사 박막 위에 표면보호 및 산화방지를 위한 실리콘 산화막(SiO2) 50 내지 100nm 두께의 코팅층을 포함하고,A silicon oxide film (SiO 2 ) for surface protection and oxidation prevention on the double-layer reflective thin film includes a coating layer having a thickness of 50 to 100 nm,
    상기 관통공은 상기 단결정 실리콘의 결정방향을 따라 상기 사각뿔 형상의 각 측면은 밑면에 대해 50 내지 60도의 각도로 형성되며, The through hole is formed at an angle of 50 to 60 degrees with respect to the bottom surface of each side of the square pyramid along the crystal direction of the single crystal silicon,
    상기 플레이트는 상기 사각뿔 형상의 밑면의 변과 평행한 절단면을 적어도 하나 구비하며, 상기 사각뿔 형상의 관통공 밑면의 단면적은 400 내지 500μm2 이고,The plate has at least one cut surface parallel to the side of the bottom of the quadrangular pyramid, and the cross-sectional area of the bottom of the through hole of the quadrangular pyramid is 400 to 500 μm 2 ,
    상기 이중층 반사 박막은 15 내지 25nm 두께로 코팅된 크롬(Cr) 박막 위에 100 내지 200nm 두께로 코팅된 은(Ag) 박막, 또는 15 내지 25nm 두께로 코팅된 티타늄(Ti) 박막 위에 100 내지 200nm 두께로 코팅된 알루미늄(Al) 박막인, The double-layer reflective thin film is a silver (Ag) thin film coated with a thickness of 100 to 200 nm on a chromium (Cr) thin film coated with a thickness of 15 to 25 nm, or a thickness of 100 to 200 nm on a titanium (Ti) thin film coated with a thickness of 15 to 25 nm. Coated aluminum (Al) thin film,
    광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트.Optical objective lens alignment mount for the sample chamber of the optical-electronic fusion microscope.
  3. 제 2항에 있어서,The method of claim 2,
    상기 관통공은 상기 플레이트의 중앙부에 형성되고,The through hole is formed in the center of the plate,
    상기 플레이트에서, 사각뿔 형상의 밑면인 직사각형의 짧은 변과 평행한 절단면을 제외한 절단면은 곡면 또는 사각형인, In the plate, the cut surface except for the cut surface parallel to the short side of the rectangle, which is the base of the square pyramid shape, is a curved surface or a square,
    광-전자 융합현미경 시료챔버용 광학대물렌즈 정렬 마운트.Optical objective lens alignment mount for the sample chamber of the optical-electronic fusion microscope.
  4. 분광기를 구비한 광-전자 융합현미경으로, Photo-electron fusion microscope equipped with a spectroscope,
    상기 융합현미경은, 상기 제 1항 내지 제 3항 중 어느 한 항의 시료챔버용 광학대물렌즈 정렬 마운트를 구비한 시료챔버;The fusion microscope includes: a sample chamber having an optical objective lens alignment mount for the sample chamber of any one of claims 1 to 3;
    상기 시료챔버로 전자빔을 주사하는 전자빔 집속관을 포함하는 전자현미경부;An electron microscope unit including an electron beam focusing tube for scanning electron beams into the sample chamber;
    상기 광학대물렌즈로 광을 조사하는 조명계와 반사광을 결상하는 결상계를 구비한 광학현미경부;An optical microscope unit including an illumination system for irradiating light to the optical objective lens and an imaging system for imaging reflected light;
    상기 광학대물렌즈를 통과하여 상기 광반사 거울에서 반사된 광과, 상기 광반사 거울의 관통공을 통과한 집속빔이 향하도록 시료위치를 조절하는 시료 스테이지;A sample stage for adjusting a sample position so that the light reflected by the light reflecting mirror passing through the optical objective lens and the focused beam passing through the through hole of the light reflecting mirror are directed;
    상기 광학대물렌즈와 상기 결상계 사이에서 광경로가 직각으로 변경되도록 조절하는 광모드 조절 거울; 및An optical mode adjustment mirror for adjusting an optical path to be changed at a right angle between the optical objective lens and the imaging system; And
    상기 광학대물렌즈에서 상기 광모드 조절 거울을 통과한 cathodoluminescence 또는 시료에서 반사되는 신호를 분석하는 분광기를 포함하는, Including a spectroscope for analyzing a signal reflected from a sample or cathodoluminescence passing through the optical mode control mirror in the optical objective lens,
    분광기를 구비한 광-전자 융합현미경.Photo-electron fusion microscope equipped with a spectroscope.
  5. 제 4항에 있어서,The method of claim 4,
    상기 광모드 조절 거울은, The optical mode adjustment mirror,
    50-50 반사투과모드, 반사모드, 및 투과모드 중 하나로 조절되는, Adjusted to one of 50-50 reflection transmission mode, reflection mode, and transmission mode,
    분광기를 구비한 광-전자 융합현미경.Photo-electron fusion microscope equipped with a spectroscope.
PCT/KR2019/006109 2019-04-23 2019-05-22 Optical objective lens alignment mount for sample chamber, light-reflecting mirror having electron through-hole and mounted on mount, and correlative light and electron microscope having spectrometer and comprising same WO2020218667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190047245A KR102168726B1 (en) 2019-04-23 2019-04-23 An Optical Objective Lens Alignment Mount for Sample Chamber, Light Reflection Mirror Having Electron Through-hole Attached on The Mount, and Correlative Light and Electron Microscope with Spectroscopy including the Same
KR10-2019-0047245 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218667A1 true WO2020218667A1 (en) 2020-10-29

Family

ID=72941459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006109 WO2020218667A1 (en) 2019-04-23 2019-05-22 Optical objective lens alignment mount for sample chamber, light-reflecting mirror having electron through-hole and mounted on mount, and correlative light and electron microscope having spectrometer and comprising same

Country Status (2)

Country Link
KR (1) KR102168726B1 (en)
WO (1) WO2020218667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358611A (en) * 2021-04-28 2021-09-07 中国科学院生物物理研究所 Embedded three-dimensional photoelectric correlation imaging device and method
CN115128788A (en) * 2022-05-30 2022-09-30 中国人民解放军国防科技大学 Horizontally arranged microscope parallel to observation object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240017682A (en) 2022-08-01 2024-02-08 울산과학기술원 Cathodoluminescence ultrafast electron microscope and method for measuring time-resolved cathodoluminescence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053048A1 (en) * 1998-05-09 2003-03-20 Renishaw Plc Electron microscope and spectroscopy system
US20130088775A1 (en) * 2010-04-06 2013-04-11 Kuniaki Nagayama Compound microscope device
KR20140126474A (en) * 2013-04-23 2014-10-31 삼성전자주식회사 Camera assembly and image acquiring method using the same
JP2014211448A (en) * 2008-05-30 2014-11-13 株式会社アイエスティー Multiple light source microscope
KR20180026006A (en) * 2016-09-01 2018-03-12 한국표준과학연구원 Mirror of Correlative Light and Electron Microscope with Quadrangular Pyramid Shaped Hole

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100617603B1 (en) * 2005-09-23 2006-09-05 주식회사 브이엠티 X-ray and euv light source device using liquid target
JP2008300354A (en) * 2007-05-31 2008-12-11 Fei Co Sample carrier for use in charged particle device, method of using sample carrier, and device equipped to use above sample carrier
JP5690086B2 (en) * 2010-07-02 2015-03-25 株式会社キーエンス Magnifying observation device
US9991091B1 (en) * 2015-07-02 2018-06-05 Battelle Memorial Institute Optical column for focused ion beam workstation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053048A1 (en) * 1998-05-09 2003-03-20 Renishaw Plc Electron microscope and spectroscopy system
JP2014211448A (en) * 2008-05-30 2014-11-13 株式会社アイエスティー Multiple light source microscope
US20130088775A1 (en) * 2010-04-06 2013-04-11 Kuniaki Nagayama Compound microscope device
KR20140126474A (en) * 2013-04-23 2014-10-31 삼성전자주식회사 Camera assembly and image acquiring method using the same
KR20180026006A (en) * 2016-09-01 2018-03-12 한국표준과학연구원 Mirror of Correlative Light and Electron Microscope with Quadrangular Pyramid Shaped Hole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358611A (en) * 2021-04-28 2021-09-07 中国科学院生物物理研究所 Embedded three-dimensional photoelectric correlation imaging device and method
CN115128788A (en) * 2022-05-30 2022-09-30 中国人民解放军国防科技大学 Horizontally arranged microscope parallel to observation object
CN115128788B (en) * 2022-05-30 2023-11-28 中国人民解放军国防科技大学 Horizontally placed microscopic device parallel to observed object

Also Published As

Publication number Publication date
KR102168726B1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2020218667A1 (en) Optical objective lens alignment mount for sample chamber, light-reflecting mirror having electron through-hole and mounted on mount, and correlative light and electron microscope having spectrometer and comprising same
JP5860044B2 (en) Charged particle beam processing system for visual and infrared imaging
US10663709B2 (en) Optical device for microscopic observation
JP5039307B2 (en) Objective lens and microscope
CN109975857A (en) A kind of Multichannel narrow band grenz ray image-forming assembly
US20040252379A1 (en) Microscope having at least one beam splitter and a scattered light reducing device
US6276804B1 (en) Microscope with at least one beam splitter
US8488238B2 (en) Microscope cube
US7477449B2 (en) Scanning microscope
US6906312B2 (en) Scanning microscope having a microscope stand
US6128073A (en) Device and method for examining the smoothness of a sample surface
US20060209398A1 (en) Objective and microscope
AU2020366521B2 (en) Virtual fiducials
US8049888B2 (en) Device for measuring light emitted by microscopically small particles or biological cells
US7583436B2 (en) Sampler carrier for a confocal microscope and method for fabricating a sample carrier
JP3454575B2 (en) Scanning optical measuring device
KR101857046B1 (en) Mirror of Correlative Light and Electron Microscope with Quadrangular Pyramid Shaped Hole
CN111819434A (en) Optical device, optical module and microscope for scanning large samples
US8115150B2 (en) Optical substrate for reduced background fluorescence
KR100778388B1 (en) Beam Splitting Method with a Mirror and Optical Device Thereof
JP2024502383A (en) microscope equipment
WO2018065649A1 (en) Use of a material for the production of a cover slip, a sample holder or a cell culture container
KR20160100629A (en) microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926534

Country of ref document: EP

Kind code of ref document: A1