WO2020218579A1 - Method for producing pluripotent stem cells conditioned for induction of differentiation - Google Patents

Method for producing pluripotent stem cells conditioned for induction of differentiation Download PDF

Info

Publication number
WO2020218579A1
WO2020218579A1 PCT/JP2020/017839 JP2020017839W WO2020218579A1 WO 2020218579 A1 WO2020218579 A1 WO 2020218579A1 JP 2020017839 W JP2020017839 W JP 2020017839W WO 2020218579 A1 WO2020218579 A1 WO 2020218579A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
differentiation
medium
culture
Prior art date
Application number
PCT/JP2020/017839
Other languages
French (fr)
Japanese (ja)
Inventor
潤 齋藤
明 丹羽
竜一 杉村
諒 太田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2021516306A priority Critical patent/JPWO2020218579A1/ja
Publication of WO2020218579A1 publication Critical patent/WO2020218579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin

Definitions

  • the present invention is a differentiated cell that combines a method for conditioned pluripotent stem cells for inducing differentiation, induction of differentiation by adhesion culture from pluripotent stem cells acclimated by the method, and sorting using a differentiation marker. Regarding the purification method of.
  • HPC hematopoietic progenitor cells
  • HPC induction is roughly divided into two stages: induction of hematopoietic endothelial cells (HE) from PSC and subsequent induction of HPC, and the former is further conditioned to use the stocked PSC for differentiation induction (conditioning). It is divided into a process of inducing differentiation of acclimated PSC into HE.
  • HE hematopoietic endothelial cells
  • Non-Patent Documents 1 and 2 the standard for inducing HPC differentiation from PSC is a modified method of embryoid body formation by Gordon Keller et al.
  • Stable production is difficult due to variations in the size and density of the embryoid body (EB).
  • EB embryoid body
  • MCS magnetically activated cell separation
  • an object of the present invention is to provide a culture system for producing HPC from PSC, which can solve the above three problems and produce a large amount of HPC stably and at low cost to the extent that clinical application is possible. is there.
  • the present inventors subjected the obtained spherical iPS cell mass to planar adhesive culture instead of suspension culture, and the cell mass spontaneously flattened and was substantially flattened. It has a two-dimensional structure. After exchanging the medium with the HE differentiation-inducing medium and culturing, the cell mass was detached from the dish, dissected, and subjected to MACS with CD34 positive as an index. As a result, the cell mass could be dissociated efficiently, and high-purity HE was successfully obtained in a stable manner. Furthermore, it was also found that HE can be efficiently converted to HPC by the subsequent differentiation-inducing culture without purifying HE from the cell mass after planar adhesive culture.
  • the present inventors have succeeded in efficiently and stably converting HE into HPC by using a combination of a specific medium composition and extracellular matrix for the problem (3) above.
  • the conventional method could efficiently induce HPC only about once every five times, whereas according to the method of the present inventors, the probability is 3 to 4 times out of 5 times.
  • the present inventors By setting the period of this suspension culture to a short period of 6 to 48 hours, for example, about 1 day, the present inventors have a spherical PSC mass having the same size and number of cells while maintaining the undifferentiated state of PSC. Succeeded in producing a large amount and stably. Therefore, PSC conditioning using EZSPHERE (registered trademark) can be widely applied not only to mesoderm-series cells such as HPC, but also to induce differentiation into endoderm / ectoderm-series cells.
  • EZSPHERE registered trademark
  • a spherical PSC mass obtained by suspension culture using EZSPHERE (registered trademark) is subjected to planar adhesive culture, the cell mass is changed to a substantially two-dimensional structure, and then differentiation induction is performed to obtain a desired differentiated cell. Since it can be efficiently purified by a sorting technique known per se, it is possible to obtain a more stable and large amount of arbitrary differentiated cells by combining the techniques. As a result of further research based on these findings, the present inventors have completed the present invention.
  • a method for producing pluripotent stem cells acclimatized for inducing differentiation.
  • a culture vessel having a non-adhesive or low-adhesive culture surface as an inner bottom surface, in which a plurality of recesses that are the same as each other are densely arranged so as to be adjacent to each other.
  • Pluripotent stem cells are suspended for 6 to 48 hours using the culture vessel having an inner wall surface having a funnel-shaped slope and a bottom surface having a concave curved surface smoothly connected to the inner wall surface.
  • a method comprising culturing and forming a spherical cell mass in each recess; and (2) a step of planar adhesive culturing the spherical cell mass obtained in step (1).
  • the pluripotent stem cells to be subjected to the step (1) are adherently cultured using a culture vessel coated with an extracellular matrix having a known composition.
  • the extracellular matrix is laminin or a fragment thereof.
  • [5] The method according to any one of [1] to [4], wherein the pluripotent stem cells are of human origin.
  • [6] A method for producing a predetermined differentiated cell from pluripotent stem cells. (1) A step of adhering and culturing the conditioned pluripotent stem cells obtained by the method according to any one of [1] to [5] in a medium that induces differentiation into the differentiated cells; 2) A method comprising a step of selecting the differentiated cells from a cell population containing the predetermined differentiated cells obtained in the step (1) using a differentiation marker peculiar to the differentiated cells as an index. [7] The method according to [6], wherein the step (2) is performed by magnetically activated cell separation.
  • the predetermined differentiated cell is a mesoderm cell.
  • the predetermined differentiated cell is a blood cell or a progenitor cell thereof.
  • the progenitor cell is a hematopoietic endothelial cell or a hematopoietic progenitor cell.
  • a method for producing hematopoietic progenitor cells is a hematopoietic endothelial cell or a hematopoietic progenitor cell.
  • the predetermined differentiated cells are skeletal muscle cells, chondrocytes, renal cells, cardiomyocytes or adipocytes, or progenitor cells thereof.
  • the predetermined differentiated cell is an ectoderm or endoderm cell.
  • the ectoderm cells are nervous system cells, sensory system cells or epidermal cells, or progenitor cells thereof.
  • the endoblastic cells are pancreatic ⁇ cells, hepatocytes, intestinal cells, lung cells or thyroid cells, or progenitor cells thereof.
  • (B) Flow cytometric plots of representative CD45 and CD34 of the entire culture 7 days after stimulation with a hematopoietic cocktail.
  • C It is a typical phase difference image of granulocytes / macrophage progenitor cells generated by CFU assay from hematopoietic progenitor cells 11 days after the start of differentiation induction.
  • D The colony forming units of granulocytes / macrophage progenitor cells (CFU-M, CFU-G, CFU-GM) generated by the CFU assay are shown. It is a schematic diagram of the conditioning of PSC used in Example 2 and the method of inducing differentiation of HE, HPC and various blood cells.
  • Example 6D On the 4th day after the start of differentiation, the medium was changed to Stemline® Stemline II medium supplemented with SCF and Flt-3L and cultured for 8 days. After 12 days from the start of differentiation, the cells were replaced with Stemline® Stemline II medium supplemented with SCF, Flt-3L, IL-7, and IL-15 and cultured for 36 days to obtain CD56 + CD314 + NK cells.
  • Macrophages CX3CR1 positive and CD14 positive
  • C Red blast lineage
  • CD235a positive and CD33 negative 16 days after the start of differentiation
  • Myeloid lineage CD235a negative and CD33 positive
  • D 48 days after the start of differentiation It is a flow cytometry plot showing the differentiation into NK cells (CD314 positive and CD56 positive) of the eye.
  • ES cells may be ES cells generated by nuclear reprogramming from somatic cells. ES cells or iPS cells are preferable.
  • the pluripotent stem cell is not particularly limited as long as it is derived from a mammal, but is preferably a human-derived pluripotent stem cell.
  • somatic cell means any animal cell (preferably a mammalian cell including human) except a germline cell such as an egg, an egg mother cell, an ES cell, or a differentiation pluripotent cell, and a fetal (pup).
  • somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, and epithelium.
  • pluripotent stem cells eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 and the like
  • a commercially available medium for pluripotent stem cells eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 and the like
  • mTeSR1 primate ES cell medium
  • StemFit AK02N StemFit AK02N
  • StemFit AK03N e.g., Essential 8 and the like
  • the medium can be a serum-containing medium or a serum-free medium.
  • a serum-free medium can be used.
  • Serum-free medium means a medium that does not contain any untreated or unpurified serum, and thus includes media containing purified blood-derived components or animal tissue-derived components (such as growth factors).
  • Concentrations of serum eg, fetal bovine serum (FBS), human serum, etc.
  • FBS fetal bovine serum
  • human serum etc.
  • SFM may or may not contain any serum substitute.
  • the medium may contain other additives known per se.
  • growth factors eg, insulin, etc.
  • polyamino acids eg, putresin, etc.
  • minerals eg, sodium selenate, etc.
  • sugars eg, glucose, etc.
  • organic acids eg, pyruvate, lactic acid, etc.
  • Amino acids eg, non-essential amino acids (NEAA), L-glutamine, etc.
  • reducing agents eg, 2-mercaptoethanol, etc.
  • vitamins eg, ascorbic acid, d-biotin, etc.
  • steroids eg, [beta] -Estradiol, progesterone, etc.
  • antibiotics eg, streptomycin, penicillin, gentamycin, etc.
  • buffers eg, HEPES, etc.
  • nutritional additives eg, B27 supplement, N2 supplement, StemPro®, etc.
  • nutritional additives eg, B27 supplement,
  • PSCs may be cultured in the presence or absence of feeder cells, but considering clinical application to humans, it is desirable that PSCs be cultured in the absence of feeder cells. Therefore, in a preferred embodiment of the present invention, PSCs are cultured under feeder-free conditions.
  • the culture vessel used for maintaining and culturing PSC is not particularly limited, but is limited to a flask, a tissue culture flask, a dish, a petri dish, a tissue culture dish, a multi-dish, a microplate, a microwell plate, a multi-plate, and a multi.
  • Well plates, microslides, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles can be mentioned.
  • the culture vessel can be cell adherent.
  • the cell adhesion culture vessel can be coated with any cell adhesion substrate such as extracellular matrix (ECM) for the purpose of improving the adhesion of the surface of the culture vessel to cells.
  • ECM extracellular matrix
  • the cell adhesion substrate can be any substance intended for adhesion of PSCs or feeder cells (if used).
  • Substrates for cell adhesion include laminin, collagen, gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornectin, and fibronectin and their mixtures, such as matrigel, and lysed cell membrane preparations. Preparations) (Klimanskaya I et al 2005. Lancet 365: p1636-1641). These cell adhesion substrates are coated on the culture vessel at the concentrations normally used for culturing PSC, depending on their type.
  • the PSC plated on the culture vessel for example, a cell density of about 10 4 to 10 5 cells / cm 2, under an atmosphere of 1 ⁇ 10% CO 2/99 ⁇ 90% air, about in an incubator It can be cultured at 30-40 ° C, preferably about 37 ° C.
  • the medium can be exchanged in the middle of the culturing period.
  • the medium used for the medium exchange may be a medium having the same components as the medium before the medium exchange, or a medium having different components.
  • a medium having the same components is used.
  • the time of medium replacement is not particularly limited, but is carried out, for example, every 1 day, 2 days, 3 days, 4 days, or 5 days after the start of culturing in a fresh medium.
  • cryopreserved PSC As a method for thawing the cryopreserved PSC, a method well known in the art can be used (for example, Freshney RI, Culture of Animal cells: A Manual of Basic Technique, 4th Edition, 2000, Wiley-Liss, Inc., See Chapter 19). Preferably, it is thawed rapidly in a hot water bath at about 37 ° C.
  • a highly cytotoxic cryoprotectant such as DMSO
  • the diluent for example, serum-containing or serum-free medium, physiological saline or PBS can be used.
  • the thawed PSC is put to sleep by adhesive culture on a flat medium. After removing the supernatant, the cell pellet is tapped and disrupted, and undifferentiated maintenance medium (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.) (ROCK inhibitor (eg, Y) if necessary.
  • undifferentiated maintenance medium eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.
  • ROCK inhibitor eg, Y
  • a substrate for cell adhesion an extracellular matrix having a known composition, for example, laminin or fibronectin, is used rather than a matrix gel or a lysed cell membrane preparation in which various factors such as TGF ⁇ are mixed in order to maintain the undifferentiated state of PSC.
  • laminin or a fragment thereof for example, laminin 511 E8 fragment (eg, iMatrix-511)
  • medium exchange can be performed the day after the passage and every other day thereafter. Incubate until 70-80% confluent and pick up grown colonies.
  • the micro-processed culture container used in the step (1) of the PSC conditioning method of the present invention is a culture container having a non-adhesive or low-adhesive culture surface as an inner bottom surface, and the culture is described above.
  • a plurality of recesses (microwells) that are the same as each other are densely arranged on the surface so as to be adjacent to each other, and each recess has a funnel-shaped inclined inner wall surface and a concave shape that is smoothly connected to the inner wall surface. It is characterized by having a bottom surface which is a curved surface of.
  • each other means that when cells are seeded in each recess at the same density, the plurality of spherical cell clusters formed in each recess have a uniform size and number of cells. It means that the size (opening diameter, depth, etc.) and shape of the recesses are similar to each other, and do not have to be exactly the same.
  • the plurality of recesses are "same size to each other" and “same shape to each other"
  • “Densely arranged” means that the total opening area of the recesses occupies a larger proportion of the culture surface (that is, such as a square matrix arrangement or a finely arranged (honeycomb) arrangement). It means a state in which the recesses are arranged so as to be as close to each other as possible and adjacent to each other so that the ratio of the partition wall portion between the recesses becomes smaller).
  • a “funnel-shaped slope” is a slope whose opening diameter decreases from the opening toward the bottom surface, such as the inner slope of a mortar.
  • the "concave curved surface” is a concave curved surface such as a hemispherical concave surface or a parabola-shaped concave surface that can promote cell aggregation.
  • FIG. 1 (A) shows an enlarged view of a cross section of the microfabricated culture vessel used in the present invention
  • FIG. 1 (B) shows the steps of the PSC conditioning method of the present invention from the production of the microfabricated culture vessel.
  • the situation up to 1) is schematically shown.
  • a plurality of fine recesses (microwells) having the same shape are densely formed on the bottom surface of the culture vessel usually used for culturing cells by laser irradiation (eg, CO 2 gas laser).
  • laser irradiation eg, CO 2 gas laser
  • Examples of the shape of the culture vessel include, but are not limited to, dishes (eg, 10 mm, 35 mm, 100 mm, etc.) and multi-well plates (eg, 6-well, 96-well, etc.).
  • the material of the culture vessel is not particularly limited as long as a desired microwell can be provided by laser irradiation, and examples thereof include polymer materials such as plastic and polystyrene.
  • the dimensions of the microwell that can be laser-machined are an opening diameter of about 200 to 2000 ⁇ m and a depth (length from the opening to the bottom surface) of about 100 to 900 ⁇ m.
  • the diameter of the spherical PSC mass after suspension culture for 6 to 48 hours is 10 to 800 ⁇ m, preferably 20 to 500 ⁇ m. It is desirable to have an opening diameter and depth such that preferably 40 to 100 ⁇ m, for example, the average diameter of the openings is 200 to 2000 ⁇ m, preferably 200 to 1000 ⁇ m, more preferably 200 to 500 ⁇ m, still more preferably 400 to 400. 500 ⁇ m, the average depth is 100 to 900 ⁇ m, preferably 100 to 400 ⁇ m, and more preferably 100 to 200 ⁇ m.
  • the PSC seeded as a single cell drops evenly into each microwell, and adjacent cells bind to each other to form a spherical cell mass having a uniform size in a short time without adhering to the bottom surface. Can be done. It is preferable that the inner wall surfaces of the recesses adjacent to each other are smoothly connected to each other so that there is no flat surface between the recesses adjacent to each other. This allows most of the seeded cells to fall into the wells and form spherical cell clusters without loss of cells.
  • the microfabricated culture vessel can be produced, for example, by the method described in WO 2017/047735.
  • a microfabrication culture container commercially available ones (eg, EZSPHERE (registered trademark) manufactured by AGC Technograss, AggreWell TM manufactured by StemCell Technologies, Elplasia (registered trademark) manufactured by Kuraray, etc.) are used. You can also do it.
  • the seeding density of PSC may be such that the number of cells per microwell is 100 to 1000 cells, preferably 100 to 400 cells, and more preferably 150 to 300 cells.
  • 96-well plate type EZSPHERE® since about 95 microwells are provided per well, for example, about 10,000 to about 100,000 cells per well, preferably about 10,000 to About 40,000 cells, more preferably 15,000 to 30,000 cells, can be seeded.
  • the culture period of PSC in the step (1) is not particularly limited as long as it is necessary and sufficient for the PSC to form a spherical cell mass in a state where the whole cell mass remains undifferentiated, but the culture period is 3 days or more. If this is the case, the size of the spherical PSC mass may increase and undifferentiated state may not be maintained, so it is desirable that the time is less than 3 days. It is preferably within 48 hours, more preferably within 36 hours.
  • spherical cell clusters are formed rapidly (about 3-6 hours), so the lower limit of the culture period is 3 hours, but the adhesion culture in step (2) and it In the subsequent induction of differentiation, in order to obtain differentiated cells stably and efficiently, it is preferably 6 hours or more, and more preferably 12 hours or more.
  • a preferable range of the culture period can be, for example, 6 to 48 hours, more preferably 12 to 36 hours, and particularly preferably about 24 hours.
  • the size of the obtained spherical PSC mass varies depending on the seeding density of PSC and the size of the recess (microwell) of the microfabrication culture vessel.
  • the diameter of the cell mass is 10 to 800 ⁇ m, preferably 20 to 500 ⁇ m, and more preferably 40 to 100 ⁇ m.
  • 96-well plate type EZSPHERE® with an opening diameter of 400 to 500 ⁇ M and a depth of 100 to 200 ⁇ M (in this product, about 95 recesses (microwells) for each of 96 wells).
  • the number of PSC seeded cells per microwell is 100 to 400, preferably 150 to 300, so that a spherical PSC mass of a desired size can be obtained by culturing for 1 to 2 days. Can be prepared. In this case, when converted to the number of seeded cells per well (each of 96 wells in which microwells are arranged), about 10,000 to about 40,000 cells, preferably about 15,000 to about 30,000 cells are seeded. It will be.
  • Step (2) In the step (2) of the PSC conditioning method of the present invention, the spherical cell mass obtained in the step (1) is subjected to planar adhesive culture to spontaneously flatten the cell mass, and the cell has a substantially two-dimensional structure. Turn into a lump.
  • Spherical PSC masses are collected from microprocessed culture vessels by pipetting, etc., suspended in undifferentiated maintenance medium (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.), and laminin, collagen , Gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornectin, and fibronectin and mixtures thereof, such as Matrigel, and coated with cell adhesion substrates such as lysed cell membrane preparations. Seed on the culture medium and incubate in a 5% CO2 incubator at 37 ° C.
  • undifferentiated maintenance medium eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.
  • laminin collagen
  • Gelatin poly-L-lysine
  • poly-D-lysine poly-L-ornectin
  • fibronectin and mixtures thereof
  • an extracellular matrix having a known composition such as laminin and fibronectin
  • a matrix gel or a lysed cell membrane preparation containing various factors such as TGF ⁇ in order to maintain the undifferentiated state of PSC.
  • fragments thereof eg, laminin 511 E8 fragment (eg, iMatrix-511)
  • the seeding density is not particularly limited, but may be, for example, 1 to 10 cell clusters / cm 2 , preferably 2 to 5 cell clusters / cm 2 .
  • the culture period of the PSC mass in the step (2) is not particularly limited as long as it is sufficient for the PSC mass to spontaneously flatten and form a substantially two-dimensional structure, but for example, 2 to 4 days. It can be preferably about 3 days.
  • the present invention also provides highly purified target differentiated cells or progenitor cells thereof from the conditioned PSCs obtained by the PSC conditioning method of the present invention. (Hereinafter, also referred to as “the method for inducing differentiation of the present invention”) is provided.
  • the method for inducing differentiation of the present invention (1) A step of adhering and culturing the conditioned PSC obtained by the PSC conditioning method of the present invention in a medium that induces differentiation into a desired differentiated cell (or a progenitor cell thereof); and (2) From the cell population containing the differentiated cells (or their progenitor cells) obtained in (1), the differentiated cells (or their progenitor cells) are selected using the differentiation marker specific to the differentiated cells (or their progenitor cells) as an index.
  • the “target differentiated cell” means the differentiated cell to be finally produced
  • the "progenitor cell” means a multi-step process during differentiation of the PSC into the target differentiated cell.
  • the progenitor cells When a differentiation induction step is required, it means a cell that passes through during the differentiation induction.
  • the progenitor cells can also be said to be “target cells”. Including progenitor cells, they are collectively referred to as “target differentiated cells” and "predetermined differentiated cells”.
  • basal medium for differentiation induction medium examples include Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, minimum essential medium (MEM), Eagle MEM medium, ⁇ MEM medium, and Dalveco modification.
  • Examples include Eagle's medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fischer's medium, and a mixed medium thereof.
  • Commercially available media such as Essential 8, Essential 6, and Stemline® Stemline II can also be used.
  • the concentrations of SB431542 are, for example, 1nM, 1OnM, 5OnM, 1OOnM, 5OOnM, 750nM, 1 ⁇ M, 2 ⁇ M, 3 ⁇ M, 4 ⁇ M, 5 ⁇ M, 6 ⁇ M, 7 ⁇ M, 8 ⁇ M, 9 ⁇ M, 10 ⁇ M, 15 ⁇ M, 20 ⁇ M, 25 ⁇ M, 30 ⁇ M, 40 ⁇ M, 50 ⁇ M or these concentrations, but not limited to these.
  • Culturing in step (ii) can be carried out at 37 ° C. in a 5% CO 2 incubator (preferably under hypoxic conditions of 5% O 2 ) for 2-3 days.
  • the differentiated cells are selected from the cell population containing the differentiated cells obtained in the step (1) using the differentiation marker peculiar to the differentiated cells as an index.
  • the differentiation marker those known per se can be used depending on the target differentiated cells. For example, in the case of HE, CD34 positive can be used as an index for selection.
  • FACS or MACS can be used as a means for selecting the desired differentiated cells from the cell population, but it is more preferable to use MACS from the viewpoint of less damage to the cells.
  • the high-purity differentiated cells selected by the differentiation-inducing method of the present invention are progenitor cells of the cells of the final target, the selected differentiated cells are further subjected to a differentiation-inducing method known per se.
  • the final target differentiated cells can be obtained in large quantities and stably.
  • a large amount of HPC can be stably produced by further subjecting the selected high-purity HE to the HPC induction method. it can.
  • the present invention also Provided is a method for producing HPC, which comprises (1) a step of providing a selected HE obtained by the differentiation induction method of the present invention; and (2) a step of inducing differentiation of the HE into HPC.
  • the culture in step (2) can be carried out in a 5% CO 2 incubator at 37 ° C. (preferably under hypoxic conditions of 5% O 2 ) for 5 to 10 days.
  • the HPC obtained in this step can be confirmed and selected by FACS, MACS, etc. using CD34-positive and CD45-positive as indicators, and a functional HPC has been obtained by a colony forming assay known per se. You can confirm that.
  • the HPC obtained as described above can be further differentiated (matured) into various blood cells by a method known per se.
  • a method known per se for example, in the basal medium exemplified in the induction of differentiation from HE to HPC, for example, SCF, TPO, Flt-3 ligand, IL-6 / IL-6R ⁇ , IL-3, IL-11, IGF-1, EPO, Factors such as VEGF, bFGF, BMP4, SHH, and angiotensin II can be added in appropriate combinations according to the target blood cells, and HPC can be cultured to differentiate into the target blood cells.
  • the culture can be carried out in a 5% CO 2 incubator at 37 ° C. (preferably under hypoxic conditions of 5% O 2 ) for about 5 to 20 days, but is not limited thereto.
  • how to induce differentiation into megakaryocyte progenitor cells and platelets is described in detail in WO 2018/038242.
  • the various blood cells obtained as described above have the presence or absence of cell surface molecules specific to each blood cell (for example, CX3CR1 positive and CD14 positive in the case of monocytes / macrophages; CD33 in the case of erythroid cells).
  • Negative and CD235a positive; in the case of myeloid cells, CD33 positive and CD235a negative; in the case of NK cells, CD314 positive, CD56 positive, etc. can be used as an index for confirmation and selection by FACS or MACS.
  • the differentiation induction method of the present invention when various blood cells are induced to differentiate via HE and HPC, a cell population containing HE is transferred to HPC without selecting HE.
  • the obtained HPC may be subjected to differentiation induction, and after confirmation and selection by FACS or MACS, for example, using CD34-positive and CD45-positive as indicators, differentiation may be induced into various blood cells, or obtained.
  • the cell population containing HPC may be used for inducing differentiation into various blood cells without selecting the HPC.
  • PSC Spheroid Plating (3 days ago) PSC spheroids were collected in 15 mL conical tubes by gentle pipetting with a P1000 Pipetman and allowed to settle by allowing the spheroids to stand at room temperature for 2 minutes. The supernatant was aspirated, suspended in spheroid plate medium, the suspension was dispensed to a density of 4-spheroid / cm 2 , and cultured in a 37% incubator with 5% CO 2 for 3 days.
  • EHT Endothelial-to-Hematopoietic Transition
  • Floating cells and adherent cells were mixed, the cells were centrifuged at 200 ⁇ g for 3 minutes, and the supernatant was aspirated. The cells were then resuspended in 50 ⁇ L FACS buffer and reacted with the anti-CD34 and anti-CD45 antibodies for 1 hour in the dark at room temperature. The cells were washed twice with PBS (Ca / Mg free) and centrifuged at 200 xg for 3 minutes. The supernatant was aspirated and resuspended in 0.5 mL FACS buffer containing 0.5 ⁇ g / mL DAPI. The expression of CD34 and CD45 was measured by LSR Fortessa.
  • FIG. 3 (A) The schematic process of hematopoietic cell induction is shown in FIG. 3 (A).
  • the medium was sequentially changed to induce mesoderm organoids.
  • the PSC colonies gradually became a sunny side-up structure during differentiation.
  • hematopoietic endothelial cells were purified from mesoderm organoids by magnetic selection (Fig. 3 (B)), suspended in EHT medium, and then seeded on fibronectin.
  • -Induction of erythroblastic / myeloid cells (Fig. 6C): Stemline (registration) in which VEGF, SCF, TPO, Flt-3L, IL-3, IL-6, and EPO were added to the medium on the 4th day after the start of differentiation.
  • the present invention it is possible to stably produce a large amount of arbitrary differentiated cells such as HE and HPC from PSC, and to produce a disease model and a robust drug efficacy / toxicity evaluation system for drug discovery. Extremely useful for construction and even clinical application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Clinical Laboratory Science (AREA)
  • Sustainable Development (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a method for producing pluripotent stem cells that are conditioned for the induction of differentiation, the method comprising: a step (A1) of forming spherical cell masses in the individual recesses of a culture container, by subjecting pluripotent stem cells to suspension culture for 6 to 48 hours, the culture container having a nonadhesive or low-adhesive culture surface as an interior bottom surface, the culture surface having a plurality of recesses that are identical to each other and densely disposed so as to abut each other, each of the recesses having an inner wall surface that forms a funnel-shaped inclined surface and having a bottom surface that forms a recess-shaped curved surface that smoothly connects to the inner wall surface; and a step (A2) of subjecting the spherical cell masses obtained in step (A1) to flat adhesion culture. The present invention also provides a method for producing differentiated cells, the method comprising a step (B1) of subjecting the conditioned pluripotent stem cells provided by the aforementioned method to adhesion culture in a medium that induces differentiation to a predetermined differentiated cell (for example, hemogenic endothelial cells); and a step (B2) of selecting, from a cell population containing the predetermined differentiated cells and yielded by the step (B1), the differentiated cells using as an indicator a differentiation marker specific for the differentiated cells. The present invention further provides a method for producing differentiated cells (for example, hematopoietic progenitor cells) by the further differentiation of the selected differentiated cells (for example, hemogenic endothelial cells).

Description

分化誘導のために馴化された多能性幹細胞の作製方法Method for producing pluripotent stem cells acclimatized for differentiation induction
 本発明は、分化誘導のための多能性幹細胞の馴化(コンディショニング)方法、該方法により馴化された多能性幹細胞からの接着培養による分化誘導と分化マーカーを用いたソーティングとを組み合わせた分化細胞の純化方法等に関する。 The present invention is a differentiated cell that combines a method for conditioned pluripotent stem cells for inducing differentiation, induction of differentiation by adhesion culture from pluripotent stem cells acclimated by the method, and sorting using a differentiation marker. Regarding the purification method of.
 多能性幹細胞(PSC)を様々な細胞種へと分化させるには、モルフォゲンへの段階的な曝露により胚の発生を模倣する、マスター転写因子を強制的に発現させる、あるいはそれらを組み合わせるといったアプローチがとられている。例えば、ヒトPSCから造血前駆細胞(以下、「HPC」ともいう)を誘導する方法として、モルフォゲンによる血球分化誘導の途中で、造血を促進し得る転写因子を組み合わせて導入することにより、HPCを誘導する方法が報告されている(非特許文献1)。 To differentiate pluripotent stem cells (PSCs) into a variety of cell types, approaches such as mimicking embryogenesis through gradual exposure to morphogens, forcibly expressing master transcription factors, or combining them. Has been taken. For example, as a method for inducing hematopoietic progenitor cells (hereinafter, also referred to as “HPC”) from human PSC, HPC is induced by introducing a transcription factor that can promote hematopoiesis in combination during the induction of blood cell differentiation by morphogen. A method of doing so has been reported (Non-Patent Document 1).
 HPC誘導は、PSCからの造血性内皮細胞(HE)の誘導と、それに続くHPC誘導の2段階に大別され、前者はさらに、ストックしていたPSCを分化誘導に供するために馴化(コンディショニング)する工程と、馴化されたPSCをHEに分化誘導する工程とに分けられる。将来の患者への細胞治療を考えた場合、十分な細胞数を安定に得るためには、HPC分化誘導の基礎となるHEを、高純度かつ大量に、安定して供給し得る培養系の確立が必須である。 HPC induction is roughly divided into two stages: induction of hematopoietic endothelial cells (HE) from PSC and subsequent induction of HPC, and the former is further conditioned to use the stocked PSC for differentiation induction (conditioning). It is divided into a process of inducing differentiation of acclimated PSC into HE. When considering cell therapy for future patients, in order to stably obtain a sufficient number of cells, establish a culture system that can stably supply HE, which is the basis for inducing HPC differentiation, in high purity and in large quantities. Is essential.
 現在、PSCからのHPC分化誘導は、Gordon Kellerらによる胚様体形成法の変法(非特許文献1及び2)がスタンダードとなっているが、以下の点により細胞治療への発展は困難な状況にある。
(1)胚様体(EB)のサイズと密度のバラつきにより、安定した産生が困難である。
(2)EB形成により、分化誘導途中で細胞を十分に解離させることが難しく、磁気活性化細胞分離(MACS)によって高純度なHEを安定に得ることが困難である。
(3)HEからHPCへ分化誘導を行う際の培養条件が最適化されておらず、誘導効率が低い。
Currently, the standard for inducing HPC differentiation from PSC is a modified method of embryoid body formation by Gordon Keller et al. (Non-Patent Documents 1 and 2), but it is difficult to develop into cell therapy due to the following points. In the situation.
(1) Stable production is difficult due to variations in the size and density of the embryoid body (EB).
(2) It is difficult to sufficiently dissociate cells during the induction of differentiation by EB formation, and it is difficult to stably obtain high-purity HE by magnetically activated cell separation (MACS).
(3) The culture conditions for inducing differentiation from HE to HPC are not optimized, and the induction efficiency is low.
 従って、本発明の目的は、上記3つの課題を解決し、臨床応用が可能な程度に大量のHPCを安定にかつ低コストで産生し得る、PSCからHPCを作製する培養系を提供することである。 Therefore, an object of the present invention is to provide a culture system for producing HPC from PSC, which can solve the above three problems and produce a large amount of HPC stably and at low cost to the extent that clinical application is possible. is there.
 本発明者らはまず、上記(1)の課題を解決すべく鋭意検討を重ねた結果、EBのサイズと密度のバラつきを改善するには、PSCのコンディショニングが重要であると考えた。従来は、ストックしていたPSCコロニーの中から正常なコロニーをピックアップして未分化維持培地に継代して接着培養し、成長したコロニーから正常なものを選別してEB形成・分化誘導に供しており、コンディショニングに1週間程度要していた。しかし、この方法では、コロニー間でサイズが異なり、分化誘導にバラつきが出るといった問題があった。そこで、本発明者らは、ヒトiPS細胞から均一なサイズの胚様体を効率よく形成させ得ることが報告されている微細加工培養容器EZSPHERE(登録商標;AGCテクノグラス社)(Sci. Rep., 6: 31063 (2016)、WO 2017/047735、WO 2017/164257、Nature, 545: 432-438 (2017))を、それよりも前段階であるPSCのコンディショニングのために使用した。即ち、ストックしていたPSCコロニーの中から正常なコロニーを一旦未分化維持培地で接着培養した後、単一細胞に解離してEZSPHERE(登録商標)に播種し、短期間(1日程度)培養した。その結果、全体に未分化状態を維持した、サイズ・細胞数が均一な球状iPS細胞塊を高密度に作製することに成功した。 As a result of diligent studies to solve the above problem (1), the present inventors considered that PSC conditioning is important to improve the variation in EB size and density. Conventionally, normal colonies are picked up from the stocked PSC colonies, subcultured in an undifferentiated maintenance medium, adherently cultured, and normal colonies are selected from the grown colonies and used for EB formation / differentiation induction. It took about a week for conditioning. However, this method has a problem that the size differs between colonies and the differentiation induction varies. Therefore, the present inventors have reported that embryoid bodies of uniform size can be efficiently formed from human iPS cells, which is a microfabrication culture vessel EZSPHERE (registered trademark; AGC Technograss) (Sci. Rep. , 6: 31063 (2016), WO 2017/047735, WO 2017/164257, Nature, 545: 432-438 (2017)) were used for the earlier PSC conditioning. That is, normal colonies are once adherently cultured in an undifferentiated maintenance medium from the stocked PSC colonies, then dissociated into single cells, seeded in EZSPHERE®, and cultured for a short period (about 1 day). did. As a result, we succeeded in producing a spherical iPS cell mass with uniform size and number of cells, which maintained an undifferentiated state as a whole, at high density.
 次に、本発明者らは、上記(2)の課題に対して、得られた球状iPS細胞塊を浮遊培養ではなく平面接着培養に供したところ、該細胞塊は自発的に扁平化し、略2次元構造をとった。培地をHE分化誘導培地に交換して培養した後、細胞塊をディッシュから剥離し、解離処理を行っって、CD34陽性を指標とするMACSに供した。その結果、細胞塊を効率よく解離させることができ、高純度のHEを安定に取得することに成功した。さらに、平面接着培養後の細胞塊からHEを純化せずとも、その後の分化誘導培養により、効率よくHEをHPCに変換し得ることも見出した。 Next, in response to the above-mentioned problem (2), the present inventors subjected the obtained spherical iPS cell mass to planar adhesive culture instead of suspension culture, and the cell mass spontaneously flattened and was substantially flattened. It has a two-dimensional structure. After exchanging the medium with the HE differentiation-inducing medium and culturing, the cell mass was detached from the dish, dissected, and subjected to MACS with CD34 positive as an index. As a result, the cell mass could be dissociated efficiently, and high-purity HE was successfully obtained in a stable manner. Furthermore, it was also found that HE can be efficiently converted to HPC by the subsequent differentiation-inducing culture without purifying HE from the cell mass after planar adhesive culture.
 さらに、本発明者らは、上記(3)の課題に対して、特定の培地組成と細胞外マトリクスとの組み合わせを用いることにより、HEをHPCに効率よく安定に変換することに成功した。 Furthermore, the present inventors have succeeded in efficiently and stably converting HE into HPC by using a combination of a specific medium composition and extracellular matrix for the problem (3) above.
 以上の工夫により、従来法では、5回に1回程度しか効率よくHPCを誘導することができなかったのに対し、本発明者らの方法によれば、5回中3~4回の確率でHPCへの分化誘導を達成する安定で再現性の高い分化誘導系の構築に成功した。 With the above ingenuity, the conventional method could efficiently induce HPC only about once every five times, whereas according to the method of the present inventors, the probability is 3 to 4 times out of 5 times. We succeeded in constructing a stable and highly reproducible differentiation induction system that achieves differentiation induction to HPC.
 上記プロトコルの中でも、PSCのコンディショニングの工程にEZSPHERE(登録商標)による短期間の浮遊培養を採用したことにより、均一で品質に優れた馴化PSCを提供できるようになったことが、HPCを安定かつ大量に誘導し得る培養系の構築に大きく寄与していると考えられた。従来は、PSCを球体(スフェロイド)の状態にすると分化し易いというのが技術常識であった。PSCのコンディショニングは、未分化状態を維持したまま、PSCを分化誘導に適した状態にリフレッシュすることであるから、当該工程にEZSPHERE(登録商標)を用いることは、全く予想外の発想であった。本発明者らは、この浮遊培養の期間を6~48時間、例えば1日程度の短期間とすることで、PSCの未分化状態を維持したままで、サイズ・細胞数が揃った球状PSC塊を大量かつ安定に作製することに成功したのである。
 従って、EZSPHERE(登録商標)を用いたPSCのコンディショニングは、HPC等の中胚葉系列の細胞のみならず、内胚葉・外胚葉系列の細胞への分化誘導にも広く応用可能である。また、EZSPHERE(登録商標)を用いた浮遊培養により得られる球状PSC塊を平面接着培養して、該細胞塊を略2次元構造に変化させてから分化誘導を行うことにより、目的の分化細胞を自体公知のソーティング技術により効率よく純化することができるので、当該技術を組み合わせることにより、任意の分化細胞をより安定かつ大量に取得することが可能となる。
 本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成するに至った。
Among the above protocols, the adoption of short-term suspension culture by EZSPHERE (registered trademark) in the PSC conditioning process has made it possible to provide uniform and high-quality conditioned PSCs, which makes HPC stable. It was considered that it greatly contributed to the construction of a culture system capable of inducing a large amount. In the past, it was common general knowledge that PSCs were easily differentiated when they were made into a sphere (spheroid). Since the conditioning of PSC is to refresh the PSC to a state suitable for inducing differentiation while maintaining the undifferentiated state, it was a completely unexpected idea to use EZSPHERE (registered trademark) in the process. .. By setting the period of this suspension culture to a short period of 6 to 48 hours, for example, about 1 day, the present inventors have a spherical PSC mass having the same size and number of cells while maintaining the undifferentiated state of PSC. Succeeded in producing a large amount and stably.
Therefore, PSC conditioning using EZSPHERE (registered trademark) can be widely applied not only to mesoderm-series cells such as HPC, but also to induce differentiation into endoderm / ectoderm-series cells. In addition, a spherical PSC mass obtained by suspension culture using EZSPHERE (registered trademark) is subjected to planar adhesive culture, the cell mass is changed to a substantially two-dimensional structure, and then differentiation induction is performed to obtain a desired differentiated cell. Since it can be efficiently purified by a sorting technique known per se, it is possible to obtain a more stable and large amount of arbitrary differentiated cells by combining the techniques.
As a result of further research based on these findings, the present inventors have completed the present invention.
 即ち、本発明は以下のものを提供する。
[1]分化誘導のために馴化された多能性幹細胞の作製方法であって、
(1)非接着性もしくは低接着性の培養面を内部底面として有する培養容器であって、前記培養面には、互いに同一の複数の凹部が互いに隣り合うよう密に配置され、各凹部は、漏斗状の斜面となっている内壁面と、該内壁面に滑らかに接続された凹状の曲面となっている底面とを有する、前記培養容器を用いて、多能性幹細胞を6~48時間浮遊培養し、各凹部内に球状細胞塊を形成させる工程;並びに
(2)工程(1)で得られた球状細胞塊を平面接着培養する工程
を含む、方法。
[2]前記工程(1)に供する多能性幹細胞が、既知組成の細胞外マトリクスでコーティングした培養容器を用いて接着培養されたものである、[1]に記載の方法。
[3]細胞外マトリクスがラミニンもしくはその断片である、[2]に記載の方法。
[4]多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、[1]~[3]のいずれかに記載の方法。
[5]多能性幹細胞がヒト由来である、[1]~[4]のいずれかに記載の方法。
[6]多能性幹細胞から所定の分化細胞を作製する方法であって、
(1)[1]~[5]のいずれかに記載の方法により得られた、馴化された多能性幹細胞を、該分化細胞への分化を誘導する培地中で接着培養する工程;並びに
(2)工程(1)で得られた所定の分化細胞を含む細胞集団から、該分化細胞に特有の分化マーカーを指標として、該分化細胞を選別する工程
を含む、方法。
[7]前記工程(2)が磁気活性化細胞分離により行われる、[6]に記載の方法。
[8]所定の分化細胞が中胚葉系の細胞である、[6]又は[7]に記載の方法。
[9]所定の分化細胞が血液細胞又はその前駆細胞である、[8]に記載の方法。
[10]前駆細胞が造血性内皮細胞又は造血前駆細胞である、[9]に記載の方法。
[11]造血前駆細胞の作製方法であって、
(1)[10]に記載の方法により得られた、選別された造血性内皮細胞を提供する工程;並びに
(2)該造血性内皮細胞を造血前駆細胞に分化誘導する工程
を含む、方法。
[12]前記工程(2)が、造血性内皮細胞を、フィブロネクチン、ラミニンもしくはその断片でコーティングした培養容器を用い、Stemline(登録商標)Stemline II培地を基礎培地とする分化誘導培地中で培養することにより行われる、[11]に記載の方法。
[13]所定の分化細胞が、骨格筋細胞、軟骨細胞、腎細胞、心筋細胞もしくは脂肪細胞、又はその前駆細胞である、[8]に記載の方法。
[14]所定の分化細胞が外胚葉系もしくは内胚葉系の細胞である、[6]又は[7]に記載の方法。
[15]外胚葉系の細胞が、神経系細胞、感覚系細胞もしくは表皮系細胞、又はその前駆細胞である、[14]に記載の方法。
[16]内胚葉系の細胞が、膵β細胞、肝細胞、腸管細胞、肺細胞もしくは甲状腺細胞、又はその前駆細胞である、[14]に記載の方法。
That is, the present invention provides the following.
[1] A method for producing pluripotent stem cells acclimatized for inducing differentiation.
(1) A culture vessel having a non-adhesive or low-adhesive culture surface as an inner bottom surface, in which a plurality of recesses that are the same as each other are densely arranged so as to be adjacent to each other. Pluripotent stem cells are suspended for 6 to 48 hours using the culture vessel having an inner wall surface having a funnel-shaped slope and a bottom surface having a concave curved surface smoothly connected to the inner wall surface. A method comprising culturing and forming a spherical cell mass in each recess; and (2) a step of planar adhesive culturing the spherical cell mass obtained in step (1).
[2] The method according to [1], wherein the pluripotent stem cells to be subjected to the step (1) are adherently cultured using a culture vessel coated with an extracellular matrix having a known composition.
[3] The method according to [2], wherein the extracellular matrix is laminin or a fragment thereof.
[4] The method according to any one of [1] to [3], wherein the pluripotent stem cell is an embryonic stem cell or an induced pluripotent stem cell.
[5] The method according to any one of [1] to [4], wherein the pluripotent stem cells are of human origin.
[6] A method for producing a predetermined differentiated cell from pluripotent stem cells.
(1) A step of adhering and culturing the conditioned pluripotent stem cells obtained by the method according to any one of [1] to [5] in a medium that induces differentiation into the differentiated cells; 2) A method comprising a step of selecting the differentiated cells from a cell population containing the predetermined differentiated cells obtained in the step (1) using a differentiation marker peculiar to the differentiated cells as an index.
[7] The method according to [6], wherein the step (2) is performed by magnetically activated cell separation.
[8] The method according to [6] or [7], wherein the predetermined differentiated cell is a mesoderm cell.
[9] The method according to [8], wherein the predetermined differentiated cell is a blood cell or a progenitor cell thereof.
[10] The method according to [9], wherein the progenitor cell is a hematopoietic endothelial cell or a hematopoietic progenitor cell.
[11] A method for producing hematopoietic progenitor cells.
A method comprising (1) providing the selected hematopoietic endothelial cells obtained by the method according to [10]; and (2) inducing differentiation of the hematopoietic endothelial cells into hematopoietic progenitor cells.
[12] In the step (2), hematopoietic endothelial cells are cultured in a differentiation-inducing medium using Stemline (registered trademark) Stemline II medium as a basal medium using a culture vessel coated with fibronectin, laminin or a fragment thereof. The method according to [11], which is carried out by the above.
[13] The method according to [8], wherein the predetermined differentiated cells are skeletal muscle cells, chondrocytes, renal cells, cardiomyocytes or adipocytes, or progenitor cells thereof.
[14] The method according to [6] or [7], wherein the predetermined differentiated cell is an ectoderm or endoderm cell.
[15] The method according to [14], wherein the ectoderm cells are nervous system cells, sensory system cells or epidermal cells, or progenitor cells thereof.
[16] The method according to [14], wherein the endoblastic cells are pancreatic β cells, hepatocytes, intestinal cells, lung cells or thyroid cells, or progenitor cells thereof.
 本発明のPSCコンディショニング法によれば、従来より短期間(4日程度)で、サイズ・密度が均一な球状PSC塊を得ることができる。さらに、その後に分化誘導処理をほどこした細胞の解離が容易となるため、途中でMACS等の細胞選別を組み合わせることにより、所望の分化細胞を大量かつ安定に作製することができる。特に、HEを経由したHPCの分化誘導においては、CD34陽性にしたHEの選別と、その後の最適化された培養条件とを組み合わせることで、従来よりも飛躍的にHPCの誘導効率を改善することができる。 According to the PSC conditioning method of the present invention, a spherical PSC mass having a uniform size and density can be obtained in a shorter period of time (about 4 days) than before. Further, since the dissociation of the cells subjected to the differentiation induction treatment after that is facilitated, a desired differentiated cell can be produced in a large amount and stably by combining cell selection such as MACS in the middle. In particular, in the induction of HPC differentiation via HE, the efficiency of HPC induction can be dramatically improved by combining the selection of CD34-positive HE and the subsequent optimized culture conditions. Can be done.
(A)本発明のPSCコンディショニング法に用いられる微細加工培養容器の断面図、及び(B)該培養容器の製造から該培養容器を用いた球状PSC塊の調製の様子を模式的に示した図である(Sci. Rep., 6: 31063 (2016)のSupplementary Fig. 2から一部改変して転載)。(A) A cross-sectional view of a microfabricated culture vessel used in the PSC conditioning method of the present invention, and (B) a diagram schematically showing a state of preparation of a spherical PSC mass using the culture vessel from the production of the culture vessel. (Reprinted from Supplementary Fig. 2 of Sci. Rep., 6: 31063 (2016) with some modifications). 本発明のPSCコンディショニング法の模式図である。iMatrix-511上、mTeSR1培地中で維持したPSCを、-4日目(HEへの分化誘導開始日を0日目とした)にディッシュから剥離、TrypLE Express単一細胞にまで解離した後、Y-27632を添加したmTeSR1培地中に播種し、一晩培養して球状細胞塊を形成させた。-3日目に球状細胞塊をiMatrix-511上、mTeSR1培地中に播種し、3日間培養した。0日目に球状細胞塊は自発的に扁平化し、略2次元構造となった。It is a schematic diagram of the PSC conditioning method of this invention. PSC maintained in mTeSR1 medium on iMatrix-511 was exfoliated from the dish on day -4 (the start date of differentiation induction to HE was set to day 0), dissociated into TrypLE Express single cells, and then Y. It was seeded in mTeSR1 medium supplemented with -27632 and cultured overnight to form a spherical cell mass. -On the 3rd day, the spherical cell mass was seeded on iMatrix-511 in mTeSR1 medium and cultured for 3 days. On day 0, the spherical cell mass spontaneously flattened into a substantially two-dimensional structure. (A)実施例1で用いたHE及びHPCの分化誘導法の模式図である。0日目に培地をCHIR99021、BMP4及びVEGF 165を含むEssential 8に置換し、5% O2・5% CO2インキュベーター中で培養した。分化開始から2日目に培地をSB431542、VEGF 165及びSCFを含むEssential 6に置換した。4日目にHEを富化すべくCD34陽性細胞をMACSで選別し、フィブロネクチン上、SCF、TPO、Flt-3L及びIL-6/IL-6Rα、ITS-X及びGlutamaxを添加したStemline(登録商標)Stemline II培地中で6日間培養した。(B)MACSで選別・富化されたHE含有細胞集団のフローサイトメトリープロットである。(A) It is a schematic diagram of the differentiation induction method of HE and HPC used in Example 1. On day 0, the medium was replaced with Essential 8 containing CHIR99021, BMP4 and VEGF 165 and cultured in a 5% O 2.5 % CO 2 incubator. On the second day from the start of differentiation, the medium was replaced with Essential 6 containing SB431542, VEGF 165 and SCF. On day 4, CD34-positive cells were screened by MACS to enrich HE and Stemline® added on fibronectin, SCF, TPO, Flt-3L and IL-6 / IL-6Rα, ITS-X and Glutamax. Incubated in Stemline II medium for 6 days. (B) Flow cytometry plot of HE-containing cell population selected and enriched by MACS. (A)造血性カクテルで刺激後7日目における造血前駆細胞の代表的な位相差像である。(B)造血性カクテルで刺激後7日目における培養全体の代表的なCD45及びCD34のフローサイトメトリープロットである。(C)分化誘導開始から11日目の造血前駆細胞からCFUアッセイにより生じた顆粒球/マクロファージ前駆細胞の代表的な位相差像である。(D)CFUアッセイにより生じた顆粒球/マクロファージ前駆細胞(CFU-M、CFU-G、CFU-GM)のコロニー形成単位を示す。(A) It is a typical phase difference image of hematopoietic progenitor cells 7 days after stimulation with a hematopoietic cocktail. (B) Flow cytometric plots of representative CD45 and CD34 of the entire culture 7 days after stimulation with a hematopoietic cocktail. (C) It is a typical phase difference image of granulocytes / macrophage progenitor cells generated by CFU assay from hematopoietic progenitor cells 11 days after the start of differentiation induction. (D) The colony forming units of granulocytes / macrophage progenitor cells (CFU-M, CFU-G, CFU-GM) generated by the CFU assay are shown. 実施例2で用いたPSCのコンディショニング、並びにHE、HPC及び種々の血液細胞の分化誘導法の模式図である。実施例1と同様にPSCのコンディショニング及び造血性誘導(中胚葉分化)を行ったのち、分化4日目時点での細胞回収もCD34陽性細胞の選別も行うことなく分化誘導を継続した。分化開始から4日目以降は、目的とする細胞の種類に応じ、以下のように異なるサイトカインの組み合わせを用いて培養を継続した。・造血前駆細胞の誘導(図6A):分化開始4日目に培地をVEGF及びSCFを添加したStemline(登録商標)Stemline II培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、ITS-X及びGlutamaxを添加したStemline(登録商標)Stemline IIに交換して4日間培養し、分化開始10日目に浮遊細胞分画中にCD34+CD45+造血前駆細胞を得た。・単球・マクロファージの誘導(図6B):分化開始4日目に培地をVEGF及びSCFを添加したStemPro(登録商標)-34培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、IL-3、M-CSFを添加したStemPro(登録商標)-34培地に交換して7-10日間培養した。その後さらにサイトカインをFlt-3L、GM-CSF、M-CSFの3種類に変更して7日間培養継続し、浮遊細胞分画中にCD14+CX3CR1+単球細胞を得た。・赤芽球系・骨髄球系細胞の誘導(図6C):分化開始4日目に培地をVEGF及びSCF、TPO、Flt-3L、IL-3、IL-6、EPOを添加したStemline(登録商標)Stemline II培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、IL-3、IL-6、EPOを添加したStemline(登録商標)Stemline IIに交換して3日間培養した。分化開始9日目に浮遊細胞を回収し、細胞選別を行わずそのまま新しい培養皿へ移して同組成の培地で培養を7日間継続した後、CD235+CD33-赤芽球細胞とCD235-CD33+骨髄球系細胞を得た。・NK細胞の誘導(図6D):分化開始4日目に培地をSCFおよびFlt-3Lを添加したStemline(登録商標)Stemline II培地へ変更して8日間培養した。分化開始12日目以後にSCF、Flt-3L、IL-7、IL-15を添加したStemline(登録商標)StemlineII培地に交換して36日間培養した後、CD56+CD314+NK細胞を得た。It is a schematic diagram of the conditioning of PSC used in Example 2 and the method of inducing differentiation of HE, HPC and various blood cells. After conditioning PSC and inducing hematopoiesis (mesoderm differentiation) in the same manner as in Example 1, differentiation induction was continued without performing cell recovery or selection of CD34-positive cells at the 4th day of differentiation. From the 4th day after the start of differentiation, culture was continued using a combination of different cytokines as shown below according to the type of target cells. -Induction of hematopoietic progenitor cells (Fig. 6A): On the 4th day after the start of differentiation, the medium was changed to Stemline® Stemline II medium supplemented with VEGF and SCF and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with Stemline® Stemline II supplemented with SCF, TPO, Flt-3L, ITS-X and Glutamax and cultured for 4 days, and the floating cell fraction was fractionated on the 10th day after the start of differentiation. CD34 + CD45 + hematopoietic progenitor cells were obtained in the cells. -Induction of monocytes and macrophages (Fig. 6B): On the 4th day after the start of differentiation, the medium was changed to StemPro®-34 medium supplemented with VEGF and SCF and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with StemPro®-34 medium supplemented with SCF, TPO, Flt-3L, IL-3, and M-CSF and cultured for 7-10 days. After that, the cytokines were further changed to 3 types of Flt-3L, GM-CSF, and M-CSF, and the culture was continued for 7 days to obtain CD14 + CX3CR1 + monocyte cells in the floating cell fraction. -Induction of erythroblastic / myeloid cells (Fig. 6C): Stemline (registration) in which VEGF, SCF, TPO, Flt-3L, IL-3, IL-6, and EPO were added to the medium on the 4th day after the start of differentiation. The medium was changed to Stemline II medium and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with Stemline® Stemline II supplemented with SCF, TPO, Flt-3L, IL-3, IL-6, and EPO and cultured for 3 days. The floating cells were collected in the differentiation after 9 days, after which the culture was continued for 7 days in a medium of the same composition was transferred as it is to the new culture dish without the cell sorting, CD235 + CD33 - erythroid cells and CD235 - CD33 + Myeloid cells were obtained. -Induction of NK cells (Fig. 6D): On the 4th day after the start of differentiation, the medium was changed to Stemline® Stemline II medium supplemented with SCF and Flt-3L and cultured for 8 days. After 12 days from the start of differentiation, the cells were replaced with Stemline® Stemline II medium supplemented with SCF, Flt-3L, IL-7, and IL-15 and cultured for 36 days to obtain CD56 + CD314 + NK cells. 実施例2における、(A)分化開始から10日目の造血前駆細胞(CD34陽性及びCD45陽性)への分化を示すフローサイトメトリープロット、並びに、(B)分化開始から21日目の単球・マクロファージ(CX3CR1陽性及びCD14陽性)、(C)分化開始から16日目の赤芽球系(CD235a陽性及びCD33陰性)、骨髄球系(CD235a陰性及びCD33陽性)及び(D)分化開始から48日目のNK細胞(CD314陽性及びCD56陽性)への分化を示すフローサイトメトリープロットである。In Example 2, (A) a flow cytometry plot showing differentiation into hematopoietic progenitor cells (CD34 positive and CD45 positive) on the 10th day from the start of differentiation, and (B) monocytes on the 21st day from the start of differentiation. Macrophages (CX3CR1 positive and CD14 positive), (C) Red blast lineage (CD235a positive and CD33 negative) 16 days after the start of differentiation, Myeloid lineage (CD235a negative and CD33 positive) and (D) 48 days after the start of differentiation It is a flow cytometry plot showing the differentiation into NK cells (CD314 positive and CD56 positive) of the eye.
(I)分化誘導のために馴化された多能性幹細胞の作製方法
 本発明は、分化誘導のために馴化された多能性幹細胞の作製方法(以下、「本発明のPSCコンディショニング法」という)を提供する。
 ここで「PSCの馴化(コンディショニング)」とは、PSCを分化誘導にかける際に、出発のPSCを未分化性を維持したままリフレッシュすることを意味する。凍結保存していたPSCストックは、解凍後平面培地で接着培養して起眠させ、正常なコロニーをピックアップして分化誘導に用いるが、起眠後直ちに分化誘導に供すると細胞の生存率や分化効率が低いため、コンディショニングを行って分化誘導に適した状態にしてから、分化誘導に供するのが一般的である。従来は、起眠したPSCを平面培地に継代して未分化維持培地中で接着培養し、未分化性を維持したコロニーがある程度形成した時点で、正常なコロニーを選別して分化誘導に供していた。
(I) Method for Producing Pluripotent Stem Cells Acclimated for Inducing Differentiation The present invention relates to a method for producing pluripotent stem cells acclimatized for inducing differentiation (hereinafter referred to as "PSC conditioning method of the present invention"). I will provide a.
Here, "conditioning of PSC" means that when PSC is subjected to differentiation induction, the starting PSC is refreshed while maintaining undifferentiation. After thawing, the cryopreserved PSC stock is adherently cultured on a flat medium to wake it up, and normal colonies are picked up and used for differentiation induction. Since the efficiency is low, it is common to perform conditioning to bring the cells into a state suitable for differentiation induction, and then to perform differentiation induction. Conventionally, a dormant PSC is subcultured on a flat medium and adherently cultured in an undifferentiated maintenance medium, and when colonies that maintain undifferentiation are formed to some extent, normal colonies are selected and used for differentiation induction. Was there.
 本発明のPSCコンディショニング法では、起眠したPSCを平面培地に継代することなく、同一の複数の微細な凹部(「マイクロウェル」ともいう)を有し、マイクロウェル表面が非接着性もしくは低接着性である、特殊な微細加工された培養容器中に播種し、短期間浮遊培養して球状細胞塊を形成させた後、該球状細胞塊を平面培地で接着培養することにより、自発的に扁平化させ、略2次元構造をとるようにする。
 即ち、本発明のPSCコンディショニング法は、
(1)非接着性もしくは低接着性の培養面を内部底面として有する培養容器であって、前記培養面には、互いに同一の複数の凹部が互いに隣り合うよう密に配置され、各凹部は、漏斗状の斜面となっている内壁面と、該内壁面に滑らかに接続された凹状の曲面となっている底面とを有する、前記培養容器を用いて、多能性幹細胞を6~48時間浮遊培養し、各凹部内に球状細胞塊を形成させる工程;並びに
(2)工程(1)で得られた球状細胞塊を平面接着培養する工程
を含む。
In the PSC conditioning method of the present invention, the sleeping PSC is not subcultured on a flat medium and has the same plurality of fine recesses (also referred to as “microwells”), and the surface of the microwells is non-adhesive or low. By seeding in a special finely processed culture vessel that is adhesive and suspending and culturing for a short period of time to form a spherical cell mass, the spherical cell mass is adherently cultured on a flat medium to spontaneously culture the spherical cell mass. Flatten it so that it has a substantially two-dimensional structure.
That is, the PSC conditioning method of the present invention is
(1) A culture vessel having a non-adhesive or low-adhesive culture surface as an inner bottom surface, in which a plurality of recesses that are the same as each other are densely arranged so as to be adjacent to each other. Pluripotent stem cells are suspended for 6 to 48 hours using the culture vessel having an inner wall surface having a funnel-shaped slope and a bottom surface having a concave curved surface smoothly connected to the inner wall surface. It includes a step of culturing and forming a spherical cell mass in each recess; and (2) a step of plane-adhesive culture of the spherical cell mass obtained in step (1).
(a)PSCの準備
 本発明で用いられるPSCは、未分化状態を保持したまま増殖できる「自己再生能」と三胚葉系列すべてに分化できる「分化多能性」とを有する未分化細胞であれば特に制限されず、例えば、胚性幹(ES)細胞、人工多能性幹(iPS)細胞の他、始原生殖細胞に由来する胚性生殖(EG)細胞、精巣組織からのGS細胞の樹立培養過程で単離されるmultipotent germline stem(mGS)細胞、骨髄から単離されるmultipotent adult progenitor cell(MAPC)、MUSE細胞等が挙げられる。ES細胞は体細胞から核初期化されて生じたES細胞であってもよい。好ましくはES細胞またはiPS細胞である。多能性幹細胞は哺乳動物に由来するものであれば特に制限はないが、好ましくはヒト由来の多能性幹細胞である。
(A) Preparation of PSC The PSC used in the present invention may be an undifferentiated cell having "self-renewal ability" capable of proliferating while maintaining an undifferentiated state and "differentiation pluripotency" capable of differentiating into all three embryonic stem lineages. The present invention is not particularly limited, and for example, establishment of embryonic stem (ES) cells, artificial pluripotent stem (iPS) cells, embryonic reproductive (EG) cells derived from primordial reproductive cells, and GS cells from testis tissue. Examples thereof include multipotent germline stem (mGS) cells isolated in the culture process, multipotent adult progenitor cells (MAPC) isolated from bone marrow, and MUSE cells. ES cells may be ES cells generated by nuclear reprogramming from somatic cells. ES cells or iPS cells are preferable. The pluripotent stem cell is not particularly limited as long as it is derived from a mammal, but is preferably a human-derived pluripotent stem cell.
 ES細胞は、哺乳動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。
 また、ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Reserch Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
ES cells can be established by removing the inner cell mass from the blastocyst of a fertilized mammalian egg and culturing the inner cell mass on a fibroblast feeder. In addition, cells are maintained by subculture using a culture medium supplemented with substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). It can be carried out. For methods of establishing and maintaining ES cells in humans and monkeys, see, for example, USP 5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. US A. 92: 7844-7848; Thomson JA, et. al. (1998), Science. 282: 1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345: 926-932; M. Ueno et al. (2006), Proc . Natl. Acad. Sci. USA, 103: 9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222: 273-279; H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99: 1580-1585; Klimanskaya I, et al. (2006), Nature. 444: 481-485, etc.
For human ES cell lines, for example, WA01 (H1) and WA09 (H9) are from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are from the Institute for Frontier Medical Sciences, Kyoto University (Kyoto, Japan). It is available from.
 iPS細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら, Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。ここで「体細胞」とは、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)を意味し、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。 iPS cells can be produced by introducing specific reprogramming factors into somatic cells in the form of DNA or proteins, with properties similar to ES cells, such as pluripotency and self-renewal proliferative potential. It is an artificial stem cell derived from somatic cells (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); International release WO 2007/069666). Here, the "somatic cell" means any animal cell (preferably a mammalian cell including human) except a germline cell such as an egg, an egg mother cell, an ES cell, or a differentiation pluripotent cell, and a fetal (pup). ) Somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as primary cultured cells, passaged cells, and established cells. Will be done. Specifically, somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, and epithelium. Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lung cells, renal cells And differentiated cells such as fat cells are exemplified.
 得られるiPS細胞がヒトの再生医療用途に使用される場合には、拒絶反応が起こらないという観点から、患者本人またはHLAの型が同一もしくは実質的に同一である他人から体細胞を採取することが特に好ましい。ここでHLAの型が「実質的に同一」とは、免疫抑制剤などの使用により、該体細胞由来のiPS細胞から分化誘導することにより得られた細胞を患者に移植した場合に移植細胞が生着可能な程度にHLAの型が一致していることをいう。例えば、主たるHLA(例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座、あるいはHLA-Cを加えた4遺伝子座)が同一である場合などが挙げられる。 When the obtained iPS cells are used for human regenerative medicine, somatic cells should be collected from the patient or another person with the same or substantially the same HLA type from the viewpoint of not causing rejection. Is particularly preferable. Here, the HLA type "substantially the same" means that when cells obtained by inducing differentiation from iPS cells derived from the somatic cells are transplanted into a patient by using an immunosuppressant or the like, the transplanted cells are transplanted. It means that the HLA types match to the extent that they can survive. For example, the main HLA (for example, 3 loci of HLA-A, HLA-B and HLA-DR, or 4 loci including HLA-C) may be the same.
 初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-coding RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-coding RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。 Reprogramming factors are genes that are specifically expressed in ES cells, their gene products or non-coding RNAs, or genes that play an important role in maintaining undifferentiated ES cells, their gene products or non-coding RNAs, or It may be composed of low molecular weight compounds. Genes contained in reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15. -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1, etc. are exemplified, and these reprogramming factors may be used alone or in combination.
 PSCは、作製直後から本発明のPSCコンディショニング法により分化誘導のために馴化することもできるが、本発明のPSCコンディショニング法に供する前に、自体公知の方法により維持培養することができる。維持培養用の基本培地としては、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、Eagle MEM培地、αMEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地などが挙げられるが、これらに限定されない。あるいは、市販の多能性幹細胞用の培地(例、霊長類ES細胞培地、mTeSR1、StemFit AK02N、StemFit AK03N、Essential 8等)を用いてもよい。 PSC can be acclimatized for differentiation induction by the PSC conditioning method of the present invention immediately after preparation, but can be maintained and cultured by a method known per se before being subjected to the PSC conditioning method of the present invention. As the basic medium for maintenance culture, for example, Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, minimum essential medium (MEM), Eagle MEM medium, αMEM medium, Dalbeco modification Examples include Eagle's medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fischer's medium, and a mixture of these. Not limited to. Alternatively, a commercially available medium for pluripotent stem cells (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 and the like) may be used.
 培地は、血清含有培地又は無血清培地であり得る。好ましくは、無血清培地が使用され得る。無血清培地(SFM)とは、未処理又は未精製の血清をいずれも含まない培地を意味し、従って、精製された血液由来成分又は動物組織由来成分(増殖因子など)を含有する培地が挙げられ得る。血清(例えば、ウシ胎児血清(FBS)、ヒト血清など)の濃度は、0~20%、好ましくは0~5%、より好ましくは0~2%、最も好ましくは0%(すなわち、無血清)であり得る。SFMは任意の血清代替物を含んでよく、又は含まなくてもよい。血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン、組換えアルブミン等のアルブミン代替物、植物デンプン、デキストラン及びタンパク質加水分解物等)、トランスフェリン(又は他の鉄輸送体)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオグリセロールあるいはこれらの均等物などを適宜含有する物質が挙げられ得る。かかる血清代替物は、例えば、WO 98/30679に記載の方法により調製できる。また、より簡便にするため、市販のものを利用できる。かかる市販の物質としては、Knockout(商標)Serum Replacement(KSR)、Chemically-defined Lipid concentrated、及びGlutamax(Invitorogen)が挙げられる。 The medium can be a serum-containing medium or a serum-free medium. Preferably, a serum-free medium can be used. Serum-free medium (SFM) means a medium that does not contain any untreated or unpurified serum, and thus includes media containing purified blood-derived components or animal tissue-derived components (such as growth factors). Can be. Concentrations of serum (eg, fetal bovine serum (FBS), human serum, etc.) are 0-20%, preferably 0-5%, more preferably 0-2%, most preferably 0% (ie, serum-free). Can be. SFM may or may not contain any serum substitute. Serum substitutes include, for example, albumin (eg, albumin substitutes such as lipid-rich albumin, recombinant albumin, plant starch, dextran and protein hydrolysates), transferrin (or other iron transporters), fatty acids, insulin. , Collagen precursors, trace elements, 2-mercaptoethanol, 3'-thioglycerol or equivalents thereof may be mentioned as appropriate. Such serum substitutes can be prepared, for example, by the method described in WO 98/30679. Further, for the sake of simplicity, a commercially available product can be used. Examples of such commercially available substances include Knockout ™ Serum Replacement (KSR), Chemically-defined Lipid concentrated, and Glutamax (Invitorogen).
 培地は、自体公知のその他の添加物を含んでもよい。例えば、成長因子(例えば、インスリンなど)、ポリアミン類(例えば、プトレシンなど)、ミネラル(例えば、セレン酸ナトリウムなど)、糖類(例えば、グルコースなど)、有機酸(例えば、ピルビン酸、乳酸など)、アミノ酸(例えば、非必須アミノ酸(NEAA)、L-グルタミンなど)、還元剤(例えば、2-メルカプトエタノールなど)、ビタミン類(例えば、アスコルビン酸、d-ビオチンなど)、ステロイド(例えば、[ベータ]-エストラジオール、プロゲステロンなど)、抗生物質(例えば、ストレプトマイシン、ペニシリン、ゲンタマイシンなど)、緩衝剤(例えば、HEPESなど)、栄養添加物(例えば、B27 supplement、N2 supplement、StemPro(登録商標)-Nutrient Supplementなど)を挙げることができる。各添加物は自体公知の濃度範囲で含まれることが好ましい。 The medium may contain other additives known per se. For example, growth factors (eg, insulin, etc.), polyamino acids (eg, putresin, etc.), minerals (eg, sodium selenate, etc.), sugars (eg, glucose, etc.), organic acids (eg, pyruvate, lactic acid, etc.), Amino acids (eg, non-essential amino acids (NEAA), L-glutamine, etc.), reducing agents (eg, 2-mercaptoethanol, etc.), vitamins (eg, ascorbic acid, d-biotin, etc.), steroids (eg, [beta] -Estradiol, progesterone, etc.), antibiotics (eg, streptomycin, penicillin, gentamycin, etc.), buffers (eg, HEPES, etc.), nutritional additives (eg, B27 supplement, N2 supplement, StemPro®, etc.)-Nutrient Supplement, etc. ) Can be mentioned. It is preferable that each additive is contained in a concentration range known per se.
 PSCは、フィーダー細胞の存在下又は非存在下にて培養されてよいが、ヒトへの臨床応用を考慮すれば、PSCはフィーダー細胞の非存在下で培養されることが望ましい。従って、本発明の好ましい実施態様において、PSCは無フィーダー条件下で培養される。 PSCs may be cultured in the presence or absence of feeder cells, but considering clinical application to humans, it is desirable that PSCs be cultured in the absence of feeder cells. Therefore, in a preferred embodiment of the present invention, PSCs are cultured under feeder-free conditions.
 PSCを維持培養するために使用される培養容器は、特に限定されないが、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、マイクロスライド、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、及びローラーボトルが挙げられ得る。培養容器は細胞接着性であり得る。細胞接着性の培養容器は、培養容器表面の細胞への接着性を向上させる目的で、細胞外マトリックス(ECM)などの任意の細胞接着用基質でコートされたものであり得る。細胞接着用基質は、PSC又はフィーダー細胞(用いられる場合)の接着を目的とする任意の物質であり得る。細胞接着用基質としては、ラミニン、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ポリ-L-オルニチン、及びフィブロネクチン並びにそれらの混合物、例えばマトリゲル、並びに溶解細胞膜調製物(lysed cell membrane preparations)が挙げられる(Klimanskaya I et al 2005. Lancet 365:p1636-1641)。これらの細胞接着用基質は、それらの種類に応じて、通常PSCの培養に使用される濃度で培養容器にコーティングされる。 The culture vessel used for maintaining and culturing PSC is not particularly limited, but is limited to a flask, a tissue culture flask, a dish, a petri dish, a tissue culture dish, a multi-dish, a microplate, a microwell plate, a multi-plate, and a multi. Well plates, microslides, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles can be mentioned. The culture vessel can be cell adherent. The cell adhesion culture vessel can be coated with any cell adhesion substrate such as extracellular matrix (ECM) for the purpose of improving the adhesion of the surface of the culture vessel to cells. The cell adhesion substrate can be any substance intended for adhesion of PSCs or feeder cells (if used). Substrates for cell adhesion include laminin, collagen, gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornectin, and fibronectin and their mixtures, such as matrigel, and lysed cell membrane preparations. Preparations) (Klimanskaya I et al 2005. Lancet 365: p1636-1641). These cell adhesion substrates are coated on the culture vessel at the concentrations normally used for culturing PSC, depending on their type.
 この培養において、PSCを上記培養容器上に播き、例えば、約104~105細胞/cm2の細胞密度とし、1~10% CO2/99~90%大気の雰囲気下、インキュベーター中で約30~40℃、好ましくは約37℃で培養することができる。 In this culture, the PSC plated on the culture vessel, for example, a cell density of about 10 4 to 10 5 cells / cm 2, under an atmosphere of 1 ~ 10% CO 2/99 ~ 90% air, about in an incubator It can be cultured at 30-40 ° C, preferably about 37 ° C.
 PSCを培養する工程において、培養期間の途中で培地交換を行うことができる。培地交換に用いられる培地は、培地交換前の培地と同じ成分を有する培地であっても、異なる成分を有する培地であってもよい。好ましくは、同じ成分を有する培地が用いられる。培地交換の時期は、特に限定されないが、新鮮な培地での培養を開始してから、例えば、1日毎、2日毎、3日毎、4日毎、5日毎に行われる。 In the process of culturing PSC, the medium can be exchanged in the middle of the culturing period. The medium used for the medium exchange may be a medium having the same components as the medium before the medium exchange, or a medium having different components. Preferably, a medium having the same components is used. The time of medium replacement is not particularly limited, but is carried out, for example, every 1 day, 2 days, 3 days, 4 days, or 5 days after the start of culturing in a fresh medium.
 上記のようにして作製(及び維持)されたPSCは、自体公知の方法で凍結保存することができる。例えば、PSCを遠心チューブなどに回収し、細胞を遠心してペレット化した後、凍結保護剤を含んだ凍結保存液を加えて懸濁し、該懸濁液を凍結保存チューブに入れ、-80℃のフリーザーにて凍結後、気相もしくは液相の窒素タンクにて保存する方法などが挙げられるが、それに限定されない。凍結保護剤としては、例えば、DMSO、グリセリン、不凍タンパク質、不凍糖タンパク質等を適宜用いることができる。また、市販の凍結保存液(例、STEM-CELL BANKER)を用いることもできる。 The PSC produced (and maintained) as described above can be cryopreserved by a method known per se. For example, PSC is collected in a centrifuge tube or the like, cells are centrifuged and pelletized, a cryopreservation solution containing a cryoprotectant is added to suspend the cells, and the suspension is placed in a cryopreservation tube at -80 ° C. Examples include, but are not limited to, a method of freezing in a freezer and then storing in a gas phase or liquid phase nitrogen tank. As the cryoprotectant, for example, DMSO, glycerin, antifreeze protein, antifreeze glycoprotein and the like can be appropriately used. A commercially available cryopreservation solution (eg, STEM-CELL BANKER) can also be used.
 凍結保存したPSCの解凍方法も、当該技術分野で周知の方法を用いることができる(例えば、Freshney RI, Culture of Animal cells: A Manual of Basic Technique, 4th Edition, 2000, Wiley-Liss, Inc., Chapter 19を参照)。好ましくは、約37℃の湯浴中で急速解凍する。DMSOのような細胞毒性の強い凍結保護剤を使用している場合は、解凍後直ちに適当な希釈剤にてDMSO濃度を細胞に悪影響のない程度に希釈することが望ましく、遠心分離により上清を除去することで、毒性のある凍結保護剤等を除くことが望ましい。希釈剤としては、例えば、血清含有または不含培地のほか生理食塩水やPBSを用いることができる。 As a method for thawing the cryopreserved PSC, a method well known in the art can be used (for example, Freshney RI, Culture of Animal cells: A Manual of Basic Technique, 4th Edition, 2000, Wiley-Liss, Inc., See Chapter 19). Preferably, it is thawed rapidly in a hot water bath at about 37 ° C. When using a highly cytotoxic cryoprotectant such as DMSO, it is desirable to dilute the DMSO concentration with an appropriate diluent immediately after thawing to the extent that it does not adversely affect the cells, and centrifuge the supernatant. It is desirable to remove toxic cryoprotectants and the like by removing them. As the diluent, for example, serum-containing or serum-free medium, physiological saline or PBS can be used.
 解凍したPSCは、平面培地で接着培養することにより起眠させる。上清除去後の細胞ペレットをタッピングして崩し、未分化維持培地(例、霊長類ES細胞培地、mTeSR1、StemFit AK02N、StemFit AK03N、Essential 8等)(必要に応じてROCK阻害剤(例、Y-27632)を添加してもよい)を添加して、ラミニン、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ポリ-L-オルニチン、及びフィブロネクチン並びにそれらの混合物、例えばマトリゲル、並びに溶解細胞膜調製物(lysed cell membrane preparations)等の細胞接着用基質でコーティングした培養容器上に播種し、37℃、5% CO2インキュベーター中で培養する。細胞接着用基質としては、PSCの未分化性維持のために、TGFβ等の種々の因子が混在しているマトリゲルや溶解細胞膜調製物等よりも、既知組成の細胞外マトリクス、例えば、ラミニン、フィブロネクチン及びそれらの断片、より好ましくはラミニンもしくはその断片(例えば、ラミニン511 E8断片(例、iMatrix-511))等を用いることが望ましい。培地交換は、継代翌日、その後1日おきに行うことができる。70~80%コンフルエントになるまで培養し、成長したコロニーをピックアップする。 The thawed PSC is put to sleep by adhesive culture on a flat medium. After removing the supernatant, the cell pellet is tapped and disrupted, and undifferentiated maintenance medium (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.) (ROCK inhibitor (eg, Y) if necessary. -27632) may be added) to add laminin, collagen, gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornectin, and fibronectin and mixtures thereof, such as matrigel, and Seed on a culture vessel coated with a substrate for cell adhesion such as lysed cell membrane preparations, and cultured in a 5% CO2 incubator at 37 ° C. As a substrate for cell adhesion, an extracellular matrix having a known composition, for example, laminin or fibronectin, is used rather than a matrix gel or a lysed cell membrane preparation in which various factors such as TGFβ are mixed in order to maintain the undifferentiated state of PSC. And fragments thereof, more preferably laminin or a fragment thereof (for example, laminin 511 E8 fragment (eg, iMatrix-511)) and the like are desirable. Medium exchange can be performed the day after the passage and every other day thereafter. Incubate until 70-80% confluent and pick up grown colonies.
(b)微細加工培養容器
 本発明のPSCコンディショニング法の工程(1)において使用する微細加工培養容器は、非接着性もしくは低接着性の培養面を内部底面として有する培養容器であって、前記培養面には、互いに同一の複数の凹部(マイクロウェル)が互いに隣り合うよう密に配置され、各凹部は、漏斗状の斜面となっている内壁面と、該内壁面に滑らかに接続された凹状の曲面となっている底面とを有することを特徴とする。
 ここで「互いに同一の」とは、各凹部に同じ密度で細胞が播種された場合に、各凹部内で形成される球状細胞塊が互いに均一なサイズや細胞数を有する程度に、当該複数の凹部のサイズ(開口径、深さ等)や形状が互いに類似していることを意味し、厳密に同一である必要はない。本発明において、当該複数の凹部が「互いに同一サイズ」、「互いに同一形状」であるという場合には、それらのサイズ又は形状について上記と同様の意味で「同一」であることを意味する。
 「密に配置される」とは、例えば、正方行列状の配置や、細密状(ハニカム状)の配置など、凹部の開口面積の合計が培養面に占める割合がより大きくなるように(即ち、凹部同士の間の隔壁部分の占める割合がより小さくなるように)、凹部同士が可及的に互いに接近し隣り合うように配置される状態を意味する。
 「漏斗状の斜面」とは、例えば、すり鉢の内部斜面のように、開口部から底面に向かうにつれて開口径が減少するような斜面である。
 「凹状の曲面」とは、例えば、半球状の凹面やパラボラ状の凹面など、細胞の凝集を促進し得るように窪んだ曲面である。
(B) Micro-processed culture container The micro-processed culture container used in the step (1) of the PSC conditioning method of the present invention is a culture container having a non-adhesive or low-adhesive culture surface as an inner bottom surface, and the culture is described above. A plurality of recesses (microwells) that are the same as each other are densely arranged on the surface so as to be adjacent to each other, and each recess has a funnel-shaped inclined inner wall surface and a concave shape that is smoothly connected to the inner wall surface. It is characterized by having a bottom surface which is a curved surface of.
Here, "identical to each other" means that when cells are seeded in each recess at the same density, the plurality of spherical cell clusters formed in each recess have a uniform size and number of cells. It means that the size (opening diameter, depth, etc.) and shape of the recesses are similar to each other, and do not have to be exactly the same. In the present invention, when the plurality of recesses are "same size to each other" and "same shape to each other", it means that they are "same" in the same meaning as described above.
"Densely arranged" means that the total opening area of the recesses occupies a larger proportion of the culture surface (that is, such as a square matrix arrangement or a finely arranged (honeycomb) arrangement). It means a state in which the recesses are arranged so as to be as close to each other as possible and adjacent to each other so that the ratio of the partition wall portion between the recesses becomes smaller).
A "funnel-shaped slope" is a slope whose opening diameter decreases from the opening toward the bottom surface, such as the inner slope of a mortar.
The "concave curved surface" is a concave curved surface such as a hemispherical concave surface or a parabola-shaped concave surface that can promote cell aggregation.
 図1(A)に、本発明に用いられる微細加工培養容器の断面の拡大図を、また、図1(B)に、該微細加工培養容器の製造から、本発明のPSCコンディショニング法の工程(1)までの様子を模式的に示す。本発明に用いられる微細加工培養容器は、細胞の培養に通常使用される培養容器の底面に、レーザー照射(例、CO2ガスレーザー)により複数の同一形状の微細な凹部(マイクロウェル)を密に配置して設けることにより製造される。培養容器の形状としては、例えば、ディッシュ(例、10mm、35mm、100mm等)やマルチウェルプレート(例、6-ウェル、96-ウェル等)などが挙げられるが、それらに限定されない。培養容器の材質としては、レーザー照射により所望のマイクロウェルを設けることができるものであれば、特に制限はなく、例えば、プラスチックやポリスチレン等のポリマー材料が挙げられる。レーザー加工可能なマイクロウェルの寸法としては、開口部直径が200~2000μm程度、深さ(開口部から底面までの長さ)が100~900μm程度であるが、本発明のPSCコンディショニング法においては、PSC塊全体に未分化性を維持した状態で球状の細胞塊とする必要があることから、6~48時間浮遊培養したときの球状PSC塊の直径が10~800μm、好ましくは20~500μm、より好ましくは40~100μmとなるような開口部直径と深さとを有することが望ましく、例えば、開口部の平均直径として200~2000μm、好ましく200~1000μm、より好ましくは200~500μm、さらに好ましくは400~500μm、深さの平均として100~900μm、好ましくは100~400μm、より好ましくは100~200μmを挙げることができる。 FIG. 1 (A) shows an enlarged view of a cross section of the microfabricated culture vessel used in the present invention, and FIG. 1 (B) shows the steps of the PSC conditioning method of the present invention from the production of the microfabricated culture vessel. The situation up to 1) is schematically shown. In the microprocessed culture vessel used in the present invention, a plurality of fine recesses (microwells) having the same shape are densely formed on the bottom surface of the culture vessel usually used for culturing cells by laser irradiation (eg, CO 2 gas laser). Manufactured by arranging and providing in. Examples of the shape of the culture vessel include, but are not limited to, dishes (eg, 10 mm, 35 mm, 100 mm, etc.) and multi-well plates (eg, 6-well, 96-well, etc.). The material of the culture vessel is not particularly limited as long as a desired microwell can be provided by laser irradiation, and examples thereof include polymer materials such as plastic and polystyrene. The dimensions of the microwell that can be laser-machined are an opening diameter of about 200 to 2000 μm and a depth (length from the opening to the bottom surface) of about 100 to 900 μm. However, in the PSC conditioning method of the present invention, Since it is necessary to form a spherical cell mass while maintaining the undifferentiated state of the entire PSC mass, the diameter of the spherical PSC mass after suspension culture for 6 to 48 hours is 10 to 800 μm, preferably 20 to 500 μm. It is desirable to have an opening diameter and depth such that preferably 40 to 100 μm, for example, the average diameter of the openings is 200 to 2000 μm, preferably 200 to 1000 μm, more preferably 200 to 500 μm, still more preferably 400 to 400. 500 μm, the average depth is 100 to 900 μm, preferably 100 to 400 μm, and more preferably 100 to 200 μm.
 微細加工培養容器の培養面は、PSCが該培養面に接着しないように、非接着性もしくは低接着性である。このような培養面は、細胞接着抑制剤(タンパク質低接着剤)を用いた表面処理を施すことにより形成させることができる。細胞接着抑制剤としては、例えば、リン脂質ポリマー(2-メタクリロイルオキシエチルホスホリルコリンなど)、ポリヒドロキシエチルメタアクリレート、フッ素含有化合物、あるいは、ポリエチレングリコールなどが挙げられる。コート層で細胞接着の抑制を発揮する以外にも、例えばシリコーン樹脂など、細胞接着抑制効果のある樹脂で培養容器を成型してもよい。 The culture surface of the microfabricated culture container is non-adhesive or low-adhesive so that PSC does not adhere to the culture surface. Such a culture surface can be formed by subjecting a surface treatment using a cell adhesion inhibitor (protein low adhesive). Examples of the cell adhesion inhibitor include phospholipid polymers (such as 2-methacryloyloxyethyl phosphorylcholine), polyhydroxyethyl methacrylate, fluorine-containing compounds, and polyethylene glycol. In addition to exerting suppression of cell adhesion in the coat layer, the culture vessel may be molded with a resin having an effect of suppressing cell adhesion, such as a silicone resin.
 培養面が非接着性もしくは低接着性であることと、マイクロウェルが漏斗状の斜面となっている内壁面と、該内壁面に滑らかに接続された凹状の曲面となっている底面とを有することにより、単一細胞化して播種されたPSCは、各マイクロウェルに均等に落ち込み、底面に接着することなく、近接する細胞同士が結合して短時間でサイズ均一な球状細胞塊を形成することができる。
 なお、互いに隣り合った凹部同士の間には平坦面が存在しないように、互いに隣り合った凹部のそれぞれの内壁面が互いに滑らかに連続するように接続されていることが好ましい。これにより、播種された大半の細胞はウェル内に落ち込み、細胞をロスすることなく球状細胞塊を形成することができる。
It has a non-adhesive or low-adhesive culture surface, an inner wall surface in which microwells are funnel-shaped slopes, and a concave curved surface surface that is smoothly connected to the inner wall surface. As a result, the PSC seeded as a single cell drops evenly into each microwell, and adjacent cells bind to each other to form a spherical cell mass having a uniform size in a short time without adhering to the bottom surface. Can be done.
It is preferable that the inner wall surfaces of the recesses adjacent to each other are smoothly connected to each other so that there is no flat surface between the recesses adjacent to each other. This allows most of the seeded cells to fall into the wells and form spherical cell clusters without loss of cells.
 該微細加工培養容器は、例えば、WO 2017/047735に記載の方法により製造することができる。また、このような微細加工培養容器として、市販のもの(例、AGCテクノグラス社製のEZSPHERE(登録商標)、StemCellTechnologies社製のAggreWellTM、クラレ社製のElplasia(登録商標)等)を使用することもできる。 The microfabricated culture vessel can be produced, for example, by the method described in WO 2017/047735. In addition, as such a microfabrication culture container, commercially available ones (eg, EZSPHERE (registered trademark) manufactured by AGC Technograss, AggreWell TM manufactured by StemCell Technologies, Elplasia (registered trademark) manufactured by Kuraray, etc.) are used. You can also do it.
(c)工程(1)
 本発明のPSCコンディショニング法の工程(1)において、上記(a)のようにして準備したPSCを、上記(b)の微細加工培養容器に播種し、PSCを短期間浮遊培養することにより、各凹部(マイクロウェル)内に球状細胞塊を形成させる。
 例えば、凍結保存したPSCを解凍、起眠して得た正常なPSCコロニー(コロニーの形態が正常であること、コロニーを形成する細胞同士の境界線が明確であること等を観察して選別する)をピックアップして、適当な酵素解離液(例、アキュターゼ、TrypLE Select、TrypLE Express等)を用いて、単一細胞レベルまで解離した後、ROCK阻害剤(例、Y-27632)を添加した未分化維持培地(例、霊長類ES細胞培地、mTeSR1、StemFit AK02N、StemFit AK03N、Essential 8等)中に懸濁して、微細加工培養容器に播種する。PSCの播種密度は、マイクロウェルあたりの細胞数が100~1000細胞、好ましくは100~400細胞、より好ましくは150~300細胞となるようにするればよい。例えば、96-ウェルプレート型のEZSPHERE(登録商標)を用いる場合、1ウェルあたり約95個のマイクロウェルが設けられているので、例えば、1ウェルあたり約10,000~約100,000細胞、好ましくは約10,000~約40,000細胞、より好ましくは15,000~30,000細胞を播種することができる。
(C) Step (1)
In the step (1) of the PSC conditioning method of the present invention, the PSC prepared as described in (a) above is seeded in the microfabricated culture vessel of (b) above, and the PSC is suspended-cultured for a short period of time. A spherical cell mass is formed in the recess (microwell).
For example, normal PSC colonies obtained by thawing and sleeping the cryopreserved PSC (the colony morphology is normal, the boundaries between the cells forming the colony are clear, etc. are observed and selected. ) Was picked up and dissociated to the single cell level using an appropriate enzyme dissociation solution (eg, Accutase, TrypLE Select, TrypLE Express, etc.), and then a ROCK inhibitor (eg, Y-27632) was not added. Suspend in differentiation maintenance medium (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8, etc.) and inoculate in a microprocessed culture vessel. The seeding density of PSC may be such that the number of cells per microwell is 100 to 1000 cells, preferably 100 to 400 cells, and more preferably 150 to 300 cells. For example, when using a 96-well plate type EZSPHERE®, since about 95 microwells are provided per well, for example, about 10,000 to about 100,000 cells per well, preferably about 10,000 to About 40,000 cells, more preferably 15,000 to 30,000 cells, can be seeded.
 工程(1)におけるPSCの培養期間は、PSCが細胞塊全体に未分化性を維持した状態で球状細胞塊を形成するのに必要かつ十分な期間であれば特に制限されないが、3日以上培養した場合には、球状PSC塊のサイズが大きくなり未分化性を維持できなくなるおそれがあるので、3日未満であることが望ましい。好ましくは48時間以内、より好ましくは36時間以内である。PSCを微細加工培養容器に播種すると、速やかに(3-6時間程度)球状細胞塊を形成するので、培養期間の下限としては3時間が挙げられるが、工程(2)での接着培養及びそれに続く分化誘導において、安定に効率よく分化細胞を取得するためには、6時間以上であることが好ましく、12時間以上であることがより好ましい。コンディショニング期間の短縮と、その後の分化誘導効率とを考慮すると、好ましい培養期間の範囲として、例えば6~48時間、より好ましくは12~36時間、特に好ましくは約24時間を挙げることができる。 The culture period of PSC in the step (1) is not particularly limited as long as it is necessary and sufficient for the PSC to form a spherical cell mass in a state where the whole cell mass remains undifferentiated, but the culture period is 3 days or more. If this is the case, the size of the spherical PSC mass may increase and undifferentiated state may not be maintained, so it is desirable that the time is less than 3 days. It is preferably within 48 hours, more preferably within 36 hours. When PSC is seeded in a microprocessed culture vessel, spherical cell clusters are formed rapidly (about 3-6 hours), so the lower limit of the culture period is 3 hours, but the adhesion culture in step (2) and it In the subsequent induction of differentiation, in order to obtain differentiated cells stably and efficiently, it is preferably 6 hours or more, and more preferably 12 hours or more. Considering the shortening of the conditioning period and the subsequent efficiency of differentiation induction, a preferable range of the culture period can be, for example, 6 to 48 hours, more preferably 12 to 36 hours, and particularly preferably about 24 hours.
 培養期間が48時間以内の場合、得られる球状PSC塊のサイズは、PSCの播種密度や微細加工培養容器の凹部(マイクロウェル)のサイズによって変動する。球状PSC塊が全体に未分化性を維持するためには、細胞塊の直径が10~800μm、好ましくは20~500μm、より好ましくは40~100μmとなるように調整することが望ましい。例えば、微細加工培養容器として開口部直径400~500μM、深さ100~200μMの96-ウェルプレート型のEZSPHERE(登録商標)(本製品では96個の各ウェルあたり約95個の凹部(マイクロウェル)が配置されている)を用いる場合、該マイクロウェルあたりのPSC播種細胞数を100~400個、好ましくは150~300個とすることにより、1~2日の培養により所望のサイズの球状PSC塊を調製することができる。この場合において、ウェル(マイクロウェルをその内部に配置している、96個の各ウェル)あたりの播種細胞数に換算すると、約10,000~約40,000個、好ましくは約15,000~約30,000個を播種することになる。 When the culture period is 48 hours or less, the size of the obtained spherical PSC mass varies depending on the seeding density of PSC and the size of the recess (microwell) of the microfabrication culture vessel. In order for the spherical PSC mass to maintain its overall undifferentiated state, it is desirable to adjust the diameter of the cell mass to be 10 to 800 μm, preferably 20 to 500 μm, and more preferably 40 to 100 μm. For example, as a microfabrication culture vessel, 96-well plate type EZSPHERE® with an opening diameter of 400 to 500 μM and a depth of 100 to 200 μM (in this product, about 95 recesses (microwells) for each of 96 wells). The number of PSC seeded cells per microwell is 100 to 400, preferably 150 to 300, so that a spherical PSC mass of a desired size can be obtained by culturing for 1 to 2 days. Can be prepared. In this case, when converted to the number of seeded cells per well (each of 96 wells in which microwells are arranged), about 10,000 to about 40,000 cells, preferably about 15,000 to about 30,000 cells are seeded. It will be.
(d)工程(2)
 本発明のPSCコンディショニング法の工程(2)においては、工程(1)で得られた球状細胞塊を平面接着培養することにより、該細胞塊を自発的に扁平化させ、略2次元構造の細胞塊に変化させる。
 微細加工培養容器からピペッティング等により球状PSC塊を回収し、未分化維持培地(例、霊長類ES細胞培地、mTeSR1、StemFit AK02N、StemFit AK03N、Essential 8等)中に懸濁して、ラミニン、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ポリ-L-オルニチン、及びフィブロネクチン並びにそれらの混合物、例えばマトリゲル、並びに溶解細胞膜調製物(lysed cell membrane preparations)等の細胞接着用基質でコーティングした培養容器上に播種し、37℃、5% CO2インキュベーター中で培養する。細胞接着用基質としては、PSCの未分化性維持のために、TGFβ等の種々の因子が混在しているマトリゲルや溶解細胞膜調製物等よりも、既知組成の細胞外マトリクス、例えば、ラミニン、フィブロネクチン及びそれらの断片(例えば、ラミニン511 E8断片(例、iMatrix-511))等を用いることが望ましい。播種密度は特に制限はないが、例えば1~10細胞塊/cm2、好ましくは2~5細胞塊/cm2であり得る。
(D) Step (2)
In the step (2) of the PSC conditioning method of the present invention, the spherical cell mass obtained in the step (1) is subjected to planar adhesive culture to spontaneously flatten the cell mass, and the cell has a substantially two-dimensional structure. Turn into a lump.
Spherical PSC masses are collected from microprocessed culture vessels by pipetting, etc., suspended in undifferentiated maintenance medium (eg, primate ES cell medium, mTeSR1, StemFit AK02N, StemFit AK03N, Essential 8 etc.), and laminin, collagen , Gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornectin, and fibronectin and mixtures thereof, such as Matrigel, and coated with cell adhesion substrates such as lysed cell membrane preparations. Seed on the culture medium and incubate in a 5% CO2 incubator at 37 ° C. As a substrate for cell adhesion, an extracellular matrix having a known composition, such as laminin and fibronectin, is used rather than a matrix gel or a lysed cell membrane preparation containing various factors such as TGFβ in order to maintain the undifferentiated state of PSC. And fragments thereof (eg, laminin 511 E8 fragment (eg, iMatrix-511)) and the like are desirable. The seeding density is not particularly limited, but may be, for example, 1 to 10 cell clusters / cm 2 , preferably 2 to 5 cell clusters / cm 2 .
 工程(2)におけるPSC塊の培養期間は、PSC塊が自発的に扁平化して略2次元構造をとるようになるのに十分な期間であれば特に制限はないが、例えば2~4日、好ましくは約3日であり得る。 The culture period of the PSC mass in the step (2) is not particularly limited as long as it is sufficient for the PSC mass to spontaneously flatten and form a substantially two-dimensional structure, but for example, 2 to 4 days. It can be preferably about 3 days.
 工程(2)により得られるPSC塊は、略2次元構造をとるため、スフェロイド構造のEBのように細胞間接着が強固ではなく、酵素処理により容易に単一細胞レベルにまで解離することができる。従って、分化誘導の途中又は分化誘導後に、細胞集団を酵素処理し、目的とする分化細胞もしくはその前駆細胞に特異的な分化マーカーを指標として、該分化細胞もしくは該前駆細胞を選別することにより、目的の細胞以外の混入が少なく純度の高い分化細胞集団を得ることができる。 Since the PSC mass obtained in step (2) has a substantially two-dimensional structure, the cell-cell adhesion is not strong unlike EB having a spheroid structure, and it can be easily dissociated to the single cell level by enzyme treatment. .. Therefore, during or after the induction of differentiation, the cell population is subjected to enzymatic treatment, and the differentiated cells or the progenitor cells are selected using the differentiation marker specific to the target differentiated cell or its progenitor cell as an index. It is possible to obtain a highly pure differentiated cell population with less contamination other than the target cells.
(II)多能性幹細胞から所定の分化細胞を作製する方法
 本発明はまた、本発明のPSCコンディショニング法により得られた、馴化されたPSCから、高純度に目的とする分化細胞もしくはその前駆細胞を作製する方法(以下、「本発明の分化誘導法」ともいう)を提供する。
 即ち、本発明の分化誘導法は、
(1)本発明のPSCコンディショニング法により得られた、馴化されたPSCを、目的とする分化細胞(もしくはその前駆細胞)への分化を誘導する培地中で接着培養する工程;並びに
(2)工程(1)で得られた分化細胞(もしくはその前駆細胞)を含む細胞集団から、該分化細胞(もしくはその前駆細胞)に特有の分化マーカーを指標として、該分化細胞(もしくはその前駆細胞)を選別する工程
を含む。
 尚、ここで「目的とする分化細胞」とは、最終的に作製しようとする分化細胞を意味し、「その前駆細胞」とは、PSCを目的の分化細胞にまで分化させる間に多段階の分化誘導工程を要する場合に、その分化誘導の途中で経由する細胞を意味する。最終的に作製しようとする分化細胞を得るために、その途中で必然的に誘導されるという意味で、該前駆細胞もまた「目的とする細胞」といえるので、以下、特に断らない限り、該前駆細胞も含めて「目的とする分化細胞」、「所定の分化細胞」と包括的に呼ぶこととする。
(II) Method for Producing Predetermined Differentiated Cells from Pluripotent Stem Cells The present invention also provides highly purified target differentiated cells or progenitor cells thereof from the conditioned PSCs obtained by the PSC conditioning method of the present invention. (Hereinafter, also referred to as “the method for inducing differentiation of the present invention”) is provided.
That is, the method for inducing differentiation of the present invention
(1) A step of adhering and culturing the conditioned PSC obtained by the PSC conditioning method of the present invention in a medium that induces differentiation into a desired differentiated cell (or a progenitor cell thereof); and (2) From the cell population containing the differentiated cells (or their progenitor cells) obtained in (1), the differentiated cells (or their progenitor cells) are selected using the differentiation marker specific to the differentiated cells (or their progenitor cells) as an index. Includes the process of
Here, the "target differentiated cell" means the differentiated cell to be finally produced, and the "progenitor cell" means a multi-step process during differentiation of the PSC into the target differentiated cell. When a differentiation induction step is required, it means a cell that passes through during the differentiation induction. In the sense that the progenitor cells are inevitably induced in the process of obtaining the differentiated cells to be finally produced, the progenitor cells can also be said to be "target cells". Including progenitor cells, they are collectively referred to as "target differentiated cells" and "predetermined differentiated cells".
 本発明のPSCコンディショニング法により得られたPSC塊は、例えば、当該方法の工程(2)で用いた培養容器から培地を除去し、目的とする分化細胞への分化を誘導する培地(分化誘導培地)を添加して、そのまま接着培養を続けることにより、本発明の分化誘導法の工程(1)を行うことができる。 The PSC mass obtained by the PSC conditioning method of the present invention is, for example, a medium for inducing differentiation into target differentiated cells by removing the medium from the culture medium used in step (2) of the method (differentiation induction medium). ) Is added and the adhesion culture is continued as it is, so that the step (1) of the differentiation induction method of the present invention can be performed.
 分化誘導培地の基礎培地としては、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、Eagle MEM培地、αMEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地などが挙げられる。Essential 8やEssential 6、Stemline(登録商標)Stemline II等の市販の培地を用いることもできる。 Examples of the basal medium for differentiation induction medium include Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, minimum essential medium (MEM), Eagle MEM medium, αMEM medium, and Dalveco modification. Examples include Eagle's medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fischer's medium, and a mixed medium thereof. Commercially available media such as Essential 8, Essential 6, and Stemline® Stemline II can also be used.
 培地は、血清含有培地又は無血清培地であり得る。好ましくは、無血清培地が使用され得る。無血清培地(SFM)は任意の血清代替物を含んでよい。
 培地は、自体公知のその他の添加物、例えば、成長因子(例えば、インスリンなど)、ポリアミン類(例えば、プトレシンなど)、ミネラル(例えば、セレン酸ナトリウムなど)、糖類(例えば、グルコースなど)、有機酸(例えば、ピルビン酸、乳酸など)、アミノ酸(例えば、非必須アミノ酸(NEAA)、L-グルタミンなど)、還元剤(例えば、2-メルカプトエタノールなど)、ビタミン類(例えば、アスコルビン酸、d-ビオチンなど)、ステロイド(例えば、[ベータ]-エストラジオール、プロゲステロンなど)、抗生物質(例えば、ストレプトマイシン、ペニシリン、ゲンタマイシンなど)、緩衝剤(例えば、HEPESなど)、栄養添加物(例えば、B27 supplement、N2 supplement、StemPro(登録商標)-Nutrient Supplementなど)等を含有することができる。各添加物は自体公知の濃度範囲で含まれることが好ましい。
The medium can be a serum-containing medium or a serum-free medium. Preferably, a serum-free medium can be used. Serum-free medium (SFM) may contain any serum substitute.
The medium may contain other additives known per se, such as growth factors (eg, insulin), polyamino acids (eg, putrecin), minerals (eg, sodium selenate), sugars (eg, glucose), organic. Acids (eg, pyruvate, lactic acid, etc.), amino acids (eg, non-essential amino acids (NEAA), L-glutamine, etc.), reducing agents (eg, 2-mercaptoethanol, etc.), vitamins (eg, ascorbic acid, d- Biotin, etc.), steroids (eg, [beta] -estradiol, progesterone, etc.), antibiotics (eg, streptomycin, penicillin, gentamicin, etc.), buffers (eg, HEPES, etc.), dietary supplements (eg, B27 supplement, N2) Supplement, StemPro®-Nutrient Supplement, etc.) can be contained. It is preferable that each additive is contained in a concentration range known per se.
 分化誘導培地には、目的とする分化細胞への分化を誘導し得る分化誘導因子が含まれる。そのような分化誘導因子は、目的とする分化細胞の種類に応じて、自体公知のものを適宜選択して用いることができる。 The differentiation-inducing medium contains a differentiation-inducing factor that can induce differentiation into the desired differentiated cells. As such a differentiation-inducing factor, those known per se can be appropriately selected and used according to the type of the desired differentiated cell.
 例えば、目的とする分化細胞として、中胚葉系の細胞を挙げることができる。該中胚葉系の細胞は、PSCからの分化誘導系が確立している限り、中胚葉系に属するいかなる細胞であってもよいが、例えば、血液細胞、血管内皮細胞、骨格筋細胞、軟骨細胞、腎細胞、心筋細胞、脂肪細胞、あるいはそれらの前駆細胞などが挙げられる。ここで「血液細胞」とは、造血幹細胞から分化する血液中に含まれる任意の細胞を意味し、赤血球、血小板、好中球、好酸球、好塩基球、マクロファージ、NK細胞、樹状細胞、T細胞、B細胞、並びにそれらの前駆細胞(例、赤芽球、骨髄芽球、単球、リンパ球系前駆細胞など)等が包含される。 For example, mesoderm cells can be mentioned as the target differentiated cells. The cells of the mesenchymal lineage may be any cells belonging to the mesodermal lineage as long as the differentiation induction system from PSC is established, and for example, blood cells, vascular endothelial cells, skeletal muscle cells, chondrocytes. , Renal cells, myocytes, fat cells, or precursor cells thereof. Here, the "blood cell" means an arbitrary cell contained in the blood that differentiates from a hematopoietic stem cell, and is an erythrocyte, a platelet, a neutrophil, an eosinocyte, a lymphocyte, a macrophage, an NK cell, or a dendritic cell. , T cells, B cells, and their progenitor cells (eg, erythrocytes, myeloblasts, monospheres, lymphoid progenitor cells, etc.) and the like.
 あるいは、目的とする分化細胞として、内胚葉系の細胞を挙げることができる。内胚葉系の細胞は、PSCからの分化誘導系が確立している限り、内胚葉系に属するいかなる細胞であってもよいが、例えば、膵β細胞、肝細胞、腸管細胞、肺細胞、甲状腺細胞等の細胞又はそれらの前駆細胞などが挙げられる。 Alternatively, endoderm cells can be mentioned as the target differentiated cells. The endometrial lineage cell may be any cell belonging to the endometrial lineage as long as the differentiation induction system from PSC is established, and for example, pancreatic β cell, hepatocyte, intestinal cell, lung cell, thyroid. Examples thereof include cells such as cells and their precursor cells.
 中胚葉系及び内胚葉系は、中内胚葉細胞を共通の前駆体とする。従って、中胚葉系又は内胚葉系の細胞への分化誘導工程の初期において、中内胚葉細胞への分化が誘導される。中内胚葉細胞への分化は、例えば、T、Foxa2、Gsc、Mixl1等の中内胚葉マーカーの発現を調べることにより確認することができる。 The mesoderm system and endoderm system use mesoderm cells as a common precursor. Therefore, differentiation into mesoderm cells is induced in the early stage of the step of inducing differentiation into mesoderm or endoderm cells. Differentiation into middle endoderm cells can be confirmed by examining the expression of middle endoderm markers such as T, Foxa2, Gsc, Mixl1 and the like.
 あるいは、目的とする分化細胞として、外胚葉系の細胞を挙げることができる。外胚葉系の細胞は、PSCからの分化誘導系が確立している限り、外胚葉系に属するいかなる細胞であってもよいが、例えば、神経系細胞(例、神経細胞、グリア細胞等)、感覚系細胞もしくは表皮系細胞(例、皮膚細胞)又はそれらの前駆細胞などが挙げられる。 Alternatively, ectoderm cells can be mentioned as the desired differentiated cells. The ectodermal cells may be any cells belonging to the ectodermal system as long as the differentiation induction system from PSC is established, and for example, neural cells (eg, nerve cells, glial cells, etc.), Examples include sensory cells or epidermal cells (eg, skin cells) or precursor cells thereof.
 PSCから上記のいずれかの中胚葉系細胞、内胚葉系細胞又は外胚葉系細胞への分化誘導法は、それぞれ当該技術分野において周知であり、例えば、中辻及び末盛編、「実験医学別冊 ES・iPS細胞実験スタンダード」(羊土社発行、2014年)に種々の三胚葉系細胞への分化誘導法が記載されており、当業者であれば、これらの成書を参照することにより、PSCを各種三胚葉系細胞へと分化誘導することができる。 Methods for inducing differentiation of PSCs into any of the above mesodermal cells, endoderm cells or ectoderm cells are well known in the art, for example, Nakatsuji and Suemori, "Experimental Medicine Separate Volume ES. "iPS Cell Experiment Standard" (published by Yodosha, 2014) describes methods for inducing differentiation into various trigerm layer cells, and those skilled in the art can refer to these books to obtain PSC. It can induce differentiation into various trigermoid cells.
 本発明の好ましい一実施態様において、目的とする分化細胞は造血性内皮細胞(HE)である。HEへの分化誘導は、例えば、(i)本発明のPSCコンディショニング法により得られたPSC塊を、BMP、GSK3β阻害剤およびVEGFを含む培地中で接着培養し、次いで(ii)VEGF、SCFおよびTGFβ阻害剤を含む培地中で接着培養することにより実施することができる。 In a preferred embodiment of the present invention, the differentiated cell of interest is a hematopoietic endothelial cell (HE). To induce differentiation into HE, for example, (i) the PSC mass obtained by the PSC conditioning method of the present invention is adherently cultured in a medium containing BMP, GSK3β inhibitor and VEGF, and then (ii) VEGF, SCF and It can be carried out by adhesion culture in a medium containing a TGFβ inhibitor.
 上記工程(i)に用いるBMPは、BMP2、BMP4及びBMP7からなる群より選択される少なくとも一つのBMPであり、好ましくは、BMP4である。BMPはヒト由来のものが好ましい。例えば、BMP4を用いる場合、BMP4の濃度は、特に限定されないが、5 ng/mlから200 ng/ml、10 ng/mlから100 ng/ml、20ng/mlから80 ng/mlが例示される。 The BMP used in the above step (i) is at least one BMP selected from the group consisting of BMP2, BMP4 and BMP7, and is preferably BMP4. BMP is preferably of human origin. For example, when BMP4 is used, the concentration of BMP4 is not particularly limited, and examples thereof include 5 ng / ml to 200 ng / ml, 10 ng / ml to 100 ng / ml, and 20 ng / ml to 80 ng / ml.
 GSK3β阻害剤としては、例えば、インジルピン誘導体であるBIO(別名、GSK-3{3阻害剤Ix; 6-ブロモインジルピン3’-オキシム)、マレイミド誘導体であるSB216763 (3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII (4 -ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts及び高い選択性を有するCHIR99021 (6-[2-[4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imid azol-2-yl) pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile)が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており、容易に利用することが可能である。好ましくは、CHIR99021であり得る。例えばCHIR99021を用いる場合、CHIR99021の濃度は、例えば、1nM, 1OnM、50nM、1OOnM、500nM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μMまたはこれらの聞の濃度であるが、これらに限定されない。 Examples of GSK3β inhibitors include BIO (also known as GSK-3 {3 inhibitor Ix; 6-bromoinzylpine 3'-oxym), which is an indylpine derivative, and SB216763 (3- (2,4-), which is a maleimide derivative. Dichlorophenyl) -4- (1-methyl-1H-indol-3-yl) -1H-pyrrole-2,5-dione), GSK-3β inhibitor VII (4-dibromoacetophenone), which is a phenylαbromomethylketone compound , L803-mts, a cell membrane penetrating phosphoric peptide, and CHIR99021 (6- [2- [4- (2,4-Dichlorophenyl) -5- (4-methyl-1H-imid azol-2), which has high selectivity. -yl) pyrimidin-2-ylamino] ethylamino] pyridine-3-carbonitrile). These compounds are commercially available from, for example, Calbiochem, Biomol, etc., and can be easily used. Preferably, it can be CHIR99021. For example, when CHIR99021 is used, the concentration of CHIR99021 is, for example, 1nM, 1OnM, 50nM, 1OOnM, 500nM, 750nM, 1μM, 2μM, 3μM, 4μM, 5μM, 6μM, 7μM, 8μM, 9μM, 10μM, 15μM, 20μM, 25μM. , 30 μM, 40 μM, 50 μM or these concentrations, but are not limited to these.
 VEGFにはいくつかのスプライスバリアント(ヒトでは、主に121、165、189、201アミノ酸長)があり、それらのいずれを用いてもよいし、複数を組み合わせて用いてもよいが、他のサブタイプより強いシグナルを伝達することから、VEGF 165が好ましく用いられ得る。VEGFの濃度は、特に限定されないが、5 ng/mlから200 ng/ml、10ng/mlから100 ng/ml、または20 ng/mlから80 ng/mlが例示される。VEGFはヒト由来のものが好ましい。 There are several splicing variants of VEGF (mainly 121, 165, 189, 201 amino acid lengths in humans), any of which may be used, or a combination of several, but other subs. VEGF165 can be preferably used because it transmits a stronger signal than the type. The concentration of VEGF is not particularly limited, and examples thereof include 5 ng / ml to 200 ng / ml, 10 ng / ml to 100 ng / ml, and 20 ng / ml to 80 ng / ml. VEGF is preferably of human origin.
 工程(i)の培養は、37℃、5% CO2インキュベーター中(好ましくは、5% O2の低酸素条件下)で2~3日間行うことができる。 Culturing in step (i) can be carried out in a 5% CO 2 incubator at 37 ° C. (preferably under hypoxic conditions of 5% O 2 ) for 2-3 days.
 上記工程(ii)に用いられるVEGFの濃度としては、工程(i)と同様の濃度が挙げられる。SCFの濃度としては、5 ng/mlから200 ng/ml 、10 ng/mlから100 ng/ml、または20 ng/mlから80 ng/mlが例示される。SCFはヒト由来のものが好ましい。 Examples of the concentration of VEGF used in the above step (ii) include the same concentration as in the step (i). Examples of the SCF concentration include 5 ng / ml to 200 ng / ml, 10 ng / ml to 100 ng / ml, or 20 ng / ml to 80 ng / ml. The SCF is preferably of human origin.
 TGFβ阻害剤としては、例えば、SB431542、SB202190 (R.K.Lindemann et al., Mal. Cancer 2:20 (2003))、SB505124 (GlaxoSmithKline)、NPC30345 、SD093、SD908、SD208 (Scios)、LY2109761、LY364947、LY580276 (Lilly Research Laboratories)、A-83-01 (WO 2009/146408)などが挙げられる。これらの化合物は、例えばSTEMGENT社等から市販されており、容易に利用することが可能である。好ましくは、SB431542であり得る。例えばSB431542を用いる場合、SB431542の濃度は、例えば、1nM、1OnM、5OnM、1OOnM、5OOnM、750nM、1μM、2μM、3μM、4μM、5μM、6μM、7μ M、8μM、9μM、10μM、15μM、20μM、25μM、30μM、40μM、50μMまたはこれらの聞の濃度であるが、これらに限定されない。 Examples of TGFβ inhibitors include SB431542, SB202190 (RKLindemann et al., Mal. Cancer 2:20 (2003)), SB505124 (GlaxoSmithKline), NPC30345, SD093, SD908, SD208 (Scios), LY2109761, LY364947, LY580276. (Lilly Research Laboratories), A-83-01 (WO 2009/146408), etc. These compounds are commercially available from, for example, STEMGENT, and can be easily used. Preferably, it can be SB431542. For example, when SB431542 is used, the concentrations of SB431542 are, for example, 1nM, 1OnM, 5OnM, 1OOnM, 5OOnM, 750nM, 1μM, 2μM, 3μM, 4μM, 5μM, 6μM, 7μM, 8μM, 9μM, 10μM, 15μM, 20μM, 25 μM, 30 μM, 40 μM, 50 μM or these concentrations, but not limited to these.
 上記工程(ii)で用いる培地には、さらにbFGFを添加することができる。bFGFの濃度は、特に限定されないが、5 ng/mlから200 ng/ml、10 ng/mlから100 ng/ml、または20 ng/mlから80 ng/mlが例示される。bFGFはヒト由来のものが好ましい。 BFGF can be further added to the medium used in the above step (ii). The concentration of bFGF is not particularly limited, and examples thereof include 5 ng / ml to 200 ng / ml, 10 ng / ml to 100 ng / ml, and 20 ng / ml to 80 ng / ml. The bFGF is preferably derived from humans.
 工程(ii)の培養は、37℃、5% CO2インキュベーター中(好ましくは、5% O2の低酸素条件下)で2~3日間行うことができる。 Culturing in step (ii) can be carried out at 37 ° C. in a 5% CO 2 incubator (preferably under hypoxic conditions of 5% O 2 ) for 2-3 days.
 PSCからHEへの分化誘導は、特開2017-23019号公報、WO 2017/164257、Nature, 545: 432-438 (2017)、Nat. Cell Biol., 17(5): 580-591 (2015) に記載の方法に従って行うこともできる。 Induction of differentiation from PSC to HE is described in JP-A-2017-23019, WO 2017/164257, Nature, 545: 432-438 (2017), Nat. Cell Biol., 17 (5): 580-591 (2015). It can also be carried out according to the method described in.
 本発明の分化誘導法の工程(2)においては、工程(1)で得られた分化細胞を含む細胞集団から、該分化細胞に特有の分化マーカーを指標として該分化細胞を選別する。分化マーカーとしては、目的とする分化細胞に応じて自体公知のものを用いることができる。例えば、HEの場合は、CD34陽性を指標として選別することができる。 In the step (2) of the differentiation induction method of the present invention, the differentiated cells are selected from the cell population containing the differentiated cells obtained in the step (1) using the differentiation marker peculiar to the differentiated cells as an index. As the differentiation marker, those known per se can be used depending on the target differentiated cells. For example, in the case of HE, CD34 positive can be used as an index for selection.
 細胞集団から目的とする分化細胞を選別する手段としては、例えば、FACS又はMACSを用いることができるが、細胞へのダメージが少ない等の観点から、MACSを用いることがより好ましい。 For example, FACS or MACS can be used as a means for selecting the desired differentiated cells from the cell population, but it is more preferable to use MACS from the viewpoint of less damage to the cells.
 本発明の分化誘導法により選別された高純度の分化細胞が、最終的な目的の細胞の前駆細胞である場合、該選別された分化細胞を、さらに自体公知の分化誘導法に供することにより、最終的な目的の分化細胞を大量かつ安定に得ることができる。例えば、上記のようにして、本発明の分化誘導法によりHEを誘導した場合、該選別された高純度のHEを、さらにHPC誘導法に供することにより、大量のHPCを安定に作製することができる。
 即ち、本発明はまた、
(1)本発明の分化誘導法により得られた、選別されたHEを提供する工程;並びに
(2)該HEをHPCに分化誘導する工程
を含む、HPCの作製方法を提供する。
When the high-purity differentiated cells selected by the differentiation-inducing method of the present invention are progenitor cells of the cells of the final target, the selected differentiated cells are further subjected to a differentiation-inducing method known per se. The final target differentiated cells can be obtained in large quantities and stably. For example, when HE is induced by the differentiation induction method of the present invention as described above, a large amount of HPC can be stably produced by further subjecting the selected high-purity HE to the HPC induction method. it can.
That is, the present invention also
Provided is a method for producing HPC, which comprises (1) a step of providing a selected HE obtained by the differentiation induction method of the present invention; and (2) a step of inducing differentiation of the HE into HPC.
 HEからHPCを分化誘導する方法としては、例えば、WO 2017/164257、Nature, 545: 432-438 (2017)、Nat. Cell Biol., 17(5): 580-591 (2015) に記載の方法等が挙げられるが、それらに限定されず、任意の自体公知の方法が適用可能である。 As a method for inducing differentiation of HPC from HE, for example, the method described in WO2017 / 164257, Nature, 545: 432-438 (2017), Nat. Cell Biol., 17 (5): 580-591 (2015). Etc., but the present invention is not limited to these, and any method known per se can be applied.
 例えば、選別されたHEを、例えば、ラミニン、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ポリ-L-オルニチン、及びフィブロネクチン並びにそれらの混合物、例えばマトリゲル、並びに溶解細胞膜調製物(lysed cell membrane preparations)等の細胞接着用基質でコーティングした培養容器上に播種し、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、Eagle MEM培地、αMEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、あるいは、Essential 8やEssential 6、Stemline(登録商標) Stemline II、StemPro(登録商標)-34等の市販の培地、並びにこれらの混合培地に、例えばSCF、TPO、Flt-3リガンド、IL-6/IL-6Rα等の造血性サイトカインカクテルを添加して、培養することにより、HEをHPCに分化誘導することができる。あるいは、VEGF及びSCFの存在下で1~3日間培養した後、前記造血性サイトカインカクテルを添加して、培養することもできる。 For example, the selected HEs are, for example, laminin, collagen, gelatin, poly-L-lysine, poly-D-lysine, poly-L-ornithin, and fibronectin and mixtures thereof, such as Matrigel, and lysed cell membrane preparations ( Seed on a culture container coated with a substrate for cell adhesion such as lysed cell membrane preparations), for example, Neurobasal medium, Neural Progenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, minimum essential medium ( MEM), Eagle MEM medium, αMEM medium, Dalbeco's modified Eagle medium (DMEM), Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fischer's medium, Alternatively, commercially available media such as Essential 8, Essential 6, Stemline (registered trademark) Stemline II, StemPro (registered trademark) -34, and a mixed medium thereof, for example, SCF, TPO, Flt-3 ligand, IL-6 / HE can be induced to differentiate into HPC by adding a hematopoietic cytokine cocktail such as IL-6Rα and culturing it. Alternatively, after culturing in the presence of VEGF and SCF for 1 to 3 days, the hematopoietic cytokine cocktail can be added and cultured.
 本発明のHPCの作製方法において、工程(2)の培養は、37℃、5% CO2インキュベーター中(好ましくは、5% O2の低酸素条件下)で5~10日間行うことができる。本工程により得られたHPCは、例えば、CD34陽性及びCD45陽性を指標として、FACS又はMACS等により確認・選別することができ、自体公知のコロニー形成アッセイにて機能的なHPCが得られていることを確認することができる。 In the method for producing HPC of the present invention, the culture in step (2) can be carried out in a 5% CO 2 incubator at 37 ° C. (preferably under hypoxic conditions of 5% O 2 ) for 5 to 10 days. The HPC obtained in this step can be confirmed and selected by FACS, MACS, etc. using CD34-positive and CD45-positive as indicators, and a functional HPC has been obtained by a colony forming assay known per se. You can confirm that.
 上記のようにして得られるHPCは、自体公知の方法により各種血液細胞にさらに分化(成熟)させることができる。例えば、HEからHPCへの分化誘導において例示された基礎培地に、例えば、SCF、TPO、Flt-3リガンド、IL-6/IL-6Rα、IL-3、IL-11、IGF-1、EPO、VEGF、bFGF、BMP4、SHH、アンジオテンシン II等の因子を、目的とする血液細胞に応じて適宜組み合わせて添加し、HPCを培養することにより、目的の血液細胞に分化させることができる。当該培養は、37℃、5% CO2インキュベーター中(好ましくは、5% O2の低酸素条件下)で5~20日間程度行うことができるが、それに限定されない。例えば、巨核球前駆細胞、さらに血小板への分化誘導法については、WO 2018/038242に詳述されている。 The HPC obtained as described above can be further differentiated (matured) into various blood cells by a method known per se. For example, in the basal medium exemplified in the induction of differentiation from HE to HPC, for example, SCF, TPO, Flt-3 ligand, IL-6 / IL-6Rα, IL-3, IL-11, IGF-1, EPO, Factors such as VEGF, bFGF, BMP4, SHH, and angiotensin II can be added in appropriate combinations according to the target blood cells, and HPC can be cultured to differentiate into the target blood cells. The culture can be carried out in a 5% CO 2 incubator at 37 ° C. (preferably under hypoxic conditions of 5% O 2 ) for about 5 to 20 days, but is not limited thereto. For example, how to induce differentiation into megakaryocyte progenitor cells and platelets is described in detail in WO 2018/038242.
 上記のようにして得られる種々の血液細胞は、各血液細胞に特異的な細胞表面分子の有無(例えば、単球・マクロファージの場合、CX3CR1陽性及びCD14陽性;赤芽球系細胞の場合、CD33陰性及びCD235a陽性;骨髄球系細胞の場合、CD33陽性及びCD235a陰性;NK細胞の場合、CD314陽性及びCD56陽性等)を指標として、FACS又はMACS等により確認・選別することができる。 The various blood cells obtained as described above have the presence or absence of cell surface molecules specific to each blood cell (for example, CX3CR1 positive and CD14 positive in the case of monocytes / macrophages; CD33 in the case of erythroid cells). Negative and CD235a positive; in the case of myeloid cells, CD33 positive and CD235a negative; in the case of NK cells, CD314 positive, CD56 positive, etc.) can be used as an index for confirmation and selection by FACS or MACS.
 後述の実施例2に示されるとおり、本発明の分化誘導法において、HE及びHPCを経由して種々の血液細胞を分化誘導する場合、HEを選別することなくHEを含む細胞集団をHPCへの分化誘導に供し、得られたHPCを、例えばCD34陽性及びCD45陽性を指標として、FACS又はMACS等により確認・選別した後、種々の血液細胞へと分化誘導してもよいし、あるいは、得られたHPCを選別することなくHPCを含む細胞集団を種々の血液細胞への分化誘導に供してもよい。本発明のPSCコンディショニング法により馴化したPSCを用いれば、該PSCから誘導されたHEを選別せずとも、比較的効率よくHPCや種々の血液細胞に分化誘導することができる。
 従って、本発明の別の好ましい一実施態様において、本発明の分化誘導法は、最終的な目的とする分化細胞が血液細胞であり、HE及びHPCを経由して該血液細胞への分化を誘導する方法であって、HPC又は目的とする血液細胞に特有の分化マーカーを指標として、当該細胞を選別する工程を含むものである。
As shown in Example 2 described later, in the differentiation induction method of the present invention, when various blood cells are induced to differentiate via HE and HPC, a cell population containing HE is transferred to HPC without selecting HE. The obtained HPC may be subjected to differentiation induction, and after confirmation and selection by FACS or MACS, for example, using CD34-positive and CD45-positive as indicators, differentiation may be induced into various blood cells, or obtained. The cell population containing HPC may be used for inducing differentiation into various blood cells without selecting the HPC. By using the PSC conditioned by the PSC conditioning method of the present invention, it is possible to relatively efficiently induce differentiation into HPC and various blood cells without selecting HE derived from the PSC.
Therefore, in another preferred embodiment of the present invention, in the method for inducing differentiation of the present invention, the differentiated cell of the present invention is a blood cell, and the differentiation into the blood cell is induced via HE and HPC. This method includes a step of selecting the cells using a differentiation marker peculiar to HPC or a target blood cell as an index.
 以下に、実施例によって本発明を更に説明するが、本発明は以下の実施例になんら限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to the following Examples.
実施例1
1. 材料
1-1. 細胞株
409B2、201B7 (317-9) (いずれも健常人由来iPS細胞株)
Example 1
1. Material
1-1. Cell line
409B2, 201B7 (317-9) (both iPS cell lines derived from healthy people)
1-2. 試薬
 各試薬は、以下のように調製した。
PSCプレート培地:使用前に、mTeSR1と10 μM Y-27632とを混合し、4℃で保存した。スフェロイドプレート培地:mTeSR1と625 - 1,250 ng/mL のiMatrix-511(細胞株による)とを混合した。0日目の分化培地: Essential 8と2 μM CHIR99021、80 ng/mL BMP4及び80 ng/mL VEGF 165とを混合した。2日目の分化培地: Essential 6と1 μM SB431542、80 ng/mL VEGF 165、及び100 ng/mL SCFとを混合した。1 mM EDTA: 1 mLの0.5 M EDTAを500 mLのPBS(カルシウム/マグネシウム不含有)に加えた。EHT 培地: Stemline(登録商標)Stemline IIと、50 ng / mL SCF、20 ng / mLのTPO、50 ng / mLのFlt-3L、20 ng / mLのIL-6 / IL-6Rα、ITS-X、Glutamax及び抗生物質-抗真菌薬とを混合した。FACS バッファー: PBS(カルシウム/マグネシウム不含有)と、2% FCSおよび1 mM EDTAとを混合した。
1-2. Reagents Each reagent was prepared as follows.
PSC Plate Medium: Before use, mTeSR1 and 10 μM Y-27632 were mixed and stored at 4 ° C. Spheroid plate medium: mTeSR1 and 625-1250 ng / mL iMatrix-511 (depending on the cell line) were mixed. Day 0 Differentiation Medium: Essential 8 was mixed with 2 μM CHIR99021, 80 ng / mL BMP4 and 80 ng / mL VEGF 165. Day 2 Differentiation Medium: Essential 6 was mixed with 1 μM SB431542, 80 ng / mL VEGF 165, and 100 ng / mL SCF. 1 mM EDTA: 1 mL of 0.5 M EDTA was added to 500 mL of PBS (calcium / magnesium free). EHT Medium: Stemline® Stemline II and 50 ng / mL SCF, 20 ng / mL TPO, 50 ng / mL Flt-3L, 20 ng / mL IL-6 / IL-6Rα, ITS-X , Glutamax and antibiotics-antifungal agents were mixed. FACS buffer: PBS (calcium / magnesium free) mixed with 2% FCS and 1 mM EDTA.
2. PSCコロニー形成
 5%CO2の37℃インキュベーターで、hPSCを70%から80%の密度になるまで、mTeSR1中の0.5 μg/cm2のiMatrix-511上で増殖させた。
2. PSC colony forming In a 37 ° C incubator with 5% CO 2 , hPSCs were grown on 0.5 μg / cm 2 iMatrix-511 in mTeSR1 from 70% to 80% density.
PSCの解離(4日前)
 培地を吸引し、PBS(Ca / Mg不含有)で培養表面を2回洗浄した。次に、TrypLE Expressで細胞を処理し、37℃で15分間インキュベートした(この間細胞を乾燥させないようにした)。細胞をmTeSR1に懸濁し、懸濁液を適切なサイズのチューブに移し、細胞を200×gで3分間遠心し、上清を吸引し、細胞をPSCプレーティング培地に懸濁した。PSC懸濁液をEZSPHERE上に48,000~70,000 cells /cm2(細胞株に応じて)でプレーティングし、5%CO2の37℃インキュベーターで一晩インキュベートした。この際、96ウェルEZSPHEREプレートに、100 μL/wellの細胞懸濁液を播種した。一般に、96個のウェルに、約20,000 cells/wellの細胞を播種すると、約100個のスフェロイドが得られる。
Dissociation of PSC (4 days ago)
The medium was aspirated and the culture surface was washed twice with PBS (Ca / Mg free). The cells were then treated with TrypLE Express and incubated at 37 ° C. for 15 minutes (during which the cells were not dried). The cells were suspended in mTeSR1, the suspension was transferred to a tube of appropriate size, the cells were centrifuged at 200 xg for 3 minutes, the supernatant was aspirated and the cells were suspended in PSC plating medium. The PSC suspension was plated on EZSPHERE at 48,000-70,000 cells / cm 2 (depending on the cell line) and incubated overnight in a 5% CO 2 37 ° C. incubator. At this time, a 100 μL / well cell suspension was seeded on a 96-well EZSPHERE plate. In general, seeding 96 wells with about 20,000 cells / well yields about 100 spheroids.
PSCスフェロイドのプレーティング(3日前)
 P1000ピペットマンを用いて穏やかにピペッティングすることにより、15mLコニカルチューブにPSCスフェロイドを回収し、スフェロイドを室温で2分間静置することにより沈降させた。上清を吸引し、スフェロイドプレート培地に懸濁し、懸濁液を4-スフェロイド/cm2の密度となるように分注し、5%CO2の37%インキュベーター内で3日間培養した。
PSC Spheroid Plating (3 days ago)
PSC spheroids were collected in 15 mL conical tubes by gentle pipetting with a P1000 Pipetman and allowed to settle by allowing the spheroids to stand at room temperature for 2 minutes. The supernatant was aspirated, suspended in spheroid plate medium, the suspension was dispensed to a density of 4-spheroid / cm 2 , and cultured in a 37% incubator with 5% CO 2 for 3 days.
3. 造血性誘導(中胚葉分化)(0日目)
 培地を吸引し、2 μM CHIR99021、80 ng/mL BMP4及び80 ng/mL VEGF 165を含むEssential 8を加え、5%O2、5%CO2の37℃インキュベーター(低酸素インキュベーター)で培養した。 Essential 8中で2日間培養した後、培地を吸引し、次いで1 μM SB431542、100 ng/mL SCF及び80 ng/mL VEGF 165を含むEssential 6を加え、低酸素インキュベーターで培養した。
3. Hematopoietic induction (mesoderm differentiation) (day 0)
The medium was aspirated, Essential 8 containing 2 μM CHIR99021, 80 ng / mL BMP4 and 80 ng / mL VEGF 165 was added and cultured in a 37 ° C. incubator (hypoxic incubator) with 5% O 2 and 5% CO 2 . After culturing in Essential 8 for 2 days, the medium was aspirated, then Essential 6 containing 1 μM SB431542, 100 ng / mL SCF and 80 ng / mL VEGF 165 was added and cultured in a hypoxic incubator.
4. 造血性内皮細胞(hemogenic endothelium)の単離(4日目)
 2日後、培地を吸引し、培地の表面をPBS(カルシウム/マグネシウム不含有)で2回洗浄した。TrypLE Expressで細胞を処理し、5%CO2の37℃インキュベーター内で30分間インキュベートした。細胞を1 mM EDTAに静かに懸濁し、単一細胞レベルにまで解離させ、懸濁液を50 mLコニカルチューブに移し、細胞を200×gで3分間遠心した。上清を吸引し、300 μLのMACSバッファーで細胞ペレットを懸濁した。100 μLのCD34マイクロビーズを添加し、静かにピペッティングした後、室温で30分間インキュベートした。懸濁液を40 μmのセルストレーナーでろ過した。autoMACS Proセパレーターを使用してCD34+細胞を分離した。
4. Isolation of hematopoietic endothelium (day 4)
After 2 days, the medium was aspirated and the surface of the medium was washed twice with PBS (calcium / magnesium free). Cells were treated with TrypLE Express and incubated for 30 minutes in a 5% CO 2 37 ° C. incubator. The cells were gently suspended in 1 mM EDTA, dissociated to the single cell level, the suspension was transferred to a 50 mL conical tube and the cells were centrifuged at 200 xg for 3 minutes. The supernatant was aspirated and the cell pellet was suspended in 300 μL MACS buffer. 100 μL of CD34 microbeads were added, gently pipetted and then incubated at room temperature for 30 minutes. The suspension was filtered through a 40 μm cell strainer. CD34 + cells were isolated using an autoMACS Pro separator.
5. 造血性内皮細胞からの造血細胞誘導 (Endothelial-to-Hematopoietic Transition:EHT)
5-1. フィブロネクチンコーティング
 PBS(カルシウム/マグネシウム不含有)中に1 mg/mLのフィブロネクチンを希釈することで、必要な量の5 μg/mLのフィブロネクチンコーティング溶液を調製した。24ウェル培養プレートの各ウェルに0.5 mLのコーティング溶液を分注した。プレートを室温で30分間インキュベートした。
5. Induction of hematopoietic cells from hematopoietic endothelial cells (Endothelial-to-Hematopoietic Transition (EHT))
5-1. Fibronectin coating By diluting 1 mg / mL fibronectin in PBS (calcium / magnesium-free), a required amount of 5 μg / mL fibronectin coating solution was prepared. 0.5 mL of the coating solution was dispensed into each well of the 24-well culture plate. The plates were incubated at room temperature for 30 minutes.
 ソートしたCD34+細胞を200×gで3分間遠心した。細胞ペレットを1mLのEHT培地中に再懸濁した。次に、細胞数により生細胞密度を決定した。EHT培地を添加することにより細胞密度を200,000細胞/mLに調整した。フィブロネクチンでコーティングしたウェルから、コーティング溶液を吸引して捨てた。各フィブロネクチンでコーティングしたウェルに、0.5 mLのCD34+細胞懸濁液を分注した。低酸素インキュベーターでインキュベートした。 The sorted CD34 + cells were centrifuged at 200 xg for 3 minutes. The cell pellet was resuspended in 1 mL of EHT medium. Next, the viable cell density was determined by the number of cells. The cell density was adjusted to 200,000 cells / mL by adding EHT medium. The coating solution was aspirated and discarded from the fibronectin coated wells. 0.5 mL of CD34 + cell suspension was dispensed into each fibronectin-coated well. Incubated in a hypoxic incubator.
6. 造血細胞のフローサイトメトリーアッセイ
6-1. 浮遊細胞の回収
 培地を15 mLコニカルチューブに移し、200×gで3分間遠心した。上清を吸引した。
6. Flow cytometry assay for hematopoietic cells
6-1. Recovery of floating cells The medium was transferred to a 15 mL conical tube and centrifuged at 200 × g for 3 minutes. The supernatant was aspirated.
6-2. 接着細胞の回収
 培養表面を0.5 mLのPBS(Ca/Mg不含有)で2回洗浄した。TrypLE Expressを200 μL加え、TrypLE Expressで表面全体を覆い、余分な液体を吸引した。プレートを37℃のインキュベーターで5分間インキュベートした。細胞を1 mLのFACSバッファーに再懸濁した。
6-2. Recovery of adherent cells The culture surface was washed twice with 0.5 mL of PBS (Ca / Mg-free). 200 μL of TrypLE Express was added, the entire surface was covered with TrypLE Express, and excess liquid was sucked. The plate was incubated in a 37 ° C. incubator for 5 minutes. The cells were resuspended in 1 mL FACS buffer.
 浮遊細胞と接着細胞とを混合し、細胞を200×gで3分間遠心した後、上清を吸引した。次いで、50 μLのFACSバッファーに再懸濁し、暗所、室温で1時間抗CD34抗体及び抗CD45抗体と細胞とを反応させた。細胞をPBS(Ca/Mg不含有)で2回洗浄し、200×gで3分間遠心分離した。上清を吸引し、0.5 μg/mLのDAPIを含む0.5 mLのFACSバッファーに再懸濁した。LSR FortessaでCD34とCD45の発現を測定した。 Floating cells and adherent cells were mixed, the cells were centrifuged at 200 × g for 3 minutes, and the supernatant was aspirated. The cells were then resuspended in 50 μL FACS buffer and reacted with the anti-CD34 and anti-CD45 antibodies for 1 hour in the dark at room temperature. The cells were washed twice with PBS (Ca / Mg free) and centrifuged at 200 xg for 3 minutes. The supernatant was aspirated and resuspended in 0.5 mL FACS buffer containing 0.5 μg / mL DAPI. The expression of CD34 and CD45 was measured by LSR Fortessa.
7. 造血細胞のコロニー形成単位(CFU)アッセイ
7-1. 造血細胞の回収
 培地を15 mLコニカルチューブに移し、ウェルをPBS(Ca/Mg不含有)で2回穏やかに洗浄した。
7. Hematopoietic cell colony forming unit (CFU) assay
7-1. Recovery of hematopoietic cells The medium was transferred to a 15 mL conical tube, and the wells were gently washed twice with PBS (Ca / Mg-free).
 細胞を200×gで3分間遠心し、上清を吸引した。1mLのEHT培地に再懸濁し、細胞数を用いて細胞数を決定した。抗生物質を添加した3 mLのMethoCult H4435に、10,000個の細胞に相当する懸濁液を加え、16 Gまたは18 Gシリンジで5回よく混ぜた。次に、Methocult懸濁液全体を6ウェルプレートの各ウェルに分注し、湿度を保ちながら、5%CO2、37℃のインキュベーターで、2週間培養した。コロニーは動きに敏感なため、ディッシュを揺らさないようにした。2週間後、顕微鏡下でコロニーを数えた。 The cells were centrifuged at 200 xg for 3 minutes and the supernatant was aspirated. The cells were resuspended in 1 mL of EHT medium and the number of cells was used to determine the number of cells. To 3 mL of MethoCult H4435 supplemented with antibiotics, a suspension corresponding to 10,000 cells was added and mixed well 5 times with a 16 G or 18 G syringe. The entire Methocult suspension was then dispensed into each well of a 6-well plate and cultured in an incubator at 5% CO 2, 37 ° C for 2 weeks while maintaining humidity. The colony is sensitive to movement, so I tried not to shake the dish. Two weeks later, colonies were counted under a microscope.
結果
 PSCコロニーを形成する概略的過程を図2に示す。PSCスフェロイドは、EZSPHERE上で1日間形成された。iMatrix-511の存在下では、これらのスフェロイドは、自発的に平らになり、ほとんど二次元コロニーとなった。
Results The schematic process of forming PSC colonies is shown in FIG. PSC spheroids were formed on EZSPHERE for 1 day. In the presence of iMatrix-511, these spheroids spontaneously flattened into almost two-dimensional colonies.
 造血細胞誘導の概略的過程を図3(A)に示す。PSCコロニーを直径750 μmまで成長させた後、培地を順次交換し中胚葉オルガノイドを誘導した。4日目まで順次培地交換することで、分化の間PSCのコロニーは、次第にサニーサイドアップ構造となった。4日目に、造血性内皮細胞を中胚葉オルガノイドから磁気選別によって純化し(図3(B))、EHT培地に懸濁後、フィブロネクチン上に播種した。これらの細胞を造血サイトカイン(SCF、TPO、Flt-3L及びIL-6/IL-6Rα)で7日間刺激することにより、内皮細胞から造血細胞への形態学的変化が起こり、造血細胞コロニーが観察された(図4(A))。このようにして誘導した造血細胞について、フローサイトメトリーを行なったところ、CD34およびCD45の発現が確認された(図4(B))。また、CFUアッセイにより、CD34+ CD45+造血前駆細胞由来の顆粒球/マクロファージ前駆細胞のコロニー形成が確認された(CFU-M = 13、CFU-G = 12、CFU-GM = 13.5、いずれもCD34+CD45+細胞10,000個から形成されたコロニー数)(図4(C)及び(D))。 The schematic process of hematopoietic cell induction is shown in FIG. 3 (A). After growing the PSC colonies to a diameter of 750 μm, the medium was sequentially changed to induce mesoderm organoids. By sequentially changing the medium until the 4th day, the PSC colonies gradually became a sunny side-up structure during differentiation. On day 4, hematopoietic endothelial cells were purified from mesoderm organoids by magnetic selection (Fig. 3 (B)), suspended in EHT medium, and then seeded on fibronectin. By stimulating these cells with hematopoietic cytokines (SCF, TPO, Flt-3L and IL-6 / IL-6Rα) for 7 days, morphological changes from endothelial cells to hematopoietic cells occur, and hematopoietic cell colonies are observed. (Fig. 4 (A)). Flow cytometry was performed on the hematopoietic cells induced in this manner, and the expression of CD34 and CD45 was confirmed (Fig. 4 (B)). In addition, CFU assay confirmed colony formation of granulocytes / macrophage progenitor cells derived from CD34 + CD45 + hematopoietic progenitor cells (CFU-M = 13, CFU-G = 12, CFU-GM = 13.5, all of which are CD34. + CD45 + number of colonies formed from 10,000 cells) (FIGS. 4 (C) and 4 (D)).
実施例2
 実施例1の2.及び3.と同様にしてPSCコロニー形成及び造血性誘導(中胚葉分化)を行ったのち、分化4日目時点での細胞回収もCD34陽性細胞の選別も行うことなく分化誘導を継続した。本実施例の培養プロトコルの模式図を図5に示す。分化開始から4日目以降は、目的とする細胞の種類に応じ、以下のように異なるサイトカインの組み合わせを用いて培養を継続した。
・造血前駆細胞の誘導(図6A):分化開始4日目に培地をVEGF及びSCFを添加したStemline(登録商標)Stemline II培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、ITS-X及びGlutamaxを添加したStemline(登録商標)Stemline IIに交換して4日間培養し、分化開始10日目に浮遊細胞分画中にCD34+CD45+造血前駆細胞を得た。
・単球・マクロファージの誘導(図6B):分化開始4日目に培地をVEGF及びSCFを添加したStemPro(登録商標)-34培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、IL-3、M-CSFを添加したStemPro(登録商標)-34培地に交換して7-10日間培養した。その後さらにサイトカインをFlt-3L、GM-CSF、M-CSFの3種類に変更して7日間培養継続し、浮遊細胞分画中にCD14+CX3CR1+単球細胞を得た。
・赤芽球系・骨髄球系細胞の誘導(図6C):分化開始4日目に培地をVEGF及びSCF、TPO、Flt-3L、IL-3、IL-6、EPOを添加したStemline(登録商標)Stemline II培地へ変更して2日間培養した。分化開始6日目以後は、SCF、TPO、Flt-3L、IL-3、IL-6、EPOを添加したStemline(登録商標)Stemline IIに交換して3日間培養した。分化開始9日目に浮遊細胞を回収し、細胞選別を行わずそのまま新しい培養皿へ移して同組成の培地で培養を7日間継続した後、CD235+CD33-赤芽球細胞とCD235-CD33+骨髄球系細胞を得た。
・NK細胞の誘導(図6D):分化開始4日目に培地をSCFおよびFlt-3Lを添加したStemline(登録商標)Stemline II培地へ変更して8日間培養した。分化開始12日目以後にSCF、Flt-3L、IL-7、IL-15を添加したStemline(登録商標)StemlineII培地に交換して36日間培養した後、CD56+CD314+NK細胞を得た。
Example 2
After performing PSC colony formation and hematopoietic induction (mesoderm differentiation) in the same manner as in Examples 2 and 3, differentiation was performed without cell recovery or selection of CD34-positive cells at the 4th day of differentiation. The induction was continued. A schematic diagram of the culture protocol of this example is shown in FIG. From the 4th day after the start of differentiation, culture was continued using a combination of different cytokines as shown below according to the type of target cells.
-Induction of hematopoietic progenitor cells (Fig. 6A): On the 4th day after the start of differentiation, the medium was changed to Stemline® Stemline II medium supplemented with VEGF and SCF and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with Stemline® Stemline II supplemented with SCF, TPO, Flt-3L, ITS-X and Glutamax and cultured for 4 days, and the floating cell fraction was fractionated on the 10th day after the start of differentiation. CD34 + CD45 + hematopoietic progenitor cells were obtained in the cells.
-Induction of monocytes and macrophages (Fig. 6B): On the 4th day after the start of differentiation, the medium was changed to StemPro®-34 medium supplemented with VEGF and SCF and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with StemPro®-34 medium supplemented with SCF, TPO, Flt-3L, IL-3, and M-CSF and cultured for 7-10 days. After that, the cytokines were further changed to 3 types of Flt-3L, GM-CSF, and M-CSF, and the culture was continued for 7 days to obtain CD14 + CX3CR1 + monocyte cells in the floating cell fraction.
-Induction of erythroblastic / myeloid cells (Fig. 6C): Stemline (registration) in which VEGF, SCF, TPO, Flt-3L, IL-3, IL-6, and EPO were added to the medium on the 4th day after the start of differentiation. The medium was changed to Stemline II medium and cultured for 2 days. After 6 days from the start of differentiation, the cells were replaced with Stemline® Stemline II supplemented with SCF, TPO, Flt-3L, IL-3, IL-6, and EPO and cultured for 3 days. The floating cells were collected in the differentiation after 9 days, after which the culture was continued for 7 days in a medium of the same composition was transferred as it is to the new culture dish without the cell sorting, CD235 + CD33 - erythroid cells and CD235 - CD33 + Myeloid cells were obtained.
-Induction of NK cells (Fig. 6D): On the 4th day after the start of differentiation, the medium was changed to Stemline® Stemline II medium supplemented with SCF and Flt-3L and cultured for 8 days. After 12 days from the start of differentiation, the cells were replaced with Stemline® Stemline II medium supplemented with SCF, Flt-3L, IL-7, and IL-15 and cultured for 36 days to obtain CD56 + CD314 + NK cells.
 結果
 造血性誘導(中胚葉分化)後に、CD34陽性細胞(HE)の純化を行わずに、HEを含む中胚葉オルガノイドの細胞集団を、直接HPCに分化誘導し、さらに種々の血液細胞へと分化(成熟)させた。その結果、6日間の造血誘導(分化開始から10日)により、CD34陽性及びCD45陽性のHPCへの分化が効率よく誘導されていることが分かった(図6A)。さらに、前記の各種成熟カクテルで刺激することにより、CX3CR1陽性及びCD14陽性の単球・マクロファージ、CD33陰性及びCD235a陽性の赤芽球系、CD33陽性及びCD235a陰性の骨髄球系、CD314陽性及びCD56陽性のNK細胞への分化が確認された(図6B~D)。
Results After hematopoietic induction (mesoderm differentiation), the cell population of mesoderm organoids containing HE is directly induced to differentiate into HPC without purifying CD34-positive cells (HE), and further differentiated into various blood cells. (Mature). As a result, it was found that the differentiation into CD34-positive and CD45-positive HPC was efficiently induced by the induction of hematopoiesis for 6 days (10 days from the start of differentiation) (Fig. 6A). Furthermore, by stimulating with the various mature cocktails mentioned above, CX3CR1-positive and CD14-positive monocytes / macrophages, CD33-negative and CD235a-positive erythroblasts, CD33-positive and CD235a-negative myeloid lines, CD314-positive and CD56-positive Differentiation into NK cells was confirmed (FIGS. 6B to D).
 本発明によれば、PSCからHE、HPCをはじめとする任意の分化細胞を、大量かつ安定に作製することが可能となり、疾患モデルの作製、創薬のための頑強な薬効・毒性評価系の構築、さらには臨床応用に向けてきわめて有用である。  According to the present invention, it is possible to stably produce a large amount of arbitrary differentiated cells such as HE and HPC from PSC, and to produce a disease model and a robust drug efficacy / toxicity evaluation system for drug discovery. Extremely useful for construction and even clinical application.
 本出願は日本で出願された特願2019-086767(出願日:2019年4月26日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2019-086767 (Filing date: April 26, 2019) filed in Japan, the contents of which are all included in the present specification.

Claims (12)

  1.  分化誘導のために馴化された多能性幹細胞の作製方法であって、
    (1)非接着性もしくは低接着性の培養面を内部底面として有する培養容器であって、前記培養面には、互いに同一の複数の凹部が互いに隣り合うよう密に配置され、各凹部は、漏斗状の斜面となっている内壁面と、該内壁面に滑らかに接続された凹状の曲面となっている底面とを有する、前記培養容器を用いて、多能性幹細胞を6~48時間浮遊培養し、各凹部内に球状細胞塊を形成させる工程;並びに
    (2)工程(1)で得られた球状細胞塊を平面接着培養する工程
    を含む、方法。
    A method for producing pluripotent stem cells acclimatized for inducing differentiation.
    (1) A culture vessel having a non-adhesive or low-adhesive culture surface as an inner bottom surface, and a plurality of recesses that are the same as each other are densely arranged on the culture surface so as to be adjacent to each other. Pluripotent stem cells are suspended for 6 to 48 hours using the culture vessel having an inner wall surface having a funnel-shaped slope and a bottom surface having a concave curved surface smoothly connected to the inner wall surface. A method comprising culturing and forming a spherical cell mass in each recess; and (2) a step of planar adhesive culturing the spherical cell mass obtained in step (1).
  2.  前記工程(1)に供する多能性幹細胞が、既知組成の細胞外マトリクスでコーティングした培養容器を用いて接着培養されたものである、請求項1に記載の方法。 The method according to claim 1, wherein the pluripotent stem cells to be subjected to the step (1) are adherently cultured using a culture vessel coated with an extracellular matrix having a known composition.
  3.  細胞外マトリクスがラミニンもしくはその断片である、請求項2に記載の方法。 The method according to claim 2, wherein the extracellular matrix is laminin or a fragment thereof.
  4.  多能性幹細胞が胚性幹細胞又は人工多能性幹細胞である、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the pluripotent stem cell is an embryonic stem cell or an induced pluripotent stem cell.
  5.  多能性幹細胞がヒト由来である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the pluripotent stem cells are derived from humans.
  6.  多能性幹細胞から所定の分化細胞を作製する方法であって、
    (1)請求項1~5のいずれか一項に記載の方法により得られた、馴化された多能性幹細胞を、該分化細胞への分化を誘導する培地中で接着培養する工程;並びに
    (2)工程(1)で得られた所定の分化細胞を含む細胞集団から、該分化細胞に特有の分化マーカーを指標として、該分化細胞を選別する工程
    を含む、方法。
    A method for producing a predetermined differentiated cell from pluripotent stem cells.
    (1) A step of adhering and culturing the conditioned pluripotent stem cells obtained by the method according to any one of claims 1 to 5 in a medium that induces differentiation into the differentiated cells; 2) A method comprising a step of selecting the differentiated cells from a cell population containing the predetermined differentiated cells obtained in the step (1) using a differentiation marker peculiar to the differentiated cells as an index.
  7.  前記工程(2)が磁気活性化細胞分離により行われる、請求項6に記載の方法。 The method according to claim 6, wherein the step (2) is performed by magnetically activated cell separation.
  8.  所定の分化細胞が中胚葉系の細胞である、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the predetermined differentiated cell is a mesoderm cell.
  9.  所定の分化細胞が血液細胞又はその前駆細胞である、請求項8に記載の方法 The method according to claim 8, wherein the predetermined differentiated cell is a blood cell or a progenitor cell thereof.
  10.  前駆細胞が造血性内皮細胞又は造血前駆細胞である、請求項9に記載の方法。 The method according to claim 9, wherein the progenitor cells are hematopoietic endothelial cells or hematopoietic progenitor cells.
  11.  造血前駆細胞の作製方法であって、
    (1)請求項10に記載の方法により得られた、選別された造血性内皮細胞を提供する工程;並びに
    (2)該造血性内皮細胞を造血前駆細胞に分化誘導する工程
    を含む、方法。
    A method for producing hematopoietic progenitor cells
    A method comprising (1) providing the selected hematopoietic endothelial cells obtained by the method according to claim 10; and (2) inducing differentiation of the hematopoietic endothelial cells into hematopoietic progenitor cells.
  12.  前記工程(2)が、造血性内皮細胞を、フィブロネクチン、ラミニンもしくはその断片でコーティングした培養容器を用い、Stemline(登録商標)Stemline II培地を基礎培地とする分化誘導培地中で培養することにより行われる、請求項11に記載の方法。 The step (2) is performed by culturing hematopoietic endothelial cells in a differentiation-inducing medium using Stemline (registered trademark) Stemline II medium as a basal medium using a culture vessel coated with fibronectin, laminin or a fragment thereof. The method according to claim 11.
PCT/JP2020/017839 2019-04-26 2020-04-24 Method for producing pluripotent stem cells conditioned for induction of differentiation WO2020218579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516306A JPWO2020218579A1 (en) 2019-04-26 2020-04-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019086767 2019-04-26
JP2019-086767 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218579A1 true WO2020218579A1 (en) 2020-10-29

Family

ID=72942575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017839 WO2020218579A1 (en) 2019-04-26 2020-04-24 Method for producing pluripotent stem cells conditioned for induction of differentiation

Country Status (2)

Country Link
JP (1) JPWO2020218579A1 (en)
WO (1) WO2020218579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039165A1 (en) * 2020-08-18 2022-02-24 東ソー株式会社 Method for inducing differentiation of pluripotent stem cells into ectodermal, mesodermal, and endodermal cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115799A1 (en) * 2013-01-23 2014-07-31 東京エレクトロン株式会社 Method of subculturing pluripotent stem cells
WO2015122478A1 (en) * 2014-02-14 2015-08-20 日産化学工業株式会社 Active-ester-group-containing composition for producing fibers, and cell culture scaffold material using fibers produced from active-ester-group-containing composition
JP2016073323A (en) * 2011-01-31 2016-05-12 協和発酵バイオ株式会社 Culture method of human pluripotent stem cells
JP2017023019A (en) * 2015-07-17 2017-02-02 国立大学法人京都大学 Method for inducing differentiation from pluripotent stem cells to mesodermal progenitor cells and blood vessel progenitor cells
WO2018203499A1 (en) * 2017-05-02 2018-11-08 剛士 田邊 Pharmaceutical composition and cosmetic composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073323A (en) * 2011-01-31 2016-05-12 協和発酵バイオ株式会社 Culture method of human pluripotent stem cells
WO2014115799A1 (en) * 2013-01-23 2014-07-31 東京エレクトロン株式会社 Method of subculturing pluripotent stem cells
WO2015122478A1 (en) * 2014-02-14 2015-08-20 日産化学工業株式会社 Active-ester-group-containing composition for producing fibers, and cell culture scaffold material using fibers produced from active-ester-group-containing composition
JP2017023019A (en) * 2015-07-17 2017-02-02 国立大学法人京都大学 Method for inducing differentiation from pluripotent stem cells to mesodermal progenitor cells and blood vessel progenitor cells
WO2018203499A1 (en) * 2017-05-02 2018-11-08 剛士 田邊 Pharmaceutical composition and cosmetic composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROMICHI KUMAGAI, ALIMJAN IDIRIS: "Microfabric vessels for embryoid body formation of pluripotent stem cells", BIO CLINICA, vol. 31, no. 11, 2016, pages 89 (1201) - 92 (1204), XP009524604, ISSN: 0919-8237 *
MATSUBARA HIROYUKI; NIWA AKIRA; NAKAHATA TATSUTOSHI; SAITO MEGUMU K: "Induction of human pluripotent stem cell -derived natural killer cells for immunotherapy under chemically defined conditions", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 515, no. 1, 2 April 2019 (2019-04-02), pages 1 - 8, XP085705650, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2019.03.085 *
RYO OHTA; RYOHICHI SUGIMURA; AKIRA NIWA; MEGUMU K SAITO: "Hemogenic Endothelium Differentiation from Human Pluripotent Stem Cells in A Feeder- and Xeno-free Defined Condition", JOURNAL OF VISUALIZED EXPERIMENTS, vol. 148, e59823, 1 June 2019 (2019-06-01), pages 1 - 5, XP055736778, DOI: 10.3791/59823 *
SAGAR B M M; RENTALA S; GOPAL P N V; SHARMA S; MUKHOPADHYAY A: "Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 350, no. 4, 1 December 2006 (2006-12-01), pages 1000 - 1005, XP024924747, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2006.09.140 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039165A1 (en) * 2020-08-18 2022-02-24 東ソー株式会社 Method for inducing differentiation of pluripotent stem cells into ectodermal, mesodermal, and endodermal cells

Also Published As

Publication number Publication date
JPWO2020218579A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US10828335B2 (en) Production of midbrain dopaminergic neurons and methods for the use thereof
AU2016211671B2 (en) Methods and compositions for inducing hematopoietic cell differentiation
JP6678107B2 (en) Method of expanding pancreatic progenitor cells
CN112041428B (en) Method for differentiating human pluripotent stem cell lines in suspension culture
JP5777115B2 (en) Differentiation induction method from pluripotent stem cells to mesoderm cells
US10100283B2 (en) Efficient chondrocyte induction method
US10557121B2 (en) Method for chondrogenic induction
JP6646311B2 (en) Differentiation induction method from pluripotent stem cells to mesoderm progenitor cells and blood vascular progenitor cells
AU2018376391B2 (en) Method for culture of cells
WO2015199127A1 (en) Methods respectively for producing mesodermal cells and hematopoietic cells
WO2020218579A1 (en) Method for producing pluripotent stem cells conditioned for induction of differentiation
WO2020203538A1 (en) Cell population including pluripotent stem cells and production method thereof
JP7437766B2 (en) Method for producing pluripotent stem cells that are free from mesendoderm differentiation resistance
JP7072756B2 (en) Method for inducing differentiation of pluripotent stem cells into mesoderm progenitor cells and blood vascular progenitor cells
JP6305186B2 (en) Method for producing blood cells or cardiomyocytes from pluripotent stem cells
JP2024531682A (en) Methods for producing committed cardiac progenitor cells
EA044339B1 (en) METHOD FOR CULTURING CELLS
Ikäheimo Differentiation of human pluripotent stem cells into cardiomyocytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796119

Country of ref document: EP

Kind code of ref document: A1