WO2020218460A1 - Diagnostic assistance device, speculation device, diagnostic assistance system, diagnostic assistance method, diagnostic assistance program, and learned model - Google Patents

Diagnostic assistance device, speculation device, diagnostic assistance system, diagnostic assistance method, diagnostic assistance program, and learned model Download PDF

Info

Publication number
WO2020218460A1
WO2020218460A1 PCT/JP2020/017585 JP2020017585W WO2020218460A1 WO 2020218460 A1 WO2020218460 A1 WO 2020218460A1 JP 2020017585 W JP2020017585 W JP 2020017585W WO 2020218460 A1 WO2020218460 A1 WO 2020218460A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
image
estimation
brain
trained model
Prior art date
Application number
PCT/JP2020/017585
Other languages
French (fr)
Japanese (ja)
Inventor
宗司 廣田
純一 伊東
三浦 雄治
青島 健
悦子 今林
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to JP2021516228A priority Critical patent/JPWO2020218460A1/ja
Publication of WO2020218460A1 publication Critical patent/WO2020218460A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a trained model.
  • Patent Document 1 describes a diagnostic support device that predicts whether or not a subject with mild cognitive impairment will develop Alzheimer's disease within a predetermined period of time.
  • the diagnostic support device divides the brain image acquired from the subject into white matter, white matter, and spinal fluid portions, sets a plurality of regions of interest in each of the divided regions, and determines the volume of each region of interest in each region of interest. Calculate the t-value and p-value, calculate the z-value of each region of interest based on the t-value and p-value, and based on the z-value, according to the machine-learned prediction algorithm, the subject has Alzheimer's disease within a predetermined period. Predict whether or not to develop.
  • Patent Document 2 describes a medical image processing apparatus for accurately acquiring the amount of change between brain images of the same patient.
  • the medical image processing device aligns the first brain image of the subject with reference to the standard brain image, divides the first brain image into a plurality of regions, and positions the second brain image of the subject with reference to the first brain image. At the same time, the amount of change for at least one region is acquired.
  • the brain is divided into areas that control each function such as movement, language, perception, memory, vision and hearing, and the brain is divided into the cerebrum, diencephalon, and midbrain.
  • a method of dividing into six types of regions, the metencephalon, the cerebellum, and the medulla oblongata, is described. Further, the same document describes that a discriminator is created by machine learning the amount of change for each region, that is, the atrophy rate as teacher data for a plurality of patients in the past.
  • Non-Patent Document 1 shows the distribution of SUVR values by the VBM (Voxel Based morphometry) method in which a brain image is divided into voxels and evaluated by PET examination.
  • Figure 2 of the same document shows the orbitofrontal cortex, central prefrontal cortex, middle temporal cortex, temporal-occipital junction, posterior cingulate cortex, angular gyrus, precuneus, putamen, and nucleus accumbens by logistic regression analysis. A map of the disease contribution rate of the SUVR value of each region is shown.
  • Non-Patent Document 2 describes that a differential diagnosis of dementia is performed using physical findings, neurological examination, blood test, imaging test, and the like.
  • the result of estimating the risk of dementia based on MRI images etc. using machine learning technology is utilized for diagnosis by doctors.
  • hippocampus does not show atrophy but does not correspond to AD (Alzheimer's disease), or when PET examination detects a large accumulation of amyloid ⁇ protein, it is a precursor state of AD. It may be difficult to make a highly accurate diagnosis by the conventional method of evaluating a part of the brain, such as when it does not correspond to MCI (Mild Cognitive Impairment).
  • MCI Mild Cognitive Impairment
  • the present invention provides a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a diagnostic support device, a guess device, a diagnostic support system, a diagnostic support method, a diagnostic support program, which makes it easy to confirm the validity of the estimation result by the trained model and can improve the diagnostic accuracy.
  • a trained model Provide a trained model.
  • the diagnostic support device is a first acquisition unit that acquires an image of the whole brain of a subject, and an estimation in which an image is input to a trained model to make a guess related to dementia of the subject. It includes a second acquisition unit for acquiring the result, and a display unit for displaying the estimation result and information indicating the region of interest of the whole brain in the image on which the estimation result is based.
  • the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
  • the "whole brain image” refers to an image of all areas surrounded by the skull (in the case of a cross-sectional image, all areas surrounded by the skull in the cross section).
  • a whole brain image of the horizontal section of the brain includes the frontal lobe, temporal lobe, occipital lobe, etc., and is a vertical section parallel to the anterior-posterior direction (sagittal section, sagittal plane).
  • the sagittal plane includes the frontal lobe, parietal lobe, occipital lobe and spinal cord, and the vertical section parallel to the left-right direction (coronary section, coronal plane) includes the temporal lobe, frontal lobe or parietal lobe, spinal cord. ..
  • the "region of interest of the whole brain in the image on which the estimation result is based” means an region that brings about a different estimation result when the image data of that region is different. For example, there is a possibility of dementia when a trained model is input with different image data of the region of interest displayed for the image data of the whole brain image that resulted in the estimation that there is a high possibility of dementia. Is the area that gives the guess result that is low.
  • region of interest of the whole brain refers to the region of interest within all the regions surrounded by the skull, and the “region of interest” refers to the region that caused the estimation results related to dementia.
  • the first acquisition unit may acquire a three-dimensional image of the whole brain.
  • the display unit may display the region of interest of the whole brain in the three-dimensional image that is the basis of the estimation result in an aspect in which the three-dimensional position can be identified.
  • the region of interest of the whole brain in the image on which the estimation result is based can be captured three-dimensionally, and the validity of the estimation result by the trained model can be more easily confirmed.
  • the second acquisition unit may acquire the estimation result in which the subject estimates the risk of developing dementia within a predetermined period based on the image using the trained model.
  • the second acquisition unit may acquire the estimation result of estimating the accumulation of dementia-causing proteins such as amyloid ⁇ protein and tau protein related to the whole brain based on the image using the trained model. ..
  • the estimation result of estimating the accumulation of dementia-causing proteins such as amyloid ⁇ protein and tau protein related to the whole brain of the subject is valid, or whether the estimation result of the whole brain in the image on which the estimation result is based is valid. It can be confirmed by the information indicating the area of interest.
  • the second acquisition unit uses the trained model to obtain the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, and the subject.
  • the guess result of making a guess related to the subject's dementia may be obtained.
  • the accuracy of estimation can be improved by making an estimation related to dementia of the subject based on the information about the subject and the image of the whole brain of the subject using the trained model. it can.
  • the guessing device uses a guessing unit that inputs an image of the whole brain of the subject into the trained model and makes a guess related to dementia of the subject, and the trained model.
  • An estimation unit that estimates the region of interest of the whole brain in the image that is the basis of the result, and a provision unit that provides the result of the estimation and information indicating the region of interest of the whole brain in the image that is the basis of the estimation result to the diagnostic support device. , Equipped with.
  • the trained model is used to calculate the estimation result of making a dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based.
  • the diagnostic support system is a diagnostic support system including a diagnostic support device and a guessing device that stores a learned model, and the diagnostic support device is an image of the whole brain of a subject.
  • the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
  • the guessing device uses the trained model to make a guess related to the subject's dementia based on the image, and the trained model to use the trained model to base the guess result on the image. It may have an estimation unit that estimates the region of interest of the whole brain.
  • the estimation result of making a dementia-related estimation of the subject using the trained model by the estimation device and the information indicating the region of interest of the whole brain in the image on which the estimation result is based. Can be calculated and provided to the diagnostic support device.
  • the guessing device executes the learning process of the learning model and learns by using the learning data including the images of the whole brains of the plurality of subjects to which the actually measured data related to the dementia of the plurality of subjects are associated. It may have a generator that generates a completed model.
  • the learning data includes the test score of the subject's cognitive function, the subject's age, the subject's gender, the subject's height, the subject's weight, the subject's history, the subject's volume for each part of the whole brain, and the subject's.
  • subject data including a score representing the degree of atrophy for each part of the whole brain and information of at least one or a combination of a plurality of these secular data
  • the generator includes images of the whole brain of the plurality of subjects and images of the whole brain of the plurality of subjects.
  • a trained model may be generated based on the subject data.
  • a trained model with higher estimation accuracy related to dementia of the subject is generated. can do.
  • the generation unit may relearn the trained model based on the image of the whole brain of the subject and the diagnosis result related to the dementia of the subject.
  • the trained model can be improved by using the accumulated images of the whole brain of the subject and the diagnosis result.
  • the diagnostic support method is to acquire an image of the whole brain of the subject, input the image into the trained model, and make a guess related to dementia of the subject. It includes acquiring and displaying information indicating the region of interest of the whole brain in the estimation result and the image on which the estimation result is based.
  • the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
  • the diagnostic support device acquires an image of the whole brain of the subject, and the image is input to the trained model to make a guess related to dementia of the subject. Acquiring the estimated result and displaying the information indicating the region of interest of the whole brain in the estimated result and the image on which the estimated result is based are executed.
  • the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
  • the trained model according to another aspect of the present invention is used for learning processing of a learning model using learning data including images of the whole brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated.
  • learning data including images of the whole brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated.
  • the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based are calculated and provided to the diagnostic support device. Can be done.
  • the diagnostic support device relates to the dementia of the subject by inputting the first image into the trained model and the first acquisition unit that acquires the first image of the whole brain of the subject.
  • a second image that is different from the first estimation result when the second acquisition unit that acquires the first estimation result after estimation and the second image whose data is different only in a part of the first image are input to the trained model.
  • a setting unit for acquiring a partial area from which the estimation result is obtained and a display unit for displaying the first estimation result and the partial area are provided.
  • the first image of the whole brain of the subject is acquired, and the first image is input to the trained model to make a guess related to the dementia of the subject.
  • the second estimation result different from the first estimation result is acquired. Includes setting a part of the area and displaying the first estimation result and a part of the area.
  • some areas correspond to the areas on which the estimation results are based, and differ for each target person. That is, a part of the area for a certain target person and a part of the area for a different target person are different.
  • a diagnostic support device a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, and a diagnostic support program that make it easy to confirm the validity of the estimation result by the trained model and improve the diagnostic accuracy.
  • a trained model can be provided.
  • FIG. 1 shows the network configuration of the diagnosis support system which concerns on embodiment of this invention. It is a figure which shows the functional block of the diagnosis support apparatus and the estimation apparatus which concerns on this embodiment. It is a figure which shows the physical structure of the diagnosis support apparatus which concerns on this embodiment. It is a figure which shows the example which displays the estimation result about dementia by the estimation device which concerns on this embodiment and the basis
  • FIG. 1 is a diagram showing a network configuration of the diagnostic support system 100 according to the embodiment of the present invention.
  • the diagnosis support system 100 includes a diagnosis support device 10, an estimation device 20 that stores a learned model, an image management server 30, and an MRI scanner 50.
  • the diagnosis support device 10, the estimation device 20, and the image management server 30 are communicably connected by a communication network N such as the Internet or a LAN (Local Area Network).
  • the image management server 30 and the MRI scanner are communicably connected by DICOM (Digital Imaging and Communications in Medicine) or the like.
  • DICOM Digital Imaging and Communications in Medicine
  • the diagnostic support device 10 is composed of a general-purpose computer and is used by, for example, a doctor.
  • the diagnosis support device 10 displays the estimation result of the dementia-related estimation of the subject from the estimation device 20 and the information indicating the region of interest of the brain in the MRI image on which the estimation result is based.
  • a user such as a doctor who uses the diagnosis support device 10 can make a diagnosis related to dementia of the subject by using the displayed estimation result and the information indicating the region of interest of the brain on which the estimation result is based as an aid to the diagnosis. it can.
  • the guessing device 20 is composed of a general-purpose computer, and uses a trained model to make a guess related to the subject's dementia based on the image of the subject's brain acquired from the image management server 30.
  • the estimation device 20 estimates the region of interest of the brain in the image on which the estimation result is based, using the trained model.
  • the estimation result calculated by the estimation device 20 and the information regarding the region of interest of the brain on which the estimation result is based are provided to the diagnosis support device 10.
  • the image management server 30 is composed of a general-purpose computer and has a database of MRI images of the subject's brain measured by the MRI scanner 50.
  • the image management server 30 may store training data including images of the brains of a plurality of subjects used to generate a trained model of the guessing device 20.
  • the image management server 30 includes not only an MRI image of the subject's brain measured by the MRI scanner 50, but also a CT image of the subject's brain measured by a CT (Computed Tomography) scanner and PET (Positron Emission Tomography).
  • CT Computer Tomography
  • PET Positron Emission Tomography
  • the MRI scanner 50 captures an image of the inside of the subject's body using nuclear magnetic resonance.
  • the MRI scanner 50 specifically captures an image of the subject's head, that is, an image of the brain.
  • the captured MRI image is stored in the image management server 30, and is acquired by the estimation device 20 and the diagnosis support device 10.
  • FIG. 2 is a diagram showing functional blocks of the diagnostic support device 10 and the estimation device 20 according to the present embodiment.
  • the diagnosis support device 10 includes a first acquisition unit 11, a second acquisition unit 12, and a display unit 10f.
  • the estimation device 20 includes a storage unit 21, a generation unit 22, an estimation unit 23, an estimation unit 24, and a provision unit 25.
  • the first acquisition unit 11 acquires an image of the subject's brain from the image management server 30.
  • the first acquisition unit 11 may acquire a three-dimensional image of the subject's brain.
  • the three-dimensional image may be an MRI image of the brain measured by the MRI scanner 50.
  • the second acquisition unit 12 uses the first trained model 21b or the second trained model 21c to make a guess related to the subject's dementia based on the image of the brain, and the guessing device 20 Get from. In addition, the second acquisition unit 12 acquires information indicating the region of interest of the brain in the image that is the basis of the estimation result from the estimation device 20.
  • the second acquisition unit 12 may acquire the estimation result of estimating the risk of developing dementia by the subject within a predetermined period based on the image of the brain using the first learned model 21b.
  • the estimation result in which the subject estimates the risk of developing dementia within a predetermined period may be, for example, the result of calculating the probability that the subject develops dementia within 2 years.
  • the second acquisition unit 12 may acquire the estimation result of estimating the accumulation of amyloid ⁇ protein related to the brain based on the image of the brain using the second trained model 21c.
  • the estimation result of estimating the accumulation of amyloid ⁇ protein related to the brain is the estimation result of the accumulation amount of amyloid ⁇ protein, and whether the accumulation amount of amyloid ⁇ protein is above the threshold (presence or absence of accumulation of amyloid ⁇ protein). It may be the result of guessing.
  • the display unit 10f displays the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the brain in the image on which the estimation result is based.
  • the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information indicating the region of interest of the brain in the image on which the guess result is based. It becomes easier to confirm the validity of the estimation result by the model.
  • the display unit 10f may display the region of interest of the brain in the three-dimensional image that is the basis of the estimation result in a manner in which the three-dimensional position can be identified.
  • the display unit 10f may display the region of interest of the brain in the three-dimensional image on which the estimation result is based, for example, by a heat map superimposed on the MRI image of the brain.
  • the display unit 10f may display a three-dimensional image of the brain in a rotation-operable manner, and display a region of interest of the brain in the three-dimensional image on which the estimation result is based by a heat map superimposed on the three-dimensional image.
  • the display unit 10f may display the estimation result in which the subject estimates the risk of developing dementia within a predetermined period and the information indicating the region of interest of the brain in the image on which the estimation result is based. As a result, it is possible to confirm whether the estimation result of the risk that the subject develops dementia within a predetermined period is appropriate by the information indicating the region of interest of the brain in the image on which the estimation result is based.
  • the display unit 10f may display the estimation result of estimating the accumulation of amyloid ⁇ protein related to the brain and the information indicating the region of interest of the brain in the image on which the estimation result is based.
  • the diagnostic support system 100 the present embodiment, the accumulation of amyloid ⁇ protein can be estimated from the MRI image, and the brain image obtained by the MRI scanner 50 can be used without measurement by the PET scanner or collection of cerebrospinal fluid.
  • the risk of dementia can be estimated by a relatively simple method of imaging.
  • the storage unit 21 of the estimation device 20 stores the training data 21a, the first trained model 21b, and the second trained model 21c.
  • the learning data 21a includes images of the brains of a plurality of subjects to which actual measurement data related to dementia of the plurality of subjects are associated.
  • the learning data 21a is an MRI image of the brains of a plurality of subjects or amyloid ⁇ related to the brains of a plurality of subjects, to which actual measurement data indicating whether or not the cognitive function of the plurality of subjects has deteriorated within 2 years is associated. It may be an MRI image of the brains of a plurality of subjects associated with measured data (accumulation amount or presence / absence of accumulation) indicating protein accumulation.
  • the generation unit 22 executes the learning process of the learning model using the learning data 21a, and generates the first trained model 21b and the second trained model 21c.
  • the generation unit 22 uses a convolutional neural network using learning data 21a including MRI images of the brains of a plurality of subjects, which is associated with actual measurement data indicating whether or not the cognitive function of the plurality of subjects has deteriorated within two years.
  • the learning process of the learning model composed of is executed, and the first trained model 21b is generated.
  • the generation unit 22 is configured by a convolutional neural network using learning data 21a including MRI images of the brains of a plurality of subjects to which actual measurement data showing the accumulation of amyloid ⁇ protein related to the brains of the plurality of subjects is associated.
  • the learning process of the training model is executed to generate the second trained model 21c.
  • the learning process may be, for example, a process of updating the parameters of the neural network by the error back propagation method so as to minimize the loss function for evaluating the error between the guess result and the correct answer.
  • the first trained model 21b and the second trained model 21c may be configured by, for example, a 3D CNN (Convolutional Neural Network) that accepts voxel data of a brain image as an input.
  • the first trained model 21b and the second trained model 21c may both be configured by a convolutional neural network, but the network structures may be different. In this way, it is possible to generate a trained model capable of making an appropriate guess by using images of the brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated.
  • the guessing unit 23 uses the first trained model 21b or the second trained model 21c to make a guess related to the subject's dementia based on the image of the brain.
  • the guessing unit 23 uses the first trained model 21b to estimate the risk of the subject developing dementia within a predetermined period based on the image of the brain, or uses the second trained model 21c to estimate the risk.
  • the accumulation of amyloid ⁇ protein related to the brain may be inferred based on the image of the brain.
  • the learning data includes the test score of the subject's cognitive function, the subject's age, the subject's gender, the subject's height, the subject's weight, the subject's medical history, the volume of each part of the subject's brain, and the degree of atrophy of the subject's brain.
  • Subject data may further include the score to be represented and information on at least one or a combination of these secular data.
  • the subject data may be transmitted from the diagnosis support device 10 to the estimation device 20 and stored in the storage unit 21, but a part of the subject data may be taken into the estimation device 20 from an external database.
  • the volume of each part of the brain may include, for example, the volume of the forebrain basal ganglia, the volume of the posterior cingulate gyrus, and the volume of the medial temporal lobe.
  • the score representing the degree of atrophy of the brain may be represented by a Z value (a value converted so that the average is 0 and the standard deviation is 1).
  • the generation unit 22 converts the subject data into numerical values, synthesizes the feature map of the brain image calculated by the convolutional neural network and the numerical values representing the subject data, and performs, for example, a calculation by the fully connected layer to recognize the subject.
  • a first trained model 21b and a second trained model 21c may be generated to make inferences about the disease. In this way, by generating a trained model based on the subject data of a plurality of subjects and the image of the subject's brain, it is possible to generate a trained model with higher estimation accuracy related to the subject's dementia. it can.
  • the guessing unit 23 makes a guess related to the subject's dementia based on the brain image and the subject data.
  • the guessing unit 23 uses the test score for the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, and the subject.
  • Information on weight, subject's medical history, volume of each part of the subject's brain, scores representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data, and brain make inferences related to dementia in the subject based on the images. In this way, the accuracy of estimation can be further improved by making an estimation related to dementia of the subject based on the information about the subject and the image of the brain of the subject using the trained model.
  • the estimation unit 24 uses the first trained model 21b or the second trained model 21c to estimate the region of interest of the brain in the image on which the estimation result is based.
  • the estimation unit 24 uses, for example, LRP (Layer-wise Relevance Propagation) to describe the brain in the image on which the estimation result is based.
  • LRP Layer-wise Relevance Propagation
  • the generation unit 22 may relearn the first trained model 21b or the second trained model 21c based on the image of the subject's brain and the diagnosis result related to the subject's dementia. Images of the subject's brain and diagnosis results related to the subject's dementia are accumulated as the doctor diagnoses the subject.
  • the generation unit 22 may add the newly measured image of the subject's brain to the training data and relearn the first trained model 21b or the second trained model 21c. As a result, the trained model can be improved by using the accumulated images of the subject's brain and the diagnosis results.
  • the providing unit 25 provides the diagnosis support device 10 with the estimation result calculated by the estimation unit 23 and the information indicating the region of interest of the brain in the image on which the estimation result estimated by the estimation unit 24 is based.
  • the providing unit 25 may transmit the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the diagnosis support device 10 via the communication network N.
  • the estimation result of the estimation related to the dementia of the subject using the trained model and the interest of the brain in the image on which the estimation result is based can be calculated and provided to the diagnosis support device 10.
  • FIG. 3 is a diagram showing a physical configuration of the diagnostic support device 10 according to the present embodiment.
  • the diagnostic support device 10 includes a CPU (Central Processing Unit) 10a corresponding to a calculation unit, a RAM (Random Access Memory) 10b corresponding to a storage unit, a ROM (Read only Memory) 10c corresponding to a storage unit, and a communication unit. It has a 10d, an input unit 10e, and a display unit 10f. Each of these configurations is connected to each other via a bus so that data can be transmitted and received.
  • the diagnosis support device 10 is composed of one computer will be described, but the diagnosis support device 10 may be realized by combining a plurality of computers.
  • the configuration shown in FIG. 3 is an example, and the diagnosis support device 10 may have configurations other than these, or may not have a part of these configurations.
  • the CPU 10a is a control unit that controls execution of a program stored in the RAM 10b or ROM 10c, calculates data, and processes data.
  • the CPU 10a is a calculation unit that executes a program (diagnosis support program) that displays information indicating an area of interest in the brain in an image that is the basis of the estimation result and the estimation result that made an estimation related to dementia of the subject.
  • the CPU 10a receives various data from the input unit 10e and the communication unit 10d, displays the calculation result of the data on the display unit 10f, and stores the data in the RAM 10b.
  • the RAM 10b is a storage unit in which data can be rewritten, and may be composed of, for example, a semiconductor storage element.
  • the RAM 10b may store data such as a program executed by the CPU 10a and an image of the subject's brain. It should be noted that these are examples, and data other than these may be stored in the RAM 10b, or a part of these may not be stored.
  • the ROM 10c is a storage unit capable of reading data, and may be composed of, for example, a semiconductor storage element.
  • the ROM 10c may store, for example, a diagnostic support program or data that is not rewritten.
  • the communication unit 10d is an interface for connecting the diagnosis support device 10 to another device.
  • the communication unit 10d may be connected to a communication network N such as the Internet.
  • the input unit 10e receives data input from the user, and may include, for example, a keyboard and a touch panel.
  • the display unit 10f visually displays the calculation result by the CPU 10a, and may be configured by, for example, an LCD (Liquid Crystal Display).
  • the display unit 10f may display the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the brain in the image on which the estimation result is based.
  • the diagnosis support program may be stored in a storage medium readable by a computer such as RAM 10b or ROM 10c and provided, or may be provided via a communication network connected by the communication unit 10d.
  • the CPU 10a executes the diagnosis support program to realize various operations described with reference to FIG. It should be noted that these physical configurations are examples and do not necessarily have to be independent configurations.
  • the diagnosis support device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a and the RAM 10b or ROM 10c are integrated.
  • the physical configuration of the estimation device 20 may be the same as that of the diagnosis support device 10, but it may be provided with a GPU (Graphical Processing Unit) and may not necessarily be the same.
  • the trained model stored in the guessing device 20 is generated by a learning process of a learning model using learning data including images of the brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated. To.
  • the trained model performs inferences related to dementia in the subject based on images of the subject's brain and estimates the region of interest in the brain in the image on which the inference results are based. It is learned and processed as follows. Using the trained model, it is possible to calculate the estimation result of making an estimation related to the subject's dementia and the information indicating the region of interest of the brain in the image on which the estimation result is based, and provide it to the diagnosis support device 10. it can.
  • FIG. 4 is a diagram showing an example in which the estimation result regarding dementia by the estimation device 20 according to the present embodiment and the basis thereof are displayed on the diagnosis support device 10.
  • the first image IMG1, the second image IMG2, and the first estimation result PD1 displayed on the display unit 10f of the diagnosis support device 10 are shown.
  • the first image IMG1 and the second image IMG2 are images showing the MRI image of the subject's brain and the region of interest of the brain in the image on which the estimation result by the first trained model 21b is based.
  • the first image IMG1 is a cross-sectional image of the brain in the sagittal plane, and the first region R1 and the second region R2 are shown as regions of interest.
  • the second image IMG2 is a cross-sectional image of the brain on the coronal plane, and the third region R3 is shown as a region of interest.
  • the region of interest is displayed by a heat map in which pixels having a greater contribution to the estimation result calculated by the first trained model 21b are shown brighter.
  • the first estimation result PD1 is "probability of developing dementia within 2 years (estimation): 90%", and the first trained model 21b based on the first image IMG1 and the second image IMG2 causes dementia.
  • the result of calculating the onset probability is shown.
  • the doctor using the diagnosis support device 10 diagnoses the first estimation result PD1 while confirming the validity of the first estimation result PD1 by the first trained model 21b with reference to the first image IMG1 and the second image IMG2. Can be used for.
  • the region of interest is displayed by a heat map in which the pixel having a greater contribution to the estimation result calculated by the first trained model 21b is displayed brighter, but the region of interest is the first trained model 21b. It may be displayed by marking a part of the brain that contributes greatly to the estimation result calculated by, or may be displayed as text information separately from the brain image.
  • the first image IMG1, the second image IMG2, the first area R1, the second area R2, the third area R3, and the first estimation result PD1 are displayed on a terminal such as a smartphone or a PC (Personal Computer) used by the subject. May be good.
  • the providing unit 25 transmits the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the terminal of the target person.
  • the subject can confirm his / her own state by referring to the first image IMG1, the second image IMG2, the first region R1, the second region R2, the third region R3, and the first estimation result PD1. it can.
  • the providing unit 25 provides only the first estimation result PD1 to the terminal of the target person, and if necessary, the first image IMG1, the second image IMG2, the first area R1, the second area R2, and the third area R3. May be provided to the target person's terminal.
  • FIG. 5 is a diagram showing the estimation accuracy regarding dementia by the estimation device 20 according to the present embodiment.
  • the estimation accuracy of the first trained model 21b is calculated using the test data. The result is shown.
  • the "guess result" in the table of the figure is whether or not the probability that the subject develops dementia within a predetermined period is equal to or higher than the threshold value based on the image of the subject's brain according to the first trained model 21b. The result of guessing is shown.
  • the probability that the subject develops dementia within the predetermined period is equal to or higher than the threshold value, it is counted as the "AD progression group", and if the probability that the subject develops dementia within the predetermined period is less than the threshold value, " It is counted as "AD non-progressive group”.
  • "correct answer” indicates actual measurement data indicating whether or not the subject's cognitive function deteriorated within a predetermined period.
  • the count of the "guess result" of the first trained model 21b shown in FIG. 5 is the case where the score of the test related to the cognitive function of the subject is combined with the feature map of the brain image and the final judgment is made. Is going.
  • the AD progress group is 144 and the AD non-progress group is 77.
  • the 144 cases presumed to be in the AD advanced group, 140 cases were correct answers, and 4 cases were false positives (actually, the AD non-progressive group).
  • the first trained model 21b shows high performance for all the indexes, can suppress the occurrence of false positives and false negatives to a low level, and can appropriately evaluate the risk of dementia. ..
  • the guessing device 20 displays a table showing the guessing accuracy as shown in FIG. 5 on the diagnosis support device 10, and indexes such as accuracy, sensitivity, and specificity. May be displayed on the diagnostic support device 10. Further, an index such as a ROC (Receiver Operating Characteristic) curve or an AUC (Area Under the Curve) may be displayed on the diagnosis support device 10.
  • ROC Receiveiver Operating Characteristic
  • AUC Area Under the Curve
  • FIG. 6 is a flowchart relating to the estimation of dementia by the diagnostic support system 100 according to the present embodiment and the display of the basis thereof.
  • the brain image of the subject is photographed by the MRI scanner 50 (S10).
  • the estimation device 20 estimates the progression of dementia in the subject after a lapse of a predetermined period based on the brain image and the subject data using the first trained model 21b (S11).
  • the subject data is the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, the medical history of the subject, and the brain of the subject. Information on the volume of each site, the score representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data.
  • the estimation device 20 estimates the region of interest of the brain image that is the basis of the estimation result by using the first trained model 21b (S12).
  • the diagnostic support device 10 displays the brain image, the estimation result, and the region of interest of the brain image on which the estimation result is based (S13).
  • FIG. 7 is a flowchart of the learning process of the first trained model 21b by the guessing device 20 according to the present embodiment.
  • the guessing device 20 accumulates learning data 21a including brain images of a plurality of subjects, subject data, and information on the progression of dementia after a lapse of a predetermined period (S20).
  • the estimation device 20 executes estimation by the learning model using the learning data 21a (S21), and calculates an error between the estimation result and the correct answer (S22).
  • the correct answer is information on the progress of dementia after a lapse of a predetermined period, and may be information indicating whether or not dementia has progressed after the lapse of a predetermined period.
  • the guessing device 20 updates the parameters of the learning model so as to reduce the error (S23). After that, when the learning end condition is not satisfied (S24: NO), the guessing device 20 executes the processes S21 to S23 again.
  • the learning end condition may be that the error between the estimation result and the correct answer is not more than a predetermined value, or that the number of executions of the processes S21 to S23 is not more than a predetermined value.
  • the guessing device 20 saves the generated first trained model 21b (S25). As a result, the learning process of the first trained model 21b is completed.
  • the guessing device 20 uses the training data 21a including brain images of a plurality of subjects, subject data, and information on the accumulation of amyloid ⁇ protein by the same processing as in the case of generating the first trained model 21b.
  • the learning process of the completed model 21c may be performed.
  • FIG. 8 is a diagram showing an example in which the estimation result regarding the accumulation of amyloid ⁇ protein by the estimation device 20 according to the present embodiment and the basis thereof are displayed on the diagnosis support device 10.
  • the third image IMG3, the fourth image IMG4, and the second estimation result PD2 displayed on the display unit 10f of the diagnosis support device 10 are shown.
  • the third image IMG3 and the fourth image IMG4 are images showing the MRI image of the subject's brain and the region of interest of the brain in the image on which the estimation result by the second trained model 21c is based.
  • the third image IMG3 is a cross-sectional image of the brain in the sagittal plane, and the fourth region R4 is shown as the region of interest.
  • the fourth image IMG4 is a cross-sectional image of the brain on the coronal plane, and the fifth region R5 is shown as a region of interest.
  • the region of interest is displayed by a heat map in which pixels having a greater contribution to the estimation result calculated by the second trained model 21c are shown brighter.
  • the second estimation result PD2 is "probability (estimation) that amyloid ⁇ protein is accumulated above the threshold value (estimation): 95%", and amyloid ⁇ is determined by the second trained model 21c based on the third image IMG3 and the fourth image IMG4. The result of calculating the probability of the presence or absence of protein accumulation is shown.
  • the doctor using the diagnosis support device 10 diagnoses the second estimation result PD2 while confirming the validity of the second estimation result PD2 by the second trained model 21c with reference to the third image IMG3 and the fourth image IMG4. Can be used for.
  • the region of interest is displayed by a heat map in which the pixel having a greater contribution to the estimation result calculated by the second trained model 21c is displayed brighter, but the region of interest is the second trained model 21c. It may be displayed by marking a part of the brain that contributes greatly to the estimation result calculated by, or may be displayed as text information separately from the brain image.
  • the third image IMG3, the fourth image IMG4, the fourth area R4, the fifth area R5, and the second estimation result PD2 may be displayed on a terminal such as a smartphone or PC used by the target person.
  • the providing unit 25 transmits the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the terminal of the target person.
  • the subject can confirm his / her own state by referring to the third image IMG3, the fourth image IMG4, the fourth region R4, the fifth region R5, and the second estimation result PD2.
  • the providing unit 25 provides only the second estimation result PD2 to the target person's terminal, and if necessary, provides the third image IMG3, the fourth image IMG4, the fourth area R4, and the fifth area R5 to the target person's terminal. It may be provided to.
  • FIG. 9 is a diagram showing the estimation accuracy regarding the accumulation of amyloid ⁇ protein by the estimation device 20 according to the present embodiment.
  • the estimation accuracy of the second trained model 21c is calculated using the test data. The result is shown.
  • the "guess result" in the table of the figure shows the result of guessing whether or not the amyloid ⁇ protein is accumulated in the brain above the threshold value by the second trained model 21c based on the image of the subject's brain. There is.
  • the probability that amyloid ⁇ protein is accumulated above the threshold value in the subject's brain is greater than or equal to a predetermined value, it is counted as "Positive", and the probability that amyloid ⁇ protein is accumulated above the threshold value in the subject's brain is predetermined. If it is less than the value, it is counted as "Negative”. In addition, the "correct answer" indicates the result of measuring whether or not the amyloid ⁇ protein is accumulated in the subject's brain above the threshold value by collecting PET or cerebrospinal fluid.
  • the count of the "guess result" of the second trained model 21c shown in FIG. 9 is the case where the score of the test related to the cognitive function of the subject is combined with the feature map of the brain image to make the final judgment. Is going.
  • the second trained model 21c shows high performance for all the indexes, suppresses the occurrence of false positives and false negatives to a low level, and appropriately determines the presence or absence of accumulation of amyloid ⁇ protein. Can be evaluated.
  • the estimation device 20 displays a table showing the estimation accuracy as shown in FIG. 9 on the diagnosis support device 10, and indexes such as accuracy, sensitivity, and specificity. May be displayed on the diagnostic support device 10. Further, an index such as an ROC curve or AUC may be displayed on the diagnosis support device 10.
  • FIG. 10 is a flowchart regarding the estimation of the accumulation of amyloid ⁇ protein by the diagnostic support system 100 according to the present embodiment and the display of the basis thereof.
  • the brain image of the subject is taken by the MRI scanner 50 (S30).
  • the estimation device 20 estimates the accumulation of amyloid ⁇ protein related to the subject's brain based on the brain image and the subject data using the second trained model 21c (S31).
  • the subject data is the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, the medical history of the subject, and the brain of the subject. Information on the volume of each site, the score representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data.
  • the estimation device 20 estimates the region of interest of the brain image that is the basis of the estimation result using the second trained model 21c (S32).
  • the diagnostic support device 10 displays the brain image, the estimation result, and the region of interest of the brain image on which the estimation result is based (S33).
  • the embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention.
  • Each element included in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those exemplified, and can be changed as appropriate.
  • the configurations shown in different embodiments can be partially replaced or combined.
  • the first image IMG1 (FIG. 4), which is the sagittal plane of the subject, shows a brain image of the entire region surrounded by the skull.
  • the second image IMG2 (FIG. 4), which is the coronal plane of the subject, shows a brain image of the entire region surrounded by the skull, and thus corresponds to an image of the whole brain.
  • the learning data 21a stored in the storage unit 21 of the estimation device 20 includes images of the whole brains of a plurality of subjects.
  • the generation unit 22 executes the learning process of the learning model composed of the convolutional neural network that inputs the learning data 21a including the MRI images of the whole brains of a plurality of subjects to execute the first trained model 21b and the first trained model 21b.
  • 2 Generate a trained model 21c.
  • the guessing unit 23 uses an image of the whole brain of the subject as an input to make a dementia-related guess, and the guessing unit 24 estimates the region of interest of the whole brain in the image on which the guess result is based.
  • the first region R1 of the first image IMG1 indicates a region near the occipital lobe in the whole brain
  • the second region R2 indicates a region near the frontal lobe
  • the third image IMG3 is temporal. It shows the area near the leaves. Therefore, the estimation unit 24 is configured to be able to estimate the region of interest within all the regions surrounded by the skull. Further, the providing unit 25 provides the estimated region of interest of the whole brain to the diagnosis support device 10.
  • the first acquisition unit 11 of the diagnosis support device 10 acquires an image of the whole brain of the subject as an input.
  • the second acquisition unit 12 acquires from the estimation device 20 the estimation result of making an estimation related to the dementia of the subject based on the image of the whole brain of the subject.
  • the display unit 10f displays the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based.
  • the diagnostic support device 10 Even when the evaluation result that the possibility of dementia is low is obtained for some reason, according to the diagnostic support device 10 according to the present invention, evaluation based on the relationship between a plurality of areas and a plurality of areas can be obtained. Since it is possible to make an evaluation due to a cause that crosses over, for example, dementia is caused by a certain amount of dementia-causing protein accumulation in each of the frontal lobe, occipital lobe, and temporal lobe. It is possible to obtain a speculative result that is likely to be. Furthermore, it is possible to expect the discovery of a new region of the brain related to dementia or a new correlation, which has not been recognized by conventional technical common sense. In addition, even a doctor who specializes in neurosurgery or the like who does not have sufficient expertise in identifying individual parts of the brain can easily make a diagnosis.
  • the estimation unit 24 estimates the region of interest in all the regions surrounded by the skull, and the display unit 10f displays the region of interest in all the regions surrounded by the skull.
  • the display unit 10f displays related regions covering a plurality of regions such as the frontal lobe, the occipital lobe, and the temporal lobe, as shown in the first image IMG1 to the third image IMG3. Therefore, the user of the diagnostic support device 10 can obtain new knowledge that the relationship between a plurality of areas can cause dementia.
  • VBM Vehicle Based Morphometry
  • the region of interest of the whole brain displayed by the display unit 10f is the basis of the estimation result, it usually differs depending on the subject.
  • the frontal lobe or the temporal lobe may be displayed as an area of interest, but in the case of a subject with vascular dementia, the site where the blood vessel is damaged may be displayed. It may be displayed as an area of interest.
  • the region of interest is represented by highlighting the target pixel, for example, increasing the brightness of the target pixel. Therefore, even within the same frontal lobe, different regions of interest are usually displayed depending on the subject. Such a configuration is quite different from simply highlighting areas previously known to be likely to cause dementia (eg, the frontal lobe).
  • the above-mentioned LRP is a method of calculating the influence of the input value on the output value. For example, after propagating a neural network such as CNN to a certain layer, it is possible to identify a part having a large influence by setting a value other than the part to be examined to zero and back-propagating.
  • a method of changing the input information to create a plurality of input information, inputting them into the same trained model, and comparing the results is considered to acquire the area on which the estimation result is based. Be done.
  • the estimation unit 23 inputs an image of the entire brain of the subject (an example of the "first image") into the first trained model 21b or the second trained model 21c, and the estimation result ("" An example of "first estimation result") is acquired.
  • the estimation unit 24 generates a plurality of images of the whole brain (an example of the "second image") in which only a part of the first image is different. For example, a second image in which a part of the pixel values of the frontal lobe is masked, a second image in which a part of the pixel values of the occipital lobe are masked and changed to different values, and the like are generated.
  • the guessing unit 23 inputs the generated second image into the first trained model 21b or the second trained model 21c to acquire a plurality of guessing results (an example of the "second guessing result"). .. Then, the estimation unit 24 compares the first estimation result and the second estimation result, and determines a second image in which different estimation results are obtained. The estimation unit 24 acquires the masked region as the region of interest on which the estimation result is based in the second image that brings about the second estimation result different from the first estimation result, and provides the masked region to the providing unit 25.
  • the display unit 10f increases the brightness of the pixels corresponding to the region of interest and superimposes them on the image of the entire brain of the subject for display.
  • the region of interest can be configured to include two or more types of regions (a grounded first region of interest and a more grounded second region of interest). Become.
  • Diagnosis support device estimation device, diagnosis support system, diagnosis support method, diagnosis. It will be possible to provide support programs and trained models.
  • 10 ... Diagnosis support device 10a ... CPU, 10b ... RAM, 10c ... ROM, 10d ... Communication unit, 10e ... Input unit, 10f ... Display unit, 11 ... First acquisition unit, 12 ... Second acquisition unit, 20 ... Guess Device, 21 ... storage unit, 21a ... learning data, 21b ... first trained model, 21c ... second trained model, 22 ... generation unit, 23 ... estimation unit, 24 ... estimation unit, 25 ... providing unit, 30 ... Image management server, 50 ... MRI scanner, 100 ... diagnostic support system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

This diagnostic assistance device 10 is provided with: a first acquisition unit 11 for acquiring an image of the brain of a subject; a second acquisition unit 12 for acquiring an speculation result obtained by making, on the basis of an image, speculation regarding dementia of the subject using learned models 21b, 21c; and a display unit 10f for displaying the speculation result and information indicating the area of interest in the brain in the image used as the basis for the speculation result.

Description

診断支援装置、推測装置、診断支援システム、診断支援方法、診断支援プログラム及び学習済みモデルDiagnostic support device, guessing device, diagnostic support system, diagnostic support method, diagnostic support program and trained model
 本発明は、診断支援装置、推測装置、診断支援システム、診断支援方法、診断支援プログラム及び学習済みモデルに関する。 The present invention relates to a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a trained model.
 従来、機械学習技術を用いて、脳のMRI(Magnetic Resonance Imaging)画像等に基づいて認知症のリスクを推測する研究が行われている。 Conventionally, research has been conducted to estimate the risk of dementia based on MRI (Magnetic Resonance Imaging) images of the brain using machine learning technology.
 例えば、下記特許文献1には、軽度認知障害の被験者が所定期間内にアルツハイマー病を発症するか否かの予測を行う診断支援装置が記載されている。診断支援装置は、被験者から取得した脳画像を灰白質、白質、および髄液部分に分割し、分割された各領域に複数の関心領域を設定し、各関心領域の体積について、各関心領域におけるt値およびp値を演算し、t値およびp値に基づいて、各関心領域のz値を演算し、z値に基づいて、機械学習された予測アルゴリズムに従って、被験者が所定期間内にアルツハイマー病を発症するか否かの予測を行う。 For example, Patent Document 1 below describes a diagnostic support device that predicts whether or not a subject with mild cognitive impairment will develop Alzheimer's disease within a predetermined period of time. The diagnostic support device divides the brain image acquired from the subject into white matter, white matter, and spinal fluid portions, sets a plurality of regions of interest in each of the divided regions, and determines the volume of each region of interest in each region of interest. Calculate the t-value and p-value, calculate the z-value of each region of interest based on the t-value and p-value, and based on the z-value, according to the machine-learned prediction algorithm, the subject has Alzheimer's disease within a predetermined period. Predict whether or not to develop.
 下記特許文献2には、同一患者の脳画像間の変化量を精度よく取得するための医用画像処理装置が記載されている。医用画像処理装置は、標準脳画像を基準に被検体の第1の脳画像を位置合わせした後複数の領域に分割し、第1の脳画像を基準に被検体の第2の脳画像を位置合わせして、少なくとも一つの領域についての変化量を取得する。分割の手法としては、ブロードマンの脳地図に基づいて、脳を運動、言語、知覚、記憶、視覚及び聴覚等の各機能を司る領域に分割する手法、脳を大脳、間脳、中脳、後脳、小脳及び延髄の6種類の領域に分割する手法が記載されている。また、同文献には、過去の複数の患者について、領域毎の変化量、すなわち委縮率を教師データとして機械学習させることにより判別機を作成することが記載されている。 Patent Document 2 below describes a medical image processing apparatus for accurately acquiring the amount of change between brain images of the same patient. The medical image processing device aligns the first brain image of the subject with reference to the standard brain image, divides the first brain image into a plurality of regions, and positions the second brain image of the subject with reference to the first brain image. At the same time, the amount of change for at least one region is acquired. As a method of division, based on Broadman's brain map, the brain is divided into areas that control each function such as movement, language, perception, memory, vision and hearing, and the brain is divided into the cerebrum, diencephalon, and midbrain. A method of dividing into six types of regions, the metencephalon, the cerebellum, and the medulla oblongata, is described. Further, the same document describes that a discriminator is created by machine learning the amount of change for each region, that is, the atrophy rate as teacher data for a plurality of patients in the past.
 下記非特許文献1には、脳画像をボクセルごとに分割して、PET検査により評価するVBM(Voxel Based morphometry)法によるSUVR値の分布が示されている。同文献の図2には、ロジスティック回帰分析により、眼窩前頭皮質、中央前頭皮質、中側頭皮質、側頭後頭接合部、後部帯状皮質、角回、楔前部、被殻、および側坐核に分割し、各領域のSUVR値の疾患寄与率のマップが示されている。 Non-Patent Document 1 below shows the distribution of SUVR values by the VBM (Voxel Based morphometry) method in which a brain image is divided into voxels and evaluated by PET examination. Figure 2 of the same document shows the orbitofrontal cortex, central prefrontal cortex, middle temporal cortex, temporal-occipital junction, posterior cingulate cortex, angular gyrus, precuneus, putamen, and nucleus accumbens by logistic regression analysis. A map of the disease contribution rate of the SUVR value of each region is shown.
 下記非特許文献2には、身体所見、神経学的診察、血液検査、画像検査等を用いて、認知症の鑑別診断を行うことが記載されている。 Non-Patent Document 2 below describes that a differential diagnosis of dementia is performed using physical findings, neurological examination, blood test, imaging test, and the like.
特許第6483890号公報Japanese Patent No. 6438890 国際公開WO2019/003749号International release WO2019 / 003749
 機械学習技術を用いて、MRI画像等に基づいて認知症のリスクを推測した結果は、医師による診断に活用される。 The result of estimating the risk of dementia based on MRI images etc. using machine learning technology is utilized for diagnosis by doctors.
 しかしながら、単に推測結果を提示するだけでは、どのような理由でその推測がされたのかが明らかでない。そのため、医師は、推測結果の妥当性を判断することが難しく、結果として推測結果が採用しづらくなるおそれがある。 However, it is not clear why the guess was made simply by presenting the guess result. Therefore, it is difficult for the doctor to judge the validity of the estimation result, and as a result, the estimation result may be difficult to adopt.
 また、海馬に委縮がみられないにもかかわらずAD(Alzheimer Disease;アルツハイマー病)に相当しない場合や、PET検査においてアミロイドβタンパク質の蓄積が大きいことが検出されたにもかかわらずADの前駆状態であるMCI(Mild Cognitive Impairment;軽度認知障害)に相当しない場合等、脳の一部領域を評価する従来の手法では、精度の高い診断を行うことが困難な場合がある。 In addition, when the hippocampus does not show atrophy but does not correspond to AD (Alzheimer's disease), or when PET examination detects a large accumulation of amyloid β protein, it is a precursor state of AD. It may be difficult to make a highly accurate diagnosis by the conventional method of evaluating a part of the brain, such as when it does not correspond to MCI (Mild Cognitive Impairment).
 そこで、本発明は、学習済みモデルによる推測結果の妥当性が確認しやすく、かつ、診断精度を高めることが可能になる診断支援装置、推測装置、診断支援システム、診断支援方法、診断支援プログラム及び学習済みモデルを提供する。 Therefore, the present invention provides a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a diagnostic support device, a guess device, a diagnostic support system, a diagnostic support method, a diagnostic support program, which makes it easy to confirm the validity of the estimation result by the trained model and can improve the diagnostic accuracy. Provide a trained model.
 本発明の一態様に係る診断支援装置は、対象者の全脳の画像を取得する第1取得部と、学習済みモデルに画像を入力し、対象者の認知症に関連する推測を行った推測結果を取得する第2取得部と、推測結果及び推測結果の根拠となる画像における全脳の関心領域を示す情報を表示する表示部と、を備える。 The diagnostic support device according to one aspect of the present invention is a first acquisition unit that acquires an image of the whole brain of a subject, and an estimation in which an image is input to a trained model to make a guess related to dementia of the subject. It includes a second acquisition unit for acquiring the result, and a display unit for displaying the estimation result and information indicating the region of interest of the whole brain in the image on which the estimation result is based.
 この態様によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果を、推測結果の根拠となる画像における全脳の関心領域を示す情報とともに表示することで、学習済みモデルによる推測結果の妥当性が確認しやすくなる。 According to this aspect, the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
 ここで「全脳の画像」とは、頭蓋骨によって囲まれた全ての領域の画像(断面画像の場合、その断面における、頭蓋骨によって囲まれた全ての領域)をいう。典型的な場合、脳の水平断面(軸位断、軸位面)の全脳画像には、前頭葉、側頭葉、後頭葉等が含まれ、前後方向と平行な垂直断面(矢状断、矢状面)には、前頭葉、頭頂葉、後頭葉及び延髄が含まれ、左右方向と平行な垂直断面(冠状断、冠状面)には、側頭葉、前頭葉又は頭頂葉、延髄が含まれる。 Here, the "whole brain image" refers to an image of all areas surrounded by the skull (in the case of a cross-sectional image, all areas surrounded by the skull in the cross section). Typically, a whole brain image of the horizontal section of the brain (axial section, axial plane) includes the frontal lobe, temporal lobe, occipital lobe, etc., and is a vertical section parallel to the anterior-posterior direction (sagittal section, sagittal plane). The sagittal plane) includes the frontal lobe, parietal lobe, occipital lobe and spinal cord, and the vertical section parallel to the left-right direction (coronary section, coronal plane) includes the temporal lobe, frontal lobe or parietal lobe, spinal cord. ..
 また、「推測結果の根拠となる画像における全脳の関心領域」とは、仮に、その領域の画像データを異ならせたときに、異なる推測結果をもたらす領域をいう。例えば、認知症である可能性が高い、という推測結果をもたらした全脳画像の画像データについて表示される関心領域の画像データを異ならせて学習済みモデル入力した場合に、認知症である可能性が低い、という推測結果をもたらす領域をいう。 Further, the "region of interest of the whole brain in the image on which the estimation result is based" means an region that brings about a different estimation result when the image data of that region is different. For example, there is a possibility of dementia when a trained model is input with different image data of the region of interest displayed for the image data of the whole brain image that resulted in the estimation that there is a high possibility of dementia. Is the area that gives the guess result that is low.
 「全脳の関心領域」とは、頭蓋骨によって囲まれた全ての領域内の関心領域をいい、「関心領域」とは、認知症に関連する推測結果の起因となった領域をいう。 The "region of interest of the whole brain" refers to the region of interest within all the regions surrounded by the skull, and the "region of interest" refers to the region that caused the estimation results related to dementia.
 上記態様において、第1取得部は、全脳の3次元画像を取得してもよい。 In the above aspect, the first acquisition unit may acquire a three-dimensional image of the whole brain.
 この態様によれば、全脳の3次元画像を用いることで、全脳の立体的な特徴を捉えて認知症に関連する推測を行うことができる。 According to this aspect, by using a three-dimensional image of the whole brain, it is possible to capture the three-dimensional features of the whole brain and make a dementia-related guess.
 上記態様において、表示部は、推測結果の根拠となる3次元画像における全脳の関心領域を、3次元位置が識別可能な態様で表示してもよい。 In the above aspect, the display unit may display the region of interest of the whole brain in the three-dimensional image that is the basis of the estimation result in an aspect in which the three-dimensional position can be identified.
 この態様によれば、推測結果の根拠となる画像における全脳の関心領域を、立体的に捉えることができ、学習済みモデルによる推測結果の妥当性がより確認しやすくなる。 According to this aspect, the region of interest of the whole brain in the image on which the estimation result is based can be captured three-dimensionally, and the validity of the estimation result by the trained model can be more easily confirmed.
 上記態様において、第2取得部は、学習済みモデルを用いて、画像に基づいて、対象者が所定期間内に認知症を発症するリスクの推測を行った推測結果を取得してもよい。 In the above aspect, the second acquisition unit may acquire the estimation result in which the subject estimates the risk of developing dementia within a predetermined period based on the image using the trained model.
 この態様によれば、対象者が所定期間内に認知症を発症するリスクに関する推測結果が妥当なものであるか、推測結果の根拠となる画像における全脳の関心領域を示す情報によって確認することができる。 According to this aspect, whether the estimation result regarding the risk of developing dementia in the subject within a predetermined period is valid or not is confirmed by the information indicating the region of interest of the whole brain in the image on which the estimation result is based. Can be done.
 上記態様において、第2取得部は、学習済みモデルを用いて、画像に基づいて、全脳に関するアミロイドβタンパク質やタウタンパク質等の認知症原因タンパク質の蓄積を推測した推測結果を取得してもよい。 In the above aspect, the second acquisition unit may acquire the estimation result of estimating the accumulation of dementia-causing proteins such as amyloid β protein and tau protein related to the whole brain based on the image using the trained model. ..
 この態様によれば、対象者の全脳に関するアミロイドβタンパク質やタウタンパク質等の認知症原因タンパク質の蓄積を推測した推測結果が妥当なものであるか、推測結果の根拠となる画像における全脳の関心領域を示す情報によって確認することができる。 According to this aspect, whether the estimation result of estimating the accumulation of dementia-causing proteins such as amyloid β protein and tau protein related to the whole brain of the subject is valid, or whether the estimation result of the whole brain in the image on which the estimation result is based is valid. It can be confirmed by the information indicating the area of interest.
 上記態様において、第2取得部は、学習済みモデルを用いて、対象者の認知機能に関するテストのスコア、対象者の年齢、対象者の性別、対象者の身長、対象者の体重、対象者の既往歴、対象者の全脳の部位毎の体積及び対象者の全脳の部位毎の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報と、画像とに基づいて、対象者の認知症に関連する推測を行った推測結果を取得してもよい。 In the above embodiment, the second acquisition unit uses the trained model to obtain the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, and the subject. Information on the medical history, the volume of each part of the subject's whole brain, the score representing the degree of atrophy of each part of the subject's whole brain, and at least one or more combinations of these secular data, and images. Based on the above, the guess result of making a guess related to the subject's dementia may be obtained.
 この態様によれば、学習済みモデルを用いて、対象者に関する情報及び対象者の全脳の画像に基づいて対象者の認知症に関連する推測を行うことで、推測精度をより高くすることができる。 According to this aspect, the accuracy of estimation can be improved by making an estimation related to dementia of the subject based on the information about the subject and the image of the whole brain of the subject using the trained model. it can.
 本発明の他の態様に係る推測装置は、学習済みモデルに対象者の全脳の画像を入力し、対象者の認知症に関連する推測を行う推測部と、学習済みモデルを用いて、推測結果の根拠となる画像における全脳の関心領域を推定する推定部と、推測の結果及び推測の結果の根拠となる画像における全脳の関心領域を示す情報を診断支援装置に提供する提供部と、を備える。 The guessing device according to another aspect of the present invention uses a guessing unit that inputs an image of the whole brain of the subject into the trained model and makes a guess related to dementia of the subject, and the trained model. An estimation unit that estimates the region of interest of the whole brain in the image that is the basis of the result, and a provision unit that provides the result of the estimation and information indicating the region of interest of the whole brain in the image that is the basis of the estimation result to the diagnostic support device. , Equipped with.
 この態様によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となる画像における全脳の関心領域を示す情報とを算出し、診断支援装置に提供することで、診断支援装置を用いるユーザが学習済みモデルによる推測結果の妥当性を確認しやすくなる。 According to this aspect, the trained model is used to calculate the estimation result of making a dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based. By providing it to the diagnostic support device, it becomes easier for the user who uses the diagnostic support device to confirm the validity of the estimation result by the trained model.
 本発明の他の態様に係る診断支援システムは、診断支援装置と、学習済みモデルを記憶している推測装置とを備える診断支援システムであって、診断支援装置は、対象者の全脳の画像を取得する第1取得部と、学習済みモデルに画像を入力し、対象者の認知症に関連する推測を行った推測結果を取得する第2取得部と、推測結果及び推測結果の根拠となる画像における全脳の関心領域を示す情報を表示する表示部と、を有する。 The diagnostic support system according to another aspect of the present invention is a diagnostic support system including a diagnostic support device and a guessing device that stores a learned model, and the diagnostic support device is an image of the whole brain of a subject. The first acquisition unit that acquires the estimation result and the second acquisition unit that acquires the estimation result of making an estimation related to dementia of the subject by inputting an image into the trained model, and the estimation result and the basis of the estimation result. It has a display unit for displaying information indicating an area of interest of the whole brain in an image.
 この態様によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果を、推測結果の根拠となる画像における全脳の関心領域を示す情報とともに表示することで、学習済みモデルによる推測結果の妥当性が確認しやすくなる。 According to this aspect, the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
 上記態様において、推測装置は、学習済みモデルを用いて、画像に基づいて、対象者の認知症に関連する推測を行う推測部と、学習済みモデルを用いて、推測結果の根拠となる画像における全脳の関心領域を推定する推定部と、を有してもよい。 In the above aspect, the guessing device uses the trained model to make a guess related to the subject's dementia based on the image, and the trained model to use the trained model to base the guess result on the image. It may have an estimation unit that estimates the region of interest of the whole brain.
 この態様によれば、推測装置によって、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となる画像における全脳の関心領域を示す情報とを算出し、診断支援装置に提供することができる。 According to this aspect, the estimation result of making a dementia-related estimation of the subject using the trained model by the estimation device, and the information indicating the region of interest of the whole brain in the image on which the estimation result is based. Can be calculated and provided to the diagnostic support device.
 上記態様において、推測装置は、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の全脳の画像を含む学習データを用いて、学習モデルの学習処理を実行し、学習済みモデルを生成する生成部を有してもよい。 In the above aspect, the guessing device executes the learning process of the learning model and learns by using the learning data including the images of the whole brains of the plurality of subjects to which the actually measured data related to the dementia of the plurality of subjects are associated. It may have a generator that generates a completed model.
 この態様によれば、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の全脳の画像を用いて、適切な推測ができる学習済みモデルを生成することができる。 According to this aspect, it is possible to generate a trained model capable of making an appropriate guess using images of the whole brain of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated.
 上記態様において、学習データは、被験者の認知機能に関するテストのスコア、被験者の年齢、被験者の性別、被験者の身長、被験者の体重、被験者の既往歴、被験者の全脳の部位毎の体積及び被験者の全脳の部位毎の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報を含む被験者データをさらに含み、生成部は、複数の被験者の全脳の画像及び被験者データに基づいて、学習済みモデルを生成してもよい。 In the above embodiment, the learning data includes the test score of the subject's cognitive function, the subject's age, the subject's gender, the subject's height, the subject's weight, the subject's history, the subject's volume for each part of the whole brain, and the subject's. Further including subject data including a score representing the degree of atrophy for each part of the whole brain and information of at least one or a combination of a plurality of these secular data, the generator includes images of the whole brain of the plurality of subjects and images of the whole brain of the plurality of subjects. A trained model may be generated based on the subject data.
 この態様によれば、複数の被験者に関する被験者データ及び対象者の全脳の画像に基づいて学習済みモデルを生成することで、対象者の認知症に関連する推測精度がより高い学習済みモデルを生成することができる。 According to this aspect, by generating a trained model based on subject data on a plurality of subjects and images of the subject's whole brain, a trained model with higher estimation accuracy related to dementia of the subject is generated. can do.
 上記態様において、生成部は、対象者の全脳の画像及び対象者の認知症に関連する診断結果に基づいて、学習済みモデルの再学習を行ってもよい。 In the above aspect, the generation unit may relearn the trained model based on the image of the whole brain of the subject and the diagnosis result related to the dementia of the subject.
 この態様によれば、蓄積される対象者の全脳の画像及び診断結果を用いて、学習済みモデルを改善していくことができる。 According to this aspect, the trained model can be improved by using the accumulated images of the whole brain of the subject and the diagnosis result.
 本発明の他の態様に係る診断支援方法は、対象者の全脳の画像を取得することと、学習済みモデルに画像を入力し、対象者の認知症に関連する推測を行った推測結果を取得することと、推測結果及び推測結果の根拠となる画像における全脳の関心領域を示す情報を表示することと、を含む。 The diagnostic support method according to another aspect of the present invention is to acquire an image of the whole brain of the subject, input the image into the trained model, and make a guess related to dementia of the subject. It includes acquiring and displaying information indicating the region of interest of the whole brain in the estimation result and the image on which the estimation result is based.
 この態様によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果を、推測結果の根拠となる画像における全脳の関心領域を示す情報とともに表示することで、学習済みモデルによる推測結果の妥当性が確認しやすくなる。 According to this aspect, the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
 本発明の他の態様に係る診断支援プログラムは、診断支援装置に、対象者の全脳の画像を取得することと、学習済みモデルに画像を入力し、対象者の認知症に関連する推測を行った推測結果を取得することと、推測結果及び推測結果の根拠となる画像における全脳の関心領域を示す情報を表示することと、を実行させる。 In the diagnostic support program according to another aspect of the present invention, the diagnostic support device acquires an image of the whole brain of the subject, and the image is input to the trained model to make a guess related to dementia of the subject. Acquiring the estimated result and displaying the information indicating the region of interest of the whole brain in the estimated result and the image on which the estimated result is based are executed.
 この態様によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果を、推測結果の根拠となる画像における全脳の関心領域を示す情報とともに表示することで、学習済みモデルによる推測結果の妥当性が確認しやすくなる。 According to this aspect, the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information showing the region of interest of the whole brain in the image on which the guess result is based. , It becomes easier to confirm the validity of the estimation result by the trained model.
 本発明の他の態様に係る学習済みモデルは、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の全脳の画像を含む学習データを用いた学習モデルの学習処理に対象者の全脳の画像を入力し、対象者の認知症に関連する推測を行うことと、推測の結果の根拠となる画像における全脳の関心領域を推定することと、を実行するように学習処理されている。 The trained model according to another aspect of the present invention is used for learning processing of a learning model using learning data including images of the whole brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated. To perform an image of the subject's whole brain to make inferences related to the subject's dementia and to estimate the area of interest in the whole brain in the image on which the results of the inference are based. It is being learned.
 この態様によれば、対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となる画像における全脳の関心領域を示す情報とを算出し、診断支援装置に提供することができる。 According to this aspect, the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based are calculated and provided to the diagnostic support device. Can be done.
 本発明の他の態様に係る診断支援装置は、対象者の全脳の第1画像を取得する第1取得部と、学習済みモデルに第1画像を入力し、対象者の認知症に関連する推測を行った第1推測結果を取得する第2取得部と、この第1画像の一部領域のみが異なるデータである第2画像を学習済みモデルに入力した場合に第1推測結果と異なる第2推測結果が得られる一部領域を取得する設定部と、第1推測結果及び一部領域を表示する表示部を備える。 The diagnostic support device according to another aspect of the present invention relates to the dementia of the subject by inputting the first image into the trained model and the first acquisition unit that acquires the first image of the whole brain of the subject. A second image that is different from the first estimation result when the second acquisition unit that acquires the first estimation result after estimation and the second image whose data is different only in a part of the first image are input to the trained model. (2) A setting unit for acquiring a partial area from which the estimation result is obtained and a display unit for displaying the first estimation result and the partial area are provided.
 本発明の他の態様に係る診断支援方法は、対象者の全脳の第1画像を取得することと、学習済みモデルに第1画像を入力し、対象者の認知症に関連する推測を行った第1推測結果を取得することと、この第1画像の一部領域のみが異なるデータである第2画像を学習済みモデルに入力した場合に第1推測結果と異なる第2推測結果が取得される一部領域を設定することと、第1推測結果及び一部領域を表示することと、を含む。 In the diagnostic support method according to another aspect of the present invention, the first image of the whole brain of the subject is acquired, and the first image is input to the trained model to make a guess related to the dementia of the subject. When the first estimation result is acquired and the second image in which only a part of the first image is different data is input to the trained model, the second estimation result different from the first estimation result is acquired. Includes setting a part of the area and displaying the first estimation result and a part of the area.
 ここで、一部領域は、推測結果の根拠となる領域に相当し、対象者ごとに異なる。すなわち、ある対象者にとっての一部領域と、異なる対象者にとっての一部領域は、異なる。 Here, some areas correspond to the areas on which the estimation results are based, and differ for each target person. That is, a part of the area for a certain target person and a part of the area for a different target person are different.
 本発明によれば、学習済みモデルによる推測結果の妥当性が確認しやすく、かつ、診断精度を高めることが可能になる診断支援装置、推測装置、診断支援システム、診断支援方法、診断支援プログラム及び学習済みモデルを提供することができる。 According to the present invention, a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, a diagnostic support program, and a diagnostic support device, a guessing device, a diagnostic support system, a diagnostic support method, and a diagnostic support program that make it easy to confirm the validity of the estimation result by the trained model and improve the diagnostic accuracy. A trained model can be provided.
本発明の実施形態に係る診断支援システムのネットワーク構成を示す図である。It is a figure which shows the network configuration of the diagnosis support system which concerns on embodiment of this invention. 本実施形態に係る診断支援装置及び推測装置の機能ブロックを示す図である。It is a figure which shows the functional block of the diagnosis support apparatus and the estimation apparatus which concerns on this embodiment. 本実施形態に係る診断支援装置の物理的構成を示す図である。It is a figure which shows the physical structure of the diagnosis support apparatus which concerns on this embodiment. 本実施形態に係る推測装置による認知症に関する推測結果及びその根拠を診断支援装置に表示する例を示す図である。It is a figure which shows the example which displays the estimation result about dementia by the estimation device which concerns on this embodiment and the basis | display on the diagnosis support device. 本実施形態に係る推測装置による認知症に関する推測精度を示す図である。It is a figure which shows the estimation accuracy about dementia by the estimation device which concerns on this embodiment. 本実施形態に係る診断支援システムによる認知症に関する推測及びその根拠の表示に関するフローチャートである。It is a flowchart about the estimation about dementia by the diagnosis support system which concerns on this embodiment, and the display of the basis. 本実施形態に係る推測装置による第1学習済みモデルの学習処理のフローチャートである。It is a flowchart of the learning process of the 1st trained model by the guessing apparatus which concerns on this embodiment. 本実施形態に係る推測装置によるアミロイドβタンパク質の蓄積に関する推測結果及びその根拠を診断支援装置に表示する例を示す図である。It is a figure which shows the example which displays the estimation result about the accumulation of amyloid β protein by the estimation apparatus which concerns on this embodiment, and the basis | display on the diagnosis support apparatus. 本実施形態に係る推測装置によるアミロイドβタンパク質の蓄積に関する推測精度を示す図である。It is a figure which shows the estimation accuracy about the accumulation of amyloid β protein by the estimation apparatus which concerns on this embodiment. 本実施形態に係る診断支援システムによるアミロイドβタンパク質の蓄積に関する推測及びその根拠の表示に関するフローチャートである。It is a flowchart about the estimation about the accumulation of amyloid β protein by the diagnosis support system which concerns on this embodiment, and the display of the basis.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals have the same or similar configurations.
 図1は、本発明の実施形態に係る診断支援システム100のネットワーク構成を示す図である。診断支援システム100は、診断支援装置10と、学習済みモデルを記憶している推測装置20と、画像管理サーバ30と、MRIスキャナ50とを備える。診断支援装置10、推測装置20及び画像管理サーバ30は、インターネットやLAN(Local Area Network)等の通信ネットワークNで通信可能に接続される。画像管理サーバ30とMRIスキャナは、DICOM(Digital Imaging and Communications in Medicine)等によって通信可能に接続される。 FIG. 1 is a diagram showing a network configuration of the diagnostic support system 100 according to the embodiment of the present invention. The diagnosis support system 100 includes a diagnosis support device 10, an estimation device 20 that stores a learned model, an image management server 30, and an MRI scanner 50. The diagnosis support device 10, the estimation device 20, and the image management server 30 are communicably connected by a communication network N such as the Internet or a LAN (Local Area Network). The image management server 30 and the MRI scanner are communicably connected by DICOM (Digital Imaging and Communications in Medicine) or the like.
 診断支援装置10は、汎用のコンピュータで構成され、例えば医師によって使用される。診断支援装置10は、推測装置20から対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となるMRI画像における脳の関心領域を示す情報とを表示する。診断支援装置10を用いる医師等のユーザは、表示される推測結果及び推測結果の根拠となる脳の関心領域を示す情報を診断の補助として、対象者の認知症に関連する診断を行うことができる。 The diagnostic support device 10 is composed of a general-purpose computer and is used by, for example, a doctor. The diagnosis support device 10 displays the estimation result of the dementia-related estimation of the subject from the estimation device 20 and the information indicating the region of interest of the brain in the MRI image on which the estimation result is based. A user such as a doctor who uses the diagnosis support device 10 can make a diagnosis related to dementia of the subject by using the displayed estimation result and the information indicating the region of interest of the brain on which the estimation result is based as an aid to the diagnosis. it can.
 推測装置20は、汎用のコンピュータで構成され、学習済みモデルを用いて、画像管理サーバ30から取得した対象者の脳の画像に基づいて、対象者の認知症に関連する推測を行う。また、推測装置20は、学習済みモデルを用いて、推測結果の根拠となる画像における脳の関心領域を推定する。推測装置20により算出された推測結果及び推測結果の根拠となる脳の関心領域に関する情報は、診断支援装置10に提供される。 The guessing device 20 is composed of a general-purpose computer, and uses a trained model to make a guess related to the subject's dementia based on the image of the subject's brain acquired from the image management server 30. In addition, the estimation device 20 estimates the region of interest of the brain in the image on which the estimation result is based, using the trained model. The estimation result calculated by the estimation device 20 and the information regarding the region of interest of the brain on which the estimation result is based are provided to the diagnosis support device 10.
 画像管理サーバ30は、汎用のコンピュータで構成され、MRIスキャナ50で測定された対象者の脳のMRI画像のデータベースを有する。画像管理サーバ30は、推測装置20の学習済みモデルを生成するために用いられる、複数の被験者の脳の画像を含む学習データを記憶してもよい。なお、画像管理サーバ30は、MRIスキャナ50で測定された対象者の脳のMRI画像だけでなく、CT(Computed Tomography)スキャナで測定された対象者の脳のCT画像や、PET(Positron Emission Tomography)スキャナで測定された対象者の脳のPET画像等の脳の医用画像を記憶してもよいが、検査の簡便さなどを考慮すれば、脳のMRI画像を用いるのが好ましい。 The image management server 30 is composed of a general-purpose computer and has a database of MRI images of the subject's brain measured by the MRI scanner 50. The image management server 30 may store training data including images of the brains of a plurality of subjects used to generate a trained model of the guessing device 20. The image management server 30 includes not only an MRI image of the subject's brain measured by the MRI scanner 50, but also a CT image of the subject's brain measured by a CT (Computed Tomography) scanner and PET (Positron Emission Tomography). ) A medical image of the brain such as a PET image of the subject's brain measured by a scanner may be stored, but considering the simplicity of examination and the like, it is preferable to use an MRI image of the brain.
 MRIスキャナ50は、核磁気共鳴を利用して対象者の身体内部の画像を撮影する。MRIスキャナ50は、特に、対象者の頭部内の画像、すなわち脳の画像を撮影する。撮影されたMRI画像は、画像管理サーバ30に蓄積され、推測装置20や診断支援装置10によって取得される。 The MRI scanner 50 captures an image of the inside of the subject's body using nuclear magnetic resonance. The MRI scanner 50 specifically captures an image of the subject's head, that is, an image of the brain. The captured MRI image is stored in the image management server 30, and is acquired by the estimation device 20 and the diagnosis support device 10.
 図2は、本実施形態に係る診断支援装置10及び推測装置20の機能ブロックを示す図である。診断支援装置10は、第1取得部11、第2取得部12及び表示部10fを備える。また、推測装置20は、記憶部21、生成部22、推測部23、推定部24及び提供部25を備える。 FIG. 2 is a diagram showing functional blocks of the diagnostic support device 10 and the estimation device 20 according to the present embodiment. The diagnosis support device 10 includes a first acquisition unit 11, a second acquisition unit 12, and a display unit 10f. Further, the estimation device 20 includes a storage unit 21, a generation unit 22, an estimation unit 23, an estimation unit 24, and a provision unit 25.
 第1取得部11は、画像管理サーバ30から、対象者の脳の画像を取得する。第1取得部11は、対象者の脳の3次元画像を取得してよい。ここで、3次元画像は、MRIスキャナ50で測定された脳のMRI画像であってよい。脳の3次元画像を用いることで、脳の立体的な特徴を捉えて認知症に関連する推測を行うことができる。 The first acquisition unit 11 acquires an image of the subject's brain from the image management server 30. The first acquisition unit 11 may acquire a three-dimensional image of the subject's brain. Here, the three-dimensional image may be an MRI image of the brain measured by the MRI scanner 50. By using a three-dimensional image of the brain, it is possible to capture the three-dimensional features of the brain and make inferences related to dementia.
 第2取得部12は、第1学習済みモデル21b又は第2学習済みモデル21cを用いて、脳の画像に基づいて、対象者の認知症に関連する推測を行った推測結果を、推測装置20から取得する。また、第2取得部12は、推測結果の根拠となる画像における脳の関心領域を示す情報を推測装置20から取得する。 The second acquisition unit 12 uses the first trained model 21b or the second trained model 21c to make a guess related to the subject's dementia based on the image of the brain, and the guessing device 20 Get from. In addition, the second acquisition unit 12 acquires information indicating the region of interest of the brain in the image that is the basis of the estimation result from the estimation device 20.
 第2取得部12は、第1学習済みモデル21bを用いて、脳の画像に基づいて、対象者が所定期間内に認知症を発症するリスクの推測を行った推測結果を取得してよい。対象者が所定期間内に認知症を発症するリスクの推測を行った推測結果は、例えば、対象者が2年以内に認知症を発症する確率を算出した結果であってよい。 The second acquisition unit 12 may acquire the estimation result of estimating the risk of developing dementia by the subject within a predetermined period based on the image of the brain using the first learned model 21b. The estimation result in which the subject estimates the risk of developing dementia within a predetermined period may be, for example, the result of calculating the probability that the subject develops dementia within 2 years.
 また、第2取得部12は、第2学習済みモデル21cを用いて、脳の画像に基づいて、脳に関するアミロイドβタンパク質の蓄積を推測した推測結果を取得してよい。脳に関するアミロイドβタンパク質の蓄積を推測した推測結果は、アミロイドβタンパク質の蓄積量の推測結果であったり、アミロイドβタンパク質の蓄積量が閾値以上であるか否か(アミロイドβタンパク質の蓄積の有無)を推測した結果であったりしてよい。 Further, the second acquisition unit 12 may acquire the estimation result of estimating the accumulation of amyloid β protein related to the brain based on the image of the brain using the second trained model 21c. The estimation result of estimating the accumulation of amyloid β protein related to the brain is the estimation result of the accumulation amount of amyloid β protein, and whether the accumulation amount of amyloid β protein is above the threshold (presence or absence of accumulation of amyloid β protein). It may be the result of guessing.
 表示部10fは、対象者の認知症に関連する推測を行った推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を表示する。このように、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果を、推測結果の根拠となる画像における脳の関心領域を示す情報とともに表示することで、学習済みモデルによる推測結果の妥当性が確認しやすくなる。 The display unit 10f displays the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the brain in the image on which the estimation result is based. In this way, the trained model is used to display the guess result of making a guess related to dementia of the subject together with the information indicating the region of interest of the brain in the image on which the guess result is based. It becomes easier to confirm the validity of the estimation result by the model.
 表示部10fは、推測結果の根拠となる3次元画像における脳の関心領域を、3次元位置が識別可能な態様で表示してよい。表示部10fは、例えば、脳のMRI画像に重畳するヒートマップによって、推測結果の根拠となる3次元画像における脳の関心領域を表示してよい。また、表示部10fは、回転操作可能に脳の3次元画像を表示し、3次元画像に重畳するヒートマップによって、推測結果の根拠となる3次元画像における脳の関心領域を表示してよい。これにより、推測結果の根拠となる画像における脳の関心領域を、立体的に捉えることができ、学習済みモデルによる推測結果の妥当性がより確認しやすくなる。 The display unit 10f may display the region of interest of the brain in the three-dimensional image that is the basis of the estimation result in a manner in which the three-dimensional position can be identified. The display unit 10f may display the region of interest of the brain in the three-dimensional image on which the estimation result is based, for example, by a heat map superimposed on the MRI image of the brain. Further, the display unit 10f may display a three-dimensional image of the brain in a rotation-operable manner, and display a region of interest of the brain in the three-dimensional image on which the estimation result is based by a heat map superimposed on the three-dimensional image. As a result, the region of interest of the brain in the image on which the estimation result is based can be captured three-dimensionally, and the validity of the estimation result by the trained model can be more easily confirmed.
 表示部10fは、対象者が所定期間内に認知症を発症するリスクの推測を行った推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を表示してよい。これにより、対象者が所定期間内に認知症を発症するリスクの推測結果が妥当なものであるか、推測結果の根拠となる画像における脳の関心領域を示す情報によって確認することができる。 The display unit 10f may display the estimation result in which the subject estimates the risk of developing dementia within a predetermined period and the information indicating the region of interest of the brain in the image on which the estimation result is based. As a result, it is possible to confirm whether the estimation result of the risk that the subject develops dementia within a predetermined period is appropriate by the information indicating the region of interest of the brain in the image on which the estimation result is based.
 また、表示部10fは、脳に関するアミロイドβタンパク質の蓄積を推測した推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を表示してよい。これにより、対象者の脳に関するアミロイドβタンパク質の蓄積を推測した推測結果が妥当なものであるか、推測結果の根拠となる画像における脳の関心領域を示す情報によって確認することができる。本実施形態に係る診断支援システム100によれば、MRI画像によってアミロイドβタンパク質の蓄積を推測することができ、PETスキャナによる測定や脳脊髄液の採取を行わずに、MRIスキャナ50による脳画像の撮影という比較的簡易な方法で認知症のリスクを推測することができる。 Further, the display unit 10f may display the estimation result of estimating the accumulation of amyloid β protein related to the brain and the information indicating the region of interest of the brain in the image on which the estimation result is based. As a result, it is possible to confirm whether the estimation result of estimating the accumulation of amyloid β protein in the subject's brain is valid or not by the information indicating the region of interest of the brain in the image on which the estimation result is based. According to the diagnostic support system 100 according to the present embodiment, the accumulation of amyloid β protein can be estimated from the MRI image, and the brain image obtained by the MRI scanner 50 can be used without measurement by the PET scanner or collection of cerebrospinal fluid. The risk of dementia can be estimated by a relatively simple method of imaging.
 推測装置20の記憶部21は、学習データ21a、第1学習済みモデル21b及び第2学習済みモデル21cを記憶する。学習データ21aは、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の脳の画像を含む。学習データ21aは、複数の被験者が2年以内に認知機能が悪化したか否かを示す実測データが関連付けられた、複数の被験者の脳のMRI画像であったり、複数の被験者の脳に関するアミロイドβタンパク質の蓄積を示す実測データ(蓄積量又は蓄積の有無)が関連付けられた、複数の被験者の脳のMRI画像であったりしてよい。 The storage unit 21 of the estimation device 20 stores the training data 21a, the first trained model 21b, and the second trained model 21c. The learning data 21a includes images of the brains of a plurality of subjects to which actual measurement data related to dementia of the plurality of subjects are associated. The learning data 21a is an MRI image of the brains of a plurality of subjects or amyloid β related to the brains of a plurality of subjects, to which actual measurement data indicating whether or not the cognitive function of the plurality of subjects has deteriorated within 2 years is associated. It may be an MRI image of the brains of a plurality of subjects associated with measured data (accumulation amount or presence / absence of accumulation) indicating protein accumulation.
 生成部22は、学習データ21aを用いて、学習モデルの学習処理を実行し、第1学習済みモデル21b及び第2学習済みモデル21cを生成する。生成部22は、複数の被験者が2年以内に認知機能が悪化したか否かを示す実測データが関連付けられた、複数の被験者の脳のMRI画像を含む学習データ21aを用いて、畳み込みニューラルネットワークで構成される学習モデルの学習処理を実行し、第1学習済みモデル21bを生成する。また、生成部22は、複数の被験者の脳に関するアミロイドβタンパク質の蓄積を示す実測データが関連付けられた、複数の被験者の脳のMRI画像を含む学習データ21aを用いて、畳み込みニューラルネットワークで構成される学習モデルの学習処理を実行し、第2学習済みモデル21cを生成する。学習処理は、例えば、推測結果と正答の誤差を評価する損失関数を最小化するように、誤差逆伝播法によってニューラルネットワークのパラメータを更新する処理であってよい。第1学習済みモデル21b及び第2学習済みモデル21cは、例えば、脳画像のボクセルデータを入力として受け付ける3D CNN(Convolutional Neural Network)により構成されてよい。なお、第1学習済みモデル21b及び第2学習済みモデル21cは、いずれも畳み込みニューラルネットワークで構成されてよいが、ネットワーク構造は異なっていてよい。このように、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の脳の画像を用いて、適切な推測ができる学習済みモデルを生成することができる。 The generation unit 22 executes the learning process of the learning model using the learning data 21a, and generates the first trained model 21b and the second trained model 21c. The generation unit 22 uses a convolutional neural network using learning data 21a including MRI images of the brains of a plurality of subjects, which is associated with actual measurement data indicating whether or not the cognitive function of the plurality of subjects has deteriorated within two years. The learning process of the learning model composed of is executed, and the first trained model 21b is generated. In addition, the generation unit 22 is configured by a convolutional neural network using learning data 21a including MRI images of the brains of a plurality of subjects to which actual measurement data showing the accumulation of amyloid β protein related to the brains of the plurality of subjects is associated. The learning process of the training model is executed to generate the second trained model 21c. The learning process may be, for example, a process of updating the parameters of the neural network by the error back propagation method so as to minimize the loss function for evaluating the error between the guess result and the correct answer. The first trained model 21b and the second trained model 21c may be configured by, for example, a 3D CNN (Convolutional Neural Network) that accepts voxel data of a brain image as an input. The first trained model 21b and the second trained model 21c may both be configured by a convolutional neural network, but the network structures may be different. In this way, it is possible to generate a trained model capable of making an appropriate guess by using images of the brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated.
 推測部23は、第1学習済みモデル21b又は第2学習済みモデル21cを用いて、脳の画像に基づいて、対象者の認知症に関連する推測を行う。推測部23は、第1学習済みモデル21bを用いて、脳の画像に基づいて、対象者が所定期間内に認知症を発症するリスクの推測を行ったり、第2学習済みモデル21cを用いて、脳の画像に基づいて、脳に関するアミロイドβタンパク質の蓄積を推測したりしてよい。 The guessing unit 23 uses the first trained model 21b or the second trained model 21c to make a guess related to the subject's dementia based on the image of the brain. The guessing unit 23 uses the first trained model 21b to estimate the risk of the subject developing dementia within a predetermined period based on the image of the brain, or uses the second trained model 21c to estimate the risk. , The accumulation of amyloid β protein related to the brain may be inferred based on the image of the brain.
 学習データは、被験者の認知機能に関するテストのスコア、被験者の年齢、被験者の性別、被験者の身長、被験者の体重、被験者の既往歴、被験者の脳の部位毎の体積及び被験者の脳の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報を含む被験者データをさらに含んでよい。被験者データは、診断支援装置10から推測装置20に送信され、記憶部21に格納されてよいが、被験者データの一部を外部データベースから推測装置20に取り込んでもよい。ここで、脳の部位毎の体積は、例えば、前脳基底核の体積、後部帯状回の体積及び内側側頭葉の体積を含んでよい。また、脳の萎縮度を表すスコアは、Z値(平均が0、標準偏差が1になるように変換した値)で表されてよい。そして、生成部22は、被験者データを数値に変換し、畳み込みニューラルネットワークにより算出した脳の画像の特徴マップと被験者データを表す数値を合成して、例えば全結合層による演算を行い、被験者の認知症に関する推測を行うように、第1学習済みモデル21b及び第2学習済みモデル21cを生成してよい。このように、複数の被験者に関する被験者データ及び対象者の脳の画像に基づいて学習済みモデルを生成することで、対象者の認知症に関連する推測精度がより高い学習済みモデルを生成することができる。 The learning data includes the test score of the subject's cognitive function, the subject's age, the subject's gender, the subject's height, the subject's weight, the subject's medical history, the volume of each part of the subject's brain, and the degree of atrophy of the subject's brain. Subject data may further include the score to be represented and information on at least one or a combination of these secular data. The subject data may be transmitted from the diagnosis support device 10 to the estimation device 20 and stored in the storage unit 21, but a part of the subject data may be taken into the estimation device 20 from an external database. Here, the volume of each part of the brain may include, for example, the volume of the forebrain basal ganglia, the volume of the posterior cingulate gyrus, and the volume of the medial temporal lobe. Further, the score representing the degree of atrophy of the brain may be represented by a Z value (a value converted so that the average is 0 and the standard deviation is 1). Then, the generation unit 22 converts the subject data into numerical values, synthesizes the feature map of the brain image calculated by the convolutional neural network and the numerical values representing the subject data, and performs, for example, a calculation by the fully connected layer to recognize the subject. A first trained model 21b and a second trained model 21c may be generated to make inferences about the disease. In this way, by generating a trained model based on the subject data of a plurality of subjects and the image of the subject's brain, it is possible to generate a trained model with higher estimation accuracy related to the subject's dementia. it can.
 この場合、推測部23は、脳の画像及び被験者データに基づいて、対象者の認知症に関連する推測を行う。推測部23は、第1学習済みモデル21b又は第2学習済みモデル21cを用いて、対象者の認知機能に関するテストのスコア、対象者の年齢、対象者の性別、対象者の身長、対象者の体重、対象者の既往歴、対象者の脳の部位毎の体積及び対象者の脳の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報と、脳の画像とに基づいて、対象者の認知症に関連する推測を行う。このように、学習済みモデルを用いて、対象者に関する情報及び対象者の脳の画像に基づいて対象者の認知症に関連する推測を行うことで、推測精度をより高くすることができる。 In this case, the guessing unit 23 makes a guess related to the subject's dementia based on the brain image and the subject data. Using the first trained model 21b or the second trained model 21c, the guessing unit 23 uses the test score for the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, and the subject. Information on weight, subject's medical history, volume of each part of the subject's brain, scores representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data, and brain Make inferences related to dementia in the subject based on the images. In this way, the accuracy of estimation can be further improved by making an estimation related to dementia of the subject based on the information about the subject and the image of the brain of the subject using the trained model.
 推定部24は、第1学習済みモデル21b又は第2学習済みモデル21cを用いて、推測結果の根拠となる画像における脳の関心領域を推定する。第1学習済みモデル21b又は第2学習済みモデル21cがニューラルネットワークによって構成される場合、推定部24は、例えばLRP(Layer-wise Relevance Propagation)を用いて、推測結果の根拠となる画像における脳の関心領域を推定してよい。 The estimation unit 24 uses the first trained model 21b or the second trained model 21c to estimate the region of interest of the brain in the image on which the estimation result is based. When the first trained model 21b or the second trained model 21c is configured by a neural network, the estimation unit 24 uses, for example, LRP (Layer-wise Relevance Propagation) to describe the brain in the image on which the estimation result is based. The region of interest may be estimated.
 生成部22は、対象者の脳の画像及び対象者の認知症に関連する診断結果に基づいて、第1学習済みモデル21b又は第2学習済みモデル21cの再学習を行ってもよい。対象者の脳の画像及び対象者の認知症に関連する診断結果は、医師が対象者の診断を行うことで蓄積されていく。生成部22は、新たに測定された対象者の脳の画像を学習データに追加して、第1学習済みモデル21b又は第2学習済みモデル21cの再学習を行ってよい。これにより、蓄積される対象者の脳の画像及び診断結果を用いて、学習済みモデルを改善していくことができる。 The generation unit 22 may relearn the first trained model 21b or the second trained model 21c based on the image of the subject's brain and the diagnosis result related to the subject's dementia. Images of the subject's brain and diagnosis results related to the subject's dementia are accumulated as the doctor diagnoses the subject. The generation unit 22 may add the newly measured image of the subject's brain to the training data and relearn the first trained model 21b or the second trained model 21c. As a result, the trained model can be improved by using the accumulated images of the subject's brain and the diagnosis results.
 提供部25は、推測部23により算出した推測結果と、推定部24により推定した推測結果の根拠となる画像における脳の関心領域を示す情報とを、診断支援装置10に提供する。提供部25は、通信ネットワークNを介して、推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を診断支援装置10に送信してよい。 The providing unit 25 provides the diagnosis support device 10 with the estimation result calculated by the estimation unit 23 and the information indicating the region of interest of the brain in the image on which the estimation result estimated by the estimation unit 24 is based. The providing unit 25 may transmit the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the diagnosis support device 10 via the communication network N.
 このように、本実施形態に係る推測装置20によれば、学習済みモデルを用いて、対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となる画像における脳の関心領域を示す情報とを算出し、診断支援装置10に提供することができる。 As described above, according to the estimation device 20 according to the present embodiment, the estimation result of the estimation related to the dementia of the subject using the trained model and the interest of the brain in the image on which the estimation result is based. Information indicating the area can be calculated and provided to the diagnosis support device 10.
 図3は、本実施形態に係る診断支援装置10の物理的構成を示す図である。診断支援装置10は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部に相当するRAM(Random Access Memory)10bと、記憶部に相当するROM(Read only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。なお、本例では診断支援装置10が一台のコンピュータで構成される場合について説明するが、診断支援装置10は、複数のコンピュータが組み合わされて実現されてもよい。また、図3で示す構成は一例であり、診断支援装置10はこれら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。 FIG. 3 is a diagram showing a physical configuration of the diagnostic support device 10 according to the present embodiment. The diagnostic support device 10 includes a CPU (Central Processing Unit) 10a corresponding to a calculation unit, a RAM (Random Access Memory) 10b corresponding to a storage unit, a ROM (Read only Memory) 10c corresponding to a storage unit, and a communication unit. It has a 10d, an input unit 10e, and a display unit 10f. Each of these configurations is connected to each other via a bus so that data can be transmitted and received. In this example, the case where the diagnosis support device 10 is composed of one computer will be described, but the diagnosis support device 10 may be realized by combining a plurality of computers. Further, the configuration shown in FIG. 3 is an example, and the diagnosis support device 10 may have configurations other than these, or may not have a part of these configurations.
 CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う制御部である。CPU10aは、対象者の認知症に関連する推測を行った推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を表示するプログラム(診断支援プログラム)を実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bに格納したりする。 The CPU 10a is a control unit that controls execution of a program stored in the RAM 10b or ROM 10c, calculates data, and processes data. The CPU 10a is a calculation unit that executes a program (diagnosis support program) that displays information indicating an area of interest in the brain in an image that is the basis of the estimation result and the estimation result that made an estimation related to dementia of the subject. The CPU 10a receives various data from the input unit 10e and the communication unit 10d, displays the calculation result of the data on the display unit 10f, and stores the data in the RAM 10b.
 RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行するプログラム、対象者の脳の画像といったデータを記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。 The RAM 10b is a storage unit in which data can be rewritten, and may be composed of, for example, a semiconductor storage element. The RAM 10b may store data such as a program executed by the CPU 10a and an image of the subject's brain. It should be noted that these are examples, and data other than these may be stored in the RAM 10b, or a part of these may not be stored.
 ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば診断支援プログラムや、書き換えが行われないデータを記憶してよい。 The ROM 10c is a storage unit capable of reading data, and may be composed of, for example, a semiconductor storage element. The ROM 10c may store, for example, a diagnostic support program or data that is not rewritten.
 通信部10dは、診断支援装置10を他の機器に接続するインターフェースである。通信部10dは、インターネット等の通信ネットワークNに接続されてよい。 The communication unit 10d is an interface for connecting the diagnosis support device 10 to another device. The communication unit 10d may be connected to a communication network N such as the Internet.
 入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード及びタッチパネルを含んでよい。 The input unit 10e receives data input from the user, and may include, for example, a keyboard and a touch panel.
 表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、対象者の認知症に関連する推測を行った推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を表示してよい。 The display unit 10f visually displays the calculation result by the CPU 10a, and may be configured by, for example, an LCD (Liquid Crystal Display). The display unit 10f may display the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the brain in the image on which the estimation result is based.
 診断支援プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークを介して提供されてもよい。診断支援装置10では、CPU10aが診断支援プログラムを実行することにより、図2を用いて説明した様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、診断支援装置10は、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。 The diagnosis support program may be stored in a storage medium readable by a computer such as RAM 10b or ROM 10c and provided, or may be provided via a communication network connected by the communication unit 10d. In the diagnosis support device 10, the CPU 10a executes the diagnosis support program to realize various operations described with reference to FIG. It should be noted that these physical configurations are examples and do not necessarily have to be independent configurations. For example, the diagnosis support device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a and the RAM 10b or ROM 10c are integrated.
 推測装置20の物理的構成は、診断支援装置10と同様であってよいが、GPU(Graphical Processing Unit)を備えてもよく、必ずしも同一でなくてよい。推測装置20に記憶される学習済みモデルは、複数の被験者の認知症に関連する実測データが関連付けられた、複数の被験者の脳の画像を含む学習データを用いた学習モデルの学習処理によって生成される。学習済みモデルは、対象者の脳の画像に基づいて、対象者の認知症に関連する推測を行うことと、推測結果の根拠となる画像における脳の関心領域を推定することと、を実行するように学習処理される。学習済みモデルによって、対象者の認知症に関連する推測を行った推測結果と、推測結果の根拠となる画像における脳の関心領域を示す情報とを算出し、診断支援装置10に提供することができる。 The physical configuration of the estimation device 20 may be the same as that of the diagnosis support device 10, but it may be provided with a GPU (Graphical Processing Unit) and may not necessarily be the same. The trained model stored in the guessing device 20 is generated by a learning process of a learning model using learning data including images of the brains of a plurality of subjects to which actual measurement data related to dementia of a plurality of subjects are associated. To. The trained model performs inferences related to dementia in the subject based on images of the subject's brain and estimates the region of interest in the brain in the image on which the inference results are based. It is learned and processed as follows. Using the trained model, it is possible to calculate the estimation result of making an estimation related to the subject's dementia and the information indicating the region of interest of the brain in the image on which the estimation result is based, and provide it to the diagnosis support device 10. it can.
 図4は、本実施形態に係る推測装置20による認知症に関する推測結果及びその根拠を診断支援装置10に表示する例を示す図である。同図では、診断支援装置10の表示部10fに表示される第1画像IMG1、第2画像IMG2及び第1推測結果PD1を示している。 FIG. 4 is a diagram showing an example in which the estimation result regarding dementia by the estimation device 20 according to the present embodiment and the basis thereof are displayed on the diagnosis support device 10. In the figure, the first image IMG1, the second image IMG2, and the first estimation result PD1 displayed on the display unit 10f of the diagnosis support device 10 are shown.
 第1画像IMG1及び第2画像IMG2は、対象者の脳のMRI画像と、第1学習済みモデル21bによる推測結果の根拠となる画像における脳の関心領域とを示す画像である。第1画像IMG1は、矢状面における脳の断面画像であり、関心領域として第1領域R1及び第2領域R2が示されている。また、第2画像IMG2は、冠状面における脳の断面画像であり、関心領域として第3領域R3が示されている。本例では、関心領域は、第1学習済みモデル21bの算出した推測結果に対する貢献度が大きい画素ほど明るく示されるヒートマップにより表示されている。 The first image IMG1 and the second image IMG2 are images showing the MRI image of the subject's brain and the region of interest of the brain in the image on which the estimation result by the first trained model 21b is based. The first image IMG1 is a cross-sectional image of the brain in the sagittal plane, and the first region R1 and the second region R2 are shown as regions of interest. Further, the second image IMG2 is a cross-sectional image of the brain on the coronal plane, and the third region R3 is shown as a region of interest. In this example, the region of interest is displayed by a heat map in which pixels having a greater contribution to the estimation result calculated by the first trained model 21b are shown brighter.
 第1推測結果PD1は、「2年以内に認知症を発症する確率(推測):90%」であり、第1画像IMG1及び第2画像IMG2に基づいて第1学習済みモデル21bによって認知症の発症確率を算出した結果を示している。 The first estimation result PD1 is "probability of developing dementia within 2 years (estimation): 90%", and the first trained model 21b based on the first image IMG1 and the second image IMG2 causes dementia. The result of calculating the onset probability is shown.
 診断支援装置10を用いる医師は、第1画像IMG1及び第2画像IMG2を参照して、第1学習済みモデル21bによる第1推測結果PD1の妥当性を確認しつつ、第1推測結果PD1を診断に活用することができる。 The doctor using the diagnosis support device 10 diagnoses the first estimation result PD1 while confirming the validity of the first estimation result PD1 by the first trained model 21b with reference to the first image IMG1 and the second image IMG2. Can be used for.
 なお、本例では、第1学習済みモデル21bの算出した推測結果に対する貢献度が大きい画素ほど明るく示すヒートマップによって関心領域を表示する例を示したが、関心領域は、第1学習済みモデル21bの算出した推測結果に対する貢献度が大きい脳の部位をマーキングすることで表示したり、脳画像とは別に文字情報で表示したりしてもよい。 In this example, an example is shown in which the region of interest is displayed by a heat map in which the pixel having a greater contribution to the estimation result calculated by the first trained model 21b is displayed brighter, but the region of interest is the first trained model 21b. It may be displayed by marking a part of the brain that contributes greatly to the estimation result calculated by, or may be displayed as text information separately from the brain image.
 第1画像IMG1、第2画像IMG2、第1領域R1、第2領域R2、第3領域R3及び第1推測結果PD1は、対象者が用いるスマートフォンやPC(Personal Computer)等の端末に表示されてもよい。その場合、提供部25は、推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を対象者の端末に送信する。これにより、対象者は、第1画像IMG1、第2画像IMG2、第1領域R1、第2領域R2、第3領域R3及び第1推測結果PD1を参照して、自己の状態を確認することができる。なお、提供部25は、第1推測結果PD1のみを対象者の端末に提供し、必要に応じて第1画像IMG1、第2画像IMG2、第1領域R1、第2領域R2及び第3領域R3を対象者の端末に提供することとしてもよい。 The first image IMG1, the second image IMG2, the first area R1, the second area R2, the third area R3, and the first estimation result PD1 are displayed on a terminal such as a smartphone or a PC (Personal Computer) used by the subject. May be good. In that case, the providing unit 25 transmits the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the terminal of the target person. As a result, the subject can confirm his / her own state by referring to the first image IMG1, the second image IMG2, the first region R1, the second region R2, the third region R3, and the first estimation result PD1. it can. The providing unit 25 provides only the first estimation result PD1 to the terminal of the target person, and if necessary, the first image IMG1, the second image IMG2, the first area R1, the second area R2, and the third area R3. May be provided to the target person's terminal.
 図5は、本実施形態に係る推測装置20による認知症に関する推測精度を示す図である。同図では、学習データの一部を予めテストデータとして分離して、推測装置20によって第1学習済みモデル21bを生成した場合に、テストデータを用いて第1学習済みモデル21bの推測精度を算出した結果を示している。同図の表の「推測結果」は、第1学習済みモデル21bによって、対象者の脳の画像に基づいて、対象者が所定期間内に認知症を発症する確率が閾値以上であるか否かを推測した結果を示している。対象者が所定期間内に認知症を発症する確率が閾値以上である場合は、「AD進行群」としてカウントされ、対象者が所定期間内に認知症を発症する確率が閾値未満であれば「AD非進行群」としてカウントされる。また、「正解」は、対象者が所定期間内に認知機能が悪化したか否かを示す実測データを示している。 FIG. 5 is a diagram showing the estimation accuracy regarding dementia by the estimation device 20 according to the present embodiment. In the figure, when a part of the training data is separated as test data in advance and the first trained model 21b is generated by the estimation device 20, the estimation accuracy of the first trained model 21b is calculated using the test data. The result is shown. The "guess result" in the table of the figure is whether or not the probability that the subject develops dementia within a predetermined period is equal to or higher than the threshold value based on the image of the subject's brain according to the first trained model 21b. The result of guessing is shown. If the probability that the subject develops dementia within the predetermined period is equal to or higher than the threshold value, it is counted as the "AD progression group", and if the probability that the subject develops dementia within the predetermined period is less than the threshold value, " It is counted as "AD non-progressive group". In addition, "correct answer" indicates actual measurement data indicating whether or not the subject's cognitive function deteriorated within a predetermined period.
 なお、図5に示す第1学習済みモデル21bの「推測結果」のカウントは、対象者の認知機能に関するテストのスコア等を、脳の画像の特徴マップと合成して最終判定を行った場合について行っている。 The count of the "guess result" of the first trained model 21b shown in FIG. 5 is the case where the score of the test related to the cognitive function of the subject is combined with the feature map of the brain image and the final judgment is made. Is going.
 図5に示す例では、推測結果として、AD進行群が144であり、AD非進行群が77である。そして、AD進行群と推測された144例のうち140例が正解であり、4例が偽陽性(実際にはAD非進行群)であった。また、AD非進行群と推測された77例のうち74例が正解であり、3例が偽陰性(実際にはAD進行群)であった。そのため、第1学習済みモデル21bの正確度(accuracy)は、(140+74)/(140+4+74+3)×100%=96.8%であり、感度(sensitivity)は、140/(140+3)×100%=97.9%であり、特異度(specificity)は、74/(74+4)×100%=94.9%である。このように、本実施形態に係る第1学習済みモデル21bは、いずれの指標に関しても高い性能を示しており、偽陽性及び偽陰性の発生を低く抑えて、認知症のリスクを適切に評価できる。 In the example shown in FIG. 5, as an estimation result, the AD progress group is 144 and the AD non-progress group is 77. Of the 144 cases presumed to be in the AD advanced group, 140 cases were correct answers, and 4 cases were false positives (actually, the AD non-progressive group). In addition, 74 of the 77 cases presumed to be in the AD non-progressive group were correct answers, and 3 cases were false negatives (actually, the AD advanced group). Therefore, the accuracy of the first trained model 21b is (140 + 74) / (140 + 4 + 74 + 3) × 100% = 96.8%, and the sensitivity is 140 / (140 + 3) × 100% = 97. It is 9.9%, and the specificity is 74 / (74 + 4) × 100% = 94.9%. As described above, the first trained model 21b according to the present embodiment shows high performance for all the indexes, can suppress the occurrence of false positives and false negatives to a low level, and can appropriately evaluate the risk of dementia. ..
 なお、推測装置20は、第1学習済みモデル21bを生成した場合に、図5に示すような推測精度を示す表を診断支援装置10に表示させたり、正確度、感度及び特異度等の指標を診断支援装置10に表示させたりしてよい。また、ROC(Receiver Operating Characteristic)曲線やAUC(Area Under the Curve)等の指標を診断支援装置10に表示させてもよい。 When the first trained model 21b is generated, the guessing device 20 displays a table showing the guessing accuracy as shown in FIG. 5 on the diagnosis support device 10, and indexes such as accuracy, sensitivity, and specificity. May be displayed on the diagnostic support device 10. Further, an index such as a ROC (Receiver Operating Characteristic) curve or an AUC (Area Under the Curve) may be displayed on the diagnosis support device 10.
 図6は、本実施形態に係る診断支援システム100による認知症に関する推測及びその根拠の表示に関するフローチャートである。はじめに、MRIスキャナ50によって、対象者の脳画像を撮影する(S10)。 FIG. 6 is a flowchart relating to the estimation of dementia by the diagnostic support system 100 according to the present embodiment and the display of the basis thereof. First, the brain image of the subject is photographed by the MRI scanner 50 (S10).
 その後、推測装置20によって、第1学習済みモデル21bを用いて、脳画像及び対象者データに基づいて、所定期間経過後における対象者の認知症の進行を推測する(S11)。ここで、対象者データとは、対象者の認知機能に関するテストのスコア、対象者の年齢、対象者の性別、対象者の身長、対象者の体重、対象者の既往歴、対象者の脳の部位毎の体積及び対象者の脳の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報である。 After that, the estimation device 20 estimates the progression of dementia in the subject after a lapse of a predetermined period based on the brain image and the subject data using the first trained model 21b (S11). Here, the subject data is the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, the medical history of the subject, and the brain of the subject. Information on the volume of each site, the score representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data.
 さらに、推測装置20によって、第1学習済みモデル21bを用いて、推測結果の根拠となる脳画像の関心領域を推定する(S12)。 Further, the estimation device 20 estimates the region of interest of the brain image that is the basis of the estimation result by using the first trained model 21b (S12).
 最後に、診断支援装置10によって、脳画像、推測結果及び推測結果の根拠となる脳画像の関心領域を表示する(S13)。 Finally, the diagnostic support device 10 displays the brain image, the estimation result, and the region of interest of the brain image on which the estimation result is based (S13).
 図7は、本実施形態に係る推測装置20による第1学習済みモデル21bの学習処理のフローチャートである。はじめに、推測装置20は、複数の被験者の脳画像、被験者データ及び所定期間経過後における認知症の進行に関する情報を含む学習データ21aを蓄積する(S20)。 FIG. 7 is a flowchart of the learning process of the first trained model 21b by the guessing device 20 according to the present embodiment. First, the guessing device 20 accumulates learning data 21a including brain images of a plurality of subjects, subject data, and information on the progression of dementia after a lapse of a predetermined period (S20).
 推測装置20は、学習データ21aを用いて、学習モデルによる推測を実行し(S21)、推測結果と正解の誤差を算出する(S22)。ここで、正解とは、所定期間経過後における認知症の進行に関する情報であり、所定期間経過後に認知症が進行したか否かを示す情報であってよい。 The estimation device 20 executes estimation by the learning model using the learning data 21a (S21), and calculates an error between the estimation result and the correct answer (S22). Here, the correct answer is information on the progress of dementia after a lapse of a predetermined period, and may be information indicating whether or not dementia has progressed after the lapse of a predetermined period.
 推測装置20は、誤差を小さくするように、学習モデルのパラメータを更新する(S23)。その後、学習の終了条件を満たさない場合(S24:NO)、推測装置20は、処理S21~S23を再び実行する。ここで、学習の終了条件は、推測結果と正解の誤差が所定値以下となることであったり、処理S21~S23の実行回数が所定値以上となることであったりしてよい。 The guessing device 20 updates the parameters of the learning model so as to reduce the error (S23). After that, when the learning end condition is not satisfied (S24: NO), the guessing device 20 executes the processes S21 to S23 again. Here, the learning end condition may be that the error between the estimation result and the correct answer is not more than a predetermined value, or that the number of executions of the processes S21 to S23 is not more than a predetermined value.
 一方、学習の終了条件を満たす場合(S24:YES)、推測装置20は、生成した第1学習済みモデル21bを保存する(S25)。以上により、第1学習済みモデル21bの学習処理が終了する。 On the other hand, when the learning end condition is satisfied (S24: YES), the guessing device 20 saves the generated first trained model 21b (S25). As a result, the learning process of the first trained model 21b is completed.
 推測装置20は、第1学習済みモデル21bを生成する場合と同様の処理によって、複数の被験者の脳画像、被験者データ及びアミロイドβタンパク質の蓄積に関する情報を含む学習データ21aを用いて、第2学習済みモデル21cの学習処理を行ってよい。 The guessing device 20 uses the training data 21a including brain images of a plurality of subjects, subject data, and information on the accumulation of amyloid β protein by the same processing as in the case of generating the first trained model 21b. The learning process of the completed model 21c may be performed.
 図8は、本実施形態に係る推測装置20によるアミロイドβタンパク質の蓄積に関する推測結果及びその根拠を診断支援装置10に表示する例を示す図である。同図では、診断支援装置10の表示部10fに表示される第3画像IMG3、第4画像IMG4及び第2推測結果PD2を示している。 FIG. 8 is a diagram showing an example in which the estimation result regarding the accumulation of amyloid β protein by the estimation device 20 according to the present embodiment and the basis thereof are displayed on the diagnosis support device 10. In the figure, the third image IMG3, the fourth image IMG4, and the second estimation result PD2 displayed on the display unit 10f of the diagnosis support device 10 are shown.
 第3画像IMG3及び第4画像IMG4は、対象者の脳のMRI画像と、第2学習済みモデル21cによる推測結果の根拠となる画像における脳の関心領域とを示す画像である。第3画像IMG3は、矢状面における脳の断面画像であり、関心領域として第4領域R4が示されている。また、第4画像IMG4は、冠状面における脳の断面画像であり、関心領域として第5領域R5が示されている。本例では、関心領域は、第2学習済みモデル21cの算出した推測結果に対する貢献度が大きい画素ほど明るく示されるヒートマップにより表示されている。 The third image IMG3 and the fourth image IMG4 are images showing the MRI image of the subject's brain and the region of interest of the brain in the image on which the estimation result by the second trained model 21c is based. The third image IMG3 is a cross-sectional image of the brain in the sagittal plane, and the fourth region R4 is shown as the region of interest. Further, the fourth image IMG4 is a cross-sectional image of the brain on the coronal plane, and the fifth region R5 is shown as a region of interest. In this example, the region of interest is displayed by a heat map in which pixels having a greater contribution to the estimation result calculated by the second trained model 21c are shown brighter.
 第2推測結果PD2は、「アミロイドβタンパク質が閾値以上蓄積している確率(推測):95%」であり、第3画像IMG3及び第4画像IMG4に基づいて第2学習済みモデル21cによってアミロイドβタンパク質の蓄積の有無の確率を算出した結果を示している。 The second estimation result PD2 is "probability (estimation) that amyloid β protein is accumulated above the threshold value (estimation): 95%", and amyloid β is determined by the second trained model 21c based on the third image IMG3 and the fourth image IMG4. The result of calculating the probability of the presence or absence of protein accumulation is shown.
 診断支援装置10を用いる医師は、第3画像IMG3及び第4画像IMG4を参照して、第2学習済みモデル21cによる第2推測結果PD2の妥当性を確認しつつ、第2推測結果PD2を診断に活用することができる。 The doctor using the diagnosis support device 10 diagnoses the second estimation result PD2 while confirming the validity of the second estimation result PD2 by the second trained model 21c with reference to the third image IMG3 and the fourth image IMG4. Can be used for.
 なお、本例では、第2学習済みモデル21cの算出した推測結果に対する貢献度が大きい画素ほど明るく示すヒートマップによって関心領域を表示する例を示したが、関心領域は、第2学習済みモデル21cの算出した推測結果に対する貢献度が大きい脳の部位をマーキングすることで表示したり、脳画像とは別に文字情報で表示したりしてもよい。 In this example, an example is shown in which the region of interest is displayed by a heat map in which the pixel having a greater contribution to the estimation result calculated by the second trained model 21c is displayed brighter, but the region of interest is the second trained model 21c. It may be displayed by marking a part of the brain that contributes greatly to the estimation result calculated by, or may be displayed as text information separately from the brain image.
 第3画像IMG3、第4画像IMG4、第4領域R4、第5領域R5及び第2推測結果PD2は、対象者が用いるスマートフォンやPC等の端末に表示されてもよい。その場合、提供部25は、推測結果及び推測結果の根拠となる画像における脳の関心領域を示す情報を対象者の端末に送信する。これにより、対象者は、第3画像IMG3、第4画像IMG4、第4領域R4、第5領域R5及び第2推測結果PD2を参照して、自己の状態を確認することができる。なお、提供部25は、第2推測結果PD2のみを対象者の端末に提供し、必要に応じて第3画像IMG3、第4画像IMG4、第4領域R4及び第5領域R5を対象者の端末に提供することとしてもよい。 The third image IMG3, the fourth image IMG4, the fourth area R4, the fifth area R5, and the second estimation result PD2 may be displayed on a terminal such as a smartphone or PC used by the target person. In that case, the providing unit 25 transmits the estimation result and the information indicating the region of interest of the brain in the image on which the estimation result is based to the terminal of the target person. As a result, the subject can confirm his / her own state by referring to the third image IMG3, the fourth image IMG4, the fourth region R4, the fifth region R5, and the second estimation result PD2. In addition, the providing unit 25 provides only the second estimation result PD2 to the target person's terminal, and if necessary, provides the third image IMG3, the fourth image IMG4, the fourth area R4, and the fifth area R5 to the target person's terminal. It may be provided to.
 図9は、本実施形態に係る推測装置20によるアミロイドβタンパク質の蓄積に関する推測精度を示す図である。同図では、学習データの一部を予めテストデータとして分離して、推測装置20によって第2学習済みモデル21cを生成した場合に、テストデータを用いて第2学習済みモデル21cの推測精度を算出した結果を示している。同図の表の「推測結果」は、第2学習済みモデル21cによって、対象者の脳の画像に基づいて、脳にアミロイドβタンパク質が閾値以上蓄積しているか否かを推測した結果を示している。対象者の脳にアミロイドβタンパク質が閾値以上蓄積している確率が所定値以上である場合は、「Positive」としてカウントされ、対象者の脳にアミロイドβタンパク質が閾値以上蓄積している確率が所定値未満である場合には「Negative」としてカウントされる。また、「正解」は、対象者の脳にアミロイドβタンパク質が閾値以上蓄積しているか否かをPETや脳脊髄液の採取によって測定した結果を示している。 FIG. 9 is a diagram showing the estimation accuracy regarding the accumulation of amyloid β protein by the estimation device 20 according to the present embodiment. In the figure, when a part of the training data is separated as test data in advance and the second trained model 21c is generated by the estimation device 20, the estimation accuracy of the second trained model 21c is calculated using the test data. The result is shown. The "guess result" in the table of the figure shows the result of guessing whether or not the amyloid β protein is accumulated in the brain above the threshold value by the second trained model 21c based on the image of the subject's brain. There is. If the probability that amyloid β protein is accumulated above the threshold value in the subject's brain is greater than or equal to a predetermined value, it is counted as "Positive", and the probability that amyloid β protein is accumulated above the threshold value in the subject's brain is predetermined. If it is less than the value, it is counted as "Negative". In addition, the "correct answer" indicates the result of measuring whether or not the amyloid β protein is accumulated in the subject's brain above the threshold value by collecting PET or cerebrospinal fluid.
 なお、図9に示す第2学習済みモデル21cの「推測結果」のカウントは、対象者の認知機能に関するテストのスコア等を、脳の画像の特徴マップと合成して最終判定を行った場合について行っている。 The count of the "guess result" of the second trained model 21c shown in FIG. 9 is the case where the score of the test related to the cognitive function of the subject is combined with the feature map of the brain image to make the final judgment. Is going.
 図9に示す例では、推測結果として、Positiveが865であり、Negativeが467である。そして、Positiveと推測された865例のうち807例が正解であり、58例が偽陽性(実際にはNegative)であった。また、Negativeと推測された467例のうち427例が正解であり、40例が偽陰性(実際にはPositive)であった。そのため、第2学習済みモデル21cの正確度(accuracy)は、(807+427)/(807+58+427+40)×100%=92.6%であり、感度(sensitivity)は、807/(807+40)×100%=95.3%であり、特異度(specificity)は、427/(427+58)×100%=88.0%である。このように、本実施形態に係る第2学習済みモデル21cは、いずれの指標に関しても高い性能を示しており、偽陽性及び偽陰性の発生を低く抑えて、アミロイドβタンパク質の蓄積有無を適切に評価できる。 In the example shown in FIG. 9, as the estimation result, Positive is 865 and Negative is 467. Of the 865 cases presumed to be Positive, 807 cases were correct and 58 cases were false positives (actually Negative). Of the 467 cases presumed to be Negative, 427 cases were correct answers, and 40 cases were false negatives (actually Positive). Therefore, the accuracy of the second trained model 21c is (807 + 427) / (807 + 58 + 427 + 40) × 100% = 92.6%, and the sensitivity is 807 / (807 + 40) × 100% = 95. It is 3.3%, and the specificity is 427 / (427 + 58) × 100% = 88.0%. As described above, the second trained model 21c according to the present embodiment shows high performance for all the indexes, suppresses the occurrence of false positives and false negatives to a low level, and appropriately determines the presence or absence of accumulation of amyloid β protein. Can be evaluated.
 なお、推測装置20は、第2学習済みモデル21cを生成した場合に、図9に示すような推測精度を示す表を診断支援装置10に表示させたり、正確度、感度及び特異度等の指標を診断支援装置10に表示させたりしてよい。また、ROC曲線やAUC等の指標を診断支援装置10に表示させてもよい。 When the second trained model 21c is generated, the estimation device 20 displays a table showing the estimation accuracy as shown in FIG. 9 on the diagnosis support device 10, and indexes such as accuracy, sensitivity, and specificity. May be displayed on the diagnostic support device 10. Further, an index such as an ROC curve or AUC may be displayed on the diagnosis support device 10.
 図10は、本実施形態に係る診断支援システム100によるアミロイドβタンパク質の蓄積に関する推測及びその根拠の表示に関するフローチャートである。はじめに、MRIスキャナ50によって、対象者の脳画像を撮影する(S30)。 FIG. 10 is a flowchart regarding the estimation of the accumulation of amyloid β protein by the diagnostic support system 100 according to the present embodiment and the display of the basis thereof. First, the brain image of the subject is taken by the MRI scanner 50 (S30).
 その後、推測装置20によって、第2学習済みモデル21cを用いて、脳画像及び対象者データに基づいて、対象者の脳に関するアミロイドβタンパク質の蓄積を推測する(S31)。ここで、対象者データとは、対象者の認知機能に関するテストのスコア、対象者の年齢、対象者の性別、対象者の身長、対象者の体重、対象者の既往歴、対象者の脳の部位毎の体積及び対象者の脳の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報である。 Then, the estimation device 20 estimates the accumulation of amyloid β protein related to the subject's brain based on the brain image and the subject data using the second trained model 21c (S31). Here, the subject data is the score of the test regarding the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, the medical history of the subject, and the brain of the subject. Information on the volume of each site, the score representing the degree of atrophy of the subject's brain, and at least one or a combination of these secular data.
 さらに、推測装置20によって、第2学習済みモデル21cを用いて、推測結果の根拠となる脳画像の関心領域を推定する(S32)。 Further, the estimation device 20 estimates the region of interest of the brain image that is the basis of the estimation result using the second trained model 21c (S32).
 最後に、診断支援装置10によって、脳画像、推測結果及び推測結果の根拠となる脳画像の関心領域を表示する(S33)。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
Finally, the diagnostic support device 10 displays the brain image, the estimation result, and the region of interest of the brain image on which the estimation result is based (S33).
The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those exemplified, and can be changed as appropriate. In addition, the configurations shown in different embodiments can be partially replaced or combined.
 以上のような診断支援装置10において、対象者の矢状面である第1画像IMG1(図4)は、頭蓋骨によって囲まれた全ての領域の脳画像を示しているから、全脳の画像に相当する。また、対象者の冠状面である第2画像IMG2(図4)は、頭蓋骨によって囲まれた全ての領域の脳画像を示しているから、全脳の画像に相当する。 In the above-mentioned diagnostic support device 10, the first image IMG1 (FIG. 4), which is the sagittal plane of the subject, shows a brain image of the entire region surrounded by the skull. Equivalent to. In addition, the second image IMG2 (FIG. 4), which is the coronal plane of the subject, shows a brain image of the entire region surrounded by the skull, and thus corresponds to an image of the whole brain.
 従って、推測装置20の記憶部21に格納される学習データ21aには、複数の被験者の全脳の画像が含まれる。また、生成部22は、複数の被験者の全脳のMRI画像を含む学習データ21aを入力とする畳み込みニューラルネットワークで構成される学習モデルの学習処理を実行することにより第1学習済みモデル21b及び第2学習済みモデル21cを生成する。推測部23は、対象者の全脳の画像を入力として、認知症に関連する推測を行い、推定部24は、推測結果の根拠となる画像における全脳の関心領域を推定する。ここで、第1画像IMG1の第1領域R1は、全脳のうち、後頭葉付近の領域を示しており、第2領域R2は、前頭葉付近の領域を示し、第3画像IMG3は、側頭葉付近の領域を示している。従って、推定部24は、頭蓋骨によって囲まれた全ての領域内における関心領域を推定することが可能なように構成されている。更に提供部25は、推定された全脳の関心領域を診断支援装置10に提供する。 Therefore, the learning data 21a stored in the storage unit 21 of the estimation device 20 includes images of the whole brains of a plurality of subjects. In addition, the generation unit 22 executes the learning process of the learning model composed of the convolutional neural network that inputs the learning data 21a including the MRI images of the whole brains of a plurality of subjects to execute the first trained model 21b and the first trained model 21b. 2 Generate a trained model 21c. The guessing unit 23 uses an image of the whole brain of the subject as an input to make a dementia-related guess, and the guessing unit 24 estimates the region of interest of the whole brain in the image on which the guess result is based. Here, the first region R1 of the first image IMG1 indicates a region near the occipital lobe in the whole brain, the second region R2 indicates a region near the frontal lobe, and the third image IMG3 is temporal. It shows the area near the leaves. Therefore, the estimation unit 24 is configured to be able to estimate the region of interest within all the regions surrounded by the skull. Further, the providing unit 25 provides the estimated region of interest of the whole brain to the diagnosis support device 10.
 また、診断支援装置10の第1取得部11は、対象者の全脳の画像を入力として取得する。第2取得部12は、対象者の全脳の画像に基づいて、対象者の認知症に関連する推測を行った推測結果を推測装置20から取得する。更に表示部10fは、対象者の認知症に関連する推測を行った推測結果及び推測結果の根拠となる画像における全脳の関心領域を示す情報を表示する。 Further, the first acquisition unit 11 of the diagnosis support device 10 acquires an image of the whole brain of the subject as an input. The second acquisition unit 12 acquires from the estimation device 20 the estimation result of making an estimation related to the dementia of the subject based on the image of the whole brain of the subject. Further, the display unit 10f displays the estimation result of the dementia-related estimation of the subject and the information indicating the region of interest of the whole brain in the image on which the estimation result is based.
 このような構成によれば、対象者の全脳の画像を取得し、学習済みモデルにこの画像を入力することにより、対象者の認知症に関連する推測を行った推測結果を取得することが可能となる。このため、脳画像をボクセルごとに分割して評価する手法では評価することが困難であった、複数の領域の関連性に基づいた評価を行うことが可能となる。例えば、前頭葉、後頭葉、側頭葉のそれぞれに認知症原因タンパク質のある程度の蓄積がある場合、脳画像を分割して評価する手法では、各領域の認知症原因タンパク質の蓄積量が小さい等の理由で認知症である可能性が低い、という評価結果が得られる場合であっても、本発明に係る診断支援装置10によれば、複数の領域の関連性に基づいた評価や、複数の領域を横断するような原因に起因する評価を行うことが可能となるから、例えば、前頭葉、後頭葉、側頭葉のそれぞれに認知症原因タンパク質のある程度の蓄積があることに起因して、認知症である可能性が高い、という推測結果を得ることが可能になる。更には、従来の技術常識では認識されていなかったような、認知症に係る脳の新規領域、又は、新規な相関性の発見を期待することが可能になる。また、脳外科を専門とする医師等、脳の個別部位の同定に係る専門知識を十分に有しない医師等であっても、簡易に診断を行うことが可能になる。 According to such a configuration, it is possible to acquire an image of the whole brain of the subject and input this image into the trained model to obtain the estimation result of making a guess related to the subject's dementia. It will be possible. For this reason, it becomes possible to perform evaluation based on the relationship between a plurality of regions, which was difficult to evaluate by the method of dividing and evaluating brain images for each voxel. For example, when there is a certain amount of dementia-causing protein accumulation in each of the frontal lobe, occipital lobe, and temporal lobe, the method of dividing and evaluating brain images has a small accumulation amount of dementia-causing protein in each region. Even when the evaluation result that the possibility of dementia is low is obtained for some reason, according to the diagnostic support device 10 according to the present invention, evaluation based on the relationship between a plurality of areas and a plurality of areas can be obtained. Since it is possible to make an evaluation due to a cause that crosses over, for example, dementia is caused by a certain amount of dementia-causing protein accumulation in each of the frontal lobe, occipital lobe, and temporal lobe. It is possible to obtain a speculative result that is likely to be. Furthermore, it is possible to expect the discovery of a new region of the brain related to dementia or a new correlation, which has not been recognized by conventional technical common sense. In addition, even a doctor who specializes in neurosurgery or the like who does not have sufficient expertise in identifying individual parts of the brain can easily make a diagnosis.
 更に、推定部24は、頭蓋骨によって囲まれた全ての領域内における関心領域を推定し、表示部10fは、頭蓋骨によって囲まれた全ての領域内における関心領域を表示する。例えば、表示部10fは、第1画像IMG1乃至第3画像IMG3に示されるように、前頭葉、後頭葉、側頭葉という複数の領域にわたる関連領域を表示する。従って、診断支援装置10のユーザは、複数の領域の関連性が認知症の原因になり得るという新たな知見を得ることが可能になる。このような構成によってもたらされる効果は、脳画像をボクセルごとに分割して評価するVBM(Voxel Based Morphometry)や、薬剤を吸収する部位のみを表示するPET検査では得ることが困難である。 Further, the estimation unit 24 estimates the region of interest in all the regions surrounded by the skull, and the display unit 10f displays the region of interest in all the regions surrounded by the skull. For example, the display unit 10f displays related regions covering a plurality of regions such as the frontal lobe, the occipital lobe, and the temporal lobe, as shown in the first image IMG1 to the third image IMG3. Therefore, the user of the diagnostic support device 10 can obtain new knowledge that the relationship between a plurality of areas can cause dementia. It is difficult to obtain the effect brought about by such a configuration by VBM (Voxel Based Morphometry) in which a brain image is divided and evaluated for each voxel, or a PET examination in which only a site that absorbs a drug is displayed.
 また、表示部10fが表示する全脳の関心領域は、その推測結果の根拠となるものであるから、対象者によって異なるのが通常である。例えば前頭側頭型認知症の対象者であれば、前頭葉又は側頭葉が、関心領域として表示される場合があるが、血管性認知症の対象者であれば、血管が損傷した部位が、関心領域として表示される場合がある。関心領域は、対象画素を強調表示すること、例えば、対象画素の輝度を大きくすること、により表現される。従って、同じ前頭葉の中でも、対象者によって異なる関心領域が表示されるのが通常である。このような構成は、認知症の原因になる可能性が高いとして予め知られていた領域(例えば、前頭葉)を単に強調表示するものとは全く異なるものである。 Further, since the region of interest of the whole brain displayed by the display unit 10f is the basis of the estimation result, it usually differs depending on the subject. For example, in the case of a subject with frontotemporal dementia, the frontal lobe or the temporal lobe may be displayed as an area of interest, but in the case of a subject with vascular dementia, the site where the blood vessel is damaged may be displayed. It may be displayed as an area of interest. The region of interest is represented by highlighting the target pixel, for example, increasing the brightness of the target pixel. Therefore, even within the same frontal lobe, different regions of interest are usually displayed depending on the subject. Such a configuration is quite different from simply highlighting areas previously known to be likely to cause dementia (eg, the frontal lobe).
 関心領域、すなわち、全脳のうち、推測結果の根拠となる領域を抽出する方法として、上述したLRPは、入力値が出力値に対して与える影響を計算する手法である。例えば、CNN等のニューラルネットワークをある層まで伝搬させた後、調べたい箇所以外の値をゼロにして逆伝搬することにより、影響が大きい箇所を特定することが可能になる。また、LRP以外では、入力情報を変更して複数の入力情報を作成し、それらを、同じ学習済みモデルに入力し結果を比較することにより、推測結果の根拠となる領域を取得する手法が考えられる。具体的には、まず、推測部23は、対象者の全脳の画像(「第1画像」の一例)を第1学習済みモデル21b又は第2学習済みモデル21cに入力して推測結果(「第1推測結果」の一例)を取得する。次いで、推定部24は、第1画像の一部領域のみが異なる複数の全脳の画像(「第2画像」の一例)を生成する。例えば、前頭葉の一部の画素値をマスクした第2画像、後頭葉の一部の画素値をマスクして異なる値に変更した第2画像等を生成する。そして、推測部23は、生成された複数の第2画像を第1学習済みモデル21b又は第2学習済みモデル21cに入力して複数の推測結果(「第2推測結果」の一例)を取得する。そして推定部24は、第1推測結果と第2推測結果を比較して、異なる推測結果が得られる第2画像を決定する。推定部24は、第1推測結果と異なる第2推測結果をもたらした第2画像において、マスクされた領域を推測結果の根拠となる関心領域として取得し、提供部25に提供する。表示部10fは、関心領域に相当する画素ほど輝度を高めて、対象者の全脳の画像に重畳させて表示する。なお、推測結果を3種類以上選択する場合、関心領域は、2種類以上の領域(根拠を有する第1関心領域と、より根拠を有する第2関心領域)を含むように構成することが可能になる。 As a method of extracting the region of interest, that is, the region of the whole brain that is the basis of the estimation result, the above-mentioned LRP is a method of calculating the influence of the input value on the output value. For example, after propagating a neural network such as CNN to a certain layer, it is possible to identify a part having a large influence by setting a value other than the part to be examined to zero and back-propagating. In addition to LRP, a method of changing the input information to create a plurality of input information, inputting them into the same trained model, and comparing the results is considered to acquire the area on which the estimation result is based. Be done. Specifically, first, the estimation unit 23 inputs an image of the entire brain of the subject (an example of the "first image") into the first trained model 21b or the second trained model 21c, and the estimation result ("" An example of "first estimation result") is acquired. Next, the estimation unit 24 generates a plurality of images of the whole brain (an example of the "second image") in which only a part of the first image is different. For example, a second image in which a part of the pixel values of the frontal lobe is masked, a second image in which a part of the pixel values of the occipital lobe are masked and changed to different values, and the like are generated. Then, the guessing unit 23 inputs the generated second image into the first trained model 21b or the second trained model 21c to acquire a plurality of guessing results (an example of the "second guessing result"). .. Then, the estimation unit 24 compares the first estimation result and the second estimation result, and determines a second image in which different estimation results are obtained. The estimation unit 24 acquires the masked region as the region of interest on which the estimation result is based in the second image that brings about the second estimation result different from the first estimation result, and provides the masked region to the providing unit 25. The display unit 10f increases the brightness of the pixels corresponding to the region of interest and superimposes them on the image of the entire brain of the subject for display. When three or more types of estimation results are selected, the region of interest can be configured to include two or more types of regions (a grounded first region of interest and a more grounded second region of interest). Become.
 以上のような構成によれば、学習済みモデルによる推測結果の妥当性が確認しやすく、かつ、診断精度を高めることが可能になる診断支援装置、推測装置、診断支援システム、診断支援方法、診断支援プログラム及び学習済みモデルを提供することが可能になる。 According to the above configuration, it is easy to confirm the validity of the estimation result by the trained model, and it is possible to improve the diagnostic accuracy. Diagnosis support device, estimation device, diagnosis support system, diagnosis support method, diagnosis. It will be possible to provide support programs and trained models.
 10…診断支援装置、10a…CPU、10b…RAM、10c…ROM、10d…通信部、10e…入力部、10f…表示部、11…第1取得部、12…第2取得部、20…推測装置、21…記憶部、21a…学習データ、21b…第1学習済みモデル、21c…第2学習済みモデル、22…生成部、23…推測部、24…推定部、25…提供部、30…画像管理サーバ、50…MRIスキャナ、100…診断支援システム 10 ... Diagnosis support device, 10a ... CPU, 10b ... RAM, 10c ... ROM, 10d ... Communication unit, 10e ... Input unit, 10f ... Display unit, 11 ... First acquisition unit, 12 ... Second acquisition unit, 20 ... Guess Device, 21 ... storage unit, 21a ... learning data, 21b ... first trained model, 21c ... second trained model, 22 ... generation unit, 23 ... estimation unit, 24 ... estimation unit, 25 ... providing unit, 30 ... Image management server, 50 ... MRI scanner, 100 ... diagnostic support system

Claims (16)

  1.  対象者の全脳の画像を取得する第1取得部と、
     学習済みモデルに前記画像を入力し、前記対象者の認知症に関連する推測を行った推測結果を取得する第2取得部と、
     前記推測結果及び前記推測結果の根拠となる前記画像における全脳の関心領域を示す情報を表示する表示部と、
     を備える診断支援装置。
    The first acquisition unit that acquires an image of the entire brain of the subject,
    A second acquisition unit that inputs the image into the trained model and acquires the estimation result of making an estimation related to the dementia of the subject, and
    A display unit that displays information indicating the estimation result and the region of interest of the whole brain in the image that is the basis of the estimation result, and
    Diagnostic support device equipped with.
  2.  前記第1取得部は、前記全脳の3次元画像を取得する、
     請求項1に記載の診断支援装置。
    The first acquisition unit acquires a three-dimensional image of the whole brain.
    The diagnostic support device according to claim 1.
  3.  前記表示部は、前記推測結果の根拠となる前記3次元画像における全脳の関心領域を、3次元位置が識別可能な態様で表示する、
     請求項2に記載の診断支援装置。
    The display unit displays the region of interest of the whole brain in the three-dimensional image, which is the basis of the estimation result, in a manner in which the three-dimensional position can be identified.
    The diagnostic support device according to claim 2.
  4.  前記第2取得部は、前記学習済みモデルを用いて、前記画像に基づいて、前記対象者が所定期間内に認知症を発症するリスクの推測を行った推測結果を取得する、
     請求項1から3のいずれか一項に記載の診断支援装置。
    The second acquisition unit acquires the estimation result of estimating the risk of the subject developing dementia within a predetermined period based on the image using the learned model.
    The diagnostic support device according to any one of claims 1 to 3.
  5.  前記第2取得部は、前記学習済みモデルを用いて、前記画像に基づいて、前記全脳に関する認知症原因タンパク質の蓄積を推測した推測結果を取得する、
     請求項1から3のいずれか一項に記載の診断支援装置。
    The second acquisition unit acquires the estimation result of estimating the accumulation of the dementia-causing protein related to the whole brain based on the image using the trained model.
    The diagnostic support device according to any one of claims 1 to 3.
  6.  前記第2取得部は、前記学習済みモデルを用いて、前記画像に基づいて、前記全脳に関するアミロイドβタンパク質の蓄積を推測した推測結果を取得する、
     請求項1から3のいずれか一項に記載の診断支援装置。
    The second acquisition unit acquires the estimation result of estimating the accumulation of amyloid β protein with respect to the whole brain based on the image using the trained model.
    The diagnostic support device according to any one of claims 1 to 3.
  7.  前記第2取得部は、前記学習済みモデルを用いて、前記対象者の認知機能に関するテストのスコア、前記対象者の年齢、前記対象者の性別、前記対象者の身長、前記対象者の体重、前記対象者の既往歴、前記対象者の前記全脳の部位毎の体積及び前記対象者の前記全脳の部位毎の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報と、前記画像とに基づいて、前記対象者の認知症に関連する推測を行った前記推測結果を取得する、
     請求項1から6のいずれか一項に記載の診断支援装置。
    Using the trained model, the second acquisition unit uses the trained model to obtain a test score for the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, and the like. At least one or more of the medical history of the subject, the volume of the subject for each part of the whole brain, the score representing the degree of atrophy of the subject for each part of the whole brain, and these secular data. Based on the information of the combination of the above and the image, the estimation result of making the estimation related to the dementia of the subject is acquired.
    The diagnostic support device according to any one of claims 1 to 6.
  8.  学習済みモデルに対象者の全脳の画像を入力し、前記対象者の認知症に関連する推測を行う推測部と、
     前記学習済みモデルを用いて、前記推測結果の根拠となる前記画像における全脳の関心領域を推定する推定部と、
     前記推測の結果及び前記推測の結果の根拠となる前記画像における全脳の関心領域を示す情報を診断支援装置に提供する提供部と、
     を備える推測装置。
    An inference unit that inputs an image of the subject's entire brain into the trained model and makes inferences related to the subject's dementia.
    Using the trained model, an estimation unit that estimates the region of interest of the whole brain in the image that is the basis of the estimation result, and an estimation unit.
    A providing unit that provides the diagnostic support device with information indicating the result of the estimation and the region of interest of the whole brain in the image on which the result of the estimation is based.
    A guessing device equipped with.
  9.  診断支援装置と、学習済みモデルを記憶している推測装置とを備える診断支援システムであって、
     前記診断支援装置は、
     対象者の全脳の画像を取得する第1取得部と、
     前記学習済みモデルに前記画像を入力し、前記対象者の認知症に関連する推測を行った推測結果を取得する第2取得部と、
     前記推測結果及び前記推測結果の根拠となる前記画像における全脳の関心領域を示す情報を表示する表示部と、を有する、
     診断支援システム。
    It is a diagnostic support system including a diagnostic support device and a guessing device that stores a trained model.
    The diagnostic support device is
    The first acquisition unit that acquires an image of the entire brain of the subject,
    A second acquisition unit that inputs the image into the trained model and acquires the estimation result of making an estimation related to the dementia of the subject.
    It has a display unit that displays information indicating the region of interest of the whole brain in the image, which is the basis of the estimation result and the estimation result.
    Diagnostic support system.
  10.  前記推測装置は、
     学習済みモデルを用いて、前記画像に基づいて、前記対象者の認知症に関連する推測を行う推測部と、
     前記学習済みモデルを用いて、前記推測の結果の根拠となる前記画像における全脳の関心領域を推定する推定部と、を有する、
     請求項9に記載の診断支援システム。
    The guessing device
    A guessing unit that makes a dementia-related guess for the subject based on the image using the trained model.
    Using the trained model, it has an estimation unit that estimates the region of interest of the whole brain in the image, which is the basis of the estimation result.
    The diagnostic support system according to claim 9.
  11.  前記推測装置は、
     複数の被験者の認知症に関連する実測データが関連付けられた、前記複数の被験者の全脳の画像を含む学習データを用いて、学習モデルの学習処理を実行し、前記学習済みモデルを生成する生成部を有する、
     請求項10に記載の診断支援システム。
    The guessing device
    Generation that executes the learning process of the learning model and generates the trained model by using the learning data including the images of the whole brains of the plurality of subjects to which the measured data related to the dementia of a plurality of subjects are associated. Have a part,
    The diagnostic support system according to claim 10.
  12.  前記学習データは、前記被験者の認知機能に関するテストのスコア、前記被験者の年齢、前記被験者の性別、前記被験者の身長、前記被験者の体重、前記被験者の既往歴、前記被験者の前記全脳の部位毎の体積及び前記被験者の前記全脳の萎縮度を表すスコア並びにこれらの経年別データの少なくともいずれか一つ又は複数の組み合わせの情報を含む被験者データをさらに含み、
     前記生成部は、前記複数の被験者の全脳の画像及び前記被験者データに基づいて、前記学習済みモデルを生成する、
     請求項11に記載の診断支援システム。
    The learning data includes the score of the test related to the cognitive function of the subject, the age of the subject, the gender of the subject, the height of the subject, the weight of the subject, the medical history of the subject, and each part of the whole brain of the subject. Further includes subject data including information on the volume of the subject, a score representing the degree of atrophy of the whole brain of the subject, and information on at least one or a combination of these secular data.
    The generation unit generates the trained model based on the images of the whole brains of the plurality of subjects and the subject data.
    The diagnostic support system according to claim 11.
  13.  前記生成部は、前記対象者の全脳の画像及び前記対象者の認知症に関連する診断結果に基づいて、前記学習済みモデルの再学習を行う、
     請求項11又は12に記載の診断支援システム。
    The generation unit relearns the trained model based on the image of the whole brain of the subject and the diagnosis result related to the dementia of the subject.
    The diagnostic support system according to claim 11 or 12.
  14.  対象者の全脳の画像を取得することと、
     学習済みモデルに前記画像を入力し、前記対象者の認知症に関連する推測を行った推測結果を取得することと、
     前記推測結果及び前記推測結果の根拠となる前記画像における全脳の関心領域を示す情報を表示することと、
     を含む診断支援方法。
    Acquiring an image of the subject's whole brain and
    By inputting the image into the trained model and obtaining the estimation result of making the estimation related to the dementia of the subject,
    To display the information indicating the estimation result and the region of interest of the whole brain in the image on which the estimation result is based.
    Diagnostic support methods including.
  15.  診断支援装置に、
     対象者の全脳の画像を取得することと、
     学習済みモデルに前記画像を入力し、前記対象者の認知症に関連する推測を行った推測結果を取得することと、
     前記推測結果及び前記推測結果の根拠となる前記画像における全脳の関心領域を示す情報を表示することと、
     を実行させる診断支援プログラム。
    For diagnostic support equipment
    Acquiring an image of the subject's whole brain and
    By inputting the image into the trained model and obtaining the estimation result of making the estimation related to the dementia of the subject,
    To display the information indicating the estimation result and the region of interest of the whole brain in the image on which the estimation result is based.
    Diagnostic support program to execute.
  16.  複数の被験者の認知症に関連する実測データが関連付けられた、前記複数の被験者の全脳の画像を含む学習データを用いた学習モデルの学習処理によって、
     対象者の全脳の画像を入力し、前記対象者の認知症に関連する推測を行うことと、
     前記推測の結果の根拠となる前記画像における全脳の関心領域を推定することと、
     を実行するように学習処理されている学習済みモデル。
    By the learning process of the learning model using the learning data including the images of the whole brains of the plurality of subjects to which the measured data related to the dementia of the plurality of subjects are associated.
    By inputting an image of the subject's whole brain and making inferences related to the subject's dementia,
    To estimate the region of interest of the whole brain in the image, which is the basis of the result of the estimation,
    A trained model that has been trained to run.
PCT/JP2020/017585 2019-04-26 2020-04-24 Diagnostic assistance device, speculation device, diagnostic assistance system, diagnostic assistance method, diagnostic assistance program, and learned model WO2020218460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516228A JPWO2020218460A1 (en) 2019-04-26 2020-04-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085889 2019-04-26
JP2019085889 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218460A1 true WO2020218460A1 (en) 2020-10-29

Family

ID=72941937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017585 WO2020218460A1 (en) 2019-04-26 2020-04-24 Diagnostic assistance device, speculation device, diagnostic assistance system, diagnostic assistance method, diagnostic assistance program, and learned model

Country Status (2)

Country Link
JP (1) JPWO2020218460A1 (en)
WO (1) WO2020218460A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081457A (en) * 2020-11-19 2022-05-31 ヒューロン カンパニー,リミテッド Biological classification device and method for alzheimer's disease using brain image
JP2022082408A (en) * 2020-11-20 2022-06-01 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Computer system for automatically retrieving mental disease diagnostic protocol and method therefor
WO2022137855A1 (en) * 2020-12-22 2022-06-30 富士フイルム株式会社 Information processing device, method, and program
WO2022181154A1 (en) * 2021-02-26 2022-09-01 京セラ株式会社 Assessment system, assessment system control method, and control program
WO2023276563A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Diagnosis assistance device, computer program, and diagnosis assistance method
US11832955B2 (en) * 2022-02-22 2023-12-05 NEUROPHET Inc. Method and apparatus for providing information needed for dementia diagnosis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064004A (en) * 2014-09-25 2016-04-28 大日本印刷株式会社 Medical image display processing method, medical image display processing device and program
JP2018138537A (en) * 2017-02-20 2018-09-06 ヤコブソン リサーチ ラボラトリー リミテッド Compound for used in medical imaging and preparation method of the same
JP6483890B1 (en) * 2018-04-27 2019-03-13 国立大学法人滋賀医科大学 Diagnosis support apparatus, machine learning apparatus, diagnosis support method, machine learning method, and machine learning program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064004A (en) * 2014-09-25 2016-04-28 大日本印刷株式会社 Medical image display processing method, medical image display processing device and program
JP2018138537A (en) * 2017-02-20 2018-09-06 ヤコブソン リサーチ ラボラトリー リミテッド Compound for used in medical imaging and preparation method of the same
JP6483890B1 (en) * 2018-04-27 2019-03-13 国立大学法人滋賀医科大学 Diagnosis support apparatus, machine learning apparatus, diagnosis support method, machine learning method, and machine learning program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081457A (en) * 2020-11-19 2022-05-31 ヒューロン カンパニー,リミテッド Biological classification device and method for alzheimer's disease using brain image
JP7101856B2 (en) 2020-11-19 2022-07-15 ヒューロン カンパニー,リミテッド Biological classification device and method for Alzheimer's disease using brain images
JP2022082408A (en) * 2020-11-20 2022-06-01 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Computer system for automatically retrieving mental disease diagnostic protocol and method therefor
JP7209383B2 (en) 2020-11-20 2023-01-20 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Computer system, method, and computer-readable recording medium for automatically searching for mental illness diagnosis protocol
US11823383B2 (en) 2020-11-20 2023-11-21 Korea Advanced Institute Of Science And Technology Computer system for automatically searching for mental disorder diagnosis protocol and method thereof
WO2022137855A1 (en) * 2020-12-22 2022-06-30 富士フイルム株式会社 Information processing device, method, and program
WO2022181154A1 (en) * 2021-02-26 2022-09-01 京セラ株式会社 Assessment system, assessment system control method, and control program
WO2023276563A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Diagnosis assistance device, computer program, and diagnosis assistance method
US11832955B2 (en) * 2022-02-22 2023-12-05 NEUROPHET Inc. Method and apparatus for providing information needed for dementia diagnosis

Also Published As

Publication number Publication date
JPWO2020218460A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020218460A1 (en) Diagnostic assistance device, speculation device, diagnostic assistance system, diagnostic assistance method, diagnostic assistance program, and learned model
US11996172B2 (en) Diagnosis support system, information processing method, and program
JP7357927B2 (en) Diagnostic support system and method
JP4162242B2 (en) Diagnostic imaging support system
JP2015513157A (en) System and method for improving neurologist workflow for Alzheimer's disease
US11403755B2 (en) Medical information display apparatus, medical information display method, and medical information display program
CN113962311A (en) Knowledge data and artificial intelligence driven ophthalmic multi-disease identification system
US20170238879A1 (en) Method of Analyzing the Brain Activity of a Subject
US9883817B2 (en) Management, assessment and treatment planning for inflammatory bowel disease
JP7114347B2 (en) Tomographic image prediction device and tomographic image prediction method
JP4685078B2 (en) Diagnostic imaging support system
WO2023190880A1 (en) Brain image data analysis device, brain image data analysis method, and brain image data analysis program
US11751798B2 (en) Method of evaluating concomitant clinical dementia rating and its future outcome using predicted age difference and program thereof
WO2023276563A1 (en) Diagnosis assistance device, computer program, and diagnosis assistance method
US12014823B2 (en) Methods and systems for computer-aided diagnosis with deep learning models
Jannin Validation in medical image processing: Methodological issues for proper quantification of uncertainties
WO2023167157A1 (en) Computer program, information processing device, and information processing method
US11883184B1 (en) Use of brain age in prediction of cognitive decline of patients with mild cognitive impairment treated with cholinesterase inhibitor
US20240206801A1 (en) Use of brain age model in prediction of brain atrophy
Moulton Methodological Considerations and Clinical Relevance of Diffusion Tensor Imaging in Acute Stroke Prognosis
Verma et al. Diffusion Tensor Imaging for Investigating Structural Connectivity Patterns in Attention Deficit Hyperactivity Disorder
BORDIN et al. Harmonizing large-scale imaging databases to provide integrated assessments of the role of white matter hyperintensities in cognitive aging
Vivó et al. Microscopic fractional anisotropy outperforms multiple sclerosis lesion assessment and clinical outcome associations over standard fractional anisotropy tensor
Morita et al. Quantification of Pediatric Brain Development with X-ray CT Images using 3D-CNN
Li et al. A diffusion MRI tractography atlas for concurrent white matter mapping across Eastern and Western populations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794744

Country of ref document: EP

Kind code of ref document: A1