WO2020218558A1 - Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and illumination device - Google Patents

Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and illumination device Download PDF

Info

Publication number
WO2020218558A1
WO2020218558A1 PCT/JP2020/017800 JP2020017800W WO2020218558A1 WO 2020218558 A1 WO2020218558 A1 WO 2020218558A1 JP 2020017800 W JP2020017800 W JP 2020017800W WO 2020218558 A1 WO2020218558 A1 WO 2020218558A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
aryl
ring
formula
heteroaryl
Prior art date
Application number
PCT/JP2020/017800
Other languages
French (fr)
Japanese (ja)
Inventor
琢次 畠山
靖宏 近藤
亮介 川角
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to KR1020217038229A priority Critical patent/KR20220004116A/en
Priority to CN202080031428.6A priority patent/CN113784972A/en
Priority to JP2021516289A priority patent/JPWO2020218558A1/ja
Publication of WO2020218558A1 publication Critical patent/WO2020218558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a thermally active delayed fluorescent compound having a specific structure as an acceptor, a material for an organic device containing the above compound, a composition for forming a light emitting layer, an organic electroluminescent device containing the compound in the light emitting layer, and an organic electroluminescence device.
  • the present invention relates to an effect transistor or an organic thin film solar cell, and a display device and a lighting device including the organic electroluminescent element.
  • organic electroluminescent elements made of organic materials have been made lighter. It has been actively studied because it is easy to increase the size. In particular, regarding the development of organic materials having light emitting characteristics such as blue, which is one of the three primary colors of light, and the development of organic materials having charge transporting ability such as holes and electrons, high molecular compounds and low molecular compounds are used. Regardless, it has been actively studied so far.
  • the organic EL element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one layer or a plurality of layers containing an organic compound, which are arranged between the pair of electrodes.
  • Layers containing organic compounds include light emitting layers and charge transport / injection layers that transport or inject charges such as holes and electrons, and various organic materials suitable for these layers have been developed.
  • TTF Triplet-Triplet Fusion
  • TTA Triplet-Triplet Annihilation
  • the exciton utilization efficiency is 62.5%.
  • the phosphorescent material may reach 100% exciton utilization efficiency, but it is difficult to realize deep blue light emission, and in addition, there is a problem that the color purity is low because the emission spectrum is wide.
  • Patent Document 1 the compounds described in Patent Document 1 or Non-Patent Documents 1 to 4 are known.
  • DA type thermoactive delayed fluorescence
  • TADF Thermally Assisting Delayed Fluorescence
  • Non-Patent Document 1 The DA type TADF compound has a structure in which the donor structure and the acceptor structure are bonded directly or via a ⁇ or ⁇ bond, and absorbs heat energy to change from an excited triplet state to an excited singlet state. It is a compound that can cause inverse intersystem crossing, deactivate by radiation from its excited singlet state, and emit fluorescence (delayed fluorescence).
  • the energy of triplet excitons can also be effectively utilized for fluorescence emission, so that the exciton utilization efficiency of emission reaches 100%.
  • a characteristic of the DA type TADF compound is that it gives a wide emission spectrum with low color purity due to its structure, but the rate of inverse intersystem crossing is extremely high.
  • Non-Patent Document 3 and Patent Document 1 a molecular design of a TADF-active compound using the multiple resonance effect.
  • boron (electron attracting property) and nitrogen (electron donating property) are bonded to each other at the o-position.
  • the HOMO and LUMO formed by each are strengthened and localized on the atom, so that the separation of HOMO and LUMO and the TADF property are obtained.
  • the robust planar structure formed provides an emission spectrum with high color purity with low Stokes shift of absorption and emission peaks.
  • the speed of the inverse intersystem crossing is inferior to that of the DA type TADF compound.
  • Non-Patent Document 2 an emission spectrum with high color purity can be realized by utilizing a DA structure in which structural changes and rotations are restricted.
  • Non-Patent Document 2 compounds having a narrow half-value width at half maximum have been proposed using an acceptor structure having a boron atom (Patent Documents B, Non-Patent Documents C and D), and the half-value width at half maximum has been improved.
  • a similar donor structure is used, a narrow half-value width at half maximum, a fast intersystem crossing speed, and blue light emission cannot be obtained (Non-Patent Document 4).
  • An object of the present invention is to provide a novel compound as a material used for an organic device such as an organic EL element.
  • the present invention has been proposed based on such findings, and has the following configuration as a specific example.
  • Rings A, B and C each independently represent an aromatic ring structure.
  • At least one ring member atom in at least one of the A ring, the B ring and the C ring is bonded to the partial structure (D) represented by the formula (D).
  • Q is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the wavy line indicates the bond position.
  • a ring member atoms contained in the ring member atoms and C ring contained in the B ring is bridged by X 3, a portion of the part and C rings of the ring B and may form a 6-membered ring containing Y, X 3 is any one of>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively.
  • Diarylboryl two aryls may be attached via a single bond or a linking group
  • a substituent that is cyano or halogen and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • the R'in the above-mentioned Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 can be independently hydrogen, aryl, heteroaryl, alkyl or Cycloalkyl, In the A ring, B ring and C ring in the formula (i), the structure bonded to the ring member atom not bonded to the partial structure (D), X 1 , X 2 , or Y, and R 21 in the partial structure (D).
  • ⁇ R 28 is not all hydrogen, At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen, deuterium, or partial structure (B).
  • R 40 and R 41 are each independently alkyl and may be bonded to each other, and the total carbon number of R 40 and R 41 is 2 to 10, and the wavy line portion is It is a binding site with other structures.
  • R 1 to R 11 is a partial structure (D) represented by the formula (D).
  • R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy.
  • R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing part of the b ring, part of the c ring and Y, where X 3 is>O,>S,> N-.
  • R',> C (-R') 2 or> Si (-R') 2 The R'in Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. The two R'of each of the> C (-R') 2 and> Si (-R') 2 may be connected.
  • R 1 to R 11 which are not the partial structure (D) in the formula (1) and R 21 to R 28 in the partial structure (D) are not all hydrogen. At least one hydrogen in the compound represented by the formula (1) may be substituted with halogen or deuterium.
  • At least one selected from the group consisting of R 1 and R 3 is a partial structure (D).
  • R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms).
  • substituent that is an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms (which is a heteroaryl of to 12), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these may be formed and is substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 7 and R 8 may be crosslinked with> X 3
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms).
  • Aryl diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms and heteroaryl is an aryl having 2 to 12 carbon atoms).
  • Heteroaryl alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen substituents, and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 2 is the partial structure (D).
  • R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms).
  • aryl diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms)
  • Aryl an alkyl substituent that is an alkyl having 1 to 4 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms without substitution, and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • May be Moiety Q is in the structure (D)> C (-R ' ) 2, a partial structure> in (D) C (-R') R in 2 'methyl and the partial structure (D) R 21 ⁇ R 28 in
  • R 6 and R 9 in the formula (1) are independently partial structures (D), hydrogen, or aryls having 6 to 30 carbon atoms, heteroaryls having 2 to 30 carbon atoms, respectively.
  • Diarylamino (where aryl is aryl with 6-12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms), Heteroaryl is a substituent that is an alkyl having 2 to 12 carbon atoms, an alkyl having 1 to 3 carbon atoms without substitution, or a cycloalkyl having 3 to 20 carbon atoms. Among these substituents, adjacent substitution groups are used.
  • the groups may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl or carbon having 1 to 12 carbon atoms. It may be substituted with the number 3 to 20 cycloalkyl.
  • At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 is a partial structure (D).
  • R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms).
  • At least one hydrogen in these may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 7 and R 8 may be crosslinked with> X 3 R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms).
  • Aryl diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms, and heteroaryl is an aryl having 2 to 12 carbon atoms).
  • (12 heteroaryl) alkyl with 1-12 carbon atoms, cycloalkyl with 3-20 carbon atoms, cyano or halogen substituents, of which adjacent substituents are attached to each other.
  • a ring structure may be formed, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, or an alkyl having 3 to 20 carbon atoms.
  • May be substituted with cycloalkyl R' is independently an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, an alkyl having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms.
  • X 1 and X 2 are independently>O,>S,> C (-R') 2 or> Si (-R') 2 , respectively, [2].
  • [7] The compound according to any one of [2] to [6], wherein both X 1 and X 2 are> O in the formula (1).
  • [8] The compound according to any one of [2] to [7], wherein Y is B in the formula (1).
  • Y is Si—R'in formula (1).
  • Rings a, b, c and d are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted, and two adjacent hydrogens may be substituted. They may be linked by alkyl to form a ring.
  • X 1 to X 4 are independently O or N-R, and R of the N-R is aryl, heteroaryl or alkyl, respectively.
  • At least one ring member atom in at least one ring selected from the group consisting of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2 is bonded to the partial structure (D).
  • R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, and adjacent R 21 to R 28 are based on linking groups. It may form a ring, Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si.
  • the R'of 2 is an aryl that may be independently linked with hydrogen, alkyl, or R', respectively.
  • R 24 and R 28 do not become hydrogen.
  • both X 1 and X 2 do not become O.
  • the wavy line portion in the partial structure (D) represents the binding site with the structure represented by the formula (ii). At least one hydrogen in the compound represented by the formula (ii) may be substituted with a halogen, deuterium, or a partial structure (B).
  • R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively.
  • R 1 to R 14 is independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively.
  • it is a substituent that is a diarylboryl (two aryls may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is substituted with aryl, heteroaryl or alkyl.
  • May be Adjacent two of R 3 to R 14 may be connected by an alkyl having 2 to 8 carbon atoms to form a ring.
  • X 1 to X 4 are independently O or N-R, and R of the N-R is an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, and 1 to 20 carbon atoms.
  • Alkyl or cycloalkyl with 3-8 carbon atoms At least one of R 1 to R 14 in the formula (4) is a partial structure (D) represented by the formula (D).
  • R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, respectively. Adjacent R 21 to R 28 may form a ring with a linking group.
  • Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si.
  • the R'of (-R') 2 is an independently hydrogen, an alkyl having 1 to 8 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be linked.
  • both R 24 and R 28 do not become hydrogen.
  • both X 1 and X 2 do not become O.
  • At least one hydrogen in the compound represented by the formula (4) may be substituted with a halogen, deuterium, or a partial structure (B).
  • R 1 to R 14 are independently hydrogen or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (where aryl has carbon atoms). 6 to 12 aryl), alkyl with 1 to 12 carbon atoms, cycloalkyl with 3 to 20 carbon atoms, aryloxy with 6 to 12 carbon atoms, or diarylboryl (where aryl is aryl with 6 to 12 carbon atoms) (2)
  • One aryl is a substituent (which may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is an aryl having 6 to 12 carbon atoms or an aryl having 1 to 8 carbon atoms.
  • alkyl X 1 to X 4 are independently> O or> N-R, and R of> N-R is an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
  • R 21 to R 28 are independently hydrogen, an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, and 3 to 3 carbon atoms.
  • the R'of> C (-R') 2 and> Si (-R') 2 is independently hydrogen or an alkyl having 1 to 8 carbon atoms.
  • the compound according to [18], wherein at least one hydrogen in the compound represented by the formula (4) may be substituted with halogen or deuterium.
  • Triarylamines which may have a substituent or a substituent, fluorene which may have a substituent or a substituent, anthracene which may have a substituent or a substituent, and an unsubstituted or substituent.
  • Tetracene which may have, triazine which may have an unsubstituted or substituent, carbazole which may have an unsubstituted or substituent, tetraphenylsilane which may have an unsubstituted or substituent, unsubstituted Alternatively, it has spirofluorene which may have a substituent, triphenylphosphine which may have an unsubstituted or substituent, dibenzothiophene which may have an unsubstituted or substituent, and an unsubstituted or substituent. 26.
  • the compound according to [26], wherein the structure derived from at least one selected from the group consisting of dibenzofurene may be contained in the repeating unit, or in a repeating unit different from the repeating unit.
  • the material for an organic device according to [29] which is a material for a light emitting layer for an organic electroluminescent element.
  • An organic electroluminescent device comprising a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and containing the light emitting layer material according to [30].
  • the light emitting layer contains at least one compound represented by the following formula (H1), formula (H2), formula (H3), formula (H4), or formula (H5), or the following ( [32], which contains at least one polymer compound having a structure derived from a compound represented by H1), formula (H2), formula (H3), formula (H4), or formula (H5) as a repeating unit.
  • L 1 is an arylene having 6 to 24 carbon atoms.
  • L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
  • At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
  • J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
  • Y is a single bond,>O,>S,> C (-R') 2 , or> Si (-R') 2 .
  • Z is CH, CR'or N
  • Z is CH, CR'or N
  • R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents.
  • the two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl
  • Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl.
  • At least one hydrogen in the compound represented by the formula (H5) may be independently substituted with a halogen or deuterium.
  • the organic electroluminescent device which contains at least one compound represented by any of the following formulas (AD1), (AD2) and (AD3);
  • AD1, (AD2) and (AD3) M is at least one of single bond, -O-,> N-Ar and> CAR 2 independently of each other.
  • Each of J is independently an arylene having 6 to 18 carbon atoms, and the arylene may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms, and a cycloalkyl having 3 to 12 carbon atoms.
  • Ar is independently hydrogen, an aryl having 6 to 18 carbon atoms, a heteroaryl having 6 to 18 carbon atoms, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms, and the aryl and hetero At least one hydrogen in the aryl may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms.
  • m is 1 or 2
  • n is an integer from 2 to (6-m)
  • At least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
  • a composition for forming a light emitting layer which comprises at least one of the compounds according to any one of [1] to [27] and a solvent.
  • the composition for forming a light emitting layer according to [35] which comprises an organic solvent having a boiling point of 150 ° C. or higher as the solvent.
  • the solvent is a mixed solvent containing a good solvent and a poor solvent for at least one of the compounds, and the boiling point of the good solvent is lower than the boiling point of the poor solvent.
  • [38] Contains at least one compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5), or the formula (H1), the formula (H2). ), Formula (H3), formula (H4), or at least one polymer compound having at least one of the structures derived from the compound represented by the formula (H5) as a repeating unit, [35] to [37].
  • L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
  • At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
  • J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
  • Y is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 .
  • Z is CH, CR'or N
  • Z is CH, CR'or N
  • R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents.
  • the two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl
  • Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl.
  • At least one hydrogen in the compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5) is independently substituted with a halogen or a deuterium. You may.
  • Organic electroluminescent device [40] It has at least one layer selected from the group consisting of an electron transport layer and an electron injection layer arranged between the cathode and the light emitting layer, and at least one of the electron transport layer and the electron injection layer.
  • the organic electric field light emitting element according to any one of [32] to [34], and [39], which contains at least one selected from.
  • At least one of the electron transport layer and the electron injection layer is an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. It further contains at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. , [40].
  • the organic electric field light emitting element [42] A display device or a lighting device including the organic electroluminescent element according to any one of [32] to [34] and [39] to [41].
  • a novel compound is provided as a material used for an organic device such as an organic EL element.
  • the compound of the present invention is useful as a material for an organic device that can be used in the manufacture of an organic electroluminescent device, an organic field effect transistor, or an organic device such as an organic thin-film solar cell.
  • the present invention will be described in detail.
  • the description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-” as the lower limit value and the upper limit value.
  • hydrogen in the description of the structural formula means "hydrogen atom (H)".
  • the structure derived from a specific compound when describing a polymer compound is a structure that includes most of the structure of the compound and can be a repeating unit of the polymer compound.
  • a structural unit derived from the monomer in a polymer compound obtained by polymerizing a monomer having a structure in which any one hydrogen of the compound is substituted with a polymerizable group, or two or more hydrogens of the compound examples thereof include structural units derived from the reactive compound when the reactive compounds independently substituted with the reactive groups are bonded to each other to form a polymer compound.
  • the combination of preferred embodiments is a more preferred embodiment.
  • the "thermally active delayed phosphor” absorbs thermal energy to cause an intersystem crossing from an excited triplet state to an excited singlet state, and radiates from the excited singlet state. It means a compound that can be deactivated and emit delayed fluorescence.
  • the "thermally active delayed phosphor” also includes those that undergo a higher-order triplet in the excitation process from the excited triplet state to the excited singlet state.
  • the luminescence mechanism that emits fluorescence via higher triplets is called the FvHT (Fluorescence via Higher Triplet) mechanism.
  • the fluorescence lifetime of a sample containing the target compound is measured at 300 K, it is determined that the target compound is a "thermoactive delayed phosphor" when a slow fluorescence component is observed.
  • the “slow fluorescence component” refers to a substance having a fluorescence lifetime of 0.1 ⁇ sec or more.
  • the fluorescence emitted from the excited singlet state generated by the direct transition from the basis singlet state usually has a fluorescence lifetime of 0.1 nsec or less.
  • fluorescence having a lifetime of 0.1 nsec or less is referred to as a "fast fluorescence component".
  • the fluorescence emitted by the "thermoactive delayed phosphor" used in the present invention may contain a fast fluorescent component as well as a slow fluorescent component.
  • the fluorescence lifetime can be measured using, for example, a fluorescence lifetime measuring device (manufactured by Hamamatsu Photonics Co., Ltd., C11367-01).
  • E S1 indicates the excited singlet energy level obtained from the intersection between the tangent line and a base line passing through the inflection point of the short wavelength side of the fluorescence spectrum in 77K
  • E T1 indicates the excited triplet energy level obtained from the intersection between the tangent line and a base line passing through the inflection point of the short wavelength side of the phosphorescence spectrum in 77K
  • a" Delta] E ST is E T1 from the E S1 subtracting the energy difference, ie, a value calculated by E S1 -E T1. Delta] E ST is less than 0.20 eV, preferably not more than 0.15 eV, more preferably less 0.10 eV.
  • Fluorescent substance means a compound that can radiate fluorescence by being radiated from the excited singlet state.
  • the phosphor may be a normal phosphor in which only a fast fluorescence component is observed when the fluorescence lifetime is measured at 300 K, or a delayed fluorescence in which both a fast fluorescence component and a slow fluorescence component are observed. There may be.
  • the fluorescence singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the phosphor is lower than that of the host compound as the first component and the thermally active delayed phosphor as the second component. preferable.
  • the “emitter” refers to a compound that emits light that is contained in a light emitting layer and is finally taken out of the device in an organic EL device, and even a plurality of compounds have different emission wavelengths. It doesn't matter.
  • the emitter used in the "TAF element” (TADF Assisting Fluorescence element) described later is called an “emitting dopant”.
  • the compounds of the present invention can be used as emitters and can function as emerging dopants or "assisting dopants", especially in TAF devices.
  • the "heat-activated delayed phosphor” can function as an assisting dopant that assists in the emission of the phosphor.
  • the assisting dopant reverse-exchanges the electrons and holes received from the host from the excited triplet energy to the excited singlet energy on the assisting dopant following recombination to the emerging dopant. Hand over energy.
  • an organic electroluminescent device that uses a thermally active delayed phosphor as an assisting dopant may be referred to as a “TAF device”.
  • the excited triplet energy is converted into the excited singlet energy by the inverse intersystem crossing in the thermoactive delayed phosphor, so that the excited singlet energy is efficiently supplied to the phosphor to assist the light emission. Can be done. As a result, high luminous efficiency can be obtained.
  • the host, assisting dopant, and emerging dopant used in the present invention preferably have energy levels that satisfy at least one of the following formulas (a) to (c), and more preferably satisfy all the conditions.
  • Ip (H) represents the ionization potential of the host compound
  • Ip (AD) represents the ionization potential of the assisting dopant.
  • Eg (AD) represents the energy difference between the ionization potential and the electron affinity of the assisting dopant
  • Eg (ED) represents the energy difference between the ionization potential and the electron affinity of the emittering dopant.
  • ⁇ EST (H) represents the energy difference between the excited single-term energy level and the excited triple-term energy level of the host compound
  • ⁇ EST (AD) is the excited single-term energy level of the assisting dopant. Represents the energy difference between the excited triplet energy level and.
  • the emitting dopant preferably has an emission peak in which the full width at half maximum FWHM is 80 nm or less in the range of 440 to 590 nm of the fluorescence spectrum.
  • the blue light emitting device 450 to 475 nm is more preferable, and 455 to 465 nm is further preferable.
  • the green light emitting device 490 to 590 nm is more preferable, and 510 to 550 nm is further preferable.
  • the full width at half maximum FWHM of the emission peak is 35 nm or less, it means that the color purity of the emission is high. Therefore, by using such a phosphor, an organic light emitting device having a good color can be realized.
  • the ionization potential (Ip) means the ionization potential (Ip) by photoelectron yield spectroscopy (Photoelectron Yield Spectroscopy), and the energy gap (Eg) is the longest wavelength side of the spectrum obtained by ultraviolet visible absorption spectroscopy. It means the optical band gap obtained from the intersection of the tangent line of the absorption peak and the baseline, and the electron affinity (Ea) means the electron affinity obtained by reducing Eg from Ip.
  • a single film (Neat film, thickness) of the target compound formed on the glass substrate is used as a measurement sample for measuring each energy level.
  • the target compound is an emitting dopant using (50 nm)
  • an inert polymer film for example, a polymethylmethacrylate film.
  • polystyrene, etc. formed on a glass substrate and dispersed with the target compound is used. Cytop, Zeonex, etc. may be used. Thickness: 10 ⁇ m, concentration of target compound: 1% by mass) is used.
  • the film thickness of the polymethylmethacrylate film in which the target compound is dispersed may be a film thickness that is sufficient for measuring the absorption spectrum, fluorescence spectrum, and phosphorescence spectrum. If the intensity is weak, the film thickness is thick and the intensity is high. If it is strong, it should be thinned.
  • the wavelength of the absorption peak obtained in the absorption spectrum is used, and among the emission peaks appearing in the fluorescence spectrum or the phosphorescence spectrum, the blue emission is in the range of 400 to 500 nm, and the green emission is in the range of 400 to 500 nm.
  • the DA (donor-acceptor) type TADF material and the MRE (Multi Resonance Effect) type compound have different emission widths of fluorescence and phosphorescence spectra due to the robustness of the molecule, so that the maximum emission wavelength is different. Even if they are the same, it is considered that the DA type TADF compound has a wider range of energy possessed by the molecule than the MRE type compound molecule. Since it is necessary to accurately estimate the energy transfer between each component and design the configuration of the TAF element, the excited singlet energy level and the excited triplet energy level are estimated from the short wavelength side of the spectrum.
  • the intersystem crossing velocity indicates the velocity of the intersystem crossing from the excited triplet to the excited singlet.
  • the inverse intersystem crossing velocity of a thermoactive delayed phosphor shall be calculated by transient fluorescence spectroscopy using the method described in Nat. Commun. 2015, 6, 8476. Or Organic Electronics 2013, 14, 2721-2726. can be, specifically, the reverse intersystem crossing rate of heat activated delayed fluorescent substance is a 10 5 s -1 or more, preferably, 10 6 s -1 or more.
  • the emission velocity indicates the rate of transition from the excited singlet to the ground state via fluorescence emission without going through the TADF process.
  • the emission rate of the thermoactive delayed fluorophore can be calculated using the method described in Nat. Commun. 2015, 6, 8476. Or Organic Electronics 2013, 14, 2721-2726, as well as the intersystem crossing rate.
  • the emission rate of the thermally active delayed phosphor is 10 7 s -1 or more, and more preferably 10 8 s -1 or more.
  • the compound of the present invention, an organic electroluminescent device using the compound, and the like will be described.
  • HOMO / LUMO energy gap
  • (minimum) excited singlet energy having prefixes such as "partial” / "localized” / "charge transfer transition”.
  • the compounds of the present invention will be described using terms such as, and (lowest / higher order) excited triplet energies. Some of these are values obtained by molecular orbital calculation, not values obtained optically or electrochemically by measuring the compound of the present invention, and have a correlation with actual measurement (or with actual measurement). It can be inferred that there is a correlation), but the numbers may not match.
  • it is decomposed into a donor structure and an acceptor structure, and calculations, measurements, and explanations are performed. Therefore, when describing the partial structure of the acceptor or donor, only the acceptor structure or only the donor structure may be considered.
  • the compound of the present invention is a compound having at least one structure represented by the following formula (i).
  • the compound of the present invention has a structure represented by the formula (i) as an acceptor structure (A) excluding the partial structure (D), and a partial structure (D) as a donor structure.
  • A acceptor structure
  • D partial structure
  • I can say.
  • a series of papers (Nature 492, 234-238, Science Advances, 2017: 3, e1603282, Science Advances 2018: 4, eaao6910) by Adachi et al., Kyushu University, it is necessary for thermoactive delayed fluorescent compounds with high TADF properties. Features have been clarified.
  • the compounds of the present invention have the characteristics described in these papers: HOMO localized on the donor, LUMO localized on the acceptor, and spin inversion via small ⁇ E S1T1 and localized transitions. It is considered to have the characteristic of showing the process.
  • Rings A, B and C each independently represent an aromatic ring structure. At least one ring member atom in at least one of the A ring, the B ring and the C ring is bonded to the partial structure (D) represented by the formula (D).
  • Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the wavy line indicates the bond position.
  • a ring member atoms contained in the ring member atoms and C ring contained in the B ring is bridged by X 3, a portion of the part and C rings of the ring B and may form a 6-membered ring containing Y, X 3 is any one of>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively.
  • Diarylboryl two aryls may be attached via a single bond or a linking group
  • a substituent that is cyano or halogen and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • the R'in the Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively.
  • ⁇ R 28 is not all hydrogen, At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen or deuterium.
  • the compound of the present invention is a compound having a robust cyclic structure having a hetero element at least in the center or a structure utilizing a multiple resonance effect as an acceptor structure (A) and a structure having nitrogen as a donor structure (D). It is a DA type thermoactive delayed phosphor or a multiple resonance effect delayed phosphor.
  • high TADF activity can be obtained by bringing the higher-order excited triplet energy level and the excited singlet energy level closer to each other by appropriately selecting the donor (D) and the acceptor (A). More specifically, a compound having high luminous efficiency, fast delayed fluorescence lifetime, blue emission and short emission half width is preferable. It is presumed that this compound is contained in the light emitting layer as an emitter or an assisting dopant in an organic EL device, for example, and can realize high external quantum efficiency and long life.
  • the first aspect of the compound of the present invention is a compound having a structure represented by the formula (i) as a monomer (preferably a monomer having a structure represented by the formula (1)). It is a compound that suppresses the rotation of a strong donor structure and acceptor structure, and has both blue CT emission having a narrow half-value width and extremely high TADF properties.
  • a second aspect of the compound of the present invention is a compound that is a multimer of the structure represented by the formula (i) (preferably a compound represented by the formula (4)), which has an acceptor structure. It is a compound that has both an extremely narrow half-value width at half maximum emission and high TADF properties using the LE state (locally excited state) inside.
  • the LE state means S1 when the S0-S1 transition, which is a LE-like transition, is shown.
  • the "LE transition” represents a local energy transition between HOMO-LUMOs that are present on the same partial structure within the molecule.
  • the emission obtained by the "LE transition” is a spectrum having one or more emission peaks having a narrow half width or overlapping them, and a clear vibration peak is often seen.
  • the CT state charge transfer state
  • CT transition represents an energy transition between HOMO-LUMOs that are spatially separated on different partial structures within the molecule.
  • the emission obtained by the "CT transition” is a spectrum having an emission peak with a wide half-value width, and no clear vibration peak is observed.
  • the present invention includes two aspects, in which case it is important to control the higher order excited triplet energy (Tn).
  • Tn higher order excited triplet energy
  • the up-conversion from the excited triplet to the excited singlet by TADF can be accelerated. it can. More specifically, for the first, by accelerating the up-conversion of T1 (CT) ⁇ Tn (LE) ⁇ S1 (CT), the other is T1 (LE) ⁇ Tn (CT) ⁇ S1 (LE).
  • CT higher order excited triplet energy
  • S1-T1 is preferably 0.20 eV or less
  • S1-T2 (or S1-T3) is preferably 0.20 eV or less
  • S1-T1 is 0.15 eV or less
  • S1-T2 (or S1-T3) is. More preferably 0.10 eV or less.
  • S1-T1 is 0.1 eV or less
  • S1-T2 (or S1-T3) is 0.05 eV or less.
  • the energy level difference between S1 and T1 (S1-T1) is 0.1 eV or less
  • the energy level difference between S1 and T2 (S1-T2) is 0.05 eV or less
  • S1 is in a locally excited state. Is preferable.
  • the acceptor structure excluding the partial structure (D) in the structure represented by the acceptor structural formula (i) has a large partial energy gap ( Eg (A)) and a high partial minimum triplet excitation energy (E). It has T1 (A)). This is because the 6-membered ring containing the hetero element has a low aromatic attribute, so that the decrease in the partial energy gap due to the expansion of the conjugated system is suppressed, and the triplet excited state (T1) is due to the electronic perturbation of the hetero element. ) Is due to the localization of partial SOMO1 and SOMO2.
  • the acceptor structure is preferable as an acceptor structure of a heat-activated delayed fluorescent material because it has a high partial minimum excited triplet energy.
  • the A ring, B ring and C ring each independently represent an aromatic ring structure.
  • the aromatic ring structure is a structure including an aromatic ring in which the ring member atoms constituting the aromatic ring in the formula (i) are directly bonded to Y and X 1 and / or X 2 .
  • the formula (i) includes at least one aromatic ring structure in which a ring member atom is bonded to the partial structure (D).
  • the aromatic ring structure is preferably an aromatic hydrocarbon ring structure or an aromatic heterocyclic ring structure, and more preferably an aromatic hydrocarbon ring structure.
  • the A ring, the B ring and the C ring are each independently preferably having a 5-membered ring or a 6-membered ring aromatic ring structure, and more preferably a 6-membered ring aromatic ring structure.
  • a benzene ring structure is preferable as the aromatic hydrocarbon ring structure.
  • examples of the heteroatom in the aromatic heterocyclic structure include a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
  • a pyridine ring structure and a pyrimidine ring structure are preferable, and a pyrimidine ring structure in which N is at the m-position of the carbon to which Y (preferably B) is bonded is more preferable.
  • a pyrimidine ring structure in which N is at the m-position of the carbon to which Y (preferably B) is bonded is more preferable.
  • N in the pyridine ring is 1-position
  • a pyridine ring structure that bonds with Y in the formula (i) at the carbon atom at the 3-position or 5-position is more preferable.
  • the A ring, B ring, and C ring preferably have a benzene ring structure from the viewpoint of ease of synthesis and stability of the compound.
  • At least one ring member atom in at least one aromatic ring structure of the A ring, B ring and C ring is bonded to the wavy line portion in the partial structure (D).
  • a ring member atom in the A ring is bonded to the wavy line portion in the partial structure (D), and a ring member atom in the B ring or the C ring is bonded to the wavy line portion in the partial structure (D).
  • the A ring, the B ring, and the C ring may each independently have a first substituent, which will be described later. Further, at least one hydrogen in the first substituent may be substituted with a second substituent described later.
  • first substituent and second substituent are X 1 , X 2 , Y, partial structure (1) in formula (1) described later. D), synonymous with the first substituent and the second substituent, and the preferred embodiment is also the same.
  • the compound having at least one structure represented by the monomer formula (i) is a compound (monomer) having one structure represented by the formula (i)
  • the ring-membered atoms that are not bonded to the partial structure (D) and that have a bond (carbon, etc.) are independently hydrogen, or aryl, heteroaryl, diarylamino, and dihetero.
  • Adjacent substituents may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • a preferable example of the first aspect of the compound of the present invention is a compound represented by the following formula (1).
  • R 1 to R 11 is a partial structure (D) represented by the formula (D).
  • R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy.
  • substituents which is a diallylboryl (two aryls may be bonded via a single bond or a linking group), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing part of the b ring, part of the c ring and Y, where X 3 is>O,>S,> N-.
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively.
  • Diarylboryl two aryls may be attached via a single bond or a linking group
  • a substituent that is cyano or halogen and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • R'in the Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively.
  • R 1 to R 11 which are not the partial structure (D) in the formula (1) and R 21 to R 28 in the partial structure (D) are not all hydrogen. At least one hydrogen in the compound represented by the formula (1) may be substituted with halogen or deuterium.
  • the partial LUMO in the acceptor is shallow, the partial HOMO is deep, and the partial energy gap is wide, and the specific structure is Y.
  • B is even more preferred, where X 1 and X 2 are>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , and>O,>.S,> C (-R') 2 or> Si (-R') 2 is preferable,>O,> C (-R') 2 or> Si (-R') 2 is more preferable, and both are> O. It is more preferable to have.
  • Y is preferably B from the standpoints of compound stability, enhanced multiple resonance effects, blue emission of the compound due to wide partial energy gaps, ease of synthesis and high TADF activity.
  • Y may be appropriately used in combination with the donor structure according to the characteristics required for the compound of the present invention.
  • Specific structures include formula (1-B), formula (1-P), formula (1-H), formula (1-T) and formula (1-V). In this case, it is a naphthoanthracene structure having X 1 , X 2 , and Y in the formula (1).
  • R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing a b ring, a c ring and boron.
  • it is a triangulene structure having X 1 , X 2 , X 3 and Y.
  • Specific structures include formula (1-BX3), formula (1-PX3), formula (1-HX3), formula (1-TX3) and formula (1-VX3).
  • R 7 and R 8 do not crosslink and do not form a ring.
  • R 7 and R 8 crosslink at> X 3 to form a ring.
  • the naphthoanthracene structure is preferable in terms of ease of partial synthesis and low cohesiveness due to low symmetry.
  • the triangulene structure is preferred in terms of skeletal robustness and strength of intermolecular interaction due to high symmetry. In the present invention, it may be appropriately used in combination with the donor structure.
  • X 1 and X 2 it may be appropriately used in combination with the donor structure according to the characteristics required for the compound of the present invention.
  • Specific structures include formula (1-O2), formula (1-OS), formula (1-OC), formula (1-OI), formula (1-ON), formula (1-S2), and formula.
  • (1-SC) formula (1-SI), formula (1-SN), formula (1-C2), formula (1-CI), formula (1-CN), formula (1-I2), formula ( 1-IN) and formula (1-N2) can be mentioned.
  • compounds in which X 1 and X 2 have at least one> O are preferred.
  • compounds in which both X 1 and X 2 are the same are preferable.
  • the compounds of the present invention may be Toriangyuren structure has a X 3.
  • X 1, X 2, and X 3,>O,> S a> C (-R ') 2 or> Si (-R') 2
  • X 1 , X 2 , and X more preferably all compounds have the same 3, from the viewpoint of partial energy gap, in X 1, X 2 and X 3,>O,> C (-R ') 2 or> Si (-R')
  • a compound having one or more of 2 is more preferable, a compound having one or more of> O is more preferable, and a compound having two or more of> O is even more preferable.
  • X 1 and X 2 are>O,>S,> C (-R') 2 or> Si (-R') 2 .
  • a naphthanthracene type compound is preferable.
  • X 1 and X 2 (and, X 3 if it contains a X 3) in,> N-R ',> C (-R') 2 or> Si (-R ') 2 of R' is the number of carbon atoms
  • Bipyridyl carbazole, dibenzofuran, dibenzothiophene, indenocarbazole, methyl, ethyl, propyl, butyl, cyclohexyl, adamantyl, more preferably phenyl, fluorenyl, methyl.
  • the substituents may form a spiro structure.
  • the two R's in> C (-R') 2 or> Si (-R') 2 may be the same or different.
  • R'of Si—R' is aryl, heteroaryl, alkyl or cycloalkyl, with 6 to 20 carbon atoms, 2 to 15 carbon atoms heteroaryl, 1 to 20 carbon atoms alkyl or It is preferably a cycloalkyl having 3 to 20 carbon atoms.
  • phenyl, biphenyl, fluorenyl, pyridyl, pyrazil, triadyl, bipyridyl, carbazole, dibenzofuran, dibenzothiophene, indenocarbazole, methyl, ethyl, propyl, butyl, cyclohexyl, or adamantyl are preferred, with phenyl or methyl being more preferred. preferable.
  • the substitution position of the partial structure (D) in the formula (1) differs depending on the structure of the acceptor structure, but when it is substituted at the p-position of Y, it has a great influence on the partial LUMO in the acceptor structure (A).
  • the naphthoanthracene type structure has lower symmetry than the triangulene type structure, and the influence of the acceptor structure (A) on LUMO can be adjusted by the substitution position, which is preferable.
  • the substitution to the naphthoanthracene type structure has a large effect on the substitution on the a ring, and the substitution on the b ring and the c ring has a small effect.
  • the partial structure (D) is preferably replaced with R 1 , R 3 , R 4 , R 5 , R 9 or R 11 . Further, from the viewpoint of the dihedral angle formed by the partial structure (D) and the acceptor structure (A), it is preferable that they are orthogonal to each other. Furthermore, it is preferable that the structural change between the ground state and the excited state is small because an emission spectrum having a narrow half width can be obtained, and the partial structure (D) is replaced with the a ring rather than the b ring and the c ring that cause out-of-plane vibration. Is preferable.
  • R 1 to R 11 are independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls are single-bonded or linked). At least one hydrogen in the aryl, the heteroaryl, and the diarylamino is an aryl, heteroaryl, alkyl or cycloalkyl (or more) (which may be attached via a group) (above, first substituent). , The second substituent) may be substituted.
  • aryl examples include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, more preferably aryls having 6 to 20 carbon atoms, and 6 to 6 carbon atoms.
  • Aryl of 16 is more preferable, aryl of 6 to 12 carbon atoms is particularly preferable, and aryl of 6 to 10 carbon atoms is most preferable.
  • aryl examples include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl.
  • Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1
  • aryl as the first substituent is described as “aryl” in diarylamino, “aryl” in aryloxy, “aryl” in diarylboryl, and “aryl” as the second substituent. The same can be quoted for "aryl”.
  • heteroaryl examples include heteroaryls having 2 to 30 carbon atoms, preferably heteroaryls having 2 to 25 carbon atoms, and more preferably heteroaryls having 2 to 20 carbon atoms. Heteroaryl having 2 to 15 carbon atoms is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • heteroaryl examples include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include frill, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl Isobenzofuranyl, dibenzofuranyl, benzo [b] thienyl, dibenzothiophenyl, indolyl, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl , Kinoxaliny
  • heteroaryl as the first substituent can also be cited for “heteroaryl” as the second substituent.
  • at least one hydrogen in the heteroaryl is an aryl such as phenyl (specific example is the group described above) or an alkyl such as methyl (specific example is a group described later).
  • the substituted group is also included in the heteroaryl as the second substituent.
  • carbazolyl carbazolyl in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl or an alkyl such as methyl is also included in the heteroaryl as the second substituent. ..
  • alkyl (first substituent) may be either a straight chain or a branched chain, and examples thereof include alkyl having 1 to 24 carbon atoms (branched chain alkyl having 3 to 24 carbon atoms) and having 1 to 24 carbon atoms.
  • An alkyl having 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms) is preferable, an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms) is more preferable, and an alkyl having 1 to 6 carbon atoms (3 carbon atoms) is preferable.
  • (2 to 6 branched chain alkyl) is more preferable, alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms) is particularly preferable, and methyl is most preferable.
  • alkyl examples include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undec
  • alkyl as the first substituent can also be quoted for "alkyl” as the second substituent.
  • the position where the alkyl, which is the second substituent, substitutes for the first substituent is not particularly limited, but is based on the bonding position (1 position) of the first substituent to the a ring, b ring and c ring.
  • the 2nd or 3rd position is preferable, and the 2nd position is more preferable.
  • Cycloalkyl (first substituent) includes cycloalkyl consisting of one ring, cycloalkyl consisting of multiple rings, cycloalkyl containing a double bond that is not conjugated within the ring, and cycloalkyl containing an extracyclic branch.
  • cycloalkyl having 3 to 12 carbon atoms is preferable, cycloalkyl having 5 to 10 carbon atoms is preferable, and cycloalkyl having 6 to 10 carbon atoms is more preferable.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, and adamantyl. And so on.
  • alkoxy examples include an alkoxy having 1 to 24 carbon atoms (alkoxy of a branched chain having 3 to 24 carbon atoms) and an alkoxy having 1 to 18 carbon atoms (3 to 18 carbon atoms).
  • Alkoxy of the branched chain is preferable, alkoxy having 1 to 12 carbon atoms (alkoxy of the branched chain having 3 to 12 carbon atoms) is more preferable, and alkoxy having 1 to 6 carbon atoms (alkoxy of the branched chain having 3 to 6 carbon atoms).
  • alkoxy having 1 to 4 carbon atoms alkoxy of a branched chain having 3 to 4 carbon atoms
  • an alkoxy having 1 to 4 carbon atoms alkoxy of a branched chain having 3 to 4 carbon atoms
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • the substituent may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl (hereinafter referred to as the second substituent), and specific examples of these groups include aryl and hetero as the first substituent described above. Descriptions of aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy can be cited.
  • alkyl of "dialkylamino" as the first substituent, the above-mentioned explanation of "alkyl” can be cited.
  • the adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and in the formed ring.
  • At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy (above, first substituent), in which at least one hydrogen is aryl, heteroaryl.
  • Alkyl or cycloalkyl (above, second substituent) may be substituted.
  • the first substituent is preferably a group represented by the following structural formula, and more preferably methyl, tertiary alkyl (t-butyl, t). -Amil, t-octyl, etc.), phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xsilyl, 2,6-xsilyl, 2,4,6-mesityl, diphenylamino, di- p-tolylamino, bis (p- (t-butyl) phenyl) amino, and phenoxy, more preferably methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, 2,6-.
  • Xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, and bis (p- (t-butyl) phenyl) amino from the viewpoint of ease of synthesis, a larger steric hindrance is preferable for selective synthesis, and specifically, t-butyl, t-amyl, t-octyl, o-tryl, p-trill, 2 , 4-xylyl, 2,5-xsilyl, 2,6-xsilyl, 2,4,6-mesityl, di-p-tolylamino, and bis (p- (t-butyl) phenyl) amino are preferred.
  • the compound of the present invention may be a multimer having two or more structures represented by the formula (i).
  • the compound having two or more structures represented by the formula (i) is preferably a compound having both an extremely narrow half-value width at half maximum emission and a high TADF property using the transition of the LE property in the acceptor structure.
  • Examples of the multimer having two or more structures represented by the formula (i) include the following formulas (i-1), (i-2-1), (i-2-2), and formula (i-3-3). 1), a compound represented by the formula (i-3-2), or the formula (i-3-3) and the like can be mentioned.
  • the two Ys are bonded to each other at the m-position (the shared ring is a benzene ring).
  • the ring member atom to which one Y is bonded is the 1st position in the shared ring, and the ring member atom to which the other Y is bonded is the 3rd position). The same applies to X 1 and X 2 , respectively.
  • rings A to C each independently represent an aromatic ring structure, and at least one ring-membered atom in at least one of the A ring, the B ring, and the C ring is described above.
  • L 1 is a single bond or n-valent.
  • the ring and the I ring each independently represent an aromatic ring structure, and at least one ring member in at least one of the A ring, the B ring, the C ring, the D ring, the E ring, the F ring, and the G ring.
  • X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
  • rings A to C, X 1 , X 2 , and Y are independently synonymous with rings A to C, X 1 , X 2 , and Y in formula (i).
  • n represents an integer of 2 or more, preferably an integer of 2 to 10, more preferably an integer of 2 to 6, and further preferably 2, 3 or 4. preferable.
  • L 1 represents a single bond or an n-valent organic group, preferably an n-valent hydrocarbon group, and an n-valent aliphatic saturated hydrocarbon group or an n-valent aromatic hydrocarbon group. More preferred. Further, when L 1 is a single bond, n is 2.
  • rings A to E, X 1 , X 2 , and Y are independent of each other, and rings A to C in formula (i). , X 1 , X 2 , and Y, and so do preferred embodiments.
  • rings A to I, X 1 , X 2 , and Y are independently formula (i-3-1). i) It has the same meaning as rings A to C, X 1 , X 2 , and Y in, and the preferred embodiment is also the same.
  • Rings a, b, c and d are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted, and two adjacent hydrogens may be substituted. They may be linked by alkyl to form a ring.
  • X 1 to X 4 are independently O or N-R, and R of the N-R is aryl, heteroaryl or alkyl, respectively.
  • At least one ring member atom in at least one ring selected from the group consisting of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2 is bonded to the partial structure (D).
  • the wavy line portion of the partial structure D is directly bonded to the ring member atom of the a ring to the d ring, or Z 1 or Z 2 .
  • R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, and adjacent R 21 to R 28 are based on linking groups.
  • Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si.
  • the R'of 2 is an aryl that may be independently linked with hydrogen, alkyl, or R', respectively.
  • the a ring, the b ring, the c ring and the d ring are independently aryl rings.
  • the a ring, b ring, c ring and d ring are heteroaryl rings
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
  • the a ring, the b ring, the c ring and the d ring are all benzene rings which may have a substituent.
  • the a ring, b ring, c ring and d ring may have the above-mentioned first substituent.
  • at least one hydrogen in the first substituent may be substituted by the above-mentioned second substituent.
  • X 1 to X 4 are independently O or N-R, and from the viewpoint of a narrow full width at half maximum, at least one of X 1 to X 4 is preferably N, and all are N. Is more preferable. In view of the wide energy gap, it is preferable that at least one of X 1 ⁇ X 4 is O, and more preferably all are O.
  • Formula (ii) has a partial structure (D) represented by at least one formula (D), and consists of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2. At least one ring member atom in at least one ring selected from the group is bonded to the partial structure (D).
  • the number of the partial structures D in the formula (ii) is preferably 1 to 4, and more preferably 1 to 2. From the viewpoint of the temperature of sublimation purification, the partial structure D is preferably 1.
  • the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to N or O, and more preferably an aromatic ring bonded to N.
  • the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to one or more N, and an aromatic ring bonded to one or more N and one B.
  • a group ring is more preferable, and an aromatic ring in which two N and one B are bonded is further preferable.
  • the ring to which the partial structure (D) is bonded is preferably a b ring or a d ring.
  • the partial structure (D) in the formula (ii) is preferably directly bonded to the ring member atom of the a ring, the b ring, the c ring and the d ring or the carbon atom in Z 1 or Z 2 at a wavy line portion. Further, in the case of having a plurality of partial structures (D) in the formula (ii), they may have the same structure or different structures.
  • a preferable example of the compound represented by the formula (ii) is a compound represented by the following formula (4).
  • R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy or It is a substituent that is a diarylboryl (two aryls may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is substituted with aryl, heteroaryl or alkyl.
  • two adjacent two of R 3 to R 14 may be linked by alkyl having 2 to 8 carbon atoms to form a ring.
  • X 1 to X 4 are independently O or N-R, and R of the N-R is an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, and 1 to 20 carbon atoms.
  • Alkyl or cycloalkyl with 3-8 carbon atoms At least one of R 1 to R 14 in the formula (4) is a partial structure (D) represented by the formula (D).
  • R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, respectively. Adjacent R 21 to R 28 may form a ring with a linking group.
  • Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si.
  • the R'of (-R') 2 is an independently hydrogen, an alkyl having 1 to 8 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be linked.
  • both R 24 and R 28 do not become hydrogen.
  • both X 1 and X 2 do not become O.
  • At least one hydrogen in the compound or structure represented by the formula (4) may be substituted with halogen or deuterium.
  • X 1 ⁇ X 4 have the same meanings as X 1 ⁇ X 4 in the above formula (ii), preferable embodiments thereof are also the same.
  • R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy or It is a substituent which is a diallylboryl (two aryls may be bonded via a single bond or a linking group), and specifically, according to the above description of "first substituent". Further, in the "first substituent”, adjacent substituents may be bonded to each other to form a ring structure. Further, at least one hydrogen in the "first substituent” may be substituted with aryl, heteroaryl, or alkyl, and the substituent bonded to the "first substituent” is described in the above "second substituent". According to.
  • R 1 to R 14 are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (where aryl has 6 to 12 carbon atoms).
  • Aryl alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, aryloxy or diallylboryl having 6 to 12 carbon atoms (where aryl is an aryl having 6 to 12 carbon atoms). Is preferable.
  • At least one hydrogen in these substituents may be substituted with an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
  • X 1 to X 4 are independently> O or> NR, and the R of> NR is an aryl having 6 to 12 carbon atoms or 1 to 8 carbon atoms. It is preferably alkyl.
  • R 21 to R 28 are independently hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and 1 to 12 carbon atoms, respectively. It is preferably alkyl, cycloalkyl, cyano, or halogen with 3 to 20 carbon atoms, where Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 and> Si.
  • (-R') 2 and the R'of the> C (-R') 2 and> Si (-R') 2 can be independently hydrogen or an alkyl having 1 to 8 carbon atoms. preferable.
  • R 4 , R 7 , R 10 and R 13 have a partial structure (D) in the above formula (4).
  • the partial structure (D) is preferably 1.
  • the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to N or O, and more preferably an aromatic ring bonded to N.
  • the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to one or more N, and an aromatic ring bonded to one or more N and one B.
  • a group ring is more preferable, and an aromatic ring in which two N and one B are bonded is further preferable.
  • the ring to which the partial structure (D) is bonded is preferably a b ring or a d ring.
  • the acceptor structure is a multimer, it is particularly preferable that the acceptor structure is a partial structure represented by the following formula (4-Y2X4-0000).
  • Y is preferably B, and when it is B, it is represented by a partial structure represented by the following formula (4-B2X4-0000).
  • X is independently O or N-R, and from the viewpoint of a narrow full width at half maximum, at least one X is preferably N, more preferably three, and all are N. Is more preferable. Further, from the viewpoint of a wide energy gap, it is preferable that at least one X is O, and it is more preferable that all X are O.
  • the p position of B is preferable. From the viewpoint of ease of synthesis, it is preferable that the bond is line-symmetric with respect to the bond between the central benzene ring and Y (here, B), and from the same viewpoint, it is preferable that the molecular weight is small. Specifically, the formula (4-B2X4-04W), the formula (4-B2X4-04W / 07W), the formula (4-B2X4-04W / 09W), the formula (4-B2X4-04W / 07W / 09W) and the formula.
  • the formula (4-B2X4-04W / 07W / 09W / 13W) is preferable, and the formula (4-B2X4-04W), the formula (4-B2X4-04W / 07W) and the formula (4-B2X4-04W / 09W) are more preferable. Further, from the appraisal of the temperature of sublimation purification, the formula (4-B2X4-04W), the formula (4-B2X4-07W), the formula (4-B2X4-04W / 07W) and the formula (4-B2X4-04W / 09W) Preferably, the formula (4-B2X4-04W) and the formula (4-B2X4-07W) are more preferable.
  • the partial structure (D) is preferably the p-position of B and the m-position of two Xs, and the formulas (4-B2X4-04W) and (4-B2X4-04W) / 07W), formula (4-B2X4-04W / 09W), formula (4-B2X4-04W / 07W / 09W) and formula (4-B2X4-04W / 07W / 09W / 13W) are preferred, and formula (4-B2X4). ⁇ 04W / 09W) is more preferable.
  • the partial structure (D) is described by W.
  • substituents other than the partial structure (D) play an important role in adjusting the energy of the acceptor structure (A).
  • the structures described below can be mentioned, and it is preferable to have 1 to 4 substituents other than the partial structure (D), and more preferably 1 to 3 substituents. It is more preferable to have one or two. From the viewpoint of ease of synthesis and temperature of sublimation purification, one is preferable.
  • a substituent other than the partial structure (D) is described by V.
  • substituents other than the partial structure (D) play an important role in adjusting the energy of the acceptor structure (A).
  • the substituent other than the partial structure (D) the first substituent described later is preferable. More specifically, it suffices if the HOMO of the acceptor structure (A) can be adjusted to be close to the higher-order excitation triplet energy of the donor structure (D), and the partial of the substituent other than the partial structure (D) is partial.
  • phenyl which may have an unsubstituted or substituent
  • pyridine which may have an unsubstituted or substituent
  • diphenylamine which may have an unsubstituted or substituent
  • an unsubstituted or substituent Alkyl having 1 to 12 carbon atoms may have, and cycloalkyl having 3 to 12 carbon atoms which may have an unsubstituted or substituent is preferable
  • Ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl and cyclohexyl are more preferred. From the viewpoint of ease of synthesis, phenyl, trill, xylyl, mesityl, methyl, butyl and cyclohexyl are preferable.
  • Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the partial energy gap in the partial structure (D).
  • >O,> S or> C (-R') 2 is preferable, and> O or> S is more preferable.
  • >O,>S,> C (-R') 2 or> Si (-R') 2 is preferable, and> C ( -R') 2 or> Si (-R') 2 is more preferable.
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. It is a substituent which is diarylboryl (two aryls may be bonded via a single bond or a linking group), cyano or halogen, and specifically, according to the description of the above-mentioned "first substituent”.
  • the arylamino may be crosslinked with each other to form a ring structure such as a carbazole ring structure. Further, in the "first substituent", adjacent substituents may be bonded to each other to form a ring structure. Further, at least one hydrogen in the "first substituent” may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and the substituent bonded to the "first substituent” is the "second substituent".
  • R'in>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cyclo, respectively. It is an alkyl and conforms to the above-mentioned "first substituent".
  • both R 24 and R 28 are preferably not hydrogen, more preferably neither hydrogen, further preferably all alkyl. Is also particularly preferably methyl.
  • the dihedral angle between the partial structure (D) and the acceptor structure (A) is large from the viewpoint of separating HOMO / LUMO of the compound of the present invention, and it is preferable that R 25 and R 24 have substituents. Further, from the viewpoint of controlling the energy of HOMO, it is preferable to have a substituent at R 27 and / or R 22 . On the other hand, from the viewpoint of synthesis, it is preferable that the molecular weight is small, and hydrogen is preferable for R 21 to R 28 . From the above, the structure described below is preferable. In the formulas exemplified herein, Me stands for methyl and tBu stands for tertiary butyl.
  • partial structure (D) may be replaced with fluorine.
  • the partial structure (D) is preferably a structure represented by any of the following formulas (D-1) to (D-3).
  • R 50 independently represents a hydrogen atom or methyl.
  • Me is methyl.
  • Q 1 represents>O,>S,> C (CH 3 ) 2 , or> Si (CH 3 ) 2 .
  • the structural unit represented by the formula (i) or the compound represented by the formula (1) may have only one partial structure (D) or may have two or more partial structures (D).
  • the product has two or three partial structures (D). It is preferable that R 7 and R 8 are crosslinked to form a ring, and it is preferable to have three partial structures (D), and from the viewpoint of the temperature of sublimation purification and the height of Tg, it has only one. Is preferable.
  • the compound of the present invention has at least one partial structure (A) represented by the formula (1).
  • a compound having D which is a partial HOMO and LUMO of acceptor structure (A) and partial structure (D), HOMO (A), LUMO (A), HOMO (D) and LUMO (D, respectively).
  • HOMO (A) is deeper than HOMO (D)
  • LUMO (A) is deeper than LUMO (D).
  • E Tn triplet energy
  • E S1 is preferred.
  • E Tn is, E S1 preferably -0.01eV ⁇ E S1 -1.00eV, more preferably E S1 -0.01eV ⁇ E S1 -0.20eV, E S1 -0.01eV ⁇ E S1 -0.10eV Is even more preferable.
  • At least one selected from the group consisting of R 1 and R 3 preferably has a partial structure (D). At least one selected from the group consisting of R 1 and R 3 is a partial structure (D).
  • R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryls), diheteroarylaminos (where heteroaryls are heteroaryls with 2-12 carbon atoms), aryl heteroarylaminos (where aryls are aryls with 6-12 carbon atoms and heteroaryls have 2 carbon atoms).
  • substituent that is an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms (which is a heteroaryl of to 12), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these may be formed and is substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 7 and R 8 bond to each other at>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 and include b-ring, c-ring and Y
  • a 6-membered ring may be formed
  • R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms).
  • Aryl diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms and heteroaryl is an aryl having 2 to 12 carbon atoms).
  • Heteroaryl alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen substituents, and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • the R'in>N-R',> C (-R') 2 and> Si (-R') 2 is independently an aryl having 6 to 20 carbon atoms and a hetero with 2 to 15 carbon atoms, respectively. More preferably, it is aryl, an alkyl having 1 to 20 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 2 preferably has a partial structure (D).
  • R 2 is the partial structure (D).
  • R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms).
  • aryl diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms)
  • Aryl an alkyl substituent that is an alkyl having 1 to 4 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms without substitution, and among these substituents, adjacent substituents are bonded to each other to form a ring structure.
  • At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • May be Moiety Q is in the structure (D)> C (-R ' ) 2, a partial structure> in (D) C (-R') R in 2 'methyl and the partial structure (D) R 21 ⁇ R 28 in
  • R 6 and R 9 in the formula (1) are independently partial structures (D), hydrogen, or aryls having 6 to 30 carbon atoms, heteroaryls having 2 to 30 carbon atoms, respectively.
  • Diarylamino (where aryl is aryl with 6-12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms), Heteroaryl is a substituent that is an alkyl having 2 to 12 carbon atoms, an alkyl having 1 to 3 carbon atoms without substitution, or a cycloalkyl having 3 to 20 carbon atoms. Among these substituents, adjacent substitution groups are used.
  • the groups may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl or carbon having 1 to 12 carbon atoms. More preferably, it may be substituted with the number 3 to 20 cycloalkyl.
  • At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 preferably has a partial structure (D). At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 is a partial structure (D).
  • R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms).
  • At least one hydrogen in these may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing b, c and Y, where X 3 is>O,>S,>N-R',> C ( Any one of -R') 2 or> Si (-R') 2 , and R 21 to R 28 in the partial structure (D) are independently hydrogen or 6 to 30 carbon atoms.
  • aryl is an aryl having 6 to 12 carbon atoms
  • heteroaryl is a heteroaryl having 2 to 12 carbon atoms
  • adjacent substituents may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl or carbon having 6 to 30 carbon atoms. It may be substituted with a heteroaryl of number 2 to 30, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • the R'in>N-R',> C (-R') 2 and> Si (-R') 2 is independently an aryl having 6 to 20 carbon atoms and a hetero with 2 to 15 carbon atoms, respectively. More preferably, it is aryl, an alkyl having 1 to 20 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
  • the compound of the present invention is preferably a compound represented by any of the following formulas (1-A-1) to (1-A-4).
  • the compound containing the structure represented by the formula (ii) is preferably a compound represented by any of the following formulas (4-1A) to (4-1D).
  • At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen, deuterium, or partial structure (B).
  • R 40 and R 41 are independently alkylated, R 40 and R 41 may be bonded to each other, and the total number of carbon atoms of R 40 and R 41 is 2 to 10.
  • the wavy line portion is the binding site with other structures.
  • a compound in which at least one hydrogen of the compound represented by the formula (ii) is replaced with a partial structure (B), chlorine, bromine, or iodine is preferably used as the compound of the present invention.
  • a compound containing at least one structure represented by the formula (i) (preferably a compound represented by the formula (1)) is first prepared.
  • An intermediate is produced by binding rings A to C (preferably rings a to c) with a binding group (-X-) (first reaction), and then rings a to c are bonded to the binding group (-X-).
  • the final product can be produced by binding with a group containing X) (second reaction). It is preferable that the binding group (-X-) finally constitutes X 1 and X 2 in the formula (i) or the formula (1), respectively.
  • the binding group is> O will be described.
  • first reaction general etherification reactions such as nucleophilic substitution reaction and Ullmann reaction can be used.
  • second reaction a tandem hetero-Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used.
  • first and second reactions the description given in International Publication No. 2015/102118 can be referred to.
  • the second reaction is a reaction for introducing B (boron), P (phosphorus) or Si (silicon) that bonds the A ring, the B ring and the C ring.
  • a ring, B ring and C ring is benzene ring which may be either substituted R 1 ⁇ R 11 when it is (a ring in the following scheme (1), b ring and c rings),
  • the reaction for introducing B (boron) will be described.
  • the hydrogen atom between the two O's is orthometalated with n-butyllithium, sec-butyllithium, t-butyllithium or the like.
  • lithium was introduced to the desired position by orthometalation, but as in scheme (2) below, a bromine atom or the like was introduced at the position where lithium was to be introduced, and the desired position was also achieved by halogen-metal exchange. Lithium can be introduced.
  • Multimers with single bonds and spacers can be produced by the above synthetic method. Further, it can be produced by synthesizing the monomers and then binding the monomers to each other.
  • a multimer for example, a compound having a structure represented by the formula (ii)
  • the intermediate can be produced in (1st reaction), and then the final product can be produced by bonding each ring structure with a boron atom (2nd reaction).
  • a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction, or a general amination reaction such as a Buchwald-Hartwig reaction can be used.
  • a tandem hetero-Friedel-Crafts reaction continuous aromatic electrophilic substitution reaction, the same applies hereinafter
  • the symbols in the structural formulas in the following schemes have the same definitions as those in the formula (ii) or the formula (4).
  • the second reaction is a reaction for introducing a boron atom that binds each ring structure, as shown in the following scheme (3).
  • the hydrogen atoms between X 1 and X 2 and between X 3 and X 4 are orthometalated with n-butyllithium, sec-butyllithium, t-butyllithium, or the like.
  • boron trichloride, boron tribromide, etc. are added, the metal of lithium-boron is exchanged, and then Bronsted bases such as N, N-diisopropylethylamine are added to cause a tandem Bora Friedel-Crafts reaction. You can get things.
  • a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
  • dimers the synthesis of dimers is shown below, but multimers of trimers or more can also be produced by the same synthesis method.
  • the starting material used also be appropriately selected, having a substituent at the desired position, X 1, X 2, X 3 and X 4 are each independently,> O, or A compound of> NR can be synthesized.
  • the target compound can be isolated from the mixture thereof by chromatography, recrystallization or the like.
  • Examples of the orthometallation reagent used in the above scheme include alkyllithium such as methyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium, lithium diisopropylamide, lithium tetramethylpiperidide, and lithium hexamethyl.
  • alkyllithium such as methyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium
  • lithium diisopropylamide lithium tetramethylpiperidide
  • lithium hexamethyl examples include organic alkaline compounds such as disilamide and potassium hexamethyldisilazide.
  • metal exchange reagent for metal-Y (boron) used in the above scheme examples include boron halides such as boron trifluoride, trichloride, triiodide, and triiodide, and Y such as CIPN (NET 2 ) 2 .
  • boron halides such as boron trifluoride, trichloride, triiodide, and triiodide
  • Y such as CIPN (NET 2 ) 2
  • aminated halides, Y alkoxys, and Y aryl bromides examples of the metal exchange reagent for metal-Y (boron) used in the above scheme.
  • the blended bases used in the above scheme include N, N-diisopropylethylamine, triethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N, N-.
  • Lewis acids used in the above scheme include AlCl 3 , AlBr 3 , AlF 3 , BF 3 , OEt 2 , BCl 3 , BBr 3 , GaCl 3 , GaBr 3 , InCl 3 , InBr 3 , In (OTf) 3 , SnCl.
  • Bronsted bases or Lewis acids may be used to promote the tandem hetero Friedel-Crafts reaction.
  • boron halides such as boron trifluoride, trichloride, tribromide, and triiodide
  • hydrogen fluoride, hydrogen chloride, and hydrogen bromide as the aromatic electrophobic substitution reaction progresses
  • an acid such as hydrogen iodide
  • an aminated halide of boron or an alkoxylated of boron it is often necessary to use a blended base because amines and alcohols are produced as the aromatic electrophilic substitution reaction proceeds.
  • the desorption ability of amino groups and alkoxy groups is low, it is effective to use Lewis acid that promotes the desorption.
  • the compound represented by the formula (ii) or the formula (4) also includes a compound in which at least a part of hydrogen atoms is substituted with cyano, halogen or deuterium, and such a compound is desired.
  • Polymer compound having a repeating unit containing a structure represented by the formula (i) is a polymer compound having a repeating unit containing a structure represented by the formula (i) (hereinafter, "high molecular weight of the present invention". It may be referred to as a "molecular compound", and the term “compound of the present invention” may include this polymer compound).
  • Examples of the polymer compound having a repeating unit containing the structure represented by the formula (i) include a compound containing a structure derived from the compound represented by the formula (1) as a repeating unit.
  • the polymer compound of the present invention may have a triarylamine which may have an unsubstituted or substituent, a fluorene which may have an unsubstituted or substituent, and an anthracene which may have an unsubstituted or substituent.
  • Tetracene which may have an unsubstituted or substituent
  • triazine which may have an unsubstituted or substituent
  • carbazole which may have an unsubstituted or substituent, and which may have an unsubstituted or substituent.
  • the repeating unit contains a structure derived from at least one compound selected from the group consisting of dibenzofurene which may have a substituent or a substituent.
  • the repeating unit may be a repeating unit including the structure represented by the formula (i), or may be a repeating unit different from the repeating unit including the structure represented by the formula (i).
  • the polymer compound of the present invention uses an aryl halide and an arylboronic acid derivative as starting materials, or an arylboroic acid halide derivative, an aryl halide and an arylboronic acid derivative as starting materials by a known method. It can be synthesized by appropriately combining Miyaura coupling, Kumada / Tamao / Collew coupling, Negishi coupling, halide reaction, or boronic acid reaction.
  • the reactive functional groups of the halide and boronic acid derivative in the Suzuki-Miyaura coupling may be replaced as appropriate, and the functional groups involved in those reactions also in the Kumada-Tamao-Colly coupling and the Negishi coupling. May be swapped. Further, when converting to a Grignard reagent, the metallic magnesium and the isopropyl grinard reagent may be appropriately replaced.
  • the boronic acid ester may be used as it is, or may be hydrolyzed with an acid and used as boronic acid. When used as a boronic acid ester, an alkyl other than those illustrated can be used as the alkyl of the ester portion.
  • the palladium catalyst used in the reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , Palladium acetate (II): Pd (OAc) 2 , Tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , Tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3.
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (dit-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (dit-butylphosphine) ferrocene, 1- (methoxymethyl) -2- (dit-butylphosphino) ferrocene, 1,1'-bis (dit-butylphosphine) Fino) Ferrocene, 2,2'-bis (dit-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2'-(dit-butylphosphino) -1,1'-binaphthyl,
  • bases used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxydo, sodium t-butoxide, sodium acetate, potassium acetate. , Tripotassium phosphate, or potassium fluoride.
  • the solvent used in the reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, anisole, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, diethyl ether and t-butyl.
  • These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the base may be added as an aqueous solution and reacted in a two-phase system.
  • a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
  • the polymer compound of the present invention When producing the polymer compound of the present invention, it may be produced in one step or in multiple steps. Further, it may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are placed in the reaction vessel, or it may be carried out by a dropping polymerization method in which the raw materials are added dropwise to the reaction vessel, and the product advances the reaction. It may be carried out by a precipitation polymerization method in which the mixture precipitates, and these can be combined and synthesized as appropriate.
  • a monomer having a polymerizable group bonded to a monomer unit (MU) and a monomer having a polymerizable group bonded to an end cap unit (EC) were added to the reaction vessel.
  • the target product is obtained by reacting in the state.
  • a monomer having a polymerizable group bonded to a monomer unit (MU) is polymerized to a target molecular weight, and then the polymerizable group is bonded to an end cap unit (EC).
  • the desired product is obtained by adding the obtained monomer and reacting.
  • the primary structure of the polymer compound can be controlled by selecting the polymerizable group of the monomer. For example, as shown in 1 to 3 of the synthesis scheme (20), a polymer compound having a random primary structure (1 of the synthesis scheme (20)) and a polymer compound having a regular primary structure (synthesis scheme (20)). ) 2 and 3) and the like can be synthesized, and can be used in appropriate combinations according to the target product.
  • the polymer compound having a repeating unit having a structure represented by the formula (i) may be, for example, a polymer compound having a repeating unit having a structure derived from the compound represented by the formula (1).
  • a polymer compound may be produced by using a monomer in which a polymerizable group is introduced into R 1 to R 11 in the formula (1).
  • the substituents as R 1 to R 11 into which the polymerizable group is introduced are aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls are single bond or linking groups).
  • the above is the first substituent
  • at least one hydrogen in the aryl, the heteroaryl, and the diarylamino is aryl, heteroaryl, alkyl or cycloalkyl (above, It may be substituted with a second substituent).
  • the polymer compound having a repeating unit containing the structure represented by the formula (i) may be produced by using a comonomer in addition to the monomer containing the structure represented by the formula (i). More specifically, the comonomer that may be used in the production of the polymer compound may be one in which a polymerizable group is introduced into any of the following: benzene which may be unsubstituted or substituted, unsubstituted or substituted.
  • triazine optionally anthracene, optionally unsubstituted or substituent, triarylamine optionally substituted or substituted, carbazole optionally substituted or substituted, unsubstituted or substituent.
  • Spirofluorene may be unsubstituted or substituted dibenzofuran, unsubstituted or substituted dibenzothiophene, unsubstituted or substituted tetraarylsilane, unsubstituted or optionally substituted triarylphosphine, Unsubstituted or substituted phenoxazine, unsubstituted or substituted phenothiazine, unsubstituted or substituted acridane, unsubstituted or substituted alkyl and unsubstituted or substituted cyclo Alkyl.
  • benzene which may be unsubstituted or substituted, triarylamine which may have an unsubstituted or substituent, fluorene which may have an unsubstituted or substituent, and an unsubstituted or substituent.
  • Anthracene may be, tetracene which may have an unsubstituted or substituent, triazine which may have an unsubstituted or substituent, benzene which may have an unsubstituted or substituent, and a unsubstituted or substituent.
  • Tetraphenylsilane which may have, spirofluorene which may have an unsubstituted or substituent, triphenylphosphine which may have an unsubstituted or substituent, dibenzo which may have an unsubstituted or substituent Thiophen and dibenzofuran, which may have an unsubstituted or substituent, are preferable, and benzene, biphenyl, terphenyl, triarylamine, triphenyltriazine or carbazole are more preferable.
  • phenyl, biphenyl, terphenyl, triarylamine, triphenyltriazine or carbazole it is more preferable to have an alkyl having 1 to 24 carbon atoms or a cycloalkyl having 3 to 16 carbon atoms as a substituent.
  • the compounds of the present invention can also be used as materials for organic devices.
  • the organic device include an organic electroluminescent device, an organic field effect transistor, and an organic thin film solar cell.
  • the material for an organic device of the present invention is preferably used as a material for an organic electroluminescent device, and more preferably used as a material for a light emitting layer of a material for an organic electroluminescent device.
  • Organic electroluminescent device 2-1-1 Structure of Organic Electroluminescent Device
  • An organic electroluminescent device includes a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes.
  • the organic EL element may have one or more organic layers in addition to the light emitting layer. Examples of the organic layer include an electron transport layer, a hole transport layer, an electron injection layer, a hole injection layer, and the like, and may further have other organic layers.
  • FIG. 1 shows an example of the layer structure of an organic electroluminescent device provided with these organic layers.
  • the hole transport layer 104 is provided, the light emitting layer 105 is provided on the hole transport layer 104, the electron transport layer 106 is provided on the light emitting layer 105, and the electron transport layer 106 is provided. It has an electron injection layer 107 and a cathode 108 provided on the electron injection layer 107.
  • the organic EL element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107.
  • the electron transport layer 106 provided on the electron transport layer 106
  • the light emitting layer 105 provided on the electron transport layer 106
  • the hole transport layer 104 provided on the light emitting layer 105
  • the hole transport layer 104 provided on the hole transport layer 104.
  • the hole injection layer 103 provided in the hole injection layer 103 and the anode 102 provided on the hole injection layer 103 may be provided.
  • the minimum structural unit is composed of the anode 102, the light emitting layer 105, and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, and the electron injection.
  • the layer 107 is an arbitrarily provided layer. Further, each of the above layers may be composed of a single layer or a plurality of layers.
  • the light emitting layer in the organic electroluminescent device is a layer that emits light between electrodes to which an electric field is applied.
  • the holes injected from the anode 102 and the electrons injected from the cathode 108 are recombined to emit light.
  • the material for forming the light emitting layer may be a compound (luminous compound) that is excited by the recombination of holes and electrons to emit light, and can form a stable thin film shape and is in a solid state. Compounds that exhibit strong emission (fluorescence) efficiency are preferred.
  • the light emitting layer may be either a single layer or a plurality of layers. Each is formed of a light emitting layer material (host material, dopant material).
  • the host material and the dopant material may be one kind or a combination of two or more.
  • the dopant material may be included in the entire host material, partially, or in any part.
  • a doping method it can be formed by a co-evaporation method with a host material, but it may be mixed with the host material in advance and then vapor-deposited at the same time.
  • the light emitting layer can also be formed by a wet film forming method using a light emitting layer forming composition containing a host material and a dopant material.
  • the compound of the present invention can be preferably used as a material for forming a light emitting layer of an organic electroluminescent device.
  • the compound of the present invention is preferably used as a dopant in the light emitting layer.
  • the compound of the present invention may be used as an emittering dopant in the light emitting layer, or may be used as an assisting dopant.
  • the compound of the present invention, the host compound, and other components described later may be contained in the same layer, or at least one component may be contained in each of a plurality of layers.
  • the compound of the present invention and the host compound contained in the light emitting layer may be one kind or a combination of two or more.
  • the assisting dopant and the emerging dopant may be contained entirely or partially in the host compound as a matrix.
  • the light emitting layer may be formed by a vapor deposition method, or may be formed by a wet film forming method or the like, in which a paint prepared by dissolving in an organic solvent is applied.
  • the amount of the compound of the present invention used is preferably large from the viewpoint of high TADF activity and small from the viewpoint of emission spectrum having a narrow half width.
  • the guideline for the amount of the host compound used is preferably 0.001 to 49% by mass, more preferably 0.1 to 40% by mass, and further preferably 0.5 to 25% by mass of the entire material for the light emitting layer. Is.
  • Host Compound A host compound may be used as the light emitting layer containing the compound of the present invention.
  • known compounds can be used, and examples thereof include compounds having at least one of a carbazole ring and a furan ring, among which at least one of furanyl and carbazolyl and at least one of arylene and heteroarylene. It is preferable to use a compound to which is bound. Specific examples include mCP and mCBP.
  • a compound represented by any of the following formula (H1), formula (H2), formula (H3), formula (H4), and formula (H5) can be used. These compounds may be polymer compounds having a structure derived from a compound represented by any of the following formulas (H1), (H2), (H3), (H4), and (H5) as a repeating unit. Good.
  • the organic electroluminescent device of the present invention contains at least one compound represented by the following formulas (H1) to (H5), or has at least one structure in the following (H1) to (H5) as a repeating unit. It is preferable to contain at least one polymer compound.
  • L 1 is an arylene having 6 to 24 carbon atoms
  • L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or 2 to 30 carbon atoms, respectively.
  • At least one hydrogen in the compound represented by each of the above formulas may be substituted with an alkyl, cyano, halogen or heavy hydrogen having 1 to 6 carbon atoms
  • Y is a single bond,>O,>S,> C (- R') 2 or> Si (-R') 2
  • Z is CH, CR'or N
  • formula (H4) Z is CH, CR'or N, and R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R', respectively, are aryl, heteroaryl, and alky
  • R 1 to R 11 are each independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl. It is a substituent, and at least one hydrogen in these substituents may be further substituted with aryl, heteroaryl, diarylamino or alkyl, and adjacent groups of R 1 to R 11 are bonded to each other to a.
  • Aryl ring or heteroaryl ring may be formed together with the ring, b ring or c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino. Alternatively, it may be substituted with alkyl, at least one hydrogen in these may be further substituted with aryl, heteroaryl, diarylamino or alkyl, and at least one hydrogen in the compound represented by the formula (H5). , Each may be independently substituted with halogen or heavy hydrogen. As R 1 to R 11 of the formula (H5), the description of the first substituent and the second substituent substituting the first substituent can be cited.
  • a compound represented by any of the following formulas (H-1), (H-2) and (H-3) can also be used.
  • L 1 is an arylene having 6 to 24 carbon atoms, a heteroarylene having 2 to 24 carbon atoms, a heteroarylene allylene having 6 to 24 carbon atoms and It is an arylene heteroarylene arylene having 6 to 24 carbon atoms, preferably an arylene having 6 to 16 carbon atoms, more preferably an arylene having 6 to 12 carbon atoms, and particularly preferably an arylene having 6 to 10 carbon atoms. Examples thereof include divalent groups such as a benzene ring, a biphenyl ring, a terphenyl ring and a fluorene ring.
  • heteroarylene a heteroarylene having 2 to 24 carbon atoms is preferable, a heteroarylene having 2 to 20 carbon atoms is more preferable, a heteroarylene having 2 to 15 carbon atoms is further preferable, and a heteroarylene having 2 to 10 carbon atoms is particularly preferable.
  • the host compound is preferably a compound represented by any of the structural formulas listed below.
  • at least one hydrogen may be substituted with halogen, cyano, alkyl having 1 to 4 carbon atoms (for example, methyl or t-butyl), phenyl or naphthyl.
  • Fluorescent material (emitting dopant)
  • an emulating dopant (emitting dopant in a TAF element) may be used as an additional component of the light emitting layer.
  • the additional component is used for the purpose of narrowing the emission spectrum, improving the color, or extending the life.
  • the emitting dopant of the present invention is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color.
  • fused ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene and chrysen, benzoxazole derivatives, benzothiazole derivatives, benzoimidazole derivatives, benzotriazole derivatives, oxazoles.
  • Bistylyl derivatives such as derivatives, oxadiazol derivatives, thiazole derivatives, imidazole derivatives, thiadiazol derivatives, triazole derivatives, pyrazoline derivatives, stillben derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and distyrylbenzene derivatives.
  • bisstyrylallylen derivative Japanese Patent Laid-Open No.
  • diazaindacene derivative furan derivative, benzofuran derivative, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) Isobenzofuran derivatives such as isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, phenylisobenzofuran, dibenzofuran derivatives, 7-dialkylaminocoumarin derivatives, 7-piperidinocoumarin derivatives, 7-hydroxycoumarin derivatives, 7- Cumarin derivatives such as methoxycoumarin derivatives, 7-acetoxycoumarin derivatives, 3-benzothiazolylcoumarin derivatives, 3-benzoimidazolylcoumarin derivatives, 3-benzoxazolylcoumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, polymethine Derivatives, cyanine derivatives, oxobenzoanthracene derivative
  • aromatic hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, inden, and chrysen and their derivatives, furan, pyrrole, thiophene, etc.
  • Aromatic complexes such as silol, 9-silafluorene, 9,9'-spirobisilafluolene, benzothiophene, benzofuran, indol, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthylidine, quinoxalin, pyrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stillben derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiadiazol, carbazole, oxazole, oxadiazol, triazole and other azole derivatives and their metal complexes and N , N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine
  • green to yellow dopant material examples include a coumarin derivative, a phthalimide derivative, a naphthalimide derivative, a perinone derivative, a pyrolopyrrole derivative, a cyclopentadiene derivative, an acridone derivative, a quinacridone derivative, a naphthacene derivative such as rubrene, and the like.
  • a preferable example is a compound in which a substituent capable of lengthening the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, is introduced into the compound exemplified as the blue-green dopant material.
  • naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic acidimide, perinone derivatives, rare earth complexes such as Eu complex having acetylacetone, benzoylacetone and phenanthroline as ligands, and 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone.
  • a preferable example is a compound in which a substituent capable of lengthening the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, is introduced into the compound.
  • An amine having a stilbene structure is represented by, for example, the following formula.
  • Ar 1 is an m-valent group derived from an aryl having 6 to 30 carbon atoms
  • Ar 2 and Ar 3 are independently aryls having 6 to 30 carbon atoms, but Ar 1 to Ar. At least one of 3 has a stillben structure, Ar 1 to Ar 3 may be substituted, and m is an integer of 1 to 4.
  • the amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
  • Ar 2 and Ar 3 are independently aryls having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
  • aryls having 6 to 30 carbon atoms are benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluorene, triphenylene, pyrene, chrysene, naphthalene, perylene, stilben, distyrylbenzene, distyrylbiphenyl, and distyryl.
  • Fluorene can be mentioned.
  • amines having a stilbene structure are N, N, N', N'-tetra (4-biphenylyl) -4,4'-diaminostilbene, N, N, N', N'-tetra (1-naphthyl).
  • perylene derivative examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, and 3,4-.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, JP-A-2001-217077, and the like may be used.
  • Examples of the compound used as the emitting dopant include compounds containing a boron atom, for example, a borane derivative, a dioxaboronaftanthracene (DOBNA) derivative and a multimer thereof, a diazaboronaftanthracene (DABNA) derivative and the like.
  • a boron atom for example, a borane derivative, a dioxaboronaftanthracene (DOBNA) derivative and a multimer thereof, a diazaboronaftanthracene (DABNA) derivative and the like.
  • DOBNA dioxaboronaftanthracene
  • DABNA diazaboronaftanthracene
  • Multimers oxavolanaft anthracene (OABNA) derivatives and their multimers, oxabolanaft anthracene (OBNA) derivatives and their multimers, azaboranaft anthracene (ABNA) derivatives and their multimers, trioxaborazibenzopyrene derivatives and Examples thereof include the multimer, the dioxaazabora benzopyrene derivative and its multimer, the oxadiazabora benzopyrene derivative and its multimer, and the like.
  • borane derivatives include 1,8-diphenyl-10- (dimethylboryl) anthracene, 9-phenyl-10- (dimethylboryl) anthracene, 4- (9'-anthril) dimesitytylborylnaphthalene, and 4- (10').
  • the aromatic amine derivative is represented by, for example, the following formula.
  • Ar 4 is an n-valent group derived from an aryl having 6 to 30 carbon atoms
  • Ar 5 and Ar 6 are independently aryls having 6 to 30 carbon atoms
  • Ar 4 to Ar 6 are independently. It may be substituted and n is an integer from 1 to 4.
  • Ar 4 is a divalent group derived from anthracene, chrysene, fluorene, benzofluorene or pyrene
  • Ar 5 and Ar 6 are independently aryls having 6 to 30 carbon atoms
  • Ar 4 to Ar 6 are respectively. May be substituted, and n is 2, aromatic amine derivatives are more preferred.
  • aryls having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorenephenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthalene, perylene, and pentacene.
  • aromatic amine derivative as a chrysen system, for example, N, N, N', N'-tetraphenylcrisen-6,12-diamine, N, N, N', N'-tetra (p-tolyl) Chrysen-6,12-diamine, N, N, N', N'-tetra (m-tolyl) Chrysen-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysen -6,12-diamine, N, N, N', N'-tetra (naphthalen-2-yl) chrysen-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) ) Chrysen-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) ) Chrysen-6,12
  • N, N, N', N'-tetraphenylpyrene-1,6-diamine N, N, N', N'-tetra (p-tolyl) pyrene-1,6 -Diamine
  • N, N, N', N'-tetra (m-tolyl) pyrene-1,6-diamine N, N, N', N'-tetrakis (4-isopropylphenyl) pyrene-1,6- Diamine
  • the anthracene system includes, for example, N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N', N'-tetra (p-tolyl) anthracene-9,10-diamine.
  • the indolocarbazole derivative is a compound represented by the following formula (IDC1). Specific examples thereof include compounds having the following partial structures (IDC11), (IDC12) and (IDC13).
  • IDC1 In the formula (IDC1) below, Z is CR A or N, and ⁇ 1 and ⁇ 2 are independently substituted or unsubstituted aromatic hydrocarbons having 6 to 50 carbon atoms or substituted or substituted, respectively.
  • an unsubstituted aromatic heterocyclic ring carbon atoms 5 ⁇ 50, R a, R B and R C are hydrogen and any substituent, n and m are each independently an integer of 1 to 4 There, two adjacent R a, may form R B and R C are substituted or unsubstituted ring structure bonded to each other. More specifically, the formulas (IDC121), (IDC131), (IDC132), (IDC133), (IDC134) and the like can be mentioned.
  • Examples of the coumarin derivative include coumarin-6 and coumarin-334. Further, the coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, JP-A-6-298758 and the like may be used.
  • Examples of the pyran derivative include the following DCM and DCJTB. Further, JP-A-2005-126399, JP-A-2005-097283, JP-A-2002-234892, JP-A-2001-220577, JP-A-2001-081090, and JP-A-2001-052869. The pyran derivative described in the above may be used.
  • the phosphor used in the present invention is preferably a compound having a boron atom.
  • dioxaboronaftanthracene (DOBNA) derivative and its multimer diazaboronaftanthracene (DABNA) derivative and its multimer
  • oxaazaboronaftanthracene (OABNA) derivative and Examples thereof include the multimer, an oxabolanaft anthracene (OBNA) derivative and its multimer, and an azaboronaft anthracene (ABNA) derivative and its multimer.
  • DOBNA dioxaboronaftanthracene
  • DABNA diazaboronaftanthracene
  • OABNA oxaazaboronaftanthracene
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 9 , R 10 and R 11 are independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, respectively.
  • Aryloxy, or diallylboryl two aryls may be attached via a single bond or a linking group), which may be further substituted with aryl, heteroaryl or alkyl, and R 1 Adjacent groups of ⁇ R 3 , R 4 to R 6 and R 9 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring.
  • the rings are substituted with aryl, heteroaryl, diallylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group). Also, these may be further substituted with aryl, heteroaryl or alkyl, X is> O or> N-R, and R and R 13 of said> N-R are aryl, heteroaryl or alkyl, which may be substituted with aryl, heteroaryl or alkyl. However, when X is an amino group, R 2 does not become an amino group, And At least one hydrogen in the compound and structure represented by the formula (ED1) may be substituted with cyano, halogen or deuterium. )
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are independent hydrogen, respectively.
  • Aryl rings or heteroaryl rings may be formed with rings b, c or d, and the formed rings are aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl ( The two aryls may be substituted with a single bond or a linking group), and these may be further substituted with aryl, heteroaryl or alkyl.
  • X is> O or> N-R
  • said R of> N-R is aryl, heteroaryl or alkyl, which may be substituted with aryl, heteroaryl or alkyl.
  • L is a single bond,> CR 2 ,>O,> S and> N-R
  • R in the above> CR 2 and> N-R are independently hydrogen, aryl, heteroaryl, and diarylamino.
  • At least one hydrogen in the compound and structure represented by the formula (ED1') may be substituted with cyano, halogen or deuterium.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are independent hydrogen, respectively.
  • R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with a b ring or a d ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, or diaryl.
  • X 1 , X 2 , X 3 and X 4 are independently>O,> NR or> CR 2 , and the R of> NR and the R of> CR 2 have 6 carbon atoms.
  • At least one hydrogen in the structure represented by ED271) is independently aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diarylboryl (two aryls are single bond or linking groups). They may be substituted with (may be attached via), and these may be further substituted with aryl, heteroaryl or alkyl.
  • the phosphor as an additional component is preferably a compound having at least one substituent selected from the following substituent group B, and formulas (ED11) to (ED19) and (ED21) to (ED27).
  • the compound has a structure in which at least one structure selected from the substituent group B is bonded to the benzene ring (including the benzene ring constituting the condensed ring).
  • the substituent group B is bonded to the benzene ring (including the benzene ring constituting the condensed ring).
  • "Me” represents methyl
  • "tBu” represents t-butyl
  • "tAm” represents t-amyl
  • tOct represents t-octyl
  • * represents the binding position.
  • the assisting dopant that can be used when the compound of the present invention is used as an emtituting dopant (ED) in a TAF element includes an electron-donating substituent called a donor and an acceptor. Localize HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) in the molecule using so-called electron-accepting substituents so that efficient reverse intersystem crossing occurs. It is preferably a donor-acceptor type TADF compound (DA type TADF compound) designed in.
  • DA type TADF compound donor-acceptor type TADF compound
  • the term "electron-donating substituent” (donor) as used herein means a substituent and a partial structure in which the HOMO orbital is localized in the TADF compound molecule, and means “electron-accepting substituent”.
  • group (acceptor) means a substituent and a partial structure in which the LUMO orbital is localized in the TADF compound molecule.
  • SOC spin-orbit coupling
  • ST small ⁇ E
  • TADF compounds using donors and acceptors have greater structural relaxation in the excited state (for some molecules, the stable structure differs between the ground state and the excited state, so conversion from the ground state to the excited state by an external stimulus is performed. After that, the structure changes to a stable structure in the excited state), and since it gives a wide emission spectrum, it may reduce the color purity when used as a light emitting material.
  • a compound in which a donor and an acceptor are directly bonded or via a spacer can be used.
  • the donor-like and acceptor-like structures used in the heat-activated delayed phosphor for example, the structures described in Chemistry of Materials, 2017, 29, 1946-1963 can be used.
  • carbazole dimethylcarbazole, di-tert-butylcarbazole, dimethoxycarbazole, tetramethylcarbazole, benzofluorocarbazole, benzothienocarbazole, phenyldihydroindrocarbazole, phenylbicarbazole, bicarbazole, turcarbazole , Diphenylcarbazolylamine, tetraphenylcarbazolyldiamine, phenoxazine, dihydrophenazine, phenothiazine, dimethyldihydroacrine, diphenylamine, bis (tert-butyl) phenylamine, (diphenylamino) phenyldiphenylbenzenediamine, dimethyltetraphenyldihydroaclydin
  • Examples include diamine, tetramethyl-dihydro-indenoaclydin and diphenyl-dihydrodi
  • Acceptable structures include sulfonyldibenzene, benzophenone, phenylenebis (phenylmethanone), benzonitrile, isonicotinonitrile, phthalonitrile, isophthalonitrile, paraphthalonitrile, benzenetricarbonitrile, triazole, oxazole, and thiaxazole.
  • Benzenethiazole benzobis (thiazole), benzoxazole, benzobis (oxazole), quinoline, benzoimidazole, dibenzoquinoxaline, heptaazaphenalene, thioxanthonedioxide, dimethylanthracenone, anthracendione, cycloheptabipyridine, full orange carbonitrile, Triphenyltriazine, pyrazinedicarbonitrile, pyrimidine, phenylpyrimidine, methylpyrimidine, pyridinedicarbonitrile, dibenzoquinoxaline dicarbonitrile, bis (phenylsulfonyl) benzene, dimethylthioxanthene dioxide, thianslentetraoxide and tris (dimethylphenyl) ) Benzene is mentioned.
  • the compound having the thermoactive delayed fluorescence of the present invention has, as a partial structure, carbazole, phenoxazine, aclysine, triazine, pyrimidine, pyrazine, thioxanthene, benzonitrile, phthalonitrile, isophthalonitrile, diphenylsulfone, triazole, It is preferably a compound having at least one selected from oxadiazole, thiaziazole and benzophenone.
  • the compound used as the assisting dopant is preferably a thermally active delayed phosphor, and the emission spectrum thereof preferably overlaps at least a part of the absorption peak of the emitting dopant.
  • compounds that can be used as the assisting dopant for the light emitting layer of the present invention will be exemplified.
  • the compound that can be used as an assisting dopant in the present invention is not limitedly interpreted by the following exemplified compounds, and in the following formula, Me represents methyl and t-Bu represents t-butyl. , Ph represents phenyl, and wavy lines represent bonding positions.
  • heat-activated delayed phosphor a compound represented by any of the following formulas (AD1), (AD2) and (AD3) can also be used.
  • M are independently single-bonded, -O-,> N-Ar or> CAR 2 , and are of the HOMO depth and excited singlet energy level and excited triplet energy level of the substructure to be formed. From a height standpoint, it is preferably single bond, —O— or> N—Ar.
  • J is a spacer structure that separates the donor substructure and the acceptor substructure, each of which is an arylene having 6 to 18 carbon atoms, and is a conjugate that exudes from the donor substructure and the acceptor substructure. From the viewpoint of the size of the acceptor, an acceptor having 6 to 12 carbon atoms is preferable.
  • phenylene, methylphenylene and dimethylphenylene can be mentioned.
  • Ar is a partial structure formed independently of hydrogen, an aryl having 6 to 24 carbon atoms, a heteroaryl having 2 to 24 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 18 carbon atoms.
  • hydrogen an aryl having 6 to 12 carbon atoms, a heteroaryl having 2 to 14 carbon atoms, and a carbon number of carbon atoms are preferable. It is an alkyl of 1 to 4 or a cycloalkyl of 6 to 10 carbon atoms, more preferably hydrogen, phenyl, tolyl, xylyl, mesityl, biphenyl, pyridyl, bipyridyl, triazil, carbazolyl, dimethylcarbazolyl, di-tert-butyl.
  • m is 1 or 2.
  • n is an integer of 2 to (6-m), and is preferably an integer of 4 to (6-m) from the viewpoint of steric hindrance.
  • at least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
  • the compound used as the second component of the light emitting layer of the present invention is 4CzBN, 4CzBN-Ph, 5CzBN, 3Cz2DPhCzBN, 4CzIPN, 2PXZ-TAZ, Cz-TRZ3, BDPCC-TPTA, MA-TA, PA.
  • -TA, FA-TA, PXZ-TRZ, DMAC-TRZ, BCzT, DCzTrz, DDCzTRz, spiroAC-TRZ, Ac-HPM, Ac-PPM, Ac-MPM, TCzTrz, TmCzTrz and DCzmCzTrz are preferable.
  • the electron injection layer and the electron transport layer in the organic electroluminescent device plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting the electrons injected from the cathode 108 or the electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are formed by laminating and mixing one or more kinds of electron transport / injection materials, respectively.
  • the electron transport layer 106 and the electron injection layer 107 may be formed by a mixture of the electron transport / injection material and the polymer binder.
  • the electron injection / transport layer is a layer in which electrons are injected from the cathode and is in charge of further transporting electrons. It is desirable that the electron injection efficiency is high and the injected electrons are efficiently transported. For that purpose, it is preferable that the substance has a high electron affinity, a high electron mobility, excellent stability, and is less likely to generate trap impurities during production and use. However, when considering the transport balance between holes and electrons, the electron transport capacity is so high when it mainly plays a role of efficiently blocking the holes from the anode from flowing to the cathode side without recombination. Even if it is not high, it has the same effect of improving luminous efficiency as a material having high electron transport capacity. Therefore, the electron injection / transport layer in the present embodiment may also include the function of a layer capable of efficiently blocking the movement of holes.
  • the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107 it is used as a compound conventionally used as an electron transfer compound in a photoconductive material, an electron injection layer and an electron transport layer of an organic EL element. It can be arbitrarily selected and used from the known compounds known.
  • the material used for the electron transport layer or the electron injection layer is a compound composed of an aromatic ring or a complex aromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus. It is preferable to contain at least one selected from a pyrrole derivative, a condensed ring derivative thereof, and a metal complex having an electron-accepting nitrogen.
  • a pyrrole derivative such as naphthalene and anthracene
  • styryl-based aromatic ring derivatives typified by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, and naphthalimide derivatives.
  • Kinone derivatives such as anthraquinone and diphenoquinone, phosphine oxide derivatives, arylnitrile derivatives and indole derivatives.
  • metal complex having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes. These materials may be used alone, but may be mixed with different materials.
  • electron transfer compounds include borane derivatives, pyridine derivatives, naphthalene derivatives, fluorantene derivatives, BO-based derivatives, anthracene derivatives, benzofluorene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, and anthraquinone derivatives.
  • Diphenoquinone derivative Diphenylquinone derivative, Perylene derivative, Oxaziazole derivative (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene, etc.), Thiophen derivative, Triazole derivative (N- Naphthyl-2,5-diphenyl-1,3,4-triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol-based metal complexes, quinoxalin derivatives, quinoxalin derivative polymers, benzazole compounds, gallium complexes, pyrazole derivatives, Perfluoroylated phenylene derivative, triazine derivative, pyrazine derivative, benzoquinoline derivative (2,2'-bis (benzo [h] quinoline-2-yl) -9,9'-spirobifluorene, etc.), imidazole pyridine derivative, benzo Imidazole derivatives
  • a metal complex having electron-accepting nitrogen can also be used.
  • hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes can be used. Can be mentioned.
  • the above-mentioned materials can be used alone, but they may be mixed with different materials.
  • borane derivatives pyridine derivatives, fluorantene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, arylnitrile derivatives, triazine derivatives, benzoimidazole derivatives, phenanthroline derivatives, and quinolinol derivatives Metal derivatives are preferred.
  • the borane derivative is, for example, a compound represented by the following formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, respectively. At least one of the rings, or cyanos, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively.
  • X are optionally substituted arylene
  • Y is optionally substituted aryl having 16 or less carbon atoms, substituted boron, or optionally substituted carbazolyl, and n.
  • substituent in the case of "may be substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen, respectively. At least one of the containing heterocycles, or cyano, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively. R 21 and R 22 are independently of hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano.
  • X 1 is an arylene having 20 or less carbon atoms which may be substituted
  • n is an integer of 0 to 3 independently
  • m is 0 to 4 independently. Is an integer of.
  • substituent in the case of “may be substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen, respectively. At least one of the contained heterocycles, or cyano, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively.
  • X 1 is an arylene having 20 or less carbon atoms which may be substituted, and n is an integer of 0 to 3 independently.
  • substituent in the case of "may be substituted” or "substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9).
  • Ra is an independently alkyl, cycloalkyl or optionally substituted phenyl, and * represents the bond position.
  • this borane derivative include the following compounds.
  • This borane derivative can be produced by using a known raw material and a known synthesis method.
  • the pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by the formula (ETM-2-1) or the formula (ETM-2-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), and cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms). ) Or aryl (preferably aryl with 6 to 30 carbon atoms).
  • R 11 and R 12 are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), and cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms). ) Or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may be bonded to form a ring.
  • the "pyridine-based substituent” is any of the following formulas (Py-1) to (Py-15) (* in the formula represents a bond position), and the pyridine-based substituent is Each may be independently substituted with an alkyl having 1 to 4 carbon atoms. Further, the pyridine-based substituent may be bonded to ⁇ , anthracene ring or fluorene ring in each formula via a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among these, any of the following formulas (Py-21) to (Py-44) (formula). * In the inside represents the bonding position.).
  • At least one hydrogen in each pyridine derivative may be substituted with deuterium, and of the two "pyridine-based substituents" in the above formula (ETM-2-1) and formula (ETM-2-2). One may be replaced with aryl.
  • the "alkyl” in R 11 to R 18 may be either a straight chain or a branched chain, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched chain alkyl having 3 to 24 carbon atoms.
  • a preferred “alkyl” is an alkyl having 1 to 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 6 carbon atoms (branched chain alkyl having 3 to 6 carbon atoms).
  • a particularly preferable “alkyl” is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms).
  • alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl,
  • alkyl having 1 to 4 carbon atoms to be substituted with the pyridine-based substituent As the above description of the alkyl can be cited.
  • Examples of the "cycloalkyl” in R 11 to R 18 include cycloalkyl having 3 to 12 carbon atoms.
  • a preferred “cycloalkyl” is a cycloalkyl having 3 to 10 carbon atoms.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 8 carbon atoms.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • a preferable aryl is an aryl having 6 to 30 carbon atoms
  • a more preferable aryl is an aryl having 6 to 18 carbon atoms
  • Yes and particularly preferably an aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl, which is a monocyclic aryl, (1-, 2-) naphthyl, which is a fused dicyclic aryl, and acenaphthylene-, which is a condensed tricyclic aryl.
  • Preferred "aryls having 6 to 30 carbon atoms" include phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl, and more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, and particularly preferably phenyl, 1 Includes -naphthyl or 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may be combined to form a ring, and as a result, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, etc. are included in the 5-membered ring of the fluorene skeleton. Cyclohexane, fluorene, indene and the like may be spiro-bonded.
  • this pyridine derivative include the following compounds.
  • This pyridine derivative can be produced by using a known raw material and a known synthesis method.
  • the fluoranthene derivative is, for example, a compound represented by the following formula (ETM-3), and is disclosed in detail in International Publication No. 2010/134352.
  • X 12 to X 21 are hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted hetero.
  • examples of the substituent when substituted include aryl, heteroaryl, alkyl, cycloalkyl and the like.
  • this fluoranthene derivative include the following compounds.
  • Me represents methyl.
  • the BO derivative is, for example, a multimer of a polycyclic aromatic compound represented by the following formula (ETM-4) or a polycyclic aromatic compound having a plurality of structures represented by the following formula (ETM-4).
  • R 61 to R 71 are independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls). It may be attached via a single bond or a linking group), and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • adjacent groups of R 61 to R 71 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring.
  • Aryl, Heteroaryl, Diarylamino, Diheteroarylamino, Arylheteroarylamino, Alkyl, Cycloalkyl, Aryl, Aryloxy, or Arylboryl (even if the two aryls are attached via a single bond or a linking group) It may be substituted with (may), and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • At least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
  • this BO-based derivative include the following compounds.
  • This BO-based derivative can be produced by using a known raw material and a known synthesis method.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
  • Ar is independently divalent benzene or naphthalene, and R 1 to R 4 are independently hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or carbon number of carbon atoms. 6 to 20 aryls.
  • Ar can be independently selected from divalent benzene or naphthalene, and the two Ars may be different or the same, but they are the same from the viewpoint of ease of synthesis of the anthracene derivative. Is preferable.
  • Ar binds to pyridine to form a "site consisting of Ar and pyridine", and this site is anthracene as a group represented by any of the following formulas (Py-1) to (Py-12), for example. Is bound to. * In the formula below represents the bond position.
  • the group represented by any of the formulas (Py-1) to (Py-9) is preferable, and the group is represented by any of the formulas (Py-1) to (Py-6).
  • Groups are more preferred.
  • the two "sites composed of Ar and pyridine" that bind to anthracene may have the same or different structures, but are preferably the same structure from the viewpoint of ease of synthesis of the anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the structures of the two "sites composed of Ar and pyridine" are the same or different.
  • the alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be either a straight chain or a branched chain. That is, it is a straight chain alkyl having 1 to 6 carbon atoms or a branched chain alkyl having 3 to 6 carbon atoms. More preferably, it is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms).
  • Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, Examples thereof include 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl. , Methyl, ethyl, or t-butyl is more preferred.
  • cycloalkyl having 3 to 6 carbon atoms in R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl.
  • the aryl having 6 to 20 carbon atoms in R 1 to R 4 the aryl having 6 to 16 carbon atoms is preferable, the aryl having 6 to 12 carbon atoms is more preferable, and the aryl having 6 to 10 carbon atoms is particularly preferable.
  • aryl having 6 to 20 carbon atoms include phenyl, which is a monocyclic aryl, (o-, m-, p-) trill, and (2,3-,2,4-,2,5-). , 2,6-, 3,4-, 3,5-) xsilyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl, bicyclic aryl (2) -, 3-, 4-) Biphenylyl, fused bicyclic aryl (1-, 2-) naphthyl, tricyclic aryl terphenyl (m-terphenyl-2'-yl, m-terphenyl-4) '-Il, m-terphenyl-5'-il, o-terphenyl-3'-il, o-terphenyl-4'-il, p-terphenyl-2'-il, m-terphenyl-2 -Il, m-terphenyl
  • Preferred "aryl of 6-20 carbons" are phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5'-yl. More preferably, it is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, and most preferably phenyl.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
  • Ar 1 is independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
  • Ar 2 is an aryl having 6 to 20 carbon atoms independently, and the same explanation as “aryl having 6 to 20 carbon atoms” in the formula (ETM-5-1) can be quoted.
  • Aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
  • Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaftyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetrasenyl, perylenyl and the like.
  • R 1 to R 4 are independently hydrogen, an alkyl having 1 to 6 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms, and are represented by the formula (ETM-5-1). The explanation can be quoted.
  • anthracene derivatives include the following compounds.
  • the benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
  • Ar 1 is an aryl having 6 to 20 carbon atoms independently, and the same explanation as “aryl having 6 to 20 carbon atoms” in the formula (ETM-5-1) can be quoted.
  • Aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
  • Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaftyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetrasenyl, perylenyl and the like.
  • Ar 2 is independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably aryl having 6 to 30 carbon atoms). ), and the two Ar 2 may form a ring.
  • the "alkyl” in Ar 2 may be either a straight chain or a branched chain, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched chain alkyl having 3 to 24 carbon atoms.
  • a preferred “alkyl” is an alkyl having 1 to 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms).
  • a more preferable “alkyl” is an alkyl having 1 to 6 carbon atoms (branched chain alkyl having 3 to 6 carbon atoms).
  • alkyl is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms).
  • Specific “alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like can be mentioned.
  • Examples of the "cycloalkyl” in Ar 2 include cycloalkyl having 3 to 12 carbon atoms.
  • a preferred “cycloalkyl” is a cycloalkyl having 3 to 10 carbon atoms.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 8 carbon atoms.
  • a more preferable “cycloalkyl” is a cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • a preferable aryl is an aryl having 6 to 30 carbon atoms
  • a more preferable aryl is an aryl having 6 to 18 carbon atoms
  • aryl having 6 to 30 carbon atoms include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentasenyl and the like.
  • Two Ar 2 may form a ring, as a result, the 5-membered ring of the fluorene skeleton, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene or indene are spiro-linked You may.
  • This benzofluorene derivative can be produced by using a known raw material and a known synthesis method.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). Details are also described in International Publication No. 2013/07927 and International Publication No. 2013/079678.
  • R 5 is a substituted or unsubstituted alkyl of 1 to 20 carbon atoms, heteroaryl of aryl or 5 to 20 carbon atoms of 6 to 20 carbon atoms
  • R 6 is CN, substituted or unsubstituted, alkyl having 1 to 20 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, heteroaryl having 5 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • 20 alkoxy or aryloxy with 6 to 20 carbon atoms, R 7 and R 8 are independently substituted or unsubstituted aryls having 6 to 20 carbon atoms or heteroaryls having 5 to 20 carbon atoms, respectively.
  • R 9 is oxygen or sulfur j is 0 or 1
  • k is 0 or 1
  • r is an integer of 0-4, and q is an integer of 1-3.
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 may be the same or different, hydrogen, alkyl, cycloalkyl, aralkyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, arylether group, arylthioether group, aryl, heterocyclic group, halogen. , Cyano, aldehyde, carbonyl, carboxyl, amino, nitro, silyl, and fused rings formed between adjacent substituents.
  • Ar 1 may be the same or different and is an arylene or heteroaryl group
  • Ar 2 may be the same or different and is an aryl or heteroaryl.
  • at least one of Ar 1 and Ar 2 has a substituent or forms a fused ring with an adjacent substituent.
  • n is an integer of 0 to 3, and when n is 0, the unsaturated structure portion does not exist, and when n is 3, R 1 does not exist.
  • alkyl means, for example, a saturated aliphatic hydrocarbon group such as methyl, ethyl, propyl, butyl, etc., which may be unsubstituted or substituted.
  • the substituent when substituted is not particularly limited, and examples thereof include alkyl, aryl, and heterocyclic groups, and this point is also common to the following description.
  • the number of carbon atoms of the alkyl is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
  • cycloalkyl means, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may be substituted or substituted.
  • the number of carbon atoms in the alkyl moiety is not particularly limited, but is usually in the range of 3 to 20.
  • aralkyl refers to an aromatic hydrocarbon group mediated by an aliphatic hydrocarbon such as benzyl or phenylethyl, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be substituted or substituted. Absent.
  • the carbon number of the aliphatic portion is not particularly limited, but is usually in the range of 1 to 20.
  • alkenyl indicates an unsaturated aliphatic hydrocarbon group containing a double bond such as vinyl, allyl, butadienyl, etc., which may be substituted or substituted.
  • the carbon number of the alkenyl is not particularly limited, but is usually in the range of 2 to 20.
  • cycloalkenyl refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl, a cyclopentadienyl, or a cyclohexenyl group, which may be unsubstituted or substituted. ..
  • alkynyl indicates an unsaturated aliphatic hydrocarbon group containing a triple bond such as acetylenyl, which may be unsubstituted or substituted.
  • the carbon number of alkynyl is not particularly limited, but is usually in the range of 2 to 20.
  • the alkoxy indicates an aliphatic hydrocarbon group via an ether bond such as methoxy, and the aliphatic hydrocarbon group may be substituted or substituted.
  • the number of carbon atoms of the alkoxy is not particularly limited, but is usually in the range of 1 to 20.
  • Alkoxythio is a group in which the oxygen atom of the ether bond of alkoxy is replaced with a sulfur atom.
  • aryl ether group indicates, for example, an aromatic hydrocarbon group via an ether bond such as phenoxy, and the aromatic hydrocarbon group may be substituted or substituted.
  • the number of carbon atoms of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is replaced with a sulfur atom.
  • Aryl means, for example, an aromatic hydrocarbon group such as phenyl, naphthyl, biphenylyl, phenanthryl, terphenylyl, and pyrenyl.
  • Aryl may be unsubstituted or substituted.
  • the number of carbon atoms of the aryl is not particularly limited, but is usually in the range of 6 to 40.
  • heterocyclic group refers to a cyclic structural group having an atom other than carbon such as furanyl, thiophenyl, oxazolyl, pyridyl, quinolinyl, and carbazolyl, which may be unsubstituted or substituted.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
  • Halogen refers to fluorine, chlorine, bromine, and iodine.
  • Aldehydes, carbonyls, and aminos can also contain groups substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocycles, and the like.
  • aliphatic hydrocarbons may be substituted or substituted.
  • alicyclic hydrocarbons may be substituted or substituted.
  • aromatic hydrocarbons may be substituted or substituted.
  • heterocycles may be substituted or substituted.
  • the silyl indicates a silicon compound group such as trimethylsilyl, which may be unsubstituted or substituted.
  • the carbon number of silyl is not particularly limited, but is usually in the range of 3 to 20.
  • the number of silicon is usually 1 to 6.
  • the fused rings formed between the adjacent substituents are, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , and Ar 1 . It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like.
  • n when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other.
  • These fused rings may contain nitrogen, oxygen, and sulfur atoms in the ring structure, or may be condensed with another ring.
  • this phosphine oxide derivative include the following compounds.
  • This phosphine oxide derivative can be produced by using a known raw material and a known synthesis method.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). Details are also described in International Publication No. 2011/021689.
  • Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl of the “optionally substituted aryl” examples include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl.
  • Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine
  • Pteridinyl carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatiinyl, thiantranyl, indridinyl and the like.
  • aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
  • this pyrimidine derivative include the following compounds.
  • This pyrimidine derivative can be produced by using a known raw material and a known synthesis method.
  • the arylnitrile derivative is, for example, a compound represented by the following formula (ETM-9), or a multimer in which a plurality of the compounds are bonded by a single bond or the like. Details can be found in US Application Publication No. 2014/0197386.
  • Ar ni preferably has a large number of carbon atoms from the viewpoint of fast electron transportability, and preferably has a small number of carbon atoms from the viewpoint of high T1.
  • Ar ni is preferably a high T1 for use in a layer adjacent to the light emitting layer, is an aryl having 6 to 20 carbon atoms, and is preferably an aryl having 6 to 14 carbon atoms, more preferably. It is an aryl having 6 to 10 carbon atoms.
  • the number of nitrile substitutions n is preferably large from the viewpoint of high T1 and preferably small from the viewpoint of high S1.
  • the number of substitutions n of nitrile is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, and even more preferably 1.
  • Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other. From the viewpoint of high S1 and high T1, donor heteroaryls are preferable, and donor heteroaryls are preferably small because they are used as an electron transport layer. From the viewpoint of charge transportability, aryl or heteroaryl having a large number of carbon atoms is preferable, and it is preferable to have a large number of substituents. Specifically, the number of substitutions m of Ar is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1 to 2.
  • aryl of the “optionally substituted aryl” examples include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl.
  • Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine
  • Pteridinyl carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatinyl, thiantranyl, indridinyl and the like.
  • aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
  • the arylnitrile derivative may be a multimer in which a plurality of compounds represented by the formula (ETM-9) are bonded by a single bond or the like.
  • an aryl ring preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring
  • an aryl ring preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring
  • this arylnitrile derivative include the following compounds.
  • This arylnitrile derivative can be produced using a known raw material and a known synthesis method.
  • the triazine derivative is, for example, a compound represented by the following formula (ETM-10), preferably a compound represented by the following formula (ETM-10-1). Details are described in US Publication No. 2011/015601.
  • Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl of the “optionally substituted aryl” examples include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl.
  • Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine
  • Pteridinyl carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatiinyl, thiantranyl, indridinyl and the like.
  • aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
  • this triazine derivative include the following compounds.
  • This triazine derivative can be produced using a known raw material and a known synthesis method.
  • the benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenanthrene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4.
  • benzimidazole-based substituent pyridyl in the "pyridine-based substituent” in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2) is changed to benzimidazolyl. It is a substituted substituent, and at least one hydrogen in the benzimidazole derivative may be substituted with fluorene.
  • R 11 in the benzoimidazolyl is a hydrogen, an alkyl having 1 to 24 carbon atoms, a cycloalkyl having 3 to 12 carbon atoms, or an aryl having 6 to 30 carbon atoms, and is the above formula (ETM-2-1) and the formula (ETM-). It may be cited to the description of R 11 in 2-2).
  • is further preferably an anthracene ring or a fluorene ring, and the structure in this case can be quoted from the above formula (ETM-2-1) or the above formula (ETM-2-2).
  • R 11 to R 18 in the formula the description in the above formula (ETM-2-1) or the formula (ETM-2-2) can be quoted.
  • two pyridine-based substituents are described in a bonded form, but when these are replaced with benzoimidazole-based substituents, both are used.
  • this benzoimidazole derivative include 1-phenyl-2- (4- (10-phenylanthracene-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (10-). Naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracene-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4) -(10- (Naphthalen-2-yl) anthracene-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-(2-
  • This benzimidazole derivative can be produced using a known raw material and a known synthetic method.
  • the phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or formula (ETM-12-1). Details are described in International Publication No. 2006/021982.
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 of each formula are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably carbon). The number 6 to 30 aryl). Further, in the above formula (ETM-12-1), any one of R 11 to R 18 is bonded to ⁇ which is an aryl ring.
  • At least one hydrogen in each phenanthroline derivative may be replaced with deuterium.
  • R 11 ⁇ R 18, cycloalkyl and aryl may be cited to the description of R 11 ⁇ R 18 in the formula (ETM-2). Further, for ⁇ , in addition to the above-mentioned example, for example, the following structural formula can be mentioned.
  • R in the following structural formula is hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl independently, and * represents a bond position.
  • this phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-).
  • Phenanthroline-2-yl) anthracene 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9' -Difluol-bis (1,10-phenanthroline-5-yl), vasocproin and 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene can be mentioned.
  • This phenanthroline derivative can be produced using a known raw material and a known synthetic method.
  • the quinolinol-based metal complex is, for example, a compound represented by the following formula (ETM-13).
  • R 1 to R 6 are hydrogens or substituents
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol-based metal complex examples include 8-quinolinol lithium, tris (8-quinolinolate) aluminum, tris (4-methyl-8-quinolinolate) aluminum, tris (5-methyl-8-quinolinolate) aluminum, and tris (3).
  • This quinolinol-based metal complex can be produced by using a known raw material and a known synthesis method.
  • At least one of the electron transport layer and the electron injection layer may contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • this reducing substance various substances are used as long as they have a certain reducing property.
  • alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkali From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes At least one selected can be preferably used.
  • Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2.95 eV).
  • Alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV) are mentioned, and those having a work function of 2.9 eV or less are particularly preferable.
  • the more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have a particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the emission brightness and the life of the organic EL device can be extended.
  • a combination of these two or more kinds of alkali metals is also preferable, and in particular, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the cathode and cathode 108 in the organic electroluminescent device plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it is a substance capable of efficiently injecting electrons into the organic layer, but a material similar to the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or their alloys (magnesium-silver alloy, magnesium).
  • -Indium alloy, aluminum-lithium alloy such as lithium fluoride / aluminum, etc. are preferable. Alloys containing lithium, sodium, potassium, cesium, calcium, magnesium or these low work function metals are effective for increasing electron injection efficiency and improving device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium for electrode protection, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride.
  • Laminating a hydrocarbon-based polymer compound or the like is given as a preferable example.
  • the method for producing these electrodes is also not particularly limited as long as conduction can be obtained, such as resistance heating, electron beam deposition, sputtering, ion plating and coating.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104. It will be fulfilled.
  • the hole transport layer 104 plays a role of efficiently transporting the holes injected from the anode 102 or the holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are formed by laminating and mixing one or more of the hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder, respectively. Will be done. Further, an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
  • the substance As a hole injection / transporting substance, it is necessary to efficiently inject / transport holes from the positive electrode between electrodes to which an electric field is applied, and the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For that purpose, it is preferable that the substance has a small ionization potential, a large hole mobility, excellent stability, and is less likely to generate trap impurities during production and use.
  • a compound conventionally used as a hole charge transport material, a p-type semiconductor, and a hole injection of an organic electroluminescent device are used.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), and triarylamine derivatives (aromatic tertiary).
  • polycarbonate or styrene derivatives having the monomer in the side chain, polyvinylcarbazole, polysilane, etc. are preferable, but a thin film necessary for producing a light emitting element can be formed and holes can be injected from the anode. Further, the compound is not particularly limited as long as it can transport holes.
  • organic semiconductors It is also known that the conductivity of organic semiconductors is strongly affected by its doping.
  • Such an organic semiconductor matrix substance is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping electron donors.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the anode- anode 102 in the organic electroluminescent device serves to inject holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 is provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these. ..
  • Examples of the material forming the anode 102 include inorganic compounds and organic compounds.
  • Examples of the inorganic compound include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxidation, etc.). (IZO, etc.), metals halide (copper iodide, etc.), copper sulfide, carbon black, ITO glass, nesa glass, etc.
  • Examples of the organic compound include polythiophene such as poly (3-methylthiophene) and conductive polymers such as polypyrrole and polyaniline. In addition, it can be appropriately selected and used from the substances used as the anode of the organic electroluminescent device.
  • the resistance of the transparent electrode is not limited as long as a sufficient current can be supplied to emit light from the light emitting element, but it is desirable that the resistance is low from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but since it is now possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is especially desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but it is usually used in the range of 50 to 300 nm.
  • the substrate 101 in the organic electroluminescent element serves as a support for the organic electroluminescent element 100, and usually quartz, glass, metal, plastic, or the like is used.
  • the substrate 101 is formed in a plate shape, a film shape, or a sheet shape depending on the purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable.
  • soda lime glass, non-alkali glass, or the like is used, and the thickness may be sufficient to maintain the mechanical strength.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side, and a synthetic resin plate, film or sheet having a particularly low gas barrier property may be used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • Electron blocking layer in an organic electroluminescent device An electron blocking layer that prevents diffusion of electrons and / or excitons from the light emitting layer may be provided between the hole injection / transport layer and the light emitting layer.
  • a compound represented by any of the above formulas (H1), (H2) and (H3) can be used for forming the electron blocking layer.
  • the material to be formed of each layer is deposited by a vapor deposition method, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method or casting method. , It can be formed by forming a thin film by a method such as a coating method.
  • the film thickness of each layer formed in this manner is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions differ depending on the type of material, the target crystal structure and association structure of the film, and the like.
  • the vapor deposition conditions are generally: heating temperature of the crucible for vapor deposition + 50 to + 400 ° C., vacuum degree 10-6 to 10 -3 Pa, vapor deposition rate 0.01 to 50 nm / sec, substrate temperature -150 to + 300 ° C., film thickness 2 nm. It is preferable to set it appropriately in the range of about 5 ⁇ m.
  • a light emitting layer / electron transport layer containing an anode / hole injection layer / hole transport layer / host compound, a thermoactive delayed phosphor, and a compound having a boron atom As an example of a method for producing an organic electroluminescent device, a light emitting layer / electron transport layer containing an anode / hole injection layer / hole transport layer / host compound, a thermoactive delayed phosphor, and a compound having a boron atom.
  • a method for manufacturing an organic electroluminescent device composed of an electron injection layer / a cathode will be described.
  • the deposition suitable substrate after forming a thin film of an anode material is formed by a vapor deposition method or the like anode, to form a thin film of the hole injection layer and a hole transport layer on the anode.
  • a host compound, a thermoactive delayed phosphor, and a compound having a boron atom are co-deposited on the host compound to form a thin film to form a light emitting layer, and an electron transport layer and an electron injection layer are formed on the light emitting layer.
  • a desired organic electroluminescent element can be obtained by forming a thin film made of a material for a cathode by a vapor deposition method or the like to form a cathode.
  • the production order may be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be manufactured in this order. It is possible.
  • wet film formation method In the case of a composition for forming a light emitting layer, a film is formed by using a wet film formation method.
  • a coating film is generally formed by a coating step of applying a light emitting layer forming composition to a substrate and a drying step of removing a solvent from the applied light emitting layer forming composition.
  • the method using a spin coater is the spin coating method
  • the method using a slit coater is the slit coating method
  • the method using a plate is gravure, offset, reverse offset, flexographic printing method
  • the method using an inkjet printer is the inkjet method.
  • the method of spraying in a mist form is called the spray method.
  • the drying step includes methods such as air drying, heating, and vacuum drying.
  • the drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, different methods may be used in combination, for example, firing under reduced pressure. That is, the organic electroluminescent device of the present invention has a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and formed from the composition for forming a light emitting layer of the present invention. It is also preferable that it is an electroluminescent element.
  • the wet film forming method is a film forming method using a solution, and is, for example, a partial printing method (injection method), a spin coating method or a casting method, a coating method, or the like.
  • the wet film deposition method does not require the use of an expensive vacuum vapor deposition apparatus and can form a film under atmospheric pressure.
  • the wet film formation method enables a large area and continuous production, leading to a reduction in manufacturing cost.
  • the wet film deposition method is difficult to stack.
  • the laminated film is prepared by the wet film forming method, it is necessary to prevent the lower layer from being dissolved by the upper layer composition, and the composition with controlled solubility, the lower layer cross-linking and the orthogonal solvent (Orthogonal solvent) are dissolved in each other. No solvent) etc. are used.
  • the wet film forming method it may be difficult to use the wet film forming method for coating all the films.
  • the compound of the present invention can be dissolved in a solvent and used as a composition for forming a light emitting layer.
  • the composition for forming a light emitting layer of the present invention contains at least one compound of the present invention and a solvent. Further, the composition for forming a light emitting layer of the present invention contains at least one compound represented by the above formulas (H1) to (H5), or has a structure represented by the above formulas (H1) to (H5). It is preferable to contain at least one polymer compound having at least one as a repeating unit. Further, the composition for forming a light emitting layer of the present invention may further contain other components such as an emerging dopant and an assistant dopant used as additional components of the light emitting layer.
  • the composition for forming a light emitting layer of the present invention preferably contains at least one compound represented by any of the above formulas (AD1), (AD2) and (AD3).
  • the composition for forming a light emitting layer of the present invention preferably contains at least one organic solvent as the solvent.
  • the evaporation rate of the organic solvent at the time of film formation, it is possible to control and improve the film forming property, the presence or absence of defects in the coating film, the surface roughness, and the smoothness.
  • the meniscus stability at the pinhole of the inkjet head can be controlled, and the ejection property can be controlled and improved.
  • the drying rate of the film and the orientation of the derivative molecules the electrical characteristics, light emission characteristics, efficiency, and life of the organic EL device having the light emitting layer obtained from the light emitting layer forming composition can be improved. Can be done.
  • the composition for forming a light emitting layer of the present invention preferably contains an organic solvent having a boiling point of 130 ° C. or higher, more preferably 140 ° C. or higher, and an organic solvent having a boiling point of 150 ° C. or higher. It is more preferable to contain a solvent.
  • the upper limit of the boiling point of the organic solvent is preferably 300 ° C. or lower, more preferably 270 ° C. or lower, and even more preferably 250 ° C. or lower. When the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ejection property of the inkjet.
  • the boiling point is lower than 300 ° C.
  • the solvent is more preferably composed of two or more kinds of organic solvents from the viewpoint of good inkjet ejection property, film forming property, smoothness and low residual solvent.
  • the composition may be in a solid state by removing the solvent from the composition for forming a light emitting layer in consideration of transportability and the like.
  • the solvent is a mixed solvent containing a good solvent (GS) and a poor solvent (PS) for at least one of the compounds of the present invention, and the boiling point (BP GS ) of the good solvent (GS ) is the poor solvent (PS). It is preferably lower than the boiling point (BP PS ) of.
  • Difference between at least one solubility ( SGS ,%) of the compound of the present invention in a good solvent (GS) and at least one solubility ( SPS ,%) of the compound of the present invention in a poor solvent (PS) is preferably 1% or more, more preferably 3% or more, and even more preferably 5% or more.
  • the above difference in good boiling point of the solvent boiling point (GS) (BP GS) and poor solvent (PS) (BP PS) ( BP PS -BP GS) is preferably 10 ° C. or more, at 30 ° C. or higher Is more preferable, and more preferably 50 ° C. or higher.
  • the solvent contains a good solvent (GS) and a poor solvent (PS) for the compound represented by the formula (1), the formula (H1), the formula (H2), the formula (H3) or the formula (H4), and is good.
  • a combination in which the boiling point (BP GS ) of the solvent ( GS ) is lower than the boiling point (BP PS ) of the poor solvent (PS) is particularly preferable.
  • Good solvent equation for (GS) (1), and the formula (H1), the formula (H2), the formula (H3), the formula (H4) or solubility of the compounds of the formula (H5) (S GS), a poor solvent equation for (PS) (1), the formula (H1), the formula (H2), the formula (H3), the difference of formula (H4) or solubility of the compounds of the formula (H5) (S PS) ( S GS - S PS ) is preferably 1% or more, more preferably 3% or more, and even more preferably 5% or more.
  • the difference in boiling points (BP PS- BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
  • the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure, and heating after the film formation.
  • a drying process such as vacuum, reduced pressure, and heating after the film formation.
  • it is preferable to perform it at the glass transition temperature (Tg) of the first component + 30 ° C. or lower from the viewpoint of improving the coating film forming property.
  • Tg glass transition temperature
  • From the viewpoint of reducing the residual solvent it is preferable to heat the first component at the glass transition point (Tg) of ⁇ 30 ° C. or higher. Even if the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin.
  • the drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
  • organic solvent examples include an alkylbenzene solvent, a phenyl ether solvent, an alkyl ether solvent, a cyclic ketone solvent, an aliphatic ketone solvent, a monocyclic ketone solvent, and a diester skeleton.
  • solvents and fluorine-containing solvents examples thereof include solvents and fluorine-containing solvents, and specific examples thereof include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, heptane-2-ol, and octane-.
  • the present invention can also be applied to display devices provided with organic electroluminescent devices, lighting devices provided with organic electroluminescent devices, and the like.
  • the display device of the present invention includes the organic electroluminescent device of the present invention.
  • the lighting device of the present invention includes the organic electroluminescent element of the present invention.
  • a display device or a lighting device provided with an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment to a known driving device, and can be manufactured by a known method such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
  • Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescent (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). (See Japanese Patent Application Laid-Open No. 2004-281806, etc.).
  • examples of the display method of the display include a matrix and / or segment method. The matrix display and the segment display may coexist in the same panel.
  • pixels for display are arranged two-dimensionally such as in a grid pattern or mosaic pattern, and characters and images are displayed as a set of pixels.
  • the shape and size of the pixels are determined by the application. For example, for displaying images and characters on a personal computer, monitor, or television, quadrangular pixels with a side of 300 ⁇ m or less are usually used, and in the case of a large display such as a display panel, pixels with a side on the order of mm should be used. become.
  • pixels of the same color may be arranged, but in the case of color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • Line sequential drive has the advantage of a simpler structure, but when considering operating characteristics, the active matrix may be superior, so it is also necessary to use it properly depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined area is made to emit light.
  • time and temperature displays on digital clocks and thermometers, operating status displays of audio equipment and electromagnetic cookers, and panel displays of automobiles can be mentioned.
  • the lighting device examples include a lighting device such as an indoor lighting device, a backlight of a liquid crystal display device, and the like (for example, JP-A-2003-257621, JP-A-2003-277741, JP-A-2004-119211). Etc.).
  • the backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light by itself, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like.
  • the present embodiment As a backlight for a liquid crystal display device, especially for a personal computer for which thinning is an issue, considering that it is difficult to thin the backlight because the conventional method consists of a fluorescent lamp and a light guide plate, the present embodiment
  • the backlight using the light emitting element according to the above is characterized by being thin and lightweight.
  • the compounds of the present invention can be used in the production of organic field effect transistors, organic thin-film solar cells, and the like, in addition to the organic electroluminescent devices described above.
  • the compound of the present invention is preferably used in the active layer. It is preferable that the compound of the present invention is used in the active layer in an organic thin film solar cell.
  • the organic field effect transistor is a transistor that controls the current by the electric field generated by the voltage input, and is provided with a gate electrode in addition to the source electrode and drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the flow of electrons (or holes) flowing between the source electrode and the drain electrode can be arbitrarily blocked to control the current.
  • the field effect transistor is easier to miniaturize than a simple transistor (bipolar transistor), and is often used as an element constituting an integrated circuit or the like.
  • the structure of an organic field effect transistor is usually provided with a source electrode and a drain electrode in contact with an organic semiconductor active layer formed by using the compound of the present invention, and an insulating layer (dielectric) in contact with the organic semiconductor active layer. It suffices if the gate electrode is provided across the body layer).
  • Examples of the element structure include the following structures.
  • Substrate / Gate electrode / Insulator layer / Source electrode / Drain electrode / Organic semiconductor active layer (2) Substrate / Gate electrode / Insulator layer / Organic semiconductor active layer / Source electrode / Drain electrode (3) Substrate / Organic Semiconductor active layer / source electrode / drain electrode / insulator layer / gate electrode (4) Substrate / source electrode / drain electrode / organic semiconductor active layer / insulator layer / gate electrode
  • the organic electric field effect transistor configured in this way is It can be applied as a pixel-driven switching element of an active matrix-driven liquid crystal display or an organic electroluminescence display.
  • the organic thin-film solar cell has a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are laminated on a transparent substrate such as glass.
  • the photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side.
  • the compound of the present invention can be used as a material for a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer, depending on its physical properties.
  • the compound of the present invention can function as a hole transport material or an electron transport material in an organic thin film solar cell.
  • the organic thin film solar cell may appropriately include a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer, and the like.
  • known materials used for the organic thin-film solar cell can be appropriately selected and used in combination.
  • a thin film obtained by depositing only the compound to be evaluated is referred to as a "single film”
  • a thin film obtained by applying a coating liquid containing the compound to be evaluated and a matrix material and drying the film is referred to as a "coating film”.
  • PMMA polymethylmethacrylate
  • the compound to be evaluated are dissolved in toluene, and then a thin film is formed on a transparent support substrate (10 mm ⁇ 10 mm) made of quartz by a spin coating method to prepare a sample.
  • a thin film sample when the matrix material is a host compound is prepared as follows.
  • a transparent quartz support substrate (10 mm x 10 mm x 1.0 mm) is fixed to a substrate holder of a commercially available vapor deposition equipment (manufactured by Choshu Sangyo Co., Ltd.), and a molybdenum vapor deposition boat containing a host compound and a dopant material are inserted. After installing the molybdenum vapor deposition boat, the vacuum chamber is depressurized to 5 ⁇ 10 -4 Pa.
  • the vapor deposition boat containing the host compound and the vapor deposition boat containing the dopant material are heated at the same time, and the host compound and the dopant material are co-deposited to an appropriate thickness to obtain the host compound and the dopant material.
  • a mixed thin film (sample) was formed.
  • the vapor deposition rate is controlled according to the set mass ratio of the host compound and the dopant material.
  • the absorption spectrum of the sample is measured using an ultraviolet-visible near-infrared spectrophotometer (Shimadzu Corporation, UV-2600).
  • the fluorescence spectrum or phosphorescence spectrum of the sample is measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation).
  • the fluorescence quantum yield (PLQY) is measured using an absolute PL quantum yield measuring device (C9920-02G, manufactured by Hamamatsu Photonics Co., Ltd.).
  • the fluorescence life was measured at 300 K using a fluorescence life measuring device (manufactured by Hamamatsu Photonics Co., Ltd., C11367-01). Specifically, the emission component having a fast fluorescence lifetime and the emission component having a slow fluorescence lifetime were observed at the maximum emission wavelength measured at an appropriate excitation wavelength.
  • the fluorescence lifetime measurement of a general organic EL material that emits fluorescence at room temperature slow emission components involving the triplet component derived from phosphorescence are rarely observed due to the deactivation of the triplet component due to heat. Absent. When a slow emission component is observed in the compound to be evaluated, it indicates that the triplet energy having a long excitation lifetime is transferred to the singlet energy by thermal activation and observed as delayed fluorescence.
  • Ip ionization potential
  • the ionization potential of the target compound is measured using a photoelectron spectrometer (Sumitomo Heavy Industries, Ltd. PYS-201).
  • the electron affinity can be estimated from the difference between the ionization potential measured by the above method and the energy gap calculated by the above method.
  • Evaluation items and evaluation methods include drive voltage (V), emission wavelength (nm), CIE chromaticity (x, y), external quantum efficiency (%), maximum wavelength (nm) of emission spectrum, and full width at half maximum ( nm) and so on. For these evaluation items, values at an appropriate emission brightness can be used.
  • the quantum efficiency of the light emitting element includes the internal quantum efficiency and the external quantum efficiency.
  • the internal quantum efficiency the external energy injected as electrons (or holes) into the light emitting layer of the light emitting element is converted into pure photons. Shows the ratio.
  • the external quantum efficiency is calculated based on the amount of these photons emitted to the outside of the light emitting element, and a part of the photons generated in the light emitting layer is continuously absorbed or reflected inside the light emitting element. Therefore, the external quantum efficiency is lower than the internal quantum efficiency because it is not emitted to the outside of the light emitting element.
  • the measurement method of spectral radiance (emission spectrum) and external quantum efficiency is as follows. Using a voltage / current generator R6144 manufactured by Advantest, the element was made to emit light by applying a voltage. The spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface using a spectroradiance meter SR-3AR manufactured by TOPCON. Assuming that the light emitting surface is a completely diffused surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength. Next, the number of photons was integrated over the entire observed wavelength region to obtain the total number of photons emitted from the device.
  • the value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the value obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
  • the full width at half maximum of the emission spectrum is obtained as the width between the upper and lower wavelengths at which the intensity becomes 50% centering on the maximum emission wavelength.
  • NPD N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl
  • TcTa 4,4', 4 "-tris (N-carbazolyl).
  • mCP 1,3-bis (N-carbazolyl) benzene
  • mCBP 3,3'-bis (N-carbazolyl) -1,1'-biphenyl
  • BPy-TP2 2,7-di ([2,2'-bipyridine] -5-yl) triphenylene
  • 2CzBN 3,4-dicarbazolylbenzonitrile
  • (DOBNA1) is 3,11-di. -O-trill-5,9-dioxa-13b-boranaft [3,2,1-de] anthracene.
  • Example 1 Fabrication and evaluation of device 1 using compound (1-2) as a dopant
  • a glass substrate (26 mm ⁇ 28 mm ⁇ 0.7 mm) on which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. )
  • ITO indium tin oxide
  • Each thin film is laminated with a vacuum degree of 5 ⁇ 10 -4 Pa by a vacuum vapor deposition method.
  • NPD is deposited on ITO so as to have a film thickness of 40 nm
  • TcTa is deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers.
  • mCP is vapor-deposited to a film thickness of 15 nm to form an electron blocking layer.
  • the compound mCBP as a host and the compound (1-2) as a dopant are co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm.
  • the mass ratio of the host, the assisting dopant, and the emerging dopant is 90:10.
  • 2CzBN is deposited to have a film thickness of 10 nm
  • BPy-TP2 is vapor-deposited to a film thickness of 20 nm to form an electron transport layer.
  • LiF is vapor-deposited to a film thickness of 1 nm
  • aluminum is vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL element.
  • Example 2 Fabrication and evaluation of an element using compound (4-1) as a dopant and DOBNA1 as a host Example except that compound (1-2) is changed to compound (4-1) and mCBP is changed to DOBNA1.
  • An EL element can be obtained by the same procedure and configuration as in 1.
  • Example 3 Fabrication and evaluation of a device using compound (4-4) as a dopant EL in the same procedure and configuration as in Example 2 except that compound (4-1) is changed to compound (4-4). The element can be obtained.
  • Example 4 Fabrication and evaluation of a device using compound (4-10) as a dopant EL in the same procedure and configuration as in Example 2 except that compound (4-1) is changed to compound (4-10). The element can be obtained.
  • TSPO1 is a diphenyl [4- (triphenylsilyl) phenyl] phosphine oxide.
  • the chemical structure is shown below.
  • ⁇ Structure A Element in which the host compound is mCBP, the assisting dopant is 2PXZ-TAZ, and the emtiting dopant is compound (1-2)>
  • a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate manufactured by Opto Science, Inc. obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm is used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available thin-film deposition equipment (manufactured by Choshu Sangyo Co., Ltd.), and tantalum containing NPD, TcTa, mCP, mCBP, 2PXZ-TAZ, compound (1-2), and TSPO1 respectively.
  • a boat for vapor deposition made of aluminum nitride and a boat for vapor deposition made of aluminum nitride containing LiF and aluminum are installed.
  • the following layers are sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 -4 Pa, first the NPD is heated and vapor-deposited to a film thickness of 40 nm, and then TcTa is heated and vapor-deposited to a film thickness of 15 nm to obtain two layers. It forms a hole injection transport layer composed of.
  • the mCP is heated and vapor-deposited to a film thickness of 15 nm to form an electron blocking layer.
  • mCBP as a host, 2PXZ-TAZ as an assisting dopant, and compound (ED1) as an emulating dopant are simultaneously heated and co-deposited to a film thickness of 20 nm to form a light emitting layer.
  • the deposition rate is adjusted so that the mass ratio of the host, assisting dopant, and emerging dopant is approximately 90: 9: 1.
  • TSPO1 is heated and vapor-deposited to a film thickness of 30 nm to form an electron transport layer.
  • the vapor deposition rate of each of the above layers is 0.01 to 1 nm / sec.
  • LiF is heated and vapor-deposited to a film thickness of 1 nm at a vapor deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated and vapor-deposited to a film thickness of 100 nm to form a cathode.
  • an organic EL element can be obtained.
  • the vapor deposition rate of aluminum is adjusted to be 1 nm to 10 nm / sec.
  • Example 6> ⁇ Structure A: Element in which the host compound is mCBP, the assisting dopant is 2PXZ-TAZ, and the emittering dopant is compound (4-1)> An EL device can be obtained by the same procedure and configuration as in Example 5 except that the emitting dopant is changed to compound (4-1).
  • Example 7> ⁇ Structure A: Element in which the host compound is mCBP, the assisting dopant is compound (1-2), and the emittering dopant is compound (ED1)>
  • An EL device can be obtained by the same procedure and configuration as in Example 5 except that the assisting dopant is changed to compound (1-2) and the emittering dopant is changed to compound (ED1).
  • Example 8> ⁇ Structure A: Element in which the host compound is mCBP, the assisting dopant is compound (1-2), and the emittering dopant is compound (4-1)> An EL device can be obtained by the same procedure and configuration as in Example 7 except that the assisting dopant is changed to compound (4-1).
  • Benzidyleneacetone) palladium (Pd (dba) 2 , 0.04 g, 0.039 mmol) was placed in a flask and heated under heating reflux for 5 hours. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-1-1) (0.7 g, yield 35%).
  • carbazole (0.62 g, 3.7 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate ([( t-Bu) 3 PH] BF 4 , 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba) 2 , as palladium catalyst. 0.04 g (0.039 mmol) was placed in a flask and heated under heating and reflux for 5 hours.
  • Structural calculation example 1 Preparation and evaluation of a dope film using compound (4-4-1) as a dopant Compound DOBNA1 as a host and compound (4-4-1) as a dopant are co-deposited from different vapor deposition sources. A light emitting layer having a film thickness of 60 nm was formed. At this time, the mass ratio of the host and the emitting dopant was 99: 1.
  • the prepared dope film was measured for fluorescence spectrum at room temperature, fluorescence spectrum at 77K, and phosphorescence spectrum at 77K using a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Co., Ltd.).
  • the fluorescence spectrum peak wavelength was obtained from the fluorescence spectrum at room temperature, and the lowest excited single term energy (S1) and the lowest excited triple term energy (T1) were obtained from the rise of each peak from the fluorescence spectrum at 77K and the phosphorescence spectrum at 77K.
  • the fluorescence lifetime of the prepared doping film was measured at 300 K using a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics Co., Ltd.).
  • Example 2 Preparation and Evaluation of Dope Film Using Compound (BD2) as a Dopant
  • a dope film was prepared in the same procedure as in Example 9 except that the compound (BD2) was used as a dopant.
  • the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime.
  • a structural calculation of triphenylamine was performed in order to estimate the partial HOMO energy of the substituent (diphenylamine group) in the compound (BD2).
  • Structural calculation example 3 Preparation and evaluation of a doped film using compound (4-10-1) as a dopant A doped film was prepared in the same procedure as in Example 9 except that compound (4-10-1) was used as a dopant. Made. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, structural calculations of N-phenylphenothiazine were performed in order to estimate the partial HOMO energy of the substituent (phenothiazine group) in compound (4-10-1).
  • Example 4 Preparation and Evaluation of Dope Membrane Using Compound (4-1-1) as Dopant A dope film was prepared in the same procedure as in Example 9 except that compound (4-1-1) was used as a dopant. Made. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, a structural calculation of N-phenyldimethylacridine was performed in order to estimate the partial HOMO energy of the substituent (dimethylacridine group) in compound (4-1-1).
  • Example 5 Preparation and Evaluation of Dope Film Using Compound (BD3) as a Dopant
  • a dope film was prepared in the same procedure as in Example 9 except that the compound (BD3) was used as a dopant.
  • the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime.
  • structural calculations of N-phenylcarbazole were performed to estimate the partial HOMO energy of the substituent (carbazolyl) in compound (BD3).
  • Example 9 Fabrication and evaluation of an element using the compound (4-4-1) as a dopant
  • a glass substrate (26 mm ⁇ 28 mm ⁇ 0.) In which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. Each thin film was laminated on 7 mm) at a vacuum degree of 5 ⁇ 10 -4 Pa by a vacuum vapor deposition method. First, NPD was deposited on ITO so as to have a film thickness of 40 nm, and TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers.
  • ITO indium tin oxide
  • mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer.
  • the compound DOBNA1 as a host and the compound (4-4-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm.
  • the mass ratio of the host and the emitting dopant was 99: 1.
  • 2CzBN was vapor-deposited to a film thickness of 10 nm
  • BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer.
  • LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
  • Comparative Example 1 Fabrication and Evaluation of an Element Using Compound (BD2) as a Dopant An EL element was prepared in the same procedure and configuration as in Example 9 except that compound (4-4-1) was changed to compound (BD2). Obtained.
  • Example 10 Fabrication and evaluation of a device using compound (4-94-1) as a dopant Same as in Example 9 except that compound (4-4-1) is changed to compound (4-94-1). An EL element was obtained by the procedure and configuration.
  • Example 11 Fabrication and evaluation of an element using the compound (4-2221) as a dopant The same as in Example 9 except that the compound (4-4-1) is changed to the compound (4-2221). An EL element was obtained by the procedure and configuration.
  • Example 12 Fabrication and evaluation of an element using the compound (1-296-1) as a dopant
  • a glass substrate 26 mm ⁇ 28 mm ⁇ 0.
  • an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed.
  • Each thin film was laminated on 7 mm) at a vacuum degree of 5 ⁇ 10 -4 Pa by a vacuum vapor deposition method.
  • NPD was deposited on ITO so as to have a film thickness of 40 nm
  • TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers.
  • mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer.
  • the compound mCBP as a host and the compound (4-10-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm.
  • the mass ratio of the host and the emitting dopant was 90:10.
  • 2CzBN was vapor-deposited to a film thickness of 10 nm
  • BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer.
  • LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
  • Example 13 Fabrication and evaluation of a device using compound (1-295) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (1-295). Obtained an EL element.
  • Example 14 Fabrication and evaluation of a device using compound (2-30) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (2-30). Obtained an EL element.
  • Example 15 Fabrication and evaluation of a device using compound (2-26) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (2-26). Obtained an EL element.
  • Comparative Example 2 Fabrication and Evaluation of an Device Using Compound (BD4) as a Dopant
  • An EL device was prepared in the same procedure and configuration as in Example 12 except that compound (1-296-1) was changed to compound (BD4). Obtained.
  • Example 16 Fabrication and evaluation of an element using the compound (4-438-1) as a dopant
  • a glass substrate (26 mm ⁇ 28 mm ⁇ 0.) In which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. Each thin film was laminated on 7 mm) at a vacuum degree of 5 ⁇ 10 -4 Pa by a vacuum vapor deposition method. First, NPD was deposited on ITO so as to have a film thickness of 40 nm, and TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers.
  • ITO indium tin oxide
  • mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer.
  • compound DOBNA1 as a host and compound (4-438-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm. At this time, the mass ratio of the host and the emitting dopant was 99: 1.
  • 2CzBN was vapor-deposited to a film thickness of 10 nm
  • BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer.
  • LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
  • Example 17 Fabrication and evaluation of a device using compound (4-13-1) as a dopant Same as in Example 16 except that compound (4-438-1) is changed to compound (4-13-1). An EL element was obtained by the procedure and configuration.
  • Organic electroluminescent device 101 Substrate 102 Anode 103 Hole injection layer 104 Hole transport layer 105 Light emitting layer 106 Electron transport layer 107 Electron injection layer 108 Cathode

Abstract

Provided is a compound having at least one structure represented by formula (i), as a material used in an organic EL element or other organic device. In formula (1): rings A, B, and C each independently represent an aromatic ring structure; at least one ring member element in at least one of rings A, B, and C is bonded to a partial structure (D); Y is B, P, P=O, P=S, or Si-R'; X1 and X2 are each independently >O, >S, >N-R', >C(-R')2, or >Si(-R')2; Q in the partial structure (D) is a single bond, >O, >S, >C(-R')2, or >Si(-R')2; the dashed line part is a bonding site; R21 through R28 in the partial structure (D) are each independently a hydrogen atom or a specific substituent; and R' is an aryl group or the like.

Description

化合物、有機デバイス用材料、発光層形成用組成物、有機電界効果トランジスタ、有機薄膜太陽電池、有機電界発光素子、表示装置、および照明装置Compounds, materials for organic devices, compositions for forming light emitting layers, organic field effect transistors, organic thin-film solar cells, organic electroluminescent devices, display devices, and lighting devices.
 本発明は、特定の構造をアクセプターとして有する熱活性型遅延蛍光性の化合物、上記化合物を含む有機デバイス用材料、発光層形成用組成物、前記化合物を発光層に含む有機電界発光素子、有機電界効果トランジスタ、または、有機薄膜太陽電池、および前記有機電界発光素子を備えた表示装置および照明装置に関する。 The present invention relates to a thermally active delayed fluorescent compound having a specific structure as an acceptor, a material for an organic device containing the above compound, a composition for forming a light emitting layer, an organic electroluminescent device containing the compound in the light emitting layer, and an organic electroluminescence device. The present invention relates to an effect transistor or an organic thin film solar cell, and a display device and a lighting device including the organic electroluminescent element.
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子(有機EL素子)は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の1つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。 Conventionally, display devices using electroluminescent elements that emit electroluminescence have been studied in various ways because they can save power and become thinner. Further, organic electroluminescent elements (organic EL elements) made of organic materials have been made lighter. It has been actively studied because it is easy to increase the size. In particular, regarding the development of organic materials having light emitting characteristics such as blue, which is one of the three primary colors of light, and the development of organic materials having charge transporting ability such as holes and electrons, high molecular compounds and low molecular compounds are used. Regardless, it has been actively studied so far.
 有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。 The organic EL element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one layer or a plurality of layers containing an organic compound, which are arranged between the pair of electrodes. Layers containing organic compounds include light emitting layers and charge transport / injection layers that transport or inject charges such as holes and electrons, and various organic materials suitable for these layers have been developed.
 有機EL素子の発光機構としては、励起一重項状態からの発光を用いる蛍光発光および励起三重項状態からの発光を用いるりん光発光の主に2つがある。一般的な蛍光発光材料は、励起子利用効率が低く、およそ25%であり、三重項-三重項フュージョン(TTF:Triplet-Triplet Fusion、または、三重項-三重項消滅、TTA:Triplet-Triplet Annihilation)を用いても励起子利用効率は62.5%である。一方、りん光材料は、励起子利用効率が100%に達する場合もあるが、深い青色発光の実現が困難であり、加えて発光スペクトルの幅が広いため色純度が低いという問題がある。 There are mainly two light emitting mechanisms of the organic EL element: fluorescence light emission using light emission from the excited singlet state and phosphorescent light emission using light emission from the excited triplet state. Common fluorescent materials have low exciton utilization efficiency of about 25%, triplet-triplet fusion (TTF: Triplet-Triplet Fusion, or triplet-triplet annihilation, TTA: Triplet-Triplet Annihilation). ) Is also used, and the exciton utilization efficiency is 62.5%. On the other hand, the phosphorescent material may reach 100% exciton utilization efficiency, but it is difficult to realize deep blue light emission, and in addition, there is a problem that the color purity is low because the emission spectrum is wide.
 有機EL素子に用いられる化合物として、例えば特許文献1、または、非特許文献1~4に記載の化合物等が知られている。 As the compound used for the organic EL device, for example, the compounds described in Patent Document 1 or Non-Patent Documents 1 to 4 are known.
特許第5669163号公報Japanese Patent No. 5669163
 そこで、九州大学安達千波矢教授によりドナー-アクセプター型(D-A型)熱活性型遅延蛍光(TADF: Thermally Assisting Delayed Fluorescence))機構が提案された(非特許文献1参照)。D-A型TADF化合物は、ドナー構造とアクセプター構造が直接またはπまたはσ結合を介して結合した構造を有しており、熱エネルギーを吸収して、励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して蛍光(遅延蛍光)を放射しうる化合物である。こうしたTADF化合物を利用することで、三重項励起子のエネルギーも蛍光発光に有効利用することができるため、発光の励起子利用効率は100%に達するようになった。D-A型TADF化合物の特徴として、その構造に起因して色純度が低い幅広な発光スペクトルを与えるが、逆項間交差の速度が極めて速い。 Therefore, Professor Chihaya Adachi of Kyushu University proposed a donor-acceptor type (DA type) thermoactive delayed fluorescence (TADF: Thermally Assisting Delayed Fluorescence) mechanism (see Non-Patent Document 1). The DA type TADF compound has a structure in which the donor structure and the acceptor structure are bonded directly or via a π or σ bond, and absorbs heat energy to change from an excited triplet state to an excited singlet state. It is a compound that can cause inverse intersystem crossing, deactivate by radiation from its excited singlet state, and emit fluorescence (delayed fluorescence). By using such a TADF compound, the energy of triplet excitons can also be effectively utilized for fluorescence emission, so that the exciton utilization efficiency of emission reaches 100%. A characteristic of the DA type TADF compound is that it gives a wide emission spectrum with low color purity due to its structure, but the rate of inverse intersystem crossing is extremely high.
 また、関西学院大学畠山教授により多重共鳴効果を利用したTADF活性な化合物の分子設計が提案されている(非特許文献3、および、特許文献1)。多重共鳴効果を利用した分子設計では、ホウ素(電子求引性)と窒素(電子供与性)を互いにo位に結合させる。それにより、それぞれが形成するHOMOおよびLUMOが強め合い、原子上に局在することで、HOMOおよびLUMOの分離とTADF性が得られている。形成される堅牢な平面構造により、吸収および発光のピークのストークスシフトが小さい、色純度の高い発光スペクトルが得られる。一方、逆項間交差の速度はD-A型TADF化合物に劣る。 In addition, Professor Hatakeyama of Kwansei Gakuin University has proposed a molecular design of a TADF-active compound using the multiple resonance effect (Non-Patent Document 3 and Patent Document 1). In molecular design using the multiple resonance effect, boron (electron attracting property) and nitrogen (electron donating property) are bonded to each other at the o-position. As a result, the HOMO and LUMO formed by each are strengthened and localized on the atom, so that the separation of HOMO and LUMO and the TADF property are obtained. The robust planar structure formed provides an emission spectrum with high color purity with low Stokes shift of absorption and emission peaks. On the other hand, the speed of the inverse intersystem crossing is inferior to that of the DA type TADF compound.
 D-A型TADF化合物において、色純度の高い発光スペクトルは、構造変化および回転の制限されたD-A構造を利用することで実現できる(非特許文献2)。同様の発想で、ホウ素原子を有するアクセプター構造を利用した発光半値幅の狭い化合物が提案されており(特許文献B、非特許文献CおよびD)、発光半値幅の改善が行われた。一方で、同様のドナー構造を用いても、狭い発光半値幅、速い逆項間交差速度および青色発光が得られるわけではない(非特許文献4)。 In the DA type TADF compound, an emission spectrum with high color purity can be realized by utilizing a DA structure in which structural changes and rotations are restricted (Non-Patent Document 2). Based on the same idea, compounds having a narrow half-value width at half maximum have been proposed using an acceptor structure having a boron atom (Patent Documents B, Non-Patent Documents C and D), and the half-value width at half maximum has been improved. On the other hand, even if a similar donor structure is used, a narrow half-value width at half maximum, a fast intersystem crossing speed, and blue light emission cannot be obtained (Non-Patent Document 4).
 上記のように、狭い発光半値幅、高いTADF活性、青色発光の全ての実現は難しく、これらの実現のための部分構造の最適化に改善の余地があった。 As mentioned above, it was difficult to realize all of the narrow half-value width at half maximum, high TADF activity, and blue light emission, and there was room for improvement in the optimization of the partial structure for these realizations.
 本発明は、有機EL素子等の有機デバイスに用いられる材料として、新規な化合物を提供することを課題とする。 An object of the present invention is to provide a novel compound as a material used for an organic device such as an organic EL element.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、アクセプター構造およびドナー構造の新規な組み合わせを見出した。本発明は、このような知見に基づいて提案されたものであり、具体例としては、以下の構成を有する。 As a result of diligent studies to solve the above problems, the present inventors have found a new combination of an acceptor structure and a donor structure. The present invention has been proposed based on such findings, and has the following configuration as a specific example.
[1] 下記式(i)で表される構造を少なくとも1つ有する化合物;
Figure JPOXMLDOC01-appb-C000012
 式(i)中、
 A環、B環およびC環は、それぞれ独立して、芳香環構造を表し、
 A環、B環およびC環のうち少なくとも1つの環における少なくとも1つの環員原子が、式(D)で表される部分構造(D)と結合し、
 Yは、B、P、P=O、P=SまたはSi-R’であり、
 XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 部分構造(D)において、Qは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、波線部は結合位置を示し、
B環に含まれる環員原子とC環に含まれる環員原子とがXで架橋し、B環の一部およびC環の一部ならびにYを含む6員環を形成してもよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 前記の、Si-R’、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
 式(i)におけるA環、B環およびC環における、部分構造(D)、X、X、またはYと結合していない環員原子に結合する構造ならびに部分構造(D)におけるR21~R28は、全てが水素であることはなく、
式(i)で表される構造を少なくとも1つ有する化合物における少なくとも1つの水素はシアノ、ハロゲン、重水素、または部分構造(B)で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000013
(部分構造(B)中、R40およびR41は、それぞれ独立してアルキルであり、互いに結合していてもよく、R40およびR41の合計炭素数は2~10であり、波線部は他の構造との結合部位である。)
[1] A compound having at least one structure represented by the following formula (i);
Figure JPOXMLDOC01-appb-C000012
In formula (i),
Rings A, B and C each independently represent an aromatic ring structure.
At least one ring member atom in at least one of the A ring, the B ring and the C ring is bonded to the partial structure (D) represented by the formula (D).
Y is B, P, P = O, P = S or Si-R',
X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
In the partial structure (D), Q is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the wavy line indicates the bond position.
A ring member atoms contained in the ring member atoms and C ring contained in the B ring is bridged by X 3, a portion of the part and C rings of the ring B and may form a 6-membered ring containing Y, X 3 is any one of>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Diarylboryl (two aryls may be attached via a single bond or a linking group), a substituent that is cyano or halogen, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
The R'in the above-mentioned Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 can be independently hydrogen, aryl, heteroaryl, alkyl or Cycloalkyl,
In the A ring, B ring and C ring in the formula (i), the structure bonded to the ring member atom not bonded to the partial structure (D), X 1 , X 2 , or Y, and R 21 in the partial structure (D). ~ R 28 is not all hydrogen,
At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen, deuterium, or partial structure (B).
Figure JPOXMLDOC01-appb-C000013
(In the partial structure (B), R 40 and R 41 are each independently alkyl and may be bonded to each other, and the total carbon number of R 40 and R 41 is 2 to 10, and the wavy line portion is It is a binding site with other structures.)
[2] 下記式(1)で表される、[1]に記載の化合物;
Figure JPOXMLDOC01-appb-C000014
 式(1)中、
 R~R11における少なくとも1つは、式(D)で表される部分構造(D)であり、
 Yは、B、P、P=O、P=SまたはSi-R’であり、
 XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、もしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 RおよびRは>Xで架橋し、b環の一部およびc環の一部ならびにYを含む6員環を形成してよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
 前記の、Si-R’、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、前記>C(―R’)および>Si(―R’)それぞれの2つのR’は、連結していてもよく、
 式(1)における部分構造(D)ではないR~R11および部分構造(D)におけるR21~R28は、全てが水素であることはなく、
 式(1)で表される化合物における少なくとも1つの水素がハロゲン、または重水素で置換されてもよい。
[2] The compound according to [1] represented by the following formula (1);
Figure JPOXMLDOC01-appb-C000014
In equation (1),
At least one of R 1 to R 11 is a partial structure (D) represented by the formula (D).
Y is B, P, P = O, P = S or Si-R',
X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy. , Or diarylboryl (two aryls may be attached via a single bond or a linking group), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing part of the b ring, part of the c ring and Y, where X 3 is>O,>S,> N-. R',> C (-R') 2 or> Si (-R') 2
The R'in Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. The two R'of each of the> C (-R') 2 and> Si (-R') 2 may be connected.
R 1 to R 11 which are not the partial structure (D) in the formula (1) and R 21 to R 28 in the partial structure (D) are not all hydrogen.
At least one hydrogen in the compound represented by the formula (1) may be substituted with halogen or deuterium.
[3] 式(1)において、
 RおよびRよりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 RおよびRは>Xで架橋していてもよく、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 R’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルである、[2]に記載の化合物。
[3] In equation (1)
At least one selected from the group consisting of R 1 and R 3 is a partial structure (D).
R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryls), diheteroarylaminos (where heteroaryls are heteroaryls with 2-12 carbon atoms), aryl heteroarylaminos (where aryls are aryls with 6-12 carbon atoms and heteroaryls have 2 carbon atoms). It is a substituent that is an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms (which is a heteroaryl of to 12), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these may be formed and is substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
R 7 and R 8 may be crosslinked with> X 3
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms). Aryl), diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms and heteroaryl is an aryl having 2 to 12 carbon atoms). Heteroaryl), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen substituents, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May have been
R'is described in [2], which is independently an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, an alkyl having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms. Compound.
[4] 式(1)において、
 Rが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~4のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 部分構造(D)におけるQが>C(-R’)、部分構造(D)における>C(-R’)におけるR’がメチル、かつ、部分構造(D)におけるR21~R28が水素である場合、式(1)におけるRおよびRは、それぞれ独立して、部分構造(D)、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~3のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよい、
 [2]に記載の化合物。
[4] In equation (1)
R 2 is the partial structure (D).
R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl substituent that is an alkyl having 1 to 4 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms without substitution, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
Moiety Q is in the structure (D)> C (-R ' ) 2, a partial structure> in (D) C (-R') R in 2 'methyl and the partial structure (D) R 21 ~ R 28 in When is hydrogen, R 6 and R 9 in the formula (1) are independently partial structures (D), hydrogen, or aryls having 6 to 30 carbon atoms, heteroaryls having 2 to 30 carbon atoms, respectively. Diarylamino (where aryl is aryl with 6-12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms), Heteroaryl is a substituent that is an alkyl having 2 to 12 carbon atoms, an alkyl having 1 to 3 carbon atoms without substitution, or a cycloalkyl having 3 to 20 carbon atoms. Among these substituents, adjacent substitution groups are used. The groups may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl or carbon having 1 to 12 carbon atoms. It may be substituted with the number 3 to 20 cycloalkyl.
The compound according to [2].
[5] 式(1)において、
 R、R、R、R、R10およびR11よりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 RおよびRは>Xで架橋していてもよく、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 R’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルである、
 [2]に記載の化合物。
[5] In equation (1)
At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 is a partial structure (D).
R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms, and among these substituents, adjacent substituents may be bonded to each other to form a ring structure. At least one hydrogen in these may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
R 7 and R 8 may be crosslinked with> X 3
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms). Aryl), diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms, and heteroaryl is an aryl having 2 to 12 carbon atoms). (12 heteroaryl), alkyl with 1-12 carbon atoms, cycloalkyl with 3-20 carbon atoms, cyano or halogen substituents, of which adjacent substituents are attached to each other. A ring structure may be formed, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, or an alkyl having 3 to 20 carbon atoms. May be substituted with cycloalkyl
R'is independently an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, an alkyl having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms.
The compound according to [2].
[6] 式(1)において、XおよびXが、それぞれ独立して、>O、>S、>C(-R’)または>Si(-R’)である、[2]~[5]のいずれかに記載の化合物。
[7] 式(1)において、XおよびXが共に>Oである、[2]~[6]のいずれかに記載の化合物。
[8] 式(1)において、YがBである、[2]~[7]のいずれかに記載の化合物。
[9] 式(1)において、YがP=OまたはP=Sである、[2]~[7]のいずれかに記載の化合物。
[10] 式(1)において、YがSi-R’である、[2]~[7]のいずれかに記載の化合物。
[11] 式(1)において、RおよびRが架橋せず、環を形成しない、[2]~[10]のいずれかに記載の化合物。
[12] 式(1)において、RおよびRが>Xで架橋し、環を形成する、[2]~[10]のいずれかに記載の化合物。
[13] 式(1)において、部分構造(D)を1つ有する、[2]~[12]のいずれかに記載の化合物。
[14] 部分構造(D)におけるQが>Oまたは>Sである、[1]~[13]のいずれかに記載の化合物。
[15] 部分構造(D)におけるQが>C(-R)または>Si(-R)である、[1]~[13]のいずれかに記載の化合物。
[6] In equation (1), X 1 and X 2 are independently>O,>S,> C (-R') 2 or> Si (-R') 2 , respectively, [2]. The compound according to any one of [5].
[7] The compound according to any one of [2] to [6], wherein both X 1 and X 2 are> O in the formula (1).
[8] The compound according to any one of [2] to [7], wherein Y is B in the formula (1).
[9] The compound according to any one of [2] to [7], wherein Y is P = O or P = S in the formula (1).
[10] The compound according to any one of [2] to [7], wherein Y is Si—R'in formula (1).
[11] The compound according to any one of [2] to [10], wherein R 7 and R 8 do not crosslink and form a ring in the formula (1).
[12] The compound according to any one of [2] to [10], wherein R 7 and R 8 are crosslinked at> X 3 to form a ring in the formula (1).
[13] The compound according to any one of [2] to [12], which has one partial structure (D) in the formula (1).
[14] The compound according to any one of [1] to [13], wherein Q in the partial structure (D) is> O or> S.
[15] The compound according to any one of [1] to [13], wherein Q in the partial structure (D) is> C (-R) 2 or> Si (-R) 2 .
[16] 下記式のいずれかで表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(式中、Meはメチル、tBuはt-ブチルを表す。)
[16] The compound according to [2], which is a compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000015
(In the formula, Me represents methyl and tBu represents t-butyl.)
[17]下記式(ii)で表される、[1]に記載の化合物;
Figure JPOXMLDOC01-appb-C000016
 式(ii)中、
 a環、b環、c環およびd環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、また隣接する2つの水素はアルキルで連結されて環を形成していてもよく、
 ZおよびZは、それぞれ独立して―CH=または-N=であり、―CH=における水素は置換されていてもよく、
 X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRはアリール、ヘテロアリールまたはアルキルであり、
 a環、b環、c環、d環、およびZとZとを含む6員環からなる群より選択される少なくとも1つの環における少なくとも1つの環員原子は部分構造(D)と結合し、
 部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、また隣接するR21~R28は連結基により環を形成していてもよく、
 部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、アルキルまたは、R’同士で連結していてもよいアリールであり、
 部分構造(D)がa環とc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
 部分構造(D)がa環とc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
 部分構造(D)中の波線部は式(ii)で表される構造との結合部位を表し、
 式(ii)で表される化合物における少なくとも1つの水素がハロゲン、重水素、または部分構造(B)で置換されていてもよい。
[17] The compound according to [1] represented by the following formula (ii);
Figure JPOXMLDOC01-appb-C000016
In formula (ii),
Rings a, b, c and d are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted, and two adjacent hydrogens may be substituted. They may be linked by alkyl to form a ring.
Z 1 and Z 2 are independently -CH = or -N =, and the hydrogen at -CH = may be substituted.
X 1 to X 4 are independently O or N-R, and R of the N-R is aryl, heteroaryl or alkyl, respectively.
At least one ring member atom in at least one ring selected from the group consisting of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2 is bonded to the partial structure (D). And
In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, and adjacent R 21 to R 28 are based on linking groups. It may form a ring,
Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. (-R') The R'of 2 is an aryl that may be independently linked with hydrogen, alkyl, or R', respectively.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
The wavy line portion in the partial structure (D) represents the binding site with the structure represented by the formula (ii).
At least one hydrogen in the compound represented by the formula (ii) may be substituted with a halogen, deuterium, or a partial structure (B).
[18] 下記式(4)で表される、[17]に記載の化合物;
Figure JPOXMLDOC01-appb-C000017
 式(4)中、R~R14は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、もしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
~R14のうち隣接する2つが炭素数2~8のアルキルによって連結して環を形成していてもよく、
 X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRは炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~8のシクロアルキルであり、
 式(4)におけるR~R14の少なくとも1つは式(D)で表される部分構造(D)であり、
 部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、
 隣接するR21~R28は連結基により環を形成していてもよく、
 部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(-R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、炭素数1~8のアルキル、または連結していてもよい炭素数6~12のアリールであり、
 部分構造(D)がa環およびc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
 ただし、部分構造(D)がa環およびc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
 式(4)で表される化合物における少なくとも1つの水素がハロゲン、重水素、または部分構造(B)で置換されていてもよい。
[18] The compound according to [17] represented by the following formula (4);
Figure JPOXMLDOC01-appb-C000017
In formula (4), R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Alternatively, it is a substituent that is a diarylboryl (two aryls may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is substituted with aryl, heteroaryl or alkyl. May be
Adjacent two of R 3 to R 14 may be connected by an alkyl having 2 to 8 carbon atoms to form a ring.
X 1 to X 4 are independently O or N-R, and R of the N-R is an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, and 1 to 20 carbon atoms. Alkyl or cycloalkyl with 3-8 carbon atoms
At least one of R 1 to R 14 in the formula (4) is a partial structure (D) represented by the formula (D).
In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, respectively.
Adjacent R 21 to R 28 may form a ring with a linking group.
Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. The R'of (-R') 2 is an independently hydrogen, an alkyl having 1 to 8 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be linked.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
However, when the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
At least one hydrogen in the compound represented by the formula (4) may be substituted with a halogen, deuterium, or a partial structure (B).
[19] 式(4)において、R~R14は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、炭素数6~12のアリールオキシ、もしくはジアリールボリル(ただしアリールは炭素数6~12のアリール)(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基における少なくとも1つの水素は、炭素数6~12のアリールまたは炭素数1~8のアルキルで置換されていてもよく、
 X~Xは、それぞれ独立して、>Oまたは>N-Rであり、前記>N-RのRは、炭素数6~12のアリールまたは炭素数1~8のアルキルであり、
 部分構造(D)中、R21~R28は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノ、またはハロゲンであり、部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素または炭素数1~8のアルキルであり、
 式(4)で表される化合物における少なくとも1つの水素がハロゲン、または重水素で置換されていてもよい、[18]に記載の化合物。
[19] In the formula (4), R 1 to R 14 are independently hydrogen or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (where aryl has carbon atoms). 6 to 12 aryl), alkyl with 1 to 12 carbon atoms, cycloalkyl with 3 to 20 carbon atoms, aryloxy with 6 to 12 carbon atoms, or diarylboryl (where aryl is aryl with 6 to 12 carbon atoms) (2) One aryl is a substituent (which may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is an aryl having 6 to 12 carbon atoms or an aryl having 1 to 8 carbon atoms. May be substituted with alkyl
X 1 to X 4 are independently> O or> N-R, and R of> N-R is an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
In the partial structure (D), R 21 to R 28 are independently hydrogen, an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, and 3 to 3 carbon atoms. 20 cycloalkyl, cyano, or halogen, where Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 . The R'of> C (-R') 2 and> Si (-R') 2 is independently hydrogen or an alkyl having 1 to 8 carbon atoms.
The compound according to [18], wherein at least one hydrogen in the compound represented by the formula (4) may be substituted with halogen or deuterium.
[20] 式(4)において、R、R、R10およびR13のうち、1つまたは2つが部分構造(D)である、[18]または[19]に記載の化合物。
[21] 部分構造(D)中、R21~R28の少なくとも1つがフッ素である、[17]~[20]のいずれかに記載の化合物。
[20] The compound according to [18] or [19], wherein one or two of R 4 , R 7 , R 10 and R 13 have a partial structure (D) in the formula (4).
[21] The compound according to any one of [17] to [20], wherein at least one of R 21 to R 28 is fluorine in the partial structure (D).
[22] 部分構造(D)が、下記式(D-1)~式(D-3)のいずれかで表される構造である、[17]~[21]のいずれかに記載の化合物;
Figure JPOXMLDOC01-appb-C000018
 式(D-1)において、R50はそれぞれ独立して、水素原子またはメチルを表し、Meはメチルであり、
 式(D-2)において、Qは>O、>S、>C(CH、または>Si(CHを表す。
[22] The compound according to any one of [17] to [21], wherein the partial structure (D) is a structure represented by any of the following formulas (D-1) to (D-3);
Figure JPOXMLDOC01-appb-C000018
In formula (D-1), R 50 independently represents a hydrogen atom or methyl, and Me is methyl.
In formula (D-2), Q 1 represents>O,>S,> C (CH 3 ) 2 , or> Si (CH 3 ) 2 .
[23] 下記式のいずれかで表される、[18]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
 
 
 
(式中、Meはメチルを表す。)
[23] The compound according to [18], which is represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000019



(In the formula, Me represents methyl.)
[24] 部分構造(B)、塩素原子、臭素原子、またはヨウ素原子を構造中に含む、[17]~[23]のいずれかに記載の化合物。
[25] S1とT1のエネルギー準位差が0.1eV以下であり、かつS1とT2のエネルギー準位差が0.05eV以下であり、さらにS1が局所励起状態である、[17]~[24]のいずれかに記載の化合物。
[26] 式(i)で表される構造を含む繰り返し単位を有する高分子化合物である、[1]に記載の化合物。
[27] 無置換または置換基を有してもよいトリアリールアミン、無置換または置換基を有してもよいフルオレン、無置換または置換基を有してもよいアントラセン、無置換または置換基を有してもよいテトラセン、無置換または置換基を有してもよいトリアジン、無置換または置換基を有してもよいカルバゾール、無置換または置換基を有してもよいテトラフェニルシラン、無置換または置換基を有してもよいスピロフルオレン、無置換または置換基を有してもよいトリフェニルホスフィン、無置換または置換基を有してもよいジベンゾチオフェン、および、無置換または置換基を有してもよいジベンゾフランよりなる群から選ばれた少なくとも1種由来の構造を前記繰り返し単位内に、または前記繰り返し単位とは別の繰り返し単位内に含む、[26]に記載の化合物。
[28] [1]~[27]のいずれかに記載の化合物を含有する、有機デバイス用材料。
[29] 有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、[28]に記載の有機デバイス用材料。
[30] 有機電界発光素子用の発光層用材料である、[29]に記載の有機デバイス用材料。
[31] [1]~[27]のいずれかに記載の化合物を含む、有機電界発光素子、有機電界効果トランジスタ、または、有機薄膜太陽電池。
[32] 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、[30]に記載の発光層用材料を含有する発光層を備える、有機電界発光素子。
[24] The compound according to any one of [17] to [23], which comprises a partial structure (B), a chlorine atom, a bromine atom, or an iodine atom in the structure.
[25] The energy level difference between S1 and T1 is 0.1 eV or less, the energy level difference between S1 and T2 is 0.05 eV or less, and S1 is in a locally excited state [17] to [ 24] The compound according to any one of.
[26] The compound according to [1], which is a polymer compound having a repeating unit containing a structure represented by the formula (i).
[27] Triarylamines which may have a substituent or a substituent, fluorene which may have a substituent or a substituent, anthracene which may have a substituent or a substituent, and an unsubstituted or substituent. Tetracene which may have, triazine which may have an unsubstituted or substituent, carbazole which may have an unsubstituted or substituent, tetraphenylsilane which may have an unsubstituted or substituent, unsubstituted Alternatively, it has spirofluorene which may have a substituent, triphenylphosphine which may have an unsubstituted or substituent, dibenzothiophene which may have an unsubstituted or substituent, and an unsubstituted or substituent. 26. The compound according to [26], wherein the structure derived from at least one selected from the group consisting of dibenzofurene may be contained in the repeating unit, or in a repeating unit different from the repeating unit.
[28] A material for an organic device containing the compound according to any one of [1] to [27].
[29] The material for an organic device according to [28], which is a material for an organic electroluminescent device, a material for an organic field effect transistor, or a material for an organic thin film solar cell.
[30] The material for an organic device according to [29], which is a material for a light emitting layer for an organic electroluminescent element.
[31] An organic electroluminescent device, an organic field effect transistor, or an organic thin-film solar cell containing the compound according to any one of [1] to [27].
[32] An organic electroluminescent device comprising a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and containing the light emitting layer material according to [30].
[33] 前記発光層が、下記式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物を少なくとも1つ含有する、または、下記(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物由来の構造を繰り返し単位とする高分子化合物を少なくとも1つ含有する、[32]に記載の有機電界発光素子;
Figure JPOXMLDOC01-appb-C000020
 式(H1)中、Lは炭素数6~24のアリーレンであり、
 式(H2)中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールであり、
 上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよく、
 式(H3)中、Jは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 Yは、単結合、>O、>S、>C(-R’)、または>Si(-R’)であり、
 Zは、C-H、C-R’またはNであり、
 式(H4)中、Zは、C-H、C-R’またはNであり、
 前記、>N-R’、>C(-R’)、>Si(-R’)およびC-R’におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
 式(H5)中、
 R~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールへテロアリールアミノもしくはアルキルである置換基であり、これらの置換基における少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
 R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアルキルで置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
 式(H5)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲンまたは重水素で置換されてもよい。
[33] The light emitting layer contains at least one compound represented by the following formula (H1), formula (H2), formula (H3), formula (H4), or formula (H5), or the following ( [32], which contains at least one polymer compound having a structure derived from a compound represented by H1), formula (H2), formula (H3), formula (H4), or formula (H5) as a repeating unit. The organic electroluminescent element described;
Figure JPOXMLDOC01-appb-C000020
In the formula (H1), L 1 is an arylene having 6 to 24 carbon atoms.
In formula (H2), L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
In formula (H3), J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
Y is a single bond,>O,>S,> C (-R') 2 , or> Si (-R') 2 .
Z is CH, CR'or N,
In formula (H4), Z is CH, CR'or N,
The R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R'are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. Yes,
In formula (H5),
R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents. The two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl,
Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl. Often,
At least one hydrogen in the compound represented by the formula (H5) may be independently substituted with a halogen or deuterium.
[34] 下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物を少なくとも一つ含有する、[32]または[33]に記載の有機電界発光素子;
Figure JPOXMLDOC01-appb-C000021
 式(AD1)、(AD2)および(AD3)中、
Mは、それぞれ独立して、単結合、-O-、>N-Arおよび>CArの少なくとも一つであり、
Jは、それぞれ独立して、炭素数6~18のアリーレンであり、前記アリーレンは、フェニル、炭素数1~6のアルキルおよび炭素数3~12のシクロアルキルで置換されてもよく、
Qは、それぞれ独立して、=C(-H)-または=N-であり、
Arは、それぞれ独立して、水素、炭素数6~18のアリール、炭素数6~18のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、前記アリールおよびヘテロアリールにおける少なくとも1つの水素は、フェニル、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されてもよく、
mは、1または2であり、
nは、2~(6-m)の整数であり、
 上記各式で表される化合物における少なくとも1つの水素は、ハロゲン、または重水素で置換されていてもよい。
[34] The organic electroluminescent device according to [32] or [33], which contains at least one compound represented by any of the following formulas (AD1), (AD2) and (AD3);
Figure JPOXMLDOC01-appb-C000021
In formulas (AD1), (AD2) and (AD3),
M is at least one of single bond, -O-,> N-Ar and> CAR 2 independently of each other.
Each of J is independently an arylene having 6 to 18 carbon atoms, and the arylene may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms, and a cycloalkyl having 3 to 12 carbon atoms.
Q is = C (-H)-or = N-, respectively.
Ar is independently hydrogen, an aryl having 6 to 18 carbon atoms, a heteroaryl having 6 to 18 carbon atoms, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms, and the aryl and hetero At least one hydrogen in the aryl may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms.
m is 1 or 2
n is an integer from 2 to (6-m),
At least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
[35] [1]~[27]のいずれかに記載の化合物の少なくとも1つと、溶媒とを含む、発光層形成用組成物。
[36] 前記溶媒として、沸点が150℃以上である有機溶剤を含む、[35]に記載の発光層形成用組成物。
[37] 前記溶媒が、前記化合物の少なくとも1つに対する良溶媒と貧溶媒とを含む混合溶媒であり、良溶媒の沸点が貧溶媒の沸点よりも低い、[35]または[36]に記載の発光層形成用組成物。
[35] A composition for forming a light emitting layer, which comprises at least one of the compounds according to any one of [1] to [27] and a solvent.
[36] The composition for forming a light emitting layer according to [35], which comprises an organic solvent having a boiling point of 150 ° C. or higher as the solvent.
[37] The above-mentioned [35] or [36], wherein the solvent is a mixed solvent containing a good solvent and a poor solvent for at least one of the compounds, and the boiling point of the good solvent is lower than the boiling point of the poor solvent. A composition for forming a light emitting layer.
[38] 式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物を少なくとも1つ含有する、または、式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物由来の構造の少なくとも1つを繰り返し単位とする高分子化合物を少なくとも1つ含有する、[35]~[37]のいずれかに記載の発光層形成用組成物;
Figure JPOXMLDOC01-appb-C000022
 式(H1)中、Lは炭素数6~24のアリーレンであり、
 式(H2)中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールであり、
 上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよく、
 式(H3)中、Jは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 Yは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、
 Zは、C-H、C-R’またはNであり、
 式(H4)中、Zは、C-H、C-R’またはNであり、
 前記、>N-R’、>C(-R’)、>Si(-R’)およびC-R’におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
 式(H5)中、
 R~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールへテロアリールアミノもしくはアルキルである置換基であり、これらの置換基における少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
 R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアルキルで置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
 式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲン、または重水素で置換されてもよい。
[38] Contains at least one compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5), or the formula (H1), the formula (H2). ), Formula (H3), formula (H4), or at least one polymer compound having at least one of the structures derived from the compound represented by the formula (H5) as a repeating unit, [35] to [37]. ] The composition for forming a light emitting layer according to any one of
Figure JPOXMLDOC01-appb-C000022
In the formula (H1), L 1 is an arylene having 6 to 24 carbon atoms.
In formula (H2), L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
In formula (H3), J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
Y is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 .
Z is CH, CR'or N,
In formula (H4), Z is CH, CR'or N,
The R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R'are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. Yes,
In formula (H5),
R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents. The two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl,
Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl. Often,
At least one hydrogen in the compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5) is independently substituted with a halogen or a deuterium. You may.
[39] 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、[35]~[38]のいずれかに記載の発光層形成用組成物から形成された発光層とを有する、有機電界発光素子。
[40] 前記陰極と該発光層との間に配置される電子輸送層および電子注入層よりなる群から選ばれた少なくとも1つの層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、[32]~[34]、および[39]のいずれかに記載の有機電界発光素子。
[41] 前記電子輸送層および電子注入層の少なくとも1つが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体よりなる群から選択される少なくとも1つをさらに含有する、[40]に記載の有機電界発光素子。
[42] [32]~[34]、および[39]~[41]のいずれかに記載の有機電界発光素子を備えた表示装置または照明装置。
[39] It has a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and formed from the light emitting layer forming composition according to any one of [35] to [38]. , Organic electroluminescent device.
[40] It has at least one layer selected from the group consisting of an electron transport layer and an electron injection layer arranged between the cathode and the light emitting layer, and at least one of the electron transport layer and the electron injection layer. Is a group consisting of borane derivatives, pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, arylnitrile derivatives, triazine derivatives, benzoimidazole derivatives, phenanthroline derivatives and quinolinol metal complexes. The organic electric field light emitting element according to any one of [32] to [34], and [39], which contains at least one selected from.
[41] At least one of the electron transport layer and the electron injection layer is an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. It further contains at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. , [40]. The organic electric field light emitting element.
[42] A display device or a lighting device including the organic electroluminescent element according to any one of [32] to [34] and [39] to [41].
 本発明により有機EL素子等の有機デバイスに用いられる材料として、新規な化合物が提供される。本発明の化合物は有機電界発光素子、有機電界効果トランジスタ、または、有機薄膜太陽電池などの有機デバイスの製造に用いることができる有機デバイス用材料として有用である。 According to the present invention, a novel compound is provided as a material used for an organic device such as an organic EL element. The compound of the present invention is useful as a material for an organic device that can be used in the manufacture of an organic electroluminescent device, an organic field effect transistor, or an organic device such as an organic thin-film solar cell.
本実施形態に係る有機EL素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic EL element which concerns on this embodiment. 置換基の部分的なHOMOおよび遅延蛍光寿命のプロットを示す図である。It is a figure which shows the plot of the partial HOMO and delayed fluorescence lifetime of a substituent.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において構造式の説明における「水素」は「水素原子(H)」を意味する。
 本明細書において、高分子化合物を説明する場合における特定の化合物由来の構造とは、当該化合物の構造の大部分を含み、かつ、高分子化合物の繰り返し単位となり得る構造である。例えば、当該化合物のいずれか1つの水素が重合性基に置換した構造を有するモノマーを重合して得られる高分子化合物における当該モノマー由来の構造単位や、その化合物のいずれか2つ以上の水素がそれぞれ独立に反応性基に置換した反応性化合物が異なる反応性基同士で結合して高分子化合物を形成した場合の当該反応性化合物由来の構造単位などが挙げられる。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments. In this specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present specification, "hydrogen" in the description of the structural formula means "hydrogen atom (H)".
In the present specification, the structure derived from a specific compound when describing a polymer compound is a structure that includes most of the structure of the compound and can be a repeating unit of the polymer compound. For example, a structural unit derived from the monomer in a polymer compound obtained by polymerizing a monomer having a structure in which any one hydrogen of the compound is substituted with a polymerizable group, or two or more hydrogens of the compound. Examples thereof include structural units derived from the reactive compound when the reactive compounds independently substituted with the reactive groups are bonded to each other to form a polymer compound.
In the present specification, the combination of preferred embodiments is a more preferred embodiment.
 本明細書において「熱活性型遅延蛍光体」(TADF化合物)とは、熱エネルギーを吸収して励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して遅延蛍光を放射しうる化合物のことを意味する。ここで、「熱活性型遅延蛍光体」には、励起三重項状態から励起一重項状態への励起過程で高次三重項を経るものも含む。高次三重項を経て蛍光を放射する発光機構はFvHT(Fluorescence via Higher Triplet)機構と称されており、これについては、例えば、Durham大学 Monkmanらによる論文(NATURE COMMUNICATIONS,7:13680,DOI: 10.1038/ncomms13680)、産業技術総合研究所 細貝らによる論文(Hosokai et al., Sci. Adv. 2017;3: e1603282)、京都大学 佐藤らによる論文(Scientific Reports,7:4820, DOI:10.1038/s41598-017-05007-7)および、同じく京都大学 佐藤らによる学会発表(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機ELにおける高効率発光の機構、京都大学大学院工学研究科)などに記載されている。本発明では、対象化合物を含むサンプルについて、300Kで蛍光寿命を測定したとき、遅い蛍光成分が観測されたことをもって該対象化合物が「熱活性型遅延蛍光体」であると判定することとする。ここで、「遅い蛍光成分」とは、蛍光寿命が0.1μ秒以上であるもののことを言う。これに対して、基底一重項状態からの直接遷移により生じた励起一重項状態から放射される蛍光は、通常、蛍光寿命が0.1n秒以下である。以下の説明では、寿命が0.1n秒以下の蛍光を「速い蛍光成分」と言う。本発明で用いる「熱活性型遅延蛍光体」が放射する蛍光は、遅い蛍光成分とともに速い蛍光成分を含んでいてもよい。
 蛍光寿命の測定は、例えば蛍光寿命測定装置(浜松ホトニクス社製、C11367-01)を用いて行うことができる。
In the present specification, the "thermally active delayed phosphor" (TADF compound) absorbs thermal energy to cause an intersystem crossing from an excited triplet state to an excited singlet state, and radiates from the excited singlet state. It means a compound that can be deactivated and emit delayed fluorescence. Here, the "thermally active delayed phosphor" also includes those that undergo a higher-order triplet in the excitation process from the excited triplet state to the excited singlet state. The luminescence mechanism that emits fluorescence via higher triplets is called the FvHT (Fluorescence via Higher Triplet) mechanism. For example, a paper by Durham University Monkman et al. (NATURE COMMUNICATIONS, 7:13680, DOI: 10.1038) / ncomms13680), National Institute of Advanced Industrial Science and Technology Hosogai et al. (Hosokai et al., Sci. Adv. 2017; 3: e1603282), Kyoto University Sato et al. (Scientific Reports, 7: 4820, DOI: 10.1038 / s41598- 017-05007-7) and a presentation by Sato et al. Of Kyoto University (98th Annual Meeting of the Chemical Society of Japan, presentation number: 2I4-15, mechanism of high-efficiency luminescence in organic EL using DABNA as a luminescent molecule, Kyoto It is described in (Graduate School of Engineering, Durham University). In the present invention, when the fluorescence lifetime of a sample containing the target compound is measured at 300 K, it is determined that the target compound is a "thermoactive delayed phosphor" when a slow fluorescence component is observed. Here, the "slow fluorescence component" refers to a substance having a fluorescence lifetime of 0.1 μsec or more. On the other hand, the fluorescence emitted from the excited singlet state generated by the direct transition from the basis singlet state usually has a fluorescence lifetime of 0.1 nsec or less. In the following description, fluorescence having a lifetime of 0.1 nsec or less is referred to as a "fast fluorescence component". The fluorescence emitted by the "thermoactive delayed phosphor" used in the present invention may contain a fast fluorescent component as well as a slow fluorescent component.
The fluorescence lifetime can be measured using, for example, a fluorescence lifetime measuring device (manufactured by Hamamatsu Photonics Co., Ltd., C11367-01).
 本明細書において、特に明記しない限り、「ES1」は、77Kにおける蛍光スペクトルの短波長側の変曲点を通る接線とベースラインとの交点より求められる励起一重項エネルギー準位を示し、「ET1」は、77Kにおける燐光スペクトルの短波長側の変曲点を通る接線とベースラインとの交点より求められる励起三重項エネルギー準位を示し、「ΔEST」は前記ES1からET1を引いたエネルギー差、すなわち、ES1-ET1で算出される値を意味する。ΔESTは0.20eV以下であり、0.15eV以下であることが好ましく、0.10eV以下であることがより好ましい。 In this specification, unless otherwise indicated, "E S1" indicates the excited singlet energy level obtained from the intersection between the tangent line and a base line passing through the inflection point of the short wavelength side of the fluorescence spectrum in 77K, " E T1 "indicates the excited triplet energy level obtained from the intersection between the tangent line and a base line passing through the inflection point of the short wavelength side of the phosphorescence spectrum in 77K, a" Delta] E ST "is E T1 from the E S1 subtracting the energy difference, ie, a value calculated by E S1 -E T1. Delta] E ST is less than 0.20 eV, preferably not more than 0.15 eV, more preferably less 0.10 eV.
 「蛍光体」とは、励起一重項状態から放射失活して蛍光を放射しうる化合物のことを意味する。蛍光体は、300Kで蛍光寿命を測定したとき、速い蛍光成分のみが観測される、通常の蛍光体であってもよいし、速い蛍光成分と遅い蛍光成分の両方が観測される遅延蛍光体であってもよい。蛍光体は、蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位が、第1成分としてのホスト化合物、および、第2成分としての熱活性型遅延蛍光体よりも低いことが好ましい。 "Fluorescent substance" means a compound that can radiate fluorescence by being radiated from the excited singlet state. The phosphor may be a normal phosphor in which only a fast fluorescence component is observed when the fluorescence lifetime is measured at 300 K, or a delayed fluorescence in which both a fast fluorescence component and a slow fluorescence component are observed. There may be. The fluorescence singlet energy level obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum of the phosphor is lower than that of the host compound as the first component and the thermally active delayed phosphor as the second component. preferable.
 本発明において、「エミッター」は、有機EL素子において、発光層中に含まれ、最終的に素子外へ取り出される光を発する化合物を示し、複数の化合物であっても、発光波長が異なっていてもかまわない。特に、後述する「TAF素子」(TADF Assisting Fluorescence素子)に用いられるエミッターを「エミッティングドーパント」と呼ぶ。本発明の化合物は、エミッターとして用いることができ、特にTAF素子中では、エミッティングドーパントまたは「アシスティングドーパント」として機能させることができる。「熱活性型遅延蛍光体」は、蛍光体の発光をアシストするアシスティングドーパントとして機能させることができる。特に、TAF素子中において、アシスティングドーパントは、ホストより受け取った電子および正孔を、アシスティングドーパント上で再結合に引き続き励起三重項エネルギーから励起一重項エネルギーへ逆交換交差させ、エミッティングドーパントへエネルギーを受け渡す。以下の説明では、熱活性型遅延蛍光体をアシスティングドーパントとして用いる有機電界発光素子を、「TAF素子」ということがある。TAF素子では、熱活性型遅延蛍光体での逆項間交差により励起三重項エネルギーが励起一重項エネルギーに変換されるため、蛍光体に励起一重項エネルギーを効率よく供給して発光をアシストすることができる。これにより、高い発光効率が得られる。 In the present invention, the "emitter" refers to a compound that emits light that is contained in a light emitting layer and is finally taken out of the device in an organic EL device, and even a plurality of compounds have different emission wavelengths. It doesn't matter. In particular, the emitter used in the "TAF element" (TADF Assisting Fluorescence element) described later is called an "emitting dopant". The compounds of the present invention can be used as emitters and can function as emerging dopants or "assisting dopants", especially in TAF devices. The "heat-activated delayed phosphor" can function as an assisting dopant that assists in the emission of the phosphor. In particular, in the TAF element, the assisting dopant reverse-exchanges the electrons and holes received from the host from the excited triplet energy to the excited singlet energy on the assisting dopant following recombination to the emerging dopant. Hand over energy. In the following description, an organic electroluminescent device that uses a thermally active delayed phosphor as an assisting dopant may be referred to as a “TAF device”. In the TAF element, the excited triplet energy is converted into the excited singlet energy by the inverse intersystem crossing in the thermoactive delayed phosphor, so that the excited singlet energy is efficiently supplied to the phosphor to assist the light emission. Can be done. As a result, high luminous efficiency can be obtained.
 本発明で用いるホスト、アシスティングドーパントおよびエミッティングドーパントは、そのエネルギー準位が下記式(a)~(c)の少なくともいずれかを満たすことが好ましく、全ての条件を満たすことがより好ましい。
 |Ip(H)|≧|Ip(AD)| ・・・式(a)
 式(a)において、Ip(H)は、ホスト化合物のイオン化ポテンシャルを表し、Ip(AD)は、アシスティングドーパントのイオン化ポテンシャルを表す。
 |Eg(AD)|≧|Eg(ED)| ・・・式(b)
 式(b)において、Eg(AD)は、アシスティングドーパントのイオン化ポテンシャルと電子親和力のエネルギー差を表し、Eg(ED)は、エミッティングドーパントのイオン化ポテンシャルと電子親和力のエネルギー差を表す。
 ΔEST(H)≧ΔEST(AD) ・・・式(c)
 式(c)において、ΔEST(H)は、ホスト化合物の励起一重項エネルギー準位と励起三重項エネルギー準位のエネルギー差を表し、ΔEST(AD)は、アシスティングドーパントの励起一重項エネルギー準位と励起三重項エネルギー準位のエネルギー差を表す。
The host, assisting dopant, and emerging dopant used in the present invention preferably have energy levels that satisfy at least one of the following formulas (a) to (c), and more preferably satisfy all the conditions.
| Ip (H) | ≧ | Ip (AD) | ・ ・ ・ Equation (a)
In the formula (a), Ip (H) represents the ionization potential of the host compound, and Ip (AD) represents the ionization potential of the assisting dopant.
| Eg (AD) | ≧ | Eg (ED) | ・ ・ ・ Equation (b)
In the formula (b), Eg (AD) represents the energy difference between the ionization potential and the electron affinity of the assisting dopant, and Eg (ED) represents the energy difference between the ionization potential and the electron affinity of the emittering dopant.
ΔEST (H) ≧ ΔEST (AD) ・ ・ ・ Equation (c)
In formula (c), ΔEST (H) represents the energy difference between the excited single-term energy level and the excited triple-term energy level of the host compound, and ΔEST (AD) is the excited single-term energy level of the assisting dopant. Represents the energy difference between the excited triplet energy level and.
 一方、エミッティングドーパントは、その蛍光スペクトルの440~590nmの範囲に、半値全幅FWHMが80nm以下である発光ピークを有するものであることが好ましい。青色発光素子の用途には450~475nmがより好ましく、455~465nmがさらに好ましい。緑色発光素子の用途には490~590nmがより好ましく、510~550nmがさらに好ましい。発光ピークの半値全幅FWHMが35nm以下であることは、発光の色純度が高いことを意味している。したがって、こうした蛍光体を用いることにより、色味が良好な有機発光素子を実現することができる。 On the other hand, the emitting dopant preferably has an emission peak in which the full width at half maximum FWHM is 80 nm or less in the range of 440 to 590 nm of the fluorescence spectrum. For applications of the blue light emitting device, 450 to 475 nm is more preferable, and 455 to 465 nm is further preferable. For applications of the green light emitting device, 490 to 590 nm is more preferable, and 510 to 550 nm is further preferable. When the full width at half maximum FWHM of the emission peak is 35 nm or less, it means that the color purity of the emission is high. Therefore, by using such a phosphor, an organic light emitting device having a good color can be realized.
 本明細書中において、イオン化ポテンシャル(Ip)は光電子収量分光(Photoelectron Yield Spectroscopy)によるイオン化ポテンシャル(Ip)を意味し、エネルギーギャップ(Eg)は紫外可視吸光分光により求められたスペクトルの最も長波長側の吸収ピークの接線とベースラインとの交点より求められた光学バンドギャップを意味し、電子親和力(Ea)はIpからEgを減ずることで求められる電子親和力を意味する。 In the present specification, the ionization potential (Ip) means the ionization potential (Ip) by photoelectron yield spectroscopy (Photoelectron Yield Spectroscopy), and the energy gap (Eg) is the longest wavelength side of the spectrum obtained by ultraviolet visible absorption spectroscopy. It means the optical band gap obtained from the intersection of the tangent line of the absorption peak and the baseline, and the electron affinity (Ea) means the electron affinity obtained by reducing Eg from Ip.
 本明細書中では、各エネルギー準位を測定するための測定サンプルとして、対象化合物がホスト化合物またはアシスティングドーパントである場合には、ガラス基板上に形成した対象化合物の単独膜(Neat膜、厚さ:50nm)を使用し、対象化合物がエミッティングドーパントである場合には、ガラス基板上に形成した、対象化合物を分散させた不活性ポリマー膜(例えば、ポリメチルメタクリレート膜。他に、ポリスチレン、サイトップ、ゼオネックスなどを用いてよい。厚さ:10μm、対象化合物の濃度:1質量%)を使用する。対象化合物を分散させたポリメチルメタクリレート膜の膜厚については、吸収スペクトル、蛍光スペクトルおよび燐光スペクトルの測定に十分な強度が得られる膜厚であればよく、強度が弱い場合には厚く、強度が強い場合には薄くすればよい。励起光には、吸収スペクトルにおいて得られた吸収ピークの波長を使用し、蛍光スペクトルまたは燐光スペクトルに出現した発光ピークのうち、青色の発光の場合は400~500nmの範囲に、緑色の発光の場合は480~600nmの範囲に、赤色の場合は580~700nmの範囲にそれぞれ出現した発光ピークから得たデータを用いて各エネルギー準位を求めることとする。また、吸収ピークと発光ピークが近く、発光ピーク中に励起光が混合する場合には、より短波長側の吸収ピークや吸収肩を用いてもよい。
[1]蛍光スペクトルのピーク短波長側の接線とベースラインとの交点より求められる励起一重項エネルギー準位ES1
 対象化合物を含む測定サンプルに、77Kで励起光を照射して蛍光スペクトルを観測する。その蛍光スペクトルに現れた発光ピークに対して、その短波長側の変曲点を通る接線をひき、その接線とベースラインとの交点の波長(BSh)[nm]から、下記式を用いて励起一重項エネルギー準位ES1を算出する。
          ES1 [eV]=1240/BSh
[2]燐光スペクトルのピーク短波長側の接線とベースラインとの交点より求められる励起三重項エネルギー準位ET1
 対象化合物を含む測定サンプルに、77Kで励起光を照射して燐光スペクトルを観測する。その燐光スペクトルに現れた発光ピークに対して、その短波長側の変曲点を通る接線をひき、その接線とベースラインとの交点の波長(CSh)[nm]から、下記式を用いて励起三重項エネルギー準位ET1を算出する。
          ET1[eV]=1240/CSh
In the present specification, as a measurement sample for measuring each energy level, when the target compound is a host compound or an assisting dopant, a single film (Neat film, thickness) of the target compound formed on the glass substrate is used. When the target compound is an emitting dopant using (50 nm), an inert polymer film (for example, a polymethylmethacrylate film. In addition, polystyrene, etc.) formed on a glass substrate and dispersed with the target compound is used. Cytop, Zeonex, etc. may be used. Thickness: 10 μm, concentration of target compound: 1% by mass) is used. The film thickness of the polymethylmethacrylate film in which the target compound is dispersed may be a film thickness that is sufficient for measuring the absorption spectrum, fluorescence spectrum, and phosphorescence spectrum. If the intensity is weak, the film thickness is thick and the intensity is high. If it is strong, it should be thinned. For the excitation light, the wavelength of the absorption peak obtained in the absorption spectrum is used, and among the emission peaks appearing in the fluorescence spectrum or the phosphorescence spectrum, the blue emission is in the range of 400 to 500 nm, and the green emission is in the range of 400 to 500 nm. Is to be obtained for each energy level using the data obtained from the emission peaks appearing in the range of 480 to 600 nm and in the case of red in the range of 580 to 700 nm. Further, when the absorption peak and the emission peak are close to each other and the excitation light is mixed in the emission peak, the absorption peak or the absorption shoulder on the shorter wavelength side may be used.
[1] Fluorescence spectra excited singlet energy level determined from the intersection between the peak short wavelength side of the tangent and baseline E S1
The measurement sample containing the target compound is irradiated with excitation light at 77K, and the fluorescence spectrum is observed. For the emission peak appearing in the fluorescence spectrum, draw a tangent line passing through the inflection point on the short wavelength side, and from the wavelength ( BSh ) [nm] of the intersection of the tangent line and the baseline, use the following formula. The excited single-term energy level ES1 is calculated.
E S1 [eV] = 1240 / B Sh
[2] excited triplet determined from the intersection between the tangent line and the base line of the peak short wavelength side of the phosphorescence spectrum energy level E T1
The measurement sample containing the target compound is irradiated with excitation light at 77K, and the phosphorescence spectrum is observed. For the emission peak appearing in the phosphorescence spectrum, draw a tangent line passing through the turning point on the short wavelength side, and use the following equation from the wavelength ( CSh ) [nm] of the intersection of the tangent line and the baseline. The excited triplet energy level ET1 is calculated.
ET1 [eV] = 1240 / C Sh
 ここで、D-A(ドナー-アクセプター)型TADF材料とMRE(Multi Resonance Effect、多重共鳴)型化合物では、分子の堅牢性により蛍光およびリン光スペクトルの発光幅が異なるために、極大発光波長が同じでもD-A型TADF化合物の方がMRE型化合物分子より分子の持つエネルギーに幅があると考えられる。TAF素子では各成分間でのエネルギー授受を正確に見積もり、構成を設計する必要があるために、励起一重項エネルギー準位および励起三重項エネルギー準位をスペクトルの短波長側より見積もる。 Here, the DA (donor-acceptor) type TADF material and the MRE (Multi Resonance Effect) type compound have different emission widths of fluorescence and phosphorescence spectra due to the robustness of the molecule, so that the maximum emission wavelength is different. Even if they are the same, it is considered that the DA type TADF compound has a wider range of energy possessed by the molecule than the MRE type compound molecule. Since it is necessary to accurately estimate the energy transfer between each component and design the configuration of the TAF element, the excited singlet energy level and the excited triplet energy level are estimated from the short wavelength side of the spectrum.
(5)逆項間交差速度
 逆項間交差速度は、励起三重項から励起一重項への逆項間交差の速度を示す。熱活性型遅延蛍光体の逆項間交差速度は、過渡蛍光分光測定により、Nat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、熱活性型遅延蛍光体の逆項間交差速度は10-1以上であり、好ましくは、10-1以上である。
(5) Intersystem crossing velocity The intersystem crossing velocity indicates the velocity of the intersystem crossing from the excited triplet to the excited singlet. The inverse intersystem crossing velocity of a thermoactive delayed phosphor shall be calculated by transient fluorescence spectroscopy using the method described in Nat. Commun. 2015, 6, 8476. Or Organic Electronics 2013, 14, 2721-2726. can be, specifically, the reverse intersystem crossing rate of heat activated delayed fluorescent substance is a 10 5 s -1 or more, preferably, 10 6 s -1 or more.
(6)発光速度
 発光速度は、TADF過程を経ないで励起一重項から基底状態へ蛍光発光を経て遷移する速度を示す。熱活性型遅延蛍光体の発光速度は、逆項間交差速度と同様にNat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、熱活性型遅延蛍光体の発光速度は10-1以上であり、さらに好ましくは、10-1以上である。
 以下において、本発明の化合物およびそれを用いた有機電界発光素子等について説明する。
(6) Emission velocity The emission velocity indicates the rate of transition from the excited singlet to the ground state via fluorescence emission without going through the TADF process. The emission rate of the thermoactive delayed fluorophore can be calculated using the method described in Nat. Commun. 2015, 6, 8476. Or Organic Electronics 2013, 14, 2721-2726, as well as the intersystem crossing rate. Specifically, the emission rate of the thermally active delayed phosphor is 10 7 s -1 or more, and more preferably 10 8 s -1 or more.
Hereinafter, the compound of the present invention, an organic electroluminescent device using the compound, and the like will be described.
 本明細書において、「部分的(な)」/「局在(した)」/「電荷移動遷移(した)」などの接頭語を有する、HOMO/LUMO、エネルギーギャップ、(最低)励起一重項エネルギー、および(最低/高次)励起三重項エネルギーなどの用語を用いて、本発明の化合物について説明する。これらの一部は、本発明の化合物を測定することで光学的または電気化学的に求められる値ではなく、分子軌道計算により求められる値であり、実測との相関はある(または、実測との相関があると推測できる)が、数値は一致しないことがある。分子構造の設計のしやすさおよび検証のしやすさのために、ドナー構造とアクセプター構造に分解して、計算、実測、説明を行う。したがって、アクセプターまたはドナーの部分構造について説明する場合は、アクセプター構造のみ、または、ドナー構造のみについて考えればよい。 In the present specification, HOMO / LUMO, energy gap, (minimum) excited singlet energy having prefixes such as "partial" / "localized" / "charge transfer transition". The compounds of the present invention will be described using terms such as, and (lowest / higher order) excited triplet energies. Some of these are values obtained by molecular orbital calculation, not values obtained optically or electrochemically by measuring the compound of the present invention, and have a correlation with actual measurement (or with actual measurement). It can be inferred that there is a correlation), but the numbers may not match. For ease of design and verification of the molecular structure, it is decomposed into a donor structure and an acceptor structure, and calculations, measurements, and explanations are performed. Therefore, when describing the partial structure of the acceptor or donor, only the acceptor structure or only the donor structure may be considered.
1.化合物
 本発明の化合物は、下記式(i)で表される構造を、少なくとも1つ有する化合物である。
 本発明の化合物は、アクセプター構造(A)として、式(i)で表される構造のうち、部分構造(D)を除いた構造を、ドナー構造として、部分構造(D)を、それぞれ有するといえる。
 九州大学安達らにより、一連の論文(Nature 492, 234-238、Science Advances, 2017:3, e1603282、Science Advances  2018:4, eaao6910) で、高いTADF性を有する熱活性型遅延蛍光性化合物に必要な特徴が明らかにされている。本発明の化合物は、これらの論文で述べられている特徴、つまり、ドナー上に局在するHOMO、アクセプター上に局在するLUMOを有するとともに、小さなΔES1T1および局在した遷移を介したスピン反転過程を示すという特徴を有すると考えられる。
1. 1. Compound The compound of the present invention is a compound having at least one structure represented by the following formula (i).
The compound of the present invention has a structure represented by the formula (i) as an acceptor structure (A) excluding the partial structure (D), and a partial structure (D) as a donor structure. I can say.
In a series of papers (Nature 492, 234-238, Science Advances, 2017: 3, e1603282, Science Advances 2018: 4, eaao6910) by Adachi et al., Kyushu University, it is necessary for thermoactive delayed fluorescent compounds with high TADF properties. Features have been clarified. The compounds of the present invention have the characteristics described in these papers: HOMO localized on the donor, LUMO localized on the acceptor, and spin inversion via small ΔE S1T1 and localized transitions. It is considered to have the characteristic of showing the process.
Figure JPOXMLDOC01-appb-C000023
 式(i)中、
 A環、B環およびC環は、それぞれ独立して、芳香環構造を表し、
 A環、B環およびC環のうち少なくとも1つの環における少なくとも1つの環員原子が、式(D)で表される部分構造(D)と結合し、
 Yは、B、P、P=O、P=SまたはSi-R’であり、
 XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 部分構造(D)におけるQは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、波線部は結合位置を示し、
B環に含まれる環員原子とC環に含まれる環員原子とがXで架橋し、B環の一部およびC環の一部ならびにYを含む6員環を形成してもよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 前記のSi-R’、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
 式(i)におけるA環、B環およびC環における、部分構造(D)、X、X、またはYと結合していない環員原子に結合する構造ならびに部分構造(D)におけるR21~R28は、全てが水素であることはなく、
 式(i)で表される構造を少なくとも1つ有する化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000023
In formula (i),
Rings A, B and C each independently represent an aromatic ring structure.
At least one ring member atom in at least one of the A ring, the B ring and the C ring is bonded to the partial structure (D) represented by the formula (D).
Y is B, P, P = O, P = S or Si-R',
X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the wavy line indicates the bond position.
A ring member atoms contained in the ring member atoms and C ring contained in the B ring is bridged by X 3, a portion of the part and C rings of the ring B and may form a 6-membered ring containing Y, X 3 is any one of>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Diarylboryl (two aryls may be attached via a single bond or a linking group), a substituent that is cyano or halogen, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
The R'in the Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. Yes,
In the A ring, B ring and C ring in the formula (i), the structure bonded to the ring member atom not bonded to the partial structure (D), X 1 , X 2 , or Y, and R 21 in the partial structure (D). ~ R 28 is not all hydrogen,
At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen or deuterium.
 本発明の化合物は、ヘテロ元素を少なくとも中心に有する堅牢な環状構造または多重共鳴効果を利用した構造をアクセプター構造(A)として、および窒素を有する構造をドナー構造(D)として有する化合物であり、D-A型熱活性型遅延蛍光体または多重共鳴効果型遅延蛍光体である。本発明の化合物においてはドナー(D)とアクセプター(A)の適切な選択により高次の励起三重項エネルギー準位と励起一重項エネルギー準位とを近づけることにより高いTADF活性が得られる。より具体的には、高い発光効率、早い遅延蛍光寿命、青色発光および短い発光半値幅を有する化合物であることが好ましい。本化合物は、例えば有機EL素子中で、エミッターまたはアシスティングドーパントとして発光層に含まれ、高い外部量子効率と長い寿命を実現しうると推測される。 The compound of the present invention is a compound having a robust cyclic structure having a hetero element at least in the center or a structure utilizing a multiple resonance effect as an acceptor structure (A) and a structure having nitrogen as a donor structure (D). It is a DA type thermoactive delayed phosphor or a multiple resonance effect delayed phosphor. In the compound of the present invention, high TADF activity can be obtained by bringing the higher-order excited triplet energy level and the excited singlet energy level closer to each other by appropriately selecting the donor (D) and the acceptor (A). More specifically, a compound having high luminous efficiency, fast delayed fluorescence lifetime, blue emission and short emission half width is preferable. It is presumed that this compound is contained in the light emitting layer as an emitter or an assisting dopant in an organic EL device, for example, and can realize high external quantum efficiency and long life.
 本発明の化合物の第一の態様は、式(i)で表される構造を単量体として有する化合物(好ましくは、式(1)で表される構造の単量体)であり、これは、強力なドナー構造とアクセプター構造の回転を抑制し、狭い発光半値幅を有する青色のCT発光と極めて高いTADF性を両立した化合物である。
 また、本発明の化合物の第二の態様は、式(i)で表される構造の多量体である化合物(好ましくは、式(4)で表される化合物)であり、これは、アクセプター構造内でのLE状態(局所励起状態)を用いた極めて狭い発光半値幅と高いTADF性を両立した化合物である。なお、LE状態はLE性の遷移となるS0―S1遷移を示すときのS1を意味する。「LE性の遷移」は分子内で同一の部分構造上に存在するHOMO-LUMOの間での局所的なエネルギー遷移を表す。一般的に、「LE性の遷移」により得られる発光は半値幅の狭い発光ピークを一つ以上有するまたはそれらが重なったスペクトルであり、明確な振動ピークが見られることが多い。一方、CT状態(電荷移動状態)はCT性の遷移となるS0―S1遷移のときのS1を意味する。「CT性の遷移」は分子内で異なる部分構造上に空間的に離れて存在するHOMO-LUMOの間でのエネルギー遷移を表す。一般的に、「CT性の遷移」により得られる発光は半値幅の広い発光ピークを有するスペクトルであり、明確な振動ピークは見られない。
The first aspect of the compound of the present invention is a compound having a structure represented by the formula (i) as a monomer (preferably a monomer having a structure represented by the formula (1)). It is a compound that suppresses the rotation of a strong donor structure and acceptor structure, and has both blue CT emission having a narrow half-value width and extremely high TADF properties.
A second aspect of the compound of the present invention is a compound that is a multimer of the structure represented by the formula (i) (preferably a compound represented by the formula (4)), which has an acceptor structure. It is a compound that has both an extremely narrow half-value width at half maximum emission and high TADF properties using the LE state (locally excited state) inside. The LE state means S1 when the S0-S1 transition, which is a LE-like transition, is shown. The "LE transition" represents a local energy transition between HOMO-LUMOs that are present on the same partial structure within the molecule. In general, the emission obtained by the "LE transition" is a spectrum having one or more emission peaks having a narrow half width or overlapping them, and a clear vibration peak is often seen. On the other hand, the CT state (charge transfer state) means S1 at the time of the S0-S1 transition, which is a CT-like transition. "CT transition" represents an energy transition between HOMO-LUMOs that are spatially separated on different partial structures within the molecule. In general, the emission obtained by the "CT transition" is a spectrum having an emission peak with a wide half-value width, and no clear vibration peak is observed.
 本発明は2つの態様を含むが、いずれの場合においても、高次の励起三重項エネルギー(Tn)の制御が重要である。つまり、HOMO-n(部分構造D)準位をHOMO(主骨格)準位に近づけることでSnとTnを近接させることで、TADFによる励起三重項から励起一重項へのアップコンバージョンを速めることができる。より具体的には、ひとつめについては、T1(CT)→Tn(LE)→S1(CT)のアップコンバージョンを早めることで、もうひとつは、T1(LE)→Tn(CT)→S1(LE)のアップコンバージョンを早める。具体的には、S1-T1が0.20eV以下,S1-T2(あるいはS1-T3)が0.20eV以下が好ましく、S1-T1が0.15eV以下,S1-T2(あるいはS1-T3)が0.10eV以下がより好ましい。S1-T1が0.1eV以下,S1-T2(あるいはS1-T3)が0.05eV以下がさらに好ましい。
 特に、S1とT1のエネルギー準位差(S1-T1)が0.1eV以下で、かつS1とT2のエネルギー準位差(S1-T2)が0.05eV以下であり、さらにS1が局所励起状態であることが好ましい。
The present invention includes two aspects, in which case it is important to control the higher order excited triplet energy (Tn). In other words, by bringing the HOMO-n (partial structure D) level closer to the HOMO (main skeleton) level and bringing Sn and Tn closer, the up-conversion from the excited triplet to the excited singlet by TADF can be accelerated. it can. More specifically, for the first, by accelerating the up-conversion of T1 (CT) → Tn (LE) → S1 (CT), the other is T1 (LE) → Tn (CT) → S1 (LE). ) Accelerate up-conversion. Specifically, S1-T1 is preferably 0.20 eV or less, S1-T2 (or S1-T3) is preferably 0.20 eV or less, S1-T1 is 0.15 eV or less, and S1-T2 (or S1-T3) is. More preferably 0.10 eV or less. It is more preferable that S1-T1 is 0.1 eV or less and S1-T2 (or S1-T3) is 0.05 eV or less.
In particular, the energy level difference between S1 and T1 (S1-T1) is 0.1 eV or less, the energy level difference between S1 and T2 (S1-T2) is 0.05 eV or less, and S1 is in a locally excited state. Is preferable.
1-1.アクセプター構造
 式(i)で表される構造中の部分構造(D)を除いたアクセプター構造は、大きな部分的なエネルギーギャップ(E(A))と高い部分的な最低三重項励起エネルギー(ET1(A))を有する。これは、ヘテロ元素を含む6員環は芳香属性が低いため、共役系の拡張に伴う部分的なエネルギーギャップの減少が抑制されること、ヘテロ元素の電子的な摂動により三重項励起状態(T1)の部分的なSOMO1およびSOMO2が局在化することが原因となっている。上記アクセプター構造は、高い部分的な最低励起三重項エネルギーを有しているために、熱活性型遅延蛍光材料のアクセプター構造として好ましい。
1-1. The acceptor structure excluding the partial structure (D) in the structure represented by the acceptor structural formula (i) has a large partial energy gap ( Eg (A)) and a high partial minimum triplet excitation energy (E). It has T1 (A)). This is because the 6-membered ring containing the hetero element has a low aromatic attribute, so that the decrease in the partial energy gap due to the expansion of the conjugated system is suppressed, and the triplet excited state (T1) is due to the electronic perturbation of the hetero element. ) Is due to the localization of partial SOMO1 and SOMO2. The acceptor structure is preferable as an acceptor structure of a heat-activated delayed fluorescent material because it has a high partial minimum excited triplet energy.
 式(i)中、A環、B環およびC環は、それぞれ独立して、芳香環構造を表す。芳香環構造は、式(i)において芳香環を構成する環員原子がY、ならびにXおよび/またはXと直接結合する芳香環を含む構造である。さらに、式(i)においては環員原子が部分構造(D)と結合する芳香環構造が少なくとも1つ含まれる。芳香環構造は、芳香族炭化水素環構造または芳香族複素環構造であることが好ましく、芳香族炭化水素環構造であることがより好ましい。
 また、A環、B環およびC環は、それぞれ独立して、5員環または6員環の芳香環構造であることが好ましく、6員環の芳香環構造であることがより好ましい。
 A環、B環およびC環の少なくとも1つが芳香族炭化水素環構造である場合、芳香族炭化水素環構造としては、ベンゼン環構造が好ましい。
 A環、B環およびC環の少なくとも1つが芳香族複素環構造である場合、芳香族複素環構造における複素原子としては、例えば、窒素原子、酸素原子、硫黄原子またはセレン原子等が挙げられる。より具体的には、多重共鳴効果の増強の観点から、ピリジン環構造およびピリミジン環構造が好ましく、NがY(好ましくはB)の結合する炭素のm位にあるピリミジン環構造がより好ましい。言い換えると、ピリミジン環構造における一方のNを1位、他方のNを3位とした場合に、5位の炭素原子において式(i)におけるYと結合するピリミジン環構造がより好ましい。また、ピリジン環構造である場合、NがY(好ましくはB)の結合する炭素のm位にあるピリジン環がより好ましい。言い換えると、ピリジン環におけるNを1位した場合に、3位または5位の炭素原子において式(i)におけるYと結合するピリジン環構造がより好ましい。
 A環、B環およびC環は、合成の容易さおよび化合物の安定性の観点から、いずれもベンゼン環構造であることが好ましい。
 A環、B環およびC環のうち少なくとも1つの芳香環構造における少なくとも1つの環員原子が、部分構造(D)における波線部と結合する。
 ここで、好ましい態様としては、A環における環員原子が部分構造(D)における波線部と結合する態様、B環またはC環における環員原子が部分構造(D)における波線部と結合する態様、B環およびC環それぞれにおける環員原子が部分構造(D)における波線部と結合する態様、等が挙げられる。
 また、A環、B環およびC環は、それぞれ独立して、後述する第1置換基を有していてもよい。また、上記第1置換基における少なくとも1つの水素は、後述する第2置換基により置換されていてもよい。
In formula (i), the A ring, B ring and C ring each independently represent an aromatic ring structure. The aromatic ring structure is a structure including an aromatic ring in which the ring member atoms constituting the aromatic ring in the formula (i) are directly bonded to Y and X 1 and / or X 2 . Further, the formula (i) includes at least one aromatic ring structure in which a ring member atom is bonded to the partial structure (D). The aromatic ring structure is preferably an aromatic hydrocarbon ring structure or an aromatic heterocyclic ring structure, and more preferably an aromatic hydrocarbon ring structure.
Further, the A ring, the B ring and the C ring are each independently preferably having a 5-membered ring or a 6-membered ring aromatic ring structure, and more preferably a 6-membered ring aromatic ring structure.
When at least one of the A ring, the B ring and the C ring has an aromatic hydrocarbon ring structure, a benzene ring structure is preferable as the aromatic hydrocarbon ring structure.
When at least one of the A ring, the B ring and the C ring has an aromatic heterocyclic structure, examples of the heteroatom in the aromatic heterocyclic structure include a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom. More specifically, from the viewpoint of enhancing the multiple resonance effect, a pyridine ring structure and a pyrimidine ring structure are preferable, and a pyrimidine ring structure in which N is at the m-position of the carbon to which Y (preferably B) is bonded is more preferable. In other words, when one N in the pyrimidine ring structure is at the 1-position and the other N is at the 3-position, the pyrimidine ring structure that bonds with Y in the formula (i) at the carbon atom at the 5-position is more preferable. Further, in the case of a pyridine ring structure, a pyridine ring in which N is at the m-position of the carbon to which Y (preferably B) is bonded is more preferable. In other words, when N in the pyridine ring is 1-position, a pyridine ring structure that bonds with Y in the formula (i) at the carbon atom at the 3-position or 5-position is more preferable.
The A ring, B ring, and C ring preferably have a benzene ring structure from the viewpoint of ease of synthesis and stability of the compound.
At least one ring member atom in at least one aromatic ring structure of the A ring, B ring and C ring is bonded to the wavy line portion in the partial structure (D).
Here, as a preferred embodiment, a ring member atom in the A ring is bonded to the wavy line portion in the partial structure (D), and a ring member atom in the B ring or the C ring is bonded to the wavy line portion in the partial structure (D). , A mode in which a ring member atom in each of the B ring and the C ring is bonded to a wavy line portion in the partial structure (D), and the like.
In addition, the A ring, the B ring, and the C ring may each independently have a first substituent, which will be described later. Further, at least one hydrogen in the first substituent may be substituted with a second substituent described later.
 式(i)中、X、X、Y、部分構造(D)、第1置換基および第2置換基は、後述する式(1)中のX、X、Y、部分構造(D)、第1置換基および第2置換基と同義であり、好ましい態様も同様である。 In formula (i), X 1 , X 2 , Y, partial structure (D), first substituent and second substituent are X 1 , X 2 , Y, partial structure (1) in formula (1) described later. D), synonymous with the first substituent and the second substituent, and the preferred embodiment is also the same.
1-1-1.単量体
 式(i)で表される構造を少なくとも1つ有する化合物が式(i)で表される構造を1つ有する化合物(単量体)であるとき、A環、B環およびC環における、部分構造(D)と結合していない環員原子であって結合手を残している原子(炭素等)は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、もしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基と結合し、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
1-1-1. When the compound having at least one structure represented by the monomer formula (i) is a compound (monomer) having one structure represented by the formula (i), the A ring, the B ring and the C ring In, the ring-membered atoms that are not bonded to the partial structure (D) and that have a bond (carbon, etc.) are independently hydrogen, or aryl, heteroaryl, diarylamino, and dihetero. Arylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group) by binding to a substituent. Adjacent substituents may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
 本発明の化合物の第一の態様の好ましい例として、下記式(1)で表される化合物が挙げられる。 A preferable example of the first aspect of the compound of the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(1)中、
 R~R11における少なくとも1つは、式(D)で表される部分構造(D)であり、
 Yは、B、P、P=O、P=SまたはSi-R’であり、
 XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシもしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 RおよびRは>Xで架橋し、b環の一部およびc環の一部ならびにYを含む6員環を形成してよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 前記のSi-R’、>N-R’、>C(-R’)、および>Si(-R’)におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
 式(1)における部分構造(D)ではないR~R11および部分構造(D)におけるR21~R28は、全てが水素であることはなく、
 式(1)で表される化合物における少なくとも1つの水素がハロゲン、または重水素で置換されてもよい。
In equation (1),
At least one of R 1 to R 11 is a partial structure (D) represented by the formula (D).
Y is B, P, P = O, P = S or Si-R',
X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy. Alternatively, it is a substituent which is a diallylboryl (two aryls may be bonded via a single bond or a linking group), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing part of the b ring, part of the c ring and Y, where X 3 is>O,>S,> N-. R',> C (-R') 2 or> Si (-R') 2
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Diarylboryl (two aryls may be attached via a single bond or a linking group), a substituent that is cyano or halogen, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
The R'in the Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. And
R 1 to R 11 which are not the partial structure (D) in the formula (1) and R 21 to R 28 in the partial structure (D) are not all hydrogen.
At least one hydrogen in the compound represented by the formula (1) may be substituted with halogen or deuterium.
 本発明の化合物としてより深い青色の発光を得るためには、アクセプターにおける部分的なLUMOは浅く、部分的なHOMOは深く、部分的なエネルギーギャップは広いほうが好ましく、具体的な構造としては、Yは、B、P、P=O、P=SまたはSi-R’であり、B、P=O、P=SまたはSi-R’が好ましく、B、P=OまたはSi-R’がより好ましく、Bがさらに好ましく、XおよびXは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、>O、>S、>C(-R’)または>Si(-R’)が好ましく、>O、>C(-R’)または>Si(-R’)がより好ましく、共に>Oであることがさらに好ましい。
 化合物の安定性、多重共鳴効果の増強、広い部分的なエネルギーギャップによる化合物の青色発光、合成の容易さおよび高いTADF活性の観点からは、YはBであることが好ましい。
 非常に広いエネルギーギャップによる化合物の深青色発光および合成の容易さの観点からは、YはP=OまたはP=Sであることが好ましい。
 化合物の安定性および広いエネルギーギャップによる青色発光の観点からは、YはSi-R’であることが好ましい。
In order to obtain deeper blue luminescence as the compound of the present invention, it is preferable that the partial LUMO in the acceptor is shallow, the partial HOMO is deep, and the partial energy gap is wide, and the specific structure is Y. Is B, P, P = O, P = S or Si-R', preferably B, P = O, P = S or Si-R', and more B, P = O or Si-R'. Preferably, B is even more preferred, where X 1 and X 2 are>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , and>O,>.S,> C (-R') 2 or> Si (-R') 2 is preferable,>O,> C (-R') 2 or> Si (-R') 2 is more preferable, and both are> O. It is more preferable to have.
Y is preferably B from the standpoints of compound stability, enhanced multiple resonance effects, blue emission of the compound due to wide partial energy gaps, ease of synthesis and high TADF activity.
From the viewpoint of deep blue emission of the compound due to a very wide energy gap and ease of synthesis, Y is preferably P = O or P = S.
From the viewpoint of compound stability and blue emission due to a wide energy gap, Y is preferably Si—R'.
 Yについては、本発明の化合物に求められる特性にあわせて、ドナー構造と組合せて適切に用いてよい。具体的な構造としては、式(1-B)、式(1-P)、式(1-H)、式(1-T)および式(1-V)が挙げられる。この場合は、X、X、および式(1)におけるYを有するナフトアントラセン構造である。 Y may be appropriately used in combination with the donor structure according to the characteristics required for the compound of the present invention. Specific structures include formula (1-B), formula (1-P), formula (1-H), formula (1-T) and formula (1-V). In this case, it is a naphthoanthracene structure having X 1 , X 2 , and Y in the formula (1).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 また、RおよびRは>Xで架橋し、b環、c環およびホウ素含む6員環を形成してよい。この場合は、X、X、XおよびYを有するトリアンギュレン構造である。具体的な構造としては、式(1-BX3)、式(1-PX3)、式(1-HX3)、式(1-TX3)および式(1-VX3)が挙げられる。
 ただし、合成の容易さおよび高いTADF性の観点からは、RおよびRが、架橋せず、環を形成しないことが好ましい。
 ただし、化合物の安定性および広いエネルギーギャップの観点からは、RおよびRが、>Xで架橋し環を形成することが好ましい。
In addition, R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing a b ring, a c ring and boron. In this case, it is a triangulene structure having X 1 , X 2 , X 3 and Y. Specific structures include formula (1-BX3), formula (1-PX3), formula (1-HX3), formula (1-TX3) and formula (1-VX3).
However, from the viewpoint of ease of synthesis and high TADF properties, it is preferable that R 7 and R 8 do not crosslink and do not form a ring.
However, from the standpoint of compound stability and wide energy gap, it is preferred that R 7 and R 8 crosslink at> X 3 to form a ring.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 ナフトアントラセン構造は、部分合成の容易さおよび対称性の低さに起因する凝集性の低さの点で好ましい。トリアンギュレン構造は、骨格の堅牢性および対称性の高さによる分子間相互作用の強さの点で好ましい。本発明においては、ドナー構造との組み合わせにより適切に用いてよい。 The naphthoanthracene structure is preferable in terms of ease of partial synthesis and low cohesiveness due to low symmetry. The triangulene structure is preferred in terms of skeletal robustness and strength of intermolecular interaction due to high symmetry. In the present invention, it may be appropriately used in combination with the donor structure.
 XおよびXにおいては、本発明の化合物に求められる特性にあわせて、ドナー構造と組合せて適切に用いてよい。具体的な構造としては、式(1-O2)、式(1-OS)、式(1-OC)、式(1-OI)、式(1-ON)、式(1-S2)、式(1-SC)、式(1-SI)、式(1-SN)、式(1-C2)、式(1-CI)、式(1-CN)、式(1-I2)、式(1-IN)および式(1-N2)が挙げられる。部分的なエネルギーギャップの観点からは、XおよびXが、>Oを少なくとも1つ有する化合物が好ましい。合成の容易さの観点からは、XおよびXが、共に同じである化合物が好ましい。 In X 1 and X 2 , it may be appropriately used in combination with the donor structure according to the characteristics required for the compound of the present invention. Specific structures include formula (1-O2), formula (1-OS), formula (1-OC), formula (1-OI), formula (1-ON), formula (1-S2), and formula. (1-SC), formula (1-SI), formula (1-SN), formula (1-C2), formula (1-CI), formula (1-CN), formula (1-I2), formula ( 1-IN) and formula (1-N2) can be mentioned. From the point of view of the partial energy gap, compounds in which X 1 and X 2 have at least one> O are preferred. From the viewpoint of ease of synthesis, compounds in which both X 1 and X 2 are the same are preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明の化合物はXを有しトリアンギュレン構造であってもよい。部分的なエネルギーギャップおよび合成の容易さの観点からは、X、X、およびXにおいて、>O、>S、>C(-R’)または>Si(-R’)を1つ以上有する化合物、>N-R’が2つ以下である化合物、および、X1~3が2つ以上同じである化合物が好ましく、合成の観点からは、X、X、およびXが全て同じである化合物がより好ましく、部分的なエネルギーギャップの観点からは、X、XおよびXにおいて、>O、>C(-R’)または>Si(-R’)を1つ以上有する化合物がより好ましく、>Oを1つ以上有する化合物がさらに好ましく、>Oを2つ以上有する化合物がいっそう好ましい。 The compounds of the present invention may be Toriangyuren structure has a X 3. From the viewpoint of partial energy gap and ease of synthesis, in X 1, X 2, and X 3,>O,> S , a> C (-R ') 2 or> Si (-R') 2 Compounds having one or more, compounds having>N-R'of two or less, and compounds having two or more Xs 1 to 3 being the same are preferable, and from the viewpoint of synthesis, X 1 , X 2 , and X more preferably all compounds have the same 3, from the viewpoint of partial energy gap, in X 1, X 2 and X 3,>O,> C (-R ') 2 or> Si (-R') A compound having one or more of 2 is more preferable, a compound having one or more of> O is more preferable, and a compound having two or more of> O is even more preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 XおよびYの組合せとしては、広い部分的なエネルギーギャップの観点からは、XおよびXが、>O、>S、>C(-R’)または>Si(-R’)であり、かつ、Yが、B、P=OまたはSi-R’である化合物が好ましく、XおよびXまたはX、XおよびXが、>O、>C(-R’)または>Si(-R’)であり、かつ、Yが、B、P=OまたはSi-R’である化合物がより好ましく、XおよびXまたはX、XおよびXが、>Oまたは>C(-R’)であり、かつ、Yが、B、P=OまたはSi-R’である化合物がさらに好ましく、XおよびXが、>Oであり、かつ、Yが、B、P=OまたはSi-R’である化合物がいっそう好ましい。
 化合物の安定性の観点からは、Yが、BまたはSi-R’である化合物が好ましく、XおよびXが、>O、>S、>C(-R’)または>Si(-R’)である化合物がより好ましく、XおよびXが、>O、>C(-R’)または>Si(-R’)である化合物がさらに好ましく、トリアンギュレン型化合物がいっそう好ましい。
 化合物の合成のしやすさの観点からは、ナフトアントラセン型化合物であり、XおよびXが、>O、>N-R’、>C(-R’)または>Si(-R’)である化合物が好ましく、XおよびXが同じである化合物がより好ましく、XおよびXが共に、>Oである化合物がさらに好ましく、Yが、BまたはP=Oである化合物がいっそう好ましい。
 化合物の遅延蛍光寿命および発光効率の観点からは、ナフトアントラセン型化合物が好ましい。
As for the combination of X and Y, in terms of a wide partial energy gap, X 1 and X 2 are>O,>S,> C (-R') 2 or> Si (-R') 2 . Compounds that are present and Y is B, P = O or Si-R'are preferred, with X 1 and X 2 or X 1 , X 2 and X 3 being>O,> C (-R') 2 Or> Si (-R') 2 and Y is more preferably B, P = O or Si-R', with X 1 and X 2 or X 1 , X 2 and X 3 being Compounds with> O or> C (-R') 2 and Y being B, P = O or Si-R' are even more preferred, with X 1 and X 2 being> O and> O. Compounds in which Y is B, P = O or Si—R'are even more preferred.
From the viewpoint of compound stability, a compound in which Y is B or Si-R'is preferable, and X 1 and X 2 are>O,>S,> C (-R') 2 or> Si (-). R') 2 compounds are more preferred, and X 1 and X 2 are>O,> C (-R') 2 or> Si (-R') 2 , more preferably triangular compounds. Is even more preferable.
From the viewpoint of ease of compound synthesis, it is a naphthanthracene type compound, and X 1 and X 2 are>O,>N-R',> C (-R') 2 or> Si (-R'). ) 2 is preferred, compounds with the same X 1 and X 2 are more preferred, compounds with both X 1 and X 2 > O are more preferred, and compounds with Y of B or P = O. Is even more preferable.
From the viewpoint of delayed fluorescence lifetime and luminous efficiency of the compound, a naphthanthracene type compound is preferable.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 XおよびX(および、Xが含まれる場合はX)において、>N-R’、>C(-R’)または>Si(-R’)のR’は、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルであり、具体的には、フェニル、ビフェニル、フルオレニル、ピリジル、ピラジル、トリアジル、ビピリジル、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、インデノカルバゾール、メチル、エチル、プロピル、ブチル、シクロヘキシル、アダマンチルが好ましく、フェニル、フルオレニル、メチルがより好ましい。また、置換基同士がスピロ構造を形成してもよい。また、>C(-R’)または>Si(-R’)における2つのR’は、同一であっても異なっていてもよい。 X 1 and X 2 (and, X 3 if it contains a X 3) in,> N-R ',> C (-R') 2 or> Si (-R ') 2 of R' is the number of carbon atoms Aryls of 6 to 20, heteroaryls of 2 to 15 carbons, alkyls of 1 to 20 carbons or cycloalkyls of 3 to 20 carbons, specifically phenyl, biphenyl, fluorenyl, pyridyl, pyrazil, triazil. , Bipyridyl, carbazole, dibenzofuran, dibenzothiophene, indenocarbazole, methyl, ethyl, propyl, butyl, cyclohexyl, adamantyl, more preferably phenyl, fluorenyl, methyl. Further, the substituents may form a spiro structure. Further, the two R's in> C (-R') 2 or> Si (-R') 2 may be the same or different.
 Yにおいて、>Si-R’のR’は、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルであることが好ましい。具体的には、フェニル、ビフェニル、フルオレニル、ピリジル、ピラジル、トリアジル、ビピリジル、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、インデノカルバゾール、メチル、エチル、プロピル、ブチル、シクロヘキシル、またはアダマンチルが好ましく、フェニルまたはメチルがより好ましい。 In Y,> R'of Si—R'is aryl, heteroaryl, alkyl or cycloalkyl, with 6 to 20 carbon atoms, 2 to 15 carbon atoms heteroaryl, 1 to 20 carbon atoms alkyl or It is preferably a cycloalkyl having 3 to 20 carbon atoms. Specifically, phenyl, biphenyl, fluorenyl, pyridyl, pyrazil, triadyl, bipyridyl, carbazole, dibenzofuran, dibenzothiophene, indenocarbazole, methyl, ethyl, propyl, butyl, cyclohexyl, or adamantyl are preferred, with phenyl or methyl being more preferred. preferable.
 式(1)における部分構造(D)の置換位置については、アクセプター構造の構造により異なるが、Yのp位に置換する場合にアクセプター構造(A)における部分的なLUMOへ大きな影響を与える。ナフトアントラセン型構造はトリアンギュレン型構造に比べて対称性が低く、置換位置によりアクセプター構造(A)のLUMOへ与える影響を調節することができるため好ましい。詳細には、ナフトアントラセン型構造への置換は、a環への置換は影響が大きく、b環およびc環への置換は影響が小さい。つまり、微調整のためには、部分構造(D)はR、R、R、R、RまたはR11への置換が好ましい。また、部分構造(D)とアクセプター構造(A)の成す二面角の観点からは、互いに直交することが好ましい。さらには、基底状態と励起状態の構造変化が小さい方が半値幅の狭い発光スペクトルが得られるために好ましく、面外振動を起こすb環およびc環よりa環に部分構造(D)を置換するほうが好ましい。 The substitution position of the partial structure (D) in the formula (1) differs depending on the structure of the acceptor structure, but when it is substituted at the p-position of Y, it has a great influence on the partial LUMO in the acceptor structure (A). The naphthoanthracene type structure has lower symmetry than the triangulene type structure, and the influence of the acceptor structure (A) on LUMO can be adjusted by the substitution position, which is preferable. Specifically, the substitution to the naphthoanthracene type structure has a large effect on the substitution on the a ring, and the substitution on the b ring and the c ring has a small effect. That is, for fine adjustment, the partial structure (D) is preferably replaced with R 1 , R 3 , R 4 , R 5 , R 9 or R 11 . Further, from the viewpoint of the dihedral angle formed by the partial structure (D) and the acceptor structure (A), it is preferable that they are orthogonal to each other. Furthermore, it is preferable that the structural change between the ground state and the excited state is small because an emission spectrum having a narrow half width can be obtained, and the partial structure (D) is replaced with the a ring rather than the b ring and the c ring that cause out-of-plane vibration. Is preferable.
 式(1)において、R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)(以上、第1置換基)であり、前記アリール、前記ヘテロアリール、および前記ジアリールアミノにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。 In formula (1), R 1 to R 11 are independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls are single-bonded or linked). At least one hydrogen in the aryl, the heteroaryl, and the diarylamino is an aryl, heteroaryl, alkyl or cycloalkyl (or more) (which may be attached via a group) (above, first substituent). , The second substituent) may be substituted.
 「アリール」(第1置換基)としては、例えば、炭素数6~30のアリールが挙げられ、炭素数6~24のアリールが好ましく、炭素数6~20のアリールがより好ましく、炭素数6~16のアリールがさらに好ましく、炭素数6~12のアリールが特に好ましく、炭素数6~10のアリールが最も好ましい。 Examples of the "aryl" (first substituent) include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, more preferably aryls having 6 to 20 carbon atoms, and 6 to 6 carbon atoms. Aryl of 16 is more preferable, aryl of 6 to 12 carbon atoms is particularly preferable, and aryl of 6 to 10 carbon atoms is most preferable.
 具体的なアリールとしては、例えば、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of the aryl include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl. , Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1) -, 2-) Il, (1-, 2-, 3-, 4-, 9-) Phenantril, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, which is a tetracyclic aryl, 5'-phenyl-m-terphenyl-3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2), a fused tetracyclic aryl -) Ill, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-), which is a fused pentacyclic aryl ) Il, pentasen- (1-, 2-, 5-, 6-) il and the like.
 第1置換基としての「アリール」の上記説明は、第1置換基としての、ジアリールアミノにおける「アリール」、アリールオキシにおける「アリール」、ジアリールボリルにおける「アリール」、第2置換基としての、「アリール」に対しても同じく引用することができる。 The above description of "aryl" as the first substituent is described as "aryl" in diarylamino, "aryl" in aryloxy, "aryl" in diarylboryl, and "aryl" as the second substituent. The same can be quoted for "aryl".
 「ヘテロアリール」(第1置換基)としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 Examples of the "heteroaryl" (first substituent) include heteroaryls having 2 to 30 carbon atoms, preferably heteroaryls having 2 to 25 carbon atoms, and more preferably heteroaryls having 2 to 20 carbon atoms. Heteroaryl having 2 to 15 carbon atoms is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable. Examples of the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ベンゾ[b]チエニル、ジベンゾチオフェニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。 Specific examples of heteroaryl include frill, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl Isobenzofuranyl, dibenzofuranyl, benzo [b] thienyl, dibenzothiophenyl, indolyl, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl , Kinoxalinyl, phthalazinyl, naphthyldinyl, prynyl, pteridinyl, carbazolyl, acridinyl, phenoxadinyl, phenothiazine, phenazinyl, phenoxatinyl, thianthrenyl, indridinyl and the like.
 第1置換基としての「ヘテロアリール」の上記説明は、第2置換基としての「ヘテロアリール」に対しても同じく引用することができる。また、第2置換基としての「ヘテロアリール」には、当該ヘテロアリールにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は後述する基)で置換された基も第2置換基としてのヘテロアリールに含まれる。その一例としては、第2置換基がカルバゾリルの場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリルも第2置換基としてのヘテロアリールに含まれる。 The above description of "heteroaryl" as the first substituent can also be cited for "heteroaryl" as the second substituent. Further, in the "heteroaryl" as the second substituent, at least one hydrogen in the heteroaryl is an aryl such as phenyl (specific example is the group described above) or an alkyl such as methyl (specific example is a group described later). The substituted group is also included in the heteroaryl as the second substituent. As an example, when the second substituent is carbazolyl, carbazolyl in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl or an alkyl such as methyl is also included in the heteroaryl as the second substituent. ..
 「アルキル」(第1置換基)としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24のアルキル(炭素数3~24の分岐鎖アルキル)が挙げられ、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましく、メチルが最も好ましい。 The "alkyl" (first substituent) may be either a straight chain or a branched chain, and examples thereof include alkyl having 1 to 24 carbon atoms (branched chain alkyl having 3 to 24 carbon atoms) and having 1 to 24 carbon atoms. An alkyl having 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms) is preferable, an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms) is more preferable, and an alkyl having 1 to 6 carbon atoms (3 carbon atoms) is preferable. (2 to 6 branched chain alkyl) is more preferable, alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms) is particularly preferable, and methyl is most preferable.
 具体的なアルキルとしては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。 Specific alkyl examples include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, Examples thereof include n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl and n-eicocil.
 第1置換基としての「アルキル」の上記説明は、第2置換基としての「アルキル」に対しても同じく引用することができる。第1置換基に対して第2置換基であるアルキルが置換する位置は特に限定されないが、第1置換基のa環、b環およびc環への結合位置(1位)を基準にして、2位または3位が好ましく、2位がより好ましい。 The above description of "alkyl" as the first substituent can also be quoted for "alkyl" as the second substituent. The position where the alkyl, which is the second substituent, substitutes for the first substituent is not particularly limited, but is based on the bonding position (1 position) of the first substituent to the a ring, b ring and c ring. The 2nd or 3rd position is preferable, and the 2nd position is more preferable.
 「シクロアルキル」(第1置換基)としては、1つの環からなるシクロアルキル、複数の環からなるシクロアルキル、環内で共役しない二重結合を含むシクロアルキルおよび環外に分岐を含むシクロアルキルのいずれでもよく、例えば、炭素数3~12のシクロアルキルが挙げられ、炭素数5~10のシクロアルキルが好ましく、炭素数6~10のシクロアルキルがより好ましい。 "Cycloalkyl" (first substituent) includes cycloalkyl consisting of one ring, cycloalkyl consisting of multiple rings, cycloalkyl containing a double bond that is not conjugated within the ring, and cycloalkyl containing an extracyclic branch. For example, cycloalkyl having 3 to 12 carbon atoms is preferable, cycloalkyl having 5 to 10 carbon atoms is preferable, and cycloalkyl having 6 to 10 carbon atoms is more preferable.
 具体的なシクロアルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.2.2]オクチル、デカヒドロナフチル、アダマンチルなどが挙げられる。 Specific examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, and adamantyl. And so on.
 第1置換基としての「シクロアルキル」の上記説明は、第2置換基としての「シクロアルキル」に対しても同じく引用することができる。 The above description of "cycloalkyl" as the first substituent can also be cited for "cycloalkyl" as the second substituent.
 「アルコキシ」(第1置換基)としては、例えば、炭素数1~24のアルコキシ(炭素数3~24の分岐鎖のアルコキシ)が挙げられ、炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。 Examples of the "alkoxy" (first substituent) include an alkoxy having 1 to 24 carbon atoms (alkoxy of a branched chain having 3 to 24 carbon atoms) and an alkoxy having 1 to 18 carbon atoms (3 to 18 carbon atoms). (Alkoxy of the branched chain) is preferable, alkoxy having 1 to 12 carbon atoms (alkoxy of the branched chain having 3 to 12 carbon atoms) is more preferable, and alkoxy having 1 to 6 carbon atoms (alkoxy of the branched chain having 3 to 6 carbon atoms). ) Is more preferable, and an alkoxy having 1 to 4 carbon atoms (alkoxy of a branched chain having 3 to 4 carbon atoms) is particularly preferable.
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。 Specific examples of alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
 また第1の置換基としての「ジアリールアミノ」、「ジヘテロアリールアミノ」、「アリールヘテロアリールアミノ」、「ジアリールボリル」、および「アリールオキシ」における「アリール」や「ヘテロアリール」の詳細は、上述した「アリール」や「ヘテロアリール」の説明を引用することができる。 Further, the details of "aryl" and "heteroaryl" in "diarylamino", "diheteroarylamino", "arylheteroarylamino", "diarylboryl", and "aryloxy" as the first substituent are described. The above-mentioned explanations of "aryl" and "heteroaryl" can be cited.
 第1の置換基の「ジアリールアミノ」中の2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。また、第1の置換基の「ジアリールボリル」中の2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。ここで、>C(-R)および>N-RのRは、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、当該第1置換基にはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)が置換していてもよく、これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 Even if the two aryls in the "diarylamino" of the first substituent are attached via a single bond or a linking group (eg> C (-R) 2 ,>O,> S or> N-R) Good. Also, the two aryls in the first substituent "diarylboryl" are attached via a single bond or a linking group (eg> C (-R) 2 ,>O,> S or> N-R). You may. Here, R of> C (-R) 2 and> N-R is aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy (above, the first substituent), and the first is said to be. The substituent may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl (hereinafter referred to as the second substituent), and specific examples of these groups include aryl and hetero as the first substituent described above. Descriptions of aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy can be cited.
 第1の置換基としての「ジアルキルアミノ」のアルキルとしては上述した「アルキル」の説明を引用できる。 As the alkyl of "dialkylamino" as the first substituent, the above-mentioned explanation of "alkyl" can be cited.
 式(1)において、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。 In the formula (1), the adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and in the formed ring. At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy (above, first substituent), in which at least one hydrogen is aryl, heteroaryl. , Alkyl or cycloalkyl (above, second substituent) may be substituted.
 第1の置換基(第2の置換基で置換されているものを含む)は好ましくは以下の構造式で表される基であり、より好ましくは、メチル、ターシャリ-アルキル(t-ブチル、t-アミル、t-オクチルなど)、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、およびフェノキシであり、さらに好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、およびビス(p-(t-ブチル)フェニル)アミノである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、t-アミル、t-オクチル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、およびビス(p-(t-ブチル)フェニル)アミノが好ましい。 The first substituent (including one substituted with the second substituent) is preferably a group represented by the following structural formula, and more preferably methyl, tertiary alkyl (t-butyl, t). -Amil, t-octyl, etc.), phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xsilyl, 2,6-xsilyl, 2,4,6-mesityl, diphenylamino, di- p-tolylamino, bis (p- (t-butyl) phenyl) amino, and phenoxy, more preferably methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, 2,6-. Xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, and bis (p- (t-butyl) phenyl) amino. From the viewpoint of ease of synthesis, a larger steric hindrance is preferable for selective synthesis, and specifically, t-butyl, t-amyl, t-octyl, o-tryl, p-trill, 2 , 4-xylyl, 2,5-xsilyl, 2,6-xsilyl, 2,4,6-mesityl, di-p-tolylamino, and bis (p- (t-butyl) phenyl) amino are preferred.
 下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「tOct」はt-オクチル、*は結合位置を表す。 In the following structural formula, "Me" is methyl, "tBu" is t-butyl, "tAm" is t-amyl, "tOct" is t-octyl, and * is the bond position.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
1-1-2.多量体
 本発明の化合物は、式(i)で表される構造を2以上有する多量体であってもよい。
 式(i)で表される構造を2以上有する化合物は、アクセプター構造内でのLE性の遷移を用いた極めて狭い発光半値幅と高いTADF性を両立した化合物であることが好ましい。
 式(i)で表される構造を2以上有する多量体としては、例えば、下記式(i-1)、(i-2-1)、(i-2-2)、式(i-3-1)、式(i-3-2)、または式(i-3-3)で表される化合物等が挙げられる。式(i-2-1)におけるC環などの2つの式(i)で表される構造で共有されている環においては、2つのYは互いにm位に結合する(共有する環がベンゼン環以外の環である場合、共有する環において一方のYが結合する環員原子を1位とした場合に、他方のYが結合する環員原子が3位である)ことが好ましい。X、Xについてもそれぞれ同様である。
1-1-2. Multimer The compound of the present invention may be a multimer having two or more structures represented by the formula (i).
The compound having two or more structures represented by the formula (i) is preferably a compound having both an extremely narrow half-value width at half maximum emission and a high TADF property using the transition of the LE property in the acceptor structure.
Examples of the multimer having two or more structures represented by the formula (i) include the following formulas (i-1), (i-2-1), (i-2-2), and formula (i-3-3). 1), a compound represented by the formula (i-3-2), or the formula (i-3-3) and the like can be mentioned. In a ring shared by a structure represented by two formulas (i) such as the C ring in formula (i-2-1), the two Ys are bonded to each other at the m-position (the shared ring is a benzene ring). In the case of a ring other than the above, it is preferable that the ring member atom to which one Y is bonded is the 1st position in the shared ring, and the ring member atom to which the other Y is bonded is the 3rd position). The same applies to X 1 and X 2 , respectively.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(i-1)中、環A~環Cは、それぞれ独立して、芳香環構造を表し、A環、B環およびC環のうち少なくとも1つの環における少なくとも1つの環員原子が、上述の式(D)で表される部分構造(D)における波線部と結合し、Yは、それぞれ独立して、B、P、P=O、P=SまたはSi-R’であり、XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、Lは単結合またはn価の有機基を表し、nは2以上の整数を表す。
 式(i-2-1)または式(i-2-2)中、環A~環Eは、それぞれ独立して、芳香環構造を表し、A環、B環、C環、D環およびE環のうち少なくとも1つの環における少なくとも1つの環員原子が、上述の式(D)で表される部分構造(D)における波線部と結合し、Yは、それぞれ独立して、B、P、P=O、P=SまたはSi-R’であり、XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)である。
 式(i-3-1)、式(i-3-2)または式(i-3-3)中、A環、B環、C環、D環、E環、F環、G環、H環、およびI環は、それぞれ独立して、芳香環構造を表し、A環、B環、C環、D環、E環、F環およびG環のうち少なくとも1つの環における少なくとも1つの環員原子が、上述の式(D)で表される部分構造(D)における波線部と結合し、Yは、それぞれ独立して、B、P、P=O、P=SまたはSi-R’であり、XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)である。
 式(i-1)中、A環~C環、X、X、およびYはそれぞれ独立して、式(i)中のA環~C環、X、X、およびYと同義であり、好ましい態様も同様である。
 式(i-1)中、nは2以上の整数を表し、2~10の整数であることが好ましく、2~6の整数であることがより好ましく、2、3または4であることが更に好ましい。
 式(i-1)中、Lは単結合またはn価の有機基を表し、n価の炭化水素基が好ましく、n価の脂肪族飽和炭化水素基またはn価の芳香族炭化水素基がより好ましい。また、Lが単結合の場合、nは2である。
 式(i-2-1)または式(i-2-2)中、A環~E環、X、X、およびYはそれぞれ独立して、式(i)中のA環~C環、X、X、およびYと同義であり、好ましい態様も同様である。
 式(i-3-1)、式(i-3-2)または式(i-3-3)中、A環~I環、X、X、およびYはそれぞれ独立して、式(i)中のA環~C環、X、X、およびYと同義であり、好ましい態様も同様である。
In formula (i-1), rings A to C each independently represent an aromatic ring structure, and at least one ring-membered atom in at least one of the A ring, the B ring, and the C ring is described above. Combined with the wavy line portion in the partial structure (D) represented by the equation (D) of, Y is B, P, P = O, P = S or Si—R', respectively, and X 1 And X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , and L 1 is a single bond or n-valent. Represents the organic group of, and n represents an integer of 2 or more.
In formula (i-2-1) or formula (i-2-2), rings A to E each independently represent an aromatic ring structure, and A ring, B ring, C ring, D ring and E ring. At least one ring member atom in at least one ring of the ring is bonded to the wavy line portion in the partial structure (D) represented by the above formula (D), and Y is independently B, P, P = O, P = S or Si-R', and X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si, respectively. (-R') 2 .
In formula (i-3-1), formula (i-3-2) or formula (i-3-3), A ring, B ring, C ring, D ring, E ring, F ring, G ring, H The ring and the I ring each independently represent an aromatic ring structure, and at least one ring member in at least one of the A ring, the B ring, the C ring, the D ring, the E ring, the F ring, and the G ring. The atom is bonded to the wavy line portion in the partial structure (D) represented by the above formula (D), and Y is independently B, P, P = O, P = S or Si—R'. Yes, X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
In formula (i-1), rings A to C, X 1 , X 2 , and Y are independently synonymous with rings A to C, X 1 , X 2 , and Y in formula (i). The same applies to the preferred embodiment.
In the formula (i-1), n represents an integer of 2 or more, preferably an integer of 2 to 10, more preferably an integer of 2 to 6, and further preferably 2, 3 or 4. preferable.
In the formula (i-1), L 1 represents a single bond or an n-valent organic group, preferably an n-valent hydrocarbon group, and an n-valent aliphatic saturated hydrocarbon group or an n-valent aromatic hydrocarbon group. More preferred. Further, when L 1 is a single bond, n is 2.
In formula (i-2-1) or formula (i-2-2), rings A to E, X 1 , X 2 , and Y are independent of each other, and rings A to C in formula (i). , X 1 , X 2 , and Y, and so do preferred embodiments.
In formula (i-3-1), formula (i-3-2) or formula (i-3-3), rings A to I, X 1 , X 2 , and Y are independently formula (i-3-1). i) It has the same meaning as rings A to C, X 1 , X 2 , and Y in, and the preferred embodiment is also the same.
 アクセプター構造が多量体である本発明の化合物としては、下記式(ii)で表される化合物が好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000039
As the compound of the present invention having a multimer acceptor structure, a compound represented by the following formula (ii) can be mentioned as a preferable example.
Figure JPOXMLDOC01-appb-C000039
 式(ii)中、
 a環、b環、c環およびd環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、また隣接する2つの水素はアルキルで連結されて環を形成していてもよく、
 ZおよびZは、それぞれ独立して―CH=または-N=であり、―CH=における水素は置換されていてもよく、
 X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRはアリール、ヘテロアリールまたはアルキルであり、
 a環、b環、c環、d環、およびZとZとを含む6員環からなる群より選択される少なくとも1つの環における少なくとも1つの環員原子は部分構造(D)と結合し、
 a環~d環の環員原子、または、ZもしくはZに部分構造Dの波線部が直接結合し、
 部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、また隣接するR21~R28は連結基により環を形成していてもよく、
 部分構造(D)中のQは単結合、>O,>S,>C(―R’)または>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、アルキルまたは、R’同士で連結していてもよいアリールであり、
 部分構造(D)がa環とc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
 部分構造(D)がa環とc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
 部分構造(D)中の波線部は式(ii)で表される構造との結合部位を表し、
 式(ii)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。
In formula (ii),
Rings a, b, c and d are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted, and two adjacent hydrogens may be substituted. They may be linked by alkyl to form a ring.
Z 1 and Z 2 are independently -CH = or -N =, and the hydrogen at -CH = may be substituted.
X 1 to X 4 are independently O or N-R, and R of the N-R is aryl, heteroaryl or alkyl, respectively.
At least one ring member atom in at least one ring selected from the group consisting of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2 is bonded to the partial structure (D). And
The wavy line portion of the partial structure D is directly bonded to the ring member atom of the a ring to the d ring, or Z 1 or Z 2 .
In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, and adjacent R 21 to R 28 are based on linking groups. It may form a ring,
Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. (-R') The R'of 2 is an aryl that may be independently linked with hydrogen, alkyl, or R', respectively.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
The wavy line portion in the partial structure (D) represents the binding site with the structure represented by the formula (ii).
At least one hydrogen in the compound or structure represented by the formula (ii) may be substituted with halogen or deuterium.
 式(ii)において、a環、b環、c環およびd環は、それぞれ独立して、アリール環であることが好ましい。
 また、a環、b環、c環およびd環がヘテロアリール環である場合、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子またはセレン原子等が挙げられる。
 a環、b環、c環およびd環は、いずれも置換基を有していてもよいベンゼン環であることが好ましい。
 また、a環、b環、c環およびd環は、上述の第1置換基を有してもよい。また、上記第1置換基における少なくとも1つの水素は、上述の第2置換基により置換されていてもよい。
In formula (ii), it is preferable that the a ring, the b ring, the c ring and the d ring are independently aryl rings.
When the a ring, b ring, c ring and d ring are heteroaryl rings, examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom and a selenium atom.
It is preferable that the a ring, the b ring, the c ring and the d ring are all benzene rings which may have a substituent.
Further, the a ring, b ring, c ring and d ring may have the above-mentioned first substituent. Further, at least one hydrogen in the first substituent may be substituted by the above-mentioned second substituent.
 式(ii)において、ZおよびZは、それぞれ独立して―CH=または-N=であり、合成の容易さおよび化合物の安定性の観点からは、-CH=が好ましい。化合物の広いエネルギーギャップの観点からは、-N=が好ましい。
 上記―CH=における水素は置換されていてもよく、置換基としては、部分構造(D)または上述の第1置換基が挙げられる。また、上記第1置換基における少なくとも1つの水素は、上述の第2置換基により置換されていてもよい。
In formula (ii), Z 1 and Z 2 are independently −CH = or −N =, and −CH = is preferable from the viewpoint of ease of synthesis and stability of the compound. From the viewpoint of the wide energy gap of the compound, −N = is preferable.
The hydrogen in —CH = may be substituted, and examples of the substituent include the partial structure (D) or the above-mentioned first substituent. Further, at least one hydrogen in the first substituent may be substituted by the above-mentioned second substituent.
 X~Xは、それぞれ独立して、OまたはN-Rであり、狭い発光半値幅の観点からは、X~Xの少なくとも1つがNであることが好ましく、すべてがNであることがより好ましい。また、広いエネルギーギャップの観点からは、X~Xの少なくとも1つがOであることが好ましく、全てがOであることがより好ましい。 X 1 to X 4 are independently O or N-R, and from the viewpoint of a narrow full width at half maximum, at least one of X 1 to X 4 is preferably N, and all are N. Is more preferable. In view of the wide energy gap, it is preferable that at least one of X 1 ~ X 4 is O, and more preferably all are O.
 式(ii)は少なくとも1つの式(D)で表される部分構造(D)を持ち、a環、b環、c環、d環、およびZとZとを含む6員環からなる群より選択される少なくとも1つの環における少なくとも1つの環員原子は部分構造(D)と結合している。式(ii)における部分構造Dの数は、1~4であることが好ましく、1~2であることがより好ましい。昇華精製の温度の観点からは、部分構造Dは1であることが好ましい。また、部分構造(D)の結合する環は、NまたはOと結合した芳香族環であることが好ましく、Nと結合した芳香族環がより好ましい。良好なTADF性の観点からは、部分構造(D)の結合する環は、1つ以上のNと結合した芳香族環であることが好ましく、1つ以上のNかつ1つのBと結合した芳香族環であることがより好ましく、2つのNと1つのBと結合した芳香族環がさらに好ましい。凝集性の抑制の観点からは、部分構造(D)の結合する環は、b環またはd環であることが好ましい。
 式(ii)における部分構造(D)は、a環、b環、c環およびd環の環員原子またはZ若しくはZにおける炭素原子と波線部で直接結合することが好ましい。
 また、式(ii)において、複数の部分構造(D)を有する場合、同一の構造であっても、異なる構造であってもよい。
Formula (ii) has a partial structure (D) represented by at least one formula (D), and consists of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2. At least one ring member atom in at least one ring selected from the group is bonded to the partial structure (D). The number of the partial structures D in the formula (ii) is preferably 1 to 4, and more preferably 1 to 2. From the viewpoint of the temperature of sublimation purification, the partial structure D is preferably 1. Further, the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to N or O, and more preferably an aromatic ring bonded to N. From the viewpoint of good TADF properties, the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to one or more N, and an aromatic ring bonded to one or more N and one B. A group ring is more preferable, and an aromatic ring in which two N and one B are bonded is further preferable. From the viewpoint of suppressing cohesiveness, the ring to which the partial structure (D) is bonded is preferably a b ring or a d ring.
The partial structure (D) in the formula (ii) is preferably directly bonded to the ring member atom of the a ring, the b ring, the c ring and the d ring or the carbon atom in Z 1 or Z 2 at a wavy line portion.
Further, in the case of having a plurality of partial structures (D) in the formula (ii), they may have the same structure or different structures.
 式(ii)で表される化合物の好ましい例としては下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000040
A preferable example of the compound represented by the formula (ii) is a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000040
 式(4)中、R~R14は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシまたはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、またR~R14のうち隣接する2つが炭素数2~8のアルキルによって連結して環を形成していてもよく、
 X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRは炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~8のシクロアルキルであり、
 式(4)におけるR~R14の少なくとも1つは式(D)で表される部分構造(D)であり、
 部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、
 隣接するR21~R28は連結基により環を形成していてもよく、
 部分構造(D)中のQは単結合、>O,>S,>C(―R’)または>Si(-R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、炭素数1~8のアルキル、または連結していてもよい炭素数6~12のアリールであり、
 ただし、部分構造(D)がa環とc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
 部分構造(D)がa環とc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
 式(4)で表される化合物または構造における少なくとも1つの水素がハロゲン、または重水素で置換されていてもよい。
In formula (4), R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy or It is a substituent that is a diarylboryl (two aryls may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is substituted with aryl, heteroaryl or alkyl. Alternatively, two adjacent two of R 3 to R 14 may be linked by alkyl having 2 to 8 carbon atoms to form a ring.
X 1 to X 4 are independently O or N-R, and R of the N-R is an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, and 1 to 20 carbon atoms. Alkyl or cycloalkyl with 3-8 carbon atoms
At least one of R 1 to R 14 in the formula (4) is a partial structure (D) represented by the formula (D).
In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, respectively.
Adjacent R 21 to R 28 may form a ring with a linking group.
Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. The R'of (-R') 2 is an independently hydrogen, an alkyl having 1 to 8 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be linked.
However, when the partial structure (D) is bonded only to the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
At least one hydrogen in the compound or structure represented by the formula (4) may be substituted with halogen or deuterium.
 式(4)中、X~Xは上述の式(ii)におけるX~Xと同義であり、好ましい態様も同様である。 Wherein (4), X 1 ~ X 4 have the same meanings as X 1 ~ X 4 in the above formula (ii), preferable embodiments thereof are also the same.
 式(4)中、R~R14は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシまたはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、具体的には、前記「第1置換基」の記載に準ずる。また、前記「第1置換基」において、隣り合う置換基は互いに結合し環構造を形成してもよい。また、「第1置換基」おける少なくとも1つの水素はアリール、ヘテロアリール、またはアルキルで置換されていてもよく、「第1置換基」に結合する置換基は前記「第2置換基」の記載に準ずる。 In formula (4), R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy or It is a substituent which is a diallylboryl (two aryls may be bonded via a single bond or a linking group), and specifically, according to the above description of "first substituent". Further, in the "first substituent", adjacent substituents may be bonded to each other to form a ring structure. Further, at least one hydrogen in the "first substituent" may be substituted with aryl, heteroaryl, or alkyl, and the substituent bonded to the "first substituent" is described in the above "second substituent". According to.
 式(4)において、R~R14は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、炭素数6~12のアリールオキシもしくはジアリールボリル(ただしアリールは炭素数6~12のアリール)である置換基であることが好ましい。これらの置換基における少なくとも1つの水素は、炭素数6~12のアリールまたは炭素数1~8のアルキルで置換されていてもよい。
 式(4)において、X~Xは、それぞれ独立して、>Oまたは>N-Rであり、前記>N-RのRは、炭素数6~12のアリールまたは炭素数1~8のアルキルであることが好ましい。
 式(4)において、部分構造(D)中、R21~R28は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノ、またはハロゲンであることが好ましく、部分構造(D)中のQは単結合、>O,>S,>C(―R’)および>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素または炭素数1~8のアルキルであることが好ましい。
In the formula (4), R 1 to R 14 are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (where aryl has 6 to 12 carbon atoms). Aryl), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, aryloxy or diallylboryl having 6 to 12 carbon atoms (where aryl is an aryl having 6 to 12 carbon atoms). Is preferable. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
In the formula (4), X 1 to X 4 are independently> O or> NR, and the R of> NR is an aryl having 6 to 12 carbon atoms or 1 to 8 carbon atoms. It is preferably alkyl.
In the formula (4), in the partial structure (D), R 21 to R 28 are independently hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and 1 to 12 carbon atoms, respectively. It is preferably alkyl, cycloalkyl, cyano, or halogen with 3 to 20 carbon atoms, where Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 and> Si. (-R') 2 and the R'of the> C (-R') 2 and> Si (-R') 2 can be independently hydrogen or an alkyl having 1 to 8 carbon atoms. preferable.
 良好なTADF活性の観点から、前記式(4)において、R,R,R10およびR13のうちの1つまたは2つが部分構造(D)であることが好ましい。昇華精製の温度の観点からは、部分構造(D)は1であることが好ましい。また、部分構造(D)の結合する環は、NまたはOと結合した芳香族環であることが好ましく、Nと結合した芳香族環がより好ましい。良好なTADF性の観点からは、部分構造(D)の結合する環は、1つ以上のNと結合した芳香族環であることが好ましく、1つ以上のNかつ1つのBと結合した芳香族環であることがより好ましく、2つのNと1つのBと結合した芳香族環がさらに好ましい。凝集性の抑制の観点からは、部分構造(D)の結合する環は、b環またはd環であることが好ましい。 From the viewpoint of good TADF activity, it is preferable that one or two of R 4 , R 7 , R 10 and R 13 have a partial structure (D) in the above formula (4). From the viewpoint of the temperature of sublimation purification, the partial structure (D) is preferably 1. Further, the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to N or O, and more preferably an aromatic ring bonded to N. From the viewpoint of good TADF properties, the ring to which the partial structure (D) is bonded is preferably an aromatic ring bonded to one or more N, and an aromatic ring bonded to one or more N and one B. A group ring is more preferable, and an aromatic ring in which two N and one B are bonded is further preferable. From the viewpoint of suppressing cohesiveness, the ring to which the partial structure (D) is bonded is preferably a b ring or a d ring.
 アクセプター構造が、多量体である場合、以下の式(4-Y2X4-0000)で表される部分構造であることが特に好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000041
When the acceptor structure is a multimer, it is particularly preferable that the acceptor structure is a partial structure represented by the following formula (4-Y2X4-0000).
Figure JPOXMLDOC01-appb-C000041
 多量体である場合、YはBが好ましく、Bのとき以下の式(4-B2X4-0000)で表される部分構造で表される。
Figure JPOXMLDOC01-appb-C000042
In the case of a multimer, Y is preferably B, and when it is B, it is represented by a partial structure represented by the following formula (4-B2X4-0000).
Figure JPOXMLDOC01-appb-C000042
 Xは、それぞれ独立して、OまたはN-Rであり、狭い発光半値幅の観点からは、Xは少なくとも1つがNであることが好ましく、3つがNであることがより好ましく、すべてがNであることがさらに好ましい。また、広いエネルギーギャップの観点からは、Xは少なくとも1つがOであることが好ましく、全てがOであることがより好ましい。 X is independently O or N-R, and from the viewpoint of a narrow full width at half maximum, at least one X is preferably N, more preferably three, and all are N. Is more preferable. Further, from the viewpoint of a wide energy gap, it is preferable that at least one X is O, and it is more preferable that all X are O.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 また、式(4)で表されるアクセプター構造(A)における部分構造(D)の置換位置としては、Bのp位が好ましい。合成の容易さの観点からは、中心のベンゼン環とY(ここではB)との結合に対して線対称であるほうが好ましく、同様の観点から、分子量が小さい方が好ましい。具体的には、式(4-B2X4-04W)、式(4-B2X4-04W/07W)、式(4-B2X4-04W/09W)、式(4-B2X4-04W/07W/09W)および式(4-B2X4-04W/07W/09W/13W)が好ましく、式(4-B2X4-04W)、式(4-B2X4-04W/07W)および式(4-B2X4-04W/09W)がより好ましい。さらに昇華精製の温度の鑑定からは、式(4-B2X4-04W)、式(4-B2X4-07W)、式(4-B2X4-04W/07W)および式(4-B2X4-04W/09W)が好ましく、式(4-B2X4-04W)および式(4-B2X4-07W)がより好ましい。一方、良好なTADF性の観点からは、部分構造(D)はBのp位かつ2つのXのm位であることが好ましく、式(4-B2X4-04W)、式(4-B2X4-04W/07W)、式(4-B2X4-04W/09W)、式(4-B2X4-04W/07W/09W)および式(4-B2X4-04W/07W/09W/13W)が好ましく、式(4-B2X4-04W/09W)がより好ましい。ここでは、部分構造(D)をWで記載する。 Further, as the replacement position of the partial structure (D) in the acceptor structure (A) represented by the formula (4), the p position of B is preferable. From the viewpoint of ease of synthesis, it is preferable that the bond is line-symmetric with respect to the bond between the central benzene ring and Y (here, B), and from the same viewpoint, it is preferable that the molecular weight is small. Specifically, the formula (4-B2X4-04W), the formula (4-B2X4-04W / 07W), the formula (4-B2X4-04W / 09W), the formula (4-B2X4-04W / 07W / 09W) and the formula. (4-B2X4-04W / 07W / 09W / 13W) is preferable, and the formula (4-B2X4-04W), the formula (4-B2X4-04W / 07W) and the formula (4-B2X4-04W / 09W) are more preferable. Further, from the appraisal of the temperature of sublimation purification, the formula (4-B2X4-04W), the formula (4-B2X4-07W), the formula (4-B2X4-04W / 07W) and the formula (4-B2X4-04W / 09W) Preferably, the formula (4-B2X4-04W) and the formula (4-B2X4-07W) are more preferable. On the other hand, from the viewpoint of good TADF property, the partial structure (D) is preferably the p-position of B and the m-position of two Xs, and the formulas (4-B2X4-04W) and (4-B2X4-04W) / 07W), formula (4-B2X4-04W / 09W), formula (4-B2X4-04W / 07W / 09W) and formula (4-B2X4-04W / 07W / 09W / 13W) are preferred, and formula (4-B2X4). −04W / 09W) is more preferable. Here, the partial structure (D) is described by W.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 式(4)で表されるアクセプター構造(A)において、部分構造(D)以外の置換基は、アクセプター構造(A)のエネルギーの調整に重要な役割を担う。部分構造(D)を1つだけ有する場合、以下に記載の構造が挙げられ、部分構造(D)以外の置換基は、1~4個有することが好ましく、1~3個有することがより好ましく、1または2個有することがさらに好ましい。合成の容易さおよび昇華精製の温度の観点からは1個が好ましい。ここでは、部分構造(D)以外の置換基をVで記載する。 In the acceptor structure (A) represented by the formula (4), substituents other than the partial structure (D) play an important role in adjusting the energy of the acceptor structure (A). When it has only one partial structure (D), the structures described below can be mentioned, and it is preferable to have 1 to 4 substituents other than the partial structure (D), and more preferably 1 to 3 substituents. It is more preferable to have one or two. From the viewpoint of ease of synthesis and temperature of sublimation purification, one is preferable. Here, a substituent other than the partial structure (D) is described by V.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 式(4)で表されるアクセプター構造(A)において、部分構造(D)以外の置換基は、アクセプター構造(A)のエネルギーの調整に重要な役割を担う。部分構造(D)以外の置換基は、後述の第1置換基が好ましい。より具体的には、アクセプター構造(A)のHOMOを調節し、ドナー構造(D)の高次の励起三重項エネルギーと近づけることができればよく、部分構造(D)以外の置換基の部分的なエネルギーギャップの観点から、無置換または置換基を有してもよいフェニル、無置換または置換基を有してもよいピリジン、無置換または置換基を有してもよいジフェニルアミン、無置換または置換基を有してもよい炭素数1~12のアルキル、無置換または置換基を有してもよい炭素数3~12のシクロアルキルが好ましく、フェニル、トリル、キシリル、メシチル、ピリジル、メチルピリジル、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、シクロペンチルおよびシクロヘキシルがより好ましい。合成の容易さの観点から、フェニル、トリル、キシリル、メシチル、メチル、ブチル、シクロヘキシルが好ましい。 In the acceptor structure (A) represented by the formula (4), substituents other than the partial structure (D) play an important role in adjusting the energy of the acceptor structure (A). As the substituent other than the partial structure (D), the first substituent described later is preferable. More specifically, it suffices if the HOMO of the acceptor structure (A) can be adjusted to be close to the higher-order excitation triplet energy of the donor structure (D), and the partial of the substituent other than the partial structure (D) is partial. From the viewpoint of the energy gap, phenyl which may have an unsubstituted or substituent, pyridine which may have an unsubstituted or substituent, diphenylamine which may have an unsubstituted or substituent, an unsubstituted or substituent Alkyl having 1 to 12 carbon atoms may have, and cycloalkyl having 3 to 12 carbon atoms which may have an unsubstituted or substituent is preferable, and phenyl, tolyl, xsilyl, mesityl, pyridyl, methylpyridyl, and methyl. , Ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl and cyclohexyl are more preferred. From the viewpoint of ease of synthesis, phenyl, trill, xylyl, mesityl, methyl, butyl and cyclohexyl are preferable.
1-2.ドナー構造(部分構造(D))1-2. Donor structure (partial structure (D))
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 部分構造(D)におけるQは、単結合、>O、>S、>C(-R’)または>Si(-R’)であり、部分構造(D)における部分的なエネルギーギャップの観点から、>O、>Sまたは>C(-R’)が好ましく、>Oまたは>Sがより好ましい。また、アクセプター構造(A)との立体障害と成す二面角の観点からは、>O、>S、>C(-R’)または>Si(-R’)が好ましく、>C(-R’)または>Si(-R’)がより好ましい。 Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the partial energy gap in the partial structure (D). From the viewpoint,>O,> S or> C (-R') 2 is preferable, and> O or> S is more preferable. Further, from the viewpoint of the dihedral angle forming a steric hindrance with the acceptor structure (A),>O,>S,> C (-R') 2 or> Si (-R') 2 is preferable, and> C ( -R') 2 or> Si (-R') 2 is more preferable.
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、シアノもしくはハロゲンである置換基であり、具体的には、前記「第1置換基」の記載に準ずる。上記ジアリールアミノはアリール同士が架橋されてカルバゾール環構造等の環構造を形成してもよい。また、前記「第1置換基」において、隣り合う置換基は互いに結合し環構造を形成してもよい。また、「第1置換基」おける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、「第1置換基」に結合する置換基は前記「第2置換基」の記載に準ずる。 R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. It is a substituent which is diarylboryl (two aryls may be bonded via a single bond or a linking group), cyano or halogen, and specifically, according to the description of the above-mentioned "first substituent". The arylamino may be crosslinked with each other to form a ring structure such as a carbazole ring structure. Further, in the "first substituent", adjacent substituents may be bonded to each other to form a ring structure. Further, at least one hydrogen in the "first substituent" may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and the substituent bonded to the "first substituent" is the "second substituent". Follow the description in.
 また、部分構造(D)における、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、前記「第1置換基」に準ずる。 Further, in the partial structure (D), R'in>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cyclo, respectively. It is an alkyl and conforms to the above-mentioned "first substituent".
 部分構造(D)においてQが単結合であるときは、R24およびR28はともに水素ではないことが好ましく、いずれも水素ではないことがより好ましく、いずれもアルキルであることがさらに好ましく、いずれもメチルであることが特に好ましい。 When Q is a single bond in the partial structure (D), both R 24 and R 28 are preferably not hydrogen, more preferably neither hydrogen, further preferably all alkyl. Is also particularly preferably methyl.
 部分構造(D)におけるQが、>O、>S、>C(-R’)または>Si(-R’)である場合、以下のように記載できる。 When Q in the partial structure (D) is>O,>S,> C (-R') 2 or> Si (-R') 2 , it can be described as follows.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 また、部分構造(D)とアクセプター構造(A)との二面角が大きいほうが、本発明の化合物のHOMO/LUMOの分離の観点から好ましく、R25およびR24に置換基を有するほうが好ましい。また、HOMOのエネルギーの制御の観点から、R27および/またはR22に置換基を有するほうが好ましい。一方、合成の観点からは分子量が小さい方が好ましく、R21~R28は水素が好ましい。以上より、以下に記載の構造が好ましい。以下本明細書で例示する式中、Meはメチル、tBuはターシャリーブチルを示す。 Further, it is preferable that the dihedral angle between the partial structure (D) and the acceptor structure (A) is large from the viewpoint of separating HOMO / LUMO of the compound of the present invention, and it is preferable that R 25 and R 24 have substituents. Further, from the viewpoint of controlling the energy of HOMO, it is preferable to have a substituent at R 27 and / or R 22 . On the other hand, from the viewpoint of synthesis, it is preferable that the molecular weight is small, and hydrogen is preferable for R 21 to R 28 . From the above, the structure described below is preferable. In the formulas exemplified herein, Me stands for methyl and tBu stands for tertiary butyl.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 また、前記部分構造(D)はフッ素で置換されてもよい。部分構造(D)中、R21~R28の少なくとも1つがフッ素であることが好ましい。 Further, the partial structure (D) may be replaced with fluorine. In the partial structure (D), it is preferable that at least one of R 21 to R 28 is fluorine.
 これらの中でも、前記部分構造(D)は、下記式(D-1)~式(D-3)のいずれかで表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000059
 式(D-1)において、R50はそれぞれ独立して、水素原子またはメチルを表す。また、Meはメチルである。
 式(D-2)において、Qは>O、>S、>C(CH、または>Si(CHを表す。
Among these, the partial structure (D) is preferably a structure represented by any of the following formulas (D-1) to (D-3).
Figure JPOXMLDOC01-appb-C000059
In formula (D-1), R 50 independently represents a hydrogen atom or methyl. Also, Me is methyl.
In formula (D-2), Q 1 represents>O,>S,> C (CH 3 ) 2 , or> Si (CH 3 ) 2 .
 また、式(i)で表される構造単位、または、式(1)で表される化合物は、部分構造(D)を1つのみ有していてもよく、2以上有していてもよいが、合成の容易さの観点から、B環とC環とが架橋せず(RおよびRが架橋せず)環を形成しない場合は、部分構造(D)を2つまたは3つ有することが好ましく、RおよびRが架橋し環を形成する場合は、部分構造(D)を3つ有することが好ましく、昇華精製の温度およびTgの高さの観点からは、1つのみ有することが好ましい。 Further, the structural unit represented by the formula (i) or the compound represented by the formula (1) may have only one partial structure (D) or may have two or more partial structures (D). However, from the viewpoint of ease of synthesis, if the B ring and the C ring are not crosslinked (R 7 and R 8 are not crosslinked) and do not form a ring, the product has two or three partial structures (D). It is preferable that R 7 and R 8 are crosslinked to form a ring, and it is preferable to have three partial structures (D), and from the viewpoint of the temperature of sublimation purification and the height of Tg, it has only one. Is preferable.
1-3.アクセプター構造(A)およびドナー構造(部分構造(D))を有する本発明の化合物が有する特性
 本発明の化合物は、式(1)で表されるアクセプター構造(A)が少なくとも1つの部分構造(D)を有する化合物であって、アクセプター構造(A)と部分構造(D)の部分的なHOMOおよびLUMOである、それぞれ、HOMO(A)、LUMO(A)、HOMO(D)およびLUMO(D)は、HOMO(A)はHOMO(D)より深く、LUMO(A)はLUMO(D)より深い。また、高いTADF活性のために、高次の励起三重項エネルギー(ETn)が最低励起一重項エネルギー(ES1)と近い必要があるほうが好ましい。実際の化合物における、高次の励起三重項エネルギーの実測はほとんど困難であり、実際には、分子軌道計算による値を用いるかモデル化合物を用いる必要がある。ETnは、ES1-0.01eV~ES1-1.00eVが好ましく、ES1-0.01eV~ES1-0.20eVがより好ましく、ES1-0.01eV~ES1-0.10eVがさらに好ましい。
1-3. Characteristics of the compound of the present invention having an acceptor structure (A) and a donor structure (partial structure (D)) The compound of the present invention has at least one partial structure (A) represented by the formula (1). A compound having D), which is a partial HOMO and LUMO of acceptor structure (A) and partial structure (D), HOMO (A), LUMO (A), HOMO (D) and LUMO (D, respectively). ), HOMO (A) is deeper than HOMO (D), and LUMO (A) is deeper than LUMO (D). Also, high for TADF activity, better higher triplet energy (E Tn) needs close to the lowest excited singlet energy (E S1) is preferred. It is almost difficult to actually measure the higher-order excitation triplet energy in an actual compound, and in reality, it is necessary to use a value calculated by molecular orbital calculation or a model compound. E Tn is, E S1 preferably -0.01eV ~ E S1 -1.00eV, more preferably E S1 -0.01eV ~ E S1 -0.20eV, E S1 -0.01eV ~ E S1 -0.10eV Is even more preferable.
 式(1)において、RおよびRよりなる群から選ばれた少なくとも1つが、部分構造(D)であることが好ましく、
 RおよびRよりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 RおよびRは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)で互いに結合し、b環、c環およびYを含む6員環を形成してもよく、
 部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 前記、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルであるという態様がより好ましい。
In formula (1), at least one selected from the group consisting of R 1 and R 3 preferably has a partial structure (D).
At least one selected from the group consisting of R 1 and R 3 is a partial structure (D).
R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryls), diheteroarylaminos (where heteroaryls are heteroaryls with 2-12 carbon atoms), aryl heteroarylaminos (where aryls are aryls with 6-12 carbon atoms and heteroaryls have 2 carbon atoms). It is a substituent that is an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms (which is a heteroaryl of to 12), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these may be formed and is substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
R 7 and R 8 bond to each other at>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 and include b-ring, c-ring and Y A 6-membered ring may be formed
R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms). Aryl), diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms and heteroaryl is an aryl having 2 to 12 carbon atoms). Heteroaryl), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen substituents, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May have been
The R'in>N-R',> C (-R') 2 and> Si (-R') 2 is independently an aryl having 6 to 20 carbon atoms and a hetero with 2 to 15 carbon atoms, respectively. More preferably, it is aryl, an alkyl having 1 to 20 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
 式(1)において、
 Rが、部分構造(D)であることが好ましく、
 Rが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~4のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 部分構造(D)におけるQが>C(-R’)、部分構造(D)における>C(-R’)におけるR’がメチル、かつ、部分構造(D)におけるR21~R28が水素である場合、式(1)におけるRおよびRは、それぞれ独立して、部分構造(D)、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~3のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよいという態様がより好ましい。
In equation (1)
R 2 preferably has a partial structure (D).
R 2 is the partial structure (D).
R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl substituent that is an alkyl having 1 to 4 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms without substitution, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
Moiety Q is in the structure (D)> C (-R ' ) 2, a partial structure> in (D) C (-R') R in 2 'methyl and the partial structure (D) R 21 ~ R 28 in When is hydrogen, R 6 and R 9 in the formula (1) are independently partial structures (D), hydrogen, or aryls having 6 to 30 carbon atoms, heteroaryls having 2 to 30 carbon atoms, respectively. Diarylamino (where aryl is aryl with 6-12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms), Heteroaryl is a substituent that is an alkyl having 2 to 12 carbon atoms, an alkyl having 1 to 3 carbon atoms without substitution, or a cycloalkyl having 3 to 20 carbon atoms. Among these substituents, adjacent substitution groups are used. The groups may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl or carbon having 1 to 12 carbon atoms. More preferably, it may be substituted with the number 3 to 20 cycloalkyl.
 式(1)において、
 R、R、R、R、R10およびR11よりなる群から選ばれた少なくとも1つが、部分構造(D)であることが好ましく、
 R、R、R、R、R10およびR11よりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
 部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 RおよびRは>Xで架橋し、b環、c環およびYを含む6員環を形成してよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
 前記、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルである態様がより好ましい。
In equation (1)
At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 preferably has a partial structure (D).
At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 is a partial structure (D).
R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms, and among these substituents, adjacent substituents may be bonded to each other to form a ring structure. At least one hydrogen in these may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing b, c and Y, where X 3 is>O,>S,>N-R',> C ( Any one of -R') 2 or> Si (-R') 2 , and R 21 to R 28 in the partial structure (D) are independently hydrogen or 6 to 30 carbon atoms. Aryl, heteroaryl with 2 to 30 carbon atoms, diarylamino (where aryl is aryl with 6 to 12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is heteroaryl with 2 to 12 carbon atoms) However, aryl is an aryl having 6 to 12 carbon atoms, and heteroaryl is a heteroaryl having 2 to 12 carbon atoms), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen. Of these substituents, adjacent substituents may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl or carbon having 6 to 30 carbon atoms. It may be substituted with a heteroaryl of number 2 to 30, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
The R'in>N-R',> C (-R') 2 and> Si (-R') 2 is independently an aryl having 6 to 20 carbon atoms and a hetero with 2 to 15 carbon atoms, respectively. More preferably, it is aryl, an alkyl having 1 to 20 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
 本発明の化合物は、下記式(1-A-1)~(1-A-4)のいずれかで表される化合物であることが好ましい。 The compound of the present invention is preferably a compound represented by any of the following formulas (1-A-1) to (1-A-4).
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 また、式(ii)で表される構造を含む化合物は、下記式(4-1A)~式(4-1D)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000061
The compound containing the structure represented by the formula (ii) is preferably a compound represented by any of the following formulas (4-1A) to (4-1D).
Figure JPOXMLDOC01-appb-C000061
 式(i)で表される構造を少なくとも1つ有する化合物における少なくとも1つの水素はシアノ、ハロゲン、重水素、または部分構造(B)で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000062
 上記部分構造(B)中、R40およびR41は、それぞれ独立してアルキルであり、R40およびR41は互いに結合していてもよく、R40およびR41の合計炭素数は2~10であり、波線部は他の構造との結合部位である。
 特に、式(ii)で表される化合物の、少なくとも1つの水素が、部分構造(B)、塩素、臭素、またはヨウ素により置換された化合物は、本発明の化合物として好適に用いられる。
At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen, deuterium, or partial structure (B).
Figure JPOXMLDOC01-appb-C000062
In the above partial structure (B), R 40 and R 41 are independently alkylated, R 40 and R 41 may be bonded to each other, and the total number of carbon atoms of R 40 and R 41 is 2 to 10. The wavy line portion is the binding site with other structures.
In particular, a compound in which at least one hydrogen of the compound represented by the formula (ii) is replaced with a partial structure (B), chlorine, bromine, or iodine is preferably used as the compound of the present invention.
 以下に本発明の化合物を列挙するが、本発明は、これらの具体例により限定されるものではない。 The compounds of the present invention are listed below, but the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
1-4.式(i)で表される構造を少なくとも1つ含む化合物の製造方法
 式(i)で表される構造を少なくとも1つ含む化合物(好ましくは、式(1)で表される化合物)は、まずA環~C環(好ましくはa環~c環)を結合基(-X-)で結合させることで中間体を製造し(第1反応)、その後に、a環~c環を結合基(Xを含む基)で結合させることで最終生成物を製造することができる(第2反応)。上記結合基(-X-)は、最終的に式(i)または式(1)中のXおよびXをそれぞれ構成することが好ましい。ここでは、結合基が>Oであるときについて説明する。
1-4. Method for producing a compound containing at least one structure represented by the formula (i) A compound containing at least one structure represented by the formula (i) (preferably a compound represented by the formula (1)) is first prepared. An intermediate is produced by binding rings A to C (preferably rings a to c) with a binding group (-X-) (first reaction), and then rings a to c are bonded to the binding group (-X-). The final product can be produced by binding with a group containing X) (second reaction). It is preferable that the binding group (-X-) finally constitutes X 1 and X 2 in the formula (i) or the formula (1), respectively. Here, the case where the binding group is> O will be described.
 第1反応では、例えば求核置換反応やウルマン反応といった一般的エーテル化反応が利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。第1および第2反応の詳細は、国際公開第2015/102118号に記載された説明を参考にすることができる。 In the first reaction, general etherification reactions such as nucleophilic substitution reaction and Ullmann reaction can be used. Further, in the second reaction, a tandem hetero-Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used. For details of the first and second reactions, the description given in International Publication No. 2015/102118 can be referred to.
 第2反応は、A環、B環およびC環を結合するB(ホウ素)、P(リン)またはSi(ケイ素)を導入する反応である。ここでは、A環、B環およびC環がいずれも置換基R~R11を有してもよいベンゼン環(下記スキーム(1)におけるa環、b環およびc環)である場合に、B(ホウ素)を導入する反応を説明する。まず、2つのOの間の水素原子をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素等を加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。 The second reaction is a reaction for introducing B (boron), P (phosphorus) or Si (silicon) that bonds the A ring, the B ring and the C ring. Here, A ring, B ring and C ring is benzene ring which may be either substituted R 1 ~ R 11 when it is (a ring in the following scheme (1), b ring and c rings), The reaction for introducing B (boron) will be described. First, the hydrogen atom between the two O's is orthometalated with n-butyllithium, sec-butyllithium, t-butyllithium or the like. Next, boron trichloride, boron tribromide, etc. are added, the metal of lithium-boron is exchanged, and then Bronsted bases such as N, N-diisopropylethylamine are added to cause a tandem Bora Friedel-Crafts reaction. You can get things. In the second reaction, Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
 上記スキームにおいては、オルトメタル化により所望の位置へリチウムを導入したが、下記スキーム(2)のようにリチウムを導入したい位置に臭素原子等を導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる。
Figure JPOXMLDOC01-appb-C000224
In the above scheme, lithium was introduced to the desired position by orthometalation, but as in scheme (2) below, a bromine atom or the like was introduced at the position where lithium was to be introduced, and the desired position was also achieved by halogen-metal exchange. Lithium can be introduced.
Figure JPOXMLDOC01-appb-C000224
 上述の合成法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有し、式(1)で表される化合物を合成することができる。 By appropriately selecting the above-mentioned synthesis method and appropriately selecting the raw material to be used, a compound having a substituent at a desired position and represented by the formula (1) can be synthesized.
 また、上記以外のYの導入反応については、特許第5669163号公報に記載の合成方法を利用することができる。 Further, for the introduction reaction of Y other than the above, the synthesis method described in Japanese Patent No. 5669163 can be used.
 単結合やスペーサーを有する多量体については、上記の合成方法により製造できる。また、単量体を合成後、単量体同士を結合することで製造できる。 Multimers with single bonds and spacers can be produced by the above synthetic method. Further, it can be produced by synthesizing the monomers and then binding the monomers to each other.
 式(i)で表される構造を少なくとも1つ含む化合物として多量体(例えば、式(ii)で表される構造を有する化合物)は、基本的には、それぞれの環構造同士で結合させることで中間体を製造し(第1反応)、その後に、それぞれの環構造をホウ素原子で結合させることで最終生成物を製造することができる(第2反応)。第1反応では、例えば、求核置換反応、ウルマン反応といった一般的なエーテル化反応や、ブッフバルト-ハートウィッグ反応といった一般的なアミノ化反応などが利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。なお、以下の各スキームにおける構造式中の符号は、式(ii)または式(4)のそれらと同じ定義である。 As a compound containing at least one structure represented by the formula (i), a multimer (for example, a compound having a structure represented by the formula (ii)) is basically bonded to each other with each ring structure. The intermediate can be produced in (1st reaction), and then the final product can be produced by bonding each ring structure with a boron atom (2nd reaction). In the first reaction, for example, a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction, or a general amination reaction such as a Buchwald-Hartwig reaction can be used. Further, in the second reaction, a tandem hetero-Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used. The symbols in the structural formulas in the following schemes have the same definitions as those in the formula (ii) or the formula (4).
 第2反応は、下記スキーム(3)に示すように、それぞれの環構造を結合するホウ素原子を導入する反応である。まず、XとXの間およびXとXの間の水素原子をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウムなどでオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素などを加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミンなどのブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウムなどのルイス酸を加えてもよい。 The second reaction is a reaction for introducing a boron atom that binds each ring structure, as shown in the following scheme (3). First, the hydrogen atoms between X 1 and X 2 and between X 3 and X 4 are orthometalated with n-butyllithium, sec-butyllithium, t-butyllithium, or the like. Next, boron trichloride, boron tribromide, etc. are added, the metal of lithium-boron is exchanged, and then Bronsted bases such as N, N-diisopropylethylamine are added to cause a tandem Bora Friedel-Crafts reaction. You can get things. In the second reaction, a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
 特に以下に二量体の合成を示すが、三量体以上の多量体についても同様の合成方法により製造できる。
Figure JPOXMLDOC01-appb-C000225
In particular, the synthesis of dimers is shown below, but multimers of trimers or more can also be produced by the same synthesis method.
Figure JPOXMLDOC01-appb-C000225
 スキーム(3)においては、オルトメタル化により所望の位置へリチウムを導入したが、下記スキーム(4)のようにリチウムを導入したい位置に予めハロゲン原子(Hal)を導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる。この方法によれば、置換基の影響でオルトメタル化ができないようなケースでも目的物を合成することができ有用である。 In scheme (3), lithium was introduced to a desired position by orthometalation, but as in scheme (4) below, a halogen atom (Hal) was introduced in advance at the position where lithium was to be introduced, and halogen-metal exchange was performed. Can also introduce lithium to the desired position. According to this method, the target product can be synthesized even in a case where orthometalation cannot be performed due to the influence of the substituent, which is useful.
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
 上述の合成法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有し、X、X、XおよびXが、それぞれ独立して、>Oまたは>N-Rである化合物を合成することができる。 Select synthetic methods described above appropriate, the starting material used also be appropriately selected, having a substituent at the desired position, X 1, X 2, X 3 and X 4 are each independently,> O, or A compound of> NR can be synthesized.
 なお、中間体における例えばアミノ基の回転によりタンデムボラフリーデルクラフツ反応が起こる箇所が異なる場合があるため、副生物が生成する可能性もある。このような場合には、クロマトグラフィーや再結晶等により、これらの混合物から目的の化合物を単離することができる。 In addition, since the place where the tandem Bora Friedel-Crafts reaction occurs may differ depending on the rotation of the amino group in the intermediate, for example, by-products may be generated. In such a case, the target compound can be isolated from the mixture thereof by chromatography, recrystallization or the like.
 上記スキームで使用するオルトメタル化試薬としては、例えば、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム、リチウムジイソプロピルアミド、リチウムテトラメチルピペリジド、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなどの有機アルカリ化合物が挙げられる。 Examples of the orthometallation reagent used in the above scheme include alkyllithium such as methyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium, lithium diisopropylamide, lithium tetramethylpiperidide, and lithium hexamethyl. Examples thereof include organic alkaline compounds such as disilamide and potassium hexamethyldisilazide.
 上記スキームで使用するメタル-Y(ホウ素)の金属交換試薬としては、ホウ素の三フッ化物、三塩化物、三臭化物、三ヨウ化物などのホウ素ハロゲン化物、CIPN(NEtなどのYのアミノ化ハロゲン化物、Yのアルコキシ化物、Yのアリールオキシ化物などが挙げられる。 Examples of the metal exchange reagent for metal-Y (boron) used in the above scheme include boron halides such as boron trifluoride, trichloride, triiodide, and triiodide, and Y such as CIPN (NET 2 ) 2 . Examples thereof include aminated halides, Y alkoxys, and Y aryl bromides.
 上記スキームで使用するブレンステッド塩基としては、N,N-ジイソプロピルエチルアミン、トリエチルアミン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2,6-ルチジン、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、トリフェニルボラン、テトラフェニルシラン、ArBNa、ArBK、ArB、ArSi(なお、Arはフェニルなどのアリール)などが挙げられる。 The blended bases used in the above scheme include N, N-diisopropylethylamine, triethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N, N-. Dimethylaniline, N, N-dimethyltoluidine, 2,6-lutidine, sodium tetraphenylborate, potassium tetraphenylborate, triphenylborane, tetraphenylsilane, Ar 4 BNa, Ar 4 BK, Ar 3 B, Ar 4 Examples thereof include Si (where Ar is an aryl such as phenyl).
 上記スキームで使用するルイス酸としては、AlCl、AlBr、AlF、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、ScCl、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)、LiOTf、NaOTf、KOTf、MeSiOTf、Cu(OTf)、CuCl、YCl、Y(OTf)、TiCl、TiBr、ZrCl、ZrBr、FeCl、FeBr、CoCl、CoBrなどが挙げられる。 Lewis acids used in the above scheme include AlCl 3 , AlBr 3 , AlF 3 , BF 3 , OEt 2 , BCl 3 , BBr 3 , GaCl 3 , GaBr 3 , InCl 3 , InBr 3 , In (OTf) 3 , SnCl. 4, SnBr 4, AgOTf, ScCl 3, Sc (OTf) 3, ZnCl 2, ZnBr 2, Zn (OTf) 2, MgCl 2, MgBr 2, Mg (OTf) 2, LiOTf, NaOTf, KOTf, Me 3 SiOTf, Examples thereof include Cu (OTf) 2 , CuCl 2 , YCl 3 , Y (OTf) 3 , TiCl 4 , TiBr 4 , ZrCl 4 , ZrBr 4 , FeCl 3 , FeBr 3 , CoCl 3 , and CoBr 3 .
 上記スキームでは、タンデムヘテロフリーデルクラフツ反応の促進のためにブレンステッド塩基またはルイス酸を使用してもよい。ただし、ホウ素の三フッ化物、三塩化物、三臭化物、三ヨウ化物などのホウ素ハロゲン化物を用いた場合は、芳香族求電子置換反応の進行とともに、フッ化水素、塩化水素、臭化水素、ヨウ化水素といった酸が生成するため、酸を捕捉するブレンステッド塩基の使用が効果的である。一方、ホウ素のアミノ化ハロゲン化物、ホウ素のアルコキシ化物を用いた場合は、芳香族求電子置換反応の進行とともに、アミン、アルコールが生成するために、多くの場合、ブレンステッド塩基を使用する必要はないが、アミノ基やアルコキシ基の脱離能が低いために、その脱離を促進するルイス酸の使用が効果的である。 In the above scheme, Bronsted bases or Lewis acids may be used to promote the tandem hetero Friedel-Crafts reaction. However, when boron halides such as boron trifluoride, trichloride, tribromide, and triiodide are used, hydrogen fluoride, hydrogen chloride, and hydrogen bromide, as the aromatic electrophobic substitution reaction progresses, Since an acid such as hydrogen iodide is produced, it is effective to use a blended base that captures the acid. On the other hand, when an aminated halide of boron or an alkoxylated of boron is used, it is often necessary to use a blended base because amines and alcohols are produced as the aromatic electrophilic substitution reaction proceeds. However, since the desorption ability of amino groups and alkoxy groups is low, it is effective to use Lewis acid that promotes the desorption.
 また、式(ii)または式(4)で表される化合物には、少なくとも一部の水素原子がシアノ、ハロゲンまたは重水素で置換されている化合物も含まれるが、このような化合物などは所望の箇所がシアノ化、ハロゲン化、重水素化された原料を用いることで、上記と同様に合成することができる。 Further, the compound represented by the formula (ii) or the formula (4) also includes a compound in which at least a part of hydrogen atoms is substituted with cyano, halogen or deuterium, and such a compound is desired. By using a raw material in which the above-mentioned part is cyanated, halogenated, or deuterated, it can be synthesized in the same manner as described above.
1-5.式(i)で表される構造を含む繰り返し単位を有する高分子化合物
 本発明の化合物は、式(i)で表される構造を含む繰り返し単位を有する高分子化合物(以下、「本発明の高分子化合物」ということがある。また、「本発明の化合物」というときはこの高分子化合物も含む。)であってもよい。式(i)で表される構造を含む繰り返し単位を有する高分子化合物としては、例えば、式(1)で表される化合物由来の構造を繰り返し単位として含む化合物が挙げられる。
 また、本発明の高分子化合物は、無置換または置換基を有してもよいトリアリールアミン、無置換または置換基を有してもよいフルオレン、無置換または置換基を有してもよいアントラセン、無置換または置換基を有してもよいテトラセン、無置換または置換基を有してもよいトリアジン、無置換または置換基を有してもよいカルバゾール、無置換または置換基を有してもよいテトラフェニルシラン、無置換または置換基を有してもよいスピロフルオレン、無置換または置換基を有してもよいトリフェニルホスフィン、無置換または置換基を有してもよいジベンゾチオフェン、および、無置換または置換基を有してもよいジベンゾフランよりなる群から選ばれた少なくとも1種の化合物由来の構造を繰返し単位に含むことが好ましい。この繰り返し単位は式(i)で表される構造を含む繰り返し単位であっても、式(i)で表される構造を含む繰り返し単位とは別の繰り返し単位であってもよい。
1-5. Polymer compound having a repeating unit containing a structure represented by the formula (i) The compound of the present invention is a polymer compound having a repeating unit containing a structure represented by the formula (i) (hereinafter, "high molecular weight of the present invention". It may be referred to as a "molecular compound", and the term "compound of the present invention" may include this polymer compound). Examples of the polymer compound having a repeating unit containing the structure represented by the formula (i) include a compound containing a structure derived from the compound represented by the formula (1) as a repeating unit.
Further, the polymer compound of the present invention may have a triarylamine which may have an unsubstituted or substituent, a fluorene which may have an unsubstituted or substituent, and an anthracene which may have an unsubstituted or substituent. , Tetracene which may have an unsubstituted or substituent, triazine which may have an unsubstituted or substituent, carbazole which may have an unsubstituted or substituent, and which may have an unsubstituted or substituent. Good tetraphenylsilane, spirofluorene which may have an unsubstituted or substituent, triphenylphosphine which may have an unsubstituted or substituent, dibenzothiophene which may have an unsubstituted or substituent, and It is preferable that the repeating unit contains a structure derived from at least one compound selected from the group consisting of dibenzofurene which may have a substituent or a substituent. The repeating unit may be a repeating unit including the structure represented by the formula (i), or may be a repeating unit different from the repeating unit including the structure represented by the formula (i).
 本発明の高分子化合物は、公知の方法によりハロゲン化アリール誘導体とアリールボロン酸誘導体を出発原料として、またはハロゲン化アリールボロン酸誘導体とハロゲン化アリール誘導体とアリールボロン酸誘導体を出発物質として、鈴木・宮浦カップリング、熊田・玉尾・コリューカップリング、根岸カップリング、ハロゲン化反応、またはホウ酸化反応を適宜組み合わせて合成することができる。 The polymer compound of the present invention uses an aryl halide and an arylboronic acid derivative as starting materials, or an arylboroic acid halide derivative, an aryl halide and an arylboronic acid derivative as starting materials by a known method. It can be synthesized by appropriately combining Miyaura coupling, Kumada / Tamao / Collew coupling, Negishi coupling, halide reaction, or boronic acid reaction.
 鈴木-宮浦カップリングにおけるハロゲン化物とボロン酸誘導体は、その反応性官能基は適宜入れ替わってもよく、熊田・玉尾・コリューカップリングや根岸カップリングにおいても同様にそれらの反応に関わる官能基は入れ替わっていてもよい。またGrignard試薬に変換する場合には金属マグネシウムとイソプロピルグリニア試薬は適宜入れ替えてもよい。ボロン酸エステルはそのまま使用してもよく、あるいは酸で加水分解してボロン酸として使用してもよい。ボロン酸エステルとして用いる場合には、そのエステル部分のアルキルは例示した以外のアルキルも用いることができる。 The reactive functional groups of the halide and boronic acid derivative in the Suzuki-Miyaura coupling may be replaced as appropriate, and the functional groups involved in those reactions also in the Kumada-Tamao-Colly coupling and the Negishi coupling. May be swapped. Further, when converting to a Grignard reagent, the metallic magnesium and the isopropyl grinard reagent may be appropriately replaced. The boronic acid ester may be used as it is, or may be hydrolyzed with an acid and used as boronic acid. When used as a boronic acid ester, an alkyl other than those illustrated can be used as the alkyl of the ester portion.
 反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0):Pd(t-BuP)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II):Pd(dppf)Cl、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(1:1):Pd(dppf)Cl・CHCl、PdCl{P(t-Bu)-(p-NMe-Ph)}:(A-taPhos)PdCl、パラジウム ビス(ジベンジリデン)、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、PdCl[P(t-Bu)-(p-NMe-Ph)]:(A-taPhos)PdCl(Pd-132:商標;ジョンソン・マッセイ社製)があげられる。 Specific examples of the palladium catalyst used in the reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , Palladium acetate (II): Pd (OAc) 2 , Tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , Tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3. CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (trit-butylphosphino) palladium (0): Pd (t-Bu 3 P) 2 , [1,1 '-Bis (diphenylphosphino) ferrocene] dichloropalladium (II): Pd (dppf) Cl 2 , [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (1: 1): Pd (dppf) Cl 2 · CH 2 Cl 2 , PdCl 2 {P (t-Bu) 2- (p-NMe 2- Ph)} 2 : (A- ta Phos) 2 PdCl 2 , palladium bis (dibenzylidene) , [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, PdCl 2 [P (t- Bu) 2 - (p-NMe 2 -Ph)] 2: (A- ta Phos) 2 PdCl 2 (Pd-132: trademark; manufactured by Johnson Massey).
 また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルがあげられる。 Further, in order to promote the reaction, a phosphine compound may be added to these palladium compounds in some cases. Specific examples of the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (dit-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (dit-butylphosphine) ferrocene, 1- (methoxymethyl) -2- (dit-butylphosphino) ferrocene, 1,1'-bis (dit-butylphosphine) Fino) Ferrocene, 2,2'-bis (dit-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2'-(dit-butylphosphino) -1,1'-binaphthyl, or Examples thereof include 2-dicyclohexylphosphino-2'and 6'-dimethoxybiphenyl.
 反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、酢酸カリウム、リン酸三カリウム、またはフッ化カリウムがあげられる。 Specific examples of the bases used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxydo, sodium t-butoxide, sodium acetate, potassium acetate. , Tripotassium phosphate, or potassium fluoride.
 また、反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、アニソール、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、t-ブチルアルコール、シクロペンチルメチルエーテルまたはイソプロピルアルコール、ジメトキシエタン、2-(2-メトキシエトキシ)エタン、2-(2-エトキシエトキシ)エタン等があげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, anisole, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, tetrahydrofuran, diethyl ether and t-butyl. Methyl ether, 1,4-dioxane, methanol, ethanol, t-butyl alcohol, cyclopentyl methyl ether or isopropyl alcohol, dimethoxyethane, 2- (2-methoxyethoxy) ethane, 2- (2-ethoxyethoxy) ethane, etc. Be done. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
 また、塩基は水溶液として加え2相系で反応させてもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。 Further, the base may be added as an aqueous solution and reacted in a two-phase system. When the reaction is carried out in a two-phase system, a phase transfer catalyst such as a quaternary ammonium salt may be added, if necessary.
 本発明の高分子化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、本発明の高分子化合物を一段階で合成する際、モノマーユニット(MU)に重合性基が結合したモノマーおよびエンドキャップユニット(EC)に重合性基が結合したモノマーを反応容器に加えた状態で反応を行うことで目的物を得る。また、本発明の高分子化合物を多段階で合成する際、モノマーユニット(MU)に重合性基が結合したモノマーを目的の分子量まで重合した後、エンドキャップユニット(EC)に重合性基が結合したモノマーを加えて反応させることで目的物を得る。 When producing the polymer compound of the present invention, it may be produced in one step or in multiple steps. Further, it may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are placed in the reaction vessel, or it may be carried out by a dropping polymerization method in which the raw materials are added dropwise to the reaction vessel, and the product advances the reaction. It may be carried out by a precipitation polymerization method in which the mixture precipitates, and these can be combined and synthesized as appropriate. For example, when synthesizing the polymer compound of the present invention in one step, a monomer having a polymerizable group bonded to a monomer unit (MU) and a monomer having a polymerizable group bonded to an end cap unit (EC) were added to the reaction vessel. The target product is obtained by reacting in the state. Further, when the polymer compound of the present invention is synthesized in multiple steps, a monomer having a polymerizable group bonded to a monomer unit (MU) is polymerized to a target molecular weight, and then the polymerizable group is bonded to an end cap unit (EC). The desired product is obtained by adding the obtained monomer and reacting.
 また、モノマーの重合性基を選べば高分子化合物の一次構造を制御することができる。例えば、合成スキーム(20)の1~3に示すように、ランダムな一次構造を有する高分子化合物(合成スキーム(20)の1)、規則的な一次構造を有する高分子化合物(合成スキーム(20)の2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。 In addition, the primary structure of the polymer compound can be controlled by selecting the polymerizable group of the monomer. For example, as shown in 1 to 3 of the synthesis scheme (20), a polymer compound having a random primary structure (1 of the synthesis scheme (20)) and a polymer compound having a regular primary structure (synthesis scheme (20)). ) 2 and 3) and the like can be synthesized, and can be used in appropriate combinations according to the target product.
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000227
 式(i)で表される構造を含む繰り返し単位を有する高分子化合物は、例えば、式(1)で表される化合物由来の構造を有する繰り返し単位を有する高分子化合物であってもよい。このとき、式(1)におけるR~R11に重合性基を導入したモノマーを用いて高分子化合物を製造すればよい。を重合性基が導入されるR~R11としての置換基は、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)(以上、第1置換基)であり、前記アリール、前記ヘテロアリール、および前記ジアリールアミノにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。式(i)で表される構造を含む繰り返し単位を有する高分子化合物は、式(i)で表される構造を含むモノマーに加えて、さらに、コモノマーを使用して製造されていてもよい。より具体的には、高分子化合物の製造において用いてもよいコモノマーは、下記いずれかに重合性基が導入されたものであればよい:無置換または置換してもよいベンゼン、無置換または置換してもよいトリアジン、無置換または置換基を有してもよいアントラセン、無置換または置換してもよいトリアリールアミン、無置換または置換してもよいカルバゾール、無置換または置換基を有してもよいスピロフルオレン、無置換または置換してもよいジベンゾフラン、無置換または置換してもよいジベンゾチオフェン、無置換または置換してもよいテトラアリールシラン、無置換または置換してもよいトリアリールホスフィン、無置換または置換してもよいフェノキサジン、無置換または置換してもよいフェノチアジン、無置換または置換してもよいアクリダン、無置換または置換してもよいアルキルおよび無置換または置換してもよいシクロアルキル。これらのうち、無置換または置換してもよいベンゼン、無置換または置換基を有してもよいトリアリールアミン、無置換または置換基を有してもよいフルオレン、無置換または置換基を有してもよいアントラセン、無置換または置換基を有してもよいテトラセン、無置換または置換基を有してもよいトリアジン、無置換または置換基を有してもよいカルバゾール、無置換または置換基を有してもよいテトラフェニルシラン、無置換または置換基を有してもよいスピロフルオレン、無置換または置換基を有してもよいトリフェニルホスフィン、無置換または置換基を有してもよいジベンゾチオフェン、および、無置換または置換基を有してもよいジベンゾフランが好ましく、ベンゼン、ビフェニル、ターフェニル、トリアリールアミン、トリフェニルトリアジンまたはカルバゾールがより好ましい。また、前記、フェニル、ビフェニル、ターフェニル、トリアリールアミン、トリフェニルトリアジンまたはカルバゾールにおいて、炭素数1~24のアルキルまたは炭素数3~16のシクロアルキルを置換基として有することがさらに好ましい。 The polymer compound having a repeating unit having a structure represented by the formula (i) may be, for example, a polymer compound having a repeating unit having a structure derived from the compound represented by the formula (1). At this time, a polymer compound may be produced by using a monomer in which a polymerizable group is introduced into R 1 to R 11 in the formula (1). The substituents as R 1 to R 11 into which the polymerizable group is introduced are aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls are single bond or linking groups). (The above is the first substituent), and at least one hydrogen in the aryl, the heteroaryl, and the diarylamino is aryl, heteroaryl, alkyl or cycloalkyl (above, It may be substituted with a second substituent). The polymer compound having a repeating unit containing the structure represented by the formula (i) may be produced by using a comonomer in addition to the monomer containing the structure represented by the formula (i). More specifically, the comonomer that may be used in the production of the polymer compound may be one in which a polymerizable group is introduced into any of the following: benzene which may be unsubstituted or substituted, unsubstituted or substituted. With triazine, optionally anthracene, optionally unsubstituted or substituent, triarylamine optionally substituted or substituted, carbazole optionally substituted or substituted, unsubstituted or substituent. Spirofluorene may be unsubstituted or substituted dibenzofuran, unsubstituted or substituted dibenzothiophene, unsubstituted or substituted tetraarylsilane, unsubstituted or optionally substituted triarylphosphine, Unsubstituted or substituted phenoxazine, unsubstituted or substituted phenothiazine, unsubstituted or substituted acridane, unsubstituted or substituted alkyl and unsubstituted or substituted cyclo Alkyl. Among these, benzene which may be unsubstituted or substituted, triarylamine which may have an unsubstituted or substituent, fluorene which may have an unsubstituted or substituent, and an unsubstituted or substituent. Anthracene may be, tetracene which may have an unsubstituted or substituent, triazine which may have an unsubstituted or substituent, benzene which may have an unsubstituted or substituent, and a unsubstituted or substituent. Tetraphenylsilane which may have, spirofluorene which may have an unsubstituted or substituent, triphenylphosphine which may have an unsubstituted or substituent, dibenzo which may have an unsubstituted or substituent Thiophen and dibenzofuran, which may have an unsubstituted or substituent, are preferable, and benzene, biphenyl, terphenyl, triarylamine, triphenyltriazine or carbazole are more preferable. Further, in the above-mentioned phenyl, biphenyl, terphenyl, triarylamine, triphenyltriazine or carbazole, it is more preferable to have an alkyl having 1 to 24 carbon atoms or a cycloalkyl having 3 to 16 carbon atoms as a substituent.
2.有機デバイス用材料
 また、本発明の化合物は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。これらの中でも、本発明の有機デバイス用材料は、有機電界発光素子用材料として好ましく用いられ、有機電界発光素子用材料の発光層用材料としてより好ましく用いられる。
2. Materials for Organic Devices The compounds of the present invention can also be used as materials for organic devices. Examples of the organic device include an organic electroluminescent device, an organic field effect transistor, and an organic thin film solar cell. Among these, the material for an organic device of the present invention is preferably used as a material for an organic electroluminescent device, and more preferably used as a material for a light emitting layer of a material for an organic electroluminescent device.
2-1.有機電界発光素子
2-1-1.有機電界発光素子の構造
 有機電界発光素子(有機EL素子)は陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層を備える。有機EL素子は発光層のほかに1以上の有機層を有していてもよい。有機層としては、例えば、電子輸送層、正孔輸送層、電子注入層および正孔注入層等を挙げることができ、さらに、その他の有機層を有していてもよい。
 図1に、これらの有機層を備えた有機電界発光素子の層構成の一例を示す。
 図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
2-1. Organic electroluminescent device
2-1-1. Structure of Organic Electroluminescent Device An organic electroluminescent device (organic EL device) includes a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes. The organic EL element may have one or more organic layers in addition to the light emitting layer. Examples of the organic layer include an electron transport layer, a hole transport layer, an electron injection layer, a hole injection layer, and the like, and may further have other organic layers.
FIG. 1 shows an example of the layer structure of an organic electroluminescent device provided with these organic layers.
The organic EL element 100 shown in FIG. 1 is placed on a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103. The hole transport layer 104 is provided, the light emitting layer 105 is provided on the hole transport layer 104, the electron transport layer 106 is provided on the light emitting layer 105, and the electron transport layer 106 is provided. It has an electron injection layer 107 and a cathode 108 provided on the electron injection layer 107.
 なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。 The organic EL element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107. Above the electron transport layer 106 provided on the electron transport layer 106, the light emitting layer 105 provided on the electron transport layer 106, the hole transport layer 104 provided on the light emitting layer 105, and the hole transport layer 104. The hole injection layer 103 provided in the hole injection layer 103 and the anode 102 provided on the hole injection layer 103 may be provided.
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。 Not all of the above layers are required, and the minimum structural unit is composed of the anode 102, the light emitting layer 105, and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, and the electron injection. The layer 107 is an arbitrarily provided layer. Further, each of the above layers may be composed of a single layer or a plurality of layers.
 有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。 As the mode of the layer constituting the organic EL element, in addition to the above-mentioned "board / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode", " Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode "," substrate / Anosome / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode "," substrate / "Anofect / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / anode / hole transport layer / light emitting layer / electron injection layer / cathode", "substrate / anode / hole transport layer / light emitting layer / electron" Transport layer / cathode ”,“ substrate / anode / hole injection layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole injection layer / light emitting layer / electron transport layer / cathode ”,“ substrate / anode The configuration may be "/ light emitting layer / electron transport layer / cathode" or "substrate / anode / light emitting layer / electron injection layer / cathode".
2-1-2.有機電界発光素子における発光層
 発光層(図1の105)は、電界を与えられた電極間において発光する層である。典型的には、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物が好ましい。
 また、発光層は単一層でも複数層からなってもどちらでもよい。それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料およびドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。また、後述するように、発光層は、ホスト材料とドーパント材料とを含む発光層形成用組成物を用いた湿式成膜法により形成することもできる。
2-1-2. The light emitting layer in the organic electroluminescent device (105 in FIG. 1) is a layer that emits light between electrodes to which an electric field is applied. Typically, the holes injected from the anode 102 and the electrons injected from the cathode 108 are recombined to emit light. The material for forming the light emitting layer may be a compound (luminous compound) that is excited by the recombination of holes and electrons to emit light, and can form a stable thin film shape and is in a solid state. Compounds that exhibit strong emission (fluorescence) efficiency are preferred.
Further, the light emitting layer may be either a single layer or a plurality of layers. Each is formed of a light emitting layer material (host material, dopant material). The host material and the dopant material may be one kind or a combination of two or more. The dopant material may be included in the entire host material, partially, or in any part. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be mixed with the host material in advance and then vapor-deposited at the same time. Further, as will be described later, the light emitting layer can also be formed by a wet film forming method using a light emitting layer forming composition containing a host material and a dopant material.
 本発明の化合物は、有機電界発光素子の発光層の形成材料として好ましく用いることができる。本発明の化合物は発光層におけるドーパントとして用いることが好ましい。本発明の化合物は発光層におけるエミッティングドーパントとして用いてもよく、アシスティングドーパントとして用いてもよい。
 本発明の化合物、ホスト化合物および後述するその他成分は、同一の層内に含まれていてもよく、複数層に少なくとも1成分ずつ含まれていてもよい。発光層が含む本発明の化合物、およびホスト化合物は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。アシスティングドーパントおよびエミッティングドーパントは、マトリックスとしてのホスト化合物中に、全体的に含まれていてもよいし、部分的に含まれていてもよい。発光層は蒸着法によって成膜されてもよく、有機溶媒に溶解して調製した塗料を塗布する、湿式成膜法等により形成してもよい。
The compound of the present invention can be preferably used as a material for forming a light emitting layer of an organic electroluminescent device. The compound of the present invention is preferably used as a dopant in the light emitting layer. The compound of the present invention may be used as an emittering dopant in the light emitting layer, or may be used as an assisting dopant.
The compound of the present invention, the host compound, and other components described later may be contained in the same layer, or at least one component may be contained in each of a plurality of layers. The compound of the present invention and the host compound contained in the light emitting layer may be one kind or a combination of two or more. The assisting dopant and the emerging dopant may be contained entirely or partially in the host compound as a matrix. The light emitting layer may be formed by a vapor deposition method, or may be formed by a wet film forming method or the like, in which a paint prepared by dissolving in an organic solvent is applied.
 本発明の化合物の使用量は、高いTADF活性の観点からは多いほうが好ましく、半値幅の狭い発光スペクトルの観点からは少ないほうがよい。ホスト化合物の使用量の目安は、好ましくは発光層用材料全体の0.001~49質量%であり、より好ましくは0.1~40質量%であり、さらに好ましくは0.5~25質量%である。 The amount of the compound of the present invention used is preferably large from the viewpoint of high TADF activity and small from the viewpoint of emission spectrum having a narrow half width. The guideline for the amount of the host compound used is preferably 0.001 to 49% by mass, more preferably 0.1 to 40% by mass, and further preferably 0.5 to 25% by mass of the entire material for the light emitting layer. Is.
2-1-2-1.ホスト化合物
 本発明の化合物を含む発光層は、ホスト化合物を用いてよい。ホスト化合物としては、公知のものを用いることができ、例えばカルバゾール環およびフラン環の少なくとも一方を有する化合物を挙げることができ、中でも、フラニルおよびカルバゾリルの少なくとも一方と、アリーレンおよびヘテロアリーレンの少なくとも一方とが結合した化合物を用いることが好ましい。具体例として、mCPやmCBPなどが挙げられる。
2-1-2-1. Host Compound A host compound may be used as the light emitting layer containing the compound of the present invention. As the host compound, known compounds can be used, and examples thereof include compounds having at least one of a carbazole ring and a furan ring, among which at least one of furanyl and carbazolyl and at least one of arylene and heteroarylene. It is preferable to use a compound to which is bound. Specific examples include mCP and mCBP.
 ホスト化合物には、例えば、下記式(H1)、式(H2)、式(H3)、式(H4)、および式(H5)のいずれかで表される化合物を用いることができる。
 これらの化合物は、下記式(H1)、(H2)、(H3)、(H4)、および(H5)のいずれかで表される化合物由来の構造を繰返し単位とする高分子化合物であってもよい。
 本発明の有機電界発光素子は、下記式(H1)~(H5)で表される化合物を少なくとも1つ含有する、または、下記(H1)~(H5)における少なくとも1つの構造を繰り返し単位とする高分子化合物を少なくとも1つ含有することが好ましい。
As the host compound, for example, a compound represented by any of the following formula (H1), formula (H2), formula (H3), formula (H4), and formula (H5) can be used.
These compounds may be polymer compounds having a structure derived from a compound represented by any of the following formulas (H1), (H2), (H3), (H4), and (H5) as a repeating unit. Good.
The organic electroluminescent device of the present invention contains at least one compound represented by the following formulas (H1) to (H5), or has at least one structure in the following (H1) to (H5) as a repeating unit. It is preferable to contain at least one polymer compound.
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
 式(H1)中、Lは炭素数6~24のアリーレンであり、式(H2)中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールであり、上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよく、式(H3)において、Jは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、Yは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、Zは、C-H、C-R’またはNであり、式(H4)において、Zは、C-H、C-R’またはNであり、前記、>N-R’、>C(-R’)、>Si(-R’)およびC-R’におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、式(H5)において、R~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールへテロアリールアミノもしくはアルキルである置換基であり、これらの置換基における少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアルキルで置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、式(H5)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲンまたは重水素で置換されてもよい。
 式(H5)のR~R11としては、上述の第1置換基および第1置換基を置換する第2置換基の記載を引用できる。
In formula (H1), L 1 is an arylene having 6 to 24 carbon atoms, and in formula (H2), L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or 2 to 30 carbon atoms, respectively. At least one hydrogen in the compound represented by each of the above formulas may be substituted with an alkyl, cyano, halogen or heavy hydrogen having 1 to 6 carbon atoms, and in the formula (H3), J Is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , and Y is a single bond,>O,>S,> C (- R') 2 or> Si (-R') 2 , where Z is CH, CR'or N, and in formula (H4), Z is CH, CR'or N, and R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R', respectively, are aryl, heteroaryl, and alkyl, respectively. Alternatively, it is cycloalkyl, and in formula (H5), R 1 to R 11 are each independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl. It is a substituent, and at least one hydrogen in these substituents may be further substituted with aryl, heteroaryl, diarylamino or alkyl, and adjacent groups of R 1 to R 11 are bonded to each other to a. Aryl ring or heteroaryl ring may be formed together with the ring, b ring or c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino. Alternatively, it may be substituted with alkyl, at least one hydrogen in these may be further substituted with aryl, heteroaryl, diarylamino or alkyl, and at least one hydrogen in the compound represented by the formula (H5). , Each may be independently substituted with halogen or heavy hydrogen.
As R 1 to R 11 of the formula (H5), the description of the first substituent and the second substituent substituting the first substituent can be cited.
 また、ホスト化合物としては、下記式(H-1)、(H-2)および(H-3)のいずれかで表される化合物も用いることができる。
Figure JPOXMLDOC01-appb-C000229
 
Further, as the host compound, a compound represented by any of the following formulas (H-1), (H-2) and (H-3) can also be used.
Figure JPOXMLDOC01-appb-C000229
 式(H-1)、(H-2)および(H-3)中、Lは炭素数6~24のアリーレン、炭素数2~24のヘテロアリーレン、炭素数6~24のヘテロアリーレンアリーレンおよび炭素数6~24のアリーレンヘテロアリーレンアリーレンであり、炭素数6~16のアリーレンが好ましく、炭素数6~12のアリーレンがより好ましく、炭素数6~10のアリーレンが特に好ましく、具体的には、ベンゼン環、ビフェニル環、テルフェニル環およびフルオレン環などの二価の基が挙げられる。ヘテロアリーレンとしては、炭素数2~24のヘテロアリーレンが好ましく、炭素数2~20のヘテロアリーレンがより好ましく、炭素数2~15のヘテロアリーレンがさらに好ましく、炭素数2~10のヘテロアリーレンが特に好ましく、具体的には、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、およびチアントレン環などの二価の基が挙げられる。
 上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
In formulas (H-1), (H-2) and (H-3), L 1 is an arylene having 6 to 24 carbon atoms, a heteroarylene having 2 to 24 carbon atoms, a heteroarylene allylene having 6 to 24 carbon atoms and It is an arylene heteroarylene arylene having 6 to 24 carbon atoms, preferably an arylene having 6 to 16 carbon atoms, more preferably an arylene having 6 to 12 carbon atoms, and particularly preferably an arylene having 6 to 10 carbon atoms. Examples thereof include divalent groups such as a benzene ring, a biphenyl ring, a terphenyl ring and a fluorene ring. As the heteroarylene, a heteroarylene having 2 to 24 carbon atoms is preferable, a heteroarylene having 2 to 20 carbon atoms is more preferable, a heteroarylene having 2 to 15 carbon atoms is further preferable, and a heteroarylene having 2 to 10 carbon atoms is particularly preferable. Preferably, specifically, a pyrrole ring, an oxazole ring, an isooxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an oxazole ring, a thiazazole ring, a triazole ring, a tetrazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, Pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzoimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, synnoline ring, quinazoline ring , Kinoxalin ring, phthalazine ring, naphthylidine ring, purine ring, pteridine ring, carbazole ring, aclysin ring, phenoxatiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolidin ring, furan ring, benzofuran ring, isobenzofuran ring , Dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, frazan ring, and thiantolen ring.
At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
 ホスト化合物としては、好ましくは以下に列挙したいずれかの構造式で表される化合物である。なお、以下に列挙した構造式においては、少なくとも1つの水素が、ハロゲン、シアノ、炭素数1~4のアルキル(例えばメチルやt-ブチル)、フェニルまたはナフチルなどで置換されていてもよい。 The host compound is preferably a compound represented by any of the structural formulas listed below. In the structural formulas listed below, at least one hydrogen may be substituted with halogen, cyano, alkyl having 1 to 4 carbon atoms (for example, methyl or t-butyl), phenyl or naphthyl.
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000236
2-1-2-2.蛍光体(エミッティングドーパント)
 本発明の化合物をアシスティングドーパント(TAF素子におけるアシスティングドーパント)として用いる場合、発光層の付加成分としてエミッティングドーパント(TAF素子におけるエミッティングドーパント)を用いてもよい。付加成分は、発光スペクトルの狭半値幅化、色味の改善または長寿命化の目的に用いられる。
2-1-2-2. Fluorescent material (emitting dopant)
When the compound of the present invention is used as an assisting dopant (assisting dopant in a TAF element), an emulating dopant (emitting dopant in a TAF element) may be used as an additional component of the light emitting layer. The additional component is used for the purpose of narrowing the emission spectrum, improving the color, or extending the life.
 本発明のエミッティングドーパントとしては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。 The emitting dopant of the present invention is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color. Specifically, for example, fused ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene and chrysen, benzoxazole derivatives, benzothiazole derivatives, benzoimidazole derivatives, benzotriazole derivatives, oxazoles. Bistylyl derivatives such as derivatives, oxadiazol derivatives, thiazole derivatives, imidazole derivatives, thiadiazol derivatives, triazole derivatives, pyrazoline derivatives, stillben derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and distyrylbenzene derivatives. (Japanese Patent Laid-Open No. 1-245087), bisstyrylallylen derivative (Japanese Patent Laid-Open No. 2-247278), diazaindacene derivative, furan derivative, benzofuran derivative, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) Isobenzofuran derivatives such as isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, phenylisobenzofuran, dibenzofuran derivatives, 7-dialkylaminocoumarin derivatives, 7-piperidinocoumarin derivatives, 7-hydroxycoumarin derivatives, 7- Cumarin derivatives such as methoxycoumarin derivatives, 7-acetoxycoumarin derivatives, 3-benzothiazolylcoumarin derivatives, 3-benzoimidazolylcoumarin derivatives, 3-benzoxazolylcoumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, polymethine Derivatives, cyanine derivatives, oxobenzoanthracene derivatives, xanthene derivatives, rhodamine derivatives, fluorescein derivatives, pyrylium derivatives, carbostyryl derivatives, acrydin derivatives, oxazine derivatives, phenylene oxide derivatives, quinacridone derivatives, quinazoline derivatives, pyrolopyridine derivatives, flopyridine derivatives, Examples thereof include 1,2,5-thiadiazolopylene derivatives, pyromethene derivatives, perinone derivatives, pyrolopyrrole derivatives, squarylium derivatives, biolantron derivatives, phenazine derivatives, acridone derivatives, deazaflavin derivatives, fluorene derivatives and benzofluorene derivatives.
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。 For example, as blue to blue-green dopant materials for each color-developing light, aromatic hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, inden, and chrysen and their derivatives, furan, pyrrole, thiophene, etc. Aromatic complexes such as silol, 9-silafluorene, 9,9'-spirobisilafluolene, benzothiophene, benzofuran, indol, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthylidine, quinoxalin, pyrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stillben derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiadiazol, carbazole, oxazole, oxadiazol, triazole and other azole derivatives and their metal complexes and N , N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine and other aromatic amine derivatives.
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Examples of the green to yellow dopant material include a coumarin derivative, a phthalimide derivative, a naphthalimide derivative, a perinone derivative, a pyrolopyrrole derivative, a cyclopentadiene derivative, an acridone derivative, a quinacridone derivative, a naphthacene derivative such as rubrene, and the like. A preferable example is a compound in which a substituent capable of lengthening the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, is introduced into the compound exemplified as the blue-green dopant material.
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Further, as the orange to red dopant material, naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic acidimide, perinone derivatives, rare earth complexes such as Eu complex having acetylacetone, benzoylacetone and phenanthroline as ligands, and 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone. Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrolopyridine derivatives, squarylium derivatives, biolantron derivatives, phenazine derivatives, phenoxazone derivatives, thiadiazolopyrene derivatives, etc. A preferable example is a compound in which a substituent capable of lengthening the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, is introduced into the compound.
 その他、付加成分としては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。 In addition, as the additional component, it can be appropriately selected and used from the compounds described in the June 2004 issue of Chemical Industry, page 13, and the references mentioned therein.
 スチルベン構造を有するアミンは、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000237
 当該式中、Arは炭素数6~30のアリールに由来するm価の基であり、ArおよびArは、それぞれ独立して炭素数6~30のアリールであるが、Ar~Arの少なくとも1つはスチルベン構造を有し、Ar~Arは置換されていてもよく、そして、mは1~4の整数である。
An amine having a stilbene structure is represented by, for example, the following formula.
Figure JPOXMLDOC01-appb-C000237
In the formula, Ar 1 is an m-valent group derived from an aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 are independently aryls having 6 to 30 carbon atoms, but Ar 1 to Ar. At least one of 3 has a stillben structure, Ar 1 to Ar 3 may be substituted, and m is an integer of 1 to 4.
 スチルベン構造を有するアミンは、下記式で表されるジアミノスチルベンがより好ましい。
Figure JPOXMLDOC01-appb-C000238
 当該式中、ArおよびArは、それぞれ独立して炭素数6~30のアリールであり、ArおよびArは置換されていてもよい。
The amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
Figure JPOXMLDOC01-appb-C000238
In the formula, Ar 2 and Ar 3 are independently aryls having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、スチルベン、ジスチリルベンゼン、ジスチリルビフェニル、ジスチリルフルオレンなどがあげられる。 Specific examples of aryls having 6 to 30 carbon atoms are benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluorene, triphenylene, pyrene, chrysene, naphthalene, perylene, stilben, distyrylbenzene, distyrylbiphenyl, and distyryl. Fluorene can be mentioned.
 スチルベン構造を有するアミンの具体例は、N,N,N’,N’-テトラ(4-ビフェニリル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4,4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどがあげられる。
 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたスチルベン構造を有するアミンを用いてもよい。
Specific examples of amines having a stilbene structure are N, N, N', N'-tetra (4-biphenylyl) -4,4'-diaminostilbene, N, N, N', N'-tetra (1-naphthyl). ) -4,4'-diaminostilbene, N, N, N', N'-tetra (2-naphthyl) -4,4'-diaminostilbene, N, N'-di (2-naphthyl) -N, N '-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthril) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis (Diphenylamino) stilbene] -biphenyl, 1,4-bis [4'-bis (diphenylamino) stilbene] -benzene, 2,7-bis [4'-bis (diphenylamino) stilbene] -9,9-dimethyl Examples thereof include fluorene, 4,4'-bis (9-ethyl-3-carbazovinylene) -biphenyl, and 4,4'-bis (9-phenyl-3-carbazovinylene) -biphenyl.
Further, amines having a stilbene structure described in JP-A-2003-347056 and JP-A-2001-307884 may be used.
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
Examples of the perylene derivative include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, and 3,4-. Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene , 3- (9'-anthril) -8,11-di (t-butyl) perylene, 3,3'-bis (8,11-di (t-butyl) perylenel) and the like.
In addition, JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, JP-A-2001-217077, and the like may be used.
 また、エミッティングドーパントとして用いられる化合物として、ホウ素原子を含む化合物が挙げられ、例えば、ボラン誘導体、ジオキサボラナフトアントラセン(DOBNA)誘導体およびその多量体、ジアザボラナフトアントラセン(DABNA)誘導体およびその多量体、オキサアザボラナフトアントラセン(OABNA)誘導体およびその多量体、オキサボラナフトアントラセン(OBNA)誘導体およびその多量体、アザボラナフトアントラセン(ABNA)誘導体およびその多量体、トリオキサボラジベンゾピレン誘導体およびその多量体、ジオキサアザボラベンゾピレン誘導体およびその多量体、オキサジアザボラベンゾピレン誘導体およびその多量体などが挙げられる。 Examples of the compound used as the emitting dopant include compounds containing a boron atom, for example, a borane derivative, a dioxaboronaftanthracene (DOBNA) derivative and a multimer thereof, a diazaboronaftanthracene (DABNA) derivative and the like. Multimers, oxavolanaft anthracene (OABNA) derivatives and their multimers, oxabolanaft anthracene (OBNA) derivatives and their multimers, azaboranaft anthracene (ABNA) derivatives and their multimers, trioxaborazibenzopyrene derivatives and Examples thereof include the multimer, the dioxaazabora benzopyrene derivative and its multimer, the oxadiazabora benzopyrene derivative and its multimer, and the like.
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号などに記載されたボラン誘導体を用いてもよい。
Examples of borane derivatives include 1,8-diphenyl-10- (dimethylboryl) anthracene, 9-phenyl-10- (dimethylboryl) anthracene, 4- (9'-anthril) dimesitytylborylnaphthalene, and 4- (10'). -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4'-(N-carbazolyl) phenyl) -10- (Dimethylboryl) Anthracene and the like.
Moreover, the borane derivative described in International Publication No. 2000/40586 etc. may be used.
 芳香族アミン誘導体は、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000239
 当該式中、Arは炭素数6~30のアリールに由来するn価の基であり、ArおよびArはそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは1~4の整数である。
The aromatic amine derivative is represented by, for example, the following formula.
Figure JPOXMLDOC01-appb-C000239
In the formula, Ar 4 is an n-valent group derived from an aryl having 6 to 30 carbon atoms, Ar 5 and Ar 6 are independently aryls having 6 to 30 carbon atoms, and Ar 4 to Ar 6 are independently. It may be substituted and n is an integer from 1 to 4.
 特に、Arがアントラセン、クリセン、フルオレン、ベンゾフルオレンまたはピレンに由来する2価の基であり、ArおよびArがそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは2である、芳香族アミン誘導体がより好ましい。 In particular, Ar 4 is a divalent group derived from anthracene, chrysene, fluorene, benzofluorene or pyrene, Ar 5 and Ar 6 are independently aryls having 6 to 30 carbon atoms, and Ar 4 to Ar 6 are respectively. May be substituted, and n is 2, aromatic amine derivatives are more preferred.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレンフェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、ペンタセンなどがあげられる。 Specific examples of aryls having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorenephenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthalene, perylene, and pentacene.
 芳香族アミン誘導体としては、クリセン系としては、例えば、N,N,N’,N’-テトラフェニルクリセン-6,12-ジアミン、N,N,N’,N’-テトラ(p-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(m-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(ナフタレン-2-イル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)クリセン-6,12-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)クリセン-6,12-ジアミンなどがあげられる。 As the aromatic amine derivative, as a chrysen system, for example, N, N, N', N'-tetraphenylcrisen-6,12-diamine, N, N, N', N'-tetra (p-tolyl) Chrysen-6,12-diamine, N, N, N', N'-tetra (m-tolyl) Chrysen-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysen -6,12-diamine, N, N, N', N'-tetra (naphthalen-2-yl) chrysen-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) ) Chrysen-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) Chrysen-6,12-diamine, N, N'-diphenyl-N, N'-bis ( 4-isopropylphenyl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-t-butylphenyl) chrysen-6,12-diamine, N, N'-bis (4) -Isopropylphenyl) -N, N'-di (p-tolyl) chrysen-6,12-diamine and the like can be mentioned.
 また、ピレン系としては、例えば、N,N,N’,N’-テトラフェニルピレン-1,6-ジアミン、N,N,N’,N’-テトラ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラ(m-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)ピレン-1,6-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)-3,8-ジフェニルピレン-1,6-ジアミン、N,N,N,N-テトラフェニルピレン-1,8-ジアミン、N,N’-ビス(ビフェニル-4-イル)-N,N’-ジフェニルピレン-1,8-ジアミン、N,N-ジフェニル-N,N-ビス-(4-トリメチルシラニル-フェニル)-1H,8H-ピレン-1,6-ジアミンなどがあげられる。
例えば、具体例としては式(PYR1)、(PYR2)、(PYR3)および(PYR4)などが挙げられる。
Figure JPOXMLDOC01-appb-C000240
As the pyrene system, for example, N, N, N', N'-tetraphenylpyrene-1,6-diamine, N, N, N', N'-tetra (p-tolyl) pyrene-1,6 -Diamine, N, N, N', N'-tetra (m-tolyl) pyrene-1,6-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) pyrene-1,6- Diamine, N, N, N', N'-tetrakis (3,4-dimethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) pyrene-1 , 6-Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) ) Pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-t-butylphenyl) Pyrene-1,6-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) pyrene-1,6-diamine, N, N, N', N'-tetrakis (3,4-dimethylphenyl) -3,8-diphenylpyrene-1,6 -Diamine, N, N, N, N-Tetraphenylpyrene-1,8-diamine, N, N'-bis (biphenyl-4-yl) -N, N'-diphenylpyrene-1,8-diamine, N 1 , N 6 -diphenyl-N 1 , N 6 -bis- (4-trimethylsilanyl-phenyl) -1H, 8H-pyrene-1,6-diamine and the like can be mentioned.
For example, specific examples include formulas (PYR1), (PYR2), (PYR3) and (PYR4).
Figure JPOXMLDOC01-appb-C000240
 また、アントラセン系としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(m-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(m-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセンなどがあげられる。 The anthracene system includes, for example, N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N', N'-tetra (p-tolyl) anthracene-9,10-diamine. , N, N, N', N'-tetra (m-tolyl) anthracene-9,10-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (m-tolyl) anthracene-9,10- Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) anthracene- 9,10-Diamine, N, N'-diphenyl-N, N'-bis (4-t-butylphenyl) anthracene-9,10-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6-di-t-butyl-N, N, N', N'-tetra (p-tolyl) anthracene-9,10-diamine , 2,6-di-t-butyl-N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) anthracene-9,10-diamine, 2,6-di-t-butyl-N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6-dicyclohexyl-N, N'-bis (4-isopropylphenyl) -N , N'-di (p-tolyl) anthracene-9,10-diamine, 2,6-dicyclohexyl-N, N'-bis (4-isopropylphenyl) -N, N'-bis (4-t-butylphenyl) ) Anthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, 9,10-bis (4-di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4) -Di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-) Examples thereof include 1-naphthyl) anthracene and 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene.
 また、他には、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニル、インドロカルバゾール誘導体などがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
In addition, [4- (4-diphenylamino-phenyl) naphthalene-1-yl] -diphenylamine, [6- (4-diphenylamino-phenyl) naphthalene-2-yl] -diphenylamine, 4,4' -Bis [4-diphenylaminonaphthalen-1-yl] biphenyl, 4,4'-bis [6-diphenylaminonaphthalen-2-yl] biphenyl, 4,4 "-bis [4-diphenylaminonaphthalen-1-yl] ] -P-Terphenyl, 4,4 "-bis [6-diphenylaminonaphthalen-2-yl] -p-terphenyl, indolocarbazole derivatives and the like.
Further, the aromatic amine derivative described in JP-A-2006-156888 may be used.
 インドロカルバゾール誘導体としては、下記式(IDC1)で表される化合物である。具体的には、下記、部分構造(IDC11)、(IDC12)および(IDC13)を有する化合物が挙げられる。下記の式(IDC1)における、式中、Zは、CRまたはNであり、π1およびπ2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素または置換もしくは無置換の環形成炭素数5~50の芳香族複素環であり、R,RおよびRCは水素および任意の置換基であり、nおよびmは、それぞれ独立に1~4の整数であり、隣接する2つのR,RおよびRCは互いに結合して置換もしくは無置換の環構造を形成してもよい。より具体的には、式(IDC121)、(IDC131)、(IDC132)、(IDC133)および(IDC134)などが挙げられる。 The indolocarbazole derivative is a compound represented by the following formula (IDC1). Specific examples thereof include compounds having the following partial structures (IDC11), (IDC12) and (IDC13). In the formula (IDC1) below, Z is CR A or N, and π1 and π2 are independently substituted or unsubstituted aromatic hydrocarbons having 6 to 50 carbon atoms or substituted or substituted, respectively. an unsubstituted aromatic heterocyclic ring carbon atoms 5 ~ 50, R a, R B and R C are hydrogen and any substituent, n and m are each independently an integer of 1 to 4 There, two adjacent R a, may form R B and R C are substituted or unsubstituted ring structure bonded to each other. More specifically, the formulas (IDC121), (IDC131), (IDC132), (IDC133), (IDC134) and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000241
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
Examples of the coumarin derivative include coumarin-6 and coumarin-334.
Further, the coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, JP-A-6-298758 and the like may be used.
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000242
 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
Examples of the pyran derivative include the following DCM and DCJTB.
Figure JPOXMLDOC01-appb-C000242
Further, JP-A-2005-126399, JP-A-2005-097283, JP-A-2002-234892, JP-A-2001-220577, JP-A-2001-081090, and JP-A-2001-052869. The pyran derivative described in the above may be used.
 また、本発明で用いる蛍光体は、ホウ素原子を有する化合物であることが好ましい。蛍光体として用いられるホウ素原子を有する化合物として、ジオキサボラナフトアントラセン(DOBNA)誘導体およびその多量体、ジアザボラナフトアントラセン(DABNA)誘導体およびその多量体、オキサアザボラナフトアントラセン(OABNA)誘導体およびその多量体、オキサボラナフトアントラセン(OBNA)誘導体およびその多量体、アザボラナフトアントラセン(ABNA)誘導体およびその多量体などが挙げられる。 Further, the phosphor used in the present invention is preferably a compound having a boron atom. As compounds having a boron atom used as a phosphor, dioxaboronaftanthracene (DOBNA) derivative and its multimer, diazaboronaftanthracene (DABNA) derivative and its multimer, oxaazaboronaftanthracene (OABNA) derivative and Examples thereof include the multimer, an oxabolanaft anthracene (OBNA) derivative and its multimer, and an azaboronaft anthracene (ABNA) derivative and its multimer.
 エミッティングドーパントとしては、下記式(ED1)、(ED1’)および(ED2)で表される化合物を少なくとも1つを用いることも好ましい。
Figure JPOXMLDOC01-appb-C000243
As the eliminating dopant, it is also preferable to use at least one compound represented by the following formulas (ED1), (ED1') and (ED2).
Figure JPOXMLDOC01-appb-C000243
(式(ED1)中、
 R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)であり、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R、R~RおよびR~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)で置換されていてもよく、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 Xは、>Oまたは>N-Rであり、前記>N-RのRおよびR13はアリール、ヘテロアリールまたはアルキルであり、これらはアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 ただし、Xがアミノ基のときにRがアミノ基になることはなく、
そして、
 式(ED1)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000244
(In formula (ED1),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 9 , R 10 and R 11 are independently hydrogen, aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, respectively. Aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group), which may be further substituted with aryl, heteroaryl or alkyl, and R 1 Adjacent groups of ~ R 3 , R 4 to R 6 and R 9 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring. The rings are substituted with aryl, heteroaryl, diallylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group). Also, these may be further substituted with aryl, heteroaryl or alkyl,
X is> O or> N-R, and R and R 13 of said> N-R are aryl, heteroaryl or alkyl, which may be substituted with aryl, heteroaryl or alkyl.
However, when X is an amino group, R 2 does not become an amino group,
And
At least one hydrogen in the compound and structure represented by the formula (ED1) may be substituted with cyano, halogen or deuterium. )
Figure JPOXMLDOC01-appb-C000244
(式(ED1‘)中、
 R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)であり、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R、R~R、R~R10およびR11~R14のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環はアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)で置換されていてもよく、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 Xは、>Oまたは>N-Rであり、前記>N-RのRはアリール、ヘテロアリールまたはアルキルであり、これらはアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 Lは、単結合、>CR、>O、>Sおよび>N-Rであり、前記>CRおよび>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)であり、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
そして、
 式(ED1’)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
(In the formula (ED1'),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are independent hydrogen, respectively. Aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group), which are further aryl, hetero. may be substituted by aryl or alkyl and, R 1 ~ R 3, R 4 ~ R 7, a ring adjacent groups are bonded to one of R 8 ~ R 10 and R 11 ~ R 14, Aryl rings or heteroaryl rings may be formed with rings b, c or d, and the formed rings are aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl ( The two aryls may be substituted with a single bond or a linking group), and these may be further substituted with aryl, heteroaryl or alkyl.
X is> O or> N-R, said R of> N-R is aryl, heteroaryl or alkyl, which may be substituted with aryl, heteroaryl or alkyl.
L is a single bond,> CR 2 ,>O,> S and> N-R, and R in the above> CR 2 and> N-R are independently hydrogen, aryl, heteroaryl, and diarylamino. , Alkoxy, alkoxy, aryloxy, or diallylboryl (two aryls may be attached via a single bond or a linking group), which may be further substituted with aryl, heteroaryl or alkyl. ,
And
At least one hydrogen in the compound and structure represented by the formula (ED1') may be substituted with cyano, halogen or deuterium. )
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000245
(式(ED2)中、
 R、R、R、R、R、R、R、R、R、R10、R11、R12、R13およびR14は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、ヘテロアリールオキシ、アリールチオ、ヘテロアリールチオまたはアルキル置換シリルで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 X、X、XおよびXは、それぞれ独立して、>O、>N-Rまたは>CRであり、前記>N-RのRおよび>CRのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルであり、また、前記>N-RのRおよび>CRのRは、-O-、-S-、-C(-R)-または単結合により前記a環、b環、c環およびd環の少なくとも1つと結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキルであり、
 ただし、X、X、X、およびXのうち>Oであるのは2つ以下であり、
そして、
 式(ED2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
(In formula (ED2),
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are independent hydrogen, respectively. Aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, diarylboryl (two aryls may be attached via a single bond or a linking group). , Heteroaryloxy, arylthio, heteroarylthio or alkyl-substituted silyls, wherein at least one hydrogen in these may be substituted with aryl, heteroaryl or alkyl and also R 5 to R 7 and R 10 to. Adjacent groups of R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with a b ring or a d ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, or diaryl. Amino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, diarylboryl (two aryls may be attached via a single bond or a linking group), heteroaryloxy, arylthio , Heteroarylthio or alkyl-substituted silyls, at least one hydrogen in these may be substituted with aryl, heteroaryl or alkyl.
X 1 , X 2 , X 3 and X 4 are independently>O,> NR or> CR 2 , and the R of> NR and the R of> CR 2 have 6 carbon atoms. It is an aryl of -12, a heteroaryl having 2 to 15 carbon atoms, or an alkyl having 1 to 6 carbon atoms, and the R of> N-R and the R of> CR 2 are -O-, -S-,-. It may be bonded to at least one of the a ring, b ring, c ring and d ring by C (-R) 2- or a single bond, and R of the -C (-R) 2- is hydrogen or carbon number. It is an alkyl of 1 to 6 and
However, of X 1 , X 2 , X 3 , and X 4 ,> O is 2 or less.
And
At least one hydrogen in the compound represented by the formula (ED2) may be substituted with cyano, halogen or deuterium. )
より具体的には、下記式(ED11)~(ED19)、(ED21)~(ED27)、(ED211)、(ED212)、(ED221)~(ED223)、(ED231)、(ED241)、(ED242)、(ED261)および(ED271)で表される構造を含む化合物を挙げることができる。 More specifically, the following formulas (ED11) to (ED19), (ED21) to (ED27), (ED211), (ED212), (ED221) to (ED223), (ED231), (ED241), (ED242) ), (ED261) and (ED271) can be mentioned.
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000248
 式(ED11)~(ED19)、(ED21)~(ED27)、(ED211)、(ED212)、(ED221)~(ED223)、(ED231)、(ED241)、(ED242)、(ED261)および(ED271)で表される構造における少なくとも1つの水素は、それぞれ独立して、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)で置換されてもよく、これらはさらにアリール、ヘテロアリールまたはアルキルで置換されていてもよい。アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシおよびジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)の好ましい範囲と具体例については、式(1)のR~R11における対応する記載を参照することができる。
 また、付加成分となる蛍光体は、下記の置換基群Bから選択される少なくとも1つの置換基を有する化合物であることが好ましく、式(ED11)~(ED19)、(ED21)~(ED27)、(ED211)、(ED212)、(ED221)~(ED223)、(ED231)、(ED241)、(ED242)、(ED261)または(ED271)で表される構造を有し、且つ、その構造におけるベンゼン環(縮合環を構成しているベンゼン環も含む)に、置換基群Bから選択される少なくとも1つの構造が結合した構造を有する化合物であることがより好ましい。なお、下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「tOct」はt-オクチル、*は結合位置を表す。
Equations (ED11) to (ED19), (ED21) to (ED27), (ED211), (ED212), (ED221) to (ED223), (ED231), (ED241), (ED242), (ED261) and (ED21) At least one hydrogen in the structure represented by ED271) is independently aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diarylboryl (two aryls are single bond or linking groups). They may be substituted with (may be attached via), and these may be further substituted with aryl, heteroaryl or alkyl. For preferred ranges and specific examples of aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, aryloxy and diarylboryl (two aryls may be attached via a single bond or a linking group). The corresponding description in R 1 to R 11 of (1) can be referred to.
The phosphor as an additional component is preferably a compound having at least one substituent selected from the following substituent group B, and formulas (ED11) to (ED19) and (ED21) to (ED27). , (ED211), (ED212), (ED221) to (ED223), (ED231), (ED241), (ED242), (ED261) or (ED271), and in that structure It is more preferable that the compound has a structure in which at least one structure selected from the substituent group B is bonded to the benzene ring (including the benzene ring constituting the condensed ring). In the following structural formula, "Me" represents methyl, "tBu" represents t-butyl, "tAm" represents t-amyl, "tOct" represents t-octyl, and * represents the binding position.
置換基群B:
Figure JPOXMLDOC01-appb-C000249
Substituent group B:
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000253
2-1-2-3.アシスティングドーパント(熱活性型遅延蛍光体)
 本発明の化合物をTAF素子におけるエミッティングドーパント(ED)として用いる場合に用いることができるアシスティングドーパント(熱活性型遅延蛍光体:TADF化合物)は、ドナーと呼ばれる電子供与性の置換基とアクセプターと呼ばれる電子受容性の置換基を用いて分子内のHOMO(Highest Occupied Molecular Orbital)とLUMO(Lowest Unoccupied Molecular Orbital)を局在化させて、効率的な逆項間交差(reverse intersystem crossing)が起きるようにデザインされた、ドナー-アクセプター型TADF化合物(D-A型TADF化合物)であることが好ましい。
 ここで、本明細書中において「電子供与性の置換基」(ドナー)とは、TADF化合物分子中でHOMO軌道が局在する置換基および部分構造のことを意味し、「電子受容性の置換基」(アクセプター)とは、TADF化合物分子中でLUMO軌道が局在する置換基および部分構造のことを意味することとする。
 一般的に、ドナーやアクセプターを用いたTADF化合物は、構造に起因してスピン軌道結合(SOC: Spin Orbit Coupling)が大きく、かつ、HOMOとLUMOの交換相互作用が小さくΔE(ST)が小さいために、非常に速い逆項間交差速度が得られる。一方、ドナーやアクセプターを用いたTADF化合物は、励起状態での構造緩和が大きくなり(ある分子においては、基底状態と励起状態では安定構造が異なるため、外部刺激により基底状態から励起状態への変換が起きると、その後、励起状態における安定構造へと構造が変化する)、幅広な発光スペクトルを与えるため、発光材料として使うと色純度を低下させる可能性がある。
2-1-2-3. Assisting Dopant (heat-activated delayed phosphor)
The assisting dopant (thermoactive delayed phosphor: TADF compound) that can be used when the compound of the present invention is used as an emtituting dopant (ED) in a TAF element includes an electron-donating substituent called a donor and an acceptor. Localize HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) in the molecule using so-called electron-accepting substituents so that efficient reverse intersystem crossing occurs. It is preferably a donor-acceptor type TADF compound (DA type TADF compound) designed in.
Here, the term "electron-donating substituent" (donor) as used herein means a substituent and a partial structure in which the HOMO orbital is localized in the TADF compound molecule, and means "electron-accepting substituent". The term "group" (acceptor) means a substituent and a partial structure in which the LUMO orbital is localized in the TADF compound molecule.
In general, TADF compounds using donors and acceptors have a large spin-orbit coupling (SOC) due to their structure, a small exchange interaction between HOMO and LUMO, and a small ΔE (ST). In addition, a very fast intersystem crossing speed is obtained. On the other hand, TADF compounds using donors and acceptors have greater structural relaxation in the excited state (for some molecules, the stable structure differs between the ground state and the excited state, so conversion from the ground state to the excited state by an external stimulus is performed. After that, the structure changes to a stable structure in the excited state), and since it gives a wide emission spectrum, it may reduce the color purity when used as a light emitting material.
 本発明の化合物をTAF素子におけるEDとして用いる場合に用いることができるアシスティングドーパントとして、例えばドナーおよびアクセプターが直接またはスペーサーを介して結合している化合物を用いることができる。熱活性型遅延蛍光体に用いられるドナー性およびアクセプター性の構造としては、例えば、Chemistry of Materials, 2017, 29, 1946-1963に記載の構造を用いることができる。ドナー性の構造としては、カルバゾール、ジメチルカルバゾール、ジ-tert-ブチルカルバゾール、ジメトキシカルバゾール、テトラメチルカルバゾール、ベンゾフルオロカルバソール、ベンゾチエノカルバゾール、フェニルジヒドロインドロカルバゾール、フェニルビカルバゾール、ビカルバゾール、ターカルバゾール、ジフェニルカルバゾリルアミン、テトラフェニルカルバゾリルジアミン、フェノキサジン、ジヒドロフェナジン、フェノチアジン、ジメチルジヒドロアクリジン、ジフェニルアミン、ビス(tert-ブチル)フェニルアミン、(ジフェニルアミノ)フェニルジフェニルベンゼンジアミン、ジメチルテトラフェニルジヒドロアクリジンジアミン、テトラメチル-ジヒドローインデノアクリジンおよびジフェニルージヒドロジベンゾアザシリンなどが挙げられる。アクセプター性の構造としては、スルホニルジベンゼン、ベンゾフェノン、フェニレンビス(フェニルメタノン)、ベンゾニトリル、イソニコチノニトリル、フタロニトリル、イソフタロニトリル、パラフタロニトリル、ベンゼントリカルボニトリル、トリアゾール、オキサゾール、チアジアゾール、ベンゾチアゾール、ベンゾビス(チアゾール)、ベンゾオキサゾール、ベンゾビス(オキサゾール)、キノリン、ベンゾイミダゾール、ジベンゾキノキサリン、ヘプタアザフェナレン、チオキサントンジオキシド、ジメチルアントラセノン、アントラセンジオン、シクロヘプタビピリジン、フルオレンジカルボニトリル、トリフェニルトリアジン、ピラジンジカルボニトリル、ピリミジン、フェニルピリミジン、メチルピリミジン、ピリジンジカルボニトリル、ジベンゾキノキサリンジカルボニトリル、ビス(フェニルスルホニル)ベンゼン、ジメチルチオキサンテンジオキド、チアンスレンテトラオキシドおよびトリス(ジメチルフェニル)ボランが挙げられる。特に、本発明の熱活性型遅延蛍光を有する化合物は、部分構造として、カルバゾール、フェノキサジン、アクリジン、トリアジン、ピリミジン、ピラジン、チオキサンテン、ベンゾニトリル、フタロニトリル、イソフタロニトリル、ジフェニルスルホン、トリアゾール、オキサジアゾール、チアジアゾールおよびベンゾフェノンから選択される少なくとも一つを有する化合物であることが好ましい。 As an assisting dopant that can be used when the compound of the present invention is used as an ED in a TAF device, for example, a compound in which a donor and an acceptor are directly bonded or via a spacer can be used. As the donor-like and acceptor-like structures used in the heat-activated delayed phosphor, for example, the structures described in Chemistry of Materials, 2017, 29, 1946-1963 can be used. As donor structures, carbazole, dimethylcarbazole, di-tert-butylcarbazole, dimethoxycarbazole, tetramethylcarbazole, benzofluorocarbazole, benzothienocarbazole, phenyldihydroindrocarbazole, phenylbicarbazole, bicarbazole, turcarbazole , Diphenylcarbazolylamine, tetraphenylcarbazolyldiamine, phenoxazine, dihydrophenazine, phenothiazine, dimethyldihydroacrine, diphenylamine, bis (tert-butyl) phenylamine, (diphenylamino) phenyldiphenylbenzenediamine, dimethyltetraphenyldihydroaclydin Examples include diamine, tetramethyl-dihydro-indenoaclydin and diphenyl-dihydrodibenzoazacillin. Acceptable structures include sulfonyldibenzene, benzophenone, phenylenebis (phenylmethanone), benzonitrile, isonicotinonitrile, phthalonitrile, isophthalonitrile, paraphthalonitrile, benzenetricarbonitrile, triazole, oxazole, and thiaxazole. , Benzenethiazole, benzobis (thiazole), benzoxazole, benzobis (oxazole), quinoline, benzoimidazole, dibenzoquinoxaline, heptaazaphenalene, thioxanthonedioxide, dimethylanthracenone, anthracendione, cycloheptabipyridine, full orange carbonitrile, Triphenyltriazine, pyrazinedicarbonitrile, pyrimidine, phenylpyrimidine, methylpyrimidine, pyridinedicarbonitrile, dibenzoquinoxaline dicarbonitrile, bis (phenylsulfonyl) benzene, dimethylthioxanthene dioxide, thianslentetraoxide and tris (dimethylphenyl) ) Benzene is mentioned. In particular, the compound having the thermoactive delayed fluorescence of the present invention has, as a partial structure, carbazole, phenoxazine, aclysine, triazine, pyrimidine, pyrazine, thioxanthene, benzonitrile, phthalonitrile, isophthalonitrile, diphenylsulfone, triazole, It is preferably a compound having at least one selected from oxadiazole, thiaziazole and benzophenone.
 アシスティングドーパントとして用いる化合物は、熱活性型遅延蛍光体であって、その発光スペクトルがエミッティングドーパントの吸収ピークと少なくとも一部重なる化合物であることが好ましい。以下において、本発明の発光層のアシスティングドーパントとして用いることができる化合物を例示する。ただし、本発明においてアシスティングドーパントとして用いることができる化合物は、以下の例示化合物によって限定的に解釈されることはなく、下記式において、Meはメチルを表し、t-Buはt-ブチルを表し、Phはフェニルを表し、波線は結合位置を表す。  The compound used as the assisting dopant is preferably a thermally active delayed phosphor, and the emission spectrum thereof preferably overlaps at least a part of the absorption peak of the emitting dopant. Hereinafter, compounds that can be used as the assisting dopant for the light emitting layer of the present invention will be exemplified. However, the compound that can be used as an assisting dopant in the present invention is not limitedly interpreted by the following exemplified compounds, and in the following formula, Me represents methyl and t-Bu represents t-butyl. , Ph represents phenyl, and wavy lines represent bonding positions.
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000272
 さらに、熱活性型遅延蛍光体として、下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物も用いることができる。 Further, as the heat-activated delayed phosphor, a compound represented by any of the following formulas (AD1), (AD2) and (AD3) can also be used.
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000273
 式(AD1)、(AD2)および(AD3)中、
 Mは、それぞれ独立して、単結合、-O-、>N-Arまたは>CArであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、単結合、-O-または>N-Arである。Jはドナー性の部分構造とアクセプター性の部分構造を分けるスペーサー構造であり、それぞれ独立して、炭素数6~18のアリーレンであり、ドナー性の部分構造とアクセプター性の部分構造から染み出す共役の大きさの観点から、炭素数6~12のアリーレンが好ましい。より具体的には、フェニレン、メチルフェニレンおよびジメチルフェニレンが挙げられる。Qは、それぞれ独立して、=C(-H)-または=N-であり、形成する部分構造のLUMOの浅さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、=N-である。Arは、それぞれ独立して、水素、炭素数6~24のアリール、炭素数2~24のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~18のシクロアルキルであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、水素、炭素数6~12のアリール、炭素数2~14のヘテロアリール、炭素数1~4のアルキルまたは炭素数6~10のシクロアルキルであり、より好ましくは、水素、フェニル、トリル、キシリル、メシチル、ビフェニル、ピリジル、ビピリジル、トリアジル、カルバゾリル、ジメチルカルバゾリル、ジーtert-ブチルカルバゾリル、ベンゾイミダゾールまたはフェニルベンゾイミダゾールであり、さらに好ましくは、水素、フェニルまたはカルバゾリルである。mは、1または2である。nは、2~(6-m)の整数であり、立体障害の観点から、好ましくは、4~(6-m)の整数である。さらに、上記各式で表される化合物における少なくとも1つの水素は、ハロゲンまたは重水素で置換されていてもよい。
In formulas (AD1), (AD2) and (AD3),
M are independently single-bonded, -O-,> N-Ar or> CAR 2 , and are of the HOMO depth and excited singlet energy level and excited triplet energy level of the substructure to be formed. From a height standpoint, it is preferably single bond, —O— or> N—Ar. J is a spacer structure that separates the donor substructure and the acceptor substructure, each of which is an arylene having 6 to 18 carbon atoms, and is a conjugate that exudes from the donor substructure and the acceptor substructure. From the viewpoint of the size of the acceptor, an acceptor having 6 to 12 carbon atoms is preferable. More specifically, phenylene, methylphenylene and dimethylphenylene can be mentioned. Q is independently = C (-H)-or = N-, and is a viewpoint of the shallowness of LUMO and the height of the excited singlet energy level and the excited triplet energy level of the formed partial structure. Therefore, preferably = N−. Ar is a partial structure formed independently of hydrogen, an aryl having 6 to 24 carbon atoms, a heteroaryl having 2 to 24 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 18 carbon atoms. From the viewpoint of the depth of HOMO and the height of the excited single-term energy level and the excited triple-term energy level, hydrogen, an aryl having 6 to 12 carbon atoms, a heteroaryl having 2 to 14 carbon atoms, and a carbon number of carbon atoms are preferable. It is an alkyl of 1 to 4 or a cycloalkyl of 6 to 10 carbon atoms, more preferably hydrogen, phenyl, tolyl, xylyl, mesityl, biphenyl, pyridyl, bipyridyl, triazil, carbazolyl, dimethylcarbazolyl, di-tert-butyl. Carbazolyl, benzoimidazole or phenylbenzoimidazole, more preferably hydrogen, phenyl or carbazolyl. m is 1 or 2. n is an integer of 2 to (6-m), and is preferably an integer of 4 to (6-m) from the viewpoint of steric hindrance. Further, at least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
 本発明の発光層の第2成分として用いる化合物は、より具体的に言えば、4CzBN、4CzBN-Ph、5CzBN、3Cz2DPhCzBN、4CzIPN、2PXZーTAZ、Cz-TRZ3、BDPCC-TPTA、MA-TA、PA-TA、FA-TA、PXZ-TRZ、DMAC-TRZ、BCzT、DCzTrz、DDCzTRz、spiroAC-TRZ、Ac-HPM、Ac-PPM、Ac-MPM、TCzTrz、TmCzTrzおよびDCzmCzTrzであることが好ましい。 More specifically, the compound used as the second component of the light emitting layer of the present invention is 4CzBN, 4CzBN-Ph, 5CzBN, 3Cz2DPhCzBN, 4CzIPN, 2PXZ-TAZ, Cz-TRZ3, BDPCC-TPTA, MA-TA, PA. -TA, FA-TA, PXZ-TRZ, DMAC-TRZ, BCzT, DCzTrz, DDCzTRz, spiroAC-TRZ, Ac-HPM, Ac-PPM, Ac-MPM, TCzTrz, TmCzTrz and DCzmCzTrz are preferable.
2-1-3.有機電界発光素子における電子注入層、電子輸送層
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合することにより形成される。電子輸送層106および電子注入層107は、電子輸送・注入材料と高分子結着剤との混合物により形成してもよい。
2-1-3. The electron injection layer and the electron transport layer in the organic electroluminescent device The electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106. The electron transport layer 106 plays a role of efficiently transporting the electrons injected from the cathode 108 or the electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105. The electron transport layer 106 and the electron injection layer 107 are formed by laminating and mixing one or more kinds of electron transport / injection materials, respectively. The electron transport layer 106 and the electron injection layer 107 may be formed by a mixture of the electron transport / injection material and the polymer binder.
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。 The electron injection / transport layer is a layer in which electrons are injected from the cathode and is in charge of further transporting electrons. It is desirable that the electron injection efficiency is high and the injected electrons are efficiently transported. For that purpose, it is preferable that the substance has a high electron affinity, a high electron mobility, excellent stability, and is less likely to generate trap impurities during production and use. However, when considering the transport balance between holes and electrons, the electron transport capacity is so high when it mainly plays a role of efficiently blocking the holes from the anode from flowing to the cathode side without recombination. Even if it is not high, it has the same effect of improving luminous efficiency as a material having high electron transport capacity. Therefore, the electron injection / transport layer in the present embodiment may also include the function of a layer capable of efficiently blocking the movement of holes.
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。 As the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107, it is used as a compound conventionally used as an electron transfer compound in a photoconductive material, an electron injection layer and an electron transport layer of an organic EL element. It can be arbitrarily selected and used from the known compounds known.
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環もしくは複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、ホスフィンオキサイド誘導体、アリールニトリル誘導体およびインドール誘導体などが挙げられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 The material used for the electron transport layer or the electron injection layer is a compound composed of an aromatic ring or a complex aromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus. It is preferable to contain at least one selected from a pyrrole derivative, a condensed ring derivative thereof, and a metal complex having an electron-accepting nitrogen. Specifically, fused ring-based aromatic ring derivatives such as naphthalene and anthracene, styryl-based aromatic ring derivatives typified by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, and naphthalimide derivatives. , Kinone derivatives such as anthraquinone and diphenoquinone, phosphine oxide derivatives, arylnitrile derivatives and indole derivatives. Examples of the metal complex having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes. These materials may be used alone, but may be mixed with different materials.
 また、他の電子伝達化合物の具体例として、ボラン誘導体、ピリジン誘導体、ナフタレン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、ピリミジン誘導体、アリールニトリル誘導体、インドール誘導体、ホスフィンオキサイド誘導体、ビススチリル誘導体、シロール誘導体およびアゾリン誘導体などが挙げられる。 Specific examples of other electron transfer compounds include borane derivatives, pyridine derivatives, naphthalene derivatives, fluorantene derivatives, BO-based derivatives, anthracene derivatives, benzofluorene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, and anthraquinone derivatives. , Diphenoquinone derivative, Diphenylquinone derivative, Perylene derivative, Oxaziazole derivative (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene, etc.), Thiophen derivative, Triazole derivative (N- Naphthyl-2,5-diphenyl-1,3,4-triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol-based metal complexes, quinoxalin derivatives, quinoxalin derivative polymers, benzazole compounds, gallium complexes, pyrazole derivatives, Perfluoroylated phenylene derivative, triazine derivative, pyrazine derivative, benzoquinoline derivative (2,2'-bis (benzo [h] quinoline-2-yl) -9,9'-spirobifluorene, etc.), imidazole pyridine derivative, benzo Imidazole derivatives (tris (N-phenylbenzoimidazole-2-yl) benzene, etc.), benzoxazole derivatives, thiazole derivatives, benzothiazole derivatives, quinoline derivatives, oligopyridine derivatives such as telpyridine, bipyridine derivatives, telpyridine derivatives (1,3- Bis (4'-(2,2': 6'2 "-terpyridinyl)) benzene, etc.), naphthylidine derivatives (bis (1-naphthyl) -4- (1,8-naphthylidine-2-yl) phenylphosphine oxide, etc." ), Ardazine derivative, pyrimidine derivative, arylnitrile derivative, indole derivative, phosphine oxide derivative, bisstyryl derivative, silol derivative, azoline derivative and the like.
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。 Further, a metal complex having electron-accepting nitrogen can also be used. For example, hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes and benzoquinoline metal complexes can be used. Can be mentioned.
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 The above-mentioned materials can be used alone, but they may be mixed with different materials.
 上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。 Among the above-mentioned materials, borane derivatives, pyridine derivatives, fluorantene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, arylnitrile derivatives, triazine derivatives, benzoimidazole derivatives, phenanthroline derivatives, and quinolinol derivatives Metal derivatives are preferred.
<ボラン誘導体>
 ボラン誘導体は、例えば下記式(ETM-1)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000274
<Borane derivative>
The borane derivative is, for example, a compound represented by the following formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
Figure JPOXMLDOC01-appb-C000274
 式(ETM-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。 In formula (ETM-1), R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, respectively. At least one of the rings, or cyanos, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively. , X are optionally substituted arylene, Y is optionally substituted aryl having 16 or less carbon atoms, substituted boron, or optionally substituted carbazolyl, and n. Are independently integers from 0 to 3. In addition, examples of the substituent in the case of "may be substituted" or "substituted" include aryl, heteroaryl, alkyl and cycloalkyl.
 式(ETM-1)で表される化合物の中でも、下記式(ETM-1-1)で表される化合物や下記式(ETM-1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000275
Among the compounds represented by the formula (ETM-1), the compound represented by the following formula (ETM-1-1) and the compound represented by the following formula (ETM-1-2) are preferable.
Figure JPOXMLDOC01-appb-C000275
 式(ETM-1-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。 In formula (ETM-1-1), R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen, respectively. At least one of the containing heterocycles, or cyano, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively. R 21 and R 22 are independently of hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano. At least one, X 1 is an arylene having 20 or less carbon atoms which may be substituted, n is an integer of 0 to 3 independently, and m is 0 to 4 independently. Is an integer of. In addition, examples of the substituent in the case of "may be substituted" or "substituted" include aryl, heteroaryl, alkyl and cycloalkyl.
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000276
 式(ETM-1-2)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。 In formula (ETM-1-2), R 11 and R 12 are independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen, respectively. At least one of the contained heterocycles, or cyano, R 13 to R 16 are independently optionally substituted alkyl, optionally substituted cycloalkyl, or optionally substituted aryl, respectively. X 1 is an arylene having 20 or less carbon atoms which may be substituted, and n is an integer of 0 to 3 independently. In addition, examples of the substituent in the case of "may be substituted" or "substituted" include aryl, heteroaryl, alkyl and cycloalkyl.
 Xの具体的な例としては、下記式(X-1)~式(X-9)のいずれかで表される2価の基があげられる。
Figure JPOXMLDOC01-appb-C000277
(各式中、Rは、それぞれ独立してアルキル、シクロアルキルまたは置換されていてもよいフェニルであり、*は結合位置を表す。)
Specific examples of X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9).
Figure JPOXMLDOC01-appb-C000277
(In each formula, Ra is an independently alkyl, cycloalkyl or optionally substituted phenyl, and * represents the bond position.)
 このボラン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000278
Specific examples of this borane derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000278
 このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This borane derivative can be produced by using a known raw material and a known synthesis method.
<ピリジン誘導体>
 ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
<Pyridine derivative>
The pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by the formula (ETM-2-1) or the formula (ETM-2-2).
Figure JPOXMLDOC01-appb-C000279
Figure JPOXMLDOC01-appb-C000279
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
 式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。 In the formula (ETM-2-1), R 11 to R 18 are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), and cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms). ) Or aryl (preferably aryl with 6 to 30 carbon atoms).
 式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。 In the formula (ETM-2-2), R 11 and R 12 are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), and cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms). ) Or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may be bonded to form a ring.
 各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれか(式中の*は、結合位置を表す。)であり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。 In each formula, the "pyridine-based substituent" is any of the following formulas (Py-1) to (Py-15) (* in the formula represents a bond position), and the pyridine-based substituent is Each may be independently substituted with an alkyl having 1 to 4 carbon atoms. Further, the pyridine-based substituent may be bonded to φ, anthracene ring or fluorene ring in each formula via a phenylene group or a naphthylene group.
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000280
 ピリジン系置換基は、上記式(Py-1)~式(Py-15)のいずれかであるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれか(式中の*は、結合位置を表す。)であることが好ましい。 The pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among these, any of the following formulas (Py-21) to (Py-44) (formula). * In the inside represents the bonding position.).
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000281
 各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、上記式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。 At least one hydrogen in each pyridine derivative may be substituted with deuterium, and of the two "pyridine-based substituents" in the above formula (ETM-2-1) and formula (ETM-2-2). One may be replaced with aryl.
 R11~R18における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。 The "alkyl" in R 11 to R 18 may be either a straight chain or a branched chain, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched chain alkyl having 3 to 24 carbon atoms. A preferred "alkyl" is an alkyl having 1 to 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms). A more preferable "alkyl" is an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms). A more preferable "alkyl" is an alkyl having 1 to 6 carbon atoms (branched chain alkyl having 3 to 6 carbon atoms). A particularly preferable "alkyl" is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms).
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。 Specific "alkyl" includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, Examples thereof include n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl and n-eicocil.
 ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。 As the alkyl having 1 to 4 carbon atoms to be substituted with the pyridine-based substituent, the above description of the alkyl can be cited.
 R11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
Examples of the "cycloalkyl" in R 11 to R 18 include cycloalkyl having 3 to 12 carbon atoms. A preferred "cycloalkyl" is a cycloalkyl having 3 to 10 carbon atoms. A more preferable "cycloalkyl" is a cycloalkyl having 3 to 8 carbon atoms. A more preferable "cycloalkyl" is a cycloalkyl having 3 to 6 carbon atoms.
Specific examples of the "cycloalkyl" include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
 R11~R18における「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As the "aryl" in R 11 to R 18 , a preferable aryl is an aryl having 6 to 30 carbon atoms, a more preferable aryl is an aryl having 6 to 18 carbon atoms, and more preferably an aryl having 6 to 14 carbon atoms. Yes, and particularly preferably an aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1-,2-)ナフチル、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of the "aryl having 6 to 30 carbon atoms" include phenyl, which is a monocyclic aryl, (1-, 2-) naphthyl, which is a fused dicyclic aryl, and acenaphthylene-, which is a condensed tricyclic aryl. 1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1-, 2-) yl, (1-, 2) -, 3-, 4-, 9-) phenanthryl, triphenylene- (1-, 2-) yl, which is a fused tetracyclic aryl, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-) , 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like. ..
 好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどが挙げられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルが挙げられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルが挙げられる。 Preferred "aryls having 6 to 30 carbon atoms" include phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl, and more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, and particularly preferably phenyl, 1 Includes -naphthyl or 2-naphthyl.
 上記式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 R 11 and R 12 in the above formula (ETM-2-2) may be combined to form a ring, and as a result, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, etc. are included in the 5-membered ring of the fluorene skeleton. Cyclohexane, fluorene, indene and the like may be spiro-bonded.
 このピリジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000282
Specific examples of this pyridine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000282
 このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This pyridine derivative can be produced by using a known raw material and a known synthesis method.
<フルオランテン誘導体>
 フルオランテン誘導体は、例えば下記式(ETM-3)で表される化合物であり、詳細には国際公開第2010/134352号に開示されている。
Figure JPOXMLDOC01-appb-C000283
<Fluoranthene derivative>
The fluoranthene derivative is, for example, a compound represented by the following formula (ETM-3), and is disclosed in detail in International Publication No. 2010/134352.
Figure JPOXMLDOC01-appb-C000283
 式(ETM-3)中、X12~X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。 In formula (ETM-3), X 12 to X 21 are hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted hetero. Represents aryl. Here, examples of the substituent when substituted include aryl, heteroaryl, alkyl, cycloalkyl and the like.
 このフルオランテン誘導体の具体例としては、例えば以下の化合物があげられる。以下式中、Meはメチルを表す。
Figure JPOXMLDOC01-appb-C000284
Specific examples of this fluoranthene derivative include the following compounds. In the following formula, Me represents methyl.
Figure JPOXMLDOC01-appb-C000284
<BO系誘導体>
 BO系誘導体は、例えば下記式(ETM-4)で表される多環芳香族化合物、または下記式(ETM-4)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000285
<BO derivative>
The BO derivative is, for example, a multimer of a polycyclic aromatic compound represented by the following formula (ETM-4) or a polycyclic aromatic compound having a plurality of structures represented by the following formula (ETM-4).
Figure JPOXMLDOC01-appb-C000285
 R61~R71は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)であり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 R 61 to R 71 are independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, or diallylboryl (two aryls). It may be attached via a single bond or a linking group), and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
 また、R61~R71のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、またはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 Further, adjacent groups of R 61 to R 71 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring. Aryl, Heteroaryl, Diarylamino, Diheteroarylamino, Arylheteroarylamino, Alkyl, Cycloalkyl, Aryl, Aryloxy, or Arylboryl (even if the two aryls are attached via a single bond or a linking group) It may be substituted with (may), and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
 また、式(ETM-4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。 Further, at least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
 式(ETM-4)における置換基や環形成の形態の説明については、式(1)または式(2)で表される多環芳香族化合物の説明を引用することができる。 For the explanation of the substituent and the form of ring formation in the formula (ETM-4), the description of the polycyclic aromatic compound represented by the formula (1) or the formula (2) can be cited.
 このBO系誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000286
Specific examples of this BO-based derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000286
 このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This BO-based derivative can be produced by using a known raw material and a known synthesis method.
<アントラセン誘導体>
 アントラセン誘導体の1つは、例えば下記式(ETM-5-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000287
<Anthracene derivative>
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
Figure JPOXMLDOC01-appb-C000287
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンであり、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールである。 Ar is independently divalent benzene or naphthalene, and R 1 to R 4 are independently hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or carbon number of carbon atoms. 6 to 20 aryls.
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンから適宜選択することができ、2つのArが異なっていても同じであってもよいが、アントラセン誘導体の合成の容易さの観点からは同じであることが好ましい。Arはピリジンと結合して、「Arおよびピリジンからなる部位」を形成しており、この部位は例えば下記式(Py-1)~式(Py-12)のいずれかで表される基としてアントラセンに結合している。下記の式中の*は、結合位置を表す。 Ar can be independently selected from divalent benzene or naphthalene, and the two Ars may be different or the same, but they are the same from the viewpoint of ease of synthesis of the anthracene derivative. Is preferable. Ar binds to pyridine to form a "site consisting of Ar and pyridine", and this site is anthracene as a group represented by any of the following formulas (Py-1) to (Py-12), for example. Is bound to. * In the formula below represents the bond position.
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000288
 これらの基の中でも、式(Py-1)~式(Py-9)のいずれかで表される基が好ましく、式(Py-1)~式(Py-6)のいずれかで表される基がより好ましい。アントラセンに結合する2つの「Arおよびピリジンからなる部位」は、その構造が同じであっても異なっていてもよいが、アントラセン誘導体の合成の容易さの観点からは同じ構造であることが好ましい。ただし、素子特性の観点からは、2つの「Arおよびピリジンからなる部位」の構造が同じであっても異なっていても好ましい。 Among these groups, the group represented by any of the formulas (Py-1) to (Py-9) is preferable, and the group is represented by any of the formulas (Py-1) to (Py-6). Groups are more preferred. The two "sites composed of Ar and pyridine" that bind to anthracene may have the same or different structures, but are preferably the same structure from the viewpoint of ease of synthesis of the anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the structures of the two "sites composed of Ar and pyridine" are the same or different.
 R~Rにおける炭素数1~6のアルキルについては直鎖および分岐鎖のいずれでもよい。すなわち、炭素数1~6の直鎖アルキルまたは炭素数3~6の分岐鎖アルキルである。より好ましくは、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、または2-エチルブチルなどがあげられ、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルが好ましく、メチル、エチル、またはt-ブチルがより好ましい。 The alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be either a straight chain or a branched chain. That is, it is a straight chain alkyl having 1 to 6 carbon atoms or a branched chain alkyl having 3 to 6 carbon atoms. More preferably, it is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms). Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, Examples thereof include 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl. , Methyl, ethyl, or t-butyl is more preferred.
 R~Rにおける炭素数3~6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。 Specific examples of cycloalkyl having 3 to 6 carbon atoms in R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl.
 R~Rにおける炭素数6~20のアリールについては、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。 As for the aryl having 6 to 20 carbon atoms in R 1 to R 4, the aryl having 6 to 16 carbon atoms is preferable, the aryl having 6 to 12 carbon atoms is more preferable, and the aryl having 6 to 10 carbon atoms is particularly preferable.
 「炭素数6~20のアリール」の具体例としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル(2,4,6-トリメチルフェニル)、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アントラセン-(1-,2-,9-)イル、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、テトラセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イルなどがあげられる。 Specific examples of "aryl having 6 to 20 carbon atoms" include phenyl, which is a monocyclic aryl, (o-, m-, p-) trill, and (2,3-,2,4-,2,5-). , 2,6-, 3,4-, 3,5-) xsilyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl, bicyclic aryl (2) -, 3-, 4-) Biphenylyl, fused bicyclic aryl (1-, 2-) naphthyl, tricyclic aryl terphenyl (m-terphenyl-2'-yl, m-terphenyl-4) '-Il, m-terphenyl-5'-il, o-terphenyl-3'-il, o-terphenyl-4'-il, p-terphenyl-2'-il, m-terphenyl-2 -Il, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p- Terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl), fused tricyclic aryl, anthracene- (1-, 2-, 9-) yl, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) il, phenalen- (1-, 2-) il, (1-, 2-) 2-, 3-, 4-, 9-) phenanthril, fused tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, tetracene- (1) Examples thereof include-, 2-, 5-) yl and perylene- (1-, 2-, 3-) yl, which is a condensed pentacyclic aryl.
 好ましい「炭素数6~20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1-ナフチル、2-ナフチルまたはm-テルフェニル-5’-イルであり、さらに好ましくは、フェニル、ビフェニリル、1-ナフチルまたは2-ナフチルであり、最も好ましくはフェニルである。 Preferred "aryl of 6-20 carbons" are phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5'-yl. More preferably, it is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, and most preferably phenyl.
 アントラセン誘導体の1つは、例えば下記式(ETM-5-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000289
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
Figure JPOXMLDOC01-appb-C000289
 Arは、それぞれ独立して、単結合、2価のベンゼン、ナフタレン、アントラセン、フルオレン、またはフェナレンである。 Ar 1 is independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
 Arは、それぞれ独立して、炭素数6~20のアリールであり、式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。 Ar 2 is an aryl having 6 to 20 carbon atoms independently, and the same explanation as “aryl having 6 to 20 carbon atoms” in the formula (ETM-5-1) can be quoted. Aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaftyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetrasenyl, perylenyl and the like.
 R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールであり、式(ETM-5-1)における説明を引用することができる。 R 1 to R 4 are independently hydrogen, an alkyl having 1 to 6 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms, and are represented by the formula (ETM-5-1). The explanation can be quoted.
 これらのアントラセン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000290
Specific examples of these anthracene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000290
 これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 These anthracene derivatives can be produced using known raw materials and known synthetic methods.
<ベンゾフルオレン誘導体>
 ベンゾフルオレン誘導体は、例えば下記式(ETM-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000291
<Benzofluorene derivative>
The benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
Figure JPOXMLDOC01-appb-C000291
 Arは、それぞれ独立して、炭素数6~20のアリールであり、式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。 Ar 1 is an aryl having 6 to 20 carbon atoms independently, and the same explanation as “aryl having 6 to 20 carbon atoms” in the formula (ETM-5-1) can be quoted. Aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaftyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetrasenyl, perylenyl and the like.
 Arは、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、2つのArは結合して環を形成していてもよい。 Ar 2 is independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably aryl having 6 to 30 carbon atoms). ), and the two Ar 2 may form a ring.
 Arにおける「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシルなどがあげられる。 The "alkyl" in Ar 2 may be either a straight chain or a branched chain, and examples thereof include a linear alkyl having 1 to 24 carbon atoms and a branched chain alkyl having 3 to 24 carbon atoms. A preferred "alkyl" is an alkyl having 1 to 18 carbon atoms (branched chain alkyl having 3 to 18 carbon atoms). A more preferable "alkyl" is an alkyl having 1 to 12 carbon atoms (branched chain alkyl having 3 to 12 carbon atoms). A more preferable "alkyl" is an alkyl having 1 to 6 carbon atoms (branched chain alkyl having 3 to 6 carbon atoms). A particularly preferable "alkyl" is an alkyl having 1 to 4 carbon atoms (branched chain alkyl having 3 to 4 carbon atoms). Specific "alkyl" includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like can be mentioned.
 Arにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。 Examples of the "cycloalkyl" in Ar 2 include cycloalkyl having 3 to 12 carbon atoms. A preferred "cycloalkyl" is a cycloalkyl having 3 to 10 carbon atoms. A more preferable "cycloalkyl" is a cycloalkyl having 3 to 8 carbon atoms. A more preferable "cycloalkyl" is a cycloalkyl having 3 to 6 carbon atoms. Specific examples of the "cycloalkyl" include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
 Arにおける「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As the "aryl" in Ar 2 , a preferable aryl is an aryl having 6 to 30 carbon atoms, a more preferable aryl is an aryl having 6 to 18 carbon atoms, and more preferably an aryl having 6 to 14 carbon atoms, particularly. It is preferably an aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどがあげられる。 Specific examples of the "aryl having 6 to 30 carbon atoms" include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentasenyl and the like.
 2つのArは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 Two Ar 2 may form a ring, as a result, the 5-membered ring of the fluorene skeleton, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene or indene are spiro-linked You may.
 このベンゾフルオレン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000292
Specific examples of this benzofluorene derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000292
 このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This benzofluorene derivative can be produced by using a known raw material and a known synthesis method.
<ホスフィンオキサイド誘導体>
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号および国際公開第2013/079678号にも記載されている。
Figure JPOXMLDOC01-appb-C000293
<Phosphine oxide derivative>
The phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). Details are also described in International Publication No. 2013/07927 and International Publication No. 2013/079678.
Figure JPOXMLDOC01-appb-C000293
 Rは、置換または無置換の、炭素数1~20のアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは、CN、置換または無置換の、炭素数1~20のアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
 RおよびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは酸素または硫黄であり、
 jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
R 5 is a substituted or unsubstituted alkyl of 1 to 20 carbon atoms, heteroaryl of aryl or 5 to 20 carbon atoms of 6 to 20 carbon atoms,
R 6 is CN, substituted or unsubstituted, alkyl having 1 to 20 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, heteroaryl having 5 to 20 carbon atoms, and 1 to 20 carbon atoms. 20 alkoxy or aryloxy with 6 to 20 carbon atoms,
R 7 and R 8 are independently substituted or unsubstituted aryls having 6 to 20 carbon atoms or heteroaryls having 5 to 20 carbon atoms, respectively.
R 9 is oxygen or sulfur
j is 0 or 1, k is 0 or 1, r is an integer of 0-4, and q is an integer of 1-3.
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000294
The phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
Figure JPOXMLDOC01-appb-C000294
 R~Rは、同じでも異なっていてもよく、水素、アルキル、シクロアルキル、アラルキル、アルケニル、シクロアルケニル、アルキニル、アルコキシ、アルキルチオ、アリールエーテル基、アリールチオエーテル基、アリール、複素環基、ハロゲン、シアノ、アルデヒド、カルボニル、カルボキシル、アミノ、ニトロ、シリル、および隣接置換基との間に形成される縮合環の中から選ばれる。 R 1 to R 3 may be the same or different, hydrogen, alkyl, cycloalkyl, aralkyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, arylether group, arylthioether group, aryl, heterocyclic group, halogen. , Cyano, aldehyde, carbonyl, carboxyl, amino, nitro, silyl, and fused rings formed between adjacent substituents.
 Arは、同じでも異なっていてもよく、アリーレンまたはヘテロアリーレ基であり、Arは、同じでも異なっていてもよく、アリールまたはヘテロアリールである。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。 Ar 1 may be the same or different and is an arylene or heteroaryl group, and Ar 2 may be the same or different and is an aryl or heteroaryl. However, at least one of Ar 1 and Ar 2 has a substituent or forms a fused ring with an adjacent substituent. n is an integer of 0 to 3, and when n is 0, the unsaturated structure portion does not exist, and when n is 3, R 1 does not exist.
 これらの置換基の内、アルキルとは、例えば、メチル、エチル、プロピル、ブチルなどの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル、アリール、複素環基などを挙げることができ、この点は、以下の記載にも共通する。また、アルキルの炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。 Among these substituents, alkyl means, for example, a saturated aliphatic hydrocarbon group such as methyl, ethyl, propyl, butyl, etc., which may be unsubstituted or substituted. The substituent when substituted is not particularly limited, and examples thereof include alkyl, aryl, and heterocyclic groups, and this point is also common to the following description. The number of carbon atoms of the alkyl is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
 また、シクロアルキルとは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル部分の炭素数は特に限定されないが、通常、3~20の範囲である。 Further, the cycloalkyl means, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may be substituted or substituted. The number of carbon atoms in the alkyl moiety is not particularly limited, but is usually in the range of 3 to 20.
 また、アラルキルとは、例えば、ベンジル、フェニルエチルなどの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。 Further, aralkyl refers to an aromatic hydrocarbon group mediated by an aliphatic hydrocarbon such as benzyl or phenylethyl, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be substituted or substituted. Absent. The carbon number of the aliphatic portion is not particularly limited, but is usually in the range of 1 to 20.
 また、アルケニルとは、例えば、ビニル、アリル、ブタジエニルなどの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニルの炭素数は特に限定されないが、通常、2~20の範囲である。 Further, the alkenyl indicates an unsaturated aliphatic hydrocarbon group containing a double bond such as vinyl, allyl, butadienyl, etc., which may be substituted or substituted. The carbon number of the alkenyl is not particularly limited, but is usually in the range of 2 to 20.
 また、シクロアルケニルとは、例えば、シクロペンテニル、シクロペンタジエニル、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。 Further, the cycloalkenyl refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl, a cyclopentadienyl, or a cyclohexenyl group, which may be unsubstituted or substituted. ..
 また、アルキニルとは、例えば、アセチレニルなどの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニルの炭素数は特に限定されないが、通常、2~20の範囲である。 Further, alkynyl indicates an unsaturated aliphatic hydrocarbon group containing a triple bond such as acetylenyl, which may be unsubstituted or substituted. The carbon number of alkynyl is not particularly limited, but is usually in the range of 2 to 20.
 また、アルコキシとは、例えば、メトキシなどのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシの炭素数は特に限定されないが、通常、1~20の範囲である。 Further, the alkoxy indicates an aliphatic hydrocarbon group via an ether bond such as methoxy, and the aliphatic hydrocarbon group may be substituted or substituted. The number of carbon atoms of the alkoxy is not particularly limited, but is usually in the range of 1 to 20.
 また、アルキルチオとは、アルコキシのエーテル結合の酸素原子が硫黄原子に置換された基である。 Alkoxythio is a group in which the oxygen atom of the ether bond of alkoxy is replaced with a sulfur atom.
 また、アリールエーテル基とは、例えば、フェノキシなどのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6~40の範囲である。 Further, the aryl ether group indicates, for example, an aromatic hydrocarbon group via an ether bond such as phenoxy, and the aromatic hydrocarbon group may be substituted or substituted. The number of carbon atoms of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
 また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。 Further, the arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is replaced with a sulfur atom.
 また、アリールとは、例えば、フェニル、ナフチル、ビフェニリル、フェナントリル、テルフェニリル、ピレニルなどの芳香族炭化水素基を示す。アリールは、無置換でも置換されていてもかまわない。アリールの炭素数は特に限定されないが、通常、6~40の範囲である。 Aryl means, for example, an aromatic hydrocarbon group such as phenyl, naphthyl, biphenylyl, phenanthryl, terphenylyl, and pyrenyl. Aryl may be unsubstituted or substituted. The number of carbon atoms of the aryl is not particularly limited, but is usually in the range of 6 to 40.
 また、複素環基とは、例えば、フラニル、チオフェニル、オキサゾリル、ピリジル、キノリニル、カルバゾリルなどの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。 Further, the heterocyclic group refers to a cyclic structural group having an atom other than carbon such as furanyl, thiophenyl, oxazolyl, pyridyl, quinolinyl, and carbazolyl, which may be unsubstituted or substituted. The number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。 Halogen refers to fluorine, chlorine, bromine, and iodine.
 アルデヒド、カルボニル、アミノには、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。 Aldehydes, carbonyls, and aminos can also contain groups substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocycles, and the like.
 また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。 In addition, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and heterocycles may be substituted or substituted.
 シリルとは、例えば、トリメチルシリルなどのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリルの炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。 The silyl indicates a silicon compound group such as trimethylsilyl, which may be unsubstituted or substituted. The carbon number of silyl is not particularly limited, but is usually in the range of 3 to 20. The number of silicon is usually 1 to 6.
 隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとArなどの間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。 The fused rings formed between the adjacent substituents are, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , and Ar 1 . It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like. Here, when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other. These fused rings may contain nitrogen, oxygen, and sulfur atoms in the ring structure, or may be condensed with another ring.
 このホスフィンオキサイド誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000295
Specific examples of this phosphine oxide derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000295
 このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phosphine oxide derivative can be produced by using a known raw material and a known synthesis method.
<ピリミジン誘導体>
 ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号にも記載されている。
Figure JPOXMLDOC01-appb-C000296
<Pyrimidine derivative>
The pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). Details are also described in International Publication No. 2011/021689.
Figure JPOXMLDOC01-appb-C000296
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。 Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other. n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of the "aryl" of the "optionally substituted aryl" include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of "aryl" include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl. , Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1) -, 2-) Il, (1-, 2-, 3-, 4-, 9-) Phenantril, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, which is a tetracyclic aryl, 5'-phenyl-m-terphenyl-3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2), a fused tetracyclic aryl -) Ill, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-), which is a fused pentacyclic aryl ) Il, pentasen- (1-, 2-, 5-, 6-) il and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 Examples of the "heteroaryl" of the "optionally substituted heteroaryl" include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable. Examples of the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。 Specific heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine, prynyl. , Pteridinyl, carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatiinyl, thiantranyl, indridinyl and the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Further, the above-mentioned aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
 このピリミジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000297
Specific examples of this pyrimidine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000297
 このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This pyrimidine derivative can be produced by using a known raw material and a known synthesis method.
<アリールニトリル誘導体>
 アリールニトリル誘導体は、例えば下記式(ETM-9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国出願公開第2014/0197386号明細書に記載されている。
Figure JPOXMLDOC01-appb-C000298
<Aryl nitrile derivative>
The arylnitrile derivative is, for example, a compound represented by the following formula (ETM-9), or a multimer in which a plurality of the compounds are bonded by a single bond or the like. Details can be found in US Application Publication No. 2014/0197386.
Figure JPOXMLDOC01-appb-C000298
 Arniは、速い電子輸送性の観点からは炭素数が多いことが好ましく、高いT1の観点からは炭素数が少ないことが好ましい。Arniは、具体的には、発光層に隣接する層に用いるには高いT1であることが好ましく、炭素数6~20のアリールであり、好ましくは炭素数6~14のアリール、より好ましくは炭素数6~10のアリールである。また、ニトリルの置換個数nは、高いT1の観点からは多いことが好ましく、高いS1の観点からは少ないことが好ましい。ニトリルの置換個数nは、具体的には、1~4の整数であり、好ましくは1~3の整数であり、より好ましくは1~2の整数であり、さらに好ましくは1である。 Ar ni preferably has a large number of carbon atoms from the viewpoint of fast electron transportability, and preferably has a small number of carbon atoms from the viewpoint of high T1. Specifically, Ar ni is preferably a high T1 for use in a layer adjacent to the light emitting layer, is an aryl having 6 to 20 carbon atoms, and is preferably an aryl having 6 to 14 carbon atoms, more preferably. It is an aryl having 6 to 10 carbon atoms. Further, the number of nitrile substitutions n is preferably large from the viewpoint of high T1 and preferably small from the viewpoint of high S1. Specifically, the number of substitutions n of nitrile is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, and even more preferably 1.
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。高いS1および高いT1の観点からドナー性のヘテロアリールであることが好ましく、電子輸送層として用いるためドナー性のヘテロアリールは少ないことが好ましい。電荷輸送性の観点からは炭素数の多いアリールまたはヘテロアリールが好ましく、置換基を多く有することが好ましい。Arの置換個数mは、具体的には、1~4の整数であり、好ましくは1~3の整数であり、より好ましくは1~2である。 Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other. From the viewpoint of high S1 and high T1, donor heteroaryls are preferable, and donor heteroaryls are preferably small because they are used as an electron transport layer. From the viewpoint of charge transportability, aryl or heteroaryl having a large number of carbon atoms is preferable, and it is preferable to have a large number of substituents. Specifically, the number of substitutions m of Ar is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1 to 2.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of the "aryl" of the "optionally substituted aryl" include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。 Specific examples of "aryl" include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl. , Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1) -, 2-) Il, (1-, 2-, 3-, 4-, 9-) Phenantril, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, which is a tetracyclic aryl, 5'-phenyl-m-terphenyl-3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2), a fused tetracyclic aryl -) Ill, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-), which is a fused pentacyclic aryl ) Il, pentasen- (1-, 2-, 5-, 6-) il and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。 Examples of the "heteroaryl" of the "optionally substituted heteroaryl" include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable. Examples of the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。 Specific heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine, prynyl. , Pteridinyl, carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatinyl, thiantranyl, indridinyl and the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Further, the above-mentioned aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
 アリールニトリル誘導体は、式(ETM-9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。 The arylnitrile derivative may be a multimer in which a plurality of compounds represented by the formula (ETM-9) are bonded by a single bond or the like. In this case, in addition to the single bond, an aryl ring (preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring) may be bonded.
 このアリールニトリル誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000299
Specific examples of this arylnitrile derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000299
 このアリールニトリル誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This arylnitrile derivative can be produced using a known raw material and a known synthesis method.
<トリアジン誘導体>
 トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国公開公報2011/0156013号公報に記載されている。
Figure JPOXMLDOC01-appb-C000300
<Triazine derivative>
The triazine derivative is, for example, a compound represented by the following formula (ETM-10), preferably a compound represented by the following formula (ETM-10-1). Details are described in US Publication No. 2011/015601.
Figure JPOXMLDOC01-appb-C000300
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。 Ar is an aryl which may be substituted or a heteroaryl which may be substituted independently of each other. n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of the "aryl" of the "optionally substituted aryl" include aryls having 6 to 30 carbon atoms, preferably aryls having 6 to 24 carbon atoms, and more preferably aryls having 6 to 20 carbon atoms. More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of "aryl" include phenyl, which is a monocyclic aryl, biphenylyl (2-, 3-, 4-) biphenylyl, and (1-, 2-) naphthyl, which is a fused bicyclic aryl. , Terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-3'-yl, tricyclic aryl -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-Il, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) , Condensed tricyclic aryls, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1) -, 2-) Il, (1-, 2-, 3-, 4-, 9-) Phenantril, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, which is a tetracyclic aryl, 5'-phenyl-m-terphenyl-3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2), a fused tetracyclic aryl -) Ill, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-), which is a fused pentacyclic aryl ) Il, pentasen- (1-, 2-, 5-, 6-) il and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 Examples of the "heteroaryl" of the "optionally substituted heteroaryl" include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferable, heteroaryl having 2 to 15 carbon atoms is further preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable. Examples of the heteroaryl include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。 Specific heteroaryls include, for example, frills, thienyl, pyrrolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, frazayl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridadinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indrill, isoindrill, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, synnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthylidine, prynyl. , Pteridinyl, carbazolyl, acridinyl, phenoxadinyl, phenothiazinyl, phenazinyl, phenoxatiinyl, thiantranyl, indridinyl and the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Further, the above-mentioned aryl and heteroaryl may be substituted, and for example, the above-mentioned aryl and heteroaryl may be substituted, respectively.
 このトリアジン誘導体の具体例としては、例えば以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000301
Specific examples of this triazine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000301
 このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This triazine derivative can be produced using a known raw material and a known synthesis method.
<ベンゾイミダゾール誘導体>
 ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000302
<Benzimidazole derivative>
The benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
Figure JPOXMLDOC01-appb-C000302
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジルがベンゾイミダゾリルに置き換わった置換基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000303
φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenanthrene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. Yes, in the "benzimidazole-based substituent", pyridyl in the "pyridine-based substituent" in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2) is changed to benzimidazolyl. It is a substituted substituent, and at least one hydrogen in the benzimidazole derivative may be substituted with fluorene.
Figure JPOXMLDOC01-appb-C000303
 上記ベンゾイミダゾリルにおけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、上記式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。 R 11 in the benzoimidazolyl is a hydrogen, an alkyl having 1 to 24 carbon atoms, a cycloalkyl having 3 to 12 carbon atoms, or an aryl having 6 to 30 carbon atoms, and is the above formula (ETM-2-1) and the formula (ETM-). It may be cited to the description of R 11 in 2-2).
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。 φ is further preferably an anthracene ring or a fluorene ring, and the structure in this case can be quoted from the above formula (ETM-2-1) or the above formula (ETM-2-2). For R 11 to R 18 in the formula, the description in the above formula (ETM-2-1) or the formula (ETM-2-2) can be quoted. Further, in the above formula (ETM-2-1) or formula (ETM-2-2), two pyridine-based substituents are described in a bonded form, but when these are replaced with benzoimidazole-based substituents, both are used. The pyridine-based substituent may be replaced with a benzoimidazole-based substituent (that is, n = 2), any one of the pyridine-based substituents may be replaced with a benzoimidazole-based substituent, and the other pyridine-based substituent may be replaced with R 11. It may be replaced with ~ R 18 (that is, n = 1). Further, for example, at least one of R 11 to R 18 in the above formula (ETM-2-1) may be replaced with a benzimidazole-based substituent, and the “pyridine-based substituent” may be replaced with R 11 to R 18 .
 このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどが挙げられる。
Figure JPOXMLDOC01-appb-C000304
Specific examples of this benzoimidazole derivative include 1-phenyl-2- (4- (10-phenylanthracene-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (10-). Naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracene-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4) -(10- (Naphthalen-2-yl) anthracene-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (naphthalen-2-yl)) Anthracene-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 1-(4- (9,10-di (naphthalen-2-yl) anthracene-2-yl) phenyl) -2- Examples thereof include phenyl-1H-benzo [d] imidazole and 5- (9,10-di (naphthalen-2-yl) anthracene-2-yl) -1,2-diphenyl-1H-benzo [d] imidazole.
Figure JPOXMLDOC01-appb-C000304
 このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This benzimidazole derivative can be produced using a known raw material and a known synthetic method.
<フェナントロリン誘導体>
 フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開第2006/021982号に記載されている。
Figure JPOXMLDOC01-appb-C000305
<Phenanthroline derivative>
The phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or formula (ETM-12-1). Details are described in International Publication No. 2006/021982.
Figure JPOXMLDOC01-appb-C000305
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
 各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、上記式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφと結合する。 R 11 to R 18 of each formula are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably carbon). The number 6 to 30 aryl). Further, in the above formula (ETM-12-1), any one of R 11 to R 18 is bonded to φ which is an aryl ring.
 各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。 At least one hydrogen in each phenanthroline derivative may be replaced with deuterium.
 R11~R18におけるアルキル、シクロアルキルおよびアリールとしては、上記式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した例のほかに、例えば、以下の構造式が挙げられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルであり、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000306
Alkyl in R 11 ~ R 18, cycloalkyl and aryl may be cited to the description of R 11 ~ R 18 in the formula (ETM-2). Further, for φ, in addition to the above-mentioned example, for example, the following structural formula can be mentioned. In addition, R in the following structural formula is hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl independently, and * represents a bond position.
Figure JPOXMLDOC01-appb-C000306
 このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000307
Specific examples of this phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-). Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9' -Difluol-bis (1,10-phenanthroline-5-yl), vasocproin and 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene can be mentioned.
Figure JPOXMLDOC01-appb-C000307
 このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phenanthroline derivative can be produced using a known raw material and a known synthetic method.
<キノリノール系金属錯体>
 キノリノール系金属錯体は、例えば下記式(ETM-13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000308
 式中、R~Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
<Kinolinol-based metal complex>
The quinolinol-based metal complex is, for example, a compound represented by the following formula (ETM-13).
Figure JPOXMLDOC01-appb-C000308
In the formula, R 1 to R 6 are hydrogens or substituents, M is Li, Al, Ga, Be or Zn, and n is an integer of 1 to 3.
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどが挙げられる。 Specific examples of the quinolinol-based metal complex include 8-quinolinol lithium, tris (8-quinolinolate) aluminum, tris (4-methyl-8-quinolinolate) aluminum, tris (5-methyl-8-quinolinolate) aluminum, and tris (3). , 4-dimethyl-8-quinolinolate) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolinolate) ( Phenolate) Aluminum, bis (2-methyl-8-quinolinolate) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-methylphenorate) aluminum, bis (2-methyl-8- Kinolinolate) (4-methylphenorate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis (2-Methyl-8-quinolinolate) (4-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,3-dimethylphenorate) aluminum, bis (2-methyl-8-quinolinolate) ( 2,6-Dimethylphenolate) Aluminum, bis (2-methyl-8-quinolinolate) (3,4-dimethylphenorate) Aluminum, bis (2-methyl-8-quinolinolate) (3,5-dimethylphenolate) Aluminum, bis (2-methyl-8-quinolinolate) (3,5-di-t-butylphenolate) Aluminum, bis (2-methyl-8-quinolinolate) (2,6-diphenylphenolate) Aluminum, bis ( 2-Methyl-8-quinolinolate) (2,4,6-triphenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,4,6-trimethylphenolate) aluminum, bis (2-methyl -8-quinolinolate) (2,4,5,6-tetramethylphenorate) aluminum, bis (2-methyl-8-quinolinolate) (1-naphtholate) aluminum, bis (2-methyl-8-quinolinolate) (2) -Naftrat) Aluminum, bis (2,4-dimethyl-8-quinolinolate) (2-phenylphenolate) Aluminum, bis (2,4-dimethyl-8-quinolinolate) G) (3-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (4-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (3,5-dimethyl) Phenolate) Aluminum, bis (2,4-dimethyl-8-quinolinolate) (3,5-di-t-butylphenolate) aluminum, bis (2-methyl-8-quinolinolate) aluminum-μ-oxo-bis ( 2-Methyl-8-quinolinolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) aluminum-μ-oxo-bis (2,4-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-4-) Ethyl-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-4-ethyl-8-quinolinolate) aluminum, bis (2-methyl-4-methoxy-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-4-ethyl-8-quinolinolate) 2-Methyl-4-methoxy-8-quinolinolate) aluminum, bis (2-methyl-5-cyano-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-5-cyano-8-quinolinolate) aluminum, Bis (2-methyl-5-trifluoromethyl-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolate) aluminum, bis (10-hydroxybenzo [h] quinolinate) ) Berylium and the like.
 このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。 This quinolinol-based metal complex can be produced by using a known raw material and a known synthesis method.
<還元性物質>
 電子輸送層および電子注入層の少なくとも1つは、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体よりなる群から選択される少なくとも1つを好適に使用することができる。
<Reducing substance>
At least one of the electron transport layer and the electron injection layer may contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer. As this reducing substance, various substances are used as long as they have a certain reducing property. For example, alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkali. From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes At least one selected can be preferably used.
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2.95 eV). Alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV) are mentioned, and those having a work function of 2.9 eV or less are particularly preferable. Of these, the more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs. These alkali metals have a particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the emission brightness and the life of the organic EL device can be extended. Further, as a reducing substance having a work function of 2.9 eV or less, a combination of these two or more kinds of alkali metals is also preferable, and in particular, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred. By containing Cs, the reducing ability can be efficiently exhibited, and by adding to the material forming the electron transport layer or the electron injection layer, the emission brightness and the life of the organic EL device can be improved.
2-1-4.有機電界発光素子における陰極
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
2-1-4. The cathode and cathode 108 in the organic electroluminescent device plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer 106.
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の物質を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率を上げて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。 The material for forming the cathode 108 is not particularly limited as long as it is a substance capable of efficiently injecting electrons into the organic layer, but a material similar to the material for forming the anode 102 can be used. Among them, metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or their alloys (magnesium-silver alloy, magnesium). -Indium alloy, aluminum-lithium alloy such as lithium fluoride / aluminum, etc.) are preferable. Alloys containing lithium, sodium, potassium, cesium, calcium, magnesium or these low work function metals are effective for increasing electron injection efficiency and improving device characteristics. However, these low work function metals are generally often unstable in the atmosphere. In order to improve this point, for example, a method of doping an organic layer with a trace amount of lithium, cesium or magnesium and using a highly stable electrode is known. Inorganic salts such as lithium fluoride, cesium fluoride, lithium oxide and cesium oxide can also be used as other dopants. However, it is not limited to these.
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例として挙げられる。これらの電極の作製法も、抵抗加熱、電子ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。 In addition, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium for electrode protection, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride. , Laminating a hydrocarbon-based polymer compound or the like is given as a preferable example. The method for producing these electrodes is also not particularly limited as long as conduction can be obtained, such as resistance heating, electron beam deposition, sputtering, ion plating and coating.
2-1-5.有機電界発光素子における正孔注入層、正孔輸送層
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
2-1-5. Hole injection layer and hole transport layer in the organic electroluminescent device The hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104. It will be fulfilled. The hole transport layer 104 plays a role of efficiently transporting the holes injected from the anode 102 or the holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105. The hole injection layer 103 and the hole transport layer 104 are formed by laminating and mixing one or more of the hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder, respectively. Will be done. Further, an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。 As a hole injection / transporting substance, it is necessary to efficiently inject / transport holes from the positive electrode between electrodes to which an electric field is applied, and the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For that purpose, it is preferable that the substance has a small ionization potential, a large hole mobility, excellent stability, and is less likely to generate trap impurities during production and use.
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。 As a material for forming the hole injection layer 103 and the hole transport layer 104, in a photoconductive material, a compound conventionally used as a hole charge transport material, a p-type semiconductor, and a hole injection of an organic electroluminescent device are used. Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), and triarylamine derivatives (aromatic tertiary). Polymers with amino in the main or side chains, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl -N, N'-diphenyl-4,4'-diphenyl-1,1'-diamine, N 4, N 4 '- diphenyl - N 4, N 4 '- bis (9-phenyl -9H- carbazol-3-yl) - [1,1'-biphenyl] -4,4'-diamine, N 4, N 4, N 4', N 4 ' -Tetra [1,1'-biphenyl] -4-yl)-[1,1'-biphenyl] -4,4'-diamine, 4,4', 4 "-tris (3-methylphenyl (phenyl) Triphenylamine derivatives such as amino) triphenylamine, starburstamine derivatives, etc.), stillben derivatives, phthalocyanine derivatives (metal-free, copper phthalocyanine, etc.), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives , Kinoxalin derivatives (eg, 1,4,5,8,9,12-hexazatriphenylene-2,3,6,7,10,11-hexacarbonitrile, etc.), heterocyclic compounds such as porphyrin derivatives, polysilanes, etc. In the polymer system, polycarbonate or styrene derivatives having the monomer in the side chain, polyvinylcarbazole, polysilane, etc. are preferable, but a thin film necessary for producing a light emitting element can be formed and holes can be injected from the anode. Further, the compound is not particularly limited as long as it can transport holes.
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pfeiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。 It is also known that the conductivity of organic semiconductors is strongly affected by its doping. Such an organic semiconductor matrix substance is composed of a compound having a good electron donating property or a compound having a good electron accepting property. Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping electron donors. (For example, the document "M.Pfeiffer, A.Beyer, T.Fritz, K.Leo, Appl.Phys.Lett., 73 (22), 3202-3204 (1998)" and the document "J. Blochwitz, M." .Pfeiffer, T.Fritz, K.Leo, Appl.Phys.Lett., 73 (6), 729-731 (1998) "). They generate so-called holes by an electron transfer process in an electron donating base material (hole transport material). Depending on the number of holes and the mobility, the conductivity of the base material changes considerably. As the matrix substance having hole transporting properties, for example, a benzidine derivative (TPD or the like) or a starburst amine derivative (TDATA or the like) or a specific metal phthalocyanine (particularly zinc phthalocyanine ZnPc or the like) is known (Japanese Patent Laid-Open No. 2005-167 No. 175).
2-1-6.有機電界発光素子における陽極
 陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
2-1-6. The anode- anode 102 in the organic electroluminescent device serves to inject holes into the light emitting layer 105. When the hole injection layer 103 and / or the hole transport layer 104 is provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these. ..
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。 Examples of the material forming the anode 102 include inorganic compounds and organic compounds. Examples of the inorganic compound include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxidation, etc.). (IZO, etc.), metals halide (copper iodide, etc.), copper sulfide, carbon black, ITO glass, nesa glass, etc. Examples of the organic compound include polythiophene such as poly (3-methylthiophene) and conductive polymers such as polypyrrole and polyaniline. In addition, it can be appropriately selected and used from the substances used as the anode of the organic electroluminescent device.
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。 The resistance of the transparent electrode is not limited as long as a sufficient current can be supplied to emit light from the light emitting element, but it is desirable that the resistance is low from the viewpoint of power consumption of the light emitting element. For example, an ITO substrate of 300 Ω / □ or less functions as an element electrode, but since it is now possible to supply a substrate of about 10 Ω / □, for example, 100 to 5 Ω / □, preferably 50 to 5 Ω. It is especially desirable to use a low resistance product of / □. The thickness of ITO can be arbitrarily selected according to the resistance value, but it is usually used in the range of 50 to 300 nm.
2-1-7.有機電界発光素子における基板
 基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
2-1-7. The substrate 101 in the organic electroluminescent element serves as a support for the organic electroluminescent element 100, and usually quartz, glass, metal, plastic, or the like is used. The substrate 101 is formed in a plate shape, a film shape, or a sheet shape depending on the purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used. Of these, a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable. As for the glass substrate, soda lime glass, non-alkali glass, or the like is used, and the thickness may be sufficient to maintain the mechanical strength. Therefore, for example, 0.2 mm or more may be used. The upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less. As for the material of the glass, non-alkali glass is preferable because it is better that there are few elution ions from the glass, but soda lime glass with a barrier coat such as SiO 2 is also commercially available, so this can be used. it can. Further, in order to enhance the gas barrier property, the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side, and a synthetic resin plate, film or sheet having a particularly low gas barrier property may be used as the substrate 101. When used, it is preferable to provide a gas barrier film.
2-1-8.有機電界発光素子における電子阻止層
 正孔注入・輸送層と発光層との間には発光層からの電子および/または励起子の拡散を防ぐ電子阻止層を設けてもよい。電子阻止層の形成には、上述の式(H1)、(H2)および(H3)のいずれかで表される化合物を用いることができる。
2-1-8. Electron blocking layer in an organic electroluminescent device An electron blocking layer that prevents diffusion of electrons and / or excitons from the light emitting layer may be provided between the hole injection / transport layer and the light emitting layer. A compound represented by any of the above formulas (H1), (H2) and (H3) can be used for forming the electron blocking layer.
2-1-9.有機電界発光素子の作製方法
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、蒸着用ルツボの加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
2-1-9. Method for manufacturing organic electroluminescent device For each layer constituting the organic electroluminescent device, the material to be formed of each layer is deposited by a vapor deposition method, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method or casting method. , It can be formed by forming a thin film by a method such as a coating method. The film thickness of each layer formed in this manner is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like. When a thin film is formed by using a thin film deposition method, the vapor deposition conditions differ depending on the type of material, the target crystal structure and association structure of the film, and the like. The vapor deposition conditions are generally: heating temperature of the crucible for vapor deposition + 50 to + 400 ° C., vacuum degree 10-6 to 10 -3 Pa, vapor deposition rate 0.01 to 50 nm / sec, substrate temperature -150 to + 300 ° C., film thickness 2 nm. It is preferable to set it appropriately in the range of about 5 μm.
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト化合物、熱活性型遅延蛍光体およびホウ素原子を有する化合物を含む発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。 Next, as an example of a method for producing an organic electroluminescent device, a light emitting layer / electron transport layer containing an anode / hole injection layer / hole transport layer / host compound, a thermoactive delayed phosphor, and a compound having a boron atom. A method for manufacturing an organic electroluminescent device composed of an electron injection layer / a cathode will be described.
2-1-9-1.蒸着法
 適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に、ホスト化合物、熱活性型遅延蛍光体およびホウ素原子を有する化合物を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
2-1-9-1. The deposition suitable substrate, after forming a thin film of an anode material is formed by a vapor deposition method or the like anode, to form a thin film of the hole injection layer and a hole transport layer on the anode. A host compound, a thermoactive delayed phosphor, and a compound having a boron atom are co-deposited on the host compound to form a thin film to form a light emitting layer, and an electron transport layer and an electron injection layer are formed on the light emitting layer. A desired organic electroluminescent element can be obtained by forming a thin film made of a material for a cathode by a vapor deposition method or the like to form a cathode. In the above-mentioned production of the organic electroluminescent device, the production order may be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be manufactured in this order. It is possible.
2-1-9-2.湿式成膜法
 発光層形成用組成物の場合は、湿式成膜法を用いることによって成膜される。
2-1-9-2. Wet film formation method In the case of a composition for forming a light emitting layer, a film is formed by using a wet film formation method.
 湿式成膜法は、一般的には、基板に発光層形成用組成物を塗布する塗布工程および塗布された発光層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。塗布工程の違いにより、スピンコーターを用いる手法をスピンコート法、スリットコーターを用いる手法をスリットコート法、版を用いる手法をグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる手法をインクジェット法、霧状に吹付ける手法をスプレー法と呼ぶ。乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。
 すなわち、本発明の有機電界発光素子は、陽極および陰極からなる一対の電極と、該一対の電極間に配置され、本発明の発光層形成用組成物から形成された発光層とを有する、有機電界発光素子であることも好ましい。
In the wet film forming method, a coating film is generally formed by a coating step of applying a light emitting layer forming composition to a substrate and a drying step of removing a solvent from the applied light emitting layer forming composition. Depending on the difference in the coating process, the method using a spin coater is the spin coating method, the method using a slit coater is the slit coating method, the method using a plate is gravure, offset, reverse offset, flexographic printing method, and the method using an inkjet printer is the inkjet method. , The method of spraying in a mist form is called the spray method. The drying step includes methods such as air drying, heating, and vacuum drying. The drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, different methods may be used in combination, for example, firing under reduced pressure.
That is, the organic electroluminescent device of the present invention has a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and formed from the composition for forming a light emitting layer of the present invention. It is also preferable that it is an electroluminescent element.
 湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。 The wet film forming method is a film forming method using a solution, and is, for example, a partial printing method (injection method), a spin coating method or a casting method, a coating method, or the like. Unlike the vacuum vapor deposition method, the wet film deposition method does not require the use of an expensive vacuum vapor deposition apparatus and can form a film under atmospheric pressure. In addition, the wet film formation method enables a large area and continuous production, leading to a reduction in manufacturing cost.
 一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。 On the other hand, when compared with the vacuum vapor deposition method, the wet film deposition method is difficult to stack. When the laminated film is prepared by the wet film forming method, it is necessary to prevent the lower layer from being dissolved by the upper layer composition, and the composition with controlled solubility, the lower layer cross-linking and the orthogonal solvent (Orthogonal solvent) are dissolved in each other. No solvent) etc. are used. However, even if these techniques are used, it may be difficult to use the wet film forming method for coating all the films.
 そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機EL素子を作製するという方法が採用される。 Therefore, in general, a method is adopted in which only some layers are formed by a wet film forming method and the rest are formed by a vacuum vapor deposition method to produce an organic EL element.
 例えば、湿式成膜法を一部適用し有機EL素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層の湿式成膜法による成膜
(手順3)正孔輸送層の湿式成膜法による成膜
(手順4)ホスト化合物、熱活性型遅延蛍光体およびホウ素原子を有する化合物を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
 この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子が得られる。
For example, the procedure for manufacturing an organic EL device by partially applying the wet film forming method is shown below.
(Procedure 1) Film formation by vacuum deposition method of anode (Procedure 2) Film formation by wet film formation method of hole injection layer (Procedure 3) Film formation by wet film formation method of hole transport layer (Procedure 4) Host compound , A composition for forming a light emitting layer containing a thermoactive delayed phosphor and a compound having a boron atom by a wet film forming method (Procedure 5) A film forming by a vacuum deposition method of an electron transport layer (Procedure 6) An electron injection layer Film formation by vacuum vapor deposition method (Procedure 7) Film formation by vacuum vapor deposition method of cathode By going through this procedure, an anode / hole injection layer / hole transport layer / light emitting layer composed of host material and dopant material / electron transport An organic EL element including a layer / electron injection layer / cathode can be obtained.
2-1-9-3.有機溶媒
 本発明の化合物は、溶媒に溶解させ発光層形成用組成物として用いることができる。
 本発明の発光層形成用組成物は、本発明の化合物を少なくとも1つと、溶媒とを含む。
 また、本発明の発光層形成用組成物は上記式(H1)~(H5)で表される化合物を少なくとも1つ含有する、または、上記式(H1)~(H5)で表される構造の少なくとも1つを繰り返し単位とする高分子化合物を少なくとも1つ含有することが好ましい。
 また、本発明の発光層形成用組成物は、発光層の付加成分として用いられるエミッティングドーパント、アシスタントドーパント等の、他の成分を更に含んでもよい。
 例えば、本発明の発光層形成用組成物は、上述の式(AD1)、(AD2)および(AD3)のいずれかで表される化合物を少なくとも一つ含有することが好ましい。
 本発明の発光層形成用組成物は、前記溶媒として、少なくとも1種の有機溶媒を含むことが好ましい。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該発光層形成用組成物より得られる発光層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
2-1-9-3. Organic solvent The compound of the present invention can be dissolved in a solvent and used as a composition for forming a light emitting layer.
The composition for forming a light emitting layer of the present invention contains at least one compound of the present invention and a solvent.
Further, the composition for forming a light emitting layer of the present invention contains at least one compound represented by the above formulas (H1) to (H5), or has a structure represented by the above formulas (H1) to (H5). It is preferable to contain at least one polymer compound having at least one as a repeating unit.
Further, the composition for forming a light emitting layer of the present invention may further contain other components such as an emerging dopant and an assistant dopant used as additional components of the light emitting layer.
For example, the composition for forming a light emitting layer of the present invention preferably contains at least one compound represented by any of the above formulas (AD1), (AD2) and (AD3).
The composition for forming a light emitting layer of the present invention preferably contains at least one organic solvent as the solvent. By controlling the evaporation rate of the organic solvent at the time of film formation, it is possible to control and improve the film forming property, the presence or absence of defects in the coating film, the surface roughness, and the smoothness. Further, when the film is formed by using the inkjet method, the meniscus stability at the pinhole of the inkjet head can be controlled, and the ejection property can be controlled and improved. In addition, by controlling the drying rate of the film and the orientation of the derivative molecules, the electrical characteristics, light emission characteristics, efficiency, and life of the organic EL device having the light emitting layer obtained from the light emitting layer forming composition can be improved. Can be done.
(有機溶媒の物性)
 本発明の発光層形成用組成物は、前記溶剤として、沸点が130℃以上である有機溶剤を含むことが好ましく、140℃以上である有機溶剤を含むことがより好ましく、150℃以上である有機溶剤を含むことが更に好ましい。また、上記有機溶剤の沸点の上限は、300℃以下であることが好ましく、270℃以下であることがより好ましく、250℃以下であることが更に好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が300℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。溶媒は、良好なインクジェットの吐出性、製膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、発光層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
(Physical properties of organic solvent)
The composition for forming a light emitting layer of the present invention preferably contains an organic solvent having a boiling point of 130 ° C. or higher, more preferably 140 ° C. or higher, and an organic solvent having a boiling point of 150 ° C. or higher. It is more preferable to contain a solvent. The upper limit of the boiling point of the organic solvent is preferably 300 ° C. or lower, more preferably 270 ° C. or lower, and even more preferably 250 ° C. or lower. When the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ejection property of the inkjet. Further, when the boiling point is lower than 300 ° C., it is preferable from the viewpoint of coating film defects, surface roughness, residual solvent and smoothness. The solvent is more preferably composed of two or more kinds of organic solvents from the viewpoint of good inkjet ejection property, film forming property, smoothness and low residual solvent. On the other hand, in some cases, the composition may be in a solid state by removing the solvent from the composition for forming a light emitting layer in consideration of transportability and the like.
 また、前記溶媒は、本発明の化合物の少なくとも1つに対する良溶媒(GS)と貧溶媒(PS)を含む混合溶媒であり、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低いことが好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
 良溶媒(GS)に対する本発明の化合物の少なくとも1つの溶解度(SGS、%)と、貧溶媒(PS)に対する本発明の化合物の少なくとも1つの溶解度(SPS、%)の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。
 上記良溶媒(GS)の沸点(BPGS)と貧溶媒(PS)の沸点(BPPS)の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
The solvent is a mixed solvent containing a good solvent (GS) and a poor solvent (PS) for at least one of the compounds of the present invention, and the boiling point (BP GS ) of the good solvent ( GS ) is the poor solvent (PS). It is preferably lower than the boiling point (BP PS ) of.
By adding the poor solvent having a high boiling point, the good solvent having a low boiling point volatilizes first at the time of film formation, and the concentration of the content in the composition and the concentration of the poor solvent increase, and rapid film formation is promoted. As a result, a coating film having few defects, a small surface roughness, and high smoothness can be obtained.
Difference between at least one solubility ( SGS ,%) of the compound of the present invention in a good solvent (GS) and at least one solubility ( SPS ,%) of the compound of the present invention in a poor solvent (PS) ( SGS- S PS ) is preferably 1% or more, more preferably 3% or more, and even more preferably 5% or more.
The above difference in good boiling point of the solvent boiling point (GS) (BP GS) and poor solvent (PS) (BP PS) ( BP PS -BP GS) is preferably 10 ° C. or more, at 30 ° C. or higher Is more preferable, and more preferably 50 ° C. or higher.
 さらに、溶媒は式(1)、式(H1)、式(H2)、式(H3)または式(H4)で表される化合物に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い組み合わせが特に好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
Further, the solvent contains a good solvent (GS) and a poor solvent (PS) for the compound represented by the formula (1), the formula (H1), the formula (H2), the formula (H3) or the formula (H4), and is good. A combination in which the boiling point (BP GS ) of the solvent ( GS ) is lower than the boiling point (BP PS ) of the poor solvent (PS) is particularly preferable.
By adding the poor solvent having a high boiling point, the good solvent having a low boiling point volatilizes first at the time of film formation, and the concentration of the content in the composition and the concentration of the poor solvent increase, and rapid film formation is promoted. As a result, a coating film having few defects, a small surface roughness, and high smoothness can be obtained.
 良溶媒(GS)に対する式(1)、式(H1)、式(H2)、式(H3)、式(H4)または式(H5)で表される化合物の溶解度(SGS)と、貧溶媒(PS)に対する式(1)、式(H1)、式(H2)、式(H3)、式(H4)または式(H5)で表される化合物の溶解度(SPS)の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 Good solvent equation for (GS) (1), and the formula (H1), the formula (H2), the formula (H3), the formula (H4) or solubility of the compounds of the formula (H5) (S GS), a poor solvent equation for (PS) (1), the formula (H1), the formula (H2), the formula (H3), the difference of formula (H4) or solubility of the compounds of the formula (H5) (S PS) ( S GS - S PS ) is preferably 1% or more, more preferably 3% or more, and even more preferably 5% or more. The difference in boiling points (BP PS- BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
 有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布製膜性改善の観点からは、第1成分のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、第1成分のガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。 The organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure, and heating after the film formation. When heating is performed, it is preferable to perform it at the glass transition temperature (Tg) of the first component + 30 ° C. or lower from the viewpoint of improving the coating film forming property. From the viewpoint of reducing the residual solvent, it is preferable to heat the first component at the glass transition point (Tg) of −30 ° C. or higher. Even if the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin. Further, the drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
(有機溶媒の具体例)
 発光層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2’-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテルなどがあげられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
(Specific example of organic solvent)
Examples of the organic solvent used in the composition for forming a light emitting layer include an alkylbenzene solvent, a phenyl ether solvent, an alkyl ether solvent, a cyclic ketone solvent, an aliphatic ketone solvent, a monocyclic ketone solvent, and a diester skeleton. Examples thereof include solvents and fluorine-containing solvents, and specific examples thereof include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, heptane-2-ol, and octane-. 2-ol, decane-2-ol, dodecane-2-ol, cyclohexanol, α-terpineol, β-terpineol, γ-terpineol, δ-terpineol, terpineol (mixture), ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether Acetate, Diethylene glycol dimethyl ether, Dipropylene glycol dimethyl ether, Diethylene glycol ethyl methyl ether, Diethylene glycol isopropyl methyl ether, Dipropylene glycol monomethyl ether, Diethylene glycol diethyl ether, Diethylene glycol monomethyl ether, Diethylene glycol butyl methyl ether, Tripropylene glycol dimethyl ether, Triethylene glycol dimethyl ether, Diethylene glycol Monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, p-xylene, m-xylene, o-xylene, 2,6 -Lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzotrifluoride, cumene, toluene, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3- Dimethylpyrazine, bromobenzene, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoromethylanisole, xylene, 1,2,4-trimethylbenzene, t-butylbenzene, 2-methylanisole, phenetol, benzodioxol , 4-Methylanisole, s-butylbenzene, 3-Methylanisole, 4-Fluoro-3-methylanisole, Xylene, 1, 2,3-trimethylbenzene, 1,2-dichlorobenzene, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, n-butylbenzene, 3-fluorobenzonitrile, decalin (decahydronaphthalene) , Neopentylbenzene, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, diphenyl ether, 1-fluoro-3,5-dimethoxybenzene, methyl benzoate, isopentylbenzene, 3,4-Dimethylanisole, o-tolunitrile, n-amylbenzene, veratrol, 1,2,3,4-tetrahydronaphthalene, ethyl benzoate, n-hexylbenzene, propyl benzoate, cyclohexylbenzene, 1-methylnaphthalene, Butyl benzoate, 2-methylbiphenyl, 3-phenoxytoluene, 2,2'-vitryl, dodecylbenzene, dipentylbenzene, tetramethylbenzene, trimethoxybenzene, trimethoxytoluene, 2,3-dihydrobenzofuran, 1-methyl- 4- (Propoxymethyl) benzene, 1-methyl-4- (butyloxymethyl) benzene, 1-methyl-4- (pentyloxymethyl) benzene, 1-methyl-4- (hexyloxymethyl) benzene, 1-methyl -4- (Heptyloxymethyl) benzenebenzylbutyl ether, benzylpentyl ether, benzylhexyl ether, benzylheptyl ether, benzyloctyl ether and the like, but are not limited thereto. Moreover, the solvent may be used alone or may be mixed.
2-1-10.有機電界発光素子の応用例
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 本発明の表示装置は、本発明の有機電界発光素子を備える。また、本発明の照明装置は、本発明の有機電界発光素子を備える。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
2-1-10. Application Examples of Organic Electroluminescent Devices The present invention can also be applied to display devices provided with organic electroluminescent devices, lighting devices provided with organic electroluminescent devices, and the like.
The display device of the present invention includes the organic electroluminescent device of the present invention. Further, the lighting device of the present invention includes the organic electroluminescent element of the present invention.
A display device or a lighting device provided with an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment to a known driving device, and can be manufactured by a known method such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどが挙げられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などが挙げられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescent (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). (See Japanese Patent Application Laid-Open No. 2004-281806, etc.). In addition, examples of the display method of the display include a matrix and / or segment method. The matrix display and the segment display may coexist in the same panel.
 マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix, pixels for display are arranged two-dimensionally such as in a grid pattern or mosaic pattern, and characters and images are displayed as a set of pixels. The shape and size of the pixels are determined by the application. For example, for displaying images and characters on a personal computer, monitor, or television, quadrangular pixels with a side of 300 μm or less are usually used, and in the case of a large display such as a display panel, pixels with a side on the order of mm should be used. become. In the case of monochrome display, pixels of the same color may be arranged, but in the case of color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. Then, as the driving method of this matrix, either a line sequential driving method or an active matrix may be used. Line sequential drive has the advantage of a simpler structure, but when considering operating characteristics, the active matrix may be superior, so it is also necessary to use it properly depending on the application.
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。 In the segment method (type), a pattern is formed so as to display predetermined information, and a predetermined area is made to emit light. For example, time and temperature displays on digital clocks and thermometers, operating status displays of audio equipment and electromagnetic cookers, and panel displays of automobiles can be mentioned.
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどが挙げられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。 Examples of the lighting device include a lighting device such as an indoor lighting device, a backlight of a liquid crystal display device, and the like (for example, JP-A-2003-257621, JP-A-2003-277741, JP-A-2004-119211). Etc.). The backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light by itself, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like. In particular, as a backlight for a liquid crystal display device, especially for a personal computer for which thinning is an issue, considering that it is difficult to thin the backlight because the conventional method consists of a fluorescent lamp and a light guide plate, the present embodiment The backlight using the light emitting element according to the above is characterized by being thin and lightweight.
2-2.その他の有機デバイス
 本発明の化合物は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。有機電界効果トランジスタにおいて本発明の化合物は活性層に用いられていることが好ましい。有機薄膜太陽電池において本発明の化合物は活性層に用いられていることが好ましい。
2-2. Other Organic Devices The compounds of the present invention can be used in the production of organic field effect transistors, organic thin-film solar cells, and the like, in addition to the organic electroluminescent devices described above. In the organic field effect transistor, the compound of the present invention is preferably used in the active layer. It is preferable that the compound of the present invention is used in the active layer in an organic thin film solar cell.
 有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(またはホール)の流れを任意にせき止めて電流を制御することができるトランジスタである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。 The organic field effect transistor is a transistor that controls the current by the electric field generated by the voltage input, and is provided with a gate electrode in addition to the source electrode and drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the flow of electrons (or holes) flowing between the source electrode and the drain electrode can be arbitrarily blocked to control the current. The field effect transistor is easier to miniaturize than a simple transistor (bipolar transistor), and is often used as an element constituting an integrated circuit or the like.
 有機電界効果トランジスタの構造は、通常、本発明の化合物を用いて形成される有機半導体活性層に接してソース電極およびドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
 このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子などとして適用できる。
The structure of an organic field effect transistor is usually provided with a source electrode and a drain electrode in contact with an organic semiconductor active layer formed by using the compound of the present invention, and an insulating layer (dielectric) in contact with the organic semiconductor active layer. It suffices if the gate electrode is provided across the body layer). Examples of the element structure include the following structures.
(1) Substrate / Gate electrode / Insulator layer / Source electrode / Drain electrode / Organic semiconductor active layer (2) Substrate / Gate electrode / Insulator layer / Organic semiconductor active layer / Source electrode / Drain electrode (3) Substrate / Organic Semiconductor active layer / source electrode / drain electrode / insulator layer / gate electrode (4) Substrate / source electrode / drain electrode / organic semiconductor active layer / insulator layer / gate electrode The organic electric field effect transistor configured in this way is It can be applied as a pixel-driven switching element of an active matrix-driven liquid crystal display or an organic electroluminescence display.
 有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明の化合物は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明の化合物は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。 The organic thin-film solar cell has a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are laminated on a transparent substrate such as glass. The photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side. The compound of the present invention can be used as a material for a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer, depending on its physical properties. The compound of the present invention can function as a hole transport material or an electron transport material in an organic thin film solar cell. In addition to the above, the organic thin film solar cell may appropriately include a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer, and the like. For the organic thin-film solar cell, known materials used for the organic thin-film solar cell can be appropriately selected and used in combination.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によってなんら限定されない。以下に、実施例で使用した化合物の合成例を示す。
<基礎物性の評価方法>
サンプルの準備
 評価対象の化合物の吸収特性と発光特性(蛍光と燐光)を評価する場合、評価対象の化合物を溶媒に溶解して溶媒中で評価する場合と薄膜状態で評価する場合がある。さらに、薄膜状態で評価する場合は、評価対象の化合物の有機EL素子における使用の態様に応じて、評価対象の化合物のみを薄膜化し評価する場合と評価対象の化合物を適切なマトリックス材料中に分散して薄膜化して評価する場合がある。ここでは、評価対象化合物のみを蒸着して得た薄膜を「単独膜」といい、評価対象化合物とマトリックス材料を含む塗工液を塗布、乾燥して得た薄膜を「塗膜」という。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. Examples of synthesis of the compounds used in the examples are shown below.
<Evaluation method of basic physical properties>
Preparation of sample When evaluating the absorption characteristics and emission characteristics (fluorescence and phosphorescence) of the compound to be evaluated, there are cases where the compound to be evaluated is dissolved in a solvent and evaluated in the solvent, and cases where the evaluation is performed in a thin film state. Further, when evaluating in a thin film state, depending on the mode of use of the compound to be evaluated in the organic EL element, only the compound to be evaluated is thinned and evaluated, and the compound to be evaluated is dispersed in an appropriate matrix material. It may be thinned and evaluated. Here, a thin film obtained by depositing only the compound to be evaluated is referred to as a "single film", and a thin film obtained by applying a coating liquid containing the compound to be evaluated and a matrix material and drying the film is referred to as a "coating film".
 マトリックス材料としては、市販のPMMA(ポリメチルメタクリレート)などを用いることができる。本実施例では、PMMAと評価対象の化合物をトルエン中で溶解させた後、スピンコーティング法により石英製の透明支持基板(10mm×10mm)上に薄膜を形成してサンプルを作製する。 As the matrix material, commercially available PMMA (polymethylmethacrylate) or the like can be used. In this example, PMMA and the compound to be evaluated are dissolved in toluene, and then a thin film is formed on a transparent support substrate (10 mm × 10 mm) made of quartz by a spin coating method to prepare a sample.
 また、マトリックス材料がホスト化合物である場合の薄膜サンプルは、以下のようにして作製する。
 石英製の透明支持基板(10mm×10mm×1.0mm)を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、ホスト化合物を入れたモリブデン製蒸着用ボート、ドーパント材料を入れたモリブデン製蒸着用ボートを装着した後、真空槽を5×10-4Paまで減圧する。次に、ホスト化合物が入った蒸着用ボートとドーパント材料が入った蒸着用ボートを同時に加熱して、ホスト化合物とドーパント材料を適切な膜厚になるように共蒸着してホスト化合物とドーパント材料の混合薄膜(サンプル)を形成した。ここで、ホスト化合物とドーパント材料の設定質量比に応じて蒸着速度を制御する。
Further, a thin film sample when the matrix material is a host compound is prepared as follows.
A transparent quartz support substrate (10 mm x 10 mm x 1.0 mm) is fixed to a substrate holder of a commercially available vapor deposition equipment (manufactured by Choshu Sangyo Co., Ltd.), and a molybdenum vapor deposition boat containing a host compound and a dopant material are inserted. After installing the molybdenum vapor deposition boat, the vacuum chamber is depressurized to 5 × 10 -4 Pa. Next, the vapor deposition boat containing the host compound and the vapor deposition boat containing the dopant material are heated at the same time, and the host compound and the dopant material are co-deposited to an appropriate thickness to obtain the host compound and the dopant material. A mixed thin film (sample) was formed. Here, the vapor deposition rate is controlled according to the set mass ratio of the host compound and the dopant material.
吸収特性と発光特性の評価
 サンプルの吸収スペクトルの測定は、紫外可視近赤外分光光度計((株)島津製作所、UV-2600)を用いて行う。また、サンプルの蛍光スペクトルまたは燐光スペクトルの測定は、分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて行う。
Evaluation of Absorption Characteristics and Emission Characteristics The absorption spectrum of the sample is measured using an ultraviolet-visible near-infrared spectrophotometer (Shimadzu Corporation, UV-2600). The fluorescence spectrum or phosphorescence spectrum of the sample is measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation).
 蛍光スペクトルの測定に対しては、室温で適切な励起波長で励起しフォトルミネッセンスを測定する。燐光スペクトルの測定に対しては、付属の冷却ユニットを使用して、前記サンプルを液体窒素に浸した状態(温度77K)で測定する。燐光スペクトルを観測するため、光学チョッパを使用して励起光照射から測定開始までの遅れ時間を調整した。サンプルは適切な励起波長で励起しフォトルミネッセンスを測定する。 For measurement of fluorescence spectrum, excite at room temperature with an appropriate excitation wavelength and measure photoluminescence. For the measurement of the phosphorescence spectrum, the sample is measured in a state of being immersed in liquid nitrogen (temperature 77K) using an attached cooling unit. In order to observe the phosphorescence spectrum, an optical chopper was used to adjust the delay time from the excitation light irradiation to the start of measurement. The sample is excited at an appropriate excitation wavelength and photoluminescence is measured.
 また、絶対PL量子収率測定装置(浜松ホトニクス(株)製、C9920-02G)を用いて蛍光量子収率(PLQY)を測定する。 In addition, the fluorescence quantum yield (PLQY) is measured using an absolute PL quantum yield measuring device (C9920-02G, manufactured by Hamamatsu Photonics Co., Ltd.).
蛍光寿命(遅延蛍光)の評価
 蛍光寿命測定装置(浜松ホトニクス(株)製、C11367-01)を用いて300Kで蛍光寿命を測定した。具体的には、適切な励起波長で測定される極大発光波長において蛍光寿命の早い発光成分と遅い発光成分を観測した。蛍光を発光する一般的な有機EL材料の室温における蛍光寿命測定では、熱による3重項成分の失活により、燐光に由来する3重項成分が関与する遅い発光成分が観測されることはほとんどない。評価対象の化合物において遅い発光成分が観測された場合は、励起寿命の長い3重項エネルギーが熱活性化により1重項エネルギーに移動して遅延蛍光として観測されたことを示すことになる。
Evaluation of Fluorescence Life (Delayed Fluorescence) The fluorescence life was measured at 300 K using a fluorescence life measuring device (manufactured by Hamamatsu Photonics Co., Ltd., C11367-01). Specifically, the emission component having a fast fluorescence lifetime and the emission component having a slow fluorescence lifetime were observed at the maximum emission wavelength measured at an appropriate excitation wavelength. In the fluorescence lifetime measurement of a general organic EL material that emits fluorescence at room temperature, slow emission components involving the triplet component derived from phosphorescence are rarely observed due to the deactivation of the triplet component due to heat. Absent. When a slow emission component is observed in the compound to be evaluated, it indicates that the triplet energy having a long excitation lifetime is transferred to the singlet energy by thermal activation and observed as delayed fluorescence.
エネルギーギャップ(Eg)の算出
 前述の方法で得られた吸収スペクトルの長波長末端A(nm)からEg=1240/Aで算出する。
Calculation of energy gap (Eg) Eg = 1240 / A is calculated from the long wavelength end A (nm) of the absorption spectrum obtained by the above method.
イオン化ポテンシャル(Ip)の測定
 ITO(インジウム・スズ酸化物)の蒸着された透明支持基板(28mm×26mm×0.7mm)を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、対象化合物を入れたモリブデン製蒸着用ボートを装着した後、真空槽を5×10-4Paまで減圧する。次に、蒸着用ボートを加熱して対象化合物を蒸発させ、対象化合物の単独膜(Neat膜)を形成する。
Measurement of ionization potential (Ip) A transparent support substrate (28 mm x 26 mm x 0.7 mm) on which ITO (indium tin oxide) is deposited is fixed to a substrate holder of a commercially available thin-film deposition device (manufactured by Choshu Sangyo Co., Ltd.). After mounting the molybdenum vapor deposition boat containing the target compound, the vacuum chamber is depressurized to 5 × 10 -4 Pa. Next, the vapor deposition boat is heated to evaporate the target compound to form a single film (Neat film) of the target compound.
 得られた単独膜をサンプルとし、光電子分光計(住友重機械工業株式会社 PYS-201)を用いて対象化合物のイオン化ポテンシャルを測定する。 Using the obtained single membrane as a sample, the ionization potential of the target compound is measured using a photoelectron spectrometer (Sumitomo Heavy Industries, Ltd. PYS-201).
電子親和力(Ea)の算出
 前述の方法で測定したイオン化ポテンシャルと前述の方法で算出したエネルギーギャップとの差より、電子親和力を見積ることができる。
Calculation of electron affinity (Ea) The electron affinity can be estimated from the difference between the ionization potential measured by the above method and the energy gap calculated by the above method.
励起一重項エネルギー準位E(S,Sh)、励起三重項エネルギー準位E(T,Sh)の測定
 ガラス基板上に形成した対象化合物の単独膜について、77Kで、吸収スペクトルの蛍光ピークが重ならない程度に長波長側のピークを励起光に蛍光スペクトルを観測し、その蛍光スペクトルのピーク短波長側の肩より励起一重項エネルギー準位E(S,Sh)を求める。
 また、ガラス基板上に形成した対象化合物の単独膜に、77Kで、吸収スペクトルの蛍光ピークが重ならない程度に長波長側のピークをnm励起光に燐光スペクトルを観測し、その燐光スペクトルのピーク短波長側の肩より励起三重項エネルギー準位E(T,Sh)を求める。
Measurement of excited single-term energy level E (S, Sh) and excited triple-term energy level E (T, Sh) For a single film of the target compound formed on a glass substrate, the fluorescence peak of the absorption spectrum is heavy at 77K. The fluorescence spectrum is observed with the peak on the long wavelength side as the excitation light to the extent that it does not become, and the excitation single-term energy level E (S, Sh) is obtained from the shoulder on the short wavelength side of the peak of the fluorescence spectrum.
Further, on a single film of the target compound formed on the glass substrate, a phosphorescence spectrum was observed at 77K with a peak on the long wavelength side as nm excitation light so that the fluorescence peaks of the absorption spectrum did not overlap, and the peak short of the phosphorescence spectrum was observed. The excited triple term energy level E (T, Sh) is obtained from the shoulder on the wavelength side.
<有機EL素子の評価>
 以上のように、本発明の化合物は、適切なエネルギーギャップ(Eg)、高い三重項励起エネルギー(E)および小さいΔESTを特徴として有しているため、例えば発光層および電荷輸送層への適用が期待でき、特に発光層への適用が期待できる。
<Evaluation of organic EL elements>
As described above, the compounds of the invention, applied to the appropriate energy gap (Eg), because it has as a feature a high triplet excitation energy (E T) and small DerutaEST, for example, a light emitting layer and a charge transport layer Can be expected, and in particular, application to the light emitting layer can be expected.
評価項目および評価方法
 評価項目としては、駆動電圧(V)、発光波長(nm)、CIE色度(x,y)、外部量子効率(%)、発光スペクトルの最大波長(nm)および半値幅(nm)などがある。これらの評価項目は、適切な発光輝度時の値を用いることができる。
Evaluation items and evaluation methods The evaluation items include drive voltage (V), emission wavelength (nm), CIE chromaticity (x, y), external quantum efficiency (%), maximum wavelength (nm) of emission spectrum, and full width at half maximum ( nm) and so on. For these evaluation items, values at an appropriate emission brightness can be used.
 発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。 The quantum efficiency of the light emitting element includes the internal quantum efficiency and the external quantum efficiency. In the internal quantum efficiency, the external energy injected as electrons (or holes) into the light emitting layer of the light emitting element is converted into pure photons. Shows the ratio. On the other hand, the external quantum efficiency is calculated based on the amount of these photons emitted to the outside of the light emitting element, and a part of the photons generated in the light emitting layer is continuously absorbed or reflected inside the light emitting element. Therefore, the external quantum efficiency is lower than the internal quantum efficiency because it is not emitted to the outside of the light emitting element.
 分光放射輝度(発光スペクトル)と外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、電圧を印加することにより素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。また、発光スペクトルの半値幅は、極大発光波長を中心として、その強度が50%になる上下の波長間の幅として求められる。 The measurement method of spectral radiance (emission spectrum) and external quantum efficiency is as follows. Using a voltage / current generator R6144 manufactured by Advantest, the element was made to emit light by applying a voltage. The spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface using a spectroradiance meter SR-3AR manufactured by TOPCON. Assuming that the light emitting surface is a completely diffused surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by π is the number of photons at each wavelength. Next, the number of photons was integrated over the entire observed wavelength region to obtain the total number of photons emitted from the device. The value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the value obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency. The full width at half maximum of the emission spectrum is obtained as the width between the upper and lower wavelengths at which the intensity becomes 50% centering on the maximum emission wavelength.
[1]有機EL素子の作製と評価
 本実施例では、Adv. Mater. 2016, 28, 2777-2781に記載された構造に準じて有機EL素子を作製した。作製した有機EL素子の層構成を表1に示す。
[1] Fabrication and evaluation of organic EL device In this example, an organic EL device was manufactured according to the structure described in Adv. Mater. 2016, 28, 2777-2781. Table 1 shows the layer structure of the produced organic EL element.
Figure JPOXMLDOC01-appb-T000309
Figure JPOXMLDOC01-appb-T000309
 表1において、「NPD」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニルであり、「TcTa」は4,4’,4”-トリス(N-カルバゾリル)トリフェニルアミンであり、「mCP」は1,3-ビス(N-カルバゾリル)ベンゼンであり、「mCBP」は3,3’-ビス(N-カルバゾリル)-1,1’-ビフェニルであり、「BPy-TP2」は2,7-ジ([2,2’-ビピリジン]-5-イル)トリフェニレン、「2CzBN」は3,4-ジカルバゾリルベンゾニトリル、(DOBNA1)は3,11-ジ-o-トリル-5,9-ジオキサ-13b-ボラナフト[3,2,1-de]アントラセンである。 In Table 1, "NPD" is N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, and "TcTa" is 4,4', 4 "-tris (N-carbazolyl). It is a triphenylamine, "mCP" is 1,3-bis (N-carbazolyl) benzene, "mCBP" is 3,3'-bis (N-carbazolyl) -1,1'-biphenyl, and " "BPy-TP2" is 2,7-di ([2,2'-bipyridine] -5-yl) triphenylene, "2CzBN" is 3,4-dicarbazolylbenzonitrile, and (DOBNA1) is 3,11-di. -O-trill-5,9-dioxa-13b-boranaft [3,2,1-de] anthracene.
Figure JPOXMLDOC01-appb-C000310
Figure JPOXMLDOC01-appb-C000310
実施例1:化合物(1-2)をドーパントとして用いた素子1の作製と評価
 厚さ50nmのITO(インジウム・スズ酸化物)からなる陽極が形成されたガラス基板(26mm×28mm×0.7mm)の上に、各薄膜を真空蒸着法にて、真空度5×10-4Paで積層する。
 まず、ITO上に、NPDを膜厚40nmになるように蒸着し、その上に、TcTaを膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成する。続いて、mCPを膜厚15nmになるように蒸着して電子阻止層を形成する。次に、ホストとしての化合物mCBP、ドーパントとしての化合物(1-2)を異なる蒸着源から共蒸着し、膜厚20nmの発光層を形成する。このとき、ホスト、アシスティングドーパントおよびエミッティングドーパントの質量比は90:10とする。次に、2CzBNを膜厚10nm、次いで、BPy-TP2を膜厚20nmになるように蒸着して電子輸送層を形成する。続いて、LiFを膜厚1nmになるように蒸着し、その上に、アルミニウムを膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得る。
Example 1: Fabrication and evaluation of device 1 using compound (1-2) as a dopant A glass substrate (26 mm × 28 mm × 0.7 mm) on which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. ), Each thin film is laminated with a vacuum degree of 5 × 10 -4 Pa by a vacuum vapor deposition method.
First, NPD is deposited on ITO so as to have a film thickness of 40 nm, and TcTa is deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers. Subsequently, mCP is vapor-deposited to a film thickness of 15 nm to form an electron blocking layer. Next, the compound mCBP as a host and the compound (1-2) as a dopant are co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm. At this time, the mass ratio of the host, the assisting dopant, and the emerging dopant is 90:10. Next, 2CzBN is deposited to have a film thickness of 10 nm, and then BPy-TP2 is vapor-deposited to a film thickness of 20 nm to form an electron transport layer. Subsequently, LiF is vapor-deposited to a film thickness of 1 nm, and aluminum is vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL element.
実施例2:化合物(4-1)をドーパントとして、DOBNA1をホストとして用いた素子の作製と評価
 化合物(1-2)を化合物(4-1)へ、mCBPをDOBNA1へ変更する以外は実施例1と同様の手順および構成にてEL素子を得られる。
Example 2: Fabrication and evaluation of an element using compound (4-1) as a dopant and DOBNA1 as a host Example except that compound (1-2) is changed to compound (4-1) and mCBP is changed to DOBNA1. An EL element can be obtained by the same procedure and configuration as in 1.
実施例3:化合物(4-4)をドーパントとして用いた素子の作製と評価
 化合物(4-1)を化合物(4-4)へ変更する以外は実施例2と同様の手順および構成にてEL素子を得られる。
Example 3: Fabrication and evaluation of a device using compound (4-4) as a dopant EL in the same procedure and configuration as in Example 2 except that compound (4-1) is changed to compound (4-4). The element can be obtained.
実施例4:化合物(4-10)をドーパントとして用いた素子の作製と評価
 化合物(4-1)を化合物(4-10)へ変更する以外は実施例2と同様の手順および構成にてEL素子を得られる。
Figure JPOXMLDOC01-appb-T000311
Example 4: Fabrication and evaluation of a device using compound (4-10) as a dopant EL in the same procedure and configuration as in Example 2 except that compound (4-1) is changed to compound (4-10). The element can be obtained.
Figure JPOXMLDOC01-appb-T000311
 表2において、「TSPO1」はジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキシドである。以下に化学構造を示す。 In Table 2, "TSPO1" is a diphenyl [4- (triphenylsilyl) phenyl] phosphine oxide. The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000312
Figure JPOXMLDOC01-appb-C000312
<実施例5>
<構成A:ホスト化合物をmCBP、アシスティングドーパントを2PXZ-TAZ、エミッティングドーパントを化合物(1-2)とした素子>
 スパッタリングにより200nmの厚さに製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、NPD、TcTa、mCP、mCBP、2PXZ-TAZ、化合物(1-2)、およびTSPO1をそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着する。
<Example 5>
<Structure A: Element in which the host compound is mCBP, the assisting dopant is 2PXZ-TAZ, and the emtiting dopant is compound (1-2)>
A 26 mm × 28 mm × 0.7 mm glass substrate (manufactured by Opto Science, Inc.) obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm is used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available thin-film deposition equipment (manufactured by Choshu Sangyo Co., Ltd.), and tantalum containing NPD, TcTa, mCP, mCBP, 2PXZ-TAZ, compound (1-2), and TSPO1 respectively. A boat for vapor deposition made of aluminum nitride and a boat for vapor deposition made of aluminum nitride containing LiF and aluminum are installed.
 透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を5×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着し、次に、TcTaを加熱して膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成する。次に、mCPを加熱して膜厚15nmになるように蒸着して電子阻止層を形成する。次に、ホストとしてmCBP、アシスティングドーパントとして2PXZ-TAZおよびエミッティングドーパントとして化合物(ED1)を同時に加熱して膜厚20nmになるように共蒸着して発光層を形成する。ホスト、アシスティングドーパントおよびエミッティングドーパントの質量比がおよそ90対9対1になるように蒸着速度を調節する。次に、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。以上の各層の蒸着速度は0.01~1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得られる。このとき、アルミニウムの蒸着速度は1nm~10nm/秒になるように調節する。 The following layers are sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 -4 Pa, first the NPD is heated and vapor-deposited to a film thickness of 40 nm, and then TcTa is heated and vapor-deposited to a film thickness of 15 nm to obtain two layers. It forms a hole injection transport layer composed of. Next, the mCP is heated and vapor-deposited to a film thickness of 15 nm to form an electron blocking layer. Next, mCBP as a host, 2PXZ-TAZ as an assisting dopant, and compound (ED1) as an emulating dopant are simultaneously heated and co-deposited to a film thickness of 20 nm to form a light emitting layer. The deposition rate is adjusted so that the mass ratio of the host, assisting dopant, and emerging dopant is approximately 90: 9: 1. Next, TSPO1 is heated and vapor-deposited to a film thickness of 30 nm to form an electron transport layer. The vapor deposition rate of each of the above layers is 0.01 to 1 nm / sec. Then, LiF is heated and vapor-deposited to a film thickness of 1 nm at a vapor deposition rate of 0.01 to 0.1 nm / sec, and then aluminum is heated and vapor-deposited to a film thickness of 100 nm to form a cathode. Then, an organic EL element can be obtained. At this time, the vapor deposition rate of aluminum is adjusted to be 1 nm to 10 nm / sec.
<実施例6>
<構成A:ホスト化合物をmCBP、アシスティングドーパントを2PXZ-TAZ、エミッティングドーパントを化合物(4-1)とした素子>
 エミッティングドーパントを化合物(4-1)に変更した以外は実施例5と同様の手順および構成にてEL素子を得られる。
<Example 6>
<Structure A: Element in which the host compound is mCBP, the assisting dopant is 2PXZ-TAZ, and the emittering dopant is compound (4-1)>
An EL device can be obtained by the same procedure and configuration as in Example 5 except that the emitting dopant is changed to compound (4-1).
<実施例7>
<構成A:ホスト化合物をmCBP、アシスティングドーパントを化合物(1-2)、エミッティングドーパントを化合物(ED1)とした素子>
 アシスティングドーパントを化合物(1-2)、エミッティングドーパントを化合物(ED1)に変更した以外は実施例5と同様の手順および構成にてEL素子を得られる。
<Example 7>
<Structure A: Element in which the host compound is mCBP, the assisting dopant is compound (1-2), and the emittering dopant is compound (ED1)>
An EL device can be obtained by the same procedure and configuration as in Example 5 except that the assisting dopant is changed to compound (1-2) and the emittering dopant is changed to compound (ED1).
<実施例8>
<構成A:ホスト化合物をmCBP、アシスティングドーパントを化合物(1-2)、エミッティングドーパントを化合物(4-1)とした素子>
 アシスティングドーパントを化合物(4-1)に変更した以外は実施例7と同様の手順および構成にてEL素子を得られる。
<Example 8>
<Structure A: Element in which the host compound is mCBP, the assisting dopant is compound (1-2), and the emittering dopant is compound (4-1)>
An EL device can be obtained by the same procedure and configuration as in Example 7 except that the assisting dopant is changed to compound (4-1).
合成実施例1:化合物(4-4-1)の合成
Figure JPOXMLDOC01-appb-C000313
Synthesis Example 1: Synthesis of compound (4-4-1)
Figure JPOXMLDOC01-appb-C000313
 窒素雰囲気下、10H-フェノキサジン (0.68g、3.7mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、4.6mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g、0.15mmol)、中間体A(1.5g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2、0.04g、0.04mmol)をフラスコに入れ、加熱還流下で6時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-4-1)を得た(0.32g、収率16%)。
Under a nitrogen atmosphere, 10H-phenoxazine (0.68 g, 3.7 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate. ([(T-Bu) 3 PH] BF 4 , 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis (dibenzylideneacetone) palladium as a palladium catalyst (Pd (dba) ) 2, 0.04 g, 0.04 mmol) was placed in a flask and heated under heating and reflux for 6 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-4-1) (0.32 g, yield 16%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=2.30(s,30H)、5.72(s,2H)、5.75(5.745.745.745.745.745.745.745.745.745.745.745.745.745.745.745.745.74,2H)、5.84(s,1H)、6.82(d,2H)、6.94(d,4H)、7.02-7.05(m,12H)、7.12-7.14(m,6H)、7.33-7.37(m,6H)、7.41(s,2H)、9.31(d,2H)、10.52(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 2.30 (s, 30H), 5.72 (s, 2H), 5.75 (5.745.745.745.745.745.745.745) .745.745.745.745.745.745.745.745.745.74,2H) 5.84 (s, 1H), 6.82 (d, 2H), 6.94 (d, 4H) , 7.02-7.05 (m, 12H), 7.12-7.14 (m, 6H), 7.33-7.37 (m, 6H), 7.41 (s, 2H), 9 .31 (d, 2H), 10.52 (s, 1H).
合成実施例2:化合物(4-10-1)の合成
Figure JPOXMLDOC01-appb-C000314
Synthesis Example 2: Synthesis of compound (4-10-1)
Figure JPOXMLDOC01-appb-C000314
 窒素雰囲気下、10H-フェノチアジン (0.80g、4.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、3.0mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.04g、0.14mmol)、中間体A(1.5g、1.5mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.04mmol)をフラスコに入れ、加熱還流下で3時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-10-1)を得た(0.9g、1.5mmol、収率45%)。 Under nitrogen atmosphere, 10H-phenothiazine (0.80 g, 4.0 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 3.0 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate ( [(T-Bu) 3 PH] BF 4 , 0.04 g, 0.14 mmol), intermediate A (1.5 g, 1.5 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba)) as a palladium catalyst. 2 , 0.04 g, 0.04 mmol) was placed in a flask and heated under heating and reflux for 3 hours. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-10-1) (0.9 g, 1.5 mmol, yield 45%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=2.27(s,30H)、5.71(s,2H)、5.75(s,2H)、5.86(s,1H)、6.83(d,2H)、6.96(t,4H)、7.07-7.20(m,18H)、7.31(s,4H)、7.36(d,2H)、7.43(s,2H)、9.31(d,2H)、10.52(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 2.27 (s, 30H), 5.71 (s, 2H), 5.75 (s, 2H), 5.86 (s, 1H), 6 .83 (d, 2H), 6.96 (t, 4H), 7.07-7.20 (m, 18H), 7.31 (s, 4H), 7.36 (d, 2H), 7. 43 (s, 2H), 9.31 (d, 2H), 10.52 (s, 1H).
合成実施例3:化合物(4-1-1)の合成
Figure JPOXMLDOC01-appb-C000315
Synthesis Example 3: Synthesis of compound (4-1-1)
Figure JPOXMLDOC01-appb-C000315
 窒素雰囲気下、9,9-ジメチル-9,10-ジヒドロアクリジン (0.78g、3.7mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、4.6mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g、0.15mmol)、中間体A(1.5g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.039mmol)をフラスコに入れ、加熱還流下で5時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-1-1)を得た(0.7g、収率35%)。
Under a nitrogen atmosphere, 9,9-dimethyl-9,10-dihydroaclysine (0.78 g, 3.7 mmol), sodium-t-butylid (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), tri- t-Butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis (didi) as a palladium catalyst. Benzidyleneacetone) palladium (Pd (dba) 2 , 0.04 g, 0.039 mmol) was placed in a flask and heated under heating reflux for 5 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-1-1) (0.7 g, yield 35%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.68(s,12H)、2.30(s,30H)、5.74(s,2H)、5.75(s,2H)、5.87(s,1H)、6.81(d,2H)、6.94(t,4H)、7.06(s,4H)、7.10(s,2H)、7.14-7.19(m,12H)、7.34-7.36(m,6H)、7.43(s,2H)、9.32(d,2H)、10.51(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.68 (s, 12H), 2.30 (s, 30H), 5.74 (s, 2H), 5.75 (s, 2H), 5 .87 (s, 1H), 6.81 (d, 2H), 6.94 (t, 4H), 7.06 (s, 4H), 7.10 (s, 2H), 7.14-7. 19 (m, 12H), 7.34-7.36 (m, 6H), 7.43 (s, 2H), 9.32 (d, 2H), 10.51 (s, 1H).
合成実施例4:化合物(4-94-1)の合成
Figure JPOXMLDOC01-appb-C000316
Synthesis Example 4: Synthesis of compound (4-94-1)
Figure JPOXMLDOC01-appb-C000316
 窒素雰囲気下、9,9-ジメチル-9,10-ジヒドロアクリジン (0.87g、4.15mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.50g、5.2mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g)、中間体B(1.5g、1.73mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.04mml)をフラスコに入れ、加熱還流下で8時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-94-1)を得た(0.91g、収率43%)。
Under a nitrogen atmosphere, 9,9-dimethyl-9,10-dihydroaclysine (0.87 g, 4.15 mmol), sodium-t-butoxyd (NaOtBu, 0.50 g, 5.2 mmol), toluene (30 ml), tri- t-Butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.05 g), intermediate B (1.5 g, 1.73 mmol), and bis (dibenzylideneacetone) palladium as a palladium catalyst. (Pd (dba) 2 , 0.04 g, 0.04 mM) was placed in a flask and heated under heating and reflux for 8 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4.94-1) (0.91 g, yield 43%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.69(s,12H)、2.29(s,24H)、5.72(s,2H)、5.73(s,2H)、5.84(s,1H)、6.36(d,2H)、6.81-6.95(m,6H)、7.07(s,2H)、7.13-7.36(m,18H)、7.13(s,3H)、7.39(s,2H)、9.16(d,2H)、10.30(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.69 (s, 12H), 2.29 (s, 24H), 5.72 (s, 2H), 5.73 (s, 2H), 5 .84 (s, 1H), 6.36 (d, 2H), 6.81-6.95 (m, 6H), 7.07 (s, 2H), 7.13-7.36 (m, 18H) ), 7.13 (s, 3H), 7.39 (s, 2H), 9.16 (d, 2H), 10.30 (s, 1H).
合成実施例5:化合物(4-222-1)の合成
Figure JPOXMLDOC01-appb-C000317
Synthesis Example 5: Synthesis of compound (4-2221)
Figure JPOXMLDOC01-appb-C000317
 窒素雰囲気下、10H-フェノチアジン (0.85g、4.25mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.51g、5.3mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g、0.18mmol)、中間体C(1.5g、1.77mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.04mmol)をフラスコに入れ、加熱還流下で10時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-222-1)を得た(0.77g、収率37%)。
Under a nitrogen atmosphere, 10H-phenothiazine (0.85 g, 4.25 mmol), sodium-t-butoxide (NaOtBu, 0.51 g, 5.3 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate ( [(T-Bu) 3 PH] BF 4 , 0.05 g, 0.18 mmol), intermediate C (1.5 g, 1.77 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba)) as a palladium catalyst. 2 , 0.04 g, 0.04 mmol) was placed in a flask and heated under heating and reflux for 10 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-2221) (0.77 g, yield 37%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.26(s,18H)、2.28(s,12H)、5.71(s,2H)、5.73(s,2H)、5.86(s,1H)、6.84-7.36(m,20H)、7.04(s,4H)、7.14(s,2H)、9.16(d,2H)、10.32(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.26 (s, 18H), 2.28 (s, 12H), 5.71 (s, 2H), 5.73 (s, 2H), 5 .86 (s, 1H), 6.84-7.36 (m, 20H), 7.04 (s, 4H), 7.14 (s, 2H), 9.16 (d, 2H), 10. 32 (s, 1H).
合成実施例6:化合物(1-296-1)の合成
Figure JPOXMLDOC01-appb-C000318
Synthesis Example 6: Synthesis of compound (1-296-1)
Figure JPOXMLDOC01-appb-C000318
 窒素雰囲気下、10,10-ジメチル-5,10-ジヒドロジベンゾ[b,e][1,4]アザシリン (1.35g、6.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、1.4g、15.0mmol)、トルエン(100ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.15g、0.5mmol)、中間体E(2.81g、5.0mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.11g、0.13mmol)をフラスコに入れ、加熱還流下で4時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエン/ヘプタン(=1/9(容量比))で再結晶させることで、化合物(1-296-1)を得た(2.50g、収率53%)。
Under a nitrogen atmosphere, 10,10-dimethyl-5,10-dihydrodibenzo [b, e] [1,4] azacillin (1.35 g, 6.0 mmol), sodium-t-butoxide (NaOtBu, 1.4 g, 15) .0 mmol), toluene (100 ml), tri-t-butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.15 g, 0.5 mmol), intermediate E (2.81 g, 5) .0 mmol) and bis (dibenzylideneacetone) palladium (Pd (dba) 2 , 0.11 g, 0.13 mmol) as a palladium catalyst were placed in a flask and heated under reflux under heating for 4 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene / heptane (= 1/9 (volume ratio)) to obtain compound (1-296-1) (2.50 g, yield 53%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=0.65(s,12H)、2.20(s,12H)、7.04-7.12(m,10H)、7.23(s,2H)、7.29-7.41(m,12H)、7.40(s,2H)、7.71(d,2H)、8.70(d,2H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 0.65 (s, 12H), 2.20 (s, 12H), 7.04-7.12 (m, 10H), 7.23 (s,, 2H), 7.29-7.41 (m, 12H), 7.40 (s, 2H), 7.71 (d, 2H), 8.70 (d, 2H).
合成実施例7:化合物(1-295)の合成
Figure JPOXMLDOC01-appb-C000319
Synthesis Example 7: Synthesis of compound (1-295)
Figure JPOXMLDOC01-appb-C000319
 窒素雰囲気下、10,10-ジメチル-5,10-ジヒドロジベンゾ[b,e][1,4]アザシリン (1.35g、6.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、1.4g、15.0mmol)、トルエン(100ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.15g、0.5mmol)、中間体E(2.37g、5.0mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.11g、0.13mmol)をフラスコに入れ、加熱還流下で4時間加熱した。
 反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエン/ヘプタン(=1/20(容量比))で再結晶させることで、化合物(1-295)を得た(1.80g、収率42%)
Under a nitrogen atmosphere, 10,10-dimethyl-5,10-dihydrodibenzo [b, e] [1,4] azacillin (1.35 g, 6.0 mmol), sodium-t-butoxide (NaOtBu, 1.4 g, 15) .0 mmol), toluene (100 ml), tri-t-butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.15 g, 0.5 mmol), intermediate E (2.37 g, 5) .0 mmol) and bis (dibenzylideneacetone) palladium (Pd (dba) 2 , 0.11 g, 0.13 mmol) as a palladium catalyst were placed in a flask and heated under reflux under heating for 4 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene / heptane (= 1/20 (volume ratio)) to obtain compound (1-295) (1.80 g, yield 42%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=0.67(s,12H)、1.74-2.01(m,15H)、7.04(t,4H)、7.21(s,2H)、7.28-7.43(m,12H)、7.39(s,2H)、7.69(d,2H)、8.67(d,2H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 0.67 (s, 12H), 1.74-2.01 (m, 15H), 7.04 (t, 4H), 7.21 (s, 2H), 7.28-7.43 (m, 12H), 7.39 (s, 2H), 7.69 (d, 2H), 8.67 (d, 2H).
合成実施例8:化合物(2-30)の合成
Figure JPOXMLDOC01-appb-C000320
Synthesis Example 8: Synthesis of compound (2-30)
Figure JPOXMLDOC01-appb-C000320
 窒素雰囲気下、10,10-ジメチル-5,10-ジヒドロジベンゾ[b,e][1,4]アザシリン (1.35g、6.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、1.4g、15.0mmol)、トルエン(100ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.15g、0.5mmol)、中間体F(2.08g、5.0mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.11g、0.13mmol)をフラスコに入れ、加熱還流下で3時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエン/ヘプタン(=1/9(容量比))で再結晶させることで、化合物(2-30)を得た(1.93g、収率64%)
Under a nitrogen atmosphere, 10,10-dimethyl-5,10-dihydrodibenzo [b, e] [1,4] azacillin (1.35 g, 6.0 mmol), sodium-t-butoxide (NaOtBu, 1.4 g, 15) .0 mmol), toluene (100 ml), tri-t-butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.15 g, 0.5 mmol), intermediate F (2.08 g, 5) .0 mmol) and bis (dibenzylideneacetone) palladium (Pd (dba) 2 , 0.11 g, 0.13 mmol) as a palladium catalyst were placed in a flask and heated under reflux under heating for 3 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene / heptane (= 1/9 (volume ratio)) to obtain compound (2-30) (1.93 g, yield 64%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=0.64(s,6H)、1.25(s,18H)、7.02(t,2H)、7.24(s,2H)、7.30-7.40(m,6H)、7.40(s,2H)、7.71(d,2H)、8.67(d,2H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 0.64 (s, 6H), 1.25 (s, 18H), 7.02 (t, 2H), 7.24 (s, 2H), 7 .30-7.40 (m, 6H), 7.40 (s, 2H), 7.71 (d, 2H), 8.67 (d, 2H).
合成実施例9:化合物(2-26)の合成
Figure JPOXMLDOC01-appb-C000321
Synthesis Example 9: Synthesis of compound (2-26)
Figure JPOXMLDOC01-appb-C000321
 窒素雰囲気下、10H-フェノキサジン (1.10g、6.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、1.4g、15.0mmol)、トルエン(100ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.15g、0.5mmol)、中間体F(2.08g、5.0mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.11g、0.13mmol)をフラスコに入れ、加熱還流下で3時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエン/ヘプタン(=1/5(容量比))で再結晶させることで、化合物(2-26)を得た(1.44g、収率51%)
Under a nitrogen atmosphere, 10H-phenoxazine (1.10 g, 6.0 mmol), sodium-t-butoxide (NaOtBu, 1.4 g, 15.0 mmol), toluene (100 ml), tri-t-butylphosphonium tetrafluoroborate. ([(T-Bu) 3 PH] BF 4 , 0.15 g, 0.5 mmol), intermediate F (2.08 g, 5.0 mmol), and bis (dibenzylideneacetone) palladium as a palladium catalyst (Pd (dba) ) 2 , 0.11 g, 0.13 mmol) was placed in a flask and heated under reflux under heating for 3 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene / heptane (= 1/5 (volume ratio)) to obtain compound (2-26) (1.44 g, yield 51%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.27(s,18H)、6.96-7.00(m,6H)、7.15(d,2H)、7.21(s,2H)、7.40(s,2H)、7.71(d,2H)、8.69(d,2H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.27 (s, 18H), 6.96-7.00 (m, 6H), 7.15 (d, 2H), 7.21 (s, 2H), 7.40 (s, 2H), 7.71 (d, 2H), 8.69 (d, 2H).
合成実施例10:化合物(4-4)の合成
Figure JPOXMLDOC01-appb-C000322
Synthesis Example 10: Synthesis of compound (4-4)
Figure JPOXMLDOC01-appb-C000322
 窒素雰囲気下、10H-フェノキサジン (2.20g、12.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、1.44g、15.0mmol)、トルエン(150ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)3PH]BF4、0.15g、0.50mmol)、中間体G(4.16g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2、0.11g、0.13mmol)をフラスコに入れ、加熱還流下で8時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-4)を得た(0.83g、収率15%)。
Under nitrogen atmosphere, 10H-phenoxazine (2.20 g, 12.0 mmol), sodium-t-butoxide (NaOtBu, 1.44 g, 15.0 mmol), toluene (150 ml), tri-t-butylphosphonium tetrafluoroborate ([(T-Bu) 3PH] BF4, 0.15 g, 0.50 mmol), intermediate G (4.16 g, 1.54 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba) 2) as a palladium catalyst. , 0.11 g, 0.13 mmol) was placed in a flask and heated under reflux under heating for 8 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-4) (0.83 g, yield 15%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=5.70(s,2H)、5.74(s,2H)、5.86(s,1H)、6.83-7.15(m,28H)、7.32-7.45(m,14H)、9.29(d,2H)、10.30(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 5.70 (s, 2H), 5.74 (s, 2H), 5.86 (s, 1H), 6.83-7.15 (m, 28H), 7.32-7.45 (m, 14H), 9.29 (d, 2H), 10.30 (s, 1H).
合成実施例11:化合物(4-10)の合成
Figure JPOXMLDOC01-appb-C000323
Synthesis Example 11: Synthesis of compound (4-10)
Figure JPOXMLDOC01-appb-C000323
 窒素雰囲気下、10H-フェノチアジン (0.80g、4.0mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、3.0mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)3PH]BF4、0.04g、0.14mmol)、中間体A(1.5g、1.5mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2、0.04g、0.04mmol)をフラスコに入れ、加熱還流下で3時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-10-1)を得た(0.9g、1.5mmol、収率45%)。 Under a nitrogen atmosphere, 10H-phenothiazine (0.80 g, 4.0 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 3.0 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate ( [(T-Bu) 3PH] BF4, 0.04 g, 0.14 mmol), intermediate A (1.5 g, 1.5 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba) 2, as a palladium catalyst. 0.04 g (0.04 mmol) was placed in a flask and heated under heating and reflux for 3 hours. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-10-1) (0.9 g, 1.5 mmol, yield 45%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=5.73(s,2H)、5.74(s,2H)、5.87(s,1H)、6.81-7.18(m,28H)、7.33-7.48(m,14H)、9.28(d,2H)、10.30(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 5.73 (s, 2H), 5.74 (s, 2H), 5.87 (s, 1H), 6.81-7.18 (m, 28H), 7.33-7.48 (m, 14H), 9.28 (d, 2H), 10.30 (s, 1H).
合成実施例12:化合物(4-1)の合成
Figure JPOXMLDOC01-appb-C000324
Synthesis Example 12: Synthesis of compound (4-1)
Figure JPOXMLDOC01-appb-C000324
 窒素雰囲気下、9,9-ジメチル-9,10-ジヒドロアクリジン (0.78g、3.7mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、4.6mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)3PH]BF4、0.05g、0.15mmol)、中間体A(1.5g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2、0.04g、0.039mmol)をフラスコに入れ、加熱還流下で5時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-1-1)を得た(0.7g、収率35%)。
Under a nitrogen atmosphere, 9,9-dimethyl-9,10-dihydroaclysine (0.78 g, 3.7 mmol), sodium-t-butylid (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), tri- t-Butylphosphonium tetrafluoroborate ([(t-Bu) 3PH] BF4, 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis (dibenzylideneacetone) as a palladium catalyst. ) Palladium (Pd (dba) 2, 0.04 g, 0.039 mmol) was placed in a flask and heated under reflux under heating for 5 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-1-1) (0.7 g, yield 35%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.68(s,12H)、5.73(s,2H)、5.73(s,2H)、5.87(s,1H)、6.83-7.45(m,42H)、9.32(d,2H)、10.30(s,1H).
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.68 (s, 12H), 5.73 (s, 2H), 5.73 (s, 2H), 5.87 (s, 1H), 6 .83-7.45 (m, 42H), 9.32 (d, 2H), 10.30 (s, 1H).
合成実施例13:化合物(4-438-1)の合成
Figure JPOXMLDOC01-appb-C000325
Synthesis Example 13: Synthesis of compound (4-438-1)
Figure JPOXMLDOC01-appb-C000325
 窒素雰囲気下、カルバゾール (0.62g、3.7mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、4.6mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g、0.15mmol)、中間体A(1.5g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.039mmol)をフラスコに入れ、加熱還流下で5時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-438-1)を得た(0.5g、収率31%)。
Under a nitrogen atmosphere, carbazole (0.62 g, 3.7 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), tri-t-butylphosphonium tetrafluoroborate ([( t-Bu) 3 PH] BF 4 , 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis (dibenzylideneacetone) palladium (Pd (dba) 2 , as palladium catalyst. 0.04 g (0.039 mmol) was placed in a flask and heated under heating and reflux for 5 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-438-1) (0.5 g, yield 31%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=2.26(s,30H)、5.72(s,2H)、5.74(s,2H)、5.86(s,1H)、6.82(d,2H)、7.04(s,4H)、7.10(s,2H)、7.16(t,4H)、7.31-7.37(m,10H)、7.42(s,2H)、7.96(d,4H)、8.56(d,4H)、9.32(d,2H)、10.48(s,1H)
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 2.26 (s, 30H), 5.72 (s, 2H), 5.74 (s, 2H), 5.86 (s, 1H), 6 .82 (d, 2H), 7.04 (s, 4H), 7.10 (s, 2H), 7.16 (t, 4H), 7.31-7.37 (m, 10H), 7. 42 (s, 2H), 7.96 (d, 4H), 8.56 (d, 4H), 9.32 (d, 2H), 10.48 (s, 1H)
合成実施例14:化合物(4-13-1)の合成
Figure JPOXMLDOC01-appb-C000326
Synthesis Example 14: Synthesis of compound (4-13-1)
Figure JPOXMLDOC01-appb-C000326
 窒素雰囲気下、1,3,6,8-テトラメチル-9H-カルバゾール (0.83g、3.7mmol)、ナトリウム-t-ブトキシド(NaOtBu、0.45g、4.6mmol)、トルエン(30ml)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.05g、0.15mmol)、中間体A(1.5g、1.54mmol)、およびパラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(Pd(dba)、0.04g、0.039mmol)をフラスコに入れ、加熱還流下で5時間加熱した。
反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をトルエンで再結晶させることで、化合物(4-13-1)を得た(0.3g、収率14%)。
Under a nitrogen atmosphere, 1,3,6,8-tetramethyl-9H-carbazole (0.83 g, 3.7 mmol), sodium-t-butoxide (NaOtBu, 0.45 g, 4.6 mmol), toluene (30 ml), Tri-t-butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 , 0.05 g, 0.15 mmol), intermediate A (1.5 g, 1.54 mmol), and bis as a palladium catalyst. (Dibenzylideneacetone) palladium (Pd (dba) 2 , 0.04 g, 0.039 mmol) was placed in a flask and heated under heating and reflux for 5 hours.
After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. After concentrating the organic layer, it was purified by a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from toluene to obtain compound (4-13-1) (0.3 g, yield 14%).
 NMRスペクトルにより得られた化合物の構造を確認した。
 H-NMR(400MHz,CDCl):δ=1.91(s,12H)、2.29(s,30H)、2.37(s,12H)、5.72(s,2H)、5.74(s,2H)、5.84(s,1H)、6.84(d,2H)、6.86(s,4H)、7.04(s,4H)、7.13(s,2H)、7.30(d,4H)、7.40(dd,2H)、7.42(s,2H)、8.69(s,4H)、9.30(d,2H)、10.50(s,1H)
The structure of the compound obtained by the NMR spectrum was confirmed.
1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.91 (s, 12H), 2.29 (s, 30H), 2.37 (s, 12H), 5.72 (s, 2H), 5 .74 (s, 2H), 5.84 (s, 1H), 6.84 (d, 2H), 6.86 (s, 4H), 7.04 (s, 4H), 7.13 (s,, 2H), 7.30 (d, 4H), 7.40 (dd, 2H), 7.42 (s, 2H), 8.69 (s, 4H), 9.30 (d, 2H), 10. 50 (s, 1H)
 以下の実施例では下記の化合物を使用した。
Figure JPOXMLDOC01-appb-C000327
The following compounds were used in the following examples.
Figure JPOXMLDOC01-appb-C000327
構造計算例1:化合物(4-4-1)をドーパントとして用いたドープ膜の作製と評価
 ホストとしての化合物DOBNA1、ドーパントとしての化合物(4-4-1)を異なる蒸着源から共蒸着し、膜厚60nmの発光層を形成した。このとき、ホストおよびエミッティングドーパントの質量比は99:1とした。
Structural calculation example 1: Preparation and evaluation of a dope film using compound (4-4-1) as a dopant Compound DOBNA1 as a host and compound (4-4-1) as a dopant are co-deposited from different vapor deposition sources. A light emitting layer having a film thickness of 60 nm was formed. At this time, the mass ratio of the host and the emitting dopant was 99: 1.
 作製したドープ膜を分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて、室温における蛍光スペクトル、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルを測定した。室温における蛍光スペクトルからは蛍光スペクトルピーク波長を、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルからはそれぞれのピークの立ち上がりより最低励起一重項エネルギー(S1)および最低励起三重項エネルギー(T1)を求めた。 The prepared dope film was measured for fluorescence spectrum at room temperature, fluorescence spectrum at 77K, and phosphorescence spectrum at 77K using a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Co., Ltd.). The fluorescence spectrum peak wavelength was obtained from the fluorescence spectrum at room temperature, and the lowest excited single term energy (S1) and the lowest excited triple term energy (T1) were obtained from the rise of each peak from the fluorescence spectrum at 77K and the phosphorescence spectrum at 77K.
 作製したドープ膜を蛍光寿命測定装置(浜松ホトニクス(株)製、C11367-01)を用いて300Kで蛍光寿命を測定した。 The fluorescence lifetime of the prepared doping film was measured at 300 K using a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics Co., Ltd.).
 また、化合物(4-4-1)における置換基(フェノキサジン基)の部分的なHOMOエネルギーを見積もるために、N-フェニルフェノキサジンの構造計算を行った。 In addition, in order to estimate the partial HOMO energy of the substituent (phenoxazine group) in compound (4-4-1), the structural calculation of N-phenylphenoxazine was performed.
構造計算例2:化合物(BD2)をドーパントとして用いたドープ膜の作製と評価
 ドーパントとして化合物(BD2)を用いた以外は実施例9と同様の手順でドープ膜を作製した。加えて、作製したドープ膜を用いて、室温における蛍光スペクトル、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルおよび遅延蛍光寿命を測定した。また、化合物(BD2)における置換基(ジフェニルアミン基)の部分的なHOMOエネルギーを見積もるために、トリフェニルアミンの構造計算を行った。
Structural Calculation Example 2: Preparation and Evaluation of Dope Film Using Compound (BD2) as a Dopant A dope film was prepared in the same procedure as in Example 9 except that the compound (BD2) was used as a dopant. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, a structural calculation of triphenylamine was performed in order to estimate the partial HOMO energy of the substituent (diphenylamine group) in the compound (BD2).
構造計算例3:化合物(4-10-1)をドーパントとして用いたドープ膜の作製と評価
 ドーパントとして化合物(4-10-1)を用いた以外は実施例9と同様の手順でドープ膜を作製した。加えて、作製したドープ膜を用いて、室温における蛍光スペクトル、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルおよび遅延蛍光寿命を測定した。また、化合物(4-10-1)における置換基(フェノチアジン基)の部分的なHOMOエネルギーを見積もるために、N-フェニルフェノチアジンの構造計算を行った。
Structural calculation example 3: Preparation and evaluation of a doped film using compound (4-10-1) as a dopant A doped film was prepared in the same procedure as in Example 9 except that compound (4-10-1) was used as a dopant. Made. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, structural calculations of N-phenylphenothiazine were performed in order to estimate the partial HOMO energy of the substituent (phenothiazine group) in compound (4-10-1).
構造計算例4:化合物(4-1-1)をドーパントとして用いたドープ膜の作製と評価
 ドーパントとして化合物(4-1-1)を用いた以外は実施例9と同様の手順でドープ膜を作製した。加えて、作製したドープ膜を用いて、室温における蛍光スペクトル、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルおよび遅延蛍光寿命を測定した。また、化合物(4-1-1)における置換基(ジメチルアクリジン基)の部分的なHOMOエネルギーを見積もるために、N-フェニルジメチルアクリジンの構造計算を行った。
Structural Calculation Example 4: Preparation and Evaluation of Dope Membrane Using Compound (4-1-1) as Dopant A dope film was prepared in the same procedure as in Example 9 except that compound (4-1-1) was used as a dopant. Made. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, a structural calculation of N-phenyldimethylacridine was performed in order to estimate the partial HOMO energy of the substituent (dimethylacridine group) in compound (4-1-1).
構造計算例5:化合物(BD3)をドーパントとして用いたドープ膜の作製と評価
 ドーパントとして化合物(BD3)を用いた以外は実施例9と同様の手順でドープ膜を作製した。加えて、作製したドープ膜を用いて、室温における蛍光スペクトル、77Kにおける蛍光スペクトルおよび77Kにおける燐光スペクトルおよび遅延蛍光寿命を測定した。また、化合物(BD3)における置換基(カルバゾリル)の部分的なHOMOエネルギーを見積もるために、N-フェニルカルバゾールの構造計算を行った。
Structural Calculation Example 5: Preparation and Evaluation of Dope Film Using Compound (BD3) as a Dopant A dope film was prepared in the same procedure as in Example 9 except that the compound (BD3) was used as a dopant. In addition, the prepared dope film was used to measure the fluorescence spectrum at room temperature, the fluorescence spectrum at 77K, the phosphorescence spectrum at 77K, and the delayed fluorescence lifetime. In addition, structural calculations of N-phenylcarbazole were performed to estimate the partial HOMO energy of the substituent (carbazolyl) in compound (BD3).
 構造計算例1~5の評価結果および計算結果については表3にまとめた。加えて、置換基の部分的なHOMOおよび遅延蛍光寿命のプロットを図2に示す。 The evaluation results and calculation results of structural calculation examples 1 to 5 are summarized in Table 3. In addition, a plot of partial HOMO and delayed fluorescence lifetime of substituents is shown in FIG.
Figure JPOXMLDOC01-appb-T000328
Figure JPOXMLDOC01-appb-T000328
 構造計算例1~5を比較すると、いずれの化合物もΔESTが小さく、測定された遅延蛍光寿命は本発明の化合物(4-4-1)が最もTADF性が高かった。直接に高次三重項エネルギーを測定することはできないため、置換基構造の構造計算値より求められたHOMOに対して遅延蛍光寿命をプロットした。構造計算例2の化合物(BD2)に対して置換基のHOMOが浅い化合物である化合物(4-4-1)は遅延蛍光寿命が小さく、化合物(BD2)に対して化合物(4-4-1)は適切な置換基を選ぶことにより、高次三重項エネルギーが適切に調節されたためTADF性が改善したと予想された。 Comparing Structural Calculation Examples 1 to 5, all the compounds had a small ΔEST, and the measured delayed fluorescence lifetime of the compound (4-4-1) of the present invention was the highest in TADF. Since the higher-order triplet energy cannot be measured directly, the delayed fluorescence lifetime was plotted against the HOMO obtained from the structurally calculated values of the substituent structure. The compound (4-4-1), which has a shallower HOMO as a substituent than the compound (BD2) of Structural Calculation Example 2, has a small delayed fluorescence lifetime and is a compound (4-4-1) with respect to the compound (BD2). ) Was expected to improve TADF property because the higher triplet energy was appropriately adjusted by selecting an appropriate substituent.
 以上より、主骨格の部分的なエネルギーおよび置換基の部分的なエネルギーの調整によるTADF性が改善できることが示された。つまり、主骨格の構造が異なれば部分構造も異なり、実施例9、比較例1および参考例1~3は置換基の限定を示すものではない。 From the above, it was shown that the TADF property can be improved by adjusting the partial energy of the main skeleton and the partial energy of the substituent. That is, if the structure of the main skeleton is different, the partial structure is also different, and Example 9, Comparative Example 1 and Reference Examples 1 to 3 do not indicate the limitation of substituents.
 ホウ素原子および/または窒素原子が互いにm位に置換されている化合物は極めて半値幅の狭い発光が得られることが知られているが、適切な置換基を用いて高次三重項エネルギーを調節することでTADF性を向上することができる。 Compounds in which the boron atom and / or nitrogen atom are substituted at the m-position of each other are known to give light emission with a very narrow half width, but the higher triplet energy is adjusted by using an appropriate substituent. Therefore, the TADF property can be improved.
実施例9:化合物(4-4-1)をドーパントとして用いた素子の作製と評価
 厚さ50nmのITO(インジウム・スズ酸化物)からなる陽極が形成されたガラス基板(26mm×28mm×0.7mm)の上に、各薄膜を真空蒸着法にて、真空度5×10-4Paで積層した。
 まず、ITO上に、NPDを膜厚40nmになるように蒸着し、その上に、TcTaを膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成した。続いて、mCPを膜厚15nmになるように蒸着して電子阻止層を形成した。次に、ホストとしての化合物DOBNA1、ドーパントとしての化合物(4-4-1)を異なる蒸着源から共蒸着し、膜厚20nmの発光層を形成した。このとき、ホストおよびエミッティングドーパントの質量比は99:1とした。次に、2CzBNを膜厚10nm、次いで、BPy-TP2を膜厚20nmになるように蒸着して電子輸送層を形成した。続いて、LiFを膜厚1nmになるように蒸着し、その上に、アルミニウムを膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
Example 9: Fabrication and evaluation of an element using the compound (4-4-1) as a dopant A glass substrate (26 mm × 28 mm × 0.) In which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. Each thin film was laminated on 7 mm) at a vacuum degree of 5 × 10 -4 Pa by a vacuum vapor deposition method.
First, NPD was deposited on ITO so as to have a film thickness of 40 nm, and TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers. Subsequently, mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer. Next, the compound DOBNA1 as a host and the compound (4-4-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm. At this time, the mass ratio of the host and the emitting dopant was 99: 1. Next, 2CzBN was vapor-deposited to a film thickness of 10 nm, and then BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer. Subsequently, LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
比較例1:化合物(BD2)をドーパントとして用いた素子の作製と評価
 化合物(4-4-1)を化合物(BD2)へ変更する以外は実施例9と同様の手順および構成にてEL素子を得た。
Comparative Example 1: Fabrication and Evaluation of an Element Using Compound (BD2) as a Dopant An EL element was prepared in the same procedure and configuration as in Example 9 except that compound (4-4-1) was changed to compound (BD2). Obtained.
実施例10:化合物(4-94-1)をドーパントとして用いた素子の作製と評価
 化合物(4-4-1)を化合物(4-94-1)へ変更する以外は実施例9と同様の手順および構成にてEL素子を得た。
Example 10: Fabrication and evaluation of a device using compound (4-94-1) as a dopant Same as in Example 9 except that compound (4-4-1) is changed to compound (4-94-1). An EL element was obtained by the procedure and configuration.
実施例11:化合物(4-222-1)をドーパントとして用いた素子の作製と評価
 化合物(4-4-1)を化合物(4-222-1)へ変更する以外は実施例9と同様の手順および構成にてEL素子を得た。
Example 11: Fabrication and evaluation of an element using the compound (4-2221) as a dopant The same as in Example 9 except that the compound (4-4-1) is changed to the compound (4-2221). An EL element was obtained by the procedure and configuration.
実施例9~11および比較例1で作製された素子を、100cd/mにおける素子特性およびLT90(初期輝度100cd/mにおける電流密度で連続駆動させたときの90cd/mになるまでの時間)を表4にまとめた。
実施例9~11および比較例1を比較すると、本発明の化合物は発光波長の違いを考慮しても高い効率と長寿命が得られた。また、式(4)で表される骨格を有する場合、式(1)で表される化合物と比較しても、発光スペクトルの半値幅は極めて狭い。
The element manufactured in Examples 9-11 and Comparative Example 1, until the 90 cd / m 2 when is continuously driven at a current density in the element characteristics and LT90 (initial luminance 100 cd / m 2 at 100 cd / m 2 Time) is summarized in Table 4.
Comparing Examples 9 to 11 and Comparative Example 1, the compound of the present invention obtained high efficiency and long life even when the difference in emission wavelength was taken into consideration. Further, when the skeleton is represented by the formula (4), the half width of the emission spectrum is extremely narrow as compared with the compound represented by the formula (1).
Figure JPOXMLDOC01-appb-T000329
Figure JPOXMLDOC01-appb-T000329
実施例12:化合物(1-296-1)をドーパントとして用いた素子の作製と評価
 厚さ50nmのITO(インジウム・スズ酸化物)からなる陽極が形成されたガラス基板(26mm×28mm×0.7mm)の上に、各薄膜を真空蒸着法にて、真空度5×10-4Paで積層した。
 まず、ITO上に、NPDを膜厚40nmになるように蒸着し、その上に、TcTaを膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成した。続いて、mCPを膜厚15nmになるように蒸着して電子阻止層を形成した。次に、ホストとしての化合物mCBP、ドーパントとしての化合物(4-10-1)を異なる蒸着源から共蒸着し、膜厚20nmの発光層を形成した。このとき、ホストおよびエミッティングドーパントの質量比は90:10とした。次に、2CzBNを膜厚10nm、次いで、BPy-TP2を膜厚20nmになるように蒸着して電子輸送層を形成した。続いて、LiFを膜厚1nmになるように蒸着し、その上に、アルミニウムを膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
Example 12: Fabrication and evaluation of an element using the compound (1-296-1) as a dopant A glass substrate (26 mm × 28 mm × 0.) In which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. Each thin film was laminated on 7 mm) at a vacuum degree of 5 × 10 -4 Pa by a vacuum vapor deposition method.
First, NPD was deposited on ITO so as to have a film thickness of 40 nm, and TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers. Subsequently, mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer. Next, the compound mCBP as a host and the compound (4-10-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm. At this time, the mass ratio of the host and the emitting dopant was 90:10. Next, 2CzBN was vapor-deposited to a film thickness of 10 nm, and then BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer. Subsequently, LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
実施例13:化合物(1-295)をドーパントとして用いた素子の作製と評価
 化合物(1-296-1)を化合物(1-295)へ変更する以外は実施例12と同様の手順および構成にてEL素子を得た。
Example 13: Fabrication and evaluation of a device using compound (1-295) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (1-295). Obtained an EL element.
実施例14:化合物(2-30)をドーパントとして用いた素子の作製と評価
 化合物(1-296-1)を化合物(2-30)へ変更する以外は実施例12と同様の手順および構成にてEL素子を得た。
Example 14: Fabrication and evaluation of a device using compound (2-30) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (2-30). Obtained an EL element.
実施例15:化合物(2-26)をドーパントとして用いた素子の作製と評価
 化合物(1-296-1)を化合物(2-26)へ変更する以外は実施例12と同様の手順および構成にてEL素子を得た。
Example 15: Fabrication and evaluation of a device using compound (2-26) as a dopant The procedure and configuration are the same as those in Example 12 except that compound (1-296-1) is changed to compound (2-26). Obtained an EL element.
比較例2:化合物(BD4)をドーパントとして用いた素子の作製と評価
 化合物(1-296-1)を化合物(BD4)へ変更する以外は実施例12と同様の手順および構成にてEL素子を得た。
Comparative Example 2: Fabrication and Evaluation of an Device Using Compound (BD4) as a Dopant An EL device was prepared in the same procedure and configuration as in Example 12 except that compound (1-296-1) was changed to compound (BD4). Obtained.
 実施例12~15および比較例2で作製された素子を、100cd/mにおける素子特性およびLT90(初期輝度100cd/mにおける電流密度で連続駆動させたときの90cd/mになるまでの時間)を表5にまとめた。
 実施例12~15および比較例2を比較すると、本発明の化合物は発光波長の違いを考慮しても高い効率と長寿命が得られた。
The element manufactured in Examples 12-15 and Comparative Example 2, until the 90 cd / m 2 when is continuously driven at a current density in the element characteristics and LT90 (initial luminance 100 cd / m 2 at 100 cd / m 2 Time) is summarized in Table 5.
Comparing Examples 12 to 15 and Comparative Example 2, the compound of the present invention obtained high efficiency and long life even when the difference in emission wavelength was taken into consideration.
Figure JPOXMLDOC01-appb-T000330
Figure JPOXMLDOC01-appb-T000330
実施例16:化合物(4-438-1)をドーパントとして用いた素子の作製と評価
 厚さ50nmのITO(インジウム・スズ酸化物)からなる陽極が形成されたガラス基板(26mm×28mm×0.7mm)の上に、各薄膜を真空蒸着法にて、真空度5×10-4Paで積層した。
 まず、ITO上に、NPDを膜厚40nmになるように蒸着し、その上に、TcTaを膜厚15nmになるように蒸着して2層からなる正孔注入輸送層を形成した。続いて、mCPを膜厚15nmになるように蒸着して電子阻止層を形成した。次に、ホストとしての化合物DOBNA1、ドーパントとしての化合物(4-438-1)を異なる蒸着源から共蒸着し、膜厚20nmの発光層を形成した。このとき、ホストおよびエミッティングドーパントの質量比は99:1とした。次に、2CzBNを膜厚10nm、次いで、BPy-TP2を膜厚20nmになるように蒸着して電子輸送層を形成した。続いて、LiFを膜厚1nmになるように蒸着し、その上に、アルミニウムを膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
Example 16: Fabrication and evaluation of an element using the compound (4-438-1) as a dopant A glass substrate (26 mm × 28 mm × 0.) In which an anode made of ITO (indium tin oxide) having a thickness of 50 nm is formed. Each thin film was laminated on 7 mm) at a vacuum degree of 5 × 10 -4 Pa by a vacuum vapor deposition method.
First, NPD was deposited on ITO so as to have a film thickness of 40 nm, and TcTa was deposited on ITO so as to have a film thickness of 15 nm to form a hole injection transport layer composed of two layers. Subsequently, mCP was vapor-deposited to a film thickness of 15 nm to form an electron blocking layer. Next, compound DOBNA1 as a host and compound (4-438-1) as a dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a film thickness of 20 nm. At this time, the mass ratio of the host and the emitting dopant was 99: 1. Next, 2CzBN was vapor-deposited to a film thickness of 10 nm, and then BPy-TP2 was vapor-deposited to a film thickness of 20 nm to form an electron transport layer. Subsequently, LiF was vapor-deposited to a film thickness of 1 nm, and aluminum was vapor-deposited onto the LiF to a film thickness of 100 nm to form a cathode to obtain an organic EL device.
実施例17:化合物(4-13-1)をドーパントとして用いた素子の作製と評価
 化合物(4-438-1)を化合物(4-13-1)へ変更する以外は実施例16と同様の手順および構成にてEL素子を得た。
Example 17: Fabrication and evaluation of a device using compound (4-13-1) as a dopant Same as in Example 16 except that compound (4-438-1) is changed to compound (4-13-1). An EL element was obtained by the procedure and configuration.
実施例16,17で作製された素子を、100cd/mにおける素子特性およびLT90(初期輝度100cd/mにおける電流密度で連続駆動させたときの90cd/mになるまでの時間)を表6にまとめた。 Table (the time until 90 cd / m 2 when is continuously driven at a current density in the initial luminance 100 cd / m 2) the elements produced in Example 16 and 17, device characteristics and LT90 in 100 cd / m 2 It is summarized in 6.
Figure JPOXMLDOC01-appb-T000331
Figure JPOXMLDOC01-appb-T000331
 100 有機電界発光素子
 101 基板
 102 陽極
 103 正孔注入層
 104 正孔輸送層
 105 発光層
 106 電子輸送層
 107 電子注入層
 108 陰極
 
100 Organic electroluminescent device 101 Substrate 102 Anode 103 Hole injection layer 104 Hole transport layer 105 Light emitting layer 106 Electron transport layer 107 Electron injection layer 108 Cathode

Claims (42)

  1.  下記式(i)で表される構造を少なくとも1つ有する化合物;
    Figure JPOXMLDOC01-appb-C000001
     式(i)中、
     A環、B環およびC環は、それぞれ独立して、芳香環構造を表し、
     A環、B環およびC環のうち少なくとも1つの環における少なくとも1つの環員原子が、式(D)で表される部分構造(D)と結合し、
     Yは、B、P、P=O、P=SまたはSi-R’であり、
     XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
     部分構造(D)において、Qは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、波線部は結合位置を示し、
    B環に含まれる環員原子とC環に含まれる環員原子とがXで架橋し、B環の一部およびC環の一部ならびにYを含む6員環を形成してもよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
     部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     前記の、Si-R’、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
     式(i)におけるA環、B環およびC環における、部分構造(D)、X、X、またはYと結合していない環員原子に結合する構造ならびに部分構造(D)におけるR21~R28は、全てが水素であることはなく、
     式(i)で表される構造を少なくとも1つ有する化合物における少なくとも1つの水素はシアノ、ハロゲン、重水素、または部分構造(B)で置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000002
    (部分構造(B)中、R40およびR41は、それぞれ独立してアルキルであり、互いに結合していてもよく、R40およびR41の合計炭素数は2~10であり、波線部は他の構造との結合部位である。)
    A compound having at least one structure represented by the following formula (i);
    Figure JPOXMLDOC01-appb-C000001
    In formula (i),
    Rings A, B and C each independently represent an aromatic ring structure.
    At least one ring member atom in at least one of the A ring, the B ring and the C ring is bonded to the partial structure (D) represented by the formula (D).
    Y is B, P, P = O, P = S or Si-R',
    X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
    In the partial structure (D), Q is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the wavy line indicates the bond position.
    A ring member atoms contained in the ring member atoms and C ring contained in the B ring is bridged by X 3, a portion of the part and C rings of the ring B and may form a 6-membered ring containing Y, X 3 is any one of>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
    R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Diarylboryl (two aryls may be attached via a single bond or a linking group), a substituent that is cyano or halogen, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
    The R'in the above-mentioned Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 can be independently hydrogen, aryl, heteroaryl, alkyl or Cycloalkyl,
    In the A ring, B ring and C ring in the formula (i), the structure bonded to the ring member atom not bonded to the partial structure (D), X 1 , X 2 , or Y, and R 21 in the partial structure (D). ~ R 28 is not all hydrogen,
    At least one hydrogen in the compound having at least one structure represented by the formula (i) may be substituted with cyano, halogen, deuterium, or partial structure (B).
    Figure JPOXMLDOC01-appb-C000002
    (In the partial structure (B), R 40 and R 41 are each independently alkyl and may be bonded to each other, and the total carbon number of R 40 and R 41 is 2 to 10, and the wavy line portion is It is a binding site with other structures.)
  2.  下記式(1)で表される、請求項1に記載の化合物;
    Figure JPOXMLDOC01-appb-C000003
     式(1)中、
     R~R11における少なくとも1つは、式(D)で表される部分構造(D)であり、
     Yは、B、P、P=O、P=SまたはSi-R’であり、
     XおよびXは、それぞれ独立して、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
     部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシもしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、である置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     RおよびRは>Xで架橋し、b環の一部およびc環の一部ならびにYを含む6員環を形成してよく、Xは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)のいずれか1つであり、
     前記の、Si-R’、>N-R’、>C(-R’)および>Si(-R’)におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、前記>C(―R’)および>Si(―R’)それぞれの2つのR’は、連結していてもよく、
     式(1)における部分構造(D)ではないR~R11および部分構造(D)におけるR21~R28は、全てが水素であることはなく、
     式(1)で表される化合物における少なくとも1つの水素がハロゲン、または重水素で置換されてもよい。
    The compound according to claim 1, which is represented by the following formula (1);
    Figure JPOXMLDOC01-appb-C000003
    In equation (1),
    At least one of R 1 to R 11 is a partial structure (D) represented by the formula (D).
    Y is B, P, P = O, P = S or Si-R',
    X 1 and X 2 are independently>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 , respectively.
    R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy. Alternatively, it is a substituent that is diarylboryl (two aryls may be bonded via a single bond or a linking group), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
    R 7 and R 8 may be crosslinked at> X 3 to form a 6-membered ring containing part of the b ring, part of the c ring and Y, where X 3 is>O,>S,> N-. R',> C (-R') 2 or> Si (-R') 2
    The R'in Si-R',>N-R',> C (-R') 2 and> Si (-R') 2 are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. The two R'of each of the> C (-R') 2 and> Si (-R') 2 may be connected.
    R 1 to R 11 which are not the partial structure (D) in the formula (1) and R 21 to R 28 in the partial structure (D) are not all hydrogen.
    At least one hydrogen in the compound represented by the formula (1) may be substituted with halogen or deuterium.
  3.  式(1)において、
     RおよびRよりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
     部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
     RおよびRは>Xで架橋していてもよく、
     部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
     R’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルである、
     請求項2に記載の化合物。
    In equation (1)
    At least one selected from the group consisting of R 1 and R 3 is a partial structure (D).
    R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryls), diheteroarylaminos (where heteroaryls are heteroaryls with 2-12 carbon atoms), aryl heteroarylaminos (where aryls are aryls with 6-12 carbon atoms and heteroaryls have 2 carbon atoms). It is a substituent that is an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms (which is a heteroaryl of to 12), and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these may be formed and is substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
    R 7 and R 8 may be crosslinked with> X 3
    R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms). Aryl), diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms and heteroaryl is an aryl having 2 to 12 carbon atoms). Heteroaryl), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cyano or halogen substituents, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May have been
    R'is independently an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, an alkyl having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms.
    The compound according to claim 2.
  4.  式(1)において、
     Rが、部分構造(D)であり、
     部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~4のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
     部分構造(D)におけるQが>C(-R’)、部分構造(D)における>C(-R’)におけるR’がメチル、かつ、部分構造(D)におけるR21~R28が水素である場合、式(1)におけるRおよびRは、それぞれ独立して、部分構造(D)、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、アルキルの置換しない炭素数1~3のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよい、
     請求項2に記載の化合物。
    In equation (1)
    R 2 is the partial structure (D).
    R 1 to R 11 which are not the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl substituent that is an alkyl having 1 to 4 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms without substitution, and among these substituents, adjacent substituents are bonded to each other to form a ring structure. At least one hydrogen in these substituents may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms. May be
    Moiety Q is in the structure (D)> C (-R ' ) 2, a partial structure> in (D) C (-R') R in 2 'methyl and the partial structure (D) R 21 ~ R 28 in When is hydrogen, R 6 and R 9 in the formula (1) are independently partial structures (D), hydrogen, or aryls having 6 to 30 carbon atoms, heteroaryls having 2 to 30 carbon atoms, respectively. Diarylamino (where aryl is aryl with 6-12 carbon atoms), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms), Heteroaryl is a substituent that is an alkyl having 2 to 12 carbon atoms, an alkyl having 1 to 3 carbon atoms without substitution, or a cycloalkyl having 3 to 20 carbon atoms. Among these substituents, adjacent substitution groups are used. The groups may be bonded to each other to form a ring structure, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl or carbon having 1 to 12 carbon atoms. It may be substituted with the number 3 to 20 cycloalkyl.
    The compound according to claim 2.
  5.  式(1)において、
     R、R、R、R、R10およびR11よりなる群から選ばれた少なくとも1つが、部分構造(D)であり、
     部分構造(D)ではないR~R11は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリール、ヘテロアリールは炭素数2~12のヘテロアリール)、炭素数1~12のアルキルもしくは炭素数3~20のシクロアルキルである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
     RおよびRは>Xで架橋していてもよく、
     部分構造(D)におけるR21~R28は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジヘテロアリールアミノ(ただしヘテロアリールは炭素数2~12のヘテロアリール)、アリールヘテロアリールアミノ(ただしアリールは炭素数6~12のアリールであり、かつ、ヘテロアリールは炭素数2~12のヘテロアリールである)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノもしくはハロゲンである置換基であり、これらの置換基のうち、隣り合う置換基は互いに結合し環構造を形成してもよく、これらの置換基における少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~20のシクロアルキルで置換されていてもよく、
     R’は、それぞれ独立して、炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~20のシクロアルキルである、
     請求項2に記載の化合物。
    In equation (1)
    At least one selected from the group consisting of R 4 , R 5 , R 6 , R 9 , R 10 and R 11 is a partial structure (D).
    R 1 to R 11 which are not partial structures (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 30 carbon atoms). 12 aryl), diheteroarylamino (where heteroaryl is heteroaryl with 2-12 carbon atoms), aryl heteroarylamino (where aryl is aryl with 6-12 carbon atoms, heteroaryl is hetero-aryl with 2-12 carbon atoms) Aryl), an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms, and among these substituents, adjacent substituents may be bonded to each other to form a ring structure. At least one hydrogen in these may be substituted with an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms or a cycloalkyl having 3 to 20 carbon atoms.
    R 7 and R 8 may be crosslinked with> X 3
    R 21 to R 28 in the partial structure (D) are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (however, aryl has 6 to 12 carbon atoms). Aryl), diheteroarylamino (where heteroaryl is a heteroaryl having 2 to 12 carbon atoms), aryl heteroarylamino (where aryl is an aryl having 6 to 12 carbon atoms, and heteroaryl is an aryl having 2 to 12 carbon atoms). (12 heteroaryl), alkyl with 1-12 carbon atoms, cycloalkyl with 3-20 carbon atoms, cyano or halogen substituents, of which adjacent substituents are attached to each other. A ring structure may be formed, and at least one hydrogen in these substituents is an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, or an alkyl having 3 to 20 carbon atoms. May be substituted with cycloalkyl
    R'is independently an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, an alkyl having 1 to 20 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms.
    The compound according to claim 2.
  6.  式(1)において、XおよびXが、それぞれ独立して、>O、>S、>C(-R’)または>Si(-R’)である、請求項2~5のいずれか一項に記載の化合物。 In the formula (1), claims 2 to 5, wherein X 1 and X 2 are independently>O,>S,> C (-R') 2 or> Si (-R') 2 . The compound according to any one item.
  7.  式(1)において、XおよびXが共に>Oである、請求項2~6のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 6, wherein X 1 and X 2 are both> O in the formula (1).
  8.  式(1)において、YがBである、請求項2~7のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 7, wherein Y is B in the formula (1).
  9.  式(1)において、YがP=OまたはP=Sである、請求項2~7のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 7, wherein Y is P = O or P = S in the formula (1).
  10.  式(1)において、YがSi-R’である、請求項2~7のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 7, wherein Y is Si-R'in the formula (1).
  11.  式(1)において、RおよびRが架橋せず、環を形成しない、請求項2~10のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 10, wherein in the formula (1), R 7 and R 8 are not crosslinked and do not form a ring.
  12.  式(1)において、RおよびRが>Xで架橋し、環を形成する、請求項2~10のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 10, wherein in the formula (1), R 7 and R 8 are crosslinked at> X 3 to form a ring.
  13.  式(1)において、部分構造(D)を1つ有する、請求項2~12のいずれか一項に記載の化合物。 The compound according to any one of claims 2 to 12, which has one partial structure (D) in the formula (1).
  14.  部分構造(D)におけるQが>Oまたは>Sである、請求項1~13のいずれか一項に記載の化合物。 The compound according to any one of claims 1 to 13, wherein Q in the partial structure (D) is> O or> S.
  15.  部分構造(D)におけるQが>C(-R)または>Si(-R)である、請求項1~13のいずれか一項に記載の化合物。 The compound according to any one of claims 1 to 13, wherein Q in the partial structure (D) is> C (-R) 2 or> Si (-R) 2 .
  16.  下記式のいずれかで表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Meはメチル、tBuはt-ブチルを表す。)
    The compound according to claim 2, which is a compound represented by any of the following formulas.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, Me represents methyl and tBu represents t-butyl.)
  17.  下記式(ii)で表される、請求項1に記載の化合物;
    Figure JPOXMLDOC01-appb-C000005
     式(ii)中、
     a環、b環、c環およびd環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、また隣接する2つの水素はアルキルで連結されて環を形成していてもよく、
     ZおよびZは、それぞれ独立して―CH=または-N=であり、―CH=における水素は置換されていてもよく、
     X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRはアリール、ヘテロアリールまたはアルキルであり、
     a環、b環、c環、d環、およびZとZとを含む6員環からなる群より選択される少なくとも1つの環における少なくとも1つの環員原子は部分構造(D)と結合し、
     部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、また隣接するR21~R28は連結基により環を形成していてもよく、
     部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、アルキルまたは、R’同士で連結していてもよいアリールであり、
     部分構造(D)がa環とc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
     部分構造(D)がa環とc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
     部分構造(D)中の波線部は式(ii)で表される構造との結合部位を表し、
     式(ii)で表される化合物における少なくとも1つの水素がハロゲン、重水素、または部分構造(B)で置換されていてもよい。
    The compound according to claim 1, which is represented by the following formula (ii);
    Figure JPOXMLDOC01-appb-C000005
    In formula (ii),
    Rings a, b, c and d are independently aryl rings or heteroaryl rings, and at least one hydrogen in these rings may be substituted, and two adjacent hydrogens may be substituted. They may be linked by alkyl to form a ring.
    Z 1 and Z 2 are independently -CH = or -N =, and the hydrogen at -CH = may be substituted.
    X 1 to X 4 are independently O or N-R, and R of the N-R is aryl, heteroaryl or alkyl, respectively.
    At least one ring member atom in at least one ring selected from the group consisting of a ring, b ring, c ring, d ring, and a 6-membered ring including Z 1 and Z 2 is bonded to the partial structure (D). And
    In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, and adjacent R 21 to R 28 are based on linking groups. It may form a ring,
    Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. (-R') The R'of 2 is an aryl that may be independently linked with hydrogen, alkyl, or R', respectively.
    When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
    When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
    The wavy line portion in the partial structure (D) represents the binding site with the structure represented by the formula (ii).
    At least one hydrogen in the compound represented by the formula (ii) may be substituted with a halogen, deuterium, or a partial structure (B).
  18.  下記式(4)で表される、請求項17に記載の化合物;
    Figure JPOXMLDOC01-appb-C000006
     式(4)中、R~R14は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシ、アリールオキシ、もしくはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基における少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
     R~R14のうち隣接する2つが炭素数2~8のアルキルによって連結して環を形成していてもよく、
     X~Xは、それぞれ独立して、OまたはN-Rであり、前記N-RのRは炭素数6~20のアリール、炭素数2~15のヘテロアリール、炭素数1~20のアルキルまたは炭素数3~8のシクロアルキルであり、
     式(4)におけるR~R14の少なくとも1つは式(D)で表される部分構造(D)であり、
     部分構造(D)中、R21~R28は、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンであり、
     隣接するR21~R28は連結基により環を形成していてもよく、
     部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(-R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素、炭素数1~8のアルキル、または連結していてもよい炭素数6~12のアリールであり、
     部分構造(D)がa環およびc環のみに1つずつ結合していて、かつQが単結合のとき、R24およびR28がともに水素になることはなく、
     ただし、部分構造(D)がa環およびc環のみに1つずつ結合していて、かつQがOのとき、XとXがともにOになることはなく、
     式(4)で表される化合物における少なくとも1つの水素がハロゲン、重水素、または部分構造(B)で置換されていてもよい。
    The compound according to claim 17, which is represented by the following formula (4);
    Figure JPOXMLDOC01-appb-C000006
    In formula (4), R 1 to R 14 are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy, aryloxy, respectively. Alternatively, it is a substituent that is a diarylboryl (two aryls may be attached via a single bond or a linking group), and at least one hydrogen in these substituents is substituted with aryl, heteroaryl or alkyl. May be
    Adjacent two of R 3 to R 14 may be connected by an alkyl having 2 to 8 carbon atoms to form a ring.
    X 1 to X 4 are independently O or N-R, and R of the N-R is an aryl having 6 to 20 carbon atoms, a heteroaryl having 2 to 15 carbon atoms, and 1 to 20 carbon atoms. Alkyl or cycloalkyl with 3-8 carbon atoms
    At least one of R 1 to R 14 in the formula (4) is a partial structure (D) represented by the formula (D).
    In the partial structure (D), R 21 to R 28 are independently hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, cyano, or halogen, respectively.
    Adjacent R 21 to R 28 may form a ring with a linking group.
    Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 , and the above> C (-R') 2 and> Si. The R'of (-R') 2 is an independently hydrogen, an alkyl having 1 to 8 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be linked.
    When the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is a single bond, both R 24 and R 28 do not become hydrogen.
    However, when the partial structure (D) is bonded to only the a ring and the c ring one by one and Q is O, both X 1 and X 2 do not become O.
    At least one hydrogen in the compound represented by the formula (4) may be substituted with a halogen, deuterium, or a partial structure (B).
  19.  式(4)において、R~R14は、それぞれ独立して、水素、または、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、炭素数6~12のアリールオキシ。もしくはジアリールボリル(ただしアリールは炭素数6~12のアリール)(2つのアリールは単結合または連結基を介して結合していてもよい)である置換基であり、これらの置換基における少なくとも1つの水素は、炭素数6~12のアリールまたは炭素数1~8のアルキルで置換されていてもよく、
     X~Xは、それぞれ独立して、>Oまたは>N-Rであり、前記>N-RのRは、炭素数6~12のアリールまたは炭素数1~8のアルキルであり、
     部分構造(D)中、R21~R28は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~12のアルキル、炭素数3~20のシクロアルキル、シアノ、またはハロゲンであり、部分構造(D)中のQは単結合、>O、>S、>C(―R’)または>Si(―R’)であり、前記>C(―R’)および>Si(―R’)のR’は、それぞれ独立して、水素または炭素数1~8のアルキルであり、
     式(4)で表される化合物における少なくとも1つの水素がハロゲン、または重水素で置換されていてもよい、
     請求項18に記載の化合物。
    In the formula (4), R 1 to R 14 are independently hydrogen, or aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, and diarylamino (where aryl has 6 to 12 carbon atoms). Aryl), alkyl having 1 to 12 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, and aryloxy having 6 to 12 carbon atoms. Alternatively, it is a substituent that is a diallylboryl (where aryl is an aryl having 6 to 12 carbon atoms) (two aryls may be bonded via a single bond or a linking group), and at least one of these substituents. Hydrogen may be substituted with an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
    X 1 to X 4 are independently> O or> N-R, and R of> N-R is an aryl having 6 to 12 carbon atoms or an alkyl having 1 to 8 carbon atoms.
    In the partial structure (D), R 21 to R 28 are independently hydrogen, an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms, an alkyl having 1 to 12 carbon atoms, and 3 to 3 carbon atoms. 20 cycloalkyl, cyano, or halogen, where Q in the partial structure (D) is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 . The R'of> C (-R') 2 and> Si (-R') 2 is independently hydrogen or an alkyl having 1 to 8 carbon atoms.
    At least one hydrogen in the compound represented by the formula (4) may be substituted with halogen or deuterium.
    The compound according to claim 18.
  20.  式(4)において、R、R、R10およびR13のうち、1つまたは2つが部分構造(D)である、請求項18または19に記載の化合物。 The compound according to claim 18 or 19, wherein in formula (4), one or two of R 4 , R 7 , R 10 and R 13 have a partial structure (D).
  21.  部分構造(D)中、R21~R28の少なくとも1つがフッ素である、請求項17~20のいずれか一項に記載の化合物。 The compound according to any one of claims 17 to 20, wherein at least one of R 21 to R 28 is fluorine in the partial structure (D).
  22.  部分構造(D)が、下記式(D-1)~式(D-3)のいずれかで表される構造である、請求項17~21のいずれか一項に記載の化合物;
    Figure JPOXMLDOC01-appb-C000007
     式(D-1)において、R50はそれぞれ独立して、水素原子またはメチルを表し、Meはメチルであり、
     式(D-2)において、Qは>O、>S、>C(CH、または>Si(CHを表す。
    The compound according to any one of claims 17 to 21, wherein the partial structure (D) is a structure represented by any of the following formulas (D-1) to (D-3);
    Figure JPOXMLDOC01-appb-C000007
    In formula (D-1), R 50 independently represents a hydrogen atom or methyl, and Me is methyl.
    In formula (D-2), Q 1 represents>O,>S,> C (CH 3 ) 2 , or> Si (CH 3 ) 2 .
  23.  下記式のいずれかで表される、請求項18に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Meはメチルを表す。)
    The compound according to claim 18, which is represented by any of the following formulas.
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Me represents methyl.)
  24.  部分構造(B)、塩素原子、臭素原子、またはヨウ素原子を構造中に含む、請求項17~23のいずれか一項に記載の化合物。 The compound according to any one of claims 17 to 23, which comprises a partial structure (B), a chlorine atom, a bromine atom, or an iodine atom in the structure.
  25.  S1とT1のエネルギー準位差が0.1eV以下であり、かつS1とT2のエネルギー準位差が0.05eV以下であり、さらにS1が局所励起状態である、請求項17~24のいずれか一項に記載の化合物。 Any of claims 17 to 24, wherein the energy level difference between S1 and T1 is 0.1 eV or less, the energy level difference between S1 and T2 is 0.05 eV or less, and S1 is a locally excited state. The compound according to one item.
  26.  式(i)で表される構造を含む繰り返し単位を有する高分子化合物である、請求項1に記載の化合物。 The compound according to claim 1, which is a polymer compound having a repeating unit containing a structure represented by the formula (i).
  27.  無置換または置換基を有してもよいトリアリールアミン、無置換または置換基を有してもよいフルオレン、無置換または置換基を有してもよいアントラセン、無置換または置換基を有してもよいテトラセン、無置換または置換基を有してもよいトリアジン、無置換または置換基を有してもよいカルバゾール、無置換または置換基を有してもよいテトラフェニルシラン、無置換または置換基を有してもよいスピロフルオレン、無置換または置換基を有してもよいトリフェニルホスフィン、無置換または置換基を有してもよいジベンゾチオフェン、および、無置換または置換基を有してもよいジベンゾフランよりなる群から選ばれた少なくとも1種由来の構造を前記繰り返し単位内に、または前記繰り返し単位とは別の繰り返し単位内に含む、請求項26に記載の化合物。 Triarylamine which may have an unsubstituted or substituent, fluorene which may have an unsubstituted or substituent, anthracene which may have an unsubstituted or substituent, and having an unsubstituted or substituent. May be tetracene, triazine which may have an unsubstituted or substituent, carbazole which may have an unsubstituted or substituent, tetraphenylsilane which may have an unsubstituted or substituent, an unsubstituted or substituent. Spirofluorene, which may have a substituent, triphenylphosphine, which may have an unsubstituted or substituent, dibenzothiophene, which may have an unsubstituted or substituent, and an unsubstituted or substituent. The compound according to claim 26, wherein the structure derived from at least one selected from the group consisting of good dibenzofurene is contained in the repeating unit, or in a repeating unit different from the repeating unit.
  28.  請求項1~27のいずれか一項に記載の化合物を含有する、有機デバイス用材料。 A material for an organic device containing the compound according to any one of claims 1 to 27.
  29.  有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、請求項28に記載の有機デバイス用材料。 The material for an organic device according to claim 28, which is a material for an organic electroluminescent element, a material for an organic field effect transistor, or a material for an organic thin film solar cell.
  30.  有機電界発光素子用の発光層用材料である、請求項29に記載の有機デバイス用材料。 The material for an organic device according to claim 29, which is a material for a light emitting layer for an organic electroluminescent element.
  31.  請求項1~27のいずれか一項に記載の化合物を含む、有機電界発光素子、有機電界効果トランジスタ、または、有機薄膜太陽電池。 An organic electroluminescent device, an organic field effect transistor, or an organic thin-film solar cell containing the compound according to any one of claims 1 to 27.
  32.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項30に記載の発光層用材料を含有する発光層を備える、有機電界発光素子。 An organic electroluminescent device including a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and containing the light emitting layer material according to claim 30.
  33.  前記発光層が、下記式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物を少なくとも1つ含有する、または、下記(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物由来の構造を繰り返し単位とする高分子化合物を少なくとも1つ含有する、請求項32に記載の有機電界発光素子;
    Figure JPOXMLDOC01-appb-C000009
     式(H1)中、Lは炭素数6~24のアリーレンであり、
     式(H2)中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールであり、
     上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよく、
     式(H3)中、Jは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
     Yは、単結合、>O、>S、>C(-R’)、または>Si(-R’)であり、
     Zは、C-H、C-R’またはNであり、
     式(H4)中、Zは、C-H、C-R’またはNであり、
     前記、>N-R’、>C(-R’)、>Si(-R’)およびC-R’におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
     式(H5)中、
     R~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールへテロアリールアミノもしくはアルキルである置換基であり、これらの置換基における少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
     R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアルキルで置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
     式(H5)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲンまたは重水素で置換されてもよい。
    The light emitting layer contains at least one compound represented by the following formula (H1), formula (H2), formula (H3), formula (H4), or formula (H5), or the following (H1), The organic according to claim 32, which contains at least one polymer compound having a structure derived from a compound represented by the formula (H2), the formula (H3), the formula (H4), or the formula (H5) as a repeating unit. Electroluminescent element;
    Figure JPOXMLDOC01-appb-C000009
    In the formula (H1), L 1 is an arylene having 6 to 24 carbon atoms.
    In formula (H2), L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
    At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
    In formula (H3), J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
    Y is a single bond,>O,>S,> C (-R') 2 , or> Si (-R') 2 .
    Z is CH, CR'or N,
    In formula (H4), Z is CH, CR'or N,
    The R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R'are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. Yes,
    In formula (H5),
    R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents. The two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl,
    Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl. Often,
    At least one hydrogen in the compound represented by the formula (H5) may be independently substituted with a halogen or deuterium.
  34.  下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物を少なくとも一つ含有する、請求項32または33に記載の有機電界発光素子;
    Figure JPOXMLDOC01-appb-C000010
     式(AD1)、(AD2)および(AD3)中、
    Mは、それぞれ独立して、単結合、-O-、>N-Arおよび>CArの少なくとも一つであり、
    Jは、それぞれ独立して、炭素数6~18のアリーレンであり、前記アリーレンは、フェニル、炭素数1~6のアルキルおよび炭素数3~12のシクロアルキルで置換されてもよく、
    Qは、それぞれ独立して、=C(-H)-または=N-であり、
    Arは、それぞれ独立して、水素、炭素数6~18のアリール、炭素数6~18のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルであり、前記アリールおよびヘテロアリールにおける少なくとも1つの水素は、フェニル、炭素数1~6のアルキルまたは炭素数3~12のシクロアルキルで置換されてもよく、
    mは、1または2であり、
    nは、2~(6-m)の整数であり、
     上記各式で表される化合物における少なくとも1つの水素は、ハロゲン、または重水素で置換されていてもよい。
    The organic electroluminescent device according to claim 32 or 33, which contains at least one compound represented by any of the following formulas (AD1), (AD2) and (AD3);
    Figure JPOXMLDOC01-appb-C000010
    In formulas (AD1), (AD2) and (AD3),
    M is at least one of single bond, -O-,> N-Ar and> CAR 2 independently of each other.
    Each of J is independently an arylene having 6 to 18 carbon atoms, and the arylene may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms, and a cycloalkyl having 3 to 12 carbon atoms.
    Q is = C (-H)-or = N-, respectively.
    Ar is independently hydrogen, an aryl having 6 to 18 carbon atoms, a heteroaryl having 6 to 18 carbon atoms, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms, and the aryl and hetero At least one hydrogen in the aryl may be replaced with phenyl, an alkyl having 1 to 6 carbon atoms or a cycloalkyl having 3 to 12 carbon atoms.
    m is 1 or 2
    n is an integer from 2 to (6-m),
    At least one hydrogen in the compound represented by each of the above formulas may be substituted with halogen or deuterium.
  35.  請求項1~27のいずれか一項に記載の化合物の少なくとも1つと、溶媒とを含む、発光層形成用組成物。 A composition for forming a light emitting layer, which comprises at least one of the compounds according to any one of claims 1 to 27 and a solvent.
  36.  前記溶媒として、沸点が150℃以上である有機溶剤を含む、請求項35に記載の発光層形成用組成物。 The composition for forming a light emitting layer according to claim 35, which comprises an organic solvent having a boiling point of 150 ° C. or higher as the solvent.
  37.  前記溶媒が、前記化合物の少なくとも1つに対する良溶媒と貧溶媒とを含む混合溶媒であり、良溶媒の沸点が貧溶媒の沸点よりも低い、請求項35または36に記載の発光層形成用組成物。 The composition for forming a light emitting layer according to claim 35 or 36, wherein the solvent is a mixed solvent containing a good solvent and a poor solvent for at least one of the compounds, and the boiling point of the good solvent is lower than the boiling point of the poor solvent. Stuff.
  38.  式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物を少なくとも1つ含有する、または、式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物由来の構造の少なくとも1つを繰り返し単位とする高分子化合物を少なくとも1つ含有する、請求項35~37のいずれか一項に記載の発光層形成用組成物;
    Figure JPOXMLDOC01-appb-C000011
     式(H1)中、Lは炭素数6~24のアリーレンであり、
     式(H2)中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールであり、
     上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよく、
     式(H3)中、Jは、>O、>S、>N-R’、>C(-R’)または>Si(-R’)であり、
     Yは、単結合、>O,>S,>C(-R’)または>Si(-R’)であり、
     Zは、C-H、C-R’またはNであり、
     式(H4)中、Zは、C-H、C-R’またはNであり、
     前記、>N-R’、>C(-R’)、>Si(-R’)およびC-R’におけるR’は、それぞれ独立して、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、
     式(H5)中、
     R~R11は、それぞれ独立して、水素、または、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールへテロアリールアミノもしくはアルキルである置換基であり、これらの置換基における少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
     R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアルキルで置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、
     式(H1)、式(H2)、式(H3)、式(H4)、または式(H5)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲン、または重水素で置換されてもよい。
    It contains at least one compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5), or the formula (H1), the formula (H2), the formula. (H3), any one of claims 35 to 37, which contains at least one polymer compound having at least one of the structures derived from the compound represented by the formula (H4) or the formula (H5) as a repeating unit. The composition for forming a light emitting layer according to the above section;
    Figure JPOXMLDOC01-appb-C000011
    In the formula (H1), L 1 is an arylene having 6 to 24 carbon atoms.
    In formula (H2), L 2 and L 3 are independently aryls having 6 to 30 carbon atoms or heteroaryls having 2 to 30 carbon atoms, respectively.
    At least one hydrogen in the compound represented by each of the above formulas may be substituted with alkyl, cyano, halogen or deuterium having 1 to 6 carbon atoms.
    In formula (H3), J is>O,>S,>N-R',> C (-R') 2 or> Si (-R') 2 .
    Y is a single bond,>O,>S,> C (-R') 2 or> Si (-R') 2 .
    Z is CH, CR'or N,
    In formula (H4), Z is CH, CR'or N,
    The R'in>N-R',> C (-R') 2 ,> Si (-R') 2 and C-R'are independently aryl, heteroaryl, alkyl or cycloalkyl, respectively. Yes,
    In formula (H5),
    R 1 to R 11 are substituents that are independently hydrogen, or aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, and at least one of these substituents. The two hydrogens may be further substituted with aryl, heteroaryl, diarylamino or alkyl,
    Adjacent groups of R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring is It may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, aryl heteroarylamino or alkyl, in which at least one hydrogen may be further substituted with aryl, heteroaryl, diarylamino or alkyl. Often,
    At least one hydrogen in the compound represented by the formula (H1), the formula (H2), the formula (H3), the formula (H4), or the formula (H5) is independently substituted with a halogen or a deuterium. You may.
  39.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項35~38のいずれか一項に記載の発光層形成用組成物から形成された発光層とを有する、有機電界発光素子。 An organic electroluminescence having a pair of electrodes composed of an anode and a cathode, and a light emitting layer arranged between the pair of electrodes and formed from the light emitting layer forming composition according to any one of claims 35 to 38. Light emitting element.
  40.  前記陰極と該発光層との間に配置される電子輸送層および電子注入層よりなる群から選ばれた少なくとも1つの層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、請求項32~34および請求項39のいずれか一項に記載の有機電界発光素子。 It has at least one layer selected from the group consisting of an electron transporting layer and an electron injecting layer arranged between the cathode and the light emitting layer, and at least one of the electron transporting layer and the electron injecting layer is a borane. Selected from the group consisting of derivatives, pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, arylnitrile derivatives, triazine derivatives, benzoimidazole derivatives, phenanthroline derivatives and quinolinol metal complexes. The organic electric field light emitting element according to any one of claims 32 to 34 and 39, which comprises at least one of the above.
  41.  前記電子輸送層および電子注入層の少なくとも1つが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体よりなる群から選択される少なくとも1つをさらに含有する、請求項40に記載の有機電界発光素子。 At least one of the electron transport layer and the electron injection layer is an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal halogen. Claims further comprising at least one selected from the group consisting of compounds, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals. 40. The organic electric field light emitting element.
  42.  請求項32~34、および、請求項39~41のいずれか一項に記載の有機電界発光素子を備えた表示装置または照明装置。
     
    A display device or a lighting device including the organic electroluminescent element according to any one of claims 32 to 34 and 39 to 41.
PCT/JP2020/017800 2019-04-26 2020-04-24 Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and illumination device WO2020218558A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217038229A KR20220004116A (en) 2019-04-26 2020-04-24 A compound, a material for an organic device, a composition for forming a light emitting layer, an organic field effect transistor, an organic thin film solar cell, an organic electroluminescent element, a display device, and a lighting device
CN202080031428.6A CN113784972A (en) 2019-04-26 2020-04-24 Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and lighting device
JP2021516289A JPWO2020218558A1 (en) 2019-04-26 2020-04-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086891 2019-04-26
JP2019086891 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218558A1 true WO2020218558A1 (en) 2020-10-29

Family

ID=72942222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017800 WO2020218558A1 (en) 2019-04-26 2020-04-24 Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and illumination device

Country Status (4)

Country Link
JP (1) JPWO2020218558A1 (en)
KR (1) KR20220004116A (en)
CN (1) CN113784972A (en)
WO (1) WO2020218558A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072569A (en) * 2021-03-01 2021-07-06 北京大学深圳研究生院 Thermal activation delayed blue fluorescent material and organic light emitting diode
US20210399227A1 (en) * 2020-06-18 2021-12-23 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
WO2022102877A1 (en) * 2020-11-11 2022-05-19 경희대학교 산학협력단 Organic light-emitting device with improved lifespan characteristics
WO2022183900A1 (en) * 2021-03-01 2022-09-09 北京大学深圳研究生院 Organic light-emitting device having thermally activated delayed fluorescent material as light-emitting layer material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (en) * 2014-02-18 2015-07-09 学校法人関西学院 Polycyclic aromatic compound
JP2016219437A (en) * 2014-08-29 2016-12-22 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017018326A1 (en) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 Organic electroluminescent element, display device, and illumination device
CN106467554A (en) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 A kind of boracic organic electroluminescent compounds and its application
WO2018216990A1 (en) * 2017-05-22 2018-11-29 머티어리얼사이언스 주식회사 Organic compound and organic electroluminescent element comprising same
US20200028084A1 (en) * 2018-07-19 2020-01-23 Lg Display Co., Ltd. Organic electroluminescent device
WO2020022751A1 (en) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 Organic electroluminescent device
WO2020022770A1 (en) * 2018-07-24 2020-01-30 주식회사 엘지화학 Polycyclic compound and organic light-emitting device comprising same
WO2020040298A1 (en) * 2018-08-23 2020-02-27 学校法人関西学院 Organic electroluminescent element, display device, illumination device, luminescent layer forming composition, and compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669163B1 (en) 2013-08-14 2015-02-12 国立大学法人九州大学 Organic electroluminescence device
US20200190115A1 (en) * 2017-05-16 2020-06-18 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (en) * 2014-02-18 2015-07-09 学校法人関西学院 Polycyclic aromatic compound
JP2016219437A (en) * 2014-08-29 2016-12-22 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017018326A1 (en) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 Organic electroluminescent element, display device, and illumination device
CN106467554A (en) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 A kind of boracic organic electroluminescent compounds and its application
WO2018216990A1 (en) * 2017-05-22 2018-11-29 머티어리얼사이언스 주식회사 Organic compound and organic electroluminescent element comprising same
US20200028084A1 (en) * 2018-07-19 2020-01-23 Lg Display Co., Ltd. Organic electroluminescent device
WO2020022751A1 (en) * 2018-07-24 2020-01-30 머티어리얼사이언스 주식회사 Organic electroluminescent device
WO2020022770A1 (en) * 2018-07-24 2020-01-30 주식회사 엘지화학 Polycyclic compound and organic light-emitting device comprising same
WO2020040298A1 (en) * 2018-08-23 2020-02-27 学校法人関西学院 Organic electroluminescent element, display device, illumination device, luminescent layer forming composition, and compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399227A1 (en) * 2020-06-18 2021-12-23 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
WO2022102877A1 (en) * 2020-11-11 2022-05-19 경희대학교 산학협력단 Organic light-emitting device with improved lifespan characteristics
CN113072569A (en) * 2021-03-01 2021-07-06 北京大学深圳研究生院 Thermal activation delayed blue fluorescent material and organic light emitting diode
WO2022183900A1 (en) * 2021-03-01 2022-09-09 北京大学深圳研究生院 Organic light-emitting device having thermally activated delayed fluorescent material as light-emitting layer material

Also Published As

Publication number Publication date
JPWO2020218558A1 (en) 2020-10-29
CN113784972A (en) 2021-12-10
KR20220004116A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP7202572B2 (en) polycyclic aromatic compound
JP7038371B2 (en) Polycyclic aromatic compounds
WO2020040298A1 (en) Organic electroluminescent element, display device, illumination device, luminescent layer forming composition, and compound
WO2020162600A1 (en) Polycyclic aromatic compound
WO2020101001A1 (en) Organic electroluminescence element, display device, and lighting device
KR102342591B1 (en) Benzofluorene compound, material for luminescent layer using same, and organic electroluminescent element
WO2020218558A1 (en) Compound, material for organic device, composition for forming light-emitting layer, organic field-effect transistor, organic thin-film solar cell, organic electroluminescent element, display device, and illumination device
JP2020147563A (en) Polycyclic aromatic compound and polymer thereof
CN112236435A (en) Polycyclic aromatic compound and multimer thereof
WO2019235402A1 (en) Polycyclic aromatic compounds and polymers of same
JP2020203875A (en) Polycyclic aromatic compound
JPWO2019074093A1 (en) Polycyclic aromatic dimer compounds
JP2021091644A (en) Multimer compound
JP2020026426A (en) Polycyclic aromatic compound and multimer thereof
JP2022074041A (en) Polycyclic aromatic compound
JP2022040089A (en) Polycyclic aromatic compound
JP2021063067A (en) Polycyclic aromatic compound, material for organic device, organic electroluminescent element, display device and illumination device
JP2021077890A (en) Organic electroluminescent element, display device, illumination device, and composition for forming light-emitting layer
JP7341412B2 (en) Compounds with boron as a spiro atom and their polymer compounds
JP7018171B2 (en) Polycyclic aromatic compounds with alkenyl groups and their multimers
JP2021172658A (en) Polycyclic aromatic compound
JP2022090294A (en) Polycyclic aromatic compound
JP2022034774A (en) Polycyclic aromatic compound
WO2022185897A1 (en) Polycyclic aromatic compound
WO2022185896A1 (en) Polycyclic aromatic compound and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038229

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20793985

Country of ref document: EP

Kind code of ref document: A1